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 Land-use scenarios for Africa test tradeoffs between land sharing and land sparing 

 The Biodiversity Intactness Index quantifies effects of agriculture on biodiversity 

 Land sparing scenarios show higher values for the Biodiversity Intactness Index 

 Complementary land systems studies at the local and regional level are required 
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Can Agricultural Intensification Help to Conserve Biodiversity? A Scenario Study 1 

for the African Continent 2 
 3 

Abstract: Globally, the production of food, feed, bioenergy and biomaterials has 4 

increased considerably during the past decades. This was achieved by the expansion of 5 

agricultural land and the intensification of agricultural management. Due to the 6 

conversion of natural ecosystems and the increasing use of pesticides and fertilizers, 7 

these processes are recognized as important causes of biodiversity loss. This study 8 

focuses on the African continent and analyses the potentials to achieve a stable food 9 

provision for a growing population, and at the same time reduce further losses of 10 

biodiversity. These targets are important elements of the UN Agenda 2030. Using the 11 

spatially explicit land-use model LandSHIFT, we assessed the effectiveness of different 12 

land-sparing and land-sharing strategies to achieve these targets until the year 2030. The 13 

simulation results indicate that under the assumptions tested, the land sparing approach 14 

yields the most desirable results both, on the continental and the regional level. However, 15 

the land sharing/sparing framework in general and the research presented here are only 16 

analyzing the effect of two factors of many (food production and biodiversity 17 

conservation). Hence, they should not be understood to provide specific management 18 

recommendations. Further studies, from the regional to the local level, are required that 19 

apply a systems approach to understand and explain the multiple dimensions of 20 

sustainable food production on the African continent. 21 

 22 

Keywords: land sharing; land sparing; Biodiversity Intactness Index; land systems; 23 

scenario analysis; Africa; 24 

 25 

1. Introduction 26 
 27 

Over the past decades, the expansion of agricultural land and the intensification of 28 

agricultural management have been indispensable for providing food, feed, bioenergy, 29 

and biomaterials for a growing world population (Foley et al., 2005; Rudel et al., 2009). 30 

Despite these efforts agricultural production in some sub-Saharan regions is not 31 

sufficiently stable to fulfil food demands adequately, often resulting in a high risk of 32 

malnutrition (e.g. Akombi et al. 2017; Bain et al 2013). At the same time, the resulting 33 

conversion of natural ecosystems and increased application of pesticides and fertilizers 34 

were identified as important causes for the loss of biodiversity (Balmford et al., 2012; 35 

Newbold et al., 2015).  36 

 37 

In the light of the projected population growth in many African countries, together with 38 

a shift to richer diets and more material-intensive individual lifestyles, the improvement 39 

of access to and availability of food in these regions will be a central issue for scientists, 40 

practitioners and politicians in the coming decades (e.g., Godfray et al., 2010). In this 41 

sense, Laurance et al. (2014) expect that continuing expansion and intensification of 42 

agriculture in sub-Saharan Africa will even aggravate the current conflicts between food 43 

production and conservation of biodiversity.  44 

 45 

The effectiveness of further intensification as a strategy to slow down the expansion of 46 

agricultural land and loss of natural vegetation while fulfilling food production 47 

requirements is heavily debated in the scientific literature (e.g., Laurance et al., 2014; 48 

Rockström et al., 2017; Tittonell and Giller, 2013). On the extremes, we find two 49 

opposing positions: (1) the land sparing approach advocates the implementation of highly 50 
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intensified agricultural systems and a strict separation between managed and unmanaged 51 

land (Green et al., 2005); (2) the land sharing strategy favors ecosystem-friendly 52 

management practices with potentially lower crop yields but with less negative impacts 53 

on biodiversity, e.g., by limiting the application of fertilizer and pesticides (Phalan et al., 54 

2011; Tilman et al., 2012). However, recent studies highlight the need for an integrated 55 

approach that supports sustainable intensification of agriculture to achieve both goals - a 56 

halt of cropland expansion and the conservation of a biodiversity in natural and 57 

agricultural systems (Fischer et al., 2014; Kassie et al., 2015; Tscharntke et al., 2012). 58 

Finding appropriate solutions to this problem is a key challenge to fulfil the goals defined 59 

by the “Sustainable Development Agenda” (Agenda 2030) of the United Nations (United 60 

Nations 2015). The UN recognizes the negative impacts of food insecurity and 61 

biodiversity loss on human development issues by including them as priorities in the 62 

“Sustainable Development Goals” (SDGs) for the period from 2015 until 2030. While 63 

SDG 2 “End of Hunger” addresses food security, SDG 15 “Life on Land” demands the 64 

preservation of biodiversity. 65 

 66 

Land-change models in combination with the scenario technique can help to gain a better 67 

scientific understanding of these trade-offs by exploring trajectories of future agricultural 68 

development and their impacts on biodiversity. For example, Biggs et al. (2008) analyse 69 

land-use scenarios and their effects on biodiversity in Southern Africa, while van 70 

Soesbergen et al. (2017) focus on future agricultural development and its impacts on 71 

biodiversity in Uganda, Rwanda, and Burundi. Delzeit et al. (2017) and Newbold et al. 72 

(2016) present global studies analysing the trade-offs between cropland expansion and 73 

biodiversity. However, most of the modeling studies that explicitly compare  land sparing 74 

and land sharing strategies either use highly idealized settings (e.g., Green et al., 2005) 75 

or are conducted on the landscape level (e.g., Deguines et al., 2014; Egan & Mortensen, 76 

2012).  77 

 78 

In the study presented in this paper, we address this research gap by applying an 79 

empirically driven, spatiotemporal simulation model for a continental scale analysis for 80 

Africa. Our objective is to assess the potential to reach both goals that are defined by SDG 81 

2 and SDG 15 until 2030: An adequate food production to end hunger and the 82 

conservation of biodiversity. To achieve this, we conducted scenario-based simulation 83 

experiments, using the land-use model LandSHIFT (Alcamo et al., 2011; Koch, 2010; 84 

Rüdiger Schaldach et al., 2011). In the scenarios, the model used different crop 85 

production intensities to calculate the resulting expansion of agricultural land and loss of 86 

natural vegetation, respectively. Based in these model outcomes, we applied the 87 

Biodiversity Intactness Index (BII) (Scholes and Biggs, 2005) to quantify the effects of 88 

the calculated land-use changes on biodiversity losses.  89 

 90 

 91 

2. Materials and Methods 92 

2.1. Study Design 93 
To understand the potential for reaching the two goals biodiversity conservation and 94 

reduced expansion of farmland, we use the spatiotemporal simulation model LandSHIFT 95 

(Alcamo et al., 2011; Schaldach et al., 2011; Schaldach and Koch, 2009) in the context 96 

of a scenario analysis for the African continent. The base year of our analysis is the year 97 

2000. We run the simulation model for ten years, until 2010, and use the simulation output 98 

for this year to validate the model. We then run the validated model until 2030 to explore 99 

three scenarios with varying intensity levels for agricultural activities. We combine our 100 
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spatial simulation results on land use and land cover with information from the GLOBIO-101 

3 framework (Alkemade et al., 2009) and apply the Biodiversity Intactness Index (Scholes 102 

and Biggs, 2005) to explore the potential of reaching a halt of farmland expansion while 103 

simultaneously reducing the corresponding detrimental effects on biodiversity in Africa. 104 

Figure 1 shows how the different analysis components described in the following 105 

sections form the workflow of our study. 106 

 107 

 108 
Figure 1. Workflow of the study describing the steps of the analysis.  109 

 110 

2.2. Land-Use Modelling 111 
We used the spatially explicit land-use model LandSHIFT to simulate land use/cover 112 

change at a spatial resolution of 5 arc minutes (approx. 9 km x 9 km at the Equator). 113 

LandSHIFT has been successfully applied to Africa in previous studies (e.g., Alcamo et 114 

al., 2011; Heubes et al., 2013; van Soesbergen et al., 2017). The model uses a cellular 115 

automata approach; it works on a regular raster and allocates land use to grid cells based 116 

on a weighted multi-criteria analysis, calculating potential suitability for different land-117 

use activities (urban development, crop production, and livestock grazing). Based on 118 

population numbers, a population density is determined for each cell. If the population 119 

density exceeds a pre-defined threshold value, the dominant land use type on the 120 

respective cell is converted to urban. The same approach is applied for livestock grazing; 121 

forage consumption drives cell-level stocking density (SD) for grazing animals. A cell’s 122 

land use type is converted to rangeland if the SD exceeds the pre-defined threshold. The 123 

output of LandSHIFT simulations consists of land use/cover maps, population density 124 

maps, and SD maps. Furthermore, a set of area and productivity statistics is included in 125 

the model output. 126 

 127 

2.3. Scenario Description 128 
We use the UNEP GEO-4 scenario Sustainability First (Rothman et al., 2007) as a basis 129 

for our simulation experiment. Sustainability First’s storyline has a strong focus on 130 

significant improvements of human nutrition and food security and on preserving 131 

valuable ecosystems, which are the core components of the SDGs forming the basis of 132 

this study (SDGs 2 and 15). According to van Vuuren and Carter (2014), this scenario 133 

can be classified as a “global sustainable development” archetype and shares comparable 134 
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assumptions with the Shared Socioeconomic Pathway 1: Sustainability – Taking the 135 

Green Road (e.g., O’Neill et al., 2017). Despite the availability of more recent scenarios, 136 

we chose a UNEP GEO-4 scenario because these scenatios are well documented and 137 

present clear ideas of how current social, economic, and environmental trends might 138 

develop in the future. Moreover, they are to the knowledge of the authors the only 139 

scenarios for the whole African continent that were developed in a participatory process 140 

together with regional stakeholders (Rothman et al., 2007).  141 

 142 

To evaluate the effect of agricultural intensification on biodiversity, we combined the 143 

underlying assumptions for Sustainability First with three intensity levels for agricultural 144 

activities. These intensity levels are variations of the assumptions on increase in crop 145 

productivity specified for the Sustainability First scenario. We refer to the original 146 

assumption on productivity increase, which we consider optimistic, as PROD_100. The 147 

second level makes moderate assumptions on crop productivity increase by reducing the 148 

original increase by 50% (referred to as PROD_050). For the third level, PROD_000, 149 

we define the productivity to remain at the year 2010 levels (i.e., no intensification of 150 

agricultural production). We use PROD_100, the scenario assumptions with the highest 151 

productivity increase as way to represent a land sparing approach, whereas we use 152 

PROD_000 as proxy for a land sharing approach.  153 

 154 

2.4. Input Data 155 
2.4.1. Model Initialization 156 

The first step in our analysis was the construction of a gridded land-use map for the year 157 

2000 with a spatial resolution of 5 arc minutes. We generated the map by merging census 158 

data on cropland and grazing area (FAO 2014) for each country with MODIS land-cover 159 

data (e.g., the location of arable land) (Friedl et al., 2002). This map formed the basis for 160 

estimating the parameter values for the suitability analysis of the three land-use activities 161 

modeled by LandSHIFT. We provide a detailed description of the model initialization 162 

process in Appendix A. 163 

 164 

2.4.2. Scenario Assumptions 165 

We derived input for LandSHIFT from Sustainability First scenario calculations. Model 166 

input data on the country level include population numbers, livestock numbers, crop 167 

production, and change in crop productivity due to agricultural intensification. Population 168 

projections for the GEO-4 scenarios were computed by the IFs model (Hughes, 1999). 169 

Under Sustainability First, Africa's population increases from approximately 0.8 billion 170 

in 2000 to about 1.48 billion in 2030. Future agricultural production and trade information 171 

was computed by the IMPACT model (Rosegrant et al., 2008). Production of the major 172 

crops increases from about 77 million metric tons to 172 million metric tons while crop 173 

productivity due to technological change and improved management practices are 174 

assumed to increase by 74% from an average grain yield of 1.34 t/ha to 2.33 t/ha. The 175 

production of grazing livestock rises from about 66 million livestock units in 2000 to 120 176 

million livestock by 2030. The calorie availability per capita and day is assumed to 177 

increase from below 2,000 calories/day up to about 3,000 calories/day. Due to the 178 

scenario emphasis on biodiversity conservation, we excluded protected areas from being 179 

converted to settlement, cropland or rangeland. 180 

 181 

2.4.3. Other Input Data 182 

We initialized LandSHIFT with a historical land-use map (hereafter referred to as base 183 

map) representing the year 2000 (see section 2.4.1). Crop yields were provided through 184 



5 

 

LPJmL model simulations (Bondeau et al., 2007) for current climate conditions as 185 

described in Schaldach et al. (2011). Other input datasets in the LandSHIFT model 186 

include terrain slope (GAEZ; IIASA and FAO, 2000), population density (GRUMPv1; 187 

CIESIN, 2011), road network density (gROADSv1; CIESIN, 2013), river network 188 

density based on Lehner et al. (2006), the risk of tsetse fly occurrence (Wint and Rogers, 189 

2000) and the location of nature conservation areas as defined in the world database on 190 

protected areas (IUCN and UNEP-WCMC, 2014). We used data on the spatial 191 

distribution of species diversity from Jenkins et al. (2013), who compiled a global gridded 192 

dataset on five arc minutes on vertebrate diversity differentiating between birds, 193 

mammals, and amphibians. 194 

 195 

2.5. Model Validation 196 
For model validation, we use a 10-year simulation period. We tested the plausibility of 197 

the suitability analysis and compared the calculated cropland extent with statistical 198 

country-level data for the year 2010. Hence, we validate our model on a spatial level 199 

different from the level on which the simulated process operates (i.e., grid cell level vs. 200 

country level). We provide a detailed description of the model validation process and 201 

results in Appendix C. 202 

 203 

2.6. Biodiversity Intactness Index 204 
We use the Biodiversity Intactness Index (BII) for quantifying the potential trade-offs 205 

between agricultural intensification (land sparing) and expansion of croplands and 206 

grazing lands (land sharing). The BII was developed initially for Southern Africa and 207 

describes species diversity at a particular point in space and time compared to the pre-208 

colonial period before the year 1700 (Biggs et al., 2008; Scholes and Biggs, 2005). 209 

 210 

We calculate the BII on the cell level. Each cell represents an ecosystem with the cell’s 211 

size being its areal extent, and its species richness being based on the sum of birds, 212 

mammals and amphibians as given by Jenkins et al. (2013). The calculation of a cell-level 213 

BII allows for the calculation of an average value of BII on different spatial levels of 214 

interested (landscape, watershed, country, or ecoregion). Biggs et al. (2008) define the 215 

Biodiversity Intactness Index as: 216 

 217 

    (1) 218 

 219 

Equation 1 defines BII as the average impact across taxa i, ecosystems j, and land use 220 

types k. The impact is defined as the population abundance of a given species or group of 221 

species relative to the reference state Iijk, weighted by the areal extent of each land use Ajk 222 

and the intrinsic species richness of the ecosystems affected Rij. A BII close to 100% 223 

indicates that species abundance is on the pre-colonial level, while values near 0% 224 

indicate that species become extinct. 225 

 226 

For estimating the impact I of a particular land-use, we combine LandSHIFT output with 227 

information from the GLOBIO-3 framework (Alkemade et al., 2009). The GLOBIO-3 228 

database provides data, which specifies the respective reduction of mean species 229 

abundance (MSA) for different land use categories and use intensities (Table 1). The 230 

values for reduction of MSA are then mapped to LandSHIFT simulation output. For 231 

example, build-up area reduces the original MSA by 95%. Cultivated land is further 232 

 

 


i j k jkij

i j k ijkjkij

AR

IAR
BII
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subdivided into low-intensity agriculture with a reduction factor of 70% and high-233 

intensity agriculture with a reduction factor of 90%. The proportions of low intensity and 234 

high intensity agriculture are based on Dixon et al. (2001). For Northern Africa the share 235 

of intensive agriculture is 64% while in Sub-Saharan Africa it accounts for only 24% 236 

(Table 2). We assign the class “extensive grazing” to cells where livestock density is 237 

lower than the defined threshold value, and which still have the land-cover type of the 238 

original ecosystem (e.g., Savannah). The threshold value was calculated by dividing the 239 

livestock (cattle) number by the rangeland area (FAO, permanent meadows and pasture) 240 

for each African country separately. The resulting country specific mean grazing densities 241 

were averaged over all countries within each modeled African region (North Africa, 242 

Western Africa, Central Africa, Eastern Africa and Southern Africa) with the result of a 243 

threshold value defining the intensity of the grazing management.  Accordingly, the class 244 

“man-made pastures” includes cells with high stocking densities and the land-use type 245 

rangeland.  246 

 247 

Table 1. Mean species abundance (MSA) values under different land-use types. The 248 

MSA values are based on (Alkemade et al., 2009) and (Biggs et al., 2008). 249 

Land use type MSA 

Cropland  

Low input 

Intensive 

 

0.30 

0.10 

Grazing land 

Extensive grazing 

Manmade pastures 

 

0.70 

0.10 

Forest 

Primary forest 

Lightly used forest 

Secondary forest 

Forest plantations 

 

1.00 

0.70 

0.50 

0.20 

Natural vegetation 

Bare land 

Savannah and grasslands 

(moderate use) 

 

1.00 

0.94 

Urban 0.05 

 250 

Table 2. Comparison of percentage of low and high intensity cropland in 2010 251 

(Alkemade et al., 2009) and in 2030 as calculated by LandSHIFT for the three different 252 

productivity scenarios (PROD_000, PROD_050, and PROD_100). 253 

 2010 PROD_000 PROD_050 PROD_100 

Northern Africa 

Low input 

High input 

 

36% 

64% 

 

36% 

64% 

 

11% 

89% 

 

2% 

98% 

Western Africa 
Low input 

High input 

 

76% 

24% 

 

76% 

24% 

 

59% 

41% 

 

46% 

54% 
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Eastern Africa 
Low input 

High input 

 

76% 

24% 

 

76% 

24% 

 

54% 

46% 

 

45% 

55% 

Central Africa 
Low input 

High input 

 

76% 

24% 

 

76% 

24% 

 

55% 

45% 

 

42% 

58% 

Southern Africa 

Low input 

High input 

 

76% 

24% 

 

76% 

24% 

 

53% 

47% 

 

38% 

62% 

 254 

2.7. Trade-Off Analysis 255 
We used a geographic information system to analyse the effect of land-use change on 256 

biodiversity. For this purpose, we overlaid the four simulated raster maps–one for the 257 

year 2010 and three for the scenario simulations for the year 2030–with the gridded map 258 

of vertebrate diversity (Jenkins et al., 2013). We then combined this information with grid 259 

cell information on land-use type, population density, and livestock density, and 260 

calculated the BII for the five GEO-regions Northern Africa, Southern Africa, Eastern 261 

Africa, Western Africa, and Central Africa (see Appendix A for a list of the countries 262 

included in the different regions). 263 

 264 

To calculate the BII, the fraction of intensive agriculture is required (see section 2.6). In 265 

the PROD_000 scenario (no agricultural intensification) the fractions of intensive 266 

agriculture is kept constant on the year 2000 level. For the intensification scenarios 267 

PROD_050 and PROD_100, we define the change in fractions of intensive agricultural 268 

based on the reduced extent of cropland as compared to the PROD_000 scenario. For 269 

example, in country A under PROD_000, cropland increases from 100 km² to 200 km² 270 

and under PROD_100 only to 150 km² which is 25% less area. Hence, the fraction of 271 

intensive agriculture under PROD_100 increases by 25% compared to PROD_000. Table 272 

2 shows the fraction of low intensity and high intensity agriculture for the base year and 273 

the different scenarios. Starting point is the calculated 2010 map that was also used for 274 

model validation (see section 2.5). 275 

 276 

The results of our scenario analysis are displayed on a GEO region level (Table 3). Based 277 

on the results from the scenario analysis, we further evaluate the sensitivity of the BII 278 

calculations to cropland intensification. For this purpose, we expanded the cases tested 279 

by adding assumptions on the agricultural intensity. For each scenario, we test the 280 

outcome under the assumption of all cropland being high intensity as well as all cropland 281 

being low intensity agriculture. This is realized by using the corresponding MSA values 282 

listed in Table 1.  283 

 284 

 285 

3. Results 286 

3.1. Land Use and Cover Change 287 
Figure 2 displays the spatial pattern of changes in cropland and pasture as calculated by 288 

LandSHIFT. In year 2010 (Figure 2 panel (A)), the total cropland area is 1.6 Mkm² 289 

amounting to about 5% of the total land area. Pasture area is 1.76 Mkm² while more than 290 

6.7 Mkm² is used as extensive grazing land. The spatial pattern of land-use change until 291 

2030 for the PROD_000 and the PROD_100 scenarios are displayed in Figure 2 panels 292 

(B) and (C), respectively. The simulations show that new land use areas are mainly 293 

located in the northern part of the sub-Saharan regions.  294 
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 295 

 296 

Figure 2. Spatial pattern of cropland and grazing land as calculated by LandSHIFT for 297 

(A) the year 2010, (B) for the year 2030 with yield increases from the Sustainability 298 

First scenario (PROD_100), and (C) for the year 2030 without yield increases 299 

(PROD_000). 300 

 301 

Table 3 summarizes the areas for the different land-use categories on the continental level. 302 

For cropland areas, all scenarios display in area increase as compared to the year 2010. 303 

The area increase ranges up to 0.81 Mkm2 for the PROD_000 scenario – the scenario with 304 

production intensity on the base year level. The scenarios with assumptions on 305 

productivity increase show considerable lower expansion of cropland area, with 0.35 306 

Mkm2 for the PROD_050 scenario and 0.12 Mkm2 for the PROD_100 scenario.  307 

 308 

Table 3. Absolute land-use areas in million square kilometres [Mkm2] on the 309 

continental level for the three different scenarios of agricultural intensity. 310 

Continental Africa 2010 PROD_000 PROD_050 PROD_100 

Light grazing 6.78 6.15 6.20 6.53 

Pasture 1.76 2.94 2.57 2.17 

Cropland 1.60 2.41 1.95 1.72 

Forest 2.25 2.15 2.19 2.21 

Natural vegetation 16.28 14.99 15.73 15.98 

Urban area 0.05 0.07 0.07 0.07 
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 311 

 312 

Figure 3. Changes in land-use categories on the regional level (GEO-4 regions as 313 

described in Appendix A, Table S1) for the different productivity scenarios. Values are 314 

provided in million square kilometres [Mkm2]. 315 

 316 

On the continental level, the figures for pasture area show the same general trend between 317 

scenarios as the cropland areas (Table 3), with the lowest area increase for PROD_100 318 

(0.41 Mkm2) and the highest increase for PROD_000 (1.18 Mkm2). On the regional level, 319 

we observe a similar trend (Figure 3). Additionally, the simulation results display a shift 320 

from extensively used grazing area to more intensively managed pasture in all scenarios 321 

with the former decreasing. In 2010, the fraction of pasture to total grazing land is 21%. 322 

In the PROD_000 scenario this fraction increases to 32%, in PROD_050 to 29% and in 323 

PROD_100 to 25%. Again, these trends can also be observed on the regional level (Figure 324 

3). Here, Northern Africa is an exception; under the PROD_000 the results also indicate 325 

an increase in extensively used grazing area. 326 

 327 

3.2. Effects of Land Use/Cover Change on Biodiversity 328 
Figure 4 displays the relation between the Biodiversity Intactness Index (BII) and 329 

absolute area with a change in land use/cover on the regional level for the year 2010 (0 330 

km2 converted) and the three different productivity scenarios. For 2010, the BII ranges 331 

between 62% for Central Africa and 89% for Northern Africa. For all regions, the 332 

scenario simulations show a larger area converted from natural/forest to other land 333 

uses/covers with lower productivity level (Figure 3). As a result, we see a decrease in the 334 

BII from its value in 2010 over the PROD_100 and then the PROD_050 scenario, 335 

reaching the lowest values for the PROD_000 scenario (Figure 4). Central Africa shows 336 

the lowest decrease of all regions, with a BII of 89% in 2010 and a BII of 86% in 2030 337 

for the PROD_000 scenario. The strongest BII decrease is projected for Eastern Africa, 338 
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with a decline form 69% in 2010 to 57% in 2030 for the PROD_000 scenario. The BII 339 

values for Northern Africa stand out due to the large difference in converted area between 340 

the PROD_050 scenario and the PROD_000 scenario, resulting in a large reduction of 341 

BII values. 342 

 343 
Figure 4. Area converted from natural land cover (e.g., grassland, shrubland, barren 344 

land and forest) to other land uses/covers and Biodiversity Intactness Index (BII) on the 345 

regional level for the year 2010 and for the year 2030 under the three productivity 346 

scenarios. As illustrated for Eastern Africa, in all regions the lowest area conversion is 347 

under PROD_100, followed by PROD_050 and PROD_000.  348 

 349 

3.3. Effects of Land-Use Intensity on Biodiversity 350 
Figure 5 visualizes the simulation results for the trade-off analysis assuming different 351 

management practices for cropland intensities combined with the different productivity 352 

scenarios (see section 2.7). For the individual regions, we see the same trend as described 353 

in section 3.2, with the highest BII values for the PROD_100 scenario and the lowest 354 

values for the PROD_000 scenario. Within each scenario, the value of low-input 355 

agriculture marks the upper end of the calculated BII range and the value of intensive 356 

agriculture marks the lower end of the calculated BII range. In general, the results indicate 357 

no overlap between the ranges for the different productivity scenarios. However, there is 358 

one exception for Western Africa. Here, the lowest detrimental impact from PROD_050 359 

(60%) is slightly higher than the highest detrimental impact from PROD_100 (59%). 360 

Compared to the PROD_000 scenario, the other two scenarios display smaller variation 361 

in the BII across all regions.  362 
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 363 
Figure 5. Results for testing the response of Biodiversity Intactness Index (BII) value to 364 

varying levels of cropland intensity connected to Mean Species Abundance (MSA) 365 

values. The upper end of the BII range reflects an MSA value of low-input agriculture 366 

(0.3), the lower end of the BII range reflects an MSA value of intensive agriculture 367 

(0.1). The bars (and values listed at the bottom of the bars) display the level of impact 368 

by calculated intensification as described in section 2.7.  369 

 370 

 371 

4. Discussion  372 
In this study, we applied the land sharing/land sparing framework as introduced by Green 373 

et al. (2005) and conducted scenario simulations with the LandSHIFTmodel with a five 374 

arc min resolution for the African continent. We used the GEO-4 Sustainability First 375 

scenario (Rothman et al., 2007) to drive our simulations because it is a good match for 376 

our emphasis on two of the SDG, namely Zero Hunger and Life on Land (United Nations, 377 

2015). We furthermore combined the scenario with different assumptions on yield 378 

increases due to technological change to represent land sharing and land sparing. The 379 

simulation results, including simulations on demands for urban area, cropland, and 380 

grazing land, allowed us to quantify area required for food production. We then combined 381 

the simulation results with indicators from GLOBIO (Alkemade et al., 2009) and data on 382 

species abundance (Jenkins et al., 2013) to calculate the Biodiversity Intactness Index 383 

(Scholes and Biggs, 2005), which we used as a way to quantify the trade-offs between 384 

biodiversity conservation and production intensity, and hence land sharing/sparing. While 385 

there have been several studies exploring the impacts of land-use change on biodiversity 386 

in different African regions (e.g., Biggs et al., 2008; van Soesbergen et al., 2017) and on 387 

the global level (e.g., Jantz et al., 2015; Newbold et al., 2016), this study is the first one 388 

to analyse potential trade-offs and conflicts between between the two extremes of the land 389 

sharing/sparing framework on the continental level for Africa. 390 

 391 
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4.1. Effects of Agricultural Intensity 392 
The major outcome of our analysis is, that under the scenario assumptions tested, and 393 

given the use of BII as indicator for quantifying trade-offs between land sharing and 394 

sparing, the land sparing approach (i.e., highly intensive agricultural activities) provided 395 

the best results for the BII. This applies for both, the continental and the regional level. 396 

Our results indicate that the lower land demand through intensification leads to lower 397 

biodiversity losses (= higher BII values) even if local impacts on species abundance are 398 

considerably stronger than in the low- and non-intensification case. Even when we 399 

assume 100% of biodiversity loss under full intensification, the impact level would still 400 

be lower than the hypothetical case of no intensification without any negative effects on 401 

biodiversity intactness.   402 

These results underline the importance of increasing crop productivity and more effective 403 

grazing management as a prerequisite for slowing down the loss of natural ecosystems on 404 

the continental level. They confirm the findings from other scenario analyses (e.g., Kok 405 

et al., 2018; Tilman et al., 2017) and empirical studies that show the advantages of land 406 

sparing for biodiversity conservation (Hulme et al., 2013; Phalan et al., 2011). In the light 407 

of the existing high discrepancy between actual and achievable yields with an improved 408 

agricultural management (Tittonell and Giller, 2013), the scenario assumptions regarding 409 

the maximum crop yield increases until 2030 seem plausible, at least from the 410 

technological point of view (Mauser et al., 2015). However, as Ray et al. (2012) point 411 

out, it is uncertain whether these potentials can be realized. Additionally, other authors 412 

stress potentially negative climate impacts on crop yields (Challinor et al., 2007; 413 

Schlenker and Lobell, 2010) which will demand specific adaptation measures in 414 

agriculture. These uncertainties are reflected in the two sub-scenarios with lower yield 415 

increases.   416 

 417 

4.2. Reflecting on the Land Sharing/Sparing Framework 418 
Fischer et al. (2014) discuss key priorities for moving forward with the land sharing/land 419 

sparing framework. Specifically, they recommend to structure the discussion around land 420 

scarcity over food production and to acknowledge the limitations of trade-off analyses 421 

when using the land sharing/sparing framework. According to Fischer et al. (2014), 422 

discussing land scarcity instead of food production will help to avoid criticism for 423 

disregard of the role of food security and food sovereignty. Discussing land scarcity 424 

acknowledges that not all agricultural production is for food and that the economic 425 

demand for agricultural products is higher than the requirements for the actual need for 426 

food (Fischer et al., 2014). The LandSHIFT model (Schaldach et al., 2011; Schaldach 427 

and Koch, 2009) is well suited to analyze land scarcity at the larger scale. Our study 428 

analyses availability of area required to fulfil the demand for different agricultural 429 

activities. We found that at the continental and regional scale, there was no scarcity of 430 

land suitable to produce the required demand for agricultural commodities. However, the 431 

availability of land for crop production does not guarantee the on-the-ground 432 

implementation of agriculture in a way that actually fulfils the demand. For this point, 433 

we consider the discourse around food security and food sovereignty as complementary. 434 

While our simulations showed that it is realistic to assume—at least under the 435 

assumptions specified for the tested scenarios—that sufficient land resources are 436 

available to meet the demand for agricultural products, studies on the regional and local 437 

level revolving around the topics of food security and food sovereignty are required to 438 

implement fair and sustainable food production in Africa and to achieve the SDGs of 439 
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Zero Hunger and Life on Land (e.g., Garibaldi et al., 2017; Nijbroek and Andelman, 440 

2016; Waha et al., 2018). 441 

 442 

Fischer et al. (2014) point out that, while there is an intellectual value to trade-off analyses 443 

for land sharing/sparing, these analyses have limited value to inform real-world decision 444 

making. More specifically, the authors emphasize that land management decisions are 445 

typically not made based on the two factors production and diversity, but are more likely 446 

a “wicked” problem. These are problems where no single best solution exists (Game et 447 

al., 2014). There is, however, a value to trade-off analyses. They can help to identify 448 

situations where an increase in one factor leads to no or minimal detrimental effects on 449 

the other factor (Fischer et al., 2014). Applying this advantage to our simulation results, 450 

we can see that reflected in the regional differences (Figure 4, 5). When analyzing the 451 

difference between the production intensities, we can see that for Central and Southern 452 

Africa the effect of different agricultural intensities on biodiversity conservation is less 453 

pronounced as compared to Northern, Eastern, and especially Western Africa. This means 454 

that for Central and Southern Africa there exist allocations of crop production where 455 

highly intensive agricultural activities have a relatively small negative effect on 456 

biodiversity conservation. However, a trade-off analysis like ours provides no guidance 457 

on which allocation or intensity level is the “socially preferable” one (Egli et al., 2018; 458 

Fischer et al., 2014, p.151).  459 

 460 

4.3. Study Limitations and Next Steps 461 
While we were able to identify important findings on land sharing/sparing trade-offs for 462 

the African continent, there are some limitations to our study approach. The first major 463 

limitation is that the effect of future climate on crop yields and biomass productivity was 464 

not considered in this study. Since it is likely that a change in climatic conditions will 465 

have a detrimental effect on crop yields (e.g., Challinor et al., 2007), our simulation 466 

results may underestimating the amount of cropland and grazing area required to fulfill 467 

future needs for food and feedstock production. At the same time our modelling approach 468 

only considers the increase of stocking densities on grazing land but neglects other 469 

mechanisms of intensification such as a change in the feed basket towards a larger share 470 

of crops and residues (Herrero et al., 2013) which might significantly reduce the demand 471 

for pasture and rangeland (Weindl et al., 2015).  472 

 473 

Another limitation of our analysis is the use of species diversity and richness data for 474 

mammals, amphibians and birds (Jenkins et al. 2013). Other taxa with important 475 

ecological functions such as plants, funghi and arthropods were not considered. Also, 476 

while many studies on land sharing/sparing use species richness, it may not be the most 477 

suitable descriptor of biodiversity (Phalan, 2018). This is because species richness does 478 

not indicate changes in species composition and population size (Hillebrand et al., 2018; 479 

Matthews et al., 2014). One way to avoid this issue would be to follow the 480 

recommendations of Hill et al. (2016) and Mace et al. (2014) who suggest to use multiple 481 

indicators to capture different dimensions of biodiversity loss.  482 

 483 

Our next steps will focus on improving the current limitations of our study. The use of 484 

information on other taxa such as plants, fungi and arthropods was hindered by the 485 

availability of data with a continental coverage. The same applies to the use of multiple 486 

indicators for biodiversity as suggested by Hill et al. (2016) and Mace et al. (2014). This 487 

shortcoming can be addressed as soon as suitable data for the African continent becomes 488 

available. Hence, we will focus our efforts on a more detailed assessment of climate 489 
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change effects on food production. Specifically, we suggest the use of climate scenario 490 

simulations for the different RCPs (Moss et al., 2010) to prepare simulations of potential 491 

future crop productivity under different climate conditions. This would allow the 492 

quantification of the possible effect of changes in climate on crop yields, and hence more 493 

detailed estimates of area demand for food production.  494 

 495 

 496 

5. Conclusions 497 
As with every scenario study, it is important to emphasize that our results are not forecasts 498 

but projections of future developments valid only for the assumptions made for the tested 499 

scenarios. The value of our study lies in the improved understanding of the availability 500 

of land resources for future food production, and in quantifying how different production 501 

intensities affect biodiversity (specifically species abundance). Our method of combining 502 

land change simulations with data from the GLOBIO-3 database on mean species 503 

abundance to create a density-yield curve and using the Biodiversity Intactness Index is 504 

a new way to quantify land sharing and land sparing trade-offs for large-scale simulation 505 

studies. Our findings highlight the importance of agricultural intensification for achieving 506 

the SDGs Zero Hunger and Life on Land. However, agricultural intensity and biodiversity 507 

conservation are only two of many factors to consider when making decisions about food 508 

production. When taking into account social and political factors, the land sparing 509 

approach might not be the favourable option. While the potential for food production is 510 

given, many efforts on the national, regional, and local levels will be required to achieve 511 

the SDGs and the best possible outcomes for human well-being. 512 
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Supplementary material   764 

Appendix A - Model initialization and spatial units  765 
The first step of the modelling exercise was the construction of a gridded land-use map 766 

(base-map) for the year 2000. Statistical information on crop cultivation on country level 767 

was merged with MODIS land-cover data (e.g. location of arable land). Grazing land was 768 

distributed by merging FAO data (permanent meadows and pastures) with country-level 769 

livestock numbers according to the net primary productivity on each cell as calculated by 770 

LPJmL (Bondeau et al., 2007). The result is a land-use map with grid-level information 771 

on the spatial distribution of different crop types as well as area used for grazing. Based 772 

on this base-map the parameter values for the suitability analysis of the three land-use 773 

activities modelled by LandSHIFT were estimated as described in Appendix B. 774 

 775 

Table A1: Grouping of the African countries in GEO-regions (Rothman et al. 2007) 776 

Central Africa Eastern 

Africa 

Northern 

Africa 

Southern 

Africa 

Western 

Africa 

Central African 

Republic 

Burundi Algeria Angola Benin 

Chad Ethiopia Egypt Botswana Burkina Faso 

Congo Eritrea Libya Lesotho Gambia 

Dem. Rep. of 

Congo 

Djibouti Morocco Malawi Ghana 

Equatorial Guinea Kenya Sudan Mozambique Guinea 

Gabon Madagascar Tunisia Namibia Cote D’Ivoire 

Sao Tome and 

Principe 

Rwanda  South Africa Liberia 

 Somalia  Swaziland Mali 

 Uganda  Tanzania Mauritania 

   Zambia Niger 

   Zimbabwe Nigeria 

    Guinea-

Bissau 

    Senegal 

    Sierra Leone 

    Togo 

  777 
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Appendix B - Estimation of model parameter values 778 
In the LandSHIFT model the preference of each grid cell for the different land-use types 779 

is determined with a multi-criteria analysis according to the following equation 780 

(Schaldach et al., 2011):   781 
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        (1) 782 

The factors pi reflect the most important geographical and biophysical drivers that affect 783 

suitability for a particular land-use type. The factor-weights wi determine the importance 784 

of each factor at grid cell k, while cj determine constraints for changing the land-use type 785 

of a cell. Both pi and cj are normalized by value functions transforming the factor values 786 

to a co-domain from 0 to 1.  787 

 788 

Constraints cj are applied in cells that are designated as nature conservation areas or 789 

according to possible transitions of land-use types. For example, it is assumed that a cell 790 

formerly used as rangeland is more suitable for being converted to cropland than a forest 791 

cell. Furthermore the risk of tsetse fly occurrence limits the suitability for rangeland.  792 

 793 

LandSHIFT distinguishes between the three land-use activities settlement (METRO), 794 

crop cultivation (AGRO) and grazing (GRAZE). Each of these activities implements its 795 

own evaluation scheme. For METRO and GRAZE the factors (Table B1) were deduced 796 

from literature sources as described in Alcamo et al. (2011).  797 

 798 

Table B1: Suitability factor weights for the two land use activities METRO and GRAZE 799 

for Africa. 800 

Activity Factor/constraint Description Default factor weight 

METRO Factor Terrain slope 0.4 

 Factor Road infrastructure 0.6 

 Constraint Land use transition  

 Constraint Conservation area  

GRAZE Factor Terrain slope 0.2 

 Factor River network density 0.2 

 Factor Grassland NPP 0.2 

 Factor Proximity to cropland 0.2 

 Factor Population density 0.2 

 Constraint Land use transition  

 Constraint Conservation area  

 Constraint Tsetse fly abundance  

 801 

In contrast, for AGRO the factor weights were determined for each of the five GEO-802 

regions individually, based on the land-use data of the country with the largest cropland 803 

area within each region. For this purpose we used is the criteria importance through inter-804 

criteria correlation (CRITIC) method proposed by Diakoulaki et al. (1995). An example 805 

of its application can be found in Schaldach et al. (2013). The method involves four steps. 806 

The first step is to calculate the standard deviation σ for each parameter pi according to 807 

the initial land-use and land-cover pattern represented in the base map. This standard 808 

deviation is an expression for the contrast intensity of each parameter pi in respect to the 809 

other parameters. The second step is to determine the linear correlation coefficient (cij) 810 

between all parameters pi. When these correlation coefficients are summed up according 811 
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to equation (2), the second step acquires a measure of the conflict created by parameter 812 

pi with respect to the rest of the parameters. 813 

∑(1 − 𝑐𝑖𝑗)

𝑛

𝑗=1

 
 

(2) 

The third step is to aggregate the previously quantified information (contrast intensity and 814 

conflict) into one term following equation (3). This term (Infi) is an expression for the 815 

information carried by each parameter pi. 816 

𝐼𝑛𝑓𝑖 = 𝜎𝑖 ∗  ∑(1 − 𝑐𝑖𝑗)

𝑛

𝑗=1

 
 

(3) 

The fourth and last step involves the calculation of wi for each parameter pi. This is 817 

accomplished by normalizing the resulting values Infi for each parameter pi to 1 according 818 

to equation (4). 819 

𝑤𝑖 =
𝐼𝑛𝑓𝑖
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𝑛
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(4) 

 

The parameter values obtained for the five regions with the CRITIC method are 820 

summarized in Table B2. 821 

 822 

Table B2: Suitability factor weights for the land-use activity AGRO and the identified 823 

regions of Africa.  824 

Suitability 

factor 

Central 

Africa 

Eastern 

Africa 

Northern 

Africa 

Southern 

Africa 

Western 

Africa 

Slope 0.145 0.182 0.206 0.131 0.078 

Proximity to 

agriculture 

0.118 0.068 0.056 0.093 0.142 

Population 

density 

0.316 0.290 0.390 0.006 0.299 

Road 

infrastructure 

0.181 0.147 0.163 0.204 0.158 

Crop yield 0.180 0.261 0.227 0.239 0.257 

   825 
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Appendix C - Model validation 826 
Validation of the LandSHIFT model was done for the model assumptions regarding the 827 

cell suitability for cropland (suitability validation) and the calculated quantity of cropland 828 

expansion (Schaldach et al., 2011).  829 

 830 

a)  Validation of the suitability analysis 831 
Cropland suitability is one of the key factors in land-use change decision making since it 832 

determines the most qualified sites for agricultural expansion or abandonment. Thus, it is 833 

important to test a models ability to compute this suitability. For the purpose of this study, 834 

two spatial methods to compare the accuracy of crop suitability calculation with estimates 835 

of the real location of areas used for agricultural cultivation were applied. LandSHIFT 836 

calculates cropland suitability as function of input variables within a range from 0 to 1. 837 

The real location of cropland is derived from the initial land use map for the year 2000.  838 

 839 

The first method compares the frequency distributions of calculated cropland suitability 840 

on observed cropland grid cells to non-cropland grid cells. Our hypothesis is that cropland 841 

is located on grid cells with a high suitability rating since we expect that cropland has the 842 

highest priority compared to other kinds of land use. Non-cropland should be located on 843 

grid cells with lower suitability for crop cultivation respectively. The results as shown in 844 

Table C1 verify our hypothesis. The values show that the mean suitability of cropland 845 

cells is higher as for non-cropland cells. 846 

 847 

Table C1: Results from the suitability evaluation. 848 

GEO-region Mean suitability 

Non-cropland 

Mean suitability 

Cropland 

AUC 

Northern Africa 0.40 0.51 0.881 

Western Africa 0.36 0.52 0.846 

Central Africa 0.35 0.55 0.794 

Eastern Africa 0.34 0.53 0.874 

Southern Africa 0.31 0.51 0.821 

 849 

The second method is the calculation of the relative operating characteristics (ROC) of 850 

the simulated crop suitability map against the base land use map. The ROC metric 851 

allocates proportions of correctly and incorrectly classified spatial predictions (Pearce 852 

and Ferrier, 2000; Pontius Jr and Schneider, 2001). In this context, computed values of 853 

crop suitability are ranked and compared, whether or not they correspond to a grid cell 854 

that is either cropland or not. A cell is a true positive, if it has been observed as cropland 855 

grid cell and a false positive if the grid cell has been identified as non-cropland. This 856 

process is applied to all cropland grid cells. The measure of performance for the ROC test 857 

is the area under the resulting curve (Figure C1). A value of 1.0 indicates a perfect fit of 858 

the current cropland distribution with areas identified as most suitable by the model. If 859 

the suitability for crop cultivation would be randomly distributed among cropland and 860 

non-cropland cells, the area under curve would be 0.5. This part of the evaluation has 861 

been done for the five African regions separately. We find AUC values between 0.794 862 

(Central Africa) and 0.881 (Northern Africa) that indicate that the cropland cells of the 863 

initial map can predominantly be found on locations with high suitability and are not 864 

randomly distributed (Table C1, Figure C1).  865 

 866 
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 867 
Figure C1: Relative Operating Characteristics (ROC) curves for the five different 868 

GEO-regions. 869 

 870 

b) Validation of model output 871 
In contrast to the first method for testing model performance, which was focused on the 872 

location of change, the second method involves the test for the correct quantity of change. 873 

Cropland area is used as the indicator here because an independent set of country scale 874 

estimates has been made available from the UN Food and Agriculture Organization (FAO 875 

2014). Model efficiency ME (Janssen and Heuberger, 1995; Loague and Green, 1991) 876 

has been selected as the degree of agreement between the LandSHIFT model results and 877 

the observed FAO data on country level. A value of 1.0 indicates perfect agreement 878 

between modeled and observed values. The model is run from 2000 until 2010 with 879 

statistical data for agricultural production from FAO as input. Then the calculated 880 

cropland area for each country in 2010 is compared to FAO statistics (n=51). Table C2 881 

summarizes the results. We find ME values between 0.69 (Northern Africa) and 0.98 882 

(Western Africa) indicating that the model has a high skill to reproduces the observed 883 

quantities of cropland change on country level.       884 

 885 

Table C2: Model efficiencies calculated for the years 2000 and 2010. 886 

Geo-region ME 2000 ME 2010 

Africa Total 0.98 0.96 

Central Africa 0.91 0.96 

Eastern Africa 0.77 0.96 

Northern Africa 0.89 0.69 

Southern Africa 0.96 0.86 

Western Africa 0.97 0.98 

 887 
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