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Abstract

Quantitative ultrasound: low variance estimation of backscattering and

attenuation coefficients

Zara Vajihi

One of the main limitations of ultrasound imaging is that image quality and interpretation

depend on the skill of the user and the experience of the clinician. Quantitative ultrasound

(QUS) methods provide objective, system-independent estimates of tissue properties such

as acoustic attenuation and backscattering properties of tissue, which are valuable as ob-

jective tools for both diagnosis and intervention. Accurate and precise estimation of these

properties requires correct compensation for intervening tissue attenuation. Prior attempts

to estimate intervening-tissues attenuation based on minimizing cost functions that com-

pared backscattered echo data to models have resulted in limited precision and accuracy.

The first contribution of this thesis is that we incorporate the prior information of piece-

wise continuity of QUS parameters as an L2 norm regularization term into our cost function

to overcome these limitations. We further propose to calculate this cost function using Dy-

namic Programming (DP), a computationally efficient optimization algorithm that finds

the global optimum. Our results on tissue-mimicking phantoms show that DP substantially

outperforms a state-of-the-art method in terms of both estimation bias and variance.

The second contribution of this thesis is that to further improve the accuracy and preci-

sion of this DP method, we propose to use L1 norm instead of L2 norm as the regularization

term in our cost function and optimize the function using DP. Our results show that DP with
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L1 regularization reduces bias of attenuation and backscatter parameters even further com-

pared to DP with L2 norm. Besides, we employ DP to estimate the QUS parameters of a

new phantom with large scatterer size and compare the results of LSq, L2 norm DP and L1

norm DP. Our results show that L1 norm DP outperforms L2 norm DP, which itself outper-

forms LSq. In the future, the contributions of this thesis can potentially be used for finding

imaging biomarkers associated with different types of pathology and help clinicians obtain

an objective assessment of intrinsic tissue properties.
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Chapter 1

Introduction

In this chapter, the fundamental aspects of Ultrasound imaging are studied. A brief history

of ultrasound utilization is given at the beginning. Then, the physics of ultrasound is ex-

plained and some of the applications of it are reviewed. Finally, an overview of quantitative

ultrasound which is the main concentration of this thesis is provided.

1.1 Basic Physics of Ultrasound

Ultrasound waves were initially used in submarines in the early 19th century for naviga-

tion. It was initiated to the medical field about 50 years later for diagnosis and treatment

purposes. With the technological advancements in electronics and computation, ultrasound

machines developed to a worldwide imaging technique with a variety of applications [1].

Ultrasound or Ultrasonic (US) waves are sound waves with a frequency of higher than

20 kHz, which exceed the upper limit of audible sounds for human hearing [2]. US is cat-

egorized as mechanical waves with longitudinal motion, i.e. it moves along the substances

by compression and expansion without any side-to-side movement [3].

Ultrasound machines utilize ultrasound waves in the typical frequency range of 1 to
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Figure 1: A Supersonic Imagine ultrasound machine at PERFORM center
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Figure 2: Four different ultrasound transducers available at PERFORM center

20 MHz to inquire information about the human organs. These waves are beamed to the

region of interest of the human body using a device named transducer (or probe). The

transducer is an electronic device consisting of multiple piezoelectric crystals [4, 5]. Based

on the different arrangements of the piezoelectric crystals and consequently, their different

applications, a variety of US transducers are available in the market. Fig. 1 is a picture of

one of the available US machines for the research purpose at PERFORM center. Fig. 2

represents four different transducers of this machine.

The transducer, first, converts the electrical charge into vibrations, which produce ultra-

sound waves. This phenomenon is named as the piezoelectric effect, which was originally
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Figure 3: Ultrasound wave interactions with tissue

introduced in 1880. The US waves penetrate the human body and travel through different

tissue layers with various acoustic characteristics along the transmission path (Fig. 3). A

small fraction of US waves reflect back to the transducer from the boundaries of layers,

whereas the remainder continues penetrating deeper, dissipate in form of heat, or scatter

in other directions. The reflected echoes are received by the transducer and converted to

electrical pulses for further process. These received pulses are technically called Radio

Frequency (RF) data.

Similar to any other sound wave, reflected US waves can be described in terms of fre-

quency, wavelength, and amplitude which are respectively measured in Hertz, millimeter,

and decibel. Each of these parameters carries important information about the properties

of scanned tissue and can be interpreted for different purposes.

The primary interpretation of US waves is constructed from the amplitude of the wave
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(a) Uniform Phantom (b) Layered Phantom with Uni-

form Backscatter

(c) Layered Phantom with Uni-

form Attenuation

Figure 4: B-mode image of three different tissue-mimicking phantoms

at different time delays. The gray-scale image displayed on the clinical US machine screen,

called B-mode image, is basically the envelope detection of the reflected US wave. In the B-

mode image, organs with different density are represented with a different brightness which

is due to different acoustic impedances. Acoustic impedance is defined as the multiplication

of density parameter by the velocity of the wave in the tissue [6, 7]. The B-mode image of

three phantoms that were used in this work is represented in Fig. 4.

Generally, organs that contain air, such as lungs, have lowest acoustic impedance, while

dense organs, like bones, have the highest acoustic impedance. This variety in acoustic

impedance of human organs results in proportional reflection of echoes and consequently,

different brightness in the B-mode image. Nevertheless, it requires deep knowledge of

human anatomy and vast experience in using US images for a radiologist or practitioner to

be able to correctly employ the reproduced B-mode images to diagnose any irregularity in

patient’s body.

Moreover, within a uniform tissue, there are normally some particles causing partial

scatterings that lead to a rise in the scattering of any sub-resolution structures [8]. These

partial scatterings appear as speckles in B-Mode images that could make the analysis of

the US images more difficult. Many research and efforts have been done on reducing these
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scatterings effects and make the B-mode images more distinct. However, these particles

actually define microstructure of the material.

Therefore, carefully studying the signals that are reflected back from these speckles lead

us to a more accurate understanding of the tissue characteristics. Tracking these speckles

in the images collected before and after compression of the tissue reveals the stiffness of

it at the different depth which is called elastography [9, 10]. Analyzing the speckles in

US images are also used for the purpose of segmentation, sensorless 3D freehand US, and

tissue type classification [11, 12, 13].

1.2 Quantitative Ultrasound

As mentioned before, the ultrasound B-mode image represents a qualitative map of human

body tissue so that the radiologist or practitioner can detect any strangeness in the tissue

such as a tumor. However, it is not easy, and not even possible in many cases, to realize the

type of irregularity or the tumor by investigating the B-mode image. Regularly, a biopsy

is required to find out the quantitative specifications of the tumor and diagnosing it as a

benign or malignant cancer which leads to different treatment procedures.

Despite all the risks, costs, and difficulties of biopsy, a large group of them results in

a negative result which means it was not necessary to perform the biopsy. Even for those

positive results, there is a high risk of spreading or infection for existing cancer. Therefore,

it is highly desired to have a safer and less destructive solution to find out the quantitative

properties of the abnormal tissue. Quantitative Ultrasound, which is the subject of this

thesis, is one of the most successful and easily applicable solutions for this problem [14].

Quantitative Ultrasound (QUS) studies the RF data collected to find out the backscat-

tering and attenuation properties of the US wave reflected from the tissue [15]. These two

specifications are different for various types of the tissue and could specifically determine
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the class of any tumor or cyst. Being non-invasive and widely available, QUS could be a

valuable substitution for harmful methods like the biopsy [16].

There have been many studies in QUS that suggest different analysis of RF data to

find either backscattering or the attenuation of the tissue and various applications for them

[17, 18, 19]. However, the proposed methods have not yet provided the adequate accu-

racy required to be used in clinical applications. In this thesis, a research in QUS field is

conducted to find a better method in estimating microstructure properties of tissues.

1.3 Thesis Outline

In Chapter 2, a novel method is introduced for estimating the backscatter and attenuation

properties of tissue using a dynamic programming approach. Dynamic programming glob-

ally searches over all possible solutions and finds the optima [20]. Moreover, an L2 norm

regularization term is added to the cost function which resulted in a low variance estima-

tion for unknowns. Finally, the results of this novel method were compared to the results

of a previous state-of-the-art work [21]. It is clearly shown that this method successfully

provides more accurate and precise estimations for quantitative coefficients of tissue. This

work is published as a journal paper in IEEE Transactions on Ultrasonics, Ferroelectrics,

and Frequency Control (IEEE TUFFC).

In Chapter 3, both the novel method proposed in Chapter 2 and the previous work by

Kibo et al. [21] were applied to the data acquired from a tissue mimicking phantom with

large scatterer size. Despite the difficulty of estimation with the presence of large scatterers,

the proposed method succeeds to provide a highly accurate estimation for the unknown

values. Finally, the substitution of L1 norm is suggested for the regularization in Chapter

3 to have a more accurate estimation in discontinuities of unknown values. The results of

this chapter are submitted as a conference paper to the IEEE International Symposium on
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Biomedical Imaging (ISBI), 2019, which is currently under revision.
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Chapter 2

Low Variance Estimation of Backscatter

Quantitative Ultrasound Parameters

Using Dynamic Programming

This chapter is published in IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-

quency Control [22].

2.1 Introduction

Ultrasound is an inexpensive, real-time, safe and easy-to-use imaging modality that is

widely used in numerous clinical applications. However, it only provides qualitative bright-

ness values, which cannot be directly used for classification of tissue pathology. Quantita-

tive ultrasound (QUS) aims to solve this limitation by providing attenuation and backscat-

tering properties of the tissue. As such, QUS has numerous applications in both diagnosis

and therapy monitoring. Some clinical applications of attenuation estimation include dif-

ferentiation of fatty liver from normal liver [23], monitoring of liver ablation [24], diagnosis
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of thyroid cancer [25, 26] and assessment of bone health [27, 28, 29]. Backscatter estima-

tion has been successfully used in the classification of benign versus malignant masses in

several different organs such as eyes [30], breast [31, 32, 33] and thyroid [34, 35], and used

to monitor the normal function of kidneys [36]. A review of recent QUS techniques and

applications can be found in [37, 38].

Nevertheless, QUS has been less widely translated into clinical applications compared

to ultrasound elastography. This is mainly due to the difficulty in accurately and precisely

estimating attenuation and backscattering. To address this issue, Nam et al. [21] proposed a

Least Squares (LSq) method to simultaneously estimate backscatter and attenuation coeffi-

cients. Although this method substantially improved the results compared to the commonly

used Reference Phantom Method (RPM) [39], it calculates these parameters at each spatial

location independent of its neighbors and hence neglects spatial dependency of these coef-

ficients. More recently, Coila et al. [40] adapted the conventional spectral log difference

technique for attenuation estimation by adding a regularization term. Despite substantially

improving the results, this work only estimates attenuation (not backscattering). These two

properties are closely related and our goal is to simultaneously calculate both of them.

In this chapter, we propose a novel cost function that incorporates both data terms

and spatial information in the form of regularization. We propose to use the Dynamic

Programming (DP) method to optimize this cost function. DP breaks the main cost function

into small problems, and efficiently obtains the global optimum by exploiting overlapping

computations in these sub-problems. An analogous use of DP has been reported to estimate

high-quality displacement estimates in ultrasound elastography [41, 42] and in computer

vision [43].

This chapter is summarized as follows. In Section 3.2, we show how the spatial rela-

tionship of attenuation and backscatter coefficients can be incorporated into a cost function,

and outline the proposed DP framework for optimization of the cost function. Experiments
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and results on phantoms are provided in Section 3.4, and the chapter is concluded in Sec-

tion 3.5.

2.2 Methods

Quantitative ultrasound often aims at estimating attenuation and backscatter properties of

tissues, and parameters derived from them. The total attenuation along an RF line is usually

modeled as:

A(f, z) = exp(−4αfz) (1)

where A is the total attenuation corresponding to frequency f and depth z, and α is the

effective attenuation coefficient versus frequency (i.e., the average attenuation from inter-

vening tissues). Backscatter coefficients are often parametrized with the following power

law equation:

B(f) = bfn (2)

where b is a constant coefficient and n represents the frequency dependence. Our goal is to

find the values of α, b and n from Eqs. 18 and 19.

The framework for the proposed algorithm is based on the Reference Phantom Method

developed by Yao et al [39]. Let Ss(f, z) and Sr(f, z) be, respectively, the sample and

reference echo signal power spectra computed from radiofrequency (RF) echo signals ob-

tained from scanning a tissue sample ( or a tissue-mimicking test phantom) and a reference

phantom ( of known acoustic properties) with the same ultrasound transducer and the same

imaging settings (i.e. frequency, focal properties, etc). Taking the ratio of the two spectra

eliminates any dependence on the imaging setting (assuming the media have equivalent
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sound speeds [44]), leaving only attenuation and backscatter-dependent terms:

RS(f, z) =
Ss(f, z)

Sr(f, z)
=

Bs(f)

Br(f)
.
As(f, z)

Ar(f, z)
=

bsf
ns

brfnr

exp{−4(αs − αr)f.z}

(3)

where the subscripts s and r refer to the sample and the reference phantom, respectively.

Taking the natural logarithm of Eq. 20 leads to

ln
Ss(f, z)

Sr(f, z)
= ln

bs
br

+ (ns − nr) ln f − 4(αs − αr)f.z. (4)

Substituting the following variables:

ln
Ss(f, z)

Sr(f, z)
≡ X(f, z), ln

bs
br

≡ b, ns − nr ≡ n, αs − αr ≡ α (5)

into Eq. 4 leads to:

X(f, z) = b+ n ln f − 4αfz (6)

where X is known from the experimental data, and the goal is to estimate α, b and n, which

reveal quantitative properties of the sample.

In the next section, we first briefly overview the Least Squares (LSq) method for recov-

ering these parameters [21]. We will then present a novel framework wherein continuity

of quantitative tissue properties is incorporated into the cost function. We also propose a

global, yet efficient, optimization of this cost function using DP.

2.2.1 Least Squares (LSq) Method

Nam et al. [21] proposed the following LSq formulation for estimating α, b and n:

[α̂, b̂, n̂] = argmin
α,b,n

D (7)

where the data term D (in contrast to a regularization term that we will introduce later in

Eq. 22) is:

D =
K∑

i=1

(X(fi, z)− b− n ln fi + 4αfiz)
2 (8)
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where the summation is over the frequency range of X . The search range for these param-

eters is usually confined as follows:

α1 ≤ α ≤ α2, b1 ≤ b ≤ b2, n1 ≤ n ≤ n2 (9)

where α1 and α2 , b1 and b2, and n1 and n2 are the lower and upper search limits for the

attenuation coefficient α, the magnitude of the backscatter coefficient b, and the frequency

dependence of the backscatter coefficient n, respectively. Search ranges contained k =

1, ..., K discrete values for α, l = 1, ..., L discrete values for b, and m = 1, ...,M discrete

values for n.

The aforementioned LSq formulation does not consider the fact that the properties of

the sample do not arbitrarily change across the phantom, and therefore can result in esti-

mates with large variance. The proposed Dynamic Programming (DP) framework in the

next section addresses this issue.

2.2.2 Dynamic Programming (DP)

Parameters α, b and n can rapidly change from one tissue type to another, but they change

gradually within each tissue type. Thus, these parameters can be considered piece-wise

continuous [45]. This condition can be used to improve parameter estimation. Similar to

our previous work in the field of elastography [41, 42], we proposed a regularized cost

function that incorporates both data terms and prior information for parameter estimation.

Our cost function has the general form of

C = D + wR (10)

where D is the data term of Eq. 8, w and R are the vector of regularization weights and a

regularization term, respectively, defined as:

w = [wα, wb, wn] (11)
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R = (αj − αj−1)
2 + (bj − bj−1)

2 + (nj − nj−1)
2 (12)

with subscripts j and j−1 referring to axial positions at the current and previous rows, and

wα, wb, and wn are the regularization weights for each unknown. Let vector u encapsulate

the unknowns as follows:

u = [α, b, n] (13)

To find the global minimum of this cost function, we use the efficient DP framework,

and formulate the following recursive cost function:

C(j,uj) = min
u

{C(j − 1,uj−1) + wR(uj−1,u)}+∆(j,u) (14)

where ∆(j,u) is:

∆(j,u) = ∆(j, α, b, n) =
K∑

i=1

(X(fi, z)− b− n ln fi + 4αfiz)
2 (15)

The minimization is performed on three unknowns u at each location. The cost function

in Eq. 28 is formed as a 4D matrix Cjklm including the location (zj) as well as vector u

with components [αk, bl, nm] where j refers to each of the j = 1, ..., J axial positions,

k = 1, .., K, l = 1, ..., L and m = 1, ...,M refer to the discrete search range values of

parameters α, b, and n.

As a simplified illustrative example, Fig. 5 shows a 2D version of Cjklm, i.e., Cjk which

considers only one unknown, attenuation coefficient α. We allocate a 2D matrix to store

different values of Cjk as zj and αk vary (Fig. 6). Every cell in this matrix is filled with

cost values at the associated αk and depth with that cell. In order to find the cost value at a

cell in Fig. 6, we first calculate the ∆ term in Eq. 28 at zj and the corresponding αk. Then,

the minimization part in Eq. 28 is performed. The index j−1 in this term indicates that the

cost value at depth j depends on the cost value at the previous depth. In other words, we

add the values stored in row zj−1 to the regularization term (Eq. 12) and find its minimum.
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Figure 5: At each ROI zj , different values of αk, bl, and nm are explored. To simplify

illustration, only α is shown in this figure.

We also store the values of unknown coefficients for which this minimization occurs (a step

technically known in DP as memoization). These locations are stored in M , a 2D matrix

with the same size as C in this reduced example. Finally, the ∆ term added to the minimum

value is stored as the value of the cost function at the corresponding cell to be used for the

next depth.

The DP cost function must be calculated for every axial row. After that, a final mini-

mization is performed on the cost function in the last row to estimate the α at that depth.

Then, starting from the values stored in M , we trace back the minimum points to the first

row using the memoization matrix M .

Extending this reduced example of DP to the quantitative ultrasound problem in Eq. 28

with three unknowns, u , and depth dependency, the matrix in Fig. 6 as well as memoization

matrix M change to 4D matrices. Consequently, cost values at depth j illustrated as a row

in Fig. 6 will be a 3D matrix as shown in Fig. 7.
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Figure 6: 2D matrix of cost values at different depths and αk. Pink cells represent the

minimum values that are traced back from the last row to the first one using memoization

matrix M . The cost function in this thesis is 4D. To simplify illustration, only α is shown

in this figure.

Figure 7: 3D matrix of the cost values at one specific depth. It corresponds to one ROI of

the 2D matrix in the Fig. 6 wherein only α was considered as an unknown.
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(a) Attenuation Coefficient α (b) Backscatter

Figure 8: LSq and DP estimation in the uniform phantom for (a) attenuation coefficient and

(b) backscatter coefficients of Eq. 19.

2.2.3 Data acquisition

Homogeneous phantoms

Two homogeneous tissue-mimicking phantoms, a sample and a reference, were used to

compare the performance of the LSq and DP algorithms. The reference phantom consisted

of an agarose-based gel with graphite powder within a 15×15×5 cm3 acrylic box [46].

The sample phantom was a mixture of water-based agarose-propylene glycol and filtered

milk within a 16×10×10 cm3 acrylic box [46]. Both phantoms had scanning windows

covered by a 25 µm thick Saran-Wrap (Dow Chemical, Midland MI, USA). Solid glass

beads (5-43µm diameter; Spheriglass 3000E, Potter Industries, Malvern, PA) with a mean

concentration of 236 scatterers/mm3 were added to produce incoherent scattering. Ground

truth values of each phantom α, b and n (Table 1) were measured from 2.5 cm-thick test

samples using narrowband substitution (attenuation) and broadband pulse-echo (backscat-

ter) techniques with single-element transducers [47, 48].

Both phantoms were scanned with a 9L4 38 mm-aperture, linear array transducer on

a Siemens Acuson S3000 scanner (Siemens Medical. Solutions USA, Inc., Malvern, PA)

operated at 6.6 MHz center frequency and a transmit focal depth of 3 cm. The scanner
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Table 1: Ground Truth Values for the Uniform Phantom.

Reference Phantom Sample Phantom

α (dB/cm-MHz) 0.670 0.654

b (1/cm-sr-MHzn) 8.79e-06 1.02e-06

n 3.14 4.16

was enabled with the Axius Direct ultrasound research interface to provide radiofrequency

(RF) echo data sampled at 40 MHz [49]. Ten statistically independent RF data frames,

each separated by at least one elevational aperture, were acquired from each phantom. The

following search ranges were used for both LSq and DP:

αs − 0.5 ≤ α ≤ αs + 0.5

e−1bs ≤ b ≤ e1bs

ns − 2 ≤ n ≤ ns + 2

where αs, bs, and ns are ground truth values of the sample phantom.

Layered phantoms

To compare the performance of the LSq and DP algorithms when estimating piece-wise

varying acoustic properties, we applied both methods to RF data from two layered tissue

mimicking phantoms, each composed of three axially arranged layers: a 4 cm-thick top

layer, a 1.5 cm-thick bottom layer, and a 1.5 cm-thick central layer offering contrast of ei-

ther attenuation or backscatter with respect to the other two layers [50]. The first phantom

had uniform backscatter and higher attenuation in the second layer. The second phantom

had uniform attenuation and a central layer with 6 dB higher backscatter than the other

two layers. Both phantoms consisted of an emulsion of ultrafiltered milk and water-based
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Table 2: Ground Truth Values for Layered Phantom with Uniform Backscatter.

Layer 1 Layer 2 Layer 3

α (dB/cm-MHz) 0.510 0.779 0.520

b (1/cm-sr-MHzn) 1.60e-06 3.22e-06 1.60e-06

n 3.52 3.13 3.52

Table 3: Ground Truth Values for Layered Phantom with Uniform Attenuation.

Layer 1 Layer 2 Layer 3

α (dB/cm-MHz) 0.554 0.580 0.554

b (1/cm-sr-MHzn) 4.82e-07 3.94e-06 4.82e-07

n 3.80 3.38 3.80

gelatin with 5–43 µm diameter glass beads as sources of scattering (3000E, Potters In-

dustries, Valley Forge, Pennsylvania). Attenuation was controlled by varying amounts of

evaporated milk, while the strength of backscatter was increased by augmenting the con-

centration of glass beads. More detail on the phantom properties can be found in Nam et

al [21]. Ground truth values of attenuation and backscatter parameters of the three layers

were obtained similarly as for the uniform phantoms and are shown in Tables 2 and 3.

The layered phantoms were scanned with a 18L6 58 mm-aperture, linear array trans-

ducer on a Siemens Acuson S2000 scanner (Siemens Medical. Solutions USA, Inc., Malvern,

PA) operated at 8.9 MHz center frequency and a transmit focal depth of 5.3 cm. RF echo

data from ten statistically independent RF data frames were obtained through the system’s

Axius Direct ultrasound research interface [49].

Reference echo data were obtained from the top layers of the phantoms by scanning

from their flank [21]. The search ranges for both DP and LSq for the three parameters of

19



interest included the expected values for each phantom’s layer:

αsMin − 0.5 ≤ α ≤ αsMax + 0.5

e−1bsMin ≤ b ≤ e1bsMax

nsMin − 2 ≤ n ≤ nsMax + 2

where αsMin, bsMin, and nsMin refer to the minima of the ground truth values in three layers

of the layered phantoms for the coefficient α, b, and n, respectively, and αsMax, bsMax, and

nsMax correspondingly refer to the maxima of the ground truth values in three layers of the

layered phantoms for the coefficient α, b, and n.

2.2.4 Data processing

Both LSq and DP were implemented on the RF data frames using custom-built MATLAB

routines. Echo-signal power spectra were computed at different axial and lateral locations

by raster-scanning a 4×4 mm2 spectral estimation window with an 85% overlap ratio and

using a multitaper approach with NW=3 [51]. Because different transducers were used

in each experiment, this approach produced a power spectrum array with 74 rows and

40 columns for uniform phantoms and 108 rows and 86 columns for layered phantoms,

which correspond to different axial and lateral locations, respectively. To reduce correlation

between different columns, we selected 4 columns in each phantom separated as far as

possible as follows. For the uniform phantom, we selected columns 1, 10, 20 and 40. For

the layered phantoms, we picked columns 10, 30, 45, and 80. Each experiment consists of

10 frames, yielding a total of 40 total columns in each experiment. Each cell contained a

vector of normalized power spectrum estimates. The LSq and DP estimators were fed with
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the normalized power spectra in the frequency range from 3.7–7 MHz corresponding to the

spectral band with power content at least 10 dB above the noise floor measured at 15 MHz.

We applied DP and LSq to four different lateral positions from 10 different frames of

RF data, i.e 40 sample positions in total. The weights of the regularization term in DP for

uniform phantom were set to 108 in all 40 sample positions. To provide a fair comparison,

we used identical search ranges for both LSq and DP.

In the case of the layered phantoms, the LSq and DP methods were applied to the 108

rows and 40 columns of power spectra from 10 different frames. The weights of the DP

regularization were set to wα = 106 and wb = wn = 103 for the uniform backscatter

phantom, and wα = 5 × 106 and wb = wn = 10 for the uniform attenuation phantom.

These weights are automatically selected as follows. First, we run LSq and investigate the

Normalized Range (NR) of b values by dividing the range of LSq estimations for backscat-

ter coefficient b by the mean value of estimates. If the NR is greater than eight, we use

the lower regularization value for wb and wn above. Otherwise, these weights are set to a

higher value as for the uniform backscatter phantom. This is similar to our previous work

on Conditional Random Fields (CRF) [52] where we adjust the regularization term based

on the data term.

2.3 Results

2.3.1 Uniform Phantom

Fig. 8(a) shows the DP (red) and the LSq (blue) estimates of αs vs axial distance. Thick,

colored lines and errorbars correspond to the mean and standard deviations among 40 es-

timates at each depth, respectively. Fig. 8(b) show the reconstructed BSC parameters bs

and ns. Black dashed lines indicates expected values. DP substantially outperforms LSq in
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Table 4: The standard deviation (STD) and bias in the Uniform Phantom experiment. The

smallest values are highlighted in bold font.

LSq DP

Standard Deviation

α (dB/cm-MHz) 0.049 2.236e-16

b (1/cm-sr-MHzn) 9.402e-07 1.706e-21

n 0.410 3.577e-15

Bias

α (dB/cm-MHz) 0.080 0.003

b (1/cm-sr-MHzn) 3.660e-06 3.341e-06

n 0.322 0.820

estimation of all three parameters.

The bias and standard deviation averaged over the 6cm depth range of αs, bs and ns

are shown in Table 4, and the uncertainty in these estimates are shown in Table 5. The

units for parameters α and b are respectively dB·cm−1MHz−1 and cm−1sr−1MHzn while

parameter n has no units. Both the value of bias and variance, as well as their uncertainty,

are substantially lower in DP compared to LSq except for the bias of backscatter coefficient

n by LSq which is slightly less than DP; however the uncertainty is still lower for DP.

2.3.2 Layered Phantom

Figs. 9 and 10 show the DP (red) and the LSq (blue) estimates of (a) αs and (b)-(d) the

reconstructed BSC parameters bs and ns for each of the three layers vs axial distance.

Thick, colored lines and errorbars correspond to the mean and standard deviations among

40 estimates at each depth, respectively. Estimates from the DP method closely follow the

depth dependence of effective attenuation αs, in contrast to the high variance of the LSq

method. Black dashed lines indicate expected values. DP substantially outperforms LSq in
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Table 5: Uncertainty in STD and Bias in the Uniform Phantom experiment. The smallest

values are highlighted in bold font.

LSq DP

Standard Deviation

α (dB/cm-MHz) 0.397 0.031

b (1/cm-sr-MHzn) 6.344e-06 3.648e-06

n 2.221 0.353

Bias

α (dB/cm-MHz) 1.744 0.136

b (1/cm-sr-MHzn) 2.790e-05 1.599e-05

n 9.767 1.549

the estimation of the BSC in each of the three layers.

The standard deviation and bias of the two-layered phantoms, as well as the uncertain-

ties of these measurements, are shown in Tables 6 to 9. Again, DP substantially outper-

forms LSq in terms of both standard deviations of the estimates as well as the uncertainty in

these estimates. Although the bias of LSq and DP estimates are comparable, the uncertainty

in the estimated bias is substantially lower in DP.

2.3.3 Effects of expected attenuation

To investigate the performance of DP over a large range of attenuation values, we simulated

a new dataset by assigning values of the sample and reference QUS parameters to the log-

transformed ratio of power spectra (Eq. 19). Specifically, 0.1 ≤ α ≤ 2.5 dB·cm−1MHz−1,

and the values of the other parameters were the same as the expected ones for the uniform

sample and reference phantoms used in the first experiment. Based on the model devel-

oped in Lizzi et al. [53] for the variance of the log-transformed sample-to-reference ratio
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(a) Attenuation Coefficient α (b) Backscatter Coefficients of Layer 1

(c) Backscatter Coefficients of Layer 2 (d) Backscatter Coefficients of Layer 3

Figure 9: LSq and DP estimation of (a) attenuation coefficients and (b–d) backscatter co-

efficients of Eq. 19 in the three-layered phantom with uniform backscattering coefficients

for layer 1, 2, and 3, respectively.

of power spectra, white noise with variance inversely proportional to the number of inde-

pendent scanlines used to estimate one power spectrum (N=10) was added to the simulated

log-transformed normalized power spectra. DP was run on each of the simulated data sets,

and we computed the percent bias and standard deviation of the estimated attenuation with

respect to the expected values.

The bias and standard deviation in the results of DP and LSq for different attenuation

values are plotted in Fig. 11. As it can be observed in Fig. 11(a), for a higher value of

the attenuation coefficient, the bias in the estimation of both methods decreases similarly.

However, the standard deviation in the estimation of DP in Fig. 11(b) demonstrates the
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(a) Attenuation Coefficient α (b) Backscatter Coefficients of Layer 1

(c) Backscatter Coefficients of Layer 2 (d) Backscatter Coefficients of Layer 3

Figure 10: LSq and DP estimation of (a) attenuation coefficient and (b–d) backscatter

coefficients of Eq. 19 in the three-layered phantom with uniform attenuation coefficients

for layer 1, 2, and 3, respectively.

consistency and substantially smaller standard deviation for all values of α compared to

LSq. The standard deviation values of DP are multiplied by 1012 to be visible in the scale

of corresponding values for LSq.

2.3.4 Regularization Weight Analysis

In order to illustrate the impact of regularization weights on the values estimated by DP,

we ran the code for a range of regularization weights for the homogeneous phantom to

compare the bias (Fig. 12) and standard deviation (Fig. 13) at each weight. The bias and

25



Table 6: The STD and bias in the Layered Phantom with Uniform Backscatter experiment.

In each layer, the smallest values are highlighted in bold font.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.059 0.001 0.038 0.014 0.069 0.035

b (1/cm-sr-MHzn) 8.423e-07 7.132e-09 8.979e-07 1.697e-08 5.774e-06 1.471e-07

n 0.323 0.021 0.400 0.014 0.842 0.081

Bias

α (dB/cm-MHz) 0.022 0.009 0.028 0.004 0.091 0.028

b (1/cm-sr-MHzn) 1.272e-06 3.441e-07 4.155e-07 1.242e-06 5.527e-06 5.036e-07

n 0.117 0.062 0.188 0.320 0.290 0.0139

standard deviation of α, b, and n are shown in Figs. 12 and 13, where the corresponding

regularization weight is varied from 1 to 1010 while weights of the other two coefficients

were fixed at 108. These results show that increasing the regularization weight has a small

effect on bias while substantially reducing the variance.

2.3.5 DP and LSq Cost Values

In order to observe the functionality of the LSq and DP cost functions at different un-

knowns along the search ranges, we compared them for the layered phantom with uniform

backscatter coefficients in Fig. 8. Again, as it is hard to illustrate the 4D cost function, we

set α as the only unknown and calculated the cost function of both LSq and DP at their

previously estimated values for b and n and different values of α. Fig. 14 compares the

averaged cost function values obtained by running LSq and DP for 40 different RF data of

this phantom. In Fig. 15, we added n as the second unknown and plotted the 3D cost func-

tion with n and α set as variables. These two figures demonstrate that the DP cost function

is more convex (i.e. has a higher second order derivative) and is therefore less susceptible
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Table 7: The STD and bias in the Layered Phantom with Uniform Attenuation experiment.

In each layer, the smallest values are highlighted in bold font.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.081 5.037e-16 0.043 2.833e-16 0.067 2.844e-16

b (1/cm-sr-MHzn) 1.123e-06 3.622e-07 1.575e-06 3.336e-07 5.857e-06 4.581e-06

n 0.343 0.084 0.508 0.043 0.820 0.212

Bias

α (dB/cm-MHz) 0.050 0.055 0.050 0.059 0.106 0.061

b (1/cm-sr-MHzn) 1.278e-06 6.677e-07 7.073e-07 8.746e-07 4.521e-06 3.206e-06

n 0.352 0.458 0.175 0.083 1.413 0.828

to optimization failures.

2.4 Discussion

The DP method was introduced to simultaneously estimate attenuation and backscatter co-

efficients of tissue-mimicking phantoms. DP was selected as the optimization technique

because it gives the global minimum of the cost function, and is also computationally ef-

ficient. The LSq method, which also simultaneously estimates attenuation and backscatter

coefficients, was used as a benchmark. Both methods were tested on three phantoms: one

homogeneous phantom and two piece-wise homogeneous phantoms.

Fig. 8 clearly indicates that DP results are substantially more precise than LSq results

for both attenuation and backscatter coefficients. The LSq results have a large estimation

variance, compared to very small variance in DP results. This large improvement in the

performance is due to the inclusion of the regularization term, which acts as a prior infor-

mation and eliminates noisy data. It is also due to the optimization scheme, wherein DP
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Table 8: Uncertainties in STD and Bias of Layered Phantom with Uniform Backscatter. In

each layer, the smallest values are highlighted in bold font.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.750 0.067 0.307 0.054 0.264 0.086

b (1/cm-sr-MHzn) 7.170e-06 1.518e-06 8.701e-06 1.685e-06 1.479e-05 2.259e-06

n 3.095 0.454 3.385 0.490 3.252 0.588

Bias

α (dB/cm-MHz) 3.018 0.269 0.783 0.137 0.616 0.199

b (1/cm-sr-MHzn) 2.877e-05 6.102e-06 2.214e-05 4.286e-06 3.429e-05 5.251e-06

n 12.457 1.826 8.630 1.249 7.585 1.370

provides the global minimum of the cost function. Moreover, the bias of DP results in the

homogeneous phantom is lower than that of LSq. The exception was the bias of n, which

was larger for DP. This bias would affect the bias and precision of estimates of the effective

scatterer size, a parameter derived from the frequency dependence of backscatter. We are

currently investigating the severity of these effects.

Fig. 9 shows the comparison of the performance of DP and LSq for the layered phantom

with variable attenuation and constant BSC coefficients. Again, as expected, DP estimates

have much smaller variance compared to LSq results. We also see that despite the regular-

ization term, DP estimates reproduce more accurately the depth dependence of the three

parameters. This is because the penalty for not following the data term at discontinuities

overcomes smoothness penalties.

The last experiment which was on the inhomogeneous phantom with constant attenua-

tion and variable BSC coefficients offered interesting results by both LSq and DP (Fig. 10).

Although bias averaged over depth was similar between LSq and DP, LSq showed an unex-

pected trend of decreasing αs over depth. In addition, the DP results in (b) to (d), demon-

strate that BSC parameters estimated by DP are closer to the expected than those estimated
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Table 9: Uncertainties in STD and Bias of Layered Phantom with Uniform Attenuation. In

each layer, the smallest values are highlighted in bold font.

Layer 1 Layer 2 Layer 3

LSq DP LSq DP LSq DP

STD

α (dB/cm-MHz) 0.670 0.156 0.314 0.156 0.237 0.156

b (1/cm-sr-MHzn) 5.006e-06 1.549e-06 1.081e-05 4.788e-06 1.466e-05 1.150e-05

n 3.063 1.056 3.503 1.890 2.883 2.206

Bias

α (dB/cm-MHz) 2.697 0.627 0.800 0.398 0.551 0.365

b (1/cm-sr-MHzn) 1.976e-05 6.208e-06 2.752e-05 1.220e-05 3.368e-05 2.624e-05

n 12.326 4.245 8.929 4.817 6.713 5.147

by LSq.

The results of Tables 4 to 9 show the standard deviation and bias of LSq and DP, as well

as the uncertainty in these measurements. As expected, DP substantially outperforms LSq

in terms of standard deviation of the estimation while giving similar bias. Furthermore, the

uncertainty in both standard deviation and bias is substantially lower in the proposed DP

method.

Fig. 12 and Fig. 13 show that DP regularization weights have a generally moderate

effect on bias and large effect on standard deviation as expected. These weights are often

treated as hyperparameters in the machine learning community and have to be adjusted in

different applications. Given that ultrasound machines have different imaging presets for

imaging different organs (e.g. breast, thyroid, etc.), these hyperparameters can be stored

alongside those imaging presets.

As demonstrated by the results, the advantage of the DP method relies on its ability

to improve the precision of QUS parameters. In this manuscript, the QUS parameters

came from a power-law model of the backscatter coefficient. We chose this model for two
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(a) %Bias in Attenuation Coefficient α

(b) %STD in Attenuation Coefficient α

Figure 11: Percentage of bias and standard deviation in DP and LSq estimations for simu-

lated data with different attenuation coefficients α.

reasons. First, this model was assumed in the LSq method, thus facilitating the comparison.

Second, the power law does not assume a physical model for the distribution and size of

scatterers in the medium. However, Eq. 19 can be considered a particular case of the more

general equation:

B(f) = B0G(f) (16)

where B0 and G(f) describe the magnitude and frequency dependence of the backscatter

coefficient of tissue, respectively. By properly defining G(f), the DP algorithm can be
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adapted to quantify different scattering parameters of tissue. For example, G(f) can be

defined in terms of scattering form factors to simultaneously estimate attenuation and the

effective size of scatterers in tissue, as initially proposed by Bigelow et al. [54]. Under

conditions of randomly distributed weak scatters, i.e., diffuse scattering, G(f) takes the

form

G(f) = f 4F (f ; aeff ) (17)

where F (f ; aeff ) is the scattering form factor equal to the Fourier transform of the autoco-

variance function of the scattering field. Under conditions of diffuse scattering, F (f ; aeff )

depends only on the effective scatterer size aeff [55]. Thus, by parameterizing F (f ; aeff ),

in terms of a mathematical model, such as a Gaussian function or an exponential function,

the DP algorithm can be modified to estimate the effective scatter size, as well as parameters

related to the magnitude of scattering and the total attenuation. In this sense, this adapta-

tion of the DP algorithm would expand the work of Bigelow et al. [54, 56] by quantifying

the backscatter coefficient magnitude (related to the number density and impedance differ-

ence of scatterers – relative to the background) and by using regularization and dynamic

programing to improve the precision of the estimated parameters. Alternatively, the DP

algorithm can be adapted to compute the packing factor and size of aggregates of Rayleigh

scatterers, as proposed by Franceschini et al. [57, 58]. In this case, G(z, f) is defined as

the product of the Rayleigh backscatter coefficient for individual scatterers (with f 4 depen-

dence) and the structure factor S(f) which takes into account the interaction of scattering

sources. Therefore, the DP strategy can be potentially adapted to quantify parameters from

different scattering conditions, improving the precision over previously proposed methods.

We have picked a very large search range to demonstrate that DP provides the correct

solution even when no good approximate value is known. When applied to real tissue,

based on prior knowledge of the expected values, we can use smaller search ranges that

correspond to that tissue, similar to gain settings in imaging presets that current ultrasound
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machines have for imaging different organs. Since DP running time depends on the search

range, this can substantially reduce the computational complexity of DP. For example, if we

halve the search range for α, b and n, the running time reduces from 17 hours to 8 hours.

Substantially faster runtime can be achieved by implementing the code in C++, parallel

implementation of the method, and multi-resolution search [42].

With a look at all results, it is clear that the regularization term substantially reduces

the estimation variance as expected. However, the reduction in estimation bias is not as

significant as the reduction in variance. This is also expected from the cost function, as the

expected value of the parameters slightly changes with the introduction of the regulariza-

tion term. Bias-variance trade-off is an important issue in estimation theory and an active

field of research [59, 60]. We will investigate this trade-off in future work. We are also

investigating the performance of the DP algorithm in the presence of specular reflectors

that introduce coherent scattering and, therefore, violate the assumption of diffuse scatter-

ing behind the derivation of Eq. 21. In addition, we are exploring situations wherein the

frequency dependence of scattering is substantially different between reference and sample

due to scatterers of different sizes. Moreover, experiments on phantoms with spherical

inclusions are a subject of future work.

2.5 Conclusions

We presented a novel framework for estimation of backscatter quantitative ultrasound pa-

rameters based on Dynamic Programming (DP). The new technique incorporates the prior

information of depth-continuity of parameters into a cost function that is solved globally

using DP. Intuitively, DP considers the data at all depths to estimate u, and finds u that

gives the global minimum of the cost function. All values of u at different depths are
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optimized together in DP, whereas LSq considers each location independently. This sub-

stantially reduced the bias and variance in DP estimates compared to LSq in homogeneous

phantom.
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(a) Bias of α in different regularization weights

(b) Bias of b in different regularization weights

(c) Bias of n in different regularization weights

Figure 12: Bias of DP estimations for coefficients α, b, and n at different weight values

used in DP. In (a), the regularization weight for b and n are fixed at 1e8 while it varies for

α. In (b), the regularization weight for α and n are fixed at 1e8 while it varies for b. In (c),

the regularization weight for α and b are fixed at 1e8 while it varies for n.
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(a) STD of α in different regularization weights

(b) STD of b in different regularization weights

(c) STD of n in different regularization weights

Figure 13: STD of DP estimations for coefficients α, b, and n at different weight values

used in DP. In (a), the regularization weight for b and n are fixed at 1e8 while it varies for

α. In (b), the regularization weight for α and n are fixed at 1e8 while it varies for b. In (c),

the regularization weight for α and b are fixed at 1e8 while it varies for n.
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(a) Cost values at different α in Layer 1

(b) Cost values at different α in Layer 2

(c) Cost values at different α in Layer 3

Figure 14: Cost values of DP and LSq at different values of α within the search range in

each layer of the phantom with uniform backscattering properties. (a) Layer 1 at the depth

of 3.5 cm, (b) Layer 2 at the depth of 4.5 cm, (c) Layer 3 at the depth of 6.5 cm.
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(a) Cost values at different α and n in Layer 1

(b) Cost values at different α and n in Layer 2

(c) Cost values at different α and n in Layer 3

Figure 15: Cost values of DP and LSq at different values of α and n in each layer of the

phantom with uniform backscattering properties. In all three layers, the upper surface is

the result by DP. (a) Layer 1 at the depth of 3.5 cm, (b) Layer 2 at the depth of 4.5 cm, (c)

Layer 3 at the depth of 6.5 cm.
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Chapter 3

L1 and L2 Norm Depth-Regularized

Estimation of the Acoustic Attenuation

and Backscatter Coefficients Using

Dynamic Programming

This chapter has been submitted as a conference paper to the IEEE International Sympo-

sium on Biomedical Imaging (ISBI), 2019, and is currently under review.

3.1 Introduction

Despite the information-rich frequency content of these radiofrequency (RF) echo signals,

the conventional utilization of ultrasound is a grayscale image, titled B-mode image, which

is exclusively the envelope of the amplitude of the ultrasound wave. The QUS methods

proposed in the previous chapter provide estimates of attenuation and backscattering prop-

erties of the tissue by processing the raw RF signals. Identifying such quantitative acoustic
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properties of tissue is of paramount importance in classification of pathology.

Characterization and classification of thyroid nodules [61] and kidneys [62], diagnosis

of fatty liver [63], and detection of preterm birth risk [64] are a few of many clinical appli-

cations of QUS. However, accurately estimating QUS coefficients is still the challenge of

many studies such as [65] and [40]. In order to address this issue, we proposed a Dynamic

Programming (DP) algorithm in the previous chapter which is based on a Least Squares

(LSq) method with L2 norm depth-regularization assuming piece-wise continuous tissue

properties. This novel method substantially reduced the bias and variance of estimation

compared to previous work with LSq [21]. Nevertheless, the accuracy of the predicted

values at the discontinuities of acoustic properties in inhomogeneous tissues could still be

improved.

Here we build upon previous chapter in two ways. First, we propose L1 norm reg-

ularization instead of L2 norm for DP optimization to improve parameter estimate accu-

racy at tissue boundaries. Second, we estimate backscattering and attenuation coefficients

of a tissue-mimicking phantom with marked difference in the frequency dependence of

backscatter, which is related to the size of diffuse scatterers contributing to the ultrasound

echo signal.

3.2 Methods

Quantitative ultrasound often aims at estimating attenuation and backscattering, and pa-

rameters derived from them. The total attenuation along an RF line is usually modeled as:

A(f, z) = exp(−4αfz) (18)
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where A is the total attenuation corresponding to frequency f and depth z, and α is the ef-

fective attenuation coefficient versus frequency (i.e., the average attenuation from interven-

ing tissues). Backscattering is often parameterized with the following power-law equation:

B(f) = bfn (19)

where b is a constant coefficient and n represents the frequency dependence. Our goal is to

find the values of α, b and n from Eq. 18 and 19.

Let Ss(f, z) and Sr(f, z) be, respectively, the echo signal power spectra from the

sample and reference phantoms obtained using the same ultrasound transducer and the

same imaging settings (i.e. frequency, focal properties, etc). Taking the ratio of the two

spectra eliminates any dependence on the imaging setting, leaving only attenuation and

backscatter-dependent terms:

RS(f, z) =
Ss(f, z)

Sr(f, z)
=

Bs(f)

Br(f)
.
As(f, z)

Ar(f, z)
=

bsf
ns

brfnr

exp{−4(αs − αr)f.z}

(20)

where the subscripts s and r refer to the sample and the reference phantoms, respectively.

After taking the natural logarithm and some manipulation, we have:

X(f, z) = b+ n ln f − 4αfz (21)

where X is the natural logarithm of RS which is known from the experimental data, b =

ln(bs/br), n = ns − nr, and α = αs − αr. The goal is to estimate α, b and n, which reveal

quantitative properties of the sample. We now show how these parameters can be estimated

using DP.
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3.2.1 Dynamic Programming (DP)

We proposed DP [22] to solve for α, b and n using the following cost function:

C = D + wR (22)

where D, w, and R were respectively the data term, regularization wights, and regulariza-

tion term. The data term was defined as a least squares cost function based on Eq. (21) as:

D =
K∑

i=1

(X(fi, z)− b− n ln fi + 4αfiz)
2 (23)

The regularization weights was defined as:

w = [wα, wb, wn] (24)

while R was set to L2 norm regularization:

R = (αj − αj−1)
2 + (bj − bj−1)

2 + (nj − nj−1)
2 (25)

with subscripts j and j−1 referring to axial positions at the current and previous rows, and

wα, wb, and wn are the regularization weights for each unknown. The Least Squares (LSq)

proposed by [21] considered only the minimization of eq. 23.

In this work, we propose to use the L1 norm as follows:

R = |αj − αj−1|+ |bj − bj−1|+ |nj − nj−1| (26)

Let u encapsulates the unknowns as follows:

u = [α, b, n] (27)

To find the global optimum of this cost function, we use the efficient DP framework, and

formulate the following recursive cost function:

C(j,uj) = min
u

{C(j − 1,uj−1) + wR(uj−1,u)}+D (28)
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The minimization is performed on three unknowns u at each location. The term C(j −

1,uj−1) indicates that we need to take into account value of the cost functions from the

previous axial row. So, in order to find the C(j,uj) value at the current axial position, we

have to evaluate R at α, b, and n and add it to the C matrix of the previous axial row. Then,

we must find the minimum value of this summation, add the data value D to it, and finally

store it in the corresponding element of the cost function matrix.

In the process of finding the minimum value, we also have to store the values of uj for

which this minimization occurs (technically known as memoization). These locations are

stored in M , a 4D matrix with the same size as C.

The DP cost function must be calculated for every axial row. After that, starting from

the last axial row, we trace back the minimum points to the first row using the memoization

matrix M .

3.3 Data acquisition

Three pairs of tissue mimicking phantoms, each pair including a sample and a reference,

were used to compare the performance of LSq, DP L1 and DP L2. The first pair consisted of

homogeneous blocks of agarose-based gels. The sample and reference contained 75–90 µm

diameter and 5–40 µm diameter glass beads, respectively, creating backscatter coefficients

with different frequency dependence. The sample of the second pair was composed of three

layers of an emulsion of ultrafiltered milk and water-based gelatin with 5–43 µm diameter

glass beads as sources of scattering (3000E, Potters Industries, Valley Forge, Pennsylvania),

where the central layer was more attenuating than the outer two. Finally the last sample had

three layers of uniform attenuation in which the central layer was of 6 dB higher backscatter

than the other two layers. The reference of two layered phantoms was the top layer of each

scanned from its side. All phantoms were scanned with a Siemens Acuson S2000 using
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linear array transducers as described in [22].

Both LSq and DP were implemented on the RF data frames using custom-built MAT-

LAB routines. Echo-signal power spectra were computed at different axial and lateral

locations by raster-scanning a 4×4mm2 spectral estimation window with a 85% overlap

ratio and using a multitaper approach with NW=3 [51]. This approach produced a power

spectrum array with 74 rows and 40 columns for the homogeneous phantom and an array

with 108 rows and 86 columns for the layered phantoms, which correspond to different

axial and lateral locations, respectively. Each cell contained a vector of normalized power

spectrum estimates. The LSq and DP estimators were fed with the normalized power spec-

tra in the frequency range from 3.7 MHz to 7 MHz corresponding to the spectral band with

power content at least 10dB above the noise floor measured at 15MHz.

We applied L1 and L2 norm DP, as well as LSq to four different lateral positions from 10

different frames of RF data, i.e 40 sample positions in total for each phantom. The weight

of the regularization term in DP was set to a fixed value given in Table 10 in all 40 sample

positions of the homogeneous phantom (UniformPh), the layered phantom with uniform

backscatter coefficients (UniformBSC) and the layered phantom with uniform attenuation

(UniformAtt). The following search ranges were used for both LSq and DP:

αsMin − 0.5 ≤ α ≤ αsMax + 0.5

10−1bsMin ≤ b ≤ 101bsMax

nsMin − 2 ≤ n ≤ nsMax + 2

where αsMin, bsMin, and nsMin refer to the minima of the ground truth values in three layers

of the layered phantoms and the ground truth values for the homogeneous phantoms for the

coefficient α, b, and n, respectively, and αsMax, bsMax, and nsMax correspondingly refer

to the maxima of the ground truth values in three layers of the layered phantoms for the

coefficient α, b, and n.
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(a) Attenuation Coefficient α of homogeneous phantom 1

(b) Backscatter Coefficients of homogeneous phantom 1

Figure 16: LSq, DP L1 and DP L2 estimation of (a) attenuation coefficient and (b) backscat-

ter coefficients of Eq. 19 in the homogeneous phantom with large scatterers.

3.4 Results

Figs. 16-18(a) show the DP L1 (green), DP L2 (red) and the LSq (blue) estimates of

attenuation vs axial distance for the homogeneous sample of large scatterers, the layered

phantom with constant backscatter, and the layered phantom with constant attenuation,

respectively. Fig.16 (b) and Figs. 17 and 18 (b)–(d) show the reconstructed sample BSC

from estimates of parameters bs and ns. Black dashed lines indicates expected values. DP

L1 and L2 substantially outperforms LSq in estimation of all three parameters. In Fig.16,
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Table 10: The DP regularization weights for each variable

DP L1 DP L2

wα wb wn wα wb wn

UniformPh 108 108 108 108 108 108

UniformBSC 103 100 100 106 103 103

UniformAtt 108 10 10 108 10 10

the DP L2 (red) collapsed on DP L1 (green) plot as both regularization norms result in

same estimations for constant coefficients.

As demonstrated in the figures, DP L1 outperforms DP L2 in terms of reducing bias

error in layered phantoms. Except for the bias of estimated value for backscatter coefficient

n, other results by DP L1 were improved compared to DP L2 and LSq. Moreover, L1 norm

regularization competitively reduces the STD compared to the L2 norm.

3.5 Conclusions

We proposed employing Dynamic Programming (DP) with an L1 norm regularization term

to estimate the backscatter and attenuation coefficients of radiofrequency signals obtained

from the ultrasound machine. The L1 norm regularization improved the accuracy of the es-

timation mainly in the discontinuities of the layered phantoms. This substantially reduced

the bias in the attenuation estimation of layered phantoms and slightly improved the accu-

racy of the backscatter estimations. We also applied the algorithm to a uniform phantom

with n markedly different from the reference and compared the results of L1 and L2 norm

to LSq. Because of the continuity of the coefficients along the phantom, L1 and L2 result in

the same estimation which is profoundly more precise than LSq. We are currently testing

the performance of both L1 and L2 regularization in DP when there are sources of coherent
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(a) Attenuation Coefficient α (b) Backscatter Coefficients of Layer 1

(c) Backscatter Coefficients of Layer 2 (d) Backscatter Coefficients of Layer 3

Figure 17: LSq, DP L1 and DP L2 estimation of (a) attenuation coefficient and (b–d)

backscatter coefficients of Eq. 19 in the three-layered phantom with uniform backscatter

coefficients for layer 1, 2, and 3, respectively.

scattering present, such as strong scatterers or specular tissue boundaries.
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(a) Attenuation Coefficient α (b) Backscatter Coefficients of Layer 1

(c) Backscatter Coefficients of Layer 2 (d) Backscatter Coefficients of Layer 3

Figure 18: LSq, DP L1 and DP L2 estimation of (a) attenuation coefficient and (b–d)

backscatter coefficients of Eq. 19 in the three-layered phantom with uniform attenuation

coefficients for layer 1, 2, and 3, respectively.
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Chapter 4

Conclusion and Future Work

4.1 Conclusion

Chapter 1 covered the basics of ultrasound imaging with a brief explanation of US physics

and beamforming that occur in the US transducer. Further to the B-mode images which

is widely used to investigate human body different tissue layers, US echoes could reveal a

lot more information about the tissue mechanical characteristics as well as its microstruc-

ture properties. Each of these information results in a wide range of studies such as US

elastography.

In Chapter 2, we elaborated on Quantitative Ultrasound as extensions of traditional US

imaging. QUS investigates the backscattering and attenuation coefficients of US echoes in

order to categorize the type of the tissue. Therefore, Chapter 2 started with equations of

attenuation and backscattering and explains the parameters and their importance in details.

Then a least squares cost function which was previously introduced by Nam et al. [21] is

derived and used for comparison to our method.

In this thesis, a Dynamic Programming approach is employed to optimize this cost

function. Furthermore, an L2 norm regularization term is also added to the cost function
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to incorporate the prior information obtained from the neighboring positions at each depth

of the image. The results of this technique represent quite accurate and precise estimations

for both backscattering and attenuation coefficients. In addition, regularized DP succeed to

reduce the variations in estimations tremendously.

In Chapter 3, an L1 norm regularization term is suggested instead of L2 norm. As

expected from an L1 norm regularization component, the estimations of L1 is even more

accurate than L2 norm especially in discontinuity points of QUS coefficients. The effi-

ciency of both regularization terms is challenged by applying both to different layered and

uniform phantoms. The two cost functions are also applied to a uniform phantom with large

scatterers which is conventionally known as a challenging tissue for QUS algorithms. In all

cases, DP suggests a highly close estimation of attenuation and backscattering coefficients

to the ground truth values.

Dynamic programming globally searches over all possible values of unknowns in the

defined search ranges and eventually finds the optimum. Moreover, the regularization term

added to the cost function helps with the consistency of estimations in the homogeneous

parts of the tissue. Consequently, the algorithm introduced in this thesis outperforms the

previous methods profoundly both in terms of reducing bias and standard deviation.

The results of implementing DP with both L1 and L2 norm regularization terms are

given at the end of Chapter 2 and Chapter 3. The comparison figures between the estimated

values by DP and LSq clearly approves the high performance of DP in terms of bias and

variance. Also, the comparisons between L1 and L2 norms imply that L1 norm could track

the changes in the coefficients values more accurate than L2 norm.
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4.2 Future Work

Quantitative ultrasound has been an active area of research for decades and could be studied

in many aspects. Specifically for the method proposed in this thesis, there are numerous

ways to improve the accuracy, precision, and robustness of the results as well as reducing

the computation burden and make it available for online application. In the following a few

of many ideas of the improvement of this method is provided.

Norm 1 regularization term suggested in Chapter 3 could be also applied to the data

term of the DP cost function as well as the regularization term. In other words, instead of

using the conventional least squares method, the absolute difference of cost value and the

expected value is a better suggestion than the least squares in terms of robustness and com-

putation burden reduction. Moreover, an optimization technique such as Gauss-Newton

(similar to [9]) can be used to achieve near real-time performance in estimation of the

backscatter quantitative ultrasound parameters.

In this thesis, the proposed method was only applied to the data acquired from tissue

mimicking phantom. The results of this work were very promising; however, the main

challenge of the method is in its application for the data from the in-vivo or ex-vivo tissue.

Recent studies such as [66] and [67] proved many diagnoses and treatment monitoring

applications of the backscattering and attenuation as the biomarker features of tissues [68].

Therefore, a great step to move this study forward would be to employ the proposed method

for data from a real tissue. Studying a relatively homogenous tissue like liver for cancer

diagnosis [69] and a layered tissue such as arms muscles and fat layers for the lymphedema

stage monitoring [70, 71] are some of the valuable areas to test this method.

Finally, the method proposed in this thesis has a pre-assumption on the homogeneity of

the tissue. However, in real applications, human tissue violates this pre-assumption and the

functionality of this method would be affected [72]. One of the methods that is suggested
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to overcome inhomogeneity of tissue in microstructure properties investigation is using

beam steering. [73] and [74] have shown that beam steering increases the accuracy of the

backscattering and attenuation estimations better than the conventional perpendicular beam

imaging. Therefore, beam steering could be incorporate with DP to increase the accuracy

of the estimations in quantitative ultrasound.
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