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Invariant subvarieties of the 3-tensor space C*®C?*®(*
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Abstract : We classify G-invariant subvarieties of the 3-tensor space C*®C*®C" that are defined
by polynomials with degree < 6, where G = GL (2,C) XGL (2,C) XGL (2,C). We also calculate
the character of S(C*®C*®C?), determine the generators of each irreducible component of
S’(C*®C*®C?), and obtain some curious identities between them that play a fundamental role in
classifying invariant subvarieties.
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Introduction

Let G be a Lie group acting on a vector space V. In many geometric situations, it is important to
classify all G-invariant subvarieties of V and to obtain their defining equations. In fact, we often
meet geometric problems where G-invariant subvarieties naturally appear. (See the examples
below.)

In this note, as one simplest example of such problems, we classify G-invariant (irreducible)
subvarieties of the 3-tensor space C*®@C*®C* that are defined by the polynomials with degree < 6,
where G = GL 2,C) XGL (2,C) X GL (2,C). In addition, we determine the explicit defining
equations of these varieties. These defining equations constitute the G-invariant subspaces of the
polynomial ring of C’®C*®C?, and we first decompose the homogeneous polynomial ring 3 s
(C*®C*®C?) into irreducible components, and express it as a sum of Schur functions. Then, by
applying the method stated in [1], we can determine the generator of each irreducible component.
As a result, up to degree 6, there appear six typical polynomials whose products generate all other
invariant irreducible components of S’ (C*®C*®C?) (p < 6).

In terms of these polynomials, we show that there are seven invariant irreducible varieties
including { O } and the whole space itself, and interesting to say, three of them that are defined by
quadratic polynomials are mutually related in an essential way. For example, two of these varieties
possess common defining equations to each other, and the algebraic set defined by one irreducible
component of $? (C*®C*®C?) decomposes into the union of the above two varieties. (For details,
see §3.) To prove these phenomena, curious identities between the generators play a fundamental
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role (cf. Lemma 10). In addition, in this note, we clarify the geometric meaning of each G-
invariant subvariety, determine its dimension, and the inclusion relation of invariant subvarieties
(Theorem 4).

We conjecture that all generators of irreducible components of S* (C*®C?*®C?) can be
expressed as polynomials of the above six typical generators without the assumption p < 6. But
unfortunately, we cannot prove this conjecture at present. (See § 4.)

There is a strong resemblance between the 3-tensor space C*QC*®C*? and the classical results
on the binary cubic forms S* (C?). We summarize this resemblance in the final section of this note
(85). In a sense, the space S (C?) may be considered as a degeneration of the 3-tensor space
C*®C*®C?, and the classical theory of binary cubic forms has its root in C*®C*®C?>.

We usually meet general 3-tensor spaces C’®C‘®C" in different geometric situations, such as
partial Gauss equations defined in [3], r-tuple of polynomial valued 1-forms treated in [2], etc.
Hence, it is desirable to study these general 3-tensor spaces in the same way as in the case of
C*®C*®C". In the case of 2-tensor space C*'®C"’, they are equivalent to the set of p X g matrices,
and hence GL (p, C) X GL (g, C)-invariant subvarieties of C’®C"* are all classified in terms of the
concept “rank” of matrices. But for general 3-tensor spaces, we do not yet obtain such unified
concept to classify invariant subvarieties. (cf. [2; p.503].) In a near future, we want to treat more
general class of 3-tensor spaces by introducing a unified systematic standpoint.

Finally, we explain the usefulness of the classification of G-invariant subvarieties stated at the
top of this introduction, by giving some examples:

(A) In [2], we defined a complex which is defined by some polynomial valued 1-forms, and
proved that the cohomology spaces vanish for generic polynomial valued 1-forms. But for singular
1-forms, they do not vanish in general, and those singular forms constitute several G-invariant
algebraic sets, according as their degree of singularity. If we know all the invariant subvarieties of
the space of polynomial valued 1-forms, we can determine all possible dimensions of the
cohomology spaces of this complex for each singular case. (For details, see [2].)

(B) By using the Gauss equation that appears in the theory of submanifolds, we defined in [1] a
GL (V)-equivariant quadratic map y : E — K. (E is the set of second fundamental forms, and X is
the space of all curvature like tensors on V.) The defining equations of Im y serve as the
obstructions to the existence of local isometric imbeddings of Riemannian manifolds, and hence
their explicit expressions are useful for geometric applications. Since the closure of Im y is a G-
invariant subvariety of K, it is desirable to classify all G-invariant subvarieties of K and to
determine their defining equations. (See also [21].)

(C) Determination of the rank of multi-tensors is one of the important problems in linear
algebra. It is connected with other fields of mathematics such as the theory of invariants,
computational complexity, error-correcting codes, etc. (cf. [7], [16], [20].) Clearly, the closure of
the set of all multi-tensors with rank < k forms an invariant algebraic set, and the defining
equations of this set are useful in actual determination of the rank of each multi-tensor. (For
concrete examples, see Lemma 6 and § 5 of this note.)

Of course, if we know the normal form of each element under the action of G, we can give the
answer to the above problems immediately. But in general, determination of normal forms (i.e.,
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the classification of G-orbits) is a hard and often hopeless problem except some special cases. On
the other hand, classification of G-invariant subvarieties gives us more natural and essential
standpoint, because the answers to the above problems (A) ~ (C) are all determined by only
knowing invariant algebraic sets in which the element we are considering is contained. We want to
treat these classification problems in forthcoming papers.

1. Character of the space S” (C*®C*®C?)

In this section, we determine the character of the space of homogeneous polynomials on the 3-
tensor space C*®C*®C?, under the natural action of the group G = GL (2,C) XGL (2,C) XGL
(2,C). This action is a tensor product of three representations of GL (2,C) on C? and we denote
by S,, T, ,» U, the Schur functions of GL (2,C) acting on each component of C*®C*®C?, where A,
M, ¥ are some partitions. (For the definition of the Schur function, see [11], [14]). For example, the
character of G acting on the linear polynomial of C*®(C*®C?” is equal to S,T,U,, and each
irreducible component of S” (C*®C*®C?) is expressed as S, T, U, for some partitions A, , y of p.
In the following, we often express the invariant irreducible subspace corresponding to the partition
A simply as S, etc.

Under these notations, we calculate the character of the space S* (C*®C*®C?), which is the
space of homogeneous polynomials on C*®C?*®C*? with degree p, by using several classical
formulas. First, we denote by Y, the character of the symmetric group @p corresponding to the
partition « of p, and define the number K 4, by

XoXp = %Kam Xa-
Then, we have
LEMMA 1. The character of the p-th symmetric tensor space S’ (C*®C*®C?) is given by
p> K S, T. Uy

where A, a, 3 run all over the partitions of p with depth < 2.

PrROOF. In general, the character of the p-th symmetric tensor product of the 2-tensor space V
®W is given by the formula

38, (V)S, (W),

where A runs all over the partitions of p with depth < min {dim V, dim W}, and S, (V) (resp. S,
(W)) denotes the character of the representation on V (resp. W) corresponding to the partition A (cf.
[13; p.103], [19; p.176]). Hence, the character of §” (C*®C*®C?) is equal to

35,(CH S, (C*® 0,
and using the formula

S, (V®W)= 3K S, (V) S, (W)



4 Yoshio AGAOKA

(cf. [12; p.331] or [13; Appendix]), we have

" (C'®C'VC) = 3K, 5, (C?) S (C?) S, (C)
=3 K, ST, U, g.e.d.

The character table of the symmetric group @p is given in [13], and using this table, we can
calculate the number Kmm for small p. We summarize the results in the following proposition.

PROPOSITION 2. The character table of the polynomial ring of the 3-tensor space C*®C*®C* up
to degree 6 is given by the following:

p=1: STU

17171

p=2: STU,+ST U, +S TU +STU.

2711711 1n-1-"2°

pP= 3: SsT3U3 + S3T21 U21 + S21T3U21 + S21T21U3 + S21T21U21’

p= 4: S4T4U4 + S4T31U3| + 531T4U31 + S31T31U4 + S4T22U22 + S22T4U22 + SzzT22U4 + SslTslUsl
+ SalTalez + S31T22U31 + SzzT31U3| + S22T22U22’

pP= 5: SsTsUs + SST41U4| + S41T5U41 + S41T41U5 + S5T32U32 + S32T5U32 + S32T32U5 + S41T41U41
+ S41T41 U32 + S41T32U4| + S32T41 U41 + S41T32U32 + S32T41U32 + S 32T32U41 + S32T32U32’

p= 6: SsTsUs + S6T51U51 + S51T6U51 + S51T51U6 + S6T42U42 + S42T6U42 + S42T42U6 + S51T51U42

+S,T U, +S,T,U, +S,T,U, +STU,+S,TU, +STU+S,TU, +S,TU

517 427 51 427 51 7 51 51751 7 51 6" 337 33 3373376 1742733 517337 42

+STU +STU +STU +STU +2ST U +S T U +S.T.U

427 51 7 33 427 337 51 33751 7 42 337427 51 427 427 42 517427 42 42751 T 42

+ SAZT42U51 + S42T33 U33 + S33T42 U33 + S33T33U42'
In actual calculations, we may omit the character S, in the case where the depth of A exceeds 2
because we are considering only 2-dimensional spaces. We remark that in our situation the
dimension of S, T, U, is equal to (p -q +1) (r -s +1) (¢t -u +1).

rs T tu

2. Generators of the irreducible components of S” (C*®C*®C?)

Each irreducible component S, T U, of 8" (C*®C*®C?) possesses one generator, which
generates the invariant subspace S, Tﬂ Uy under the action of G. And using the results in § 1, and
the method stated in [1; p.115] or [3; p.42], we can explicitly obtain the generators of the
irreducible components of the space S* (C*®C*®C?).

We express the element of C*®C*®C? as

a= (aijk) 1<i,j, k<2’
ie,a= Zaijk e® e ®e, where {e, e } is a basis of C?2. Then, as one example, the generator of
the space S,T, U, < §* (C*®C*®C?) is given by
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— 1Y% (—1)*
2 ( 1) ( 1) a],(]),(])al,,(z)r(z) (ama 112 121)

0, TE @2

To state our results, we put

pl = a a o a112a121’

ql = amam B anzazn’

rl = amazz] o a121a21]’

sl = a a + 2a112a121a211 - a a112022l - a a121a212 - allla122a21]’

r= am a 2 + a, a +a a 2 +a a 2 o 2a1nama221a222 o 2a111a12|a212a222
o 2amamaznazzz - 2a112a121a212a221 o 2a112a122az11a221 - 2a 21%12:%1 %1
+ 4a 1%42%1,%,, + 4auza121aznazzz

Then, we have

PROPOSITION 3. The generators of irreducible components of S* (C*®C*®C?) (p < 6) are given
by the following:

p=1STU, Da,

p=2:8STU, cal ST .U, D Py
S T.U, D gy $.T.U, T,

p=3:8STU, fa ST, U, ta,p,
S, T.U, D a, 4, S, T,U, tar,
s, T,U, DS,

p=4STU, ta sT,U, ta,’p,
S T.U, 2 a ’q, S, T,U, sar,
S4T22U :pl S, T.U, 1 g2
S, T,U, prp S, T,U, 1 a,s,
ST, U, ' P4, S, T,U, I pT,
S22T31U 1 qr, SzszzU ” : ot

p=5:5TU, sa’, ST, U, ta,’p,
S, T.U, Da’q, S, T,U, ta’r,
S5T32U2 sa,ph S,T.U, ta,q’
S, T,U, ca,rk S T.U, Da,’s,
S41T41U : lllplql’ S41T32U4l : lllplrl’
S, T,U, ca,qr, S, T,U, I pS,
S, T,U, 1 g5, S32T32U LS,
S, T,U, Dat,

p=6:STU, ta,l, ST,U, 2 a,'p
S, T.U, Da g, S, T, U, Datr,

ST U, : amzp]z’ S42T6U42 : amquz’

6 42
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S42T42U6 : a1112r‘12’ S51T51U42 : alllzplql’
S51T42U51 o a1112p1r1’ S42T51U51 . alllqurl’
S5|T51U51 : amasl’ S6T33U33 : p13’
S33T6U33 : q13’ S33T33U6 . r13’
S5|T42U33 . p12q1’ S51T33U42 . plzrl’
S42T51U33 . plqlz’ S42T33U5| : plrlz’
SBST51U42 : q12r1’ S33T42U51 : qlrlz’
2S42T42U42 : amzt’ par s12’

SsnT42U42 : alllplsl’ SAzT51U42 : alllqlsl’
S42T42U51 - a s, S42T33U33 . plt’
S.T,U 1 qt, S.T.U Lt

33742733 337337 42

Note that the above generators are all expressed by the following six polynomials only:

S1T|U1 . am’ S2T11Ull : pl’
SuTzUu : ql’ S11T11U2 : rl’
STU 1S, S TU Tt

21721 " 21 1 2722722

These polynomials play the fundamental role in the following arguments. Especially, the
polynomial 7 is the invariant of the 3-tensor space C*®C*®C* with degree 4, which is explained in
[8], [10] as the name of “hyperdeterminant”. We also remark that the irreducible decomposition of
the space 2S, T, U_c S°® (C*®C*®C?) is not uniquely determined because the multiplicity is 2.

42742 " 42

The above three generators of 2§, T, U,, stated in Proposition 3 are not linearly independent, and

satisfy the following curious identity
Apar +s’=a,’t

(cf. Lemma 10).
3. Invariant subvarieties of C?®C?*®(C?

Let 3 be a G-invariant subvariety of C*®C*®C?, i.e., 3 is an irreducible algebraic set of
C*®C*®C* which is invariant under the action of G = GL (2,C) XGL (2,C) XGL (2,C). We
denote by I () the defining ideal of 5. Then, it is easy to see that ] (3) is invariant under the
action of G, and hence I (X) is expressed as a sum of homogeneous irreducible components 2
SAT”Uy. In addition, on account of Hilbert’s basis theorem, I (3) is generated by a finite number
of invariant irreducible subspaces S,T U, Our main results in this note are summarized in the

following theorem.

THEOREM 4. Let 3 be a G-invariant proper (irreducible) subvariety of the 3-tensor space
C*®C*®C* which is defined by the polynomials with degree less than or equal to 6. Then, 2. is
one of the varieties defined below:
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£,={ 0},
S, ={<pp>=<g>=<r>=0},
S,={<p>=<¢>=0 },
Z.={<p>=<r>=0 },
Z,={<g>=<r>=0},
2,={t=0}.

(The symbol <p > implies the G-invariant subspace generated by the polynomial p , and the
equality 2., = {<p>=<q> =0} implies that 2, is defined by the polynomials that are
generated by p, and q,.) The dimension of each variety is
dim 2 =0, dim X =4, dim 3 =dim X, =dim X =5, dim 3 _=7.
In addition, these varieties satisfy the following inclusion relation:
E2
{0} 2 2, 2 CRC*RC*.
24/

Note that from this theorem, we have clearly > N 3. =2 N 3, =2 N 2, ,= 2. (We
remark that two algebraic sets { <f>=0 } and { f=0 } do not in general coincide. The latter set
is defined by a single polynomial, though the former set may be defined by several polynomials
generated by f.)

The algebraic set defined by one irreducible component of S” (C*®C*®C?) is not in general an
irreducible algebraic set. In our situation, we have the following proposition.

PROPOSITION 5. Invariant algebraic sets defined by six typical generators a, ., p,, q,, ., S, and t
of " (C*®C*®C?) (cf. Proposition 3) are given by

{<a,>=0}=3,
{<p>=0}=2,LUZ,
{<g>=0}=3 U3,
{<r>=0}=2,U 2,
{<s>=0}=2, U3, UZ,
{t=0}=2_

As stated in the above theorem and proposition, the invariant irreducible subspace S,T, U, =
<p > defines the reducible algebraic set % U 3, and irreducible subvariety 2., is defined by two
irreducible components S,7, U, and S, T,U, , which implies that irreducible invariant subspaces of
S" (C*®C*®C?) do not in general correspond to irreducible subvarieties of C*®C*®C?. In
addition, three irreducible subspaces S,T U, , S, T,U  and S, T U, are mutually related. For
example, the condition <p > = 0 necessarily induces one of the equality <g > =0 or <r> =0, and
two of three varieties 2 , %, %, possess the common defining equations, from which the relation
S N3 =3NnZ, =32 n 2, (=%) follows. Thus, these three invariant subspaces (or three

invariant subvarieties) are not independent in a sense. Such curious phenomena also occur in
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another situation where the 3-tensor space is concerned. (For example, see [4].)
We also remark that among six typical generators of S° (C*®C*®C?), the invariant subspace
S T

21" 21
shows. This fact may be explained “symbolically” from the identity

U,, < $*(C*®C*®C?) does not define an essentially new subvariety, as the above proposition

2 2
4plq1r1 + sl - alll (8

which implies that the square of the generator s, is expressed as a polynomial of @, , p,, q,, r, and ¢,
though s itself is not. (See the proof of Proposition 5.)

Before proving Theorem 4 and Proposition 5, we must introduce new polynomials generated by
P, 4,, etc. We put

P= 4,8, 74,8,

P,= 0,8y Gy ~ 880, t 4150,

Py= Gy 8y~ G0y

9,= 4,9, a,,%,

q, 1 Gy ~ Oy + 815,850, ~ G100

q, A% ~ Gy

r= 4,8y, =~ 0,8,

T, L L L Al LA W

3= 0%, ~ 4

5, = a1112a222 + zanzamazu 0% % T %%, T A%
S, amazn2 + 2a111a212a221 4% % T 4% % T A% Do
s3 a1212a212 + 2allla122a221 - al]la121a222 - a112a121a22l - a121a122a211’
5, = auzazzx2 + zamaznazzz T4 % Y T A B T A% G
Ss auzzazzl + 2allla122a212 81,919, ~ 4108 51%, T 408,%,
Ss amam2 + 2a112a2ua222 T8, %, T 4% T A%y
S, a1222a211 + 2allzamazzz 4119159, ~ 41,8589, T 815 %%
Sg = amam2 + 2a122a212a221 419 % T A% T GGG
t= a1112a2222 + anzzazzl2 + a1212a2122 + a1222a21|2 - 2amauzazzlazzz - 2a111a121a21éa222

- Zal 1%122%1%,

- 2all2a121‘1212a22l

- Zamamaznazzl

- 2al2la122a211a212

+ 4allla122a212a221 + 4a112a121a211a222'

(Some polynomials are already defined before.) It is easy to see that these polynomials span the
following invariant irreducible subspaces of §* (C*®C*®C?).

STU,={a
ST

271

ijk} 1<i,j,k<2’
U,={p,p,p,}
SnTz n- { 9, 9> qs }’
SuTnUz = { T Ty Ty }’
S,TU ={s, s},

217 21
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S22T22U22 = { ! }
Now, using these polynomials, we first prove that the algebraic sets 5 defined in Theorem 4
are all irreducible. We first consider the case S, With respect to the basis {e,, e,} of C?2, we
define a linear map f: C? —C*®C* by the following matrix

‘_111 1 G2
A Qi
a4 G
Ay Gy )°

e, f(e) = 2}‘, aijkei®ej' Then, 2 X2 minor determinants of this matrix span the 6-dimensional
subspace of S* (C*®C*®C?), which just coincides with the space {p, q} ., ., (Note that this
space corresponds to A? (C°®C?) ®A*C* = ST U, + S T, U, .) Hence, the algebraic set 2,

1172711

defined by the polynomials S,7, U and S, T,U,, coincides with the set of matrices with rank < 1,
and hence it is irreducible with dimension 2X4 - (2-1) (4-1) = 5. We can prove the same results

for 3, and 3, by using similar linear maps defined by
A G a4 9

a1, Gy a1, Gy
and
a1 Gy Q131 Gy

Ay Gy Qi Gy

Next, we consider the algebraic set = . To prove the irreducibility of X, we have only to show
that the defining polynomial ¢ is irreducible, and this fact can be easily checked by an elementary
argument. Since 2 _ is a hypersurface, we have clearly dim = =7.

Next, we show that X is irreducible. For this purpose, we give another characterization of = .
We define a cubic map y: C? + C* + C* —>(C*®C*®C?* by

Y, 9, 2)=x®y®z for x,y,z€ C=
Clearly, an element of C*®C*®C"* is decomposable (or equivalently rank < 1) if and only if it is

contained in Im 7. Then, we have

LEMMA 6. Im y= 3
space C*QC*®C>.

» L.e., the set 2 consists of all decomposable elements of the 3-tensor

PROOF. We can easily show Im yc 2 because elements of Im 7y are expressed as a,=xyz, for
some x, y, z, € C, where a = Zaijkei®ej®ek. And in this situation, we have immediately p, = g, =
r,=0for 1 <i<3. Conversely, we show the inclusion relation = c Im y by dividing into several
cases. First, in the case a, | + 0, by using the equalities p. = g, = r, = 0, we have

a122 = anzam/am’

a221 = amazu/am’

0212 = auzazu/am’

— 2
a4 = auzamazn/am ’
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fora € X . Then, the element a is expressed as

la, - (a,e+a,e)®(a, e+ta,e)®(a, e+a

11171 21172 111 12172 11171 112e2)’

and hence it belongs to Im ¥. For other situations, we can show the decomposability of a by case
by case check, and we omit the details. q.ed.

By this lemma, the algebraic set = is the image of C? + C? + C? under the polynomial map vy,
and hence 3 is irreducible. In addition, as stated in the above proof, generic elements of 2 are
expressed uniquely in terms of four parameters a, , a, ., 4,,,, 4,,, and hence we have dim 2 =4

Next, to complete the proof of Theorem 4 and Proposition 5, we prepare general facts on the

a .,a .,a

components of G-invariant algebraic sets of C*®C*®C>.

PROPOSITION 7. Let ST U be an irreducible subspace of S*(C*®C*®C?) generated by the
polynomialflcl fkck (c. 2 1), where f, is one of a,,, p,» q,, T, 5,5 t (£, + jj for i # j.) Then, the
invariant algebraic set defined by SxTqu = 0 decomposes into the union

{<f>=0}u e u{<f>=01},

where < f, > implies the irreducible component of §(C*®C*®C?) generated by f.

Note that up to degree 6, all irreducible components of S (C*®C*®C?) are of the above form,
except the case 25T, U,,. (cf. Proposition 3.) To prove this proposition, we prepare the following

lemma for general invariant algebraic sets.

LEMMA 8. Assume that a connected Lie group H acts on C", and let = be an H-invariant
algebraic set of C", whose irreducible decomposition is given by 2 =2, (""" U 2Z,. Then, each
3. is also H-invariant.

PROOF. Let i be an element of H. Then we have

From the uniqueness of irreducible decomposition of Z, we have A3 = 2, for some i, which
may depend on the choice of &. Now, we take an element x of 3 such thatx ¢ =, ~ X . Then for
any X € , where D is the Lie algebra of H, the curve exp (tX) -x is contained in 2 , but not in
5., ~ = for small ¢. Hence, there exists an open subset U of H containing the unit element such
that hx € 2 and h-x ¢ 2~ 2, for h € U, and therefore, we have h-2 = 3 . Since H is
connected, every element of H is expressed as a product k***h (h,e U N U -1), and hence, we
have h+ % = 3 for any h € H.In the same way, we canshow h -3 = 2 fori=2 ~ k.
q.e.d.

REMARK. In general, this lemma does not hold if H is not connected. For example, consider the
following example: H={ 1, ¢ } (=Z), and H acts on C’ by o (x, y) = (3, x). Then, the algebraic
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set {xy=0}={x=0}uU{y=0}is H-invariant, but each irreducible component is not H-
invariant.

As an immediate consequence of this lemma, we have

LEMMA 9. Let H be a connected Lie group and let 2. be an H-invariant algebraic set of C". If
2. decomposes into the union of several algebraic sets 2. that are not necessary irreducible, then
each 2, is also H-invariant.

Note that in our situation the group G is a product of three connected Lie groups GL (2,C), and
hence the above lemmas are applicable.

Now, under these preliminaries, we prove Proposition 7. We put 3 = { SlTqu = 0 }. Then,
since the generator flcl'"fkck is one of the defining equations of X, the algebraic set %

decomposes into

where 2. ={xe€ X2 |f (x) =0 }. Then, by Lemma 9, each X is G-invariant, and hence, the
polynomials contained in < > all vanish on Z . Hence, we have %, < { <f>=0 }. On the other
hand, we have clearly { <f>=0} c {SkTqu= 0}n{f=0}= 2, and hence we have = =
{ <f,>=0}, which completes the proof of the proposition. q.ed.

To prove Theorem 4 and Proposition 5, we need the following fundamental (and curious)
identities between the polynomials p, g, etc, defined before.

LEMMA 10. The polynomials a,,~ t are related by the following identities:

2 2
4p1q1rl + s1 - am (3

t=p22 —4P}P3 = qz2 —4(]1(]3 = rz2 - 4r1r3’

qr,=- (a2112p1 —a,a,p,t a1112p3)’

pr=- (a1212q1 —-a,08,49,% aluzqa)’

p4,=- (a1122r1 —a,4,,,t a1112r3)’

$,=a,,p,~ 2a211p| =a,49,~ 2amq| =a,rn- 2auzr1’
2q1r1 = azusl + amsz’

2p1r1 = al21sl + amsz’

2pgq,=a, s +a, s

11271 m-s°

We can prove these identities by direct calculations. For example, the first identity can be
checked in the following way by using remaining ones:

4p1qlrl + s|2= -4 (amzpl -a,a,p,+ amzpz) p+ (ampz - 2a211p1) ’
= a1112 (p22_ 4p1p3)
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- 2
=a, 't

Using these identities, we can show the inclusion relations stated in Theorem 4. For example,
from the identity

t =p}-4pp,=q’—4q94,=r’—4nr,

the inclusion relation 3 U 3, U 3, c X, follows immediately, and the remaining inclusion
relations are trivial consequence of the definition.

Now, using these identities, we prove Proposition 5. First, the equality { <a, >=0}= 2
clearly holds. Next, we show that the algebraic set % defined by S,7, U, (= <p, >) = 0 is equal to
3, Z.. On account of the identity

—_— 2 — 2
qlrl - (a211 pl allla211p2 + alll p3)

in Lemma 10, the polynomial g,r, which is the generator of S,,T, U, vanishes on . Since 2 is

G-invariant, the polynomials in < g,r, > also vanish on X . Hence, by Proposition 7, we have
2c{<qr>=0}={<g>=0}u{<r>=0},
which implies
2c{<p>=<q>=0}U}<p>=<r>=0}=32 U3,

The converse inclusion relation clearly holds, and hence we have X = 3 U 3. Using the other
identities in Lemma 10, we can prove the equality { <g, >=0}=2 U 3 ,and {<r,>=0}=
2,V X, completely in the same way.

Next, we consider the G-invariant algebraic set defined by < s, > = 0. In this case, from the
identity

$,=a,,,p,~ 2a211P1 =4a,49,~ 2al2lq1 =a,rn- 2'a112r1’
we have
{<p,>=0}U{<g>=0}tu{<r>=0}c{ <s5>=0},
which implies =, U 3, U X, c { <s,>=0 }. On the other hand, from the identity
2qlrl = a211s1 + amsz’
we have
{<s,>=0}c {<qr,>=0}

= {<q,>=0}u{<r>=0}
= 2 VUZ,UZ,

and hence we obtain the equality { <5, >=0} = X, U 3, U I, which completes the proof of
Proposition 5. q.e.d.
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Finally, we complete the proof of Theorem 4. For this purpose, we prepare one more lemma.

LEMMA 11. The G-orbit of a point a € C*®C*®C?* contains an open neighborhood of a if and
only if the invariant t does not vanish at a. In particular, all invariant proper subvarieties of

C*®C*®C" are contained in the hypersurface 3. defined by t = 0.

REMARK. This lemma gives one of geometric characterization of the invariant variety 2 i W
the variety X _ consists of all singular elements of C*®C*®C* with respect to the group action of
G. (For another characterization of X, see [9], [10].) In addition, this lemma shows that the 3-
tensor space C*®C*®C? is a prehomogeneous vector space in the sense of [17; p.35]. (See also,
[25].)

PrOOF. We have only to consider the Lie algebra action on C*®C*®C* to prove the lemma. For
ae C*®C*®C?, we define a linear map ¢_: 81 (2,C) + 91 2,C) + 81 (2,C) — C*®C*®C* by

¢, X,X,X)=X"-a+X,ra+X,aq,

where X, - a means the action of X, € 4 (2,C) on the i-th component of a (1 < i < 3). Then, it is
clear that the G-orbit of a contains an open neighborhood of a if and only if rank @ = 8 (= dim
C*®C*®C?), and with the aid of the computer, we can directly verify that the rank of ¢_is 8 if a,.
Pp4q,T,t # 0 at a. Hence, the set of singular elements which we denote by 3 are contained in
the algebraic set defined by a,, *p,-q,"r, -t = 0. Since X is G-invariant, we have from

Proposition 7 and Proposition 5

Sci<a,p-q-rt>=0]}

= {<q,>=0}u{<p >=0}uU- - u{t=0}
=3 VU3 UZ U3 U
= 2

.

Conversely, assume that a € C*’®C*®C* satisfies a,,, p, q,, r, ¥ 0 and ¢ = 0. Then, as above,
we can show that rank @ = 7, which implies that a is singular. In particular, there exists an open
subset of = consisting of singular elements. Since the singular elements constitute an algebraic
set contained in X, and the hypersurface Z | is irreducible, we obtain the desired equality 3 = = .
The last statement in this lemma follows immediately from the first one because a is not contained
in any invariant proper subvariety in the case ¢t + 0. q.e.d.

Now, we prove Theorem 4. By Proposition 3, all generators of irreducible components of S°
(C*®C*®C?) (p < 6) are expressed as a product of six polynomials a, ,, p,, q,, 7., 5, t except
28 _T_U, . Hence, by Proposition 7 and Proposition 5, all invariant subvarieties defined by these

2727 40
components are the union of X~ X, with the above exception. Next, by Lemma 11, all

invariant subvarieties satisfy the equality 7 = 0, and hence, one component of 2§ T, U, which is

generated by a  ’t always vanishes on these varieties (cf. Proposition 3). If just one component of

28T, U,, vanishes, then the variety is contained in the hypersurface X, and if two components
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vanish on a variety X, the variety 2 is contained in 3, U %, U 3, because the equalities p g 7,
=s,=0hold on X (cf. Proposition 3). Therefore, all irreducible proper subvarieties are exhausted
by % ~ Z, and hence we complete the proof of Theorem 4. q.ed.

4. A remark on the irreducible components of S* (C*®C*®C?)

If we can prove the following conjecture, we may drop the restriction on the degree of
polynomials “p <6” in Theorem 4.

CONIJECTURE. The coefficients of x?*'y™*'z**'t” in the following two formal polynomials coincide
Jorp/2<q,r,s<p:
xyz(1+ x*y*2°1)
(1-xyzt)(1 - x*yzt>)A - xy*zt* )1 - xy2*t*)(1 - x%y
(x-Dy-1)(z-1)
(=01~ x)(1 = y)(1 = z2)(1 = xyt)(1 = yzr)(1 = zxr)(1 = xyzr)

222t4) ’

The second polynomial is the generating function of the polynomial ring 35" (C*®C*®C?),
i.e., the coefficient of x?'y™'z**'¢? of the second polynomial coincides with the multiplicity of
o ;p_rUs’p_s in 8’ (C*®C*®C?). We can prove this fact by using the formula stated in [6; p.14].
The first polynomial is the generating function of the subring of EPS” (C*®C*®C?) which is
generated by six typical generators a ,, p, q,, 7,, 5, and ¢, i.e., generated by ST U, S,T, U, ,
sTU,STU,STU,,STU,. For example, the term x’y’z’ in the numerator of the first
polynomial corresponds to < s, >=S, T U, (p =3,g=r=s=2),and the term 1/ (1 — x??z’t*)

corresponds to the powers of <t > =S8, T U, (p =4, q=r=s=2). Hence, if this conjecture
actually holds, we can show that the generator of each irreducible component of §” (C*®C?*®C?)
can be expressed in terms of only a , ~ ¢ for general p, by applying the similar method developed
in [15]. In addition, we can also show that the relations among these six generators are exhausted

essentially by the identity
dpqr +st=a L

Unfortunately, we do not know the proof of the above conjecture at present. By Proposition 3,
we know that this conjecture holds for p < 6, and with the aid of the computer we can check it for
p<8.

REMARK. It is already known that the 3-tensor space C*QC*®C? admits only seven G-orbits
including {0} and the space itself. (See [8; p.261].) It is easy to see that the closure of these orbits
just coincide with the invariant subvarieties stated in Theorem 4, and by using this result, we can
show that there exists only seven invariant proper subvarieties of C*®@C*®C* without the
assumption “degree <6 . (In fact, for any invariant algebraic set =, we have = =y G -x, which
implies that 3 is expressed as a finite union of G-orbits.) But, we want to show the finiteness of
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invariant varieties only in terms of defining polynomials and the identities between them, not
using the normal forms.

We also remark that in general situations, G-invariant algebraic sets are not expressed as a
closure of finite G-orbits. For example, consider the natural action of GL (V) on the space of
square matrices V* @ V. In this case, the set of matrices with trace = 0 is the GL (V)-invariant
algebraic set which consists of infinitely many GL (V)-invariant orbits. (Note that two elements of
V* ® V belong to the same GL (V)-orbit if and only if their Jordan normal forms coincide.)

5. Invariant subvarieties of the space S3(C?)
In [15], the classical theory of invariants and covariants of the 3-symmetric tensor space S? (C?)

(binary cubic forms) is explained in detail. In this case, GL (2,C)-invariant irreducible subspaces
of the polynomial ring 38" (S (C?)) are generated by
P

S3:blll’
S,:b, b, b2

1117122 1n2’

S, :b, b, ~3b, b b +2b *

111 7222 111127 122 1m2°?

S,:b, b, —6b b b b, +4b b ’+4b ‘b —3b ‘b }

11t 222 11171127 1227 222 1117122 112 222 112 T122?

S TS T~ T~
I

l
A LW -

where we express b= = ks zb‘,jkei °eeg S3 (C?). ( o implies the symmetric tensor product.)
In [15], the monomials b, b,,,, b,,,, b, are expressed by the symbols £ @, & D, £@ &O,
respectively, and the above four generators are denoted by f, A, j and d. These generators satisfy

the famous identity

112°

4h* +j*=f4d,
which has a strong resemblance to
4p1q1r1 + Slz = amzt'

The quartic polynomial d is classically known as the name of “discriminant” . Using these results,
we can show that there exist three GL (2,C)-invariant proper subvarieties of S* (C?) defined by

3,={0},
2,={<h>=0},
S,={d=0},

which satisfy the following simple inclusion relation:

{0} s > $3(C).

2 3

(We can easily check the equalities dim ii =i,and { <j>=0} = gz.) Clearly, there is a
remarkable resemblance between the case S* (C?) and our case C*®C*®C?, concerning the
irreducible decomposition of the polynomial ring, its generators (degree, expressions, identities),
and their invariant subvarieties (geometric meaning, inclusion relations). In a sense, the space S°*
(C* may be considered as a degenerate space of the 3-tensor space C*®C*®C*> For example,
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three subvarieties = ,, 3, 2, c C*®(C*®C(*degenerate to one variety ) ,» and three invariant
subspaces S,T, U, SUTZU] o S”T“U2 of §? (C*®C*®C?) degenerate to one irreducible space S,
§2 (§* (C?). In other words, the classical theory of binary cubic forms has its root in the 3-tensor
space C*®C*Q@C>.

We list up the character table of S°(S* (C?) (p < 6) in terms of the Schur functions in the
following:

: S,

3
: 5, +S,,
25, +8,+S,,

:S,+S, +S +S8,+S,
:S +S +S +S +S +S

96°

: Sls + SIG,Z + S15‘3 + S14,4 + Sl3,5 + 2S12,6 + SIO,B

A TS A~ T~ B~ i~
It
AN AW -

We can determine the above characters by calculating the plethysm of the Schur functions. For
example, see [13; Appendix], [1; p.111].
Finally, we give a geometrical characterization of the variety s , as in Lemma 6. We define a

cubicmap ¥ : C*— §*(C?) by
Y (W)=vovov,

where v o v o v is the symmetric 3-tensor product of the vector v € C? Then, it is easy to see that
the equality

Im7=§2

holds, and hence, the subvariety S , Just coincides with the set of decomposable elements of S*
(C?). Consequently, a symmetric 3-tensor b € S* (C?) is decomposable if and only if the
components of b satisfy the following equalities corresponding to the irreducible subspace S,,  S?

(82 (CY):

b 111b122 b 22 = 0’
b 111b222 b112 122 0’
b 112b222 b 22 =0.
Note that this condition is equivalent to
blll b112
rank | b, b, | <1.
b122 b222

This result may be considered as a “symmetric” version of classical Pliiker’s quadratic relation
for the Grassmann space, which characterizes the decomposability of an element of A?C".

For another detailed explanation of the polynomial ring and invariant subvarieties of the space
S3 (C?), see [18; p.1397 ~]. Concerning the rank of 3-tensor spaces, there are many interesting
deep researches such as [7], [16], [20], etc. If the ground field is R, almost same results as above
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hold, and normal form of S* (R?) is explained in [5; p.259], [24; p.276].

For 3-tensor spaces associated with higher dimensional vector space C", we can theoretically
study them by the same methods developed in this note. But, many calculations are needed for
such study as the dimension of the base vector space increases, and for geometric applications, it is
desirable to investigate more substantial method to study invariant subvarieties of general 3-tensor

spaces. (The study of “normal forms” becomes hopeless in higher dimensional cases. See for
example, [22], [23].)
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