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Abstract

We give new solutions and almost solutions of the Gauss equation of the Riemannian
symmetric spaces SU(3)/SO(3) and its non-compact dual in codimensions 4 and 5,
which improve the previously known estimates on the codimension. We also give
experimental estimates on the infimum of the norm ||, (a)+ R|| for each codimension
r, where R is the curvature of SU(3)/SO(3), and a runs all over the space of second
fundamental forms.
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Introduction.

The explicit determination of the least dimensional Euclidean space into which a given
Riemannian manifold M can be (locally) isometrically immersed is one of the classical
fundamental problem in Riemannian geometry. But unfortunately, only a few explicit
results are known at present concerning this problem. Even restricting to local isometric
imbeddings of Riemannian symmetric spaces, the least dimensional Euclidean spaces are
determined only for the spaces R™, S*, H™ (the hyperbolic space), [CI} Sp(n)/U(n) and
Sp(n) (cf. [5], [11], [12}).

To solve this local isometric imbedding problem, it is necessary to determine the least
codimension where the Gauss equation admits a solution for a given Riemannian manifold,
as a first step problem. In fact, the Gauss equation appears as a first obstruction to the
existence of solutions of the differential equations of local isometric imbeddings. But,
solving the Gauss equation is in general a hard algebraic problem because it is equivalent
to solve a system of real quadratic equations with many equations and many variables, and
at present, a little results are obtained for only a special class of Riemannian manifolds.
For example, we know that the least codimension is equal to 3 in the case of the Gauss
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equation of complex projective space M* = P%(C) admitting a solution (cf. [2; p.128,
132]). For other results, see the references at the end of this paper.

Now in this paper, we consider the case of 5-dimensional Riemannian symmetric spaces
SU(3)/SO(3) and its non-compact dual, and give a family of solutions of the Gauss
equation in codimension 5, which improves the previously known results. In addition,
we give “almost solutions” in codimension 4 for both spaces. Here, “almost solutions”
imply a family of second fundamental forms a; depending on a parameter ¢ such that the
curvature determined by ¢, in terms of the Gauss equation converges to a given curvature,
though a; itself diverges as t goes to zero. It is already known that SU(3)/SO(3) is globally
isometrically imbedded into the Euclidean space with codimension 7, and admits a solution
of the Gauss equation in codimension 6 (cf. [17]), and this is the best results previously
known. Hence, our results in this paper improve the estimates on the codimension where
the Gauss equation admits a solution. But in spite of these improvements, it is still an
open question which is the “least” codimension where SU(3)/SO(3) (or its dual) is locally
isometrically immersed. It is our next problem whether the second fundamental forms we
construct in this paper are the actual second fundamental forms for some local isometric
imbeddings of SU(3)/SO(3) (or its dual) into R'°.

To obtain the results of this paper, computational experiments by the software Math-
ematica are quite useful in finding solutions and almost solutions. At the end of this
paper, we add some numerical estimates on the infimum of the norm ||4,(a) £ R|| for each
codimension r, where R is the curvature of SU(3)/SO(3), and a runs all over the space
of second fundamental forms. These results suggest that the least codimension such that
the Gauss equation admits a solution is 4 or 5 for both spaces.

§ 1. Curvature of SU(3)/SO(3) and the main theorem.

We first write down the curvature of the space SU(3)/S0(3). We put g = su(3),
£ =0(3) and

a, be,p g, reR,
a+b+c=0

S o

a q
m=<:| p r
q ¢

Then, we have the canonical decomposition g = ¢ @ m of SU(3)/S0O(3), and the space m
may be considered as the tangent space of SU(3)/SO(3) at the origin. The bi-invariant
metric of SU(3)/SO(3) is given by (X,Y) = —-1/2-Tr XY (X, Y € m), and the curvature
of this metric is given by

R(X,Y,Z,W) = —1/2- Tt [X,Y][Z,W].
We fix the orthonormal basis {X1,--- , X5} of m by

1 1 0
X1= 0 ) ,X2=-j§ -2t y X3= Z
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0 1 0
X4= 0 5 X5= 0
1 0 1 0

Then the components of the curvature tensor are explicitly given by

Ri313 = Risss = Ris1s = Risas = Raszq = Rasas = Rases = 1,
Riazs = Raass = V3, Risas = Rasaa = —V/3,

Risss =2, Rj323 = Rasos = 3,

Ry414 =4,

and other R;jx = 0 except for the components obtained by the symmetric property

Rt’jkl = Rklij = — ik = "Rijlka

where R;;i is one of the above (cf. [2; p.129]). The curvature of the non-compact dual
space of SU(3)/SO(3) is given by —R.

Let K be the space of curvature like tensors on m, i.e.,

K = {R € AZm* ® Alm* [ 6)\',}/'2 R(X, Y, 7, W) = 0} .

We define a quadratic map

v S'M QR — K
by

7r(a)(Xa Y,Z,W) = (a(X’ Z),a(Y, W)> - (a(X’ W)? a(Y, Z))

forae S2m*@R", X, Y, Z, W € m, and denote the image of this map by Im ~v,. The
image Im +, is not in general closed in K (cf. [2; p.134]), and we denote its Zariski closure
by Im ~,. The space S?m*®R" indicates the space of pointwise second fundamental forms
of submanifolds with codimension r. Then, the Gauss equation of SU(3)/SO(3) (and its
dual) with codimension r is expressed as

T(@) = £R,

where R is the curvature of SU(3)/S0O(3) stated above. Clearly, the Gauss equation admits
a solution if and only if R € Im ~, (or —R € Im «,, in the dual case). In particular, if we
can prove R ¢ Im v, (or —R ¢ Im 4,) for some r, then it follows that SU(3)/SO(3) (or
its dual) cannot be isometrically immersed into the Euclidean space with codimension r
even locally.

Concerning the existence or non-existence of the solutions of the Gauss equation of
SU(3)/S0O(3) and its non-compact dual, we have the following results, which is the main
theorem of this paper.
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Theorem. Let R and —R be the curvatures of SU(3)/SO(3) and its non-compact dual
space, respectively. Then, we have

(1) R, —R ¢ Im 7.

(2) R, —R € ITm 4.

3) R, —R€Imns.

Note that the space SU(3)/SO(3) is globally isometrically imbedded into the Euclidean
space with codimension 7 (cf. [17]), and it is already known that B € Im 4¢ because
the 1-dimensionally extended space U(3)/SO(3) admits a solution of the Gauss equation
in codimension 6. Previously known results on the existence of solutions of the Gauss
equation are exhausted by these facts, and hence the above theorem improves the estimates
on the codimension where the Gauss equation admits a solution. But at present, we do
not know whether R (or —R) is contained in Im 73 or Im «4. The above statement (2)
indicates that the Gauss equation admits an “almost solution” in codimension 4, and it
implies that the solvability of the Gauss equation in codimension 4 is a quite delicate
problem.

§ 2. Proof of Theorem.

The result (1) is already proved in [2; p.128-129], [4; p.19]. We first construct solutions
of the Gauss equation of SU(3)/SO(3) in codimension 5. In general, the Gauss equation
of the case M® C R!° is equivalent to the system of 50 quadratic polynomial equations
with 75 variables, and it is almost impossible to solve it directly. We consider the situation
where the second fundamental form a = (ay, -+ ,a5) € S?m* @ R® is expressed in the
following restricted form:

/ a as ( by be
ag Qa2 b6 b2
oy = as y Q2 = b3 s
ay b4
\ as K bs
0 C 0 dl
( 0 c \ ( 0 d;
az=1] ¢ ¢ 0 , Q4= 0 ds )
0 C3 d3 0
\ e 0 ) \ & d; 0
(€ )
0 €1
Qg = 0 ex |.
€1 0
\ e 0

Then, o satisfies the Gauss equation v5(a) = R if and only if it satisfies the following
system of quadratic equation:

i

———— e ®
. s
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aiag + b1b2 = ag + bé, Ci1C3 = 1,
ajaz + byby = Cf +1, c2¢3 = dads,
aiays + b1b4 = 4, dldg = —].,
aias + bibs = d? + 1, dods = e1e3 — /3,
a2a3 + bobs = 3 + 3,

aza4 + brby = €2,

axas + bybs = &% + 3,

azaq + bsby = d% + 1,

asas + b3b5 = eg + 1,

asae + b3bs = cicz + V3,

agas + bsbs = & + 1,

asae + bsbs = 0

asas + bsbs = didy — /3.

This system of equations admits a family of solutions

a; = a, bl = b,
bd
ag = ——, b2 = d,
__ a(3b—c%d) b b = 3a® + bc’d
az = as = _—.—_c"’d(cz—f-lg’ 3 = 5_——c2d(c2+1%’
_ 12a® — bd(c* - 1) 126+ d(¢?-1)
R W R ‘T T 3@+ 1
a6=07 6_0’
2 —
a =c, d, = ¢, el=-\/§d+l—),
a
V3 V3 3a
€2 = ——), dy=—, €2 = =
L€ < cd
c3 = —, dy = )
c c

where a, b, ¢, d are real numbers satisfying the conditions

A+ =(F+1)2 a#0, c#£0, d#0.

Next, we construct almost solutions of SU(3)/S0(3) in codimension 4. We put as = 0
(i.e., &g = ez = 0) in the above notations. Then, we have a € S?’m* ® R*. In addition, we
set ¢ = 1 in the above solutions of the Gauss equation. Then we have
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a, = a4 = a, bl=b4=a
a2=———a—, b2=d,
3b-d 3a* + bd
(13=as=—g(m‘—), b3=b5=‘—a'2—jl-‘-7
(16=0, b6=0,
¢ =1, d =1,
C2=—\/~§, d2=\/§a l
03=1, d3=—1,

where a, b, d are real numbers satisfying the conditions

a4+ =4, a#0, d#0.

In this situation, we have

(te) ~ B = (%)

and remaining components of v4(a) — R € K are all zero. Hence, by putting a — 0, we
have v4(a) — R, which implies R € Im ~,.

Next, we consider the non-compact dual of SU(3)/SO(3). We construct a family of
solutions of the Gauss equation in codimension 5. We use the same notations as in the
case of SU(3)/SO(3) with codimension 5. Then a = (ay,:-- ,as) is the solution of the

Gauss equation ys(a) + R = 0 if and only if !

g
aas + b1b2 = (Zg + bg, Ci1C3 = —l, !
aas + b1b3 = C% b 1, CaC3 = d2d3, :
ajay + blb4 = —4, d1d3 = ], ;
ajas +bibs = d? — 1, dads = €1e5 + /3, [! .

aza3 + babz = 2 — 3,
a3a4 + byby = €2,

aqas + b2b5 = d% - 3,
asay + b3b4 = d% - 1,
asas + bsbs 6‘% -1,
azas + bsbg = cic; — V3,
asds + b4b5 = Cg - 1,
asae + bybg = 0,

asas + bsbs = didy + /3.

This system admits a family of solutions i
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a, = a, b1 = b,
bd
az = ——, b2 = da

® a3+ d)( - 1) (3a? — b2d)(c* — 1)

@=0= ey BTE T T ey
_ 4a(3b+ *d) by — 4(3a® — bc?d)
== c2d(a? + b?)’ ‘T cd(a? + b2)’
ag = 03 6 = 0-.
c d=c 2v3
G = G, 1 =6 € = ——,
c
V3 V3 |
C2 = —, dy = ——, €2 = )
c1 1 c 2c
€3 = ——, d3 - T
c c

where a, b, ¢, d are real numbers satisfying the conditions

6a
cvVa? + b — 42

Next, we construct almost solutions in codimension 4. In the above notations, we
assume a5 = 0 (i.e., e; = e; = 0), and put

a?+ b >4, a#0, c#£0, d=+=

4a b

al:m’ b1=‘t—= Cl::'/;’
3b(a? — 1)? 3

=0, b= ar 9T o

R S 0 F

1T  a?(a?2-1)’ =G

2
-1

a4:'—a ) b4=0a dlza‘a
t(a® +1)?

as = —a, bs = 3‘}92—_1')—, d2 = \/ga,

3b(a® —1) 1
ag =, 5= et D) d3——;ﬁ

where a, b and ¢t are real numbers satisfying the conditions

a#0,£1, b#0, t#0.

Then, we have

(va(@) + R)iziz = —t7, (va(a) + R)is2s = —at,
t t2(a 4+ 1)*
(74(a) + R)1323 = P (74(a) + R)asas = _m,

a? —
(va(@) + R)1424 = _ia—l)"
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and remaining components of y4(a) + R are all zero. Hence, by putting ¢ — 0, we have
v4(@) - —R, and hence we have —R € Im 74. g.e.d.

§ 3. Remarks.

(1) The space m* is a 5-dimensional irreducible representation space of the isotropy
group of SU(3)/S0(3). Its symmetric 2-product S?m* is decomposed into three SO(3)-
irreducible components with dimensions 9, 5 and 1, respectively. Among them, the 5-
dimensional irreducible subspace of S?m* consists of matrices of the form

2p; 4p, \/5 p3 0 \/§P4
4p;  —2p, —Ps3 2ps P4 .
V3ps —ps —pi+V3p: —V3ps  V3ps , p€ER, 'L
2ps —V3ps 2p; V3 ps i

0
\/§p4 P4 \/gps \/§P3 —D1 — \/§P2

where we express the element of S?m* as a symmetric matrix by using the orthonormal
basis X;,--- , X5 of m which we defined before. Clearly, the second fundamental forms «
which we constructed in §2 have a strong resemblance to this 5-dimensional irreducible
subspace if we ignore the coefficients of p;. We do not know whether we can construct a
low codimensional solution of the Gauss equation for general SU(m)/SO(m) (m > 4) by
applying the similar principle to some SO(m)-irreducible subspace of S*m*. (For general
m, it is already known that the space SU(m)/SO(m) is globally isometrically imbedded
into the Euclidean space with codimension 1/2-(m?+m+2), but does not admit a solution
of the Gauss equation in codimension 1/2-(m? —m —2). Hence it cannot be isometrically -
immersed into this codimensional Euclidean space even locally (cf. [17], [11]). Note that
there still remains a gap of linear order on m between these two codimensions.)

(2) In general, the image of a polynomial map between two vector spaces is not closed,
as stated before. And this phenomenon sometimes implies the existence of “almost solu-
tions” of a system of polynomial equations. A similar phenomenon occurs in the case of
left invariant torsion free flat affine connections on homogeneous spaces (cf. [6], [7], [8])-
In this case, the map we consider is

~ : {left invariant torsion free affine connection} —+ {curvature},

which is also quadratic. The examples stated in [6], [7], [8] imply that the image of this
map is not closed for the case of the three dimensional sphere. In fact, this space admits
an almost flat affine structure, though it never possess torsion free flat affine connections. -
Our examples of almost solutions of the Gauss equation given in this paper have the same
origin as in the case of this almost flat affine structure.

(3) The norms of R and — R are given by

NRIP=1l —R|*= Z (Riji)? = 75.

1<g,k<l
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By modifying R (or —R) by second fundamental forms ~,(a), we can decrease these
values. Numierical calculations by the software Mathematica, combined with the results
(2) in Theorem, we have

inf, || 11(a) — R||?> < 52.45, inf,||m(e)+ R||* < 57.01,
inf, || 12(a) — R||? < 36.01, inf, || 12(a)+ R < 39.04,
inf, || v3(a@) — R||* <13.49, inf, || ys(e) + R||* < 15.92,
inf, || v4(a@) — R||? =0, inf, || va(@) + R||> = 0,

where « runs all over the space S?m* ® R” for each r. Precise infimums for the cases
r =1, 2, 3 are not yet determined. But these results suggest that the least codimension
where the Gauss equation admits a solution is 4 or 5 for SU(3)/SO(3) and its dual.

By calculating the rank of the differential of ~, at a generic point a, we know that
there exists an obstruction to the existence of the solutions of the Gauss equation for the
case M® C R&, which is a covariant of the curvature tensor (cf. [9]). Unfortunately, we
do not know its explicit form yet. If the explicit form of the covariant is obtained, it may
be possible to show that £ R ¢ Im +3 by using this covariant. But, in the 4-codimensional
case, it seems quite difficult to show the “non-existence” of solutions of the Gauss equation,
unless we discover essentially new devices.

(4) Tt is an important problem whether the 5-codimensional solutions which we con-
struct in this paper are the actual second fundamental forms for some local isometric
imbeddings of SU(3)/SO(3) (or its dual) into R'?. It is desirable to investigate this prob-
lem by the similar method as in the case of P2(C) C R treated in Kaneda [16], though
it requires tremendous calculations on prolongations.

(5) We consider || v-(a) £ R ||* as functions on the space S*’m* @ R". Then, it is an
interesting problem to find the critical points of these functions. Certainly, R"-valued sym-
metric forms corresponding to these critical points have some intrinsic geometric meaning,
though the explicit determination of critical points seems to be quite difficult.
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