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Abstract

Color Image Segmentation by Integrating Spatial

Information using Semi-Bounded Finite Mixture Models

Jaspreet Singh Kalsi

In computer vision, image segmentation plays foundational role. Innumerable tech-

niques, such as active contour, graph-cut-based, model-based, machine learning, and

clustering-based methods have been proposed for tackling the image segmentation

problem. But, none of them is universally applicable. Thus, the hunt for opti-

mized and robust models for image segmentation is still under-process and also an

open question. The challenges faced in image segmentation are the integration of

spatial information, finding the exact number of clusters (M), and to segment the

image smoothly without any inaccuracy specially in the presence of noise, a complex

background, low contrast and, inhomogeneous intensity. The use of finite mixture

model (FMMs) for image segmentation is very popular approach in the field of com-

puter vision. The application of image segmentation using FMM ranges from auto-

matic number plate recognition, content-based image retrieval, texture recognition,

facial recognition, satellite imagery etc. Image segmentation using FMM undergoes

some problems. FMM-based image segmentation considers neither spatial correlation

among the peer pixels nor the prior knowledge that the adjacent pixels are most likely

belong to the same cluster. Also, color images are sensitive to illumination and noise.

To overcome these limitations, we have used three different methods for integrating

spatial information with FMM. First method uses the prior knowledge of M. In sec-

ond method, we have used Markov Random Field (MRF). Lastly, in third, we have

used weighted geometric and arithmetic mean template. We have implemented these

methods with inverted Dirichlet mixture model (IDMM), generalized inverted Dirich-

let mixture model (GIDMM) and inverted Beta Liouville mixture model (IBLMM).

For experimentation, the Berkeley 500 (BSD500) and MIT’s Computational Visual

Cognition Laboratory (CVCL) datasets are employed. Furthermore, to compare the

image segmentation results, the outputs of IDMM, GIDMM, and IBLMM are com-

pared with each other, using segmentation performance evaluation metrics.
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Chapter 1

Introduction

1.1 Background

Over the past couple of decades, computer vision experienced tremendous advance-

ment as well as growth. Image segmentation has received attention in satellite im-

agery [12], medical image analysis [6], texture recognition [4], facial recognition [13],

automatic number plate recognition [65], content-based image retrieval [3], humans

skin detection [75] etc. The success and failure of any application depends on the

model used. Extensive research has been conducted to propose suitable models for

image segmentation but still, it is an open challenge [15, 11]. The main problems

faced in image segmentation are finding the exact number of regions and integrating

spatial information. FMM have been proven to be one of the most strong and flexible

tools for model-based clustering and have seen a real boost in popularity. But, image

segmentation using model-based clustering undergoes few difficulties. Model-based

image clustering does not consider spatial correlation among the peer pixels. Also,

color images are sensitive to noise as well as illumination [14]. It is noteworthy that

the Gaussian mixture model (GMM) is not a proper tool to express the latent struc-

ture of non-Gaussian data. Recently, other distributions which are more flexible have

been considered as a powerful alternative [18, 19].
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1.2 Objectives

The main goal of this thesis is to propose algorithms using novel finite mixture mod-

elling approach by focusing on few capable distributions namely inverted Dirichlet

(ID), generalized inverted Dirichlet (GID), and inverted Beta Liouville. We devel-

oped a learning framework based on maximum likelihood estimation to infer the op-

timal parameters of our proposed mixture models and applied it to address following

challenging issues:

1. Choosing flexible mixture densities which offer more flexibility to approximate

many shapes.

2. The estimation of parameters as one of the compelling and critical challenges

when deploying mixture models.

3. Assessment and validation of the feasibility and effectiveness of the proposed

models by experimental results involving well-known and standardized datasets.

In this work, we introduce unsupervised learning based methods which incorpo-

rates the spatial information with IDMM, GIDMM, and IBLMM which could be

applied in various challenging computer vision problems. Our proposed learning

framework will deploy deterministic and efficient techniques such as Maximum likeli-

hood (ML), Expectation maximization (EM) and Newton Raphson methods, followed

by the use of segmentation evaluation metrics for the comparison of the results.

1.3 Contributions

Our major contributions in this thesis are as follows:

• Incorporation of spatial information using indirect information of M

as prior knowledge: We propose an approach for the integration of spatial

information into two different FMM namely IDMM and GIDMM to produce

more meaningful, robust and, smooth regions in color image segmentation while

offering more flexibility and ease of use for data modeling in comparison to the

well popular and commonly used GMM.

• Incorporation of spatial information using MRF: In this contribution,

the spatial information is incorporated with different FMM namely IDMM and

GIDMM using MRF.
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• Incorporation of spatial information using weighted mean template:

In this contribution, the spatial information is integrated with different FMM

namely IDMM, GIDMM, and IBL using weighted geometric and arithmetic

conditional mean templates. Moreover, weighted geometric and arithmetic prior

mean templates are also employed for the same.

• Qualitative analysis of segmentation results using performance eval-

uation metrics: We compare the segmentation results from the proposed al-

gorithms with each other using performance evaluation metrics. We have used

evaluation metrics such as Jaccard Similarity Score, Calinski-Harabaz Index

etc.

• Revealing the effect of color space on color image segmentation: We

compare the effect of two different color spaces namely rgb and l1l2l3 on the

color image segmentation process and we show that different color spaces can

lead to different segmentation results.

1.4 Thesis Overview

The rest of the thesis is organized as follows:

1. In chapter 2, we present the incorporation of spatial information by using

indirect knowledge of M as prior information by using MRF with IDMM and GIDMM.

Afterwards in experiments, we compare the segmentation outputs from ID and GID

with GMM using performance evaluation metrics.

2. Chapter 3 is devoted to the integration of spatial information using weighted

conditional and prior mean templates with IDMM, GIDMM and IBLMM. Futher-

more, these mean templates consist of WGCMT (Weighted geometric conditional

mean template), WACMT (Weighted arithmetic conditional mean template), WGPMT

(Weighted geometric prior mean template), and WAPMT (Weighted arithmetic prior

mean template). For experimentation, we compared the segmentation outputs from

IDMM, GIDMM, and IBLMM with each other using segmentation performance eval-

uation metrics. Lastly, we compare the effect of rgb and l1l2l3 color spaces on the

segmentation outputs with the proposed algorithms.

3. Finally in chapter 4, we conclude our work and suggest future works.
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Chapter 2

Color Image Segmentation Using

Generalized Inverted Finite

Mixture Models By Integrating

Spatial Information

2.1 Introduction

In this chapter, we propose two methods. In first one, we adapt a segmentation

approach proposed in [16] where the authors have used indirect information about

M as prior knowledge. This prior knowledge does not give any direct value of M.

Instead, it provides an indirect information which can further be used to estimate the

exact value of M. In second method, finite mixture model based on MRF [10] is used.

MRF ensures the spatial correlation between the pixels. It is given as follows:

W(Π) = N−1 exp

{

− 1

T U(Π)

}

(1)

where N is a normalizing constant, T is a Temperature constant and U(Π) is the

smoothing prior. Many researchers have performed extensive research on determining

the optimized value of smoothing prior. But, it has been found that most of them

are very complex and requires a large amount of computational power. Below is an

4



example of one of such smoothing priors:

U(Π) =

N
∑

n=1

K
∑

j=1

S
∑

s=1

[

1

2
log β2

js −
1

2

(

∑

m∈δi
(πij − πmj)

)2

β2
js

]

(2)

where S is defined as the total number of directions under consideration, βs is a

variable parameter and π is a mixing parameter explained in later section. As we can

observe, (2) is very complex and thus, the M-Step of the EM algorithm [8] cannot be

applied directly to prior distribution Π. In order to remove these demerits, a novel

factor has been given by [10] which is discussed in later section.

The remaining chapter is organized as follows. In section 2.2, the general definition

of traditional FMM is presented in detail. Section 2.3 is devoted to the incorporation

of Spatial Information using prior knowledge of M with IDMM and GIDMM. This

section contains the pdfs of ID and GID, following by their mixture models learning.

In section 2.4, the spatial information is integrated with IDMM and GIDMM using

MRF approach. Section 2.5 summarizes the proposed algorithm. Lastly, section 2.6,

contains the experimental results.
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2.2 Finite Mixture Model

Consider an image X = { ~X1, . . . , ~XN} consisting of N pixels, where each pixel ~Xn has

a dimension D such that ~Xn = (Xn1, . . . , XnD). We assume that X can be segmented

into M clusters and thus, it is appropriate to use distribution as:

p( ~X|~Θ) =

M
∑

j=1

πjp( ~X|~θj) (3)

where each cluster j has a weight πj,
∑M

j=1 πj = 1. M is the number of com-

ponents in the FMM. p( ~X|~θj) is the density associated with cluster j and ~Θ =

(π1, . . . , πM , ~θ1, . . . , ~θM) is the set of all the mixture parameters.

2.3 Integration of Spatial Information using Prior

knowledge of M with IDMM and GIDMM.

2.3.1 The Probability Density Function of ID

If ~X is a positive vector which consists of D dimensions and following an ID distri-

bution, then it has a joint density function given as follows [52]:

p( ~X|~α) = Γ(|~α|)
∏D

d=1 Γ(αd)

D+1
∏

d=1

Xαd−1
d

(

1 + ~|X|
)−|~α|

(4)

where | ~X| =
∑D

d=1 Xd, each Xd > 0. The parameter of ID is ~α = [α1, . . . , αD+1],
~|α| =

∑D+1
d=1 αd, αd > 0 where d = 1, . . . , D+ 1. The mean and the variance of ID are

given as follows:

E(Xd) =
αd

αD+1 − 1
(5)

V ar(Xd) =
αd(αd + αD+1 − 1)

(αD+1 − 1)2(αD+1 − 2)
(6)
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2.3.2 ID Mixture Model Learning

In this section, we present MLE for IDMM followed by EM algorithm.

Maximum Likelihood Estimation (MLE)

The pixels class labels are considered as latent variables. Each pixel ~Xn and its

peer pixel
~̂
Xn are the observed data. The membership vector is defined as Z =

{~Z1, . . . , ~ZN}. where ~Zn = (Zn1, ..., ZnM). If ~X and
~̂
X are in same cluster c, then

Znc = 1 and Znl = 0 where l = {1, . . . ,M} − {c}, otherwise Znc = 0. The complete

likelihood is denoted as:

p(X, X̂ , Z|Θ) =

N
∏

n=1

M
∏

=1

[

πp( ~Xn|~α)πp(
~̂
Xn|~α)

]

Zn

(7)

The complete log-likelihood is as follows:

L(Θ, Z,X, X̂) =

N
∑

n=1

M
∑

=1

Zn

(

2 log π + log p( ~Xn|~α) + log p(
~̂
Xn|~α)

)

(8)

EM algorithm consists of two phase: E-Step and M-Step [9]. In E-Step, the

conditional expectation of the maximum log-likelihood is estimated as follows:

E[L(Θ, Z,X, X̂)] = Q(Θ, Z,X, X̂) =

N
∑

n=1

M
∑

=1

p(| ~Xn,
~̂
Xn, ~α)×

(

2 log π+log p( ~Xn|~α)+log p(
~̂
Xn| ~α)

)

(9)

where p(| ~Xn,
~̂
Xn, ~α) = Ẑn is a posterior probablity which signifies that both

pixels ~Xn and its neighbor
~̂
Xn belong to the same cluster .

Ẑn =
πp( ~Xn|~α)πp(

~̂
Xn|~α)

∑M
m′=1 πm′p( ~Xn|~αm′)πm′p(

~̂
Xn|~αm′)

(10)

In M-Step, we have to maximize the complete log-likelihood and thus have to

solve:

∂Q(Θ, Z,X, X̂)

∂θ
= 0 (11)
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The partial derivative of Q(Θ, Z,X, X̂) with respect to αd where  = 1, . . . ,M

and d = 1, . . . , D is as follows:

∂Q(Θ, Z,X, X̂)

∂αd

=

N
∑

n=1

M
∑

=1

Ẑnj

{

2
(

Ψ|~α| −Ψ|αd|
)

+ log

(

Xnd

1 + | ~Xn|

)

+ log

(

X̂nd

1 + | ~̂Xn|

)}

(12)

The partial derivative of Q(Θ, Z,X, X̂) with respect to αD+1 is as follows:

∂Q(Θ, Z,X, X̂)

∂αjD+1
=

N
∑

n=1

M
∑

j=1

Ẑnj

{

2

(

Ψ|αj | −Ψ|αjD+1|
)

+ log

(

1

1 + | ~Xn|

)

+ log

(

1

1 + | ~̂Xn|

)}

(13)

Considering Eq. (12) and Eq. (13), it can be observed that no closed solution

exists for α. Therefore, we have used Newton-Raphson method as follows:

~α(k+1)
 = ~α

(k) − ~GH
−1
 (14)

where ~α
(k+1)
 is the updated hyper-parameter, ~α

(k) is the old hyper-parameter,

H−1
 is the inverse of Hessian matrix followed by ~G, which is a gradient. The Gradient

is the first partial order derivative of Q(Θ, Z,X, X̂) and is described as follows:

~G =

(

∂Q(Θ, Z,X, X̂)

∂α1
, . . . ,

∂Q(Θ, Z,X, X̂)

∂αD+1

)

(15)

For computing H−1
 , the approach given in [2] is used. And for the mixing param-

eter π, there exists a closed-form solution:

π =

N
∑

n=1

Ẑn

N
(16)

2.3.3 The Probability Density Function of GID

If ~X is a positive vector which consists of D dimensions and following a GID, then

its joint density function is given by:

p( ~X|~αj , ~βj) =

D
∏

d=1

Γ(αjd + βjd)

Γ(αjd)Γ(βjd)
T

αjd−1

nd

(

1 + ~|X|
)−Ωjd

(17)
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where ~αj = [αj1, . . . , αjD], ~βj = [βj1, . . . , βjD]. ~|X| =
∑D

d=1 Xd. We define Ω such

that Ωjd = αjd + βjd − βjd+1 for d = 0, . . . , D with βjD+1 = 0. The GID possesses a

property which makes its estimation simple. If there exists a vector ~X that follows

GID, then we can create another vector ~Wn = [Wn1, . . . ,WnD] where elements follow

inverted Beta (IB) distributions via the following transformation:

Wnd = f(Xnd) =







Xnd d = 1

Xnd

1−Xn1−,...,−Xnd−1

d = 2, . . . , D
(18)

The pdf of IB is defined as:

piBeta(Wnd|αjd, βjd) =
Γ(αjd + βjd)

Γ(αjd)Γ(βjd)
W

αjd−1
nd (1 +Wjd)

−(αjd+βjd) (19)

The mean of inverted Beta (IB) is given by:

E(Wd) =
αd

βd − 1
(20)

The variance of IB is as follows:

V ar(Wd) =
αd(αd + βd − 1)

(βd − 2)(βd − 1)2
(21)

2.3.4 GID Model Learning

Maximum Likelihood Estimation

The new form of Eq. (8) for GID is as follows :

L(Θ, Z,W, Ŵ) =

N
∑

n=1

M
∑

=1

Zn

(

2 log π +

D
∑

d=1

log pnB( ~Wnd|~θd) +

D
∑

d=1

log pnB(
~̂
Wnd|~θd)

)

(22)

In E-Step, the conditional expectation of the maximum log-likelihood is estimated

as follows:

Q(Θ, Z,W, Ŵ,Λ) =

N
∑

n=1

M
∑

=1

Ẑnj

{

2 log π +

D
∑

d=1

log pnB( ~Wnd|~α, ~β) +

D
∑

d=1

log pnB(
~̂
Wnd|~α, ~β

}

+ Λ(1−
M
∑

m=1

π)

(23)
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where Ẑnj signifies that both ~Wn and
~̂
Wn belong to the same cluster  and Λ is the

Langrange multiplier.

Ẑnj =
π

2
∏D

d=1 pnB(
~Wnd|~αd, ~βd)

∏D
d=1 pnB(

~̂
Wnd|~αd, ~βd)

∑M
′=1 π

′

2∏D

d=1 pnB(
~Wnd|~α′d, ~β′d)

∏D
d=1 pnB(

~̂
Wnd|~α′d, ~β′d)

(24)

In M-Step, we have to maximize the complete log-likelihood and thus have to esti-

mate:
∂Q(Θ, Z,W, Ŵ,Λ)

∂Θ
= 0 (25)

The partial derivatives of Q(Θ, Z,W , Ŵ ,Λ) with respect to αd and βd are as follows:

∂Q(Θ, Z,W, Ŵ,Λ)

∂αjd

=
N
∑

i=1

Ẑnj

{

2
(

Ψ(αjd + βjd)−Ψ(αjd)
)

+ log

(

Wnd

1 +Wnd

)

+ log

(

Ŵnd

1 + Ŵnd

)}

(26)

∂Q(Θ, Z,W, Ŵ,Λ)

∂βd

=

N
∑

i=1

Ẑn

{

2
(

Ψ(αd + βd)−Ψ(βd)
)

+log

(

Wnd

1 +Wnd

)

+log

(

Ŵnd

1 + Ŵnd

)}

(27)

where Ψ(.) is the digamma function. From (26) and (27), it can be observed that

no closed-form solution exists for θd. Therefore, we have to use Newton-Raphson

method as follows:
~Θ

(k+1)
d = ~Θ

(k)
d −H−1

d Gd (28)

where Hd and Gd are Hessian matrix and gradient, respectively. To compute H−1
d ,

the inverse matrix theorem by [5] can be used.
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2.4 Spatial information integration with IDMM

and GIDMM using MRF Approach.

2.4.1 ID Model Learning

Segmentation Approach

The joint conditional probability is as follows:

p(X ,Z|θ) =
N
∏

n=1

p( ~Xn|~θ)
Zn

=

N
∏

n=1

M
∑

=1

(

πp( ~Xn|~α)
)Zn

(29)

where Z = {~Z1, ..., ~ZN} is the membership vector and each ~Zn = (Zn1, . . . , ZnM).

If a pixel ~Xb belongs to cluster c where b ∈ N and c ∈ M , then Zbc = 1 and the

rest of elements in ~Zb will be equal to 0. According to the Bayes rules, the posterior

probablity is given by:

p(θ|X ,Z) ∝ p(X ,Z|θ)W(Π) (30)

Maximum Likelihood Estimation.

The complete log-likelihood is as follows:

L(θ|X ,Z) = log

( N
∏

n=1

M
∑

=1

(

πp( ~Xn|~α)
)Zn

W (Π)

)

=

N
∑

i=1

log

{ M
∑

j=1

(

πp( ~Xn|~α)
)Zn

}

− logN − 1

T U(Π)

(31)

In order to solve the issues with smoothing prior which are discussed in the intro-

duction, a novel factor [10] is used which is given as:

Gn = exp

[

β

2Nn

∑

m∈δn

(Z(t)
m + π(t)

m)

]

(32)

where β is the temperature value that is responsible for controlling smoothing prior

and Zm is the posterior probablity. The authors in [10] have suggested, the ideal

values for β = 12 and Nn = 25. The smoothing parameter is only dependent on Zm

and πm of the previous step in the EM algorithm. Thus, it also acts as a filter to
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ensure the smoothness and restore image from corruption. The authors in [10] have

proposed the following smoothing:

U(Π) = −
N
∑

n=1

M
∑

=1

G(t)
n log π

(t+1)
n (33)

By maximizing the complete log-likelihood, we get Q(Z,X ,Θ) which is as follows:

Q(Z,X ,Θ) =

N
∑

n=1

M
∑

=1

zn

{

log π + log p( ~Xn|~α)

}

− logN

+
1

T

N
∑

n=1

M
∑

=1

G(t)
n log πn

(t+1)

(34)

The conditional expectation values Ẑn of hidden variables is as follows:

Ẑn =
π
(t)
n p( ~Xn|~α)

∑K
k=1 π

(t)
nkp(

~Xn|~αk)
(35)

For computing the updated value of ~α, the approach given in [2] can be used. There

exist a closed-form solution for parameter π, and is given as:

π(k+1)
n =

z
(t)
n +G

(t)
n

∑M
s=1 z

(t)
ns +G

(t)
ns

(36)

2.4.2 GID Model Learning

Maximum Likelihood Estimation

The complete log-likelihood is as follows:

L(p(W,Z|Θ)) = log

( N
∏

n=1

M
∑

=1

πZn


D
∏

d=1

pB(Wnd|αd, βd)
ZnW(Π)

)

(37)

L(p(W,Z|Θ)) =

N
∑

n=1

log

( M
∑

=1

πZn


D
∏

d=1

pB(Wnd|αd, βd)
Zn

)

− logN − 1

T
U(Π) (38)
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By maximizing the complete log-likelihood, we get Q(Θ,W ,Z) which is as follows:

Q(Θ,W,Z) =

N
∑

n=1

M
∑

=1

z(t)n

{

log π(t+1)
 +

D
∑

d=1

pB(Wnd|αd, βd)

}

− logN +
1

T

N
∑

n=1

M
∑

n=1

G(t)
n log π

(t+1)


(39)

The hidden variable is given by:

Ẑn =
πp( ~Wn|α, β)

∑M
=1 p(

~Wn|α, β)
=

π

∏D
d=1 pB(

~Wnd|αd, βd)
∑M

m=1 πm

∏D
d=1 pB(

~Wnd|αd, βd)
(40)

For the calculation of updated ~α and ~β, we have used the approach given in [1].

2.5 Estimation Algorithm

The algorithm is as follows:

1. INPUT: An image X and M .

2. Apply K-means clustering algorithm to group pixels into M clusters.

3. Initialize π.

4. Apply Method of Moments to calculate the initial values of parameters.

5. E-Step:

• Compute Ẑn using (10), (24), (35) and (40) for IDMM1, GIDMM1,

IDMM2 and GIDMM2 respectively.

6. M-Step:

• Calculate ~α using (14) for IDMM1 and IDMM2 respectively.

• Calculate ~Θ using (28) for GIDMM1 and GIDMM2 respectively.

• For mixing parameter π, use (16) for IDMM1 and GIDMM1, use (36) for

IDMM2 and GIDMM2.

7. Iterate through E-Step and M-Step until convergence.

where IDMM1 and IDMM2 are the two presented IDMM-based methods. GIDMM1

and GIDMM2 are the two presented GIDMM-based methods.
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2.6 Experimental Results

In this section, we validate the performance of the proposed algorithms and compare

them with Gaussian mixture models proposed in [16, 10]. It is worth to note that

the selection of color-space is important for color images. While performing image

segmentation, it is desirable to have a color-space robust against varying illumination.

We have selected the rgb and l1l2l3 color-spaces which are as follows:

2.6.1 Color Spaces for Image Segmentation

The selection of color-space is crucial for image segmentation. It is desirable to have

a color-space robust against varying illumination. Few color-spaces are assessed,

dissected and examined in [70]. Out of many color spaces, we have selected the rgb

and l1l2l3 color spaces which are as follows:

r(R,G,B) = R
R+ G + B (41)

g(R,G,B) = G
R+ G + B (42)

b(R,G,B) = B
R+ G + B (43)

l1(R,G,B) = (R− G)2
SUM(RGB)

(44)

l2(R,G,B) = (R− B)2
SUM(RGB)

(45)

l3(R,G,B) = (G − B)2
SUM(RGB)

(46)

where SUM(RGB) = (R− G)2 + (R− B)2 + (G − B)2. The l1l2l3 and rgb out-

perform the traditional RGB color-space and hence used in our experiments.

2.6.2 Metrics for segmentation performance evaluation

In order to compare the performances of the proposed algorithms, we have used eight

image segmentation evaluation metrics.
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Adjusted Rand Index (ARI)

It is defined as the level of similarity among the actual labels and predicted labels.

In ARI, the permutations are not considered. The ARI’s value will tend to 0, if the

predicted labels are arranged randomly. ARI has a range of [-1, 1] and values closer

to zero are considered as bad clustering and values closer to 1 means good clustering.

The ARI [54] is given as :

ARI =
RI − E[RI]

max(RI)− E[RI]
(47)

where E[RI] is Expected value of RI (Rand index). The RI is defined as :

ARI =
a+ b

C
nsamples

2

(48)

where K and C are the actual and predicted labels respectively. The a is the number

of element pairs having same class labels in K and C. b is the number of element

pairs having different class labels in K and C.

Adjusted Mutual Information Score (AMIS)

The mutual information (MI) is defined as the level of agreement of actual labels and

predicted labels, without permutation. The AMIS [55, 56, 57] is the adjusted version

of MI and is defined as:

AMIS =
MI(T, U)− E[MI(T, U)]

mean(H(T ), H(U))− E[MI(T, U)]
(49)

where T and U are two class labels assignments, H(T ) and H(U) defines the entropy

for T and U , respectively. E[MI(T, U)] is the expected value of MI(T, U).

Normalized Mutual Information Score (NMIS)

The NMIS [55, 56, 57] is the normalized version of MI and given as:

NMIS(T, U) =
MI(T, U)

mean
(

H(T ), H(U)
) (50)

Homogeneity Score (HS)

HS [58, 59] uses a criteria related to analysis of the conditional entropy. HS is defined

as each cluster contains only members of the single class. It has a range of [0, 1],

where 1 means each cluster only contains members of just one class. On the other
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hand, 0 means that almost every data inside a cluster contains different class labels.

It is given by:

HS = 1− H(C|K)

H(C)
(51)

where H(C|K) is the conditional entropy of the classes given the cluster assignments:

H(C|K) = −
|C|
∑

c=1

|K|
∑

k=1

nck

n
log

(

nck

nk

)

; H(C) = −
|C|
∑

c=1

nc

n
. log

(

nc

n

)

(52)

where H(C) is the entropy of the classes, n is the number of pixels in the image; nc

is the number of pixels that belong to class c; nk is the number of pixels that belong

to cluster k.

Completeness Score (CS)

CS [58, 59] is also a criteria related to analysis of the conditional entropy. CS is

defined as all the members of a given class that belong to the same clusters. It has a

range of [0, 1], where 0 means worst clustering and 1 means perfect clustering.

CS = 1− H(K|C)

H(K)
(53)

where H(K|C) and H(K) can be computed in a symmetric manner.

V-Measure Score (VMS)

The VMS [58, 59] is defined as the harmonic mean of HS and CS. It is symmetrical

in nature.

VMS = 2×
(

HS × CS

HS + CS

)

(54)

Calinski-Harabaz Index (CHI)

It is one of the most flexible metrics for image segmentation. If the human segmen-

tations are not available, then CHI can be used for model evaluation, where higher

value signifies that the clusters are well defined. For M clusters, the CHI [60] is

defined as the ratio of the between-clusters dispersion mean and the within-cluster

dispersion:

CHI(M) =
Tr(BM )

Tr(WM )
× n−M

M − 1
(55)
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where WM is the within-cluster dispersion matrix and BM is defined as the between

group dispersion matrix:

WM =

M
∑

m=1

∑

x∈Cm

(x− Cm)(x− Cm)T ; BM =
∑

m

nm(cm − c)(cm − c)T (56)

Cm: set of pixels in cluster m, cm: the centre of the cluster m, nm: number of pixels

in cluster m.

Jaccard Similarity Score (JSS)

JSS [61, 62, 63] is also called Jaccard index. It is defined as the ratio of intersection

(of predicted labels and actual labels) and the union (of predicted labels and actual

labels). It also ranges between 0 and 1 where 0 means very bad score and 1 means

the segmentation output is perfect.

2.6.3 Results

For experimentation, we have used two images 29030 and 5096 from BSD500. The

rgb and l1l2l3 color spaces are used with 29030 and 5096 images respectively. Table

1 and Table 2 contains the qualitative analysis results for 29030 followed by the

segmentation output shown in Fig. 1. Specifically, Table 1 and Table 2 depict the

results of IDMM, GIDMM and GMM using the first and second methods respectively.

Similarly, Table 3 and Table 4 represent the qualitative results for 5096. Table 3

illustrates the results of the proposed models using the first method, followed by

Table 4, which contains the results of proposed models using the second method.

Fig. 2 contains the segmentation output for image 5096. All the tables show that the

proposed algorithms outperformed the GMM proposed in [16, 10].
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Table 1: Performance evaluation of the 29030 image using mixture models deployed

in first method.

Metrics (K=3)

Alg. Seg. ARI AMIS NMIS HS CS VM CHI

ID 1 0.587 0.371 0.469 0.371 0.593 0.456 232945.025

2 0.550 0.301 0.423 0.301 0.593 0.399

3 0.573 0.356 0.446 0.356 0.558 0.434

4 0.549 0.284 0.417 0.284 0.612 0.388

5 0.447 0.235 0.370 0.235 0.582 0.335

6 0.549 0.283 0.411 0.283 0.596 0.384

Mean 0.543 0.305 0.440 0.305 0.589 0.400

GID 1 0.706 0.483 0.609 0.483 0.769 0.593 268627.231

2 0.660 0.394 0.552 0.394 0.774 0.522

3 0.698 0.464 0.581 0.465 0.727 0.567

4 0.659 0.374 0.548 0.374 0.803 0.510

5 0.539 0.303 0.476 0.303 0.747 0.431

6 0.706 0.366 0.531 0.366 0.768 0.496

Mean 0.661 0.398 0.570 0.398 0.765 0.520

GMM 1 0.506 0.342 0.416 0.342 0.507 0.408 72422.334

2 0.464 0.284 0.383 0.284 0.518 0.367

3 0.461 0.327 0.395 0.327 0.477 0.388

4 0.457 0.275 0.388 0.275 0.549 0.366

5 0.369 0.227 0.344 0.227 0.521 0.316

6 0.453 0.270 0.377 0.270 0.527 0.357

Mean 0.452 0.287 0.384 0.287 0.517 0.367

18



Table 2: Performance evaluation of the 29030 image using mixture models deployed

in second method.

Metrics (K=3)

Alg. Seg. ARI AMIS NMIS HS CS VM CHI

ID 1 0.609 0.396 0.489 0.396 0.604 0.478 171334.822

2 0.570 0.333 0.457 0.333 0.626 0.435

3 0.577 0.379 0.464 0.379 0.569 0.455

4 0.564 0.319 0.457 0.319 0.655 0.429

5 0.473 0.273 0.419 0.273 0.644 0.383

6 0.567 0.318 0.451 0.318 0.639 0.425

Mean 0.560 0.336 0.456 0.336 0.623 0.434

GID 1 0.676 0.441 0.553 0.441 0.693 0.539 216480.594

2 0.640 0.373 0.519 0.373 0.721 0.492

3 0.663 0.426 0.529 0.426 0.657 0.517

4 0.633 0.347 0.505 0.347 0.734 0.471

5 0.529 0.294 0.458 0.294 0.714 0.417

6 0.637 0.350 0.503 0.350 0.723 0.472

Mean 0.630 0.372 0.511 0.372 0.707 0.485

GMM 1 0.264 0.192 0.233 0.192 0.284 0.229 36243.646

2 0.245 0.187 0.252 0.187 0.340 0.241

3 0.272 0.187 0.240 0.199 0.289 0.235

4 0.245 0.199 0.273 0.194 0.386 0.258

5 0.266 0.180 0.272 0.180 0.412 0.250

6 0.248 0.191 0.266 0.191 0.372 0.252

Mean 0.257 0.189 0.256 0.190 0.347 0.244
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Figure 1: Original image (29030) followed by five ground truth segments from

BSD500. Images from seventh to nine are the outputs of IDMM, GIDMM, GMM

deployed in method one respectively. Similarly, tenth to eleventh images are the

outputs of IDMM, GIDMM, GMM deployed in method two respectively.
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Table 3: Performance evaluation of the 5096 image using mixture models deployed in

method one.

Metrics (K=3)

Alg. Seg. ARI AMIS NMIS HS CS VM CHI

ID 1 0.232 0.233 0.335 0.233 0.483 0.314 108713.679

2 0.199 0.213 0.321 0.213 0.483 0.296

3 0.238 0.240 0.340 0.240 0.482 0.320

4 0.216 0.214 0.321 0.214 0.480 0.296

5 0.252 0.233 0.321 0.233 0.442 0.305

Mean 0.227 0.226 0.328 0.226 0.474 0.306

GID 1 0.269 0.283 0.408 0.283 0.588 0.382 202214.492

2 0.233 0.256 0.386 0.256 0.581 0.355

3 0.287 0.289 0.410 0.289 0.582 0.386

4 0.262 0.271 0.406 0.271 0.608 0.375

5 0.271 0.273 0.377 0.273 0.521 0.359

Mean 0.265 0.274 0.397 0.274 0.576 0.371

GMM 1 0.000 0.002 0.017 0.002 0.150 0.004 636.274

2 0.000 0.002 0.018 0.002 0.163 0.004

3 0.000 0.002 0.013 0.002 0.113 0.003

4 0.000 0.002 0.017 0.002 0.152 0.004

5 0.001 0.002 0.018 0.002 0.151 0.004

Mean 0.000 0.002 0.017 0.002 0.146 0.004
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Table 4: Performance evaluation of the 5096 image using mixture models deployed in

method two.

Metrics (K=3)

Alg. Seg. ARI AMIS NMIS HS CS VM CHI

ID 1 0.287 0.300 0.432 0.300 0.622 0.405 115633.717

2 0.268 0.276 0.415 0.276 0.625 0.383

3 0.287 0.309 0.439 0.309 0.623 0.413

4 0.271 0.285 0.427 0.285 0.639 0.394

5 0.290 0.297 0.410 0.297 0.565 0.390

Mean 0.280 0.293 0.421 0.294 0.615 0.397

GID 1 0.300 0.305 0.440 0.305 0.633 0.412 239455.458

2 0.268 0.280 0.421 0.280 0.633 0.388

3 0.306 0.312 0.443 0.312 0.628 0.417

4 0.285 0.289 0.433 0.289 0.648 0.400

5 0.317 0.310 0.427 0.310 0.589 0.406

Mean 0.295 0.299 0.433 0.299 0.626 0.405

GMM 1 0.274 0.284 0.413 0.284 0.599 0.386 108849.1252

2 0.238 0.265 0.402 0.265 0.609 0.369

3 0.262 0.298 0.425 0.298 0.608 0.400

4 0.284 0.285 0.429 0.285 0.648 0.396

5 0.310 0.301 0.418 0.301 0.581 0.396

Mean 0.273 0.286 0.418 0.287 0.609 0.389
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Figure 2: Original image (5096) followed by five ground truth segments from BSD500.

Images from seventh to nine are the outputs of IDMM, GIDMM, GMM deployed

in method one respectively. Similarly, tenth to eleventh images are the outputs of

IDMM, GIDMM, GMM from method two respectively.
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Chapter 3

Color Image Segmentation using

Semi-Bounded Finite Mixture

Models by Incorporating Mean

Templates

3.1 Introduction

In this chapter, we have applied mean templates for CP (conditional probability) and

PP (prior probability), proposed in [51], in order to integrate spatial information with

FMM. Furthermore, from the mean template, we can obtain four methods that are

geometric conditional geometric prior (GCGP), geometric conditional arithmetic prior

(GCAP), arithmetic conditional geometric prior (ACGP), and arithmetic conditional

arithmetic prior (ACAP).

The remaining chapter is organized as follows. In section 3.2, the challenges

faced during image segmentation using FMM are discussed along with their solutions.

Section 3.3 is devoted to the weighted mean templates where the geometric and

arithmetic CP along with geometric and arithmetic PP are explained in detail. In

section 3.4, the integration of four methods (GCGP, GCAP, ACGP and, GCGP) with

IDMM, GIDMM and IBLMM are presented followed by their algorithms. Section 3.5

contains the experimental results in which eight segmentation evaluation metrics, the

results in the form of tables for BSD500 dataset and segmentation outputs in the

24



form of figures for both BSD500 [71] and CVCL [72] datasets are discussed.

3.2 Problem Description

Consider the binary image given in Fig. 1 [51]. The upper-most part of the image is

white in color and has intensity value equal to 1. The lower part of the image is black

in color, having intensity value equal to 0. This image is distorted by noise. Two 3 by

3 windows are extracted from upper and lower parts of the image, as shown in Fig. 1

(b) and (c). For binary image, let the pixels having intensity value equal to 1 and 0 be

assigned to classes U and V , respectively. It can be easily observed that middle pixels

of both the windows are corrupted by noise and may result in mis-classification.

Figure 3: (a) Original image. (b) White window. (c) Black window. The numbers in

parentheses are the coordinates of the image; 0 and 1 are the binary image intensity

values.

A possible solution for this problem has two requirements: First, the spatial in-

formation of each pixel should be incorporated to prior probability πj, therefore πj

should be changed to πij. The πij of the middle pixels for both the windows should

be affected by the prior probability πst where s = i ± 1 and t = j ± 1. Each pixel

inside the window should have same prior probability which can be calculated using

mean prior probability (discussed in later section).

Second, given the component j and intensity value y, the FMM satisfies the same

conditional probability p(yn|θj). Sometimes, this is true but not always. The y of

middle pixel in Fig. 1(b) is same as the pixels around the central pixel in Fig. 1(c).
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These two types of pixels should belong to different clusters. Thus, the traditional

FMM is not capable enough to differentiate among these types of pixels. In order to

counter this issue, the authors of [51] have suggested the mean template for CP.

The authors of [51] have calculated the windows CP values (CPV) for Fig. 1(b)

and Fig. 1(c) using traditional FMM, GMT and, AMT as illustrated in Fig. 2 [51]

and Fig. 3 [51]. In Fig. 2(a), the middle pixels have same CPV (0.606/
√

2π) as the

pixels around the central pixel in Fig 3(a). Similarly, the central pixel of Fig. 3(a)

and surrounding pixels of middle pixel of Fig. 2(a) have the same CPV (1/
√

2π). We

can observe that the proposed mean templates have removed the effect of noise from

the windows shown in Fig. 2(a) and 3(a). It is noteworthy that the model suggested

by the authors in [51] is robust to noise.

Figure 4: CPV of Fig. 1(b), (a) CPV with traditional FMM. (b) CPV calculated by

geometric template. (c) CPV calculated by arithmetic template.
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Figure 5: CPV of Fig. 1(c), (a) CPV with traditional FMM. (b) CPV calculated by

geometric template. (c) CPV calculated by arithmetic template.

3.3 Mean Templates for Conditional and Prior Prob-

abilities

In order to integrate the spatial information with the PP, Eq. (3) can be redefined

as:

p( ~Xn|~Θ) =

M
∑

j=1

πnjp( ~Xn|~θj) (57)

where πnj is a updated mixing parameter where j = 1, . . . ,M ,
∑M

j=1 πnj = 1 and

n = 1, . . . , N . In this section, we discuss the geometric and arithmetic CP mean

templates followed by their respective mixture models and complete log-likelihood

equations. Furthermore, the equations of PP for both geometric and arithmetic mean

templates are discussed.

3.3.1 Weighted Geometric Conditional Mean Template

In this section, we are using a weighted geometric conditional mean template (WGCMT)

for calculating the CP of a pixel ~Xn. Thus, Eq. (3) can be rewritten as:

p( ~Xn|~Θ) =

M
∑

j=1

πnj

∏

r∈Nn

p( ~Xr|~θj)
wr
Rn (58)
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where Nn is a set of peers of the nth pixel. The conditional probability window is

(CPW) = {Nn, ~Xn}. Rn is a normalized factor which is defined as

Rn =
∑

r∈Nn

wr (59)

In order to integrate the spatial information and pixel intensity value, the strength

of wr is inversely proportional to the distance between pixels r and n. Therefore,

the authors in [51] have defined wr as a function of drn, which is Euclidean distance

between pixels r and n.

wr =
1

√

2πρ2
exp

(

− d2rn

2ρ2

)

(60)

ρ =
sizeofCPW − 1

4
(61)

Maximum Likelihood Estimation (MLE) for WGCMT

The pixels class labels are considered as the latent variables. Each pixel ~Xn is the

observed data. The membership vector is defined as Z = {~Z1, . . . , ~ZN} where ~Zn =

(Zn1, ..., ZnM). If ~Xn belongs to cluster c, then Znc = 1 and Znl = 0 where l =

{1, . . . ,M} − {c}, otherwise Znc = 0. The complete log-likelihood is as follows:

Q =
∑

n

∑

j

Znj

[

log πnj +
∑

r∈Nn

wr

Rn

log p( ~Xr|~θj)
]

(62)

EM algorithm consists of two phases: E-Step and M-Step [9]. In E-Step, the

posterior probability (Ẑnj) can be calculated as:

Ẑ
(t+1)
nj =

π
(t)
nj

∏

r∈Nn
p( ~Xr| ~θ(t)j )

wr
Rn

∑M
h=1 π

(t)
nh

∏

r∈Nn
p( ~Xr| ~θ(t)h )

wr
Rn

(63)

In M-Step, we have to maximize the complete log-likelihood and solve:

∂Q

∂θj
= 0 (64)
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3.3.2 Weighted Arithmetic Conditional Mean Template

In this part, we are using a weighted arithmetic conditional mean template (WACMT)

to calculate the CP of a pixel ~Xn. Thus, Eq. (58) can be rewritten as:

p( ~Xn|~Θ) =

M
∑

j=1

πnj

∏

r∈Nn

wr

Rn

p( ~Xr|~θj) (65)

Maximum Likelihood Estimation (MLE) for WACMT

The complete log-likelihood is as follows:

Q =
∑

n

∑

j

Znj

[

log πnj + log

(

∑

r∈Nn

wr

Rn

p( ~Xr|~θj)
)]

=
∑

n

∑

j

Znj

[

log πnj +G

]

(66)

G cannot be calculated directly. It is important to note that wr

Rn

always follows

the condition wr

Rn

>= 0 and
∑

r∈Nn

wr

Rn

= 1. Therefore, we can apply the Jensen’s

inequality rule which is defined as, given a set of numbers τ >= 0 and
∑

n τ = 1, we

have log(
∑

n τxi) >=
∑

n τ log(xi). Then, the G can be modified and the complete

log-likelihood is:

Q =
∑

n

∑

j

Znj

[

log πnj +
∑

r∈Nn

wr

Rn

log p( ~Xr|~θj)
]

(67)

In E-Step, Ẑnj can be calculated as

Ẑ
(t+1)
nj =

π
(t)
nj

∏

r∈Nn

wr

Rn
p( ~Xr| ~θ(t)j )

∑M
h=1 π

(t)
nh

∏

r∈Nn

wr

Rn
p( ~Xr| ~θ(t)h )

(68)

The M-Step can be computed using Eq. (65).

3.3.3 Weighted Prior Probability Estimation

The prior probability for FMM is as follows:

πj =

∑N
n=1 Znj

∑N
n=1

∑M
j=1 Znj

(69)

According to the authors of [51], the weighted geometric prior mean template

(WGPMT) is given as:

π
(t+1)
nj =

π
(t)
nj

∏

r∈ρn
Znj

wr
Rn

∑M
h=1 π

(t)
nh

∏

r∈ρn
Znj

wr
Rn

(70)
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The weighted arithmetic prior mean template (WAPMT) is defined by:

π
(t+1)
nj =

π
(t)
nj

∏

r∈ρn

wr

Rn
Znj

∑M
h=1 π

(t)
nh

∏

r∈ρn

wr

Rn
Znj

(71)

3.4 Integration of Mean templates with IDMM,

GIDMM and IBLMM

In this section, we propose our mixture models based on three probability density

functions including ID, GID, IBL with incorporation of WGCMT and WACMT.

3.4.1 Incorporation of Mean Template with IDMM

In this subsection, we explain the integration of mean template with IDMM.

Incorporation of IDMM with WGCMT

By substituting Eq. (4) into Eq. (62), the complete log-likelihood is as follows:

Q =
∑

n

∑

j

Znj

[

log πnj +
∑

r∈Nn

wr

Rn

log

(

Γ(|~α|)
∏D

d=1 Γ(αd)

D+1
∏

d=1

Xαd−1
d

(

1 + ~|X|
)−|~α|

)]

(72)

In E-Step, Ẑnj can be calculated using Eq. (63). In M-step, we need to maximize

the complete log-likelihood. From Eq. (64), the partial derivative of Q with respect

to αjd where j = 1, . . . ,M and d = 1, . . . , D is as follows:

∂Q

∂αjd

=

N
∑

n=1

M
∑

j=1

Ẑnj

{

Ψ|~αj | −Ψ|αjd|+
∑

r∈Nn

wr

Rn

log

(

Xrd

1 + | ~Xr|

)}

(73)

where Ψ(.) is the digamma function.

The partial derivative of Q with respect to αjD+1 is as follows:

∂Q

∂αjD+1
=

N
∑

n=1

M
∑

j=1

Ẑnj

{

Ψ|~αj | −Ψ|αjd+1|+
∑

r∈Nn

wr

Rn

log

(

Xrd

1 + | ~Xr|

)}

(74)

Considering Eq. (73) and (74), it can be observed that no closed solution exists for

~αj. Therefore, we have used Newton-Raphson method as follows:

~α
(k+1)
j = ~αj

(k) − ~GjH
−1
j (75)
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where ~α
(k+1)
j is the updated hyper-parameter, ~αj

(k) is the old hyper-parameter, ~Gj is

the gradient followed by H−1
j , which is the inverse of Hessian matrix. The Gradient

is the first partial order derivative of Q and described as follows:

~Gj =

(

∂Q

∂αj1
, . . . ,

∂Q

∂αjD+1

)

(76)

To find the Hessian of Q, we have to calculate the second and mixed derivatives:

∂2Q

∂2αjd

=

N
∑

n=1

Ẑnj

(

Ψ′(| ~αj |)−Ψ′(αjd)

)

, d = 1, . . . , D + 1 (77)

∂2Q

∂2αjd1
αjd2

= Ψ′(| ~αj |)
N
∑

n=1

Ẑnj , d1 6= d2, d1, d2 = 1, . . . , D + 1 (78)

where Ψ′(.) is the trigamma function. The Hessian can be described as:

Hj =

N
∑

n=1

Ẑnj















Ψ′(| ~αj |)−Ψ′(αj1) Ψ′(| ~αj |) . . . Ψ′(| ~αj |)
Ψ′(| ~αj |) Ψ′(| ~αj |)−Ψ′(αj2) . . . Ψ′(| ~αj |)

... . . .
. . .

...

Ψ′(| ~αj |) . . . Ψ′(| ~αj |)−Ψ′(αjD+1)















(79)

Thus, Hj can be written as:

Hj = Dj + ρjAj
TAj (80)

where Dj is a diagonal matrix and described by:

Dj = diag

(

−
N
∑

n=1

ẐnjΨ
′(αj1), . . . ,−

N
∑

n=1

ẐnjΨ
′(αjD+1)

)

(81)

The constant ρj is defined as:

ρj =

[

(

(Ψ′( ~|αj |)
D+1
∑

d=1

1

Ψ′(αjd)

)

− 1

]

Ψ′( ~|αj |)
N
∑

n=1

Ẑnj (82)

AT
j = (a1, . . . , aD+1), ad = 1 where d = 1, . . . , D + 1. In order to find H−1

j , a

matrix inverse theorem given in [69] can be used [2]:

H−1
j = D−1

j + ρ∗jA
∗T
j A∗

j (83)

D−1
j can be easily computed. Aj

∗ and ρ∗j are expressed by two following equations:

Aj
∗ =

−1
∑N

n=1 Ẑnj

[

1

Ψ′(αj1)
, . . . ,

1

Ψ′(αj,D+1)

]

(84)

ρ∗j = Ψ′(| ~αj |)
N
∑

n=1

Ẑnj

[

Ψ′(| ~αj |)
N
∑

n=1

1

Ψ′(αjd)
− 1

]

(85)
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Incorporation of IDMM with WACMT

In E-Step, the Ẑnj can be calculated using Eq. (68). The M-Step can be calculating

using Eq. (64).

IDMM’s Algorithm

We have two conditional probabilities that are WGCMT, WACMT and two prior

probabilities that are WGPMT, WAPMT. Therefore, we can have four models as

following:

1) GCGP: the application of weighted geometric conditional mean template to weighted

geometric prior mean template.

2) GCAP: the application of weighted geometric conditional mean template to weighted

arithmetic prior mean template.

3) ACGP: the application of weighted arithmetic conditional mean template to weighted

geometric prior mean template.

4) ACAP: the application of weighted arithmetic conditional mean template to weighted

arithmetic prior mean template.

The algorithm is as follows:

1. INPUT: An image X and M .

2. Apply K-means clustering algorithm to group pixels into M clusters.

3. Apply Method of Moments to calculate the initial value for ~α parameter.

4. E-Step:

• Calculate ~π using Eq. (70) for GCGP and ACGP, and using Eq. (71) for

GCAP and ACAP.

• Calculate Ẑnj using Eq. (63) for GCGP and GCAP, and using Eq. (68)

for ACGP and ACAP.

5. M-Step: Calculate the updated value of ~α parameter for each cluster j, using

Eq. (75).

6. Iterate through E-Step and M-Step until convergence.
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3.4.2 Mean Template Incorporation with GIDMM

The second mixture model is GIDMM and we are integrating the mean template with

it.

Incorporation of GIDMM with WGCMT

By substituting Eq. (17) into Eq. (67) , the complete log-likelihood is given by:

Q =
N
∑

n=1

M
∑

j=1

Znj

[

log πnj +
∑

r∈Nn

wr

Rn

log

(

Γ(αjd + βjd)

Γ(αjd)Γ(βjd)
W

αjd−1
nd (1 +Wjd)

−(αjd+βjd)

)]

(86)

In E-Step, the Ẑnj can be calculated using Eq. (63) and in M-Step, the partial

derivatives of Q with respect to αjd and βjd are as follows:

∂Q

∂αjd

=

N
∑

i=1

Ẑnj

{

Ψ(αjd + βjd)−Ψ(αjd) + log

(

Wnd

1 +Wnd

)}

(87)

∂Q

∂βjd

=
N
∑

i=1

Ẑnj

{

Ψ(αjd + βjd)−Ψ(βjd) + log

(

Wnd

1 +Wnd

)}

(88)

From Eq. (87) and Eq. (88) , it can be observed that no closed-form solution exists

for ~θjd. Therefore, we have to use Newton-Raphson method as follows:

~θjd
(k+1)

= ~θjd
(k) −H−1

jd Gjd (89)

where Hjd is the Hessian matrix [1] and given as:

Hjd =

[

∂2Q
∂2αjd

∂2Q
∂2αjdβjd

∂2Q
∂2αjdβjd

∂2Q
∂2βjd

]

(90)

The second and mixed derivatives of Q are as follows:

∂2Q

∂2αjd

=

N
∑

n=1

Ẑnj

(

Ψ′(αjd + βjd)−Ψ′(αjd)

)

, d = 1, . . . , D + 1 (91)

∂2Q

∂2βjd

=

N
∑

n=1

Ẑnj

(

Ψ′(αjd + βjd)−Ψ′(βjd)

)

(92)

∂2Q

∂2αjdβjd

= Ψ′(αjd + βjd)
N
∑

n=1

Ẑnj (93)

~Gjd is defined as follows:

~Gjd =

(

∂Q

∂αjd

,
∂Q

∂βjd

)

(94)
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Incorporation of GIDMM with WACMT

In E-Step, the Ẑnj can be calculated using Eq. (68) . The M-Step is based on Eq.

(64) .

GIDMM’s Algorithm

In this section, we propose an algorithm for the four models that are GCGP, GCAP,

ACGP and ACAP.

1. INPUT: An image X and M .

2. Apply K-means clustering algorithm to group pixels into M clusters.

3. Apply Method of Moments to calculate the initial value for ~α parameter.

4. E-Step:

• Calculate ~π using Eq. (70) for GCGP and ACGP, and using Eq. (71) for

GCAP and ACAP.

• Calculate Ẑnj using Eq. (63) for GCGP and GCAP, and using Eq. (68)

for ACGP and ACAP.

5. M-Step: Calculate the updated value of θ parameter for each cluster j, using

Eq. (90).

6. Iterate through E-Step and M-Step until convergence.

3.4.3 Incorporation of Mean Template with IBLMM

In this subsection, we integrate the mean template with IBLMM.

The Probability Density Function of IBL

If ~X is a positive vector which consists of D dimensions and following an IBL distri-

bution, then it has a joint density function which is given in [53] as:

p( ~X|α1 . . . αd, α, β, λ) =
Γ(|~α|)Γ(α+ β)

Γ(α)Γ(β)

D+1
∏

d=1

Xαd−1
d

Γ(αd)
λβ

(

| ~X|
)α−

∑D
d=1

αd

(

λ+ | ~X|
)−(α+β)

(95)
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where | ~X| =
∑D

d=1 Xd, each Xd > 0, α > 0, β > 0 and λ > 0. The mean and the

variance of IBL are given by:

E(Xd) =
αd

αD+1 − 1
; (96)

V ar(Xd) =
αd(αd + αD+1 − 1)

(αD+1 − 1)2(αD+1 − 2)
(97)

Incorporation of IBLMM with WGCMT

By substituting Eq. (95) into Eq. (62), the complete log-likelihood is as follows:

Q =
∑

n

∑

j

Znj

[

log πnj+
∑

r∈Nn

wr

Rn

log

(

Γ(|~α|)Γ(α+ β)

Γ(α)Γ(β)

D+1
∏

d=1

Xαd−1
d

Γ(αd)
λβ

(

| ~X|
)α−

∑D
d=1

αd

(

λ+ | ~X|
)−(α+β))]

(98)

In E-Step, Ẑnj can be calculated using Eq. (63). In M-step, we need to calculate

the partial derivative of Q with respect to the parameters of IBL [73].

The partial derivative of Q with respect to αj where j = 1, . . . ,M is as follows:

∂Q

∂αj

=

N
∑

i=1

Ẑnj

{

log

D
∑

d=1

Xnd − log
(

λj +

D
∑

d=1

Xnd

)

+Ψ(αj + βj)−Ψ(αj)

}

(99)

The partial derivative of Q with respect to βj is given by:

∂Q

∂βj

=

N
∑

i=1

Ẑnj

{

log λj − log
(

λj +

D
∑

d=1

Xnd

)

+Ψ(αj + βj)−Ψ(βj)

}

(100)

The partial derivative of Q with respect to αjd is defined as:

∂Q

∂αjd

=

N
∑

i=1

Ẑnj

{

logXnd − log

D
∑

d=1

Xnd +Ψ(

D
∑

d=1

αjd)−Ψ(αjd)

}

(101)

The partial derivative of Q with respect to λj is expressed as follows:

∂Q

∂λj

=

N
∑

i=1

Ẑnj

{

βj

λj

− αj + βj

λj + sumD
d=1Xnd

}

(102)

From Eq. (99) to Eq. (102), it can be observed that a closed-form solution does not

exist for ~θj.
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In order to estimate these parameters, Newton-Raphson method can be used:

~θj
(k+1)

= ~θj
(k) −H−1

j Gj (103)

Incorporation of IBMM with WACMT

In E-Step, the Ẑnj can be calculated using Eq. (69). The M-Step is performed via

Eq. (65).

IBLMM’s Algorithm

In this section, we propose an algorithm for the four models namely GCGP, GCAP,

ACGP and ACAP.

1. INPUT: An image X and M .

2. Apply K-means clustering algorithm to group pixels into M clusters.

3. Apply Method of Moments to calculate the initial value of ~θ parameters.

4. E-Step:

• Calculate ~π using Eq. (70) for GCGP and ACGP, and using Eq. (71) for

GCAP and ACAP.

• Calculate Ẑnj using Eq. (63) for GCGP and GCAP, and using Eq. (68)

for ACGP and ACAP.

5. M-Step: Calculate the updated value of ~θ parameter for each cluster j, using

Eq. (103).

6. Iterate through E-Step and M-Step until convergence.
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3.5 Experimental Results

To investigate the performance of our proposed framework, we test the models on two

different datasets that are BSD500 and CSCV. The BSD500 dataset is known as a

reliable source to compare different image segmentation algorithms and contains 500

color images and has at least 5 ground-truth segments for each image. The CSCV

dataset is composed of many categories such as Coast and Beach, Highway, etc. Each

category contains few hundred images. All the images are in color, in jpeg format,

and are 256 x 256 pixels. Their sources varies from digital cameras, websites and

commercial databases. This section is composed of two experiments. In first one, we

tested the proposed models on BSD500 and evaluated the results using segmentation

evaluation metrics. In second experiment, we employed CSCV dataset and compared

our models using two color spaces that are rgb and l1l2l3, which are explained below.

3.5.1 Experiment 1

Here, we present some results of testing our models on images from the BSD500

using l1l2l3 color space. Fig. 6 contains the segmentation outputs of image 29030

(obtained by using ID, GID, and IBL versions of GCGP, GCAP, ACGP, and ACAP

models). Considering the second, third and fourth columns of Fig. 6, it can be

observed that IBL is able to detect car as an object properly, followed by GID and

ID. Table 5 and Table 6 verify our visual analysis by means of qualitative approach

using the image segmentation evaluation metrics. Images in BSD500 may contain

upto six human segmentations. The output of each model is compared with each

human segmentation by using evaluation metrics. By incorporating 3 pdfs with 4

mean template models, we have 12 models. Each result of these models is compared

with 6 human segments which led to have upto 72 comparisons. In order to reduce

the complexity in understanding, we have compared the mean of each model with the

human segmentations.
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Figure 6: Column 1: Contains the original image (29030) followed by the three

ground-truths. Column 2: Contains the segmentation outputs from ID version of

GCGP, GCAP, ACGP, and ACAP models, Column 3: Contains the segmentation

outputs from GID version of GCGP, GCAP, ACGP, and ACAP models, Column 4:

Contains the segmentation outputs from IBL version of GCGP, GCAP, ACGP, and

ACAP models.

38



Table 5: Performance evaluation of the 29030 image with the ARI, AMIS, NMIS,

MIS and HS metrics.

Metrics (K=2)

Alg. Model ARI AMIS NMIS MIS HS

ID GCGP 0.092 0.063 0.135 0.078 0.063

GCAP 0.111 0.052 0.099 0.065 0.052

ACGP 0.042 0.039 0.104 0.048 0.039

ACAP 0.112 0.061 0.119 0.075 0.061

Mean 0.089 0.054 0.114 0.067 0.054

GID GCGP 0.084 0.059 0.129 0.073 0.059

GCAP 0.081 0.057 0.126 0.071 0.057

ACGP 0.079 0.056 0.124 0.069 0.056

ACAP 0.077 0.055 0.123 0.068 0.055

Mean 0.080 0.057 0.126 0.070 0.057

IBL GCGP 0.662 0.420 0.587 0.520 0.420

GCAP 0.664 0.419 0.585 0.519 0.419

ACGP 0.650 0.412 0.578 0.511 0.412

ACAP 0.651 0.412 0.578 0.510 0.412

Mean 0.6569 0.4158 0.5821 0.5151 0.4158
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Table 6: Quality analysis of the 29030 image with the CS, VM, JSS, and CHI metrics.

Metrics (K=2)

Alg. Model CS VM JSS CHI

ID GCGP 0.289 0.103 0.001 73962.307

GCAP 0.190 0.081 0.013 54791.895

ACGP 0.281 0.068 0.000 42512.321

ACAP 0.236 0.096 0.007 64281.498

Mean 0.249 0.087 0.005 58887.006

GID GCGP 0.285 0.098 0.001 71021.648

GCAP 0.282 0.095 0.001 67895.016

ACGP 0.279 0.092 0.001 65785.996

ACAP 0.277 0.091 0.001 64006.640

Mean 0.281 0.094 0.001 268709.300

IBL GCGP 0.826 0.553 0.003 262224.285

GCAP 0.823 0.552 0.004 259172.527

ACGP 0.817 0.545 0.003 265561.038

ACAP 0.815 0.544 0.003 264630.709

Mean 0.8202 0.5487 0.0031 262897.140
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Fig. 7 contains the segmentation outputs of image 118035. Again, from the

second, third and fourth columns of Fig. 7, it can be observed that IBLMM is able

to detect the different components of a building much accurately as compared to

GIDMM and IDMM. Table 7 and Table 8 contain the qualitative analysis of outputs

from image 118035.

Figure 7: Column 1: Contains the original image (118035) followed by the three

ground-truths. Column 2: Contains the segmentation outputs from ID’s version of

GCGP, GCAP, ACGP, and ACAP models, Column 3: Contains the segmentation

outputs from GID’s version of GCGP, GCAP, ACGP, and ACAP models, Column 4:

Contains the segmentation outputs from IBL’s version of GCGP, GCAP, ACGP, and

ACAP models
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Table 7: Performance evaluation of the 118035 image with the ARI, AMIS, NMIS,

MIS and HS metrics.

Metrics (K=2)

Alg. Model ARI AMIS NMIS MIS HS

ID GCGP 0.157 0.174 0.372 0.258 0.174

GCAP 0.158 0.174 0.371 0.258 0.174

ACGP 0.171 0.174 0.351 0.260 0.174

ACAP 0.318 0.223 0.345 0.334 0.223

Mean 0.201 0.186 0.360 0.278 0.186

GID GCGP 0.179 0.143 0.249 0.217 0.143

GCAP 0.159 0.130 0.232 0.198 0.130

ACGP 0.162 0.133 0.236 0.201 0.133

ACAP 0.165 0.134 0.237 0.204 0.134

Mean 0.166 0.135 0.238 0.205 0.135

IBL GCGP 0.589 0.438 0.631 0.644 0.438

GCAP 0.589 0.438 0.632 0.644 0.438

ACGP 0.589 0.438 0.631 0.644 0.438

ACAP 0.588 0.436 0.629 0.641 0.436

Mean 0.5887 0.4376 0.6308 0.6432 0.4376
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Table 8: Quality analysis of the 118035 image with the CS, VM, JSS, and CHI

metrics.

Metrics (K=2)

Alg. Model CS VM JSS CHI

ID GCGP 0.810 0.283 0.453 184910.025

GCAP 0.810 0.283 0.453 184682.459

ACGP 0.722 0.277 0.452 163659.995

ACAP 0.543 0.311 0.452 68588.861

Mean 0.721 0.288 0.452 150460.335

GID GCGP 0.810 0.283 0.453 184910.025

GCAP 0.810 0.283 0.453 184682.459

ACGP 0.722 0.277 0.452 163659.995

ACAP 0.543 0.311 0.452 68588.861

Mean 0.721 0.288 0.452 150460.335

IBL GCGP 0.927 0.586 0.452 133485.637

GCAP 0.928 0.586 0.452 133528.359

ACGP 0.927 0.585 0.452 133460.767

ACAP 0.923 0.583 0.452 133191.467

Mean 0.9262 0.5850 0.4521 133416.557
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Similarly, Fig. 8 contains the segmentation results of 124084. From the second,

third and fourth columns of Fig. 8, it can be seen that IBLMM is able to detect the

flower petals pretty smoothly as compared to its competitors. Table 9 and Table 10

contain the qualitative analysis of outputs from image 124084.

Figure 8: Column 1: Contains the original image (124084.jpg) followed by the three

ground-truths. Column 2: Contains the segmentation outputs from ID’s version of

GCGP, GCAP, ACGP, and ACAP models, Column 3: Contains the segmentation

outputs from GID’s version of GCGP, GCAP, ACGP, and ACAP models, Column 4:

Contains the segmentation outputs from IBL’s version of GCGP, GCAP, ACGP, and

ACAP models
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Table 9: Performance evaluation of the 124084 image with the ARI, AMIS, NMIS,

MIS and HS metrics.

Metrics (K=2)

Alg. Model ARI AMIS NMIS MIS HS

ID GCGP 0.046 0.030 0.084 0.044 0.030

GCAP 0.134 0.085 0.162 0.126 0.086

ACGP 0.053 0.035 0.092 0.052 0.035

ACAP 0.065 0.042 0.104 0.062 0.042

Mean 0.075 0.048 0.110 0.071 0.048

GID GCGP 0.112 0.071 0.150 0.104 0.071

GCAP 0.112 0.071 0.150 0.104 0.071

ACGP 0.112 0.071 0.150 0.104 0.071

ACAP 0.112 0.071 0.150 0.104 0.071

Mean 0.112 0.071 0.150 0.104 0.071

IBL GCGP 0.502 0.354 0.511 0.519 0.354

GCAP 0.500 0.352 0.508 0.516 0.352

ACGP 0.500 0.353 0.510 0.517 0.353

ACAP 0.501 0.353 0.510 0.517 0.353

Mean 0.5007 0.3529 0.5097 0.5171 0.3529
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Table 10: Quality analysis of the 124084 image with the CS, VM, JSS, and CHI

metrics.

Metrics (K=2)

Alg. Model CS VM JSS CHI

ID GCGP 0.239 0.053 0.454 5717.493

GCAP 0.313 0.132 0.454 15553.412

ACGP 0.249 0.061 0.454 6769.251

ACAP 0.264 0.071 0.454 8221.494

Mean 0.266 0.079 0.454 9065.413

GID GCGP 0.327 0.115 0.000 47850.229

GCAP 0.326 0.115 0.000 47616.519

ACGP 0.326 0.115 0.000 47471.541

ACAP 0.326 0.114 0.000 47390.939

Mean 0.326 0.115 0.000 190329.228

IBL GCGP 0.759 0.472 0.427 592730.642

GCAP 0.754 0.469 0.427 589902.293

ACGP 0.756 0.471 0.427 587628.857

ACAP 0.756 0.471 0.427 591670.571

Mean 0.7562 0.4707 0.4268 590483.091
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Fig. 9 contains the segmentation results of image 376086. From the second, third

and fourth columns of Fig. 9, it can be seen that IBLMM is able to detect the two

men more accurately as compare to GIDMM and IDMM. Table 11 and 12 contain

the image segmentation results for image 376086.

Figure 9: Column 1: Contains the original image (376086) followed by three ground-

truths. Column 2: Contains the segmentation outputs from ID’s version of GCGP,

GCAP, ACGP, and ACAP models, Column 3: Contains the segmentation outputs

from GID’s version of GCGP, GCAP, ACGP, and ACAP models, Column 4: Contains

the segmentation outputs from IBL’s version of GCGP, GCAP, ACGP, and ACAP

models
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Table 11: Performance evaluation of the 376086 image with the ARI, AMIS, NMIS,

MIS and HS metrics.

Metrics (K=2)

Alg. Model ARI AMIS NMIS MIS HS

ID GCGP -0.004 0.047 0.109 0.097 0.047

GCAP -0.003 0.040 0.091 0.084 0.041

ACGP -0.006 0.023 0.071 0.049 0.023

ACAP -0.004 0.047 0.112 0.098 0.047

Mean -0.004 0.039 0.096 0.082 0.039

GID GCGP -0.004 0.046 0.107 0.095 0.046

GCAP -0.004 0.047 0.110 0.097 0.047

ACGP -0.004 0.048 0.112 0.098 0.048

ACAP -0.004 0.048 0.112 0.098 0.048

Mean -0.004 0.047 0.110 0.097 0.047

IBL GCGP 0.064 0.103 0.180 0.208 0.103

GCAP 0.061 0.102 0.178 0.206 0.102

ACGP 0.062 0.102 0.178 0.206 0.102

ACAP 0.064 0.103 0.179 0.208 0.103

Mean 0.0627 0.1027 0.1788 0.2070 0.1028

48



Table 12: Quality analysis of the 376086 image with the CS, VM, JSS, and CHI

metrics.

Metrics (K=2)

Alg. Model CS VM JSS CHI

ID GCGP 0.267 0.078 0.000 197432.441

GCAP 0.212 0.066 0.003 165708.431

ACGP 0.231 0.041 0.000 71589.989

ACAP 0.274 0.079 0.000 197429.295

Mean 0.249 0.066 0.001 158040.039

GID GCGP 0.260 0.076 0.001 195016.547

GCAP 0.268 0.078 0.000 198092.848

ACGP 0.273 0.079 0.000 198893.445

ACAP 0.273 0.079 0.000 198893.445

Mean 0.269 0.078 0.000 790896.285

IBL GCGP 0.324 0.153 0.136 54345.372

GCAP 0.322 0.151 0.136 54980.749

ACGP 0.322 0.151 0.136 56306.326

ACAP 0.324 0.152 0.136 54602.056

Mean 0.3229 0.1516 0.1359 55058.626

49



3.5.2 Experiment 2

Considering Fig. 10 and Fig. 11, the first image is the original one (n291030), followed

by eight outputs, out of which the first four outputs are computed using rgb color

space and the remaining four outputs are obtained by using l1l2l3 color space.

Figure 10: Original image (n291030) followed by the eight output images from ID’s

version of the GCGP, GCAP, ACGP, and ACAP models, out of which the first four

images, have used rgb color space and remaining four have used l1l2l3 color space.
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Figure 11: Contains the original image (art255) followed by the eight output images

from ID’s version of the GCGP, GCAP, ACGP, and ACAP models. Out of which the

first four images, have used rgb color space and remaining four have used l1l2l3 color

space.
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Also, Fig. 12 and Fig. 13 contain the segmentation output of images n291030

and art255 respectively. In Fig. 12 and Fig. 13, the first image is the original one,

followed by eight outputs, out of which in the first four image, rgb color space is used

and for rest segmentation outputs, l1l2l3 color space is used.

Figure 12: Original image (n291030) followed by the eight output images from GID’s

version of the GCGP, GCAP, ACGP, and ACAP models out of which the first four

images, have used rgb color space and remaining four have used l1l2l3 color space.
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Figure 13: Original image (art255) followed by the eight output images from GID’s

version of the GCGP, GCAP, ACGP, and ACAP models, out of which the first four

images, have used rgb color space and remaining four have used l1l2l3 color space.
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Similarly, Fig. 14 and Fig. 15 contain the segmentation output of image n291030

and art255 respectively. In Fig. 14 and Fig. 15, the first image is the original one,

followed by eight outputs, out of which the first four segmentation output, rgb color

space is used and for remaining four outputs, l1l2l3 color space is used.

Figure 14: Original image (n291030) followed by the eight output images from IBL’s

version of the GCGP, GCAP, ACGP, and ACAP models out of which the first four

images, have used rgb color space and remaining four have used l1l2l3 color space.
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Figure 15: Original image (art255) followed by the eight output images from IBL’s

version of the GCGP, GCAP, ACGP, and ACAP models out of which the first four

images, have used rgb color space and remaining four have used l1l2l3 color space.
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Chapter 4

Conclusion

The main motivation of this thesis is to develop sophisticated algorithms for image

segmentation. We employed three approaches for integrating spatial information

to FMM. In first two approaches, the spatial information is incorporated by using

indirect information of M as prior knowledge [16] and MRF [10]. In chapter two,

we have implemented IDMM and GIDMM using these two methods. The ID and

GID are chosen precisely because of their flexible property of approximating many

shapes [17]. Also, in contrast to Gaussian, it can be skewed to the left or right. We

have used BSD500 dataset for experimentation. It has been found that the proposed

algorithms outperformed the GMM [16, 10]. Lastly, in third chapter we have used a

third approach proposed [51] in which the authors have suggested the incorporation

of traditional FMM with CP and PP mean templates. These methods ensure the

integration of spatial information by using peer pixels information and thus, makes

the FMM more robust to noise. We explained how the mean templates integrate

spatial information by introducing the pixel’s weight in mixture model estimation. We

have implemented IDMM, GIDMM, and IBLMM versions of GCGP, GCAP, ACGP,

and ACAP models. These Semi-Bounded FMM are chosen precisely because of their

flexibility that allow to describe many shapes. We have used BSD500 and CVCL

datasets for experimentation. It has been found that out of the proposed algorithms

IBLMM outperformed the GIDMM and IDMM. Also, l1l2l3 color space is far better

than rgb and the traditional RGB color space. Future works could be devoted to the

application of the proposed models and approaches for object detection and tracking

as well as video segmentation.
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