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Abstract : We determine all torsion free invariant affine connections on the
homogeneous space $*"*'= U(n +1)/U(n), and characterize their curvatures in
terms of the polynomials of their components in the space of curvature-like
tensors. The essential difference between the case n =1 and n = 2 is
explained in detail from the standpoint of flat affine geometry.
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Introduction

Characterization of the curvature tensors, i.e., which curvature-like tensors are actually
curvatures that are obtained from connections is one of the fundamental problem in
differential geometry. Recently, several efforts have been achieved on this problem such
as [2], [5], [6], [13], but the complete answer is not known yet. In this note, we consider
a homogeneous affine version of this problem, and as a special example, we characterize
the set of curvatures of torsion free invariant affine connections on the homogeneous odd
dimensional sphere $*"*'= U(n +1)/U(n). Itis well known that the sphere S ™ considered
as the homogeneous space SO(m +1)/SO(m) admits a unique invariant connection (the
canonical Riemannian connection). But in our case U(n +1)/U(n), the degree of freedom
of invariant connections is 4 (Theorem 1), and roughly speaking, their curvatures
constitute a 4-dimensional subvariety in the space of all curvature-like tensors. Explicit
determination of invariant connections on a homogeneous space is in general a hard
problem. (See, for example, recent works [7], [10], [11].) In this note, we solve this
problem with the aid of the character (the Schur function) of the general linear group GL
(n, C).

Concerning the characterization of the curvatures of S +1_ there exists an essential
difference between the case n =1 (i.e., $°) and n > 2. In the case n = 2, the curvatures
are characterized completely in terms of relatively simple quadratic polynomials of their
components, while in the case n = 1, there exists no polynomial relations up to degree 4.
In addition, in the case n = 1, S* admits invariant almost flat affine connections, i.e., the
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closure of the set of all curvatures contains the origin 0 corresponding to a flat affine
connection, but it is not the case for n = 2 (cf. Theorem 5). It is classically well known
that S does not admit a torsion free flat affine connection for m > 2 ([3; p.145]), and
hence, the above difference is an interesting phenomenon in the standpoint of flat affine

geometry.

1. Invariant connections on U(n+1)/U(n).

In this section, we determine all invariant affine connections on the homogeneous
space S$*"*'= U(n +1)/U(n) (n 2 1), by using a representation theoretic method. To state
the theorem, we first fix some notations.

Let g (resp. t) be the Lie algebra of U(n +1) (resp. U(n)), and m be the canonical
complementary subspace of f ing, i.e.,

g=u(n +1),
f=u(n)={('3 g) I Ae u(n)},

m={(0— v) veC",keR}.
v ki

We express the above element of £ and m simply as A and (v, k), respectively. The
space m is canonically identified with the tangent space at the origin of U(n +1)/U(n).
It is easy to see that [f, m ]JC m , and hence, the space U(n +1)/U(n) is reductive. The
linear isotropy representation p : f —= gl(m) of U(n+1)/U(n) is given by

o ( ) (2% )]

_(O Av)
\'vA O

=(Av, 0).
We fix a basis {X1,**** Xn, Y1, *0e0e , Y., W} of m by
0 1 k -th 0 ‘ i k -th
X = ’ Y = ’
" ( -1 0) " ( i 0)
k -th k -th

vo(——t)
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Then, the space m has a canonical direct sum decomposition
m=C"+<W>,

where C"=< X), ***** , Xn, Y1, oo , Y» >, and there exists a natural complex structure [
on C" defined by

IXe=Yr and IYi=-X:.

We introduce the inner product (,) on m such that the vectors Xi,=«**** s Xn, Y1,
Y., W form an orthonormal basis. Since the isotropy group U(n) acts on Im as an
isometry group, the metric (,) on m is globally extendable to all points of
U(n +1)/U(n), which is nothing but the standard Riemannian metric on $?**! with
constant curvature 1.

It is classically well known that there exists a one-to-one correspondence between the
set of all torsion free invariant affine connections on a reductive homogeneous space with
a connected isotropy group and the set of linear maps f:m —> g{( m ) satisfying

(+h fAA,XD=[p@A), fX)], Ae ¥, X € m,
(%)2 XY -fY)X=[X, Y]Im, X, Y e m,
where [X, Y]m is the M -component of (X, Y]. In particular, the set of invariant

connections may be considered as an affine subspace of m *®g(( m ). (See [9;p.191

~192]. Note that the second condition (x)2 indicates that the corresponding connection
is torsion free.)
Under these notations, our first main theorem is stated as follows.

THEOREM 1. The set of all torsion free invariant affine connections on U(n +1)/U(n)

(n 2 1) constitute a 4-dimensional affine subspace of M *® g (M ). In terms of real
parameters a i~ a s, the corresponding linear map f: m — gl(m) is expressed as

fEOY=a (X, Y)W+ X, IV)W,
FX)W=a2X+(as+1)IX,
fW)X=a>X+aslX,
fW)W=(a2+aqW,

for X, Y e C"C m.

Proor. To prove this theorem, we have only to show that the above linear map f



4 Yoshio AGAOKA

satisfies two conditions (x)1, (x)2, and that the degree of freedom of torsion free invariant
affine connections is at most 4.
First,for Ae f and X,Y € C"C m, we have

fUAA XDY =fAX)Y=ai(AX, Y)W+ (AX, IY )W,

[p (A), A =p (A)fFX)Y-f(X)p(A)Y
=pA)a X, YW+ X, IY)W} -f(X)AY
=—f(X)AY
=-—a (X, AY )W~ (X, IAY )W
=—ai(X,AY W- (X, AIY )W
=a1(AX, Y)W+ (AX, IY )W,

A, XDW =fAX)W=a2AX + (a3+ 1)IAX,

[p(A), AW =p (A) f X)W -f(X) p (A)W
=pA){a2X+(as+ DIX }
=a2AX + (a3+ 1)AIX
=ay AX + (a3+ DIAX,

and hence, we have f([A, X =[p (A),f(X)]. Next,for Ae f and X € C", we have

FIA, WD =0,

[PpA), FW)IX =pA)fF(W)X-f(W)p(A)X
=p(A)@2X+as3lX)-f(W)AX
= (a2AX + a3AIX ) — (a2 AX + a3 IAX)
=0,

(PA), FWNIW=pA)f(W)W-f(W)p(A)W
=pA)(aztayW
=0,

and hence we have f ([A, W]) = [p (A), f (W)], which implies that f satisfies the
condition (x)i1. Next, we show that f is torsion free. First, it is easy to show that

X, YIm=2(X,IY)W, for X,Ye C",
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and X, W]lm=1IX, for Xe C".
Then, for X,Y € C", we have

fXY-fV)X =X, IY)W-(Y,IX)W
=2X,IY)W=[X,Y]m,
JEW-f(W)X=IX=[X,W]m,

and hence f satisfies the condition ().

Next, we show that the degree of freedom of torsion free invariant affine connections
is at most 4. For this purpose, we fix one invariant torsion free affine connection f°
once for all. Then, other connections f are expressed uniquely as

fX)Y=fX)Y+aXY),

where a: m X m — M is a symmetric bi-linear map. Then, it is easy to see that
f satisfies the condition (x): if and only if

A,oX, V)]=a((A,X].Y)+o(X,[A, Y],

foranyAe £,X,Y € m,ie., e S?M*® m is invariant under the canonical action of
f. (Note that the second condition (x)2 is automatically satisfied in this situation because
o is symmetric and f° is torsion free.) Clearly, the action of f =1 (n) on m splits
into two irreducible representations, namely, natural representation on C" and the trivial
representation on <W>. As a real representation, A=B+iCe U(n) actson C"=R?>"

We complexify this representation. Then, by putting

E E)
pP=172 (—iE iE /],

we have
B—C) (B+iC 0 ) (A o)
-1 —_ =
P (C B P= 0 B-iC 0 A/,

and hence, the complexified representation of u (n ) (~gl(n, C))on (R*) =C? is
equivalent to the sum of the identity representation and its contragredient representation.
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Hence, in terms of the Schur functions, the character of the complexified representation
of £ on me is givenby S+ S -1+ So. (For the definition of the Schur function, see
[8], [12].) Since the space ( mc)* is isomorphic to 111° as a representation space, we
can calculate the character of S %(m°)* ® m° by using Littlewood-Richardson’s rule and
the formula S2(V+W)=S2(V)+ VW + S 2 (W). The result is given by

S3+82+282+45u+585 14285221+ S1-1+4 So0+3S 101+ S1--1+2 S 124+ 55 4

+S 1 +2S 2+ S2+S 3 (n23),
S3+8521+42852+4851+5851+28221+4S0+3S51.1+25 1245854+ 50a0+285
+S-12+853 (n=2),
S3+2S52+4S51+44S50+4S51+2S5S2+S5 3 (n=1),

and for each case, the multiplicity of the invariant S o is 4. This implies that the degree
of freedom of complex linear maps f: m®—> g[ ( m°) satisfying the complexified
conditions corresponding to (x)1 and (x)2 is 4. Therefore, real linear maps satisfying
(*)1 and ()2 has degree of freedom at most 4, and hence, we complete the proof of
Theorem 1. q.e.d.

RemARrk. (1) Since the conditions (x);1 and (x)2 are linear on f, we can of course
prove Theorem 1 by solving these linear equations on the components of f directly. But
this method requires tremendous calculations.

(2) The canonical Riemannian connection on S§***' with standard constant curvature
metric is given by the one corresponding to a: =0 (i =1 ~ 4). This fact can be easily
checked by using Theorem 3.3 in [9; p.201].

(3) If we drop the assumption “torsion free” in Theorem 1, then the set of invariant
affine connections constitutes a “linear” subspace of m*® g[ (m). By a direct
calculation, or by the character method, we can show that the dimension of this linear
subspace is 7. It is explicitly given by

fX)YY =b1 X, Y)W+b2X,IY)W,

fFXIW =b3X+b4lX,

FW)X =bsX+bsIX,

fWHYW=b1W,
where X,Y € C" and b1~ b7e€ R. Needless to say, the above linear map f satisfies
the condition (*): only.

(4) If we consider the sphere $*"*! as the homogeneous space SU(n +1)/SU(n) (n 2
2), then the degree of freedom of torsion free invariant affine connections is equal to 4 (n
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2 3) and 6 (n = 2). The two dimensional new freedom in the case n = 2 corresponds to
the Schur functions S11 and S_i-1 in the above character table in the proof of Theorem 1.
(Note that Si1 and S_1-1 are the invariants of the special linear group SL (n, C) only in
the case n=2.)

2. Characterization of the curvatures.

In this section, we calculate the curvature of the invariant connection in Theorem 1,
and give the complete characterization of the set of curvatures in terms of their
components in the case n > 2.

THEOREM 2. The curvature of the invariant connection on U(n +1)/U(n) (n 2 1)
stated in Theorem 1 is given by

RX,Y)YZ ={ri(Y,Z)+r2,IZ)}X-{r1(X,Z)+r2X,IZ)}Y
+{r3(Y,Z)+ra(YLIZY}HX - {r3(X,Z) +r4(X,I1Z)}IY
=2r2X,1Y)Z-2r4(X,1IY)1Z,

RX, W)Y ={-rs(X,Y)+re(X,IY)}W,

RX, Y)W =2reX,IY)W,

RX, WYW=r:X-rslIX,

where X,Y,Z € C", m=C"+ <W >, and

ri=ai1a2+1, rs=aias+asz+1,
r2=az, re=aiaszt+ai—aas,
ri=ai(asz+1), ri=azas+ (@z+1)?,
rs=as, rs=(az+ 1) (az2—aa).

Proor. It is known that the curvature of the invariant connection corresponding to f
is given by

RX.Y)=[X),f]-fUX, Y ]m)-p (X, Y]D), X,Y € m,

where [X, Y]t is the f-component of [X, Y le g ([9; p.192]). Explicitly, the third term
of the above equality is given by

p(UX, Y1) Z=(Y X-X"'Y)Z
=(X,Z2) - (X, IZ)IY —(Y,Z)X +(Y,I1Z) IX,
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pUX,Y]1e)W=0,
p(X,W]t) =0,

for X,Y,Ze C". We have only to calculate the curvature by using these formulas.
First, for X, Y,Z € C" C m, we have
RXY)Z=fX)fX)Z-fX)fX)Z-2XIY)fW)Z-p(X,Y]t)Z
=fX)a1(Y,Z)+ Y IZ)NW-f(Y a1 (X, Z) + (X, IZ)}W
-2X, IY)(@z2Z+a31Z)-p(X,Y]e)Z
={a1(Y,Z)+ (Y, IZ){a X+ (@3 + D) IX }{a (X, Z)+ X, IZ){a2Y + (a3 + 1) IY}
22X, IY)(a2Z+a31Z)- X, Z)Y+ X, I1Z)IY+ (Y, Z)X-(Y,I1Z) IX
={ri(Y,Z)+r2(,IZ)}X-{ri(X,Z)+r2(X, I12)}Y
+{rs(Y,Z)+ra(Y, IZ)}HX-{rs(X,Z) +ra(X,IZ)}IY
-2r2X,IY)Z-2ra(X,IY) IZ.

The remaining three equalities in this theorem can be verified completely in the same way
as above, and we omit the detailed calculations. g.e.d.

From this theorem, the non-zero components of the curvature tensors are expressed in
terms of 8 variables ri ~rs. In particular, the set of curvatures lie in the 8-dimensional
linear subspace of curvature-like tensors on m . (By definition, the space of curvature-
like tensors on an m-dimensional vector space V is the linear space

[Re N2V*QV*QV | ©® R(X,Y)Z =0},
X,Y,Z

and it is known that the dimension of this space is equal to 1/3-m 2(m 2 —1). Itis a sum
of three' GL (V)-irreducible components with dimension 1/3-m 2(m 2-4), 1/2-m (m
+1) and 1/2-m (m — 1). For details, see for example [4; p.41]. In our case, since m =2n
+ 1, its dimension is equal to 4/3-n (n +1) (2n +1)2) Explicitly, the curvature may be
expressed in the following form.

CorOLLARY 3. The non-zero components of the curvature of U(n +1)/U(n) are
exhausted by

RXi,X)X; =R(X.,Y;)Y;=U,
R(Y,Xj))X;j=RY,Y;)Y;=1U:,
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RX;, Xi)Y; =RX,Y))X;j=Vi,
R(X;, Y)Y, =R(Y.,Y;)X;=1Vi:,
RX;,Y)X: =2V,

RX;, Y)Y, =21V,
RXiy,Y)Xi=3V:-1U,,
RX.,Y)Y: =U:+31V:,
RXi,W)Xi=RXY,W)Y: =-rsW,
RYi,W)X:=-RX:;,W)Y: =reW,
RXi, Y)W =2re¢W,

RXi, W)W =r:Xi-rsY:,
RYi,WYW =rsXi+riY:,

where Ui=r1Xi+r3iYi and Vi=r2Xi+raYi. (Throughout the above expressions,
we assume i #].)

In particular, in the case n = 1, the curvatures lie in the 6-dimensional linear subspace
of curvature-like tensors on 111 spanned by the variables r1 -3 rs,3r2+rs, rs,re,r7,rs
because the terms such as R (X, X;) X; (i #j ) do not appear in this case, and

U+3l1Vi=1Q@3Vi-IU;) = (ri-3ra)Xi+@Bra+r3) Y.

We can also show this fact by calculating the multiplicity of S o in the character of the
space of curvature-like tensors on m (for both cases n =1 and »n = 2), as in the case of
determining the degree of freedom of invariant connections.

Now, we characterize the curvatures of the space U (n +1)/U (n ) by using the above
expressions in the case n = 2. To express the result in a simple form, we change the
variables of the curvatures as follows:

si=ri—1, Ss=rs—ra—1,
S2=r2, S6e=r3—re,
§3=r3, s71=r7,
sa=ra+1, S8 =rs.

Clearly, the components r: are uniquely determined by si, and vice versa. In the
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following, we use {si} as a coordinate of the 8-dimensional subspace of the curvature-
like tensors on M, instead of {r:}. To state the precise results, we introduce three real
algebraic varieties X o, X3, £ 4 inthe 8-dimensional subspace by

Zo={0)},
X3={(s1,0,53,0,550,0,0) | s1,53,55€¢ R},
S154=5283, S156=85255, $38S56=S54S5,
Z4= (Sl, ...... ,S8)€R8| 154 283 21 6 285 386 485
$7=5256+54° S8=54(52—56)
Clearly, we have the inclusion relation:

2o C X3 C Xy,

and it is easy to see that the dimension of the variety X; is equal to i. Under these
notations, we have

THEOREM 4. In the case n =2, the set of curvatures of torsion free invariant affine
connections on U(n +1)/U(n) is equal to the set (L4 \X3)UZXZo. In particular, the
closure of this set constitutes the 4-dimensional variety 2.

Proor. First, it is easy to see that the actual curvature (s;) belongs to the variety X4
because its components are expressed as

si=aias, ss=aias,
(%) s2=aaz, se=aa,
si=ai(as+1), s1=azxaas+ (as+ 1)?%
sa=asz+1, ss=(asz+1)(az2—aq).

Now, assume that the actual curvature (s:;) is not contained in Xo, i.e., (si) # (0). If s2
=sa=s56=57=58=0, then we have a2 =a4+=0, a3 =-1 from the above expressions
(x%). Hence, we have s =s3 =55 =0, and this contradicts the assumption (s:) # (0).
Therefore, one of s2, 54, 56, 57, 58 is not zero, and we have (si) ¢ X3. Combining these
facts, it follows that the actual curvature lies in the set (24 \Z3)UZo.

Conversely, let (si) be an element of (£4\X3)UZXo, and we show that it is actually
a curvature. The case (si) € Xo, (i.e., (si) = (0)) can be checked immediately. If (si) €
T4\ X3, then, one of s2, 54, 56, $7, 58 is not zero. In the case s2 # 0, we consider the
connection defined by

ar=sils2, ar=s2, as=s4—1, as=se.
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Then, from the expressions (x#*) and the quadratic relations which define the variety X4,
it is easy to see that the curvature corresponding to this connection is (si). In the case s4
# 0, we put

ar=s3lss, ar=s52, asz=s4—1, as=ss.

Then, similarly, we obtain the same result. If s2 =54 =0, then we have s6# 0. In fact,
if s2=154=1s56=0, then from the above quadratic relations on si;, we have s7=s5=0
and this contradicts the assumption (si) ¢ X3. Hence, we have s # 0, and in this case,
from the quadratic relations, we have si=0 except i=35, 6. Then by putting

air=sslss, a2=0, az=-1, as=ss,

the same result holds as above. Combining these results, it follows that every element of
(Z4\Z3)UZXo is actually a curvature. q.e.d.

ReMARk. (1) It is easy to see that the connection (a:) is uniquely determined from
the curvature (s:) if and only if (s:) is contained in the set 4 \X3.

(2) By direct calculations, we can show that the quadratic polynomial relations of the
curvature tensors (s:) are exhausted by the five equations that are appeared in the
definition of 4. In addition, there exists just two cubic polynomial relations:

$153S7—5185558— 853258 —5385557=0,
S154857—8525558—535458—5455587=0,

that are not contained in the ideal generated by the above five quadratic polynomials.
(To verify these facts, we used the algebraic programming system REDUCE 3.3.) But,
we do not know at present whether the defining ideal of X4 is generated by these seven
polynomials. (From the general theory in algebra, this ideal is finitely generated.)

(3) If we rewrite the quadratic polynomial relations of {s:} in terms of {r:}, then the
non-zero constant terms appear in these expressions. For example, the relation si1s4— 52
s3=0 becomes rira—rz2r3+ri—ra—1=0. (This relation implies that for each i, the
vectors R(Xi, Xj)X; — Xi, R(Xi, X;)Y; — Y: (j # i ) are all parallel for any invariant
connections.) These non-zero constant terms imply that U(n +1)/U(n) does not admit
torsion free flat invariant affine connections in the case n 2> 2 because the point (r;) =
(0) which corresponds to the zero curvature does not satisfy the above quadratic relation.
Of course, this result follows immediately from the fact that the fundamental group of a
compact flat affine manifold is infinite. (See [3; p.145].) But, our result is stronger in the
sense that even the closure of the set of curvatures does not contain the point (r;) = (0).
(See also Theorem 5 and its remark in § 3.)

(4) In the case n = 1, the closure of the set of curvatures also constitutes a 4-
dimensional variety because the rank of the differential of the map
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(@i, oo ,as) —> (r1—3ra, 3ra+rs, rs, re, ri, rs)

is 4 at generic points. But, unfortunately, we do not have the corresponding
characterization of the curvatures as in Theorem 4. In this case, by using the system
REDUCE 3.3, we can verify that there exist no polynomial relations on the curvature {r
—3r4,3ra2+rs, rs, re, r1, rg} up to degree 4, and that there exist eight quintic
polynomial relations, which are too long to write down all of them explicitly here. We
exhibit one of (perhaps) the simplest relation among them as follows:

r*+red)f{uu—re+4(t—Ars+4rers}
+(rsrs—rer){3(—-42+5u?-2ure+rs*+reé*—24r7}
—2(rsri+rers){S(t—du +3urs—4rs}-24u(r?+rs,

where ¢t =r1—-3r4, u=3r2+ r3. We do not know whether these eight polynomial
relations are sufficient to characterize the curvature tensors in the case of n=1.

3. Norm of the curvature.

In this final section, we calculate the norm of the curvature of invariant connections on
U(n +1)/U(n) and its infimum in the set of all invariant connections, where the norm
| I is determined by the standard constant curvature metric. Explicitly, | R [|? is
equal to

1/2-Z (R%j)%,
ijkl

where R(ei, ¢j) ex = X R'wj e1, and {ei} is an orthonormal basis of the tangent space.
!

Clearly, the value inf || R || serves as an obstruction to the existence of torsion free
“flat” invariant affine connections, and hence, it is an important and interesting problem
to determine the value inf | R | explicitly for many homogeneous Riemannian
manifolds. Precise statements in our case are summarized in the following theorem.

THEOREM 5. (1) The norm of the curvature of the torsion free invariant affine
connection on U(n +1)/U(n) stated in Theorem 1 is given by

IRI2=4n (n-1) (ri®+r:*+3r22 +3rs
+2n{rs?+3r>+r?+re?+ (ri=3ra)’ + Br2+r3)*},

where ri ~ rg are the functions of a1 ~ as defined in Theorem 2.
(2) In the case n =1, the infimum of | R || is zero, while in the case n =2, the value
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inf | R Il is strictly positive.

Proor. The statement (1) is directly checked by using the expressions in Corollary 3
and the fact that {X;, Y, W} is orthonormal. We now give the proof of (2). In the case
n = 1, we consider the connection corresponding to

ai=t, ar=-4/t, az=-1, as+=0,
where ¢ is a non-zero real parameter. Then, we have
ri==3, ro==4/t, =0, ra=-1, rs=re=r1=rg=0,

and || R |2 =288/t 2 Hence, by putting t — °©, we have inf || R || =0. Next, consider
the case n>2. Interms of the variables {s:}, the value || R |2 is expressed as
4n (n-D{(ks2+ 1>+ k254> + 35 2+ 3 (s4—1)?}
+2n {(kse+ 54)> + 3 (ksa—56)* + (ks2— 354 + 4)?

+Bs24ksa) >+ (522 +542) (542 + 560},

where we put k =a1. Hence, we have the inequality

IRI2>4n(n—1) {(ks2+ 12+ k2542 + 3522+ 3 (s4—1)?}
+2n {(kse+ 54 + 3 (ksa—56)* + (ks2— 354+ 4)? + (352 + ks 4)?}
=2n{2n-Dk?+32n+1)} (s2—a)?
6
2 2 _ RV
+4n{(n-1) (k> +3)+2k +3+k2+3 } (s4—B)
+2n(k?+3)(se =Y+ 90

>4,
where
o= 2n+ Dk B = 3(n+1)(k?*+3)
T 2n-DHk*+32n+1) T (m+Dk*+32n+D)k%*+3(Bn+2)
_ 2ks4
T k*+3
5 = 2n(n+ D(k?>+ D{2(n+ DH(n - Dk*+3(@n%+n+ Dk?+3@n-1)R2n+ 1)}

(Qn-Dk2+32n+ D}{(n+ Dk*+32n+ Dk?+33n +2)}

By easy calculations, in the case n 22, the function & takes a minimum value 4n (n + 1)
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BGn-1/Bn+2)=4n%-4n/(3n+2) at k=0, and hence, we have

4n
RlI?2>24n? - ———

IR %2> 4n )

for any invariant connections, and therefore, we have inf | R | > 0.

q.e.d.

RemMark. (1) The canonical Riemannian connection corresponds to a1 =a2=asz=as
= 0, as stated in § 1, and in this case, we have | R [|2=2n (2n + 1). Therefore, we have
an estimate on the infimum

\j4n2-3n4—f2 <inf [RI < ‘\/2n(2n+1)

in the case n > 2. But, the actual value inf | R | is unknown at present. By calculating
the Hessian of || R |2 at (a:) = (0), we can easily show that the canonical Riemannian
connection gives a local minimum of || R [ in the set of all torsion free invariant affine
connections. We conjecture that this is actually the minimum, and the equality inf || R |
= \/ 2n (2n + 1) holds in the case n > 2.

(2) For both cases n=1 and n 22, we already know that the spheres $?**! do not
admit flat affine structures. But, the above statement (2) in Theorem 5 implies the
essential difference concerning the existence of flat homogeneous affine structures.
Namely, in the case n = 1, the above theorem implies that the 3-dimensional sphere S°
is almost affinely flat in the sense of [1]. (This fact is already proved in [1].) But, it is
not the case for S$***' (n 2 2) at least in the homogeneous category. In the general
situation where we do not assume the invariance of connections, we do not know whether
S™ (m=2 and m =4) admit such structures or not.

(3) As we stated at the end of § 1, in the special case n = 2, the 5-dimensional sphere
S° considered as the homogeneous space SU(3)/SU(2) admits 2-dimensional additional
freedom of torsion free invariant affine connections. Hence, the value inf || R || in this
situation may be smaller than that of U(3)/U(2). But, we can show that inf | R is
also strictly positive in this case, and we cannot decide whether S° is almost affinely flat
or not.

In the case n =1, if we restrict ourselves to the situation where invariant connections
are determined by some invariant Riemannian metrics (i.e., in the case of Riemannian
connections), then the infimum of || R || is strictly positive, in contrast to the above
“affine” case. (We assume that the norm || || is determined by the fixed standard metric
throughout.) In fact, for general »n, we have
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PropOSITION 6. The set of invariant Riemannian connections on U (n+ 1)/U (n) (n 2
1) determined by some invariant metrics is 1-dimensional, and it is expressed as

fX)Y =X IY)W,

FXOW = kX,
FW)X = (k-1 IX,
fW)w=0,

where k is a positive parameter. The norm of the curvature of this connection takes a
minimum value ~/ 2n (2n + 1) at k=1, which corresponds to the canonical Riemannian
connection.

Proor. We use the result in [9; p.201]. First, by an easy calculation, it follows that
the invariant metric B: m X m — R on U(n + 1)/U(n) is expressed as

B(X,Y) =a(X,Y),
B(X,W) =0,
B(W,W)=b,

where X, Ye C” and a, b are some positive constants (cf. [14; p.352]). Next, using
the formulas

X, Y]m =2X, IY) W,
X, W]nm =IX, X, Y e C,

it follows that the symmetric bi-linear map U : m X m — m satisfying the condition
2BAUX,Y),Z)=BX,[Z,Y]Im)+B(Z, X]m,Y)

forany X, Y,Z € m is given by

UX,Y)=0,
UX,W)=k-112)IX,
Uw,w)=0,

where X, Ye C" and k=b/a > 0. Then, by the formula stated in [9; p.201], its
Riemannian connection is given by

fX)Y=12-[X,YIm+UX,Y), X,Y € m,

which shows the desired result. This connection corresponds to the case a1 =az2=as=
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0,a3=k—-1 in Theorem 1, and hence, we have

ri=1l, ra=k-1, rs=k, ri=k?,
ro=rz=re=rs=0.

In particular, by Theorem 5 (1), we have
IRN2=4n(n-1){3 (k=12 +1} +2n {k*+ k2 + (3k-4)},

and we can easily show that this function takes a minimum value 2n (2n + 1) at k=1. In
this case, we have a = b, which corresponds to the standard Riemannian metric on the
sphere up to a positive constant. q.e.d.

The above proposition and Theorem 5 (2) in the case n = 1 indicate one of the
essential difference between “affine” category and “Riemannian” category in
characterizing the set of curvature tensors. (In contrast to the affine case, the curvatures
in the above situation lie in the 3-dimensional linear subspace of the space of curvature-
like tensors, defined by ro=ra=re=rs=0and ri+rs=rs forany n>1.)
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