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Abstract

The impact of direct digital manufacturing on supply chain operations, cost and environmental

performance in an aerospace application.

Matthias Heppa

Industry 4.0 concepts, such as direct digital manufacturing (DDM), are expected to change the
world, the society and the industry within the coming decades. This study explores the potential
implications of DDM on supply chain operations by performing a case study. It assesses the
impact of distributed production capabilities enabled by additive manufacturing (AM) on the life
cycle cost and environmental impact in an aerospace application. It builds on a previous life
cycle assessment (LCA) conducted by GE to compare the environmental impacts of using fuels
nozzles produced via additive and conventional manufacturing over a future period of 30 years.
Here, simulation models are developed to represent the aftermarket of the LEAP engine based on
current and forecasted airline fleets for US and Canadian airline operators. Three supply chain
operation scenarios are considered: (1) conventional manufactured at a central GE manufacturing
plant at a high volume; (2) additive manufactured, high-volume at the same plant; and (3) de-
centralized, low-volume, additive manufactured at 7 identified demand locations. 648
experiments were run to capture all relevant combinations of service levels, electricity mix,
carbon pricing, and electric truck adoption. Production, distribution, and energy consumption
were simulated based on information from publicly available sources. Environmental impacts on
resource availability, climate change, human health and ecosystem quality were assessed using
an integrated hybrid LCA model developed by the United States (US) Department of Defense
(DOD). Data-envelopment analysis was used to benchmark the supply chain operation systems

based on their cost, environmental and supply chain performance.

Both additive production systems show stronger efficiencies than the traditional manufacturing
system. The de-centralized system benefits from its flexibility and locations that already contain

high amounts of renewable energy highlighting the significance of the site selection process. The
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centralized system requires inventory to be competitive but shows benefits due to economies of

scale and strategic investments that would not be justified for smaller facilities.

The applied methodology has shown plausible results over all experiments and can therefore be
recommended for decision makers from private and public sectors for benchmarking their

alternatives when considering cost and environmental criteria.

Keywords: Additive Manufacturing; Benchmarking; Data Envelopment Analysis; De-
Centralized Manufacturing; Direct Digital Manufacturing; Life-Cycle Assessment; Performance

Analysis; Simulation; Supply Chain
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1. Introduction

1.1 Background

This thesis addresses two major trends observed in today’s industry. Driven by the increasing
awareness of customers and governments for the finiteness of natural resources and the
consequences of consumption, environmental impact is increasingly used as a decision criteria in
combination with functionality and profitability. (Frota Neto, Bloemhof-Ruwaard et al. 2008,
Guinee, Heijungs et al. 2010)

The second trend is the increasing digitalization and de-centralization of processes culminating
in the vision of the 4th industrial revolution and an expected growth of additive manufacturing
(AM) replacing conventional processes. As Huang, Liu et al. (2013) state, additive
manufacturing allows design optimizations and customized production on demand, does not
require the use of fixtures, cutting tools, coolants, or other auxiliary resources. Gibson, Rosen et
al. (2015) highlight, that “it is difficult to provide flexible, scalable, “produce anywhere” services
if one has to first fabricate a lot of tooling.” Thus, AM can be regarded as one early, mandatory
representative for the arising of the 4th industrial revolution. It enables flexible production and is
therefore regarded as an imperative for Industry 4.0. The Boston Consulting Group (2017)
expects, that these additive manufacturing methods will reduce batch sizes, transportation and
stock on hand by highly customized products manufactured in high-performance, de-centralized

additive manufacturing systems. (The Boston Consulting Group 2017)

Industry 4.0 is expected to significantly optimize both, functionality (by high customization) and
profitability (by eliminating non-value adding steps such as over-production, waiting time,
transportation, inventory, etc.) of manufacturing. Nevertheless, the question arises how will it
impact performance (e.g., cost, responsiveness, and environmental sustainability) of industry?
An emerging body of literature explores the impacts of AM. Most relevant to this thesis are life
cycle assessments (LCAs) that assess the environmental impact of AM and analyses that

examine the use of AM in the aerospace sector.

Life Cycle Assessment (LCA) is a predominant framework for assessing the environmental

impact of product systems, from raw material extraction through manufacturing, distribution,



use, and end-of-life. It is broadly standardized by ISO 14040 and 14044. While many different
approaches are available and developed for specific applications, most can be categorized in
either a bottom-up or a top-down approach. Process-LCA 1is a bottom-up approach that quantifies
all relevant inputs from nature (e.g. water, energy, raw materials) and outputs to nature (e.g.,
emissions, waste) from each process in a product’s life cycle. Environmentally Extended Input-
Output (EEIO) analysis is a top-down approach that relates monetary transactions to inputs from
and outputs to nature on an average industry basis. Both approaches result in a life cycle
inventory, or an account of all inputs and outputs of the defined system, which is then translated
into measures of environmental impact (e.g., global warming, human toxicity, ecotoxicity) using
established characterization models. The results can be further aggregated into estimates of
impact on resource availability, human health, and ecosystem quality, making the results easier
to understand for non-experts and, therefore, helpful to support decision making. Several

databases and specialized software are available to support this process.

Initial LCA studies (Faludi, Bayley et al. 2015, Chen, Heyer et al. 2015, Serres, Tidu et al. 2011)
compare the environmental performance of additive manufacturing with conventional
manufacturing in specific case studies, by replacing conventional manufacturing processes with
additive manufacturing processes within an otherwise unchanged value chain. For example,
Faludi et al. (2015) perform a comparative LCA of two products with different geometrical
complexity being produced on a CNC milling machine versus two different three dimensional
(3D) printing machines. They conclude that environmental performance is highly dependent on
machine and tool utilization and therefore the lot sizes (economies of scale). While these studies
are informative, they are incomplete in that they do considering the changes additive

manufacturing will have on the supply chain.

Other studies consider changes in the supply chain based on the introduction of distributed
manufacturing systems (DMS). Cerdas, Juraschek et al. (2017) perform a comparative LCA of
low volume eyeglass frames produced via centralized manufacturing system (CMS) using
conventional mass production technologies to those produced in a distributed manufacturing
system (DMS) using additive manufacturing. They conclude that environmental performance is
highly sensitive to energy consumption and the chosen material. Moreover, impacts due to

transportation are found to be negligible.



Gebler, Uiterkamp et al. (2014) study additive manufacturing from a global perspective,
quantifying changes in life cycle cost, energy consumption and CO2 emissions under forecasted
growth of the additive manufacturing market until 2025. Due to the expected low share of 3D
printing in mass production markets, they conclude a maximum global energy and CO:

emissions reduction 5% from 3D printing.

The potential to benefit from AM in the aerospace industry, and there especially in the spare part
market with high product availability requirements and low turnovers, has been identified and
studied by different authors. Holmstrom, Partanen et al. (2010) observe cost saving potentials
through changes in the supply chain from using additive manufacturing to replace inventory
holding and distribution of spare parts within the commercial aviation industry. Their findings
suggest a high potential for mitigating high inventory risk and achieving required service levels
while eliminating downtime cost and avoiding supply chain disruptions with the adoption of the
additive manufacturing. They suggest that the reduction in logistics operations could lead to
reduced cost especially for slow moving parts. In a later study, discuss environmental risks and
opportunities of additive manufacturing in operations and supply chain management. Without
quantifying the environmental implications, they conclude that if considered separately, none of
the identified promising paths for AM (localizing part production, on-demand production, and
upgrading and refurbishing products in use) are expected to have significant environmental
impacts. However, if considered all together, they see potentials from for example spare parts
specifically re-designed for AM and on demand production and resulting simplifications in

supply chain and operations as well as improved product functionality.

Another study by Khajavi, Partanen et al. (2014) compares the cost of manufacturing the F-18
Super Hornet air-cooling ducts in one centralized versus multiple distributed locations. While
this study shows an interesting industry application with the advantages of distributed
manufacturing systems (DMS), it assigns high importance to the utilization of the machines.
These machines are assumed to be solely used for producing the investigated product, making

the acquisition price and labor cost the major drivers of the distributed production system.

What most of the reviewed articles have in common is that additive manufacturing, which is in
an early maturation phase (Gebler et al. 2014), is compared to highly mature and optimized

manufacturing systems and technologies with supply chain concepts and infrastructure that have



been evolving for decades. Although, it is expected that additive manufacturing will further
develop, it is difficult to forecast how Industry 4.0 and additive manufacturing will evolve and
how it will be implemented in the future. Robust data for this kind of forecasting is lacking.
Therefore, this work focuses on an existing application, where additive manufacturing is already

achieving a competitive edge.

Furthermore, the reviewed articles look at on-going developments mainly from single
perspectives and under static conditions. This study aims to consider both, the economic
performance and the environmental implications while ensuring competiveness of the production
systems. It is believed that changes of such a magnitude and temporal range as they are expected
for Industry 4.0 and direct digital manufacturing would be difficult to justify otherwise. Since
technologies, markets, and polices change over time, it is necessary to consider the changes that
may occur over a longer time frame such as the entire product life cycle versus current
conditions as if they will remain static. Therefore, relevant changes that may impact the cost,
performance and environmental impact of additive manufacturing over time, such as political
developments, changing electricity mixes, and electric vehicle technologies, should be identified

and implemented into a comprehensive evaluation of this emerging technology.



1.2 Problem statement

The potentials of Industry 4.0 and direct digital manufacturing seem promising and are expected
to be far reaching. First niche products are available providing insight on how the industry will
evolve over the coming decades. However, new operation models need to be evaluated to ensure
their viability and sustainability. The economic and environmental potentials seem high but

difficult to quantify.

As Holmstrom et al. (2017) say, “AM could be used in many ways, both good and bad for the
environment”. The U.S. Department of Energy (DOE) (2015), in its Quadrennial Technology
Review 2015, highlights the relevance of additive manufacturing as a current research and
development field. Further, they list the development of sustainability indicators for measuring

AM processes and products as a current research opportunity.

For a new technology to be competitive in the marketplace, it must be cost effective and provide
functional benefits. While this is not expected to change, environmental performance cannot be
ignored for several reasons. First, the use of scarce natural resources and damage to the
environment are increasingly translated into business risk (e.g., water competition, carbon taxes,
and extended producer responsibility). In addition, customers, institutional investors,
shareholders, regulators, and other important stakeholders are increasingly demanding more
sustainable business practices and accountability from industry. As such, environmental
performance should be a consideration in the technology development process, with
environmental performance being understood and important environmental risks mitigated as
early as possible in this process. At the same time, the most sustainable solution is worthless if

the market is not interested in it or if it is not viable or competitive.
Therefore, the following objectives are established for this thesis:

(1) Perform a literature review to understand Industry 4.0 and direct digital manufacturing,
including on-going developments;

(2) Identify an industry example for a case study;

(3) Integrate existing methodologies for benchmarking production and supply chain systems
based on life cycle economic, environmental performance while ensuring

competitiveness of the production system;



(4) Conduct a case study to assess the cost, supply chain, and environmental implications of
additive manufacturing-enabled production and supply chain systems; and

(5) Analyze the results to understand the opportunities and risks of DDM and de-centralized
manufacturing concepts for the economic and environmental performance of supply

chain operation systems.



1.3 Literature Review
1.3.1 The evolution of 3D printing towards direct digital manufacturing (DDM)

3D printing emerged to support product design and development as a quick and cost efficient
technology to create prototypes, demonstrators and mock-ups. The major advantages of 3d
printing are that it does not require tooling, it can be used without sharing confidential design
data to tool or mock-up suppliers, and it reduces the time to hardware significantly, so that
designers can perform more improvement loops during a shorter time period. Although the
investment costs might have been high at the beginning, manufacturing without tooling enabled
companies to reduce cost on the long run. During this first phase the use of AM was limited due
to a premature technology, high investment costs and the selection and quality of the available
materials. It was originally developed around polymeric materials, waxes, and paper laminates.

(Berman 2012, Gibson, Rosen et al. 2015)

During a second still on-going phase, advancements have been made in the technology, material
choice and quality. Also more suppliers offer a wider choice of machines and technologies
starting at lower prices. Additive manufacturing has been successfully used for some commercial
niche products (e.g., orthodontic treatment braces, hearing aids, custom footwear) and have
found its way to some private homes. Online communities are available, where computer-aided
design (CAD) data is exchanged or even sold and some machine owners sell their service of

printing parts to others. (Gibson, Rosen et al. 2015)

For a third phase, it is expected that additive manufacturing technologies will establish itself as a
mainstream manufacturing technology. Together, with the developments of Industry 4.0, additive
manufacturing has the potential to cause major changes to industry as well as the roles of the
customers and designers. For some products, manufacturing could happen close to or possibly at
customers’ homes. The need for inventory, unsold finished goods, and many transportation and
distribution networks could become redundant or at least be radically reduced. Esmaeilian,
Behdad et al. (2016) identify the following five research pillars requiring further advancements
prior to a successful large scale implementation of AM: design, materials, technology, software

and quality control.



1.3.2 The paradigms of direct digital manufacturing

Under the assumption that direct digital manufacturing (DDM) will be the final development
stage of additive manufacturing in Industry 4.0, the “parts will no longer be produced in a
factory, assembled to final products and shipped to customers. Instead, these products are
manufactured right at or close to the customer utilizing additive manufacturing and directly

derived from a digital model.” (Chen, Heyer et al. 2015)

DDM together with Industry 4.0 have the potential to radically change industry and society. Due
to the nature of radical change, it is hardly possible at this stage to forecast the impact of the new
production paradigm in detail. However, several studies explore and summarize expected

paradigm shifts.

Figure 1 shows an overview of the paradigms defining DDM that are derived from current
literature and publications. The following sub-chapters 1.3.2.1 to 1.3.2.6 provide more detailed

information.



Direct Digital

Manufacturing
(DDM)

>

Distributed
manufacturing
systems (DMS)

Trend towards smaller scaled, distributed manufacturing systems in contrast to centralized manufacturing
systems (CMS)

Enabled by additive manufacturing

Very dependent on the product nature: volume, complexity, material, customization level, etc.

On-demand
production

“Just-in-production mode”, products are manufactured directly as they are ordered
Particular implications to the global supply chain: inventory need, distribution, transportation, etc.
Reducing risks of unsold finished goods inventory as production happens on a “made-to-order” base

Flexible, agile

Distributed manufacturing systems (DMS) & on-demand production resulting in a flexible, agile production
Prerequisite for increased individualization and personalized products

production Reduces “time to market (TTM)” and increases the pressure for innovation due to shorter development loops
Increased added value due to personalization
Cleaner DDM contains both, high chances and significant threads for the overall environmental performance
> production For the establishment of a new technology in the future itis imperative to improve the environmental
. . performance and control the threads by taking appropriate measures
imperative
) Interconnecting all people, products, machines and resources within the “Internet of things”
> Cyber-phys1cal Vertical integration focusses on a “seamless digital data flow” from development to the executing systems
systems Horizontal integration interconnects all functions on the production level
“Smart products” will store all information related to their own life cycle
Highlights the change of the role of consumers from passive receivers to local producers and developers
»| The prosumer Prosumers will design and produce highly personalized products for themselves or a local market

Democratization of product design

Figure 1: Summary of paradigm changes




1.3.2.1 Distributed manufacturing systems (DMS)

Distributed manufacturing systems (DMS) are a result of a de-centralized, low volume
production enabled by additive manufacturing. The level of distribution depends mainly on the
product nature, future developments and costs for additive manufacturing machines & materials.
It can range from manufacturing in private households, e.g., “maker movement” (Gebler et al.
2014) or “DIY” (Kohtala 2015), to highly specialized local providers to large companies offering
personalized products as an extension of modular product platforms. Figure 2 shows how a
future market could potentially be divided into home producers, specialized local service
providers and large companies depending on capabilities, quantities, material and process
complexity etc. When compared to centralized manufacturing systems (CMS), significant
impacts on production volume (economies of scale), supply chain configurations, and consumer-
producer relationships are expected (Kohtala 2015). Drivers for such developments are based on
the potential for DM to increase product customization, reduce costs and increase production
sustainability, altogether, giving companies a competitive edge. (Ford, Despeisse 2016, Piller,

Moeslein et al. 2004, Gibson, Rosen et al. 2015, Gebler, Uiterkamp et al. 2014)

Besides the potential positive outcomes, Matt, Rauch et al. (2015) also identify potential negative
outcomes, such as high investment costs and lower efficiency of decentralized production as

compared to automated central production factories.
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Hybrid markets

- Design support
- Individual designs
- Printout services

Specialized

Local providers
- Low to medium volume

- Low to medium product comph
- Shape complexity

- Medium material choice

- Medium customization level
- Medium lead time

< Data open and personal prop.

Home production
(“makers movement”, “DIY”)
- Low volume

- Low Product complexity
- Shape complexity

- Little material choice

- High customization level
- Short lead time

- Public “open source”
databases

Hybrid markets

Hybrid markets

- Personalized
products

- Commercial data

Hybrid market
- Maintenance
- Repair-/ Handyman

- Medium to high volume
- High Product complexity
- Shape complexity

Companies - High material choice - Fieldservice
for home prints - Low customization level - Car finishing
- Printout services - Long lead time - Customization
- Data protected property at dealer

Figure 2: Potential division of a future DDM market
1.3.2.2 On-demand production

The possibility of manufacturing on-demand will have several impacts on industry, supply chain
configurations and inventory management. Esmaeilian et al. (2016) compare the existing just-in-
time approach with a new “just-in-production mode”, where products are printed directly as they
are ordered. They expect particular implications on global supply chains such as reduced need
for storage and transportation as well as assembly work and ultimately a reduction in product
time-to-market. Due to on-demand production, DDM reduces the risks and efforts associated
with inventory and logistics as parts are only made to order rather than to a stock following
market forecasts. In an ideal case, no unsold finished goods inventory is left (Berman 2012) and
the in-process and in-transportation inventory levels of entire global supply chains can be

reduced.
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1.3.2.3 Flexible, agile production

On-demand production in distributed manufacturing systems significantly increases flexibility
and agility which is essentially a prerequisite for increasing individualization (Anderl 2015). The
increased flexibility, agility and adaptability of manufacturing systems will reduce time to
market (TTM) (Esmaeilian et al. 2016), causing an even higher pressure for innovation. While
Durao, Christ et al. (2016) state that the customer may be willing to pay a higher price in order to
receive a more personalized product with a higher added-value. They indicate that such an

increase would have to be moderate compared to mass production to be accepted by the market.
1.3.2.4 Environmental efficiency / Cleaner production imperative

DDM has the potential to reduce waste for a variety of reasons, including parts being build-up
layer by layer instead of being subtracted from a raw material block, on-demand production
instead of production to stock or wholesale steered by demand predictions, simplified supply
chains carrying lower levels of inventory (work in process, semi-finished & finished goods), no
need for long distance transportation of finished goods, and no need for tooling, tooling storage
and tooling refurbishments. Thus, improvements in environmental sustainability could be
achieved through supply chain simplifications as well as the transformation of the

manufacturing.

Besides the potentials there are also threats for the environmental sustainability that need to be
considered. In large centralized manufacturing systems with experienced and well-educated staff,
certain production and quality standards have been established. For many industries they are
consistent and certified against international standards such as ISO 9001. With smaller localized
production or even home production there are risks that missing knowledge, inappropriate
handling, such as wrong disposal of materials, wrong machine and material handling or wrong
pre-treatments may have direct or indirect negative environmental impacts (e.g. reduced life time
causing earlier replacement). (Durdo et al. 2016, Kohtala 2015) Since additive manufacturing
materials can be potentially hazardous and many instructions manuals and other documentation
are currently lacking sufficient health and safety guidelines for users, this risk is particularly
high. (Short, Sirinterlikci et al. 2015) Just imagine common home users, who are making 3d

printouts with special settings a few times a year. They would usually need several attempts
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before achieving the desired result and might not invest time in reading manuals to comply with
all safety and material handling requirements.

Moreover, the machines would be idle most of the time, potentially rendering the technology out
of date and replaced before the machine reaches a certain amount of production. Of course,
specialist companies also have lower yields and setup waste when new products are introduced,
but in larger scale production the initial effort can be compensated for by economies of scale and
high production volumes. In the worst case for DMS, this phenomenon could happen every time,
when an operator tries to manufacture a one-off personalized product. Moreover, companies can
be obliged by laws and regulations to take measures to protect their employees and the
environment, such as risk management, workplace design (e.g. ventilation) and waste
management measures. (Short et al. 2015)

Another important sustainability aspect has been highlighted by Cerdas et al. (2017). In
comparing additive manufacturing to injection molding of a cellulose acetate product, they found
that electricity consumption and the electricity mix selected for the printing processes
significantly influenced the environmental performance of DMS. Nevertheless, Serres et al.
(2011) come to a completely different conclusion when comparing additive manufacturing of a
complex aerospace part made out of a Ti6Al4V alloy with conventional machining. They find an
overall environmental impact reduction potential of 70% due to the application of AM based on
product life-cycle assessment. These savings mainly result from upstream processes, the raw
material production in particular, and long milling times of the hard material due to slow removal
rates. As with all emerging technologies, the strengths of additive manufacturing will be realized
within limits (e.g., realized in some applications, but not others). However these limits are yet to
emerge. Hence, universal statements about the energy consumption are not possible and need to

be considered case by case.
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1.3.2.5 Cyber-physical systems, Internet of things

Anderl (2015) presents cyber-physical system (CPS) as the basis of a high-tech strategy for the
German “Industrie 4.0” research platform. Specifically, he identifies interconnected and
communicating cyber-physical systems (CPS), comprising CPS, the internet, components as
information carriers, and a holistic concept for safety, security, privacy and knowledge
protection, as being “the key technology approach” for Industrie 4.0.”. CPS aim to build a
network that contains all relevant functions of the supply chain interconnecting all people,
products, machines and resources. (Durdao et al. 2016) Finally, this requires upgrading the
internet into the “Internet of things,” which comprises both vertical and horizontal integration.
Vertical integration focusses on a “seamless digital data flow” from the development and
planning of functions down to executing systems. Meanwhile, horizontal integration aims to
interconnect all functions on the production level, such as smart products, smart machines, smart
factories, smart plants, and smart logistics. (Anderl 2015) Smart products include a “wide range
of physical objects”, such as products, assemblies or single parts that will store all information
related to their own life cycle. Information could be stored in a product memory and could be

used to control manufacturing processes or route the product through the supply chain. (Anderl

2015)

1.3.2.6 The prosumer

The definition of a prosumer who is producer and consumer at the same time goes back to
Toffler et al. (1981). It has gained significance in the context of DDM, as it highlights the change
of the role of consumers from simple passive receivers to local producers and developers, who
design and produce highly personalized products for themselves or a local market around them.
(Chen, et al. 2015a) The prosumer leads to a democratization of product design, however there

will still be a need for experts.
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1.3.3 Life Cycle Assessment (LCA)
Life cycle assessment (LCA) is a prominent method for assessing the environmental aspects and
potential impact of systems, products or services. ISO, the International Organization for
Standardization, has published eleven (LCA related standards, with the LCA framework and
requirements specified ISO 14040 and ISO 14044. LCA divides the life cycle into five main
stages: material extraction, product manufacture, packaging and transportation, use and end of
life (International Organization for Standardization 2006). It has been refined for a broad field of
industrial applications, including process design, selection and optimization (Azapagic 1999,
Burgess, Brennan 2001, Shin, Suh et al. 2017), product development (Wenzel, Hauschild et al.
2000, Santucci, Esterman 2015, Alting, Hauschild et al. 1997), production plant or strategy
assessments (Cherubini, Bargigli et al. 2009, Koornneef, van Keulen et al. 2008), and
environmental product declaration (eco-labelling) (Bombardier Commercial Aircraft 2016).
These applications establish LCA as a tool to support decision making, which is essentially the

overarching purpose of LCA. (Hertwich, Hammitt et al. 2000)

The US Department of Defense (DoD) has developed a framework for integrating sustainability
assessments into the acquisition process. (Department of Defense 2016) The framework provides
a recommended approach for assessing the direct, indirect, contingent, and external costs across
the life cycle of defense systems. It combines life cycle cost analysis (LCCA) and LCA. LCCA
is used to estimate cost to the end user over the life cycle of a product or service. LCA is used to
estimate the impacts of resource requirements, environmental releases, and waste on resource
availability, climate change, human health and the ecosystem quality, and translate these impacts
into external cost. (Department of Defense 2016) The DoD has also provided resources for
supporting the analysis. One such resource is the Defense Input-Output (DIO) dataset (Lloyd,
Bruckner et al. 2016). The DIO dataset was generated using integrated hybrid LCA model. It
combines data from EEIO models and process-based LCA. EEIO models relate resource use,
environmental releases, and waste to monetary transactions within an economy at an industry
sector level. Based on the monetary purchases from an industry sector, one can use EEIO to
estimate the environmental impacts occurring in that industry sector as well as from its supply
chain. Process-based LCA uses detailed input and output data from processes to estimate
environmental impact. For example, process-based LCA can be used to calculate the resources

required and emissions and waste generated from producing a unit of electricity using a coal-
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based power plant. An integrated hybrid LCA model computationally integrates the physical
flows between processes, monetary transactions between sectors, and the links between the two
to enable a rapid screening-level LCA. It is considered screening level because it use average
data for common processes and industry activity rather than specific data from the products and
processes being studied. The DoD ran the DIO model to estimate the impacts of one unit of
industry activity, purchased good or service, and elementary on resource availability, climate
change, human health and the ecosystem quality. The results are provided in a Microsoft Excel
spreadsheet on the Department of Defense Environment, Safety and Occupational Health
Network and Information Exchange website (DENIX 2016). The resulting “scoring factors” can
easily be integrated into other methodologies to enable estimation of life cycle environmental
impact without requiring the application of specialized LCA software or the need to perform in-
depth LCAs. This DIO dataset is advantageous to this study as it has been developed for industry
applications within the US market. It has been used in assessing the economic and environmental
impacts of several aerospace applications. For example, GE used the DoD method to evaluate the
potential implications of using additive manufacturing to produce fuel nozzles for the CFM
LEAP jet engine (MSRI 2014, Scanlon, Lloyd 2017) It has also been used to evaluate exterior
coating alternatives for the Boeing P-8 Poseidon Aircraft and the Sikorsky MH-60R Seahawk
Helicopter (Scanlon and Lloyd, 2017), brush plating alternatives for repairing US Air Force
aircraft components (Lloyd, Bruckner et al. 2017), electroplating alternatives for repairing US
Navy aircraft components (Bruckner, Henderson et al. 2018), and an anti-corrosive coating that
incorporates multi-walled carbon nanotubes and titanium dioxide nanoparticles with recent

applications (Ong, Henderson et al. 2018).
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1.4 Research gap

Direct digital manufacturing (DDM) enabled by additive manufacturing (AM) technologies has
been identified as a promising area for further research. Besides established performance
measures such as cost, product quality, and availability, environmental performance has been

found to be an imperative performance measure for assessing DDM.

Recent studies investigating supply chain changes resulting from direct digital manufacturing
concepts exist, but consider mostly single perspectives. Others have considered additional
performance measures, such as those related to energy consumption and environmental impact.
However, they tend to concentrate on the replacement of single process steps and take a static
perspective, therefore failing to capture the overall implications of Industry 4.0, and direct digital
manufacturing in particular. Holmstrom and Gutowski (2017) discuss the sustainability potential
of additive manufacturing on operation and supply chains. Recognizing the importance of
challenges with estimating the economic, engineering, energy, and environmental performance
of advanced materials manufacturing from a life cycle perspective, the US Department of Energy
identified further development of methods for predicting performance as important for

successfully developing advanced manufacturing methods and materials (DOE 2015).

No actual models have been found for assessing or benchmarking operations and supply chain
systems taking into account the cost, environmental, and supply chain performance. To be
informative, such methods must look at the life-cycle and therefore consider potential external
factors. External factors may include changing markets, public policies, technology diffusion,
and other local, national, or global changes that complicate the decision making process. Such a
model can help public policy-makers assess the consequences of their decisions on specific
industry sectors and their competitiveness. It can also help private sector decision-makers better
understand the competitiveness of and risks and opportunities associated with specific research

and development initiatives.
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1.5 Contribution of this thesis

To evaluate the potential impacts of DDM on production and supply chain systems, this research
develops a framework for assessing the economic, supply chain performance, and ecologic
aspects of an emerging technology. Moreover, a thorough evaluation is only meaningful when it
reviews the entire lifecycle. This is a particular important when developing and advancing

technologies that require high investments and are not easily reversible.

The example of the newly developed GE fuel nozzle for the CFM International LEAP engine has
been identified as a relevant industry example to study. This fuel nozzle is being produced using
additive manufacturing technologies in one centralized location and is replacing its predecessor,
the fuel nozzle of the CFM56 engine which has been produced successfully using conventional
metal joining processes over decades. A telephone interview with the lead engineer of GE
Additive, Mr. Joshua Mook, was conducted and confirmed that distributed manufacturing

capabilities are being considered for this application.

This study is built on four major aspects. (1) It benchmarks different supply chain operation
systems representing centralized and de-centralized production capabilities. (2) It considers the
advantages of additive manufacturing in a case study looking at a product that can be regarded
very advantageous and therefore a successful early representative of the new emerging
technology DDM. (3) It includes the economic, environmental and supply chain performance to
build a performance measure for assessing and benchmarking the systems. (4) It looks at the life
cycle of the product considering a time frame of 30 years and identifies external factors that

could potentially influence the system performance.
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2. Research Methodology and Data Collection

2.1 Introduction

This study is conducted in three major steps. In the first step, data and information is collected to
extend an existing LCA of GE’s additive manufactured fuel nozzle (Flanagan et al. 2017) into an
extensive case study of three different production and supply chain systems further referred to as
production scenarios 1, 2 and 3. Production scenarios 1, 2 and 3 represent conventional
centralized high volume, additive centralized high volume and additive distributed low volume

production.

In the second step, simulation models are developed representing the airline operations on the
US and Canadian market. Based on airline operations, random customer arrivals to 7 MRO
repair shop locations and eventually random aftermarket fuel nozzle demand is generated. The
simulation models provide a realistic environment for simulating the behavior of the three supply

chain operation scenarios and estimating system performance over a future period of 30 years.

In the third step, data envelopment analysis is used for benchmarking the three production and
supply chain systems. Based on the performance estimates from the simulation models, system
inputs and outputs are selected to define a relative technical efficiency score based on economic,
supply chain and sustainability performance. Varying market projections, expected future
technology changes and different supply chain setups such as different anticipated service levels
are considered. For each set of unique inputs one new consecutively numbered experiment or
decision making unit (DMU) is created and incorporated into the optimization program. Using
linear programming, the most beneficial relative technical efficiency for each DMU is found.
The relative technical efficiency score allows for benchmarking of the three production systems,
but also for drawing conclusions of the influence different supply chain setups or superior
developments such as political decisions or varying market forecasts can have on one or all the

systems.
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2.2 Information flow model
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2.3 Step 1: Case study

2.3.1 Case background

The LEAP engine is a next generation high bypass turbofan jet engine built by a joint venture of
General Electric (GE) and Snecma called CFM International. This LEAP engine contains 19 fuel
nozzles that are manufactured by GE using additive manufacturing (AM) technology. According
to the specification of the manufacturer the new fuel nozzle design reduces the weight by 25%,
reduces the number of used material alloys from four to only one, and improves the part life by
factor 5 as compared to its predecessor. All this is possible due to the greater freedom of additive

manufacturing in producing complex hollow geometries. (Flanagan et al. 2017)

GE has performed an LCA comparing the environmental performance of the fuel nozzle being
produced using additive or traditional manufacturing (Flanagan et al. 2017). Relevant data is
taken from this presentation and is complemented by data obtained from or derived based on
other sources. To complete the picture of the fuel nozzle production process, a telephone
interview has been conducted with Joshua Mook, the Engineering Leader of GE Additive on

January 19", 2018. (Mook 2018)

According to MRO-network.com the LEAP engines predecessor, the CFM56 has been the most
successful engine in commercial aviation history being introduced almost 25 years ago on the
Boeing 737 Classic. Among others it powers the high volume single aisle short- to medium-
range aircraft families Airbus A320 and Boeing 737. Production of the CFMS56 is planned to
phase out by 2020 with decreasing production each year between now and then while the LEAP
engine production volume increases. (Derber 2017) As the LEAP engine is relatively new to the
market and therefore has not yet required significant maintenance or repair, this case study will
assume the existing MRO supply chain network of its predecessor, the CFM56, remaining in

place.

Currently, the fuel nozzles are being manufactured in one centralized manufacturing location,
1.e., GE Aviation’s new manufacturing plant in Auburn, Alabama. The parts are being shipped to
the different demand locations, where they are used as replacements during engine maintenance.
For comparing the centralized with a distributed manufacturing system both scenarios need to be

modelled based on the available data and estimations as summarized in this chapter.
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The traditional fuel nozzle of the CFM56 engine is assembled from 19 components. 14 of these
components are being formed in a total of 63 shaping and joining processes. (Flanagan et al.
2017) As no public data is available for the detailed production process a simplified production
system is modelled that acts as a baseline to simulate lifecycle cost and emissions from
operations and logistics. Chapters 2.3.5 and 2.3.6 summarize how the supply chain systems have
been modelled. The energy demand, raw material consumption, emissions and cost are

calculated on a per part basis and are determined as shown in this chapter.

2.3.2 Definition of the three production scenarios 1, 2 and 3

In this case study three production and supply chain systems have been developed. Production
scenario 1 represents high volume production applying conventional technology in one
centralized location. Production scenario 2 uses additive high volume production in one
centralized location. Production scenario 3 represents low volume production applying additive
technology in distributed locations located close to the demand locations and can therefore be

regarded a realistic example for direct digital manufacturing (DDM).

All production systems are designed to follow a Q,r inventory replenishment strategy and
recalculate Q and r depending on the average demand and the demand fluctuation of the previous
one year period. Q represents the reorder quantity and is calculated using the Efficient Order
Quantity (EOQ) model formula while r represents the reorder point (equations 2.1 and 2.2). As
soon as the inventory level reaches or drops below the reorder point r, a new order is placed for
the quantity Q. As demand is random and the lead time is considered constant within each
scenario in this study, safety stock is held to cover demand fluctuations during lead time.
Therefore, the average demand and the standard deviation of demand are being recalculated for
the lead time period over the previous year. The level of safety stock held is regulated by the z-
value which is altered during the simulation model as an input value to simulate the effect of
different inventory levels. The ordering cost is assumed to be relatively low and is set to USD

200,- for all three models.

Reorder point r = Mean orders during lead time +

z value x Std. Dev.of orders during lead time (2.1)

2 x Ordering cost x Mean oders of previous year

Order quantity Q = J (2.2)

Annual holding cost
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Lead times for the different production systems vary as a result of different production
technologies, lot size or single piece production, different machine technology assumptions and
so on. Table 1 provides a definition of the three production scenarios. Appendix 02 gives an

overview of all considered parameters.

Scenario 1 Scenario 2 Scenario 3
Production technology | Conventional Additive Additive
Production volume High volume High volume Low volume
Production location(s) | Centralized Centralized Distributed

Table 1: Overview of production systems

2.3.3 Manufacturing of the fuel nozzle

As General Electric states in its press release, by 2020 “GE is expected to operate more than 50
printing machines in Auburn, producing more than 35,000 engine fuel nozzle injectors annually
using additive technology”. Furthermore, the machines are running “around the clock™. (General
Electric Company 2016a, General Electric Company 2017) GE has acquired two European
additive manufacturing machine suppliers, Concept Laser from Germany and Arcam AB from
Sweden (General Electric Company 2016b). The Concept Laser GmbH machines apply Direct
Metal Laser Melting (DMLM) and the Arcam AB machines use Electron Beam Melting (EBM)
technology. Both technologies process powders from a powder bed. For fuel nozzle production,
GE currently uses Concept Laser machines, which “are capable of processing various powder
materials including titanium, nickel-base, cobalt-chromium and precious metal alloys, as well as
hot-work and high-grade steels and aluminum”. (General Electric Company 2016b) The Concept
Laser GmbH specifies its product line “M LINE FACTORY” for “economical series production
of additive metal parts, supported by a unique safety concept.” It provides four lasers with a laser
power of up to 1,000 Watts each and can produce laser thicknesses of 20 — 100 um with a
maximum speed of 4.5 m/s. (Concept Laser GmbH 2017)

Considering a 3 shift operation with one shift equaling 40 hours per week and a total of 52
working weeks a year with a planned machine utilization of 80%, 50 machines have the capacity

to produce 35,000 parts when one part is being produced every seven hours.
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For the centralized location in Auburn, Alabama, it is assumed that the fuel nozzles are being
produced in lot sizes of 12 parts using Concept Laser M3 Liner machines with 4 lasers and a
laser power of up to 1,000 Watts per laser and a standby energy consumption of 0.7 kW. The lot
size of 12 parts is assumed based on a video published by GE Aviation showing the additive
production of the fuel nozzle. (GE Aviation 2014) Although lot size can be adjusted, it is
assumed a realistic scenario for the centralized production reducing changeover times and

considering the size and the processing space of the Concept Laser M3 Liner machines.

For all distributed locations of scenario 3 it is assumed that smaller machines of the modular type
range Concept Laser M3 Liner are used with one laser and a laser power of up to 1,000 Watts
and the same standby energy of 0.7 kW. Parts will be produced in lot sizes of one representing

on-demand production.

The production lead time for one fuel nozzle including all required assembly, surface treatment
and quality inspections is estimated to be 14 days for scenario 1, 10 days for scenario 2 and 7
days for scenario 3 considering no capacity restrictions and therefore no queuing of parts. As no
detailed process information is available from the parts manufacturer, the production lead times
need to be estimated. Based on the top down capacity assessment in 2.3.3, scenario 2 needs to
produce one part every 7 hours. Considering a lot size of 12 parts and a changeover time of 2
hours, the production time for one lot equals approximately 3.5 days. Another 6.5 days estimated
for quality inspection, pre or post treatments and part handling resulting in a total lead time
estimation of 10 days. The same per part production time is used to estimate the lead time of
scenario 3 with the changeover time of 2 hours being applied to each part rather than to a lot of
12 parts. The total lead time is estimated to a total of 7 days, also assuming 6.5 days for quality
inspection, pre or post treatments and part handling. For the baseline scenario 1 the total lead
time is estimated to be 14 days considering a conventional production facility with component
supply and assembly work, quality inspection, pre or post treatments at different levels of the
value stream as well as part handling. It is assumed that component production in Scenario 1 is

de-coupled from the assembly. Therefore, component lead times are not considered in the model.

All manufacturing locations provide a finished goods inventory stock from which customer
orders are filled. It is assumed that the production facility is informed in advance of a version

upgrade and can take the required measures to build up stock. The delivery time depends on the
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different locations and is estimated based on the online calculation system from UPS. (United
Parcel Service of America, Inc. ) As production scenario 3 produces right at the demand

locations, no delivery times are considered.

Scenario 1 Scenario 2 Scenario 3
Equipment used Not considered Concept Laser M3 Concept Laser M3
Lot size Not considered 12 1
Lead time 14 days 10 days 7 days
Delivery time 1-3 days 1-3 days 0 days
Changeover (C/O) Not considered 2h 2h
Time (3)
Process time per lot (4) | Not considered 83.5 hours 6.33 hours
Total time incl. C/O Not considered 85.5 hours 8.33 hours
Time per lot (4)
Process time per part | Not considered 7 hours 6.33 hours
(C))
Total time per part Not considered 7.15 hours 8.33 hours
incl. C/O (4)

Table 2: Overview of equipment, lot size, and lead time assumptions

Machines are assumed to be 80% utilized in all distributed and centralized manufacturing system
scenarios. It is assumed that any additional capacity is used to produce other products, potentially
for other customers, in an open market. No machine downtown is considered in this study. Given
the limited number of components currently produced via additive manufacturing, this may not
be realistic today. In fact, past studies have found the machine utilization being a major driver for
the cost and environmental performance as it significantly influences how machine investments
and up-stream emissions from building the machines are broken down to a per part calculation.
(Faludi, Bayley et al. 2015, Lindemann, Jahnke et al. 2012) However, with the expected growth
in additive manufacturing, machine utilization is expected to improve. The assumption of an

80% machine utilization, enables a focus on the required resources and capacities on a per part
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basis in a future scenario in which DDM machines are fully utilized. Also, no machine or

equipment amortization and investment costs are considered within this study.

Although not much information about the cobalt-based alloy used for additive manufacturing is
publicly available, one GE additive company has been identified in Québec, Canada. This
company called AP&C is currently expanding its capacities to manufacture metal powders from
titanium and other customized super alloys by building a new facility in St-Eustache, Québec.
According to their website they are expending their capacities from currently 500 tonnes to a
future production of 1250 tonnes of metal powder for additive manufacturing. The raw material
demand for fuel nozzle production can be calculated to maximize 35 tons per year for a
maximum rate of 40,000 fuel nozzles per year and a per part start weight of 0.85 kg. (Flanagan et
al. 2017) Therefore, St-Eustache, Québec has sufficient capacities to supply raw material for all
fuel nozzle manufacturers and is assumed as the location for raw material powder production. It
is assumed that this highly customized material will be produced on order at a minimum order
quantity of 5 tons for the centralized production location. It is further assumed for the distributed
scenario that the MRO locations are restricted to use this material and supplier as it is often the
case in the aerospace industry and that they can order the material from the same location with
minimum order quantities of 500 kg. It is assumed that raw material is shipped via truck
transport. Road distances are calculated using google maps and raw material transportation is

considered in the simulation model.
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2.3.4 The demand locations

For the CFM56 a wide range of service providers exist, as CFM has kept the aftermarket for the
CFMS56 open. Services are offered by independent MROs, airline affiliates and the OEMs, i.e.,
General Electrics (GE), SAFRAN Aircraft Engines and their joint venture CFM International.
According to Derber (2017), CFM Services has a market share of about one third in the global

aftermarket.

For an estimation of the US aftermarket for the CFM56 engine, press statements (StandardAero
2016, Lockheed Martin Corporation 2016, Southwest Airlines Co. 2016, Shay 2017, DELTA
AIR LINES 2007, Mecham 2012) of the involved companies and airlines were reviewed. In
addition, most of the airlines also publish information about their current fleets on their websites.
In cases where they do not, data about airline fleets and aircraft movements are derived from
public website (Airfleets 2018). Taken together, this information was used to develop an
inventory of aircraft operated out of the US and Canada that use the CFM56 or LEAP engines,

and identify MRO providers and locations for these aircraft.

Table 3 gives an overview of the relevant companies and locations identified to perform
maintenance service on the CFM56 engine family. Seven MRO locations were identified, four in
the U.S., two in Canada, and one in Brazil. Table 3 also identifies the airlines serviced at these
maintenance locations and the number of airplanes with CFM56 engines operational in their
current fleets. This included twelve airlines, eleven operating out of the U.S and one operating
out of Canada. Within their fleets, aircraft from the Airbus A320 and Boeing 737 families utilize
the CFMS56 or LEAP engine. The only other commercial aircraft type planning to use the LEAP
engine is the Comac C919 with a planned market introduction in 2021. At the moment it is not
known, if any US or Canadian airlines are planning to operate this airplane. Therefore, the

Airbus A320 and Boeing 737 aircraft were simulated in this study.
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No. | Company Company Address | Customers A/C with
CFMS56/LEAP engine
001 | GE Aviation Strother FId Virgin America 67x A319/A320/A321
Strother Field | Arkansas City Alaska Airlines 232x Boeing 737
KS 67005, USA Sun Country Airlines
Air Transat
Sunwing Airlines
002 | GE Aviation R. Alice Hervé 70% of the Southwest | 485x Boeing 737
Celma 356 — Bingen fleet
Petrépolis — RJ
25669-900 Brazil
003 | StandardAero | 1885 Sargent Ave, | 30% of the Southwest | 327x Boeing 737
Winnipeg, fleet
R3H 0E2 Canada Westjet
004 | Lockheed 7171 Boulevard de | Frontier Airlines 76x A319/A320/A321
Martin la Cote-Vertu
Commercial Saint-Laurent
Engine Sol. H4S 173, Canada
005 | AMERICAN 3900 NORTH American  Airlines | 205x
AIRLINES MINGO ROAD Allegiant Air A319/A320/A321
Technical Ops. | TULSA, OK 74116 306x Boeing 737
& Maintenance | USA
006 | DELTA 1775 M.H. Jackson | DELTA AIR LINES | 150x
TechOps Service Road INC A319/A320/A321
ATLANTA, GA 171x Boeing 737
30354, USA
007 | United Airlines | 4849 Wright Rd# | United Airlines 329x Boeing 737
Maintenance B Houston
Base TX 77032, USA

Table 3: Overview of service locations with assigned customers and airplane volumes




Figure 4 and Figure 5 show a summary of the eight identified MRO shops (demand locations)
from Table 3 and the location of the centralized production location in 400 Innovation Dr,
Auburn, AL 36832, USA, where GE Aviation has established a new facility for additive

manufacturing high volume production. (Zaleski 2017)
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Figure 4: Overview of demand locations in North America

O The white circles show the demand locations for the centralized and distributed
manufacturing system (CMS & DMS). For the DMS, these are also the production
locations.

[d The white square shows the production location of the centralized manufacturing system
(CMS) and is not relevant for the distributed manufacturing system (DMS).

Figure 5: Overview of demand locations in South America

O The white circles show the demand locations for the centralized and distributed
manufacturing system (CMS & DMS). For the DMS, these are also the production
locations.
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2.3.5 The centralized manufacturing location (CMS)

GE Aviation has been investing heavily into additive manufacturing technology and has
established a new facility in Auburn, Alabama for manufacturing the fuel nozzle. At full
production this new facility will have capacities for manufacturing 35,000 - 40,000 fuel nozzles
per year. (General Electric Company 2017) Considering 19 fuel nozzles per engine and a
planned output for serial production of 2,000 engines per year by 2020 these capacities will be
almost fully utilized by a demand of 38,000 fuel nozzles per year. (Broderick 2017) Without
taking measures to expand capacities a maximum of 2,000 fuel nozzles could be delivered to the

aftermarket based on these estimates.

Figure 6 shows the supply chain concept for production scenarios 1 and 2 in one centralized
location with subsequent part distribution to the customers (repair shops). The centralized
manufacturing location produces all parts required by the MRO repair shops in the US, Canada,
and Brazil. Raw material is assumed a low value item with relatively low holding cost and
therefore stocked plenty. Within the simulation, simplified raw material replenishment with high
tolerances is used and raw material stocks are reviewed yearly to ensure that production is not
disputed due to missing raw material in the following year. Costs and environmental impacts

related to manufacturing, inventory holding, and transportation are estimated.

Repair Shop 1
Centralized
Raw material supplier ———® manufacturing location >
(CMS)
Repair Shop 2
Raw Finished >
Material Goods
inventory Inventory
Repair Shop n
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Figure 6: Supply chain of the centralized production system

2.3.6  The distributed manufacturing system (DMS)

For production scenario 3, i.e., the distributed manufacturing system (DMS), it is assumed that

parts are produced at the repair shops, i.e., at the fuel nozzle point of demand. In this case the

seven demand locations in Figure 4 and Figure 5 are considered to accommodate the required

production infrastructure.

Figure 7 shows the supply chain concept for production scenario 3. Each distributed

manufacturing location produces the parts required for the specific repair shop. Raw material is

considered a low value item with relatively low holding cost and therefore stocked plenty.

Unlike the centralized supply chain, all distributed locations require raw material and finished

goods inventory stocks.

Repair Shop 1

>l Distributed
manufacturing
Location 1
Raw material supplier
Raw Finished
Material . Goods
Inventory 1 Repair Shop2 | 1nventory 1
>l Distributed
manufacturing i i
Location 2
Finished
MRtaW I Goods
>l Distributed
manufacturing
Location n
Raw Finished
Material Goods
Inventory n Inventory n

Figure 7: Supply chain of the distributed production system
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2.3.7 Life-cycle inventory
The purpose of the life-cycle inventory is to define the boundaries of the reviewed system from
an environmental perspective and to define what exchanges with nature are considered. The
assessment of the environmental performance of the three production systems considers the
electric energy consumption from fuel nozzle production (pre and post processing as well as part
shaping), electric and fossil energy consumption from raw material transportation to either the
centralized production location in Auburn, Alabama in scenario 2 or directly to the seven de-
centralized MRO repair shop locations in scenario 3, and finally electric energy consumption
from transportation of the final fuel nozzle product to the seven demand locations (MRO repair
shops) in scenarios 1 and 2. In scenario 3 the de-centralized MRO repair shops produce the final
fuel nozzles themselves. Therefore, no distribution is considered. Inventory risks deriving from
inventory obsolescence are causing additional production and are therefore considered as part of
this life-cycle inventory. Figure 8 provides a flowchart showing the considered life-cycle
inventory. For scenario 1 no raw material transportation is considered as it does not use powder
material. Moreover, it is assumed that all component production activities happen at the same
location. This is a simplifying assumption for scenario 1 as no detailed information of the
component supply chains are available. Due to significantly higher per part efforts it is expected
that this simplification does not change the overall picture significantly. Production scenario 3
does not require transportation to the MRO locations as the final parts are manufactured right at

these locations.
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Scenario 1: Conventional Manufacturing, centralized location

Fuel Nozzle
Production

Pre and Post
Treatment

A 4

Part Shaping

A 4

Inventory risks

Transport to

A 4

MRO Location

Scenario 2: Additive Manufacturing, centralized location

Raw material
transport

.| Fuel Nozzle
Production

= B

Pre and Post
Treatment

Alm B
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A 4

Part Shaping
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Inventory risks
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MRO Location
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Scenario 3: Additive Manufacturing, de-centralized locations

Part Shaping

Raw material Fuel Nozzle Pre and Post N
transport Production Treatment g
= )
Symbols
Fossil Fuel Road transportation
Electric Energy Air transportation

Figure 8: Life-cycle inventory diagram
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2.3.8 Energy and resource consumption on a per part basis
The energy consumption per part is derived from Flanagan et al. (2017). Flanagan et al. (2017)
do not provide complete detailed information about the electricity consumptions, so that the
information available is completed by estimations, machine data sheets (Concept Laser GmbH
2017) and information from current literature (Kellens, Mertens et al. 2017a). Based on these
information, the required electrical energy per part is assumed to be 81.4 kWh for scenario 1, 48

kWh for scenario 2 and 49.32 kWh for scenario 3.

Flanagan et al. (2017) provide a graph showing the cumulative energy requirement of
approximately 14.000 kJ for part shaping of the traditional fuel nozzle (slide 15). Another graph
(slide 18) shows the relation of the required energy for all considered life cycle phases of the
traditional and additive fuel nozzle. The part shaping process is found to account for
approximately 0.5% of the energy demand of the traditional fuel nozzle. The largest portion
“Aircraft operation — Replacements” is ignored as it is covered by the simulation model and a
higher probability of part replacements for scenario 01 and should thus not be considered twice.
The relevant portions of pre and post processing as well as part shaping account for

approximately 11.9% or 293,186 kJ or 81.4 kWh.

Applying the same procedure for the additive manufactured fuel nozzle an energy demand per
part of approximately 48 kWh is considered for the pre and post processing and the part shaping.
Approximately 40 kWh account for pre and post processing while the remaining 8 kWh account
for the part shaping process. With a standby energy of 0.7 (Kellens et al. 2017a), a laser power of
max. 1 kW (Concept Laser GmbH 2017) and an estimated production time of 7 hours per part
the machine would require approximately 11.9 kWh if operating at full power. As the required
laser energy is dependent on the layer thickness and the layer thickness has a high impact on part
quality, it is assumed that a sensitive aerospace part like the fuel nozzle would rather be
produced at lower layer thicknesses. Each laser of a Concept Laser M3 machine can produce a
layer thicknesses of 20 — 100 um with a maximum speed of 4.5 m/s. (Concept Laser GmbH
2017)
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Assuming that the relationship between the layer thickness and the required laser energy is linear

scenario 03 would require approximately 9.32 kWh and 8.33 hours to build up one fuel nozzle

with a layer thickness of the minimum range of 20 to 40 pum. This estimation includes

changeover times and standby energy requirements. Applying the same settings for scenario 2,

one lot containing 12 fuel nozzles would require 95.65 kWh of electricity or 7.97 kWh per part

and it would take approximately 84.5 hours to produce one lot.

Table 4 summarizes assumptions related to energy consumption for the three production

systems.

Scenario 01

Scenario 02

Scenario 03

Average power standby Not considered 0.7 kW 0.7 kW
Minimum layer thickness Not considered 20 um 20 um
Maximum layer thickness Not considered 100 um 100 um
Layer thickness assumed Not considered 20 - 40 pm 20 - 40 pm
Laser power assumed Not considered 25% 25%
Maximum power laser Not considered 1 kW 1 kW
Number of lasers Not considered 4 1

Energy required for part 0.8 kWh 8 kWh 9.32 kWh
shaping per part

Accumulated energy for 80.6 kWh 40 kWh 40 kWh

required pre and post

processing per part

Table 4: Overview of assumptions related to energy consumption
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The traditional fuel nozzle is assembled from 19 pieces comprising 4 different alloys. The
additive fuel nozzle is printed from only one alloy and does not require additional components.
The following table summarizes the raw material consumption per part for the traditional and the

additive manufactured fuel nozzle. All numbers are taken from (Flanagan et al. 2017).

Materials / Alloys Start Weight [kg] | Finish Weight [kg] | Excess [kg]
Traditional fuel nozzle

Inconel 625 0.76269 0.22625 0.53644
Hastelloy X 0.06788 0.027 0.04088
Haynes 188 0.51089 0.08147 0.42942
Rene 80 0.04926 0.02211 0.02715
Total 1.39072 0.35683 1.03389

Additive fuel nozzle

CoCrMo 0.84879 0.26762 0.58117

Table 5: Summary of raw material consumption and excess

The cost of electricity depends on the location of the production facilities and is defined as
follows: (U.S. Energy Information Administration (EIA) 2018b, Natural Resources Canada
2017)

State / Province / Location Industrial Electricity Rate

1 Oklahoma 4.98 US cents per KWh
2 Arkansas 5.44 US cents per KWh
3 Texas 5.26 US cents per KWh
4 Alabama 5.97 US cents per KWh
5 Georgia 5.54 US cents per KWh
6 Kansas 7.15 US cents per KWh
7 Winnipeg, Manitoba, Canada 4.5 US cents per KWh

8 Montreal, Quebec, Canada 5.63 US cents per KWh
9 Brazil 11.6 US cents per KWh

Table 6: Overview of electricity cost
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2.3.9 Transportation efforts

Transportation distances and part weights are needed to estimate the amount of freight transport
associated with transporting the fuel nozzles in between the centralized manufacturing location
and the MRO locations. Transportation distances are used in combination with shipment weights
to estimate the ton-miles required for air and ground transport. These values are then multiplied
by the DIO scoring factors for air (“Transport, aircraft, freight”) and truck transportation (“Truck
transport, class 6, medium heavy-duty (MHD), diesel, short-haul, load factor 0.5”) to estimate

the potential environmental impact from air and ground transport of the fuel nozzles.

The DELTA TechOps MRO in Atlanta, Georgia is located a little more than 100 miles from the
centralized manufacturing plant in Auburn, Alabama. In this case it was assumed that the nozzles
will be shipped by truck solely. For all other locations, the nearest major airport served by UPS
cargo was identified from UPS’s lists of US and global airports (UPS Air Cargo 2017b, UPS Air
Cargo 2017a). The selected airport for each MRO is listed in Table 6. For these, it was assumed
that the fuel nozzles will be shipped first via truck to Hartsfield—Jackson Atlanta International
Airport (IATA Code: ATL), the closest major airport to the centralized manufacturing plant in
Auburn, Alabama. They are then assumed to be shipped by air directly from Hartsfield—Jackson
Atlanta International Airport (IATA Code: ATL) to the nearest major airport, identified in Table
6, without the need of stopovers. Finally, they are assumed to be shipped via truck from this
airport to the MRO location. All road distances are determined using google maps and the
locations from Table 3. The shortest distances estimated by google maps is assumed. For all UPS
air deliveries, air transportation distances are estimated using the website https://www.world-

airport-codes.com/distance/, which offers distance calculations between airports.

38



Table 7 provides estimates of the air and ground shipping distances from the centralized

manufacturing plant in Auburn Alabama to each of the seven MRO locations.

Nearest | Distance Distance [miles]
UPS Road
Road (to Air (to Road (to
Airport [miles]
ATL) nearest UPS | MRO)
Code
airport)

GE Aviation TUL 883 105 672.45 134
GE Celma GRU n/A 105 4666.44 795.24
StandardAero YWG 1655 105 1299.65 3.38
Lockheed Martin YUL 1322 105 994.33 13.17
Commercial Engine
Solutions
AMERICAN TUL 778 105 672.45 6.3
AIRLINES Technical
Operations &
Maintenance
DELTA TechOps 108
United Airlines IAH 693 105 688.17 0.70
Maintenance Base

Table 7: Summary of shipping distances

Flanagan et al. (2017) report a weight saving potential of 25% for the fuel nozzles by applying
additive manufacturing technology. According to the report the weight per fuel nozzle can be

reduced from 0.35683 kg to 0.26762 kg.

Based on the per part weight, the shipment weights are estimated as shown in Table 8. It is
assumed that extra precautions, including use of specialty packaging materials, will be taken to
keep the fuel nozzles stable and damage free during shipping. These packaging materials as well
as paper documentation are considered in the shipping weight estimates. The total additional
weight is assumed to be 1 kg for a package that contains one to nine fuel nozzles and 2 kg for a

package that contains 10 — 19 fuel nozzles.
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Package content Part Weight Package Weight | Package UPS Billable
[kg] [kg] Weight Weight [Ib]

[Ib]

1 — 3 fuel nozzles 0.27-0.81 kg 1.27-1.81kg 28-3991b |<41Ib

4 — 6 fuel nozzles 1.08 - 1.62 kg 2.08-2.62 kg 4.6-5.81b <61b

7 — 9 fuel nozzles 1.89-2.43 kg 2.89-3.43 kg 64-7561b |<8Ib

10 — 14 fuel nozzles | 2.7 — 3.78 kg 4.7-5.78 kg 104 — 1274 | <13 1b
Ib

15 — 19 fuel nozzles | 4.05 - 5.13 kg 6.05—-7.13 kg 13.3-1541b [<161b

Table 8: Shipment weights overview

For evaluating the shipping time and cost, the online calculation system from UPS is used.
(United Parcel Service of America, Inc. ) Taking into account the package weight and the
demand locations listed in 0, the shipping cost and times from the manufacturing location in
Auburn, Alabama to the identified demand locations are derived. Table 9 summarizes the

resulting cost and transportation time that is used in the simulation model.

Adressee Cost [USD] Transportation

time
<41lbs |[<61bs |<8lbs |<131lbs | <161bs

GE Aviation 85.46 109.58 | 122.22 | 164.93 185.15 1 day

GE Celma 234.66 | 326.74 | 412.60 | 539.67 | 657.42 |5 days

StandardAero 80.17 95.66 | 105.94 | 129.78 143.77 | 1 day

LMCS 80.17 95.66 | 105.94 | 129.78 143.77 | 1 day

AMERICAN 90.35 106.64 | 119.28 | 161.99 182.21 1 day

AIRLINES Tech.

Ops.

DELTA TechOps 35.55 4435 | 45.28 55.83 59.27 1 day

United Airlines 82.53 106.64 | 119.28 | 161.91 182.21 1 day

Maintenance Base

Table 9: Transportation time and cost
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2.3.10 Holding cost and fuel nozzle spare part price assumptions

Several companies from the MRO industry have been approached for an estimation of the spare
part price for the fuel nozzle. Most of them did not reply or replied that the catalogue price
cannot be shared for confidential reasons. Two answers have been received setting a range from
USD 9,500,- to USD 18,000. This high variation can be explained by different engine versions,
different fuel nozzle versions even within the same engine and by different suppliers such as

OEM and third party suppliers.

The spare part price of the fuel nozzle is set to be USD 10,000 for all fuel nozzle versions for
simplicity reasons as it is only used for estimating the holding cost. This simplification also
means that no cost reductions or increments in part production resulting from Industry 4.0
concepts are considered in this model. Due to the much higher number of fuel nozzles that are
needed for the conventional manufacturing system based on (Flanagan, Fisher et al. 2017) a cost
saving resulting from a much simplified design of the additive fuel nozzle is expected to have a
negligible impact on the total result unless it would be extraordinary. With required high
investments into new machines and infrastructure as well as high cost of initial research, an
extraordinary cost saving cannot be expected even if the per part recurring cost would be reduced

significantly.

As no actual holding cost information is available, the cost of holding a part for a period of one
year is assumed to be 20% of the products value. This includes the cost of damaged parts, cost of

storage space and labor as well as opportunity cost due to tied capital.
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2.4 Step 2: The Simulation Model

2.4.1 Simulation model conception

This work aims to quantify the overall impact of Industry 4.0 and direct digital manufacturing in

particular based on a given example from the industry. To address these questions three major

production and supply chain models are developed in ARENA Simulation software, Version 15

by Rockwell Automation Technologies, Inc. that are used for simulating varying conditions set

by attributes and recording performance output measures on a monthly basis. Figure 9 shows the

principle conception of the simulation model while Figure 10 provides a schematic overview of

the three developed production and supply chain system scenarios Scenario I, II and III.

Production System

Random Airline
Operations

Airlinel Cllstomer

iy

Fuel Nozzle Demand

Engine MRO

=

Repair Shops
with random

Supply Chain &

Transportation

[\ replacement
Fuel nozzle supply / probability

Figure 9: ARENA Simulation flow chart

Current State Future State Future State
Baseline CMS DMS
Conventional Additive Additive
manufacturing Manufaturing Manufaturing
Simulation Scenario Scenario Scenario Assessing
Base Models 1 2 3 Industry 4.0 &
DDM potentials

Figure 10: Schematic overview of scenarios
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The models have not been simulated on static conditions as of today but rather are subject to
changing technology over time which is considered by projections. For each of the three
considered technology changes (changes in the electricity mix, growth of the electric truck
market and implementation of carbon tax) three scenarios representing low, mid and high
developments have been modeled as defined in 2.4.8. Combined with three different supply
chain configurations and 8 different input values for the anticipated service level (z-value) a total
of 648 (3 x 3 x 3 x 8 x 3) different unique input combinations have been investigated. Appendix
03 provides an overview of all 648 unique input set combinations that have been considered in
this work. Table 11 shows an overview of all considered inputs. Not all of them are independent
of each other. The first three inputs production location(s), manufacturing method and
production lead time define the three production scenarios, as shown in Table 10. For the
location parameter, 0 represents production in one centralized location, whereas 1 represents
production in multiple distributed locations. For the manufacturing method parameter, represents
traditional manufacturing, whereas 1 represents additive manufacturing. Production scenario 1
[0, 0, 14] produces in one centralized location using conventional technologies and has a lead
time of 14 days. Production scenario 2 [0, 1, 10] produces in one centralized location using
additive technologies and has a lead time of 10 days. Production scenario 3 [1, 1, 7] produces in

distributed locations using additive technologies and has a lead time of 7 days.

Production & Supply chain system Production Manufacturing | Lead Time

Location(s) Method (days)
Scenario 1 0 0 14
Scenario 2 0 1 10
Scenario 3 1 1 7

Table 10: Definition of production & supply chain systems (production scenarios 1, 2, 3)
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Category Input Unit Description
Supply chain | Production boolean | 0 means production in one centralized location
location(s) 1 means production in distributed locations
Supply chain | Manufacturing | boolean | 0 means production technology is traditional
method 1 means production technology is additive
manufacturing
Supply chain | Production Days Defines production lead times for production
lead time systems I, II, III (7, 10 and 14 days)
Supply chain | Anticipated n/A The z-value defines the number of standard
service level deviations in demand that should be covered by
(z-value) safety stock assuming a normal demand
distribution
Global Carbon tax USD Carbon tax forecast considering three forecast
forecast cases: low, mid, high based on “Spring 2016
National Carbon Dioxide Price Forecast”
(Luckow, Stanton et al. 2016)
Global Electricity misc. Projected mix of electricity generation technology
forecast mix fraction in the US considering three cases based on
“Annual Energy Outlook 2018 by the U.S.
Energy information administration:
(low: Low Oil and Gas Resource and Technology,
mid: Reference Case, high: High Oil and Gas
Resource and Technology) (Coyle 2018)
Global Electric truck | [%] Projected fraction of electric road freight in
forecast fraction relation to conventional road freight considering

three cases:

(low: Early adoption phase, mid: Reference Case
high: Late adoption phase)

(Tryggestad, Sharma et al. 2017)

Table 11: Configuration parameters




The observation period is set to be 30 years. Depending on random operations factors like
average flight cycles and average flight hours but also economic considerations an aircraft is
expected to operate for a timeframe of approximately 30 years. Therefore, this timeframe
provides a good overview for an aircraft fleet using this technology before successors are
developed that might use improved or completely different technologies. All simulation models
start on January 1%, 2018 and simulate a timeframe of 30 x 365 days. One year is defined to be
365 days long and one month within the simulation model is defined to have 365/12 days. To be
in line with Flanagan et al. (2017), an aircraft is disposed and replaced with a new one after

reaching 60,000 flight cycles or 120,000 flight hours, whichever occurs later.

2.42 The ARENA Simulation model
All simulation models are build up following the same concept. Figure 11, Figure 12, and Figure
13 shows how the sub-models containing airline operations, repair shops, the production systems
CMS or DMS and the raw material supplier are arranged. One sub-model is created for each
airline operator. Figure 14 exemplarily shows the sub-model created for the operations of A319,
A320 and Boeing 737 airplanes of American Airlines. All airplanes for all airlines are initially
created within the simulation run with an age distribution defined in 2.4.3. They then operate on
a daily basis according to statistical distributions as summarized in 2.4.3. When reaching a
certain amount of flight hours or flight cycles as defined in 2.4.4, an airplane leaves the sub-
model of its airline operator and is send to one of the seven repair shops in the “Repair Shops”
column. (Figure 11) Figure 15 shows the repair shop activities at American Airlines in the Tulsa
location. Airplanes arrive and are routed depending on the engine type, as all engines are found
to have different maintenance procedures. Engines are being demounted, parts being checked
and the number of fuel nozzles requiring replacement is defined according to a probability
distribution as described in 2.4.4. Figure 16 and Figure 17 show the distributed and centralized
production system, which in general work very similar. First the order arrives with a specific
order quantity coming from one of the MRO repair shops. It is checked if on-hand inventory is
sufficient to fulfill the order. If yes, demand is fulfilled and the on-hand inventory position
variables are updated. Next, it is checked whether the inventory position reached or dropped

below the reorder point. If it did not, the order is fulfilled from stock, the ordered parts are being
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shipped to the repair shop based on the assumptions in 2.3.9. Figure 19 shows how parts are
being routed according to their package weights and the addressee repair shop location.
Transportation efforts like cost and ton-miles (road) or ton-miles (air) are being recorded for later
processing. If the inventory position reached or dropped below the reorder point, production is
initiated. Also, if on-hand inventory is not sufficient in the first place, the order enters the
backorder loop and remains there until new parts are being finished. Number of parts entering
the backorder loop are being recorded on a monthly basis for supply chain performance
measures. For scenario 1 parts are being produced one by one, for scenario 2 a batch of 12 parts
needs to accumulate before production starts. After recording all production related parameters
and delaying the production lots according to lead time definitions (see 2.3.2), the parts are being
delivered to stock and all inventory variables are being updated. The total demand is being
recorded on a monthly basis for statistics and on a lead time basis for forecasting and
recalculating the production quantity Q and the reorder point r. Figure 18 shows how the
variables for the average demand and the demand standard deviation are being continuously re-
calculated based on the last years demand. Every quarter year the production quantity Q and the
reorder point r are being recalculated based on the average demand, the demand standard

deviation and the pre-defined z-value.
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Figure 11: Overview of ARENA Simulation model 1/3
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AATP Additive Production

Figure 16: ARENA Submodel AATP Additive, distributed Production
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Figure 18: Q,r calculation and demand forecasting
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2.4.3 Random Airline operations
Appendix 01 gives an overview of the initial airline fleets, providing the numbers of each aircraft
type, their average age in years, and the resulting age distribution for each airline. The website
planespotters.com is a civil aviation database that collects information about all current and
historic civil aircrafts. The datasets can be filtered by airline and aircraft type among others.
Using this function all aircrafts per considered airline and aircraft type are counted and listed
with their age information. ARENA Input Analyzer is used for generating statistical age
distributions of these raw data sets per aircraft type per airline. During initiation of the simulation
model, the current aircraft fleet numbers are generated with the age distribution as summarized

in Appendix 01.

Data for the average missions, such as average flight cycles per day and average flight hours per
day, is obtained for each airline from the Massachusetts Institute of Technology Global Airline
Industry Program’s Airline Data Project (ADP) (Massachusetts Institute of Technology 2017).
The data for the Airbus A319 and A320 is selected from the category “small narrowbody aircraft
(e.g. Boeing 737-700, Airbus A320)”, while the average data for the Boeing 737 and the Airbus
A321 is taken from the category “large narrowbody aircraft (e.g. Boeing 737-800, Boeing 737-
900, Boeing 757, Airbus A321)”. As the Boeing 737 airplane family is considered as one aircraft
type in this study, it is assigned to the category, in which it is represented the most. As of
September 2018, about 82% of the delivered airplanes of the 737NG family are of type 737-800
or 737-900 and therefore, large narrowbody aircrafts. (Boeing 2018) Data for average flight
hours and average departures per day were obtained for the year 2016. It is available for
American Airlines, Delta Airlines, United Airlines, Frontier, Virgin America, Alaska and
Allegiant Air covering 92% of simulated airplanes. For the remaining airlines, Air Inuit, Air
Transat, Air North, Sunwing Airlines and Westjet of which no data sets are available, the
average of the airlines for which data is available is assumed for small and large narrowbody

aircrafts. Table 13 shows the mean flight duration and how it is used in the beta distribution.

The maximum flight time value is estimated based on the maximum range of the airplane type
and available regular non-stop flight routes found in online flight trackers. The longest non-stop
route found for an A319 was Air Canada’s transatlantic flight from St. John’s, Newfoundland to

London, UK, which can take up to 5 hours 30 minutes. (Economy Class & Beyond 2014) The
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longest non-stop route found for the A321 was 5 hours and 51 minutes operated by American
Airlines between Los Angeles, USA (LAX) and Kauai in Hawaii, USA (LIH). (Leff 2015) For
the A320, the longest route identified is the connection between New York City, JFK and Los
Angeles, LAX operated by Alaska Airlines. (Dozer 2018) Although, an extended range version
of the A321, the A321LR is available on the market, Air Transat has just recently become the
first North American customer for the A321LR and operates its remaining Airbus fleet with the
Pratt & Whitney engine option. (Darcy, Brunet 2017) Therefore, this airplane version has not
been considered in this study. Based on these findings, the maximum flight time was set to 5
hours 30 minutes for the Airbus A319, 6 hours 25 minutes for the Airbus A320, and 6 hours for
the A321.

For the Boeing 737 airplanes the route between Chicago O'Hare International Airport and Ted
Stevens Anchorage International Airport operated by United Airlines and Alaska Airlines is
found to be one of the longest, fully utilizing the maximum range of this airplane. (Lazare 2018)

It takes 6 hours and 49 minutes according to the United Flight schedule.

Maximum Longest Operator Flight time | Max flight
Range route time defined
identified
A319 3750 nm YYT - Air Canada 5 hours 5.5 hours
LHR 26 minutes
A320 3300 nm JFK - Alaska Airline 6 hours 6.25 hours
LAX 14 minutes
A321 3200 nm LAX - American 5 hours 6 hours
LIH Airlines 51 minutes
737 3010 nm ORD - United Airlines, | 6 hours 6.8 hours
ANC Alaska Airlines | 49 minutes

Table 12: Summary of defining non-stop routes for the airplanes

The minimum flight mission for all airplanes is estimated to be 0.1 hours. As very few regular
flight routes are existing close to this very short flight time, this setting represents a case in

which the airplane has to return to the airport right after take-off for technical or other reasons.

Variation in aircraft flight mission is represented by a beta distribution in the simulation model.
Different from the triangular distribution which would have been another feasible option, the
beta distribution can be adjusted to have very little probabilities for missions close to the

minimum value, the highest probability for flight missions in the range of the average and still
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relevant probabilities for longer flight routes. In this case it is a realistic representation as these
aircraft categories operate on domestic routes with a majority of routes connecting the major US
hubs with each other and with other smaller cities. The following Table 13 summarizes the beta

distributions defined per aircraft per airline based on the mean, the minimum and the maximum

values:
Airline Aircraft | Mean | Min. | Max. Distribution
Type value | value
American Airlines A319 1.79 0.1 5.5 0.1 +5.4 * beta (2, 4.4)
A320 1.79 0.1 6.25 0.1 +6.15 * beta (1.9, 5)
737 3.16 0.1 6.8 0.1 +6.7 * beta (2.1, 2.5)
Delta Airlines A319 1.58 0.1 5.5 0.1 +5.4 * beta (2, 5.3)
A320 1.58 0.1 6.25 0.1 +6.15 * beta (2, 6.3)
A321 2.82 0.1 6 0.1 +5.9 * beta (2, 2.35)
737 2.82 0.1 6.8 0.1 +6.7 * beta (2, 2.93)
United Airlines 737 3.51 0.1 6.8 0.1 +6.7 * beta (4.15, 4)
Southwest 737 2.24 0.1 6.8 0.1 +6.7 * beta (2, 4)
Frontier A319 2.38 0.1 55 0.1 +5.4 * beta (2, 2.75)
A320 2.38 0.1 6.25 0.1 +6.15 * beta (2, 3.4)
A321 2.29 0.1 6 0.1 +5.9 * beta (2, 3.4)
Virgin America A319 3.13 0.1 5.5 0.1 +5.4 * beta (2.5, 2)
A320 3.13 0.1 6.25 0.1 +6.15 * beta (2, 2.1)
A321 3.13 0.1 6 0.1 +5.9 * beta (2.1, 2)
Alaska 737 297 0.1 6.8 0.1 +6.7 * beta (2, 2.65)
Allegiant Air A319 2.03 0.1 5.5 0.1 +5.4 * beta (2.8, 5)
A320 2.03 0.1 6.25 0.1 +6.15 * beta (1.8, 4)
Sun Country Airlines | 737 2.70 0.1 6.8 0.1 +6.7 * beta (2, 3.1)
Air Transat 737 2.70 0.1 6.8 0.1 +6.7 * beta (2, 3.15)
Sunwing Airlines 737 2.70 0.1 6.8 0.1 +6.7 * beta (2, 3.14)
Westjet 737 2.70 0.1 6.8 0.1 +6.7 * beta (3, 4.75)

Table 13: Summary of Aircraft missions distribution

To be in line with the study conducted by Flanagan et al. (2017), a total engine life of 60’000
take-off and landing cycles is assumed. After reaching 60’000 flight cycles, the simulation

assumes that the engine is scrapped and replaces it with a new engine.
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2.44 Engine MRO repair shop visits
This engine life can be divided into a different amount of on-wing intervals depending on the
engine type and its thrust ratings as well as on the engines average mission. In between these
intervals there is always a repair shop visit for which the engines are taken off the wing.
Depending on the age of the engine model, different scopes of work are performed. Shop visits

can be divided into scheduled and unscheduled shop visits.

Unscheduled shop visits can be further categorized as engine related and non-engine related.
Unscheduled, engine related shop visits contain failures of the engine hardware and can further
be sub-divided into light and heavy shop visits. Unscheduled, non-engine related engine shop
visits are caused by special events such as bird strikes or foreign object damages (FOG).
(Aircraft Commerce 2014) AIRCRAFT COMMERCE (2014) suggests to consider heavy engine
related shop visits and shop visits following non-engine related events together. They interrupt
“the schedule of planned removals and shop visits, and also reduce the average planned removal
interval.” Although shop visits following heavy events are also used to expedite planned
maintenance work, the randomness of these events “means that they can occur shortly before a
planned event or halfway between planned events, thereby reducing the average planned interval,
rather than adding a full additional shop visit.” (Aircraft Commerce 2014) According to
AIRCRAFT COMMERCE 2014 “heavy and non-engine related events occur on average once
every 70,000EFH”. (Aircraft Commerce 2014) This would correspond to one or maximum two
unscheduled shop visits on average per engine life in this example. Due to the complexity of
modelling unscheduled shop visits and lack of information about the probability that fuel nozzles
would be affected during unscheduled shop visits, they are not considered separately within this

study.

For scheduled visits most airlines follow different strategies. All of these strategies are based on
obtaining the maximum time between shop visits with the goal of reducing cost per-engine flight
hour. The major driver is the exhaust gas temperature (EGT) margin, which declines with
increasing operation. The engine gas temperature margin is the difference of the maximum
engine gas temperature, the engine has been certified for and the maximum gas temperature
measured during operations. It is usually measured during the take-off phase. The EGT margin is

highest, when the engine is new. AIRCRAFT COMMERCE (20006) states that “most CFM56-3s
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recover about 70% of the original exhaust gas temperature (EGT) margin after the first shop
visit”. The rate at which engine performance deteriorates depends on many factors, inducing
mission characteristics and CFM56 engine model. Experience of airline operators show a
relation between engine removals and engine flight hours (EFH) or engine flight cycles (EFC).
(Aircraft Commerce 2014) Whether it is engine flight hours (EFH) or engine flight cycles (EFC)
being the crucial factor of the on-wing interval depends on its prior mission. As Markus
Kleinhans, propulsion systems engineer for the CFM56-3/-7B at Lufthansa Technik states in
AIRCRAFT COMMERCE (2006), “EFC has more impact on the on-wing interval than EFH for
average EFC times of 1.0-1.5 EFH. On longer average sectors, however, where EFC time is 2-3x

EFH, the accumulated number of EFH on-wing has more of an influence on interval.”

Based on this, it is assumed that the engine flight cycles (EFC) govern the scheduled shop visits
for average engine cycles smaller than two flight hours. For average cycles greater than or equal
to two flight hours the engine flight hours (EFH) are defined to be the determining factor. As
removal intervals are significantly different for different engine models and are highly dependent
on the engine thrust rating, four reference engine models are selected to represent the engines
that power the aircrafts of the Airbus family (A319, A320, A321) and the Boeing 737. Three of
these are selected to represent the A320 family (CFM56-5B6 for A319, CFM56-5B4 for A320
and CFM56-5B2 for A321). For the Boeing 737, the CFM56-7B26 model is selected as a
representative engine since it is used on more than 50% of 737NG airplanes. (Aircraft
Commerce 2013) As this work aims to investigate one part used in the successor of the CFM56
engine, only the newest models of the CFM56 family are used, although many airplanes might
still operate older engines. On-wing intervals have significantly increased between the first
CFMS56 engines on the market and the latest version and the same can be expected for its

successor, the LEAP engine.

Table 14 gives an overview of the engine model that are assigned to each airplane model in this
study. It also defines the maintenance patterns used in the simulation model for the different
engine models. It shows the flight cycles (EFC) and engine flight hours (EFH), after which the
engine is removed for shop maintenance and the scope of the work performed during these visits.

These pattern are summarized information published by AIRCRAFT COMMERCE (2013) and
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AIRCRAFT COMMERCE (2014) and are a simplification of the earlier described, very complex

and individual maintenance strategies that the airline operators apply.

Airplane | Engine Thrust | 1st Subsequent removal Condition
type model removal | 2nd, 3rd, 4th, etc.

Airbus CFM56- 23,500 | 20,000 every 10,000 EFC! Av. EFC <2h
A319 5B6! Ibs! EFC!

Airbus CFM56- 23,500 | 36,000 every 18,000 EFH! Av. EFC > 2h
A319 5B6! Ibs! EFH!

Work Overhaul' | rotating restore, overhaul,... !

scope

Airbus CFM56- 27,000 | 20,000 every 10,000 EFC! Av. EFC <2h
A320 5B4! Ibs! EFC!

Airbus CFM56- 27,000 | 36,000 every 18,000 EFH! Av. EFC > 2h
A320 5B4! Ibs! EFH!

Work Overhaul' | rotating restore, overhaul,... !

scope

Airbus CFM56- 31,000 | 15,000 10,000 EFC! Av. EFC <2h
A321 5B2! Ibs! EFC!

Airbus CFM56- 31,000 | 27,000 18,000 EFH! Av. EFC > 2h
A321 5B2! Ibs! EFH!

Work Overhaul | rotating overhaul, restore,...

scope

Boeing CFM56- 26,300 | 14,000 11,000 EFC?, 9,000 EFC2, Av. EFC <2h
737> 7B262 1bs? EFC? 11'000 EFC2, 9'000 EFC?

Boeing CFM56- 26,300 | 27,000 21,000 EFH?, 17,000 EFH3, Av. EFC > 2h
737 7B262 1bs? EFH? 21,000 EFH3, 17,000 EFH?

Work Restore overhaul, restore, overhaul,

scope restore

Table 14: Summary of scheduled shop visits

I (Aircraft Commerce 2014)
2 (Aircraft Commerce 2013)
3 Calculated based on 1.9EFH per EFC (Aircraft Commerce 2013)

According to the Engineering leader of GE Additive, Mr. Mook, it is an accepted industry
standard that about 10% of fuel nozzles need replacement during maintenance shop visits. Mr.
Mook also states that the new additively manufactured fuel nozzles generally last the life of an
engine, but non-normal wear related issues can occur during operations. The replacement
probability of 10% covers all kind of damages that occur during aircraft operations as well as the
maintenance and cleaning process and special events such as bird strikes or foreign object

damage (FOD). These events can result in secondary effects like local overheating that damage
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single fuel nozzles. (Mook 2018) In the simulation, the number of fuel nozzles replaced during a

shop visit is defined by a Poisson distribution with mean 2 for scenarios 2 and 3.

According to Flanagan et al. (2017) the part life of the new additive manufactured fuel nozzles is
expected to be five times longer than its traditionally manufactured predecessor, which is
considered in scenario 1. In the simulation model this is covered by 5 times the Poisson

distribution with mean 2 for scenario 1.

Based on the conference call with Mr. Mook, replacements resulting from upgrades or
modifications that improve performance (e.g. reduce weight, fuel consumption) are common.
These upgrades happen unpredictably, but might punctually cause high demand volumes during
scheduled maintenance. In such a case, all fuel nozzles are typically replaced when an airline

decides to implement an available upgrade. (Mook 2018)

The occurrence of version upgrades has a high impact on the demand as suddenly all fuel nozzles
need to be replaced. Moreover, available inventory is disposed. To maintain comparability of the
three production systems, one sample for the version upgrades is pre-defined based on an
exponential distribution with mean 10 years and used for simulation runs. Version upgrades will
occur after 18, 38, 52 and 158 months. Exponential distribution is chosen as it is expected that
during the early stage of a product life cycle a lot of engineering work is still being conducted to
overcome initial issues which usually accompany a product introduction. Later with a mature
product very few, punctual modifications and improvements are being implemented as required
to improve the performance or extend the product life. In the last stage the product support is

being reduced resulting in a very low probability for version upgrades.
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2.4.5 Simulation of the production and supply chain systems
For the simulation model, the initial combined U.S. and Canadian fleet is comprised of 2,578
airplanes utilizing the LEAP or CFM56 engines from 12 airline operators. For each airline,
information about the aircraft age, missions, and maintenance schedule was collected from
publicly available sources as described in the next two sections. Based on this information,
airline/aircraft operations (i.e., take-off and landing flight cycles and collecting flight hours) are
simulated on a daily basis for each aircraft independently. Ground handling times and night
flying restrictions are considered with the goal of achieving a simulation model as close to reality
as possible as these times reduce the availability of an aircraft. After an aircraft reaches the
amount of flight cycles or flight hours defined in its maintenance schedule, the simulation routes
the airplane to its identified maintenance service provider, where engine maintenance is
conducted and fuel nozzles replaced if necessary, per the replacement probability defined in
section 2.4.11. If replacement is deemed necessary, the maintenance service provider then orders
replacement fuel nozzle(s) either from the centralized production location (production scenarios
1 & 2), where part production and inventory replenishment are simulated, or initiate production
themselves (scenario 3) following a Q,r replenishment strategy and with safety stocks. For all
transportation and production activities, annual cost and environmental impacts as well as supply
chain performance measures are recorded. Airline market growth projections are simulated as
described in section 0. Besides demand resulting from day-to-day operations, version updates
that require replacement of all fuel nozzles are also considered. When an update is initiated, as
described in section 2.4.4, each aircraft will have the fuel nozzles replaced during its next
scheduled maintenance. All order quantities and reorder points are re-calculated periodically
every 4 months within the model based on the demand and demand fluctuation of the previous
year and the specified z-value following a Q,r replenishment policy. On-hand inventory and the
inventory position are reviewed continuously and new production is initiated as soon as the

inventory position reaches or drops below the reorder quantity.
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2.4.6 Aerospace market outlook

Several studies have been assessed to quantify the market growth for the observation period of
30 years. (Boeing Commercial Airplanes 2017, AIRBUS 2017, ICAO 2016) All three studies
forecast a significant worldwide growth of the commercial aviation sector for the coming
decades and also provide detailed forecasts for the different world regions. While the ICAO
(2016) forecasts focus on the development of passenger and cargo volumes until 2042, Boeing
Commercial Airplanes (2017) and AIRBUS (2017) both build on air travel demand forecasts but
also include other factors (e.g. low cost carriers, increasing nonstop connections, smaller
airplanes with higher frequencies, airline consolidations, etc.) to ultimately generate product
demand forecasts for the different regions. With an average annual growth rate of 3% for the
North American single aisle market two overlapping trends are covered, an increasing number of
passengers and a growing market share of single aisle airplanes resulting from low cost market
growth and customer preference for direct non-stop flight connections. Using the annual growth
data from the past years 2002 until 2017 (United States Department of Transportation 2017) a
normal distribution is found to provide a good fit using ARENA Input Analyer. The suggested
distribution of NORM(1.02, 0.033) has been adjusted for a mean value of 1.03 (3% growth rate)

and a standard deviation keeping the unpredictability, i.e., the coefficient of variation unchanged.

—0_2%
cv=-=0 (2.3)

where

cv is the coef ficient of variation

Uy is the mean value of the past 15 years growth period

01 is the standard deviation of the past 15 years growth period
U, is the mean value of the future 30 years growth period

0, is the standard deviation of the future 30 years growth period

Eventually, the annual growth rate in the simulation model is described by the normal
distribution NORM(1.03, 0.033). As for the version upgrades defined in 2.4.4, the market growth

is found to have a high impact on the performance of the systems as well. To achieve
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comparability of the three scenarios, the following sample data set is pre-defined from this

normal distribution function and used for all scenarios in all simulation runs.

10.00%
8.00%
6.00%

4.00%
w1, Al
0.00% I

22.00% 2018 20 22 24 26 28 30 32 34 36 38 40 44 § 46 48

-4.00%
-6.00%

Figure 20: Sample data set defining annual growth rate of the aviation market

2.4.7 Sustainability analysis inputs

To measure the environmental performance, the DIO scoring factors made available by the DoD
and described in section 1.3.3 are used. This framework provides environmental scoring factors
in an excel spreadsheet and can be multiplied with the accumulated activity outputs recorded by
the simulation model. This fact enables incorporation of this dataset into a study outside of
existing life-cycle assessment software. The DIO provides scoring factors at the midpoint and
endpoint level. Midpoints are provided for specific environmental issues (e.g., toxic releases,
water consumption) and represent indicators of potential impacts. Cause-effect models are used
to translate midpoint impacts into endpoint impacts for specific areas of concern (e.g., human
health). As such, endpoints represent the potential damage to these areas of concern. The DIO
model provides scoring factors for four endpoints, i.e., resource availability, climate change,
human health and ecosystem (Department of Defense 2016). This study uses the endpoint
scoring factors to evaluate the performance of the CMS and two DMSs over the lifecycle,
including electricity used during part production, fuel or electricity used during supply chain

transportation, and fuel used during aircraft operations.
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Due to the lack of publicly available information, it was not possible to accurately estimate the
environmental impacts associated with producing the materials used in the conventional or
additive manufactured fuel nozzles. The materials used to produce fuel nozzles via conventional
manufacturing are different than those used to produce fuel nozzles via additive manufacturing.
The quantity of material used in the two additive manufacturing scenarios is unlikely to vary
significantly. While there are differences in the types and quantities of materials used, the
environmental impacts associated with material production are relatively small compared to
those with other life cycle stages, as was found by Flanagan et al. (2017). Exclusion of material
production will not change the overall conclusions of this analysis. Nonetheless, the

environmental, health, and safety implications of these materials should be considered.

A complete list of the considered activities can be found in Appendix 04. Through exchanges
with developers of the DIO model, it was determined that the DIO model assumed all electricity
mixes used a similar supply chain regardless of the mix of energy sources used to generate the
electricity. That is, the DIO model provides scoring factors for 1 MJ of electricity produced from
each state. The outputs (e.g., emissions) for each of these are estimated based on the type of
energy sources used to produce the electricity. However, the inputs (i.e., purchases from other
industry sectors) are assumed to be the same as the average US electricity mix. They are simply
scaled based on a relative comparison of the average cost of electricity in the state to the average
cost of electricity in the U.S. For example, if the average cost of electricity in a given state is
10% higher than that of the U.S, it is assumed that the purchases for each industry sector are
estimated as 10% higher regardless of the underlying energy mix. In actuality, the supply chain
for electricity generated in renewable sources would be quite different from a supply chain for
electricity generated from fossil fuels. As it stands, the DIO model is insufficient for
characterizing and contrasting the life cycle impacts associated with using electricity to produce
fuel nozzles at different locations. To address this, a member of the DIO development team
created new activities and generated scoring factors for electricity generated from coal, oil, gas, a
renewable energy, and a zero emissions renewable energy mix. The renewable mix is based on
the breakdown of renewable energy sources currently used in the US, and assumes 13.2%
biomass, 66.3% hydro, 18.2% wind, 0.2% solar, and 2.2% geothermal sources (U.S.
Environmental Protection Agency, 2018). The zero emissions renewable mix removes biomass

from this mix and assumes zero emissions. Using state resource mixes (eGrid2016) published by
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the U.S. Environmental Protection Agency (EPA) and the new scoring factors provided by the
DIO development team, new endpoint impacts are calculated per MJ of electricity consumed for
each of the relevant locations as well as for the US average. (U.S. Environmental Protection

Agency 2018)

Four environmental impact measures are quantified. Resource Availability characterizes the
potential impact to resource availability from using natural resources, including fossil fuels,
minerals, and water. It is measured in MJ extra, which reflects the additional energy required to
extract and deliver marginal units of water to future end users. Climate Change characterizes the
potential damage to human health and ecosystems from global warming. It is measured in
kilograms of carbon dioxide equivalent (kg CO2 eq), which reflects the global warming potential
of greenhouse gas emissions. Human Health characterizes the potential damage to human health.
It is measured in disability-adjusted life years (DALY's), which reflects the number of years lost
due to ill-health, disability or early death (e.g., from carcinogenic, non-carcinogenic, and
respiratory effects from chemical releases). Environmental Health characterizes the potential
damage to ecosystems. It is measured in units of the potentially disappeared fraction of species
over a certain area (m?) during a year (PDF*m2*yr), which represents the fraction of species lost

from relevant impacts (e.g., acidification; eutrophication; ecotoxicity; water use; and land use).

2.4.8 External developments and future trend projections
Benchmarking three systems over a lifecycle of 30 years requires to identify and consider
relevant external developments and to assess their influence on the systems. The potential
implications of three trends are considered. This includes electricity mix projections, carbon tax
developments, and electric truck projections over the next 30 years. However, the ARENA
model can be used to test the effect of any kind of technology or policy change over the defined

period as long as sufficient projections are available or can be generated.

The U.S. Energy Information Administration (EIA) has published three different electricity mix
projections for the Unites States through 2050. The reference case assumes “trend improvements
in known technologies along with a view of economic and demographic trends reflecting the
current views of leading economic forecasters and demographers” and further that “current laws

and regulations affecting the energy sector” remain unchanged unless they have already defined
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sunset dates. The other two cases assume a low and a high development of oil and gas resources
and technology. (U.S. Energy Information Administration (EIA) 2018a). In the low oil and gas
case, the share of renewable energy is higher than that of the reference case. In the high oil and
gas case, the share of renewable energy is lower than that of the reference case. Hereinafter,
these three cases are referred to as E-Mix 1 (i.e., reference case), E-Mix 2 (i.e., low oil and gas,
high renewable energy), and E-Mix 3 (high oil and gas, low renewable energy) as defined in
Table 15. Appendix 06 shows the development of the energy generation technologies and the

cost for the three projection cases normalized to the year 2018.

Electricit | Case Share in the US by 2050 Average cost per
y mix represented (U.S. Energy Information MWh in the US
projection Administration (EIA) 2018a) by 2050

case

Coal Gas Nuclear | Renewable

E-Mix 1 Low oil and gas 30.11 | 17.45 | 14.80% | 37.64% USD 86.53
resources and % %

technology

E-Mix 2 Reference case 25.14 | 3344 | 14.02% | 27.40% USD 72.81
% %

E-Mix 3 High oil and gas | 16.48 | 51.81 | 9.88% 21.83% USD 65.53
resources and % %

technology

Table 15: Overview of electricity mix projection values for 2050

No such detailed forecasts are available on a regional level. These normalized projection data
sets are applied to the local energy mixes as off 2018 making the assumption that the energy
mixes relatively develop the same at each location as they do on US average. Exceptions are the
production locations in Quebec, Manitoba and Brazil where energy is already mainly produced
from renewable sources in 2018. No changes will be considered for these locations. Figure 21

illustrates how this approach has been used for creating the electricity mix projection for the
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Alabama location as a projection of the US average for the “low oil and gas resources and
technology” case (E-Mix 1). (U.S. Energy Information Administration (EIA) 2018a) Using the
scoring factors for electricity generated from coal, oil, gas, and renewable energy as defined in
2.4.7 as multipliers, the forecasted data has been used to generate absolute scoring factors for

electricity generated per MJ per location per year for the period 2018 until 2050.

0.45

0.35

0.3

0.25

0.2

0.15

0.1

0.05

O N0 OO O A AN M TN ONODNDO A AN MSTET N OO T AN M S LN OIS O O

T A T AN AN AN AN AN AN AN AN AN AN OO O NN D00 §F TS S W

O O O O O O O OO0 0 0000000000000 0 00000000 OO OO o

AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN ANANANNNNNN
US Average Coal US Average Gas US Average Nuclear

US Average Renewable == «= Alabama Coal - Alabama Gas

Alabama Nuclear == = Alabama Renewable

Figure 21: Electricity mix projection (E-Mix 1) US Average and Alabama
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Luckow, Stanton et al. (2016) have published three carbon tax projections representing low, mid
and high CO2 prices for the United States from 2022 to 2050. Their projections are based on
“information from federal regulations, state and regional climate policies, and utility CO2 price
forecasts” as well as their own analysis of the EPA (US Environmental Protection Agency)
Clean Power Plan and complementary policies. The mid and high cases are developed based on
the assumption that more stringent federal policies would extend the requirements of the Clean
Power Plan. Figure 22 shows the three scenarios from Luckow, Stanton et al. 2016a. The cost is

given in USD per ton of emitted carbon dioxide.
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Figure 22: Carbon tax case projections
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McKinsey Energy Insights, McKinsey Center for Future Mobility has published a study
estimating the potentials of the electric truck market with two different case projections until
2030 (early and late electrification scenario). A third one representing a medium electrification
scenario is calculated from the early and late electrification scenarios and added manually.
Through the year 2030 they project the highest growth rates for light duty trucks (LDT)
expecting to reach cost parity with diesel by 2025. For applications like parcel delivery and small
retail delivery, this study is expecting economic benefits for operating electric trucks provided
that charging infrastructure and the first models like e.g. DHL’s StreetScooter Work XL and
Tesla’s Semi are successfully introduced to the market. Other drivers could be urban diesel bans
and “tightening emissions targets for carbon dioxide (CO2) and oxides of nitrogen (NOx)”.
(Tryggestad, Sharma et al. 2017) Based on the information for light duty trucks (LDT) on the US
market, three linear projections are created for a late (E-Cars 1), mid (E-Cars 2) and early (E-

Cars 3) electrification scenario as shown in Figure 23.
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Figure 23: Projections for truck market electrification scenarios
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2.4.9 Excel Post Processing
A total of 24 models for 3 production scenarios with 8 different z-values are simulated. On a

monthly basis the simulation models record the following parameters.

e Monthly demand

e Monthly parts produced

e Monthly backorders

e Monthly parts obsolescent

e Monthly raw material consumption

e Monthly on-hand inventory

e Monthly electricity consumption per location

e Monthly transportation efforts (LBxRoadmiles, LBxAirmiles and transportation cost)

Using Excel post processing, these values for these 24 models are combined with the values from
the DIO LCA dataset as shown in 2.4.7 for the 27 possible combinations of the future projections
for electricity mix, carbon tax, and electric truck diffusion as defined in 2.4.8, resulting in a total
of 648 experiments (i.e., 24 models x 27 projections). In addition, the monthly, annual average
and total average service levels are calculated for each experiment.. For an overview of the 648

experiments or DMUs, see Appendix 03.
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2.5 Step 3: Data Envelopment Analysis (DEA)

This section aims to develop the methodology which allows benchmarking of the different
production and supply chain systems based on their cost, environmental, and supply chain
performance. Data envelopment analysis (DEA) is used to rank the investigated experiments
based on their relative technical efficiency and to analyze the technical efficiency value Te
depending on different projections of long-term global developments. It allows for assessing the
sensitivity of the investigated concepts and helps decision makers understanding their decision

not only under static conditions but rather under all circumstances they are willing to consider.

Data Envelopment Analysis (DEA) is a non-parametric benchmarking methodology used for
comparing the relative efficiency of systems based on the relation of inputs to outputs. As a
relatively young method, it has been initially proposed by Charnes, Cooper and Rhodes in 1978
with the introduction of the “CCR model”. A set of inputs in DEA terms is called decision
making unit (DMU) and a DMU is characterized as an object that transforms inputs into outputs.
Inputs and outputs do not need to be of the same units, but to ensure comparability of DMUs the
same inputs and outputs should be used along all of them. While other benchmarking methods
either require previous weighting of inputs and outputs or subsequent analysis steps and setting
priorities to find the aspired optimum, DEA is applying linear programming to find the optimum
set of weights for each DMU that (a) maximizes the efficiency of each DMU under the
constraint, that (b) all other DMUSs maintain an efficiency lower than or equal to 1 with the same
set of weights applied. This is referred to as the “benefit of the doubt” in literature, meaning that
DEA tries to make each DMU look as efficient as possible compared to all other DMUs.
(Sherman, Zhu 2006) Using the data of all DMUs a frontier is created that represents the
empirical optimum of the set of DMUs under investigation. (Cooper, Seiford et al. 2006, 2nd ed.
2007)
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2.5.1 Mathematical formulation

DEA maximizes the ratio of the sum of weighted outputs and the sum of weighted inputs for

each DMU independently, where the weights are variable.

N
. . i—1 UiVi
Maximize 6, = Z=1Yic (2.4)

k I vixje

This maximization is subject to the constraints that all weight variables are non-negative and that

the efficiency values for all DMUs are not greater than one.

subjecttou;,v; =20 forall i=12,..N;j=12,..M (2.5)
N vk _
Gk =7 <1 fOT all k= 1, 2, ..P (26)
Yj=1Vj%jk

For the linear program this formulation has been transformed into its multiplier form:

Maximize 6, = YN, w;yix (2.7
subject to

Xit1vixge = 1 2.8)
u;,v; =0 forall i=1,2,..N;j=1,2,.M (2.9)
O = XM wiyik — XL v <0 forall k=1,2,..P (2.10)
where:

k is the number of DMUs
m is the number of observed inputs

n is the number of observed outputs

The linear program has been developed and executed using IBM ILOG CPLEX Optimization

Studio, version 12.7.1.0 and the final code including all constraints is attached in Appendix 05.
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2.5.2 Performance measures
To assess the cost, environmental, and supply chain impacts of the production systems,
performance outputs of two categories are defined. The average and the lowest annual service
level as well as the sum of six total life-cycle cost components (raw material cost, inventory
obsolescence cost, inventory holding cost, energy, carbon tax and transportation cost) allow an
evaluation of the supply chain performance while the resource availability, climate change,
human health and environmental quality are aggregated measures (endpoints) of 16 sustainability
impacts (midpoints) and therefore, allow evaluating the systems environmental performance.
While the two service level outputs are considered desired outputs with the goal of maximizing
them, both the cost and the sustainability impacts are considered undesired outputs with the goal

of minimizing them. All undesired outputs will be treated as inputs in the DEA.

Category Indicator Unit Description
Sustainability Impact Resource [MJ extra] Characterizes the potential impact
Availability to resource availability from

using fossil energy and minerals.

Sustainability Impact Climate [kg CO2-eq] | Characterizes the potential
Change damage to human health and

ecosystems from global warming.

Sustainability Impact Human Health | [DALY] Characterizes the potential
damage to human health from

relevant impacts

Sustainability Impact Environmental | [PDF*m2*yr] | Characterizes the potential
Quality damage to ecosystems from

relevant impacts

Total Life-Cycle Cost [USD] Sum of the six total life-cycle
cost components: Raw material
cost, Inventory obsolescence cost,
Inventory holding cost, Carbon
tax cost, Energy cost,

Transportation cost

Table 16: Summary of undesired Outputs regarded as inputs
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Category Indicator Unit Description
Supply chain Average [%] Provides the fraction of demand
service level being fulfilled from stock
(average).
Supply chain Minimum [%] Provides the fraction of demand

annual service

level

being fulfilled from stock (worst

case).

Table 17: Summary of desired output measures
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2.5.3 Relative technical efficiency score Te

DEA uses the relation of weighted outputs to weighted inputs to calculate an efficiency score for
each DMU. It applies linear optimization to maximize this efficiency value for each DMU by
varying the weight variables. This optimization is performed for each DMU separately while all
remaining DMUs become part of the set of constraints. DEA finds the optimum set of weights
for each DMU that maximizes its efficiency, while fulfilling the constraint that all remaining

DMU efficiencies are smaller or equal to one.

The relative technical efficiency Te in this work is defined by the following equation:

. . . u1SL +u,SLy
Rel.Technical Ef ficiency Te = 120y, THC 7220 MinAnnual (2.11)
V1SIRa +V2Slcctv3SIyy + VaSIEQ +VsCrotal

where:
SLay T1c IS the average service level over the observation period
SLytinannuar 1S the minimum average annual service level

Uy, U, are the variable output weights

Slg, is the aggregated Resource Availability [M] extra] measure

Slcc is the aggregated Climate Change [kg CO2 — eq]| measure

Slyy is the aggregated Human Health [DALY] measure

Slgq is the aggregated Environmental Health [PDF * m2 * yr] measure
Crotal IS the aggregated life cycle cost [USD] measure

V1, Vg, V3, Uy, Us are the variable input weights

For benchmarking and rating the production systems under investigation the CCR relative
technical efficiency score is used. Additional measures like boundaries for the input and output
weights are taken for further diversification of the results as the CCR model tends to find the
majority of DMUs being CCR efficient or very close to an efficiency score of one. All measures
have in common that they are limiting or constraining the linear program in finding higher scores

for the DMUs and therefore result in overall lower efficiency scores. (Cook, Seiford 2009) It is
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important to mention, that the relative technical efficiency scores of the production systems are
only valid for the benchmark under investigation, under the defined constraints and relative to
the defined set of DMUSs. Consequently, a low or high relative technical efficiency score for one
production system should not be mistaken for an absolute or universal performance judgement of

the affected location.

2.5.4 Definition of a DMU
As mentioned earlier, a total of 648 DMUs is considered in this work. One DMU is characterized
by one unique set of configuration parameters. These DMUs are then benchmarked using the
same set of performance measures. Appendix 03 gives an overview of all 648 DMUs and their

definitions.

2.5.5 Input vs. Output oriented
DEA can be applied either input- or output-oriented. The input-oriented model focusses on
reducing the inputs while maintaining at least the given output level and the output-oriented
model tries to increase the outputs at fixed input levels. (Cooper, Seiford et al. 2006, 2nd ed.
2007) This work has the clear focus to reduce cost and environmental impacts which are
undesired outputs and therefore, inputs per definition. Therefore, an input-oriented focus is

considered for this study.

2.5.6 Equalized weighting of output variables constraint
The output measures are set to be of equal weight u; and u, with u; = u, to ensure that the
same importance is assigned to the two service level performance measures, the total average
service level and the minimum annual service level of the production system. During the first
runs of the DEA model, it has been found that full output weight flexibility results in balancing
the two output measures in such a way that weaker performance measures usually are underrated
or neglected while stronger performance measures are overrated leading to very high relative
technical efficiency measures for almost all DMUs. Equalizing the weights of the two output
variables has been found to be a very efficient solution that sorts out DMUs as technically
inefficient when one or both service level measures are unsatisfying. Furthermore, it prevents

masking up weak input performance measures by setting excessively different output weights.
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2.5.7 Minimum weight constraints
As Tracy, Chen (2005) state, the strength of DEA often becomes a weakness in practical
applications as for the basic DEA models knowledge of the underlying processes of transforming
inputs into outputs is neither needed nor considered. Several approaches are being investigated to
address the undesired consequences or “unacceptable weight schemes” resulting from full weight
flexibilities. (Cook, Seiford 2009) For this work it is decided to use absolute weight restrictions.
Absolute weight restrictions “prevent the inputs or outputs from being over emphasized or
ignored in the analysis”. (Allen, Athanassopoulos et al. 1997) For this study, weight restrictions
have been defined with the goal of considering all inputs and outputs as important as possible
without making the linear program infeasible. To achieve this, the lower weight bound is
increased incrementally until reaching a condition of infeasibility. Then, it is set back to the last
feasible value. For the output weights, no absolute limit is defined as it is the objective of the
maximization function to increase the nominator as much as possible without violating the other
constraints. Still, the relationship defined in 2.5.6 limits the relationship between the outputs. For
the input values, an upper bound results from the linear program itself, where the sum of the

weighted inputs must always be equal to one.
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2.5.8 Mean data normalization and unit independency
To overcome scale imbalances in between the different inputs and outputs, mean normalization
is applied as recommended by Avkiran (2006). Besides reducing the impact of different
magnitudes, this method also improves unit independency. In mean normalization all values are
divided by the mean value of the same category across all DMUs. The resulting scales are equal
or greater than zero, the new average is equal to one and majority of values from the data sets
can be found in the range of greater than zero and smaller than 2.5. The following equations
explain the process of mean data normalization as recommend by Avkiran (2006). Table 18

provides an exemplary overview of the normalized data set for this study.

Vi

VNorm,; = 7. (2.12)
_ Ny

7, = fn=ttn (2.13)
where

V,i is the actual value of an input or output i and a DMU n before
normalization

VNorm,; is the normalized value of an input or output i and a DMU n
V; is the average value over all DMUs for an input or output column i

N is the total number of DMUs

DMU No. | Output1 | Output2 | Inputl | Input2 |Input3 |Input4 |InputS$
DMU 001 | 1.048205 | 1.118151 |[2.31218 | 2.23739 | 1.56625 | 2.18355 | 1.65773
DMU 002 | 0.510346 | 0.148903 | 0.32149 | 0.36053 | 0.69087 | 0.38925 | 0.41235
DMU 003 | 0.989582 | 1.041209 | 0.31538 | 0.35408 | 0.70427 | 0.38955 | 0.41062
DMU 004 | 1.048597 | 1.139417 | 2.32814 | 2.25277 | 1.57705 |2.19858 | 1.66950
(...) (-..) (...) (-..) (...) (-..) (...) (...)
DMU 648 | 1.044356 | 1.146574 | 0.32415|0.36184 | 0.71487 | 0.39284 | 0.85889
V. 1 1 1 1 1 1 1

Table 18: Data normalization results




3. Experiments and results

3.1 Experiment structure

All three production and supply chain scenarios are simulated with eight different input values
for the anticipated service level, the z-value (z=0, 1, 1.5, 2.5, 3, 3.5, 4 and 5). In a subsequent
step the recorded output measures are multiplied with different projections of the electricity
mixes, the carbon tax and the electric truck market development. Table 19 illustrates how the
experiment structure is build up for supply chain configuration 1, a z-value of 0 and a low
electricity mix projection. The same principle is applied for all three scenarios and eight z-values
as well as electricity mix projections mid and high resulting in a total of 648 experiments or

DMUs. The complete structure of experiments or decision making units (DMUs) can be found in

Appendix 03.
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DMU No. 001 X X X
DMU No. 025 X X X
DMU No. 049 X X X
DMU No. 073 X X
DMU No. 097 X X
DMU No. 121 X X
DMU No. 145 X X X
DMU No. 169 X X
DMU No. 193 X X X

Table 19: Exemplary illustration of experiment / DMU structure
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3.2 The benefit of flexibility on supply chain operations

Due to its high flexibility resulting from short production lead times and no subsequent
distribution needs, scenario 3 shows a high responsiveness to sudden increases in demand. As a
consequence, the lowest overall service level for scenario 3 and a z-value of 0 is recorded at 94%
with the lowest annual service level dropping to 84% in year 12. For the same z-value, scenario 2
reaches an overall service level of 49% and a minimum annual service level of 12%. Such low
service levels are not acceptable for acrospace aftermarket applications and are underlining the
need to hold higher safety stock levels for satisfying the external demand requirement. The
impact of the low service levels on the performance of scenario 2 are illustrated in Figure 24
showing a weak relative technical efficiency score for scenario 2 at low z-values, an increasing
one for increasing z-values and an area of saturation for z-values greater than 4. This saturation
can be explained by growing cost and emissions with no further significant improvement of the
service levels. Production scenarios 1 and 3 perform relatively consistently across all safety stock
levels. Although scenario 1 also faces longer lead times, it does not require high safety stock
levels since it has a different demand profile than scenario 2 and 3. This is further discussed in
3.3. The higher total demand for scenario 1 due to a shorter life time of the conventional fuel
nozzle and a higher per part production effort explains the overall weaker performance of

scenario 1.
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Figure 24: Rel. technical efficiency Te over z-value (average values)
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3.3 Fuel nozzle demand resulting from random aircraft operations

For all three scenarios the fuel nozzle demand is based on the same aircraft fleet operation
simulation. The shorter life expectation of the conventional fuel nozzle is represented in the
simulation model by a higher probability for fuel nozzle replacements during a repair shop visit.
This leads to a higher total demand for scenario 1 as can be seen in Figure 25. The main drivers
impacting demand are the aerospace market growth, fuel nozzle version upgrades and the aging
of the airline fleets causing a higher frequency of repair shop visits. As Figure 25 shows, the first
15 years of the simulated period are mainly influenced by version increments. During this period
the demand of scenario 1 and scenarios 2 and 3 develop relatively similar if viewed on a yearly
basis. If a version upgrade occurs, all fuel nozzles of an engine are replaced during the next
planned shop visit disregarding the replacement probability. If viewed on a monthly basis as
shown in Figure 26 however, it can be seen that a version upgrade has a lower impact on the
demand of scenario 1 than on scenarios 2 and 3. This is due to the fact that scenario 1 replaces a
higher number of fuel nozzles out of a total of 19 per engine anyways during a regular repair
shop visit. Thus, if all fuel nozzles need replacement following a version upgrade, this leads to a
higher demand increase for scenarios 2 and 3 compared to scenario 1. Therefore, the demand of
scenario 1 is better predictable making the performance of scenario 1 more independent of safety
stock levels as shown in 3.2. Moreover, Figure 26 shows that the impact of version upgrades on
demand is higher if occurring less frequently. This relates to the assumption that airlines prefer to
wait for the next scheduled maintenance shop visit for an implementation of a new product
version. If another version upgrade is released before an engine has been upgraded, the
simulation model skips one version and implements the latest version instead. This explains why
the 1% and the 4™ version upgrade shown in Figure 26 cause a significant increase in demand
while the impact of the 2™ and 3™ version upgrades on the demand curves are hardly
recognizable. During the second half of the simulated period no fuel nozzle version upgrades
occur anymore. As a consequence of the higher fuel nozzle replacement probability, market
growths and ageing aircraft fleets, the demand in scenario 1 increases almost linearly while the
demand curves of scenarios 2 and 3 recover from a more intense phase, maintaining a relatively

stable level with only slow growth rates.
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3.4 Efficient supply chain operations

As it is the goal of this study to compare production systems in an efficiently operating
condition, i.e., when fulfilling the external demand requirement, the production scenarios are
further analyzed and discussed at individually selected z-values (scenario 1 with z = 0, scenario 2
with z = 4 and scenario 3 with z = 1). Within this subset of selected experiments all scenarios
have an overall service level of about 97% or higher and do not accumulate unnecessary
inventory risks that would cause higher cost and environmental impacts. Table 20 shows the
selected combination and also the impact on cost and service levels if operating the same
systems at very low (z = 0) and very high (z = 5) z-values. All three production systems
generally show the same trends towards higher inventory obsolescence and inventory holding
costs with higher z-values as can be seen in Table 20. The impact of the z-value on transportation

cost is found to be negligible.

Scenario | z- TLCC: TLCC: TLCC: Overall | Min.
value | Inventory Inventory Transportation | Service | annual
obsolescence holding [USD] Level Service
[USD] [USD] Level
Sc. 1 0 23,953,600.00 | 52,757,466.67 | 23,581,656.75 | 0.997 0.886
Sc.2 4 11,693,000.00 |27,407,010.00 | 19,663,338.51 | 0.986 0.758
Sc. 3 1 10,914,700.00 | 27,185,368.51 | 4,585,100.22 0.969 0.891
Sc. 1 0 23,953,600.00 | 52,757,466.67 | 23,581,656.75 | 0.997 0.886
Sc.2 0 1,357,200.00 4,907,743.33 19,523,155.68 | 0.485 0.118
Sc. 3 0 5,293,900.00 15,424,971.16 | 4,623,202.28 0.941 0.825
Sc. 1 5 30,766,400.00 | 99,376,533.33 | 23,532,825.95 | 0.998 0.963
Sc.2 5 14,583,400.00 | 34,267,246.67 | 19,627,453.94 | 0.989 0.759
Sc. 3 5 34,711,750.00 | 78,704,918.37 | 4,578,463.82 0.994 0.909

Table 20: Impacts of safety stock on cost and service levels

The changes in the environmental impact measures from increasing safety stocks are found to be
relatively small. These measures are solely connected to activities such as production and
transportation within the simulation model. Although higher safety stock levels cause an increase

in the total number of parts produced mostly as a compensation for higher part obsolescence
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numbers, this increase is found to be relatively small. Higher inventory levels themselves do not

have an impact on the environmental measures within this model. Table 21 presents the

environmental measures for the subset of scenarios 1, 2 and 3 at individually selected z-values, at

very low (z = 0) and very high (z = 5) z-values. The results are presented for medium carbon tax

level projections (Carbon Tax Mid), medium electricity mix projections (E-Mix 2) and a medium

development of the electric car market (E-Cars 2).

Scenari | z- Resource Climate Human | Environmental Exp.
0 valu | Availability Change Health Quality Ref.
e [MJ extra] [kg CO2-eq] | [DALY] | [PDF*m2*yr]| Number
Sc. 1 0 1,671,599,506 | 698,083,072 301 48,286,224 313
Sc.2 4 232,675,801 108,813,951 130 8,586,746 332
Sc. 3 | 218,922,383 105,476,975 128 8,601,321 318
Sc. 1 0 1,671,599,506 | 698,083,072 301 48,286,224 313
Sc.2 0 232,675,801 108,813,951 131 8,586,746 314
Sc. 3 0 218,877,472 105,445,628 128 8,600,673 315
Sc. 1 5 1,718,898,116 | 717,939,192 310 49,664,277 334
Sc.2 5 233,639,233 109,263,396 131 8,621,893 334
Sc. 3 5 220,241,559 106,122,980 129 8,651,433 336

Table 21: Impacts of safety stock on environmental impact measures
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3.5 Supply chain operations measures

This chapter aims to summarize the recorded simulation results for production, supply chain and
transportation activities of the three production scenarios and to provide an overview of the
magnitudes in which they operate over the considered life cycle of 30 years. Figure 27
summarizes the production and supply chain measures for scenario 1 with a z-value of 0,
scenario 2 with a z-value of 4 and scenario 3 with a z-value of 1. It shows that the total demand
for production systems 2 and 3 over 30 years is approximately 60% lower than the demand for
production system 1. This is a result of the technology advancements and design improvements
enabled by Industry 4.0 and additive manufacturing in particular and one of the main drivers for
the low relative technical efficiency scores of production system 1 in the data envelopment
analysis. Besides that, the advantages in the areas of on-hand inventory, obsolescent parts and
backorders of scenario 3 over scenario 2 are indicated. All numbers are given as total number of

parts over the assumed lifecycle of 30 years.

1,374,592 1,412,234