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Abstract

We define the Gauss equation in the exterior algebra, and state a relation to the
original Gauss equation appearing in the theory of Riemannian submanifolds. We
also state several necessary (and sufficient) conditions in order that this equation
adnits a solution mainly in the cases codimension = 1 and 2.
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Introduction.

The Gauss equation is a system of quadratic equations appearing in the theory of
Riemannian submanifolds, and it is expressed in the following form:

R(X,Y,Z, W) = ((X, Z),a(Y,W)) — (a(X, W), a(Y, Z)).

Here, R mecans a curvature like tensor on the n-dimensional real vector space V (= the
tangent space of M™ at z), a is an R"-valued symmetric form on V which corresponds to
the second fundamental form of M™ C R"*"  and (, ) is a positive definite inner product
of R".

The solvability of this equation is intimately related to the existence of local isometric
imbeddings of n-dimensional Riemannian manifolds into R™*". In fact, if this equation
does not admit a solution, the Riemannian manifold possessing R as a curvature at one
point cannot be isometrically immersed into the Euclidean space with codimension r.

We already obtained several types of necessary conditions on the curvature in order that
the Gauss equation admits a solution for low codimensional cases. And by applying these
conditions, we showed several facts on the non-existence of local isometric imbeddings
of Riemannian symmetric spaces (cf. [2], [3], [4], [5], [10], [12], [13], [14], etc.). But
unfortunately, for higher codimensional cases, we have a little knowledge concerning the
solvability of the Gauss equation because it is a quite complicated system of quadratic
equations.
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In this paper, we introduce a new equation in the exterior algebra, which is a natural
generalization of the usual Gauss equation stated above (Theorem 1). Since the exterior
algebra has a simple algebraic structure as compared with the space of curvature like
tensors, it is expected that a new obstruction to the existence of local isometric imbeddings
can be found from this new formulation, though it requires some deep understanding of
the space of 4-forms. Roughly speaking, the solvability of this new equation is equivalent
to determine “a sort of rank” of 4-forms. We can consider a similar problem for 2-forms,
and in this case, the problem is completely settled in terms of the concept “rank”. But as
for 4-forms, we do not have such a complete understanding as 2-forms, and we give here
some partial results on the solvability of this new equation.

In this paper, after stating a relation between the usual Gauss equation and the new
equation, we consider the obstructions mainly for the cases codimension = 1 and 2. In the
forthcoming paper, we will attack for higher codimensional cases, by introducing a more
refined formulation for 4-forms.

§ 1. Exterior Gauss equation.

We first review the usual Gauss equation in Riemannian geometry. Let K be the space
of curvature like tensors on the n-dimensional real vector space V, i.e.,

K ={ReANV'@AV*|BxyzR(X,Y,Z,W) =0}

We fix a basis {X;,---,X,} of V. and put Ry = R(X;, X;, Xk, X;). We say that R
admits a solution of the Gauss equation in codimension r if R is expressed in the form

R(X,Y,Z,W) =(a(X,Z),a(Y,W)) = (a(X, W), (Y, Z))

for some R"-valued symmetric bilinear form a on V. Here, (, ) means a positive definite
inner product of R".

Now, we consider a new real vector space W with double dimension 2n, and in terms
of the curvature R, define a 4-form R on W by

R = Z Rijkl C: /\8; /\f,: /\f; € A“‘V‘,

i<j, k<l

where {e},--- ,e, f,---,f'} is a basis of the dual space of W. Then, our first main
result of this paper is stated as follows.

Theorem 1. Assume that R € K admats a solution of the Gauss equation in codi-
mension r. Then, the above 4-form R can be expressed in the form

—}~2=<I>1A<I>1+‘--+<I>,A<I>,

in terms of some 2-forms ®,,--- ,®, € N2W*.
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Proof. Assume that R admits a solution of the Gauss equation in codimension r. Then,
in terms of a basis of 17 and R", we have

r
- PP PP
Riju = E (afafy — afaly),

p=1

where f; is the component of a. In this situation, we define 2-forms @, € A2W* by

1 I
@,,:752(1%6,- /\fj,
'l]

for p = 1 ~ r. Then, by easy calculations, we immediately have

PN+ + P AD,

1 PP s * * *
— 7 2ijkip M€ Nk AfTA L

= i<j k<t (Ol —ahiah)e; Nes A fLA S
= —Xicik Rijue] Nej NFEA ST

= -R

g.ed.

In the following, we consider a more general situation purely from algebraic viewpoint.
Namely, for a given 4-form 2 on an abstract mn-dimensional (real or complex) vector space
W, we call the equation Q = &; A ®; + --- + &, A @, the Gauss equation in the exterior
algebra, or simply the eztertor Gauss equation. (We drop the minus sign of the 4-form
in this formulation. But in the complexified category, this gives essentially the same
equation because (i®;) A (i®r) = — P, A ®;.) Of course, in the actual application to local
isometric imbeddings of n-dimensional Riemannian manifolds, we have to put m = 2n and
) = —R. In this situation, if we can show that = —R cannot be expressed in the form
Z;zl &, A ®,, then from the above theorem we know that the original Gauss equation
also does not admit a solution in codimension r, which indicates the non-existence of local
isometric imbeddings of Riemannian manifolds possessing R as a curvature at one point.

From purely algebraic viewpoint, the solvability of the exterior Gauss equation is in-
teresting and important. This is related to the problem of determining the “rank” of
4-forms. We say that a 4-form Q has rank r if Q is expressed as a sum of r (but cannot
r — 1) decomposable 4-forms. The number corresponding to the codimension r in our
formulation is smaller than or equal to this rank of (2 because decomposable 4-forms can
be expressed as the exterior product of a 2-form such as

1
ef/\e{,Aef,Aej:E(e{Ae;-l-e:‘,Ae;)/\(eI/\e;-}—e;Ae;).

In the paper [16], a combinatorial method to obtain an upper bound of the rank of generic
p-forms is explained in detail.
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For the case of 2-forms, the smallest number » such that a given 2-form can be expressed
as Y i a;ABi (g, B; € W?) is equal to the half of the rank of 2-forms. But, as for 4-forms,
we do not know such a useful concept yet. Similar problems for other algebraic situations
are also considered for example in [16], [17],[18], [25], etc.

§ 2. The case (m, r) = (6, 1).

Since we are considering 4-forms on W, we may assume that dim W > 4. But in the
cases dim W = 4 and 5, all 4-forms on W are decomposable, and hence they always can
be expressed as ® A ® for some & € A’2W*. In this section, we consider the first non-trivial
case dim W = 6 and r = 1. We express an element of A'W* as  as above, and the
components of I as ;;, i.e.,

E : * *
Q= Qijkl €; /\6;/\6k/\6“,
i<j<k<li

where {e},--- ,e’.} is a basis of W*.

Proposition 2. Assume dim W = 6. Then, the map A*W* — A'W* defined by
® — AP s alocal diffeomorphism.

Proof. First, we remark that dim A2W* = dim A*W* = 15 in the case dimW = 6. We
show that the rank of the differential of the above map is 15 at generic points of A2W*.
For this purpose, we consider the 2-form ®y = e} Aej + €5 A ej + e; A eg. Then, it is easy
to see that the condition ®g A ¥ =0 (¥ € A’W"*) implies ¥ = 0, which indicates that the
rank of the differential of the map & — ® A ® is 15 at this point ®y. Hence, this map is
a local diffeomorphism at generic points of AZW*. q.e.d.

We can give the explicit inverse formula of this map, by using a representation theoretic
method stated as follows.

The general linear group GL(W) naturally acts on the space of homogeneous poly-
nomials on A*W* with degree p (= SP(A*W*)* = SP(A*W)). The GL(W )-irreducible
decomposition of this space is given by the decomposition of the plethysm {1} ® {p}. For
small p, this decomposition is already known, and it is explicitly given as follows. (For the
definition and some results of plethysms, see [8], [11], [21], [22], [27], etc.).

Proposition 3 (cf. [8]).

1 {U}e {1} ={1"},

2 : {U}e{2} ={2'}+{2%1"} +{1°},

3¢ {1} @{3) = {8') + {32212} + {3116} + (32°1%) + {2°) + {2'14) + (219}
+ {2218} + {1'2}.

p
p
p

Remark. We already know the general decomposition formula of the plethysm {12} ®
{p} (cf. [1]). But as for the plethysm {1*} ® {p}, such a formula is not known yet for
general p.
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Among the above irreducible components, the generator of {26} c {1'} © {3} =
S3(ATW*)* is quite important, and is given by

Q1234821256 23456 — 21234213568 22456 + 21234 2145622356 — 21235821246 23456
+Q123521346 22456 — 2123521456 22346 + 21236521245 23456 — 2123621345 22456
+Ql‘2369145692345 - 912459134692356 + 912459135602346 + 012460134592356
— Q246135622345 — Q1256821345822346 + Q125621346 22345.

This expression can be obtained by the method stated in [3]. This is a relative invariant of

the group GL(W) in case dimW = 6, and we denote this polynomial as A in the following.

If we fix a volume form of W, then the space A*W* is naturally isomorphic to AW, and

under this identification, the invariant A just corresponds to the Pfaffian of A2W = AZRS.
If Q is expressed in the form & A &, we have

Q,-]-H = 2(4),-]-(1)“ - (I)ikq’jl + ‘I)ilq)jk)a

where ® = Y~ ®,; ¢} Ae}. By substituting this equality into the above A, we have A = 842,
where

0 = B19P34Ps6 — P12PysPug + P12P36Pas — P13P24Pse + P13P25 Py
—® 3PP 45 + P14 P2y Pss — P14 Pos P36 + PraPrsPss — Pi5PasPys
+P@15P2 D3 — PisPosPaq + P16Po3Pas — P16 P24P3s + P16P25 P34,

which isvnothing but the Pfaffian of ®.

On the other hand, the generator of {221} C {1} @ {2} (cf. Proposition 3) is given
by

Q1234 01256 — Q123521246 + Q123621245
By substituting @ = ® A ® into this polynomial, we know that this is equal to 49,,4.
Hence, we have
1

2A
For general indices, we have the following theorem.

@2, = (123401256 — Q12351246 + D1236Q1245) .

Theorem 4 (The inverse formula). Assume dim W = 6 and Q s expressed as @ A
for some ® = 3 ®i;e; Aej € A2W*. Then, if Q is sufficiently generic, the 2-form ® is
uniquely determined from Q (up to sign) by the formula:

1

2 2

i = oA (iipaSlirs = QijprSlijqs + Qijpaijer)”,

where €] /\.e; Ney Aeg A.e: Ne; =e} ANejNej AejAes Aeg. The ratio of two components
of ® is uniquely determined by

o, = lezkalzw - lezszlyw + leszklyz
QiquQijrs - QijprQiqu + QijpsQijqr

Qija
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. X3 * * * * * __ _* * * * * * __ % * * * * *
where e Aes Aey AegNeg Aey =ep Nef ANeg Aey Aet Ney, =ef Aeg Aeg AejAes Aeg.

Remark. By changing the indices suitably, the above inverse formula also holds for the
case dim W > 7. In particular, the 2-form ® is essentially uniquely determined from
also in the case dim W > 7 if Q is expressed as ® A & (¢f. Theorem 9).

As a corollary of this proposition, we have
Corollary 5. Assume Q is ecpressed as ® A ®. Then, the inequality A > 0 holds.

In the actual application to Riemannian geometry, this inequality serves as an obstruc-
tion for the case M3 C R*. In fact, for a 3-dimensional Riemannian manifold, by using
the notations in §1, we have

R =Rupel AeSAfIAfi+Ruoet AesAfEAf+Rimsel NeyAfiAf3
+R13126‘{/\€§/\f1‘/\f5+R1313€:/\€§/\ff/\f3‘+R1323€I/\e§/\f5/\f§
+Ryzines Aes AfiAfs 4+ Rasises Aes A fi Af3+ Ragases Ae A f3 A f3,

where R;ji is the usual component of the curvature tensor R. By putting f; = €}, f5 = ¢g,
f3 = eg in this expression, we have

R =RpnelAesAejAey+ Rizizel Aes Aej Aeg+ Rigasel Aey Aeg Aeg
+Risize] AesAeyAes+ Risisel AesAejAeg+ Risasel Aej AeyAeg
+Ry319 e;/\eg/\(ﬁ;/\eg-{'Rgalg e.§Ae§/\e§/\e§+R~2323 e;/\e;/\eg/\é‘é.

Then, by substituting

Qaas = Ria1z, Qi2ae = Rizis, Quase = Rizes, Qzas = Ryas,
Qizae = Riziz, sse = Rises, Qasas = Rizes, Qasae = Rises,
Q2356 = Razas

and other Qi = 0 into the above invariant A, we have

A = —RygaRi313R2323 + Ri212R1323 1323 + Ri1213 R1213 R2323
—Ry913R 1323 R1203 — Rigas Ri213 323 + Rizes Rizis Riazs

Ry312 Riziz Riaaa

= —| Riz12 Rizi3 Rz

R2312 R2313 R2323

Hence, if —R is expressed as & A &, then by reversing the sign of {2, we have

Ri212 Riziz Rizs
Risia Riziz Risas | 20,
Rz Raziz  Ragas

which is nothing but Thomas’ classical inequality for Riemannian submanifold Af? C R
(cf. [28]. See also [23].) By this inequality, it follows that the 3-dimensional hyperbolic
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space H*(—1) cannot be locally isometrically immersed into R* because R;;;; = —1 and
other I;jr; = 0 for this space.

We can consider the exterior Gauss equation for the case dim W = 6 from another
viewpoint. By fixing a volume form of RS, the space A*W* is naturally isomorphic to

A?W as stated above. Since the normal forms of the elements of A2W is well-known, we
can obtain the normal forms of A*W* under the action of GL(W):

Qo = 0,

) = ejAesNejAeg,

Dy = ejANesNejAej+elNesNe;Aeg,

Q3 = ejAesANegAej+eiAesAe;Aeg+e3AeyAe;Aeg,
Qy = efAesNesAej+eiANesNesAeg—e3AejAes Aeg.

(If we complexify the vector space W and the group action, two forms Q3 and Qg4 are
mapped to each other by GL(6, C).) We can easily show that among these normal forms,
o, Q) and Q3 can be expressed as ® A ®, but the remaining two normal forms , and Q4
cannot be expressed in this form. And thus, the solvability of the exterior Gauss equation
is completely settled by using the above normal forms. In terms of the isomorphism
AW* — A’W stated above, a 4-form can be expressed as ® A ® if and only if the
corresponding 2-vector € AW has rank < 2, or has rank = 6 and satisfies the inequality
on the Pfaffian corresponding to the condition A > 0.

§ 3. The case r =1 and m > 7.

To obtain the obstruction to the existence of solutions of the exterior Gauss equation
that can be expressed as a polynomial relation of the components €;;;, we use the same
method as in [3]. We first consider the case r = 1 and 1n > 7 in this section. The quadratic
map AZW* — A'W* defined by & — & A ® naturally induces a dual polynomial map
Yy @ SP(A'W*) — SP*(A*W*)* with degree = p. Polynomials contained in the kernel
of 7, vanish if we substitute 2 = ® A @ into these polynomials. Hence, they serve as
obstructions to the existence of solutions of the exterior Gauss equation. To obtain the
kernel of v, explicitly, we calculate the plethysms {12} ®{2p} (= S?(A2W*)* = S¥*(A2W))
for p < 3 at first, and compare them with the results in Proposition 3.

Proposition 6 (cf. [1], [8]).

1 {1}e{2} = {22}+{1"},

p=2: (B} {4} = {8+ (371 + (2 + {221} + {17},
3

: {1} @ {6} = {67} + {517} + {4722} + {4*1*} + {3*} + {3%2%17%}
+ {321%) + {28} + {21} + {2°1%} + {1"?}.

By comparing these plethysms, we know that there exist (at least) two types of kernels
{32°1%} and {2315} in degree = 3. These two kernels {32°1%} and {2316} serve as the
actual obstruction for the cases dim W > 7 and dim W > 9, respectively. (Note that we
can easily verify that there is no quadratic polynomial relation of €2;;i;.)
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First, we consider the obstruction {3231°}. The gencrator corresponding to this irre-
ducible component can be calculated by the method stated in [3]. By using a computer,
we know that it is given by the polynomial

02,50 Q1s67 ~ Qi23aQu23s Quasr + Q1234 Q1236 Quas7 — Q12331237 Qisse + Q1234124521367
— 123121246 01357 + Q1234012471356 — Q123421256 21347 + Q12348012572 1346
_5212349126791345 + 2(212359124691347 - 2912359l24791346 - 2S)l2369124591347
+28212368 212471345 + 2212371245 1346 — 221237821246 21345

We rewrite this polynomial by using the flag
{Oycwlcwtcwicwm,

as in the case of [9; p.253], where superscripts imply the dimensions of the spaces.
We put © = ¢;|Q € A’W*, where | implies the interior product. Then, the above
cubic polynomial is just equal to the coefficient of e A--- Aej in

(e2)e3]©) A (e4]O) A O — (e2]€4]O) A (e3]O) A O + (e3]es|O) A (e2|O) AO
up to non-zero constant. Clearly, the above flag is defined by

VVl = (61),
W4 = (61,62,63,64),
W7 = (61,62,63764’65766-;67)-

Hence, combining these results, we have

Theorem 7. If ) is expressed as ® A @, then the 3-form © defined by © = ¢, |2
satisfies the equality

(CQJC;;JO) /\>(84J 6) AO — (€2J64Je) A (83_'6) ANO + (e;;]ed(-)) A (C)Je) ANO =0
for any basis {ey,--- ,e,.} of W.

We can directly prove this equality without using the results in Propositions 3 and 6.
Assume that Q is expressed as ® A®. Then, we have © = ¢, |2 = a AP, where a = 2¢,|P
€ W*. In this situation, we substitute this equality into the above. Then, since

ez]e3]© = afes)(e2] ) — alez)(es] @) — ®(ey, e3)a,

we have

(e2]¢3]0) A (e4]0) A ©

{a(es)(e2]®) — aler)(es]®)} A {a(es)® — a A(es|R)}AaA®
{a(es)(e2]@) — ales)(es] @)} Aafes)@ Aan®
{a(es)a(es)(ea|®) — alex)ales)(es|]R)} AR A AD.

3
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Then, it is easy to see that the cyclic sum of this expression is zero, and hence, we obtain
the desired equality. g.e.d.

The condition on © € ASW* in this theorem is nothing but the condition C; ~ 0 stated
in [17; p.67 ~ 72]. This condition Cy ~ 0 is equivalent to the condition that the 3-form ©
can be expressed as a A ® for some o € W* and & € A2W*.

Next, we consider the obstruction {2316} which is useful for the case dim W > 9. To

express this obstruction, we use a flag defined by

W3 = <elae‘la 63),
W9 = (ela"' 769)

in this case. Then, we have

Theorem 8. Assume ) s expressed as ® A ®. Then the follounng equality holds on
the 9-dimensional subspace W? of W containing W3 = (e), e, €3) as a subspace:

(e1]9) A (e2]2) A (e3)2) = 0 € AW,

Here, {e),--- ,e,,} 1s any basis of W.

Proof. The restriction of ® to the subspace W? is expressed as ® = ayw; Awy + -+
a4 w7 A wg for some linearly independent 1-forms w; ~ wg on W¥, where a;,--+ ,a3 =1 or
0 according as the rank of ® restricted to W9. Since Q = ® A ®, we have

(61_]9) A ((‘,’QJQ) A (63JQ) = 8(8]_]@) A (62_'@) A (€3J¢) APAD N ®.

Restricting to W9, this 9-form must reduce to zero because e, e;, e5 € W9 and e1]d.e:]|®P,
e3]®P are also expressed in terms of only eight 1-forms w; ~ ws. q.ed.

Clearly, the equality in Theorem 8 does not hold for generic 4-forms on W. For example,
in the 9-dimensional case, we consider the 4-form

Qp=elAesAesAhe;+efAeyAegAegtesAe; Aeg Aeg.

Then we have
(e1)%) A (e2]S2) A (e3]Q) =2e] A---Aeg #0,

which implies that this Qy cannot be expressed as ® A . We remark that even if 2 is
expressed as ® A @, the above 9-form (e;]2) A (e2|Q) A (e3]S2) does not in general vanish
as a form on W, and we must introduce the flag {0} C W3 C W?® C W to express the
condition {2316},

In case () is expressed as ® A ®, Q also satisfies the additional condition A > 0 as in
the case of Corollary 5, by restricting € to any 6-dimensional subspace of W. But we do
not know whether the combined conditions in Theorems 7, 8 and A > 0 are sufficient for
the solvability of the exterior Gauss equation in the case of r =1 and dim W > 7.
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§ 4. The case r = 2.

Before considering the higher codimensional cases, we first state the following theorem,
giving the dimension of the set consisting of 4-forms of the form Y 7_, ®; A ®; for low
dimensional cases.

Theorem 9. The dimension of the image of the quadratic map A2W* @ R™ — A'W*
definedby®, @ --- P, 2 AP, +---+ P, AD, is given by

(m,r) A*W*@R"— A'W* dimension

(7,1) RT 5 R% 21
(7,2) R — R¥ 34
(7,3) R& — R 35
8,1 RZ® L R7 - 28
ES, 2; R% — R0 54
(8,3) R¥ — R 70
9,1 R¥®  R™ 36
29, 2; R™? — R!%6 71
(9,3) R!%® — R!% 105
(9,4) R — R!% 126
(10,1) R® — R0 45
10,2 R — R0 89
210,3; R!%¥ — R210 132
(10, 4) R!80 _, R210 174
(10,5) R2?% — R2!0 210

We obtain these results by calculating the rank of the differential of the map &, ®---® @,
— Y ®; A ®; at a generic point of A?W* @ R for each case. In actual calculations, we
used a computer,

The orthogonal group O(r) naturally acts on the space A2W* ® R", which induces
the »(r — 1)/2-dimensional kernel of the differential of the above map because this map
is O(r)-equivariant. (The group O(r) acts on the space A*W* trivially.) The results in
Theorem 9 indicate that there exist (unexpected) additional kernels for two cases (m,r)
= (7,2) and (8,2) (except for the surjective cases such as m > 7 and r = 3). (The similar
curious phenomenon occurs for the original Gauss equation for the case M* C R®. For
details, see [15].) In particular, for the case (m,r) = (7,2), the Zariski closure of the image
of the above map is a hypersurface of A*W*, and hence the defining equation of this image
must be a relative GL(W )-invariant of A'*W*.

To know the degree of this invariant, we first consider the character of the space of
homogeneous polynomials on A’W* ® R". Since the group O(r) acts trivially on the
space A*W* (and hence on SP(A*W*)*), the image of the polynomial map SP(A*W*)* —
S?(A*W*QR")* consists of O(r)-invariants. In the case r = 2, we have the decomposition

S2P(A2w/# ®R2)t — Z S“(A2ws)t ® S,,(R?)',
lul=2p

~ 7 X
& ¢ = PR 3* F
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and S,(R?)* contains an O(2)-invariant if and only if x is an even partition with depth
< 2. In this case, the multiplicity of O(2)-invariants is always one, and hence the image
of the map SP(A'W*)* — S?(AZW* ® R?)* is contained in the subspace

Yoo Sa(Atwry

A=(A1,A2), |Al=p

Then, by calculating the plethysms {12} ® {2A} for p < 7 by a computer, we have

Proposition 10. The kernel of the map

S7(A4wt)t — Z S2A(A2W‘)‘
A=(A1,42), [Al=T

contains the spaces {737} + {73%221%} + {73%2%13} + {73326} + {47} C {1*} ® {7}.

Remark. For the lower degree cases p < 6, all characters of SP(A*W*)* formally appear
in the right space, and we cannot decide whether there exists a non-trivial kernel or not.
To determine the actual kernel of this map, it requires tremendous calculations as carried
out in the paper [3], and we do not check it at present.

Among the above five obstructions, {47} seems to be the most useful because it pos-
sesses the actual meaning in the case dim W > 7, while other obstructions require higher
dimensional space. The obstruction {47} is a relative GL(W )-invariant of A*W* in the
case dim W = 7. Heunce, combining with Theorem 9, we have

Theorem 11. In the case (m,r) = (7,2), we complezify the space and the map in
Theorem 9. Then, the Zariski closure of the image of this map is characterized by the
vanishing of the generator of {47}, which is the relative GL(7, C)-invariant of A*W* with
degree seven.

By considering a flag {0} C W7 C W™, this obstruction {47} is also useful for the
case dim W > 8. But unfortunately, we do not know the explicit form of this obstruction
yet. In case dim W = 7, this invariant just corresponds to the invariant Cy of A3C7 stated
in [17; p.72] under the identification A*(C")* ~ A3C7 stated before. It is also not known
that in case dim W > 8 and r = 2, this condition is sufficient in order that the exterior
Gauss equation admits a solution even in the complex category.

Finally, as in §2, we consider the exterior Gauss equation from the viewpoint of normal
forms. In the complex category, we have the following proposition.

Proposition 12. Normal forms of AY(W¢)* (dim W = T7) under the action of the
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group GL(7,C) are given by the following:

Qo =0,

Ql = 6’1'234,

0y = e]y34 + €12s65

3 = €]y34 + €256 + €1357>

24 = €234 + €is67,

Qs = €934 + €1256 T €3456

Q6 = ]934 + €256 T+ 1357 + €2367

Q7 = €l934 + €256 + €345

Qg = e]y34 + €256 + €1357 + €34675

Qg = el934 + €256 + €1357 T €3467 T E3456-

Here, the symbol e},3, means the erterior product €] A e A €3 A €, etc.

We can prove this proposition by using the normal forms of A*C7 stated in [17; p.69
~ 73]. The orbit spaces of {25 and g have dimension 21 and 34, respectively, and the
closures of these orbits just coincide with the closures of the images of the complexified
maps in Theorem 9, corresponding to the cases (m,r) = (7,1) and (7,2).

In fact, the above normal forms have the expression

ot * *

Qs = 311234 + €1256 + €3456
— * * * * * »
= 5 (e}y + €34 +e56) A (e]; + €34 + €36),
L o* * * *

Qg = elazq + €256 + 1357 + €467

=@, AP+ Dy A Dy,

— 1 * * * * * D ¥ * YR ] * * HYR

?, = ?(2912 + 2els + 2ejy + 2ejg — €33 — 2e3, — €36 — 2e5; — €37 — €37 — 2eg7),
_ 1 * * * PR S

) = 5 (2e), + 2el, + 2ei; + 2ejg — €36 — €37).

For general codimension r, we can obtain a similar obstruction as in the case of the
p-G-equation stated in [5) or [13]. But it is useful only in the range 2r < m — 3, and
we cannot improve the previously known estimates on the codimension of local isometric
imbeddings by this method. To obtain a new obstruction useful for higher codimensional
cases, we must find new group invariant concepts in the space of 4-forms, as stated in
Introduction.
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