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Abstract
Implementing	cost-effective	monitoring	programs	for	wild	bees	remains	challenging	
due	to	the	high	costs	of	sampling	and	specimen	identification.	To	reduce	costs,	next-
generation	sequencing	(NGS)-based	methods	have	lately	been	suggested	as	alterna-
tives	to	morphology-based	identifications.	To	provide	a	comprehensive	presentation	
of	the	advantages	and	weaknesses	of	different	NGS-based	identification	methods,	
we assessed three of the most promising ones, namely metabarcoding, mitogenomics 
and NGS barcoding. Using a regular monitoring data set (723 specimens identified 
using morphology), we found that NGS barcoding performed best for both species 
presence/absence and abundance data, producing only few false positives (3.4%) and 
no false negatives. In contrast, the proportion of false positives and false negatives 
was higher using metabarcoding and mitogenomics. Although strong correlations 
were found between biomass and read numbers, abundance estimates significantly 
skewed the communities’ composition in these two techniques. NGS barcoding re-
covered the same ecological patterns as morphology. Ecological conclusions based 
on metabarcoding and mitogenomics were similar to those based on morphology 
when using presence/absence data, but different when using abundance data. In 
terms of workload and cost, we show that metabarcoding and NGS barcoding can 
compete with morphology, but not mitogenomics which was consistently more ex-
pensive. Based on these results, we advocate that NGS barcoding is currently the 
seemliest NGS method for monitoring of wild bees. Furthermore, this method has 
the advantage of potentially linking DNA sequences with preserved voucher speci-
mens,	which	enable	morphological	re-examination	and	will	 thus	produce	verifiable	
records which can be fed into faunistic databases.
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1  | INTRODUC TION

During the last decades, insect pollinators, and especially bees, have 
declined in several regions of the world (Bartomeus, Stavert, Ward, 
&	Aguado,	2019;	Biesmeijer	et	al.,	2006;	Burkle,	Marlin,	&	Knight,	
2013; Ollerton, Erenler, Edwards, & Crockett, 2014; Potts et al., 
2016). While these losses are extensively monitored in managed 
honeybees	(Potts	et	al.,	2010;	vanEngelsdorp	&	Meixner,	2010),	less	
is known on the status, trends and stressors of wild bee popula-
tions, as they are more difficult to survey (Goulson, Nicholls, Botías, 
&	Rotheray,	2015;	Potts,	Biesmeijer,	Bommarco,	Kleijn,	&	Scheper,	
2015).	Due	 to	 the	 lack	of	adequate	cost-effective	monitoring	pro-
grams, trends for the vast majority of European bee species are un-
known	(Goulson	et	al.,	2015;	Nieto	et	al.,	2015;	Potts	et	al.,	2010,	
2016). Therefore, there is an urgent need for developing and testing 
comprehensive, robust and systematic monitoring programs that de-
liver the information needed for policymakers to decide on the most 
appropriate conservation measures.

To date, most monitoring programs have relied on morpholog-
ical identifications, which require a sound knowledge of taxon-
omy and careful analysis of each individual specimen, making it a 
lengthy and expensive procedure (Lebuhn et al., 2013). The recent 
advances	of	“next-generation	sequencing”	(NGS)	techniques	offer	
new opportunities for the assessment of biodiversity (e.g., Schnell 
et	al.,	2012;	Taberlet,	Bonin,	Zinger,	&	Coissac,	2018).	Molecular	
species identifications by DNA barcoding are particularly appeal-
ing when classical morphological identifications are not possible 
[e.g., eDNA, diet assessments; (Rodgers et al., 2017; Taberlet, 
Coissac, Pompanon, Brochmann, & Willerslev, 2012)], but DNA 
barcoding has also been suggested for the taxonomical assess-
ment of morphologically identifiable taxa as a mean to reduce 
costs (Brunner, Fleming, & Frey, 2002; Hebert, Cywinska, Ball, & 
DeWaard, 2003).

Although	DNA-based	monitoring	methods	have	emerged	only	re-
cently, there have been numerous efforts to establish reliable molec-
ular	identification	pipelines	(e.g.,	Gibson	et	al.,	2015;	Ji	et	al.,	2013).	
For	the	successful	 implementation	of	NGS-identification	tools	 into	
monitoring programs, the approach should be reliable, reproducible, 
cost-	and	time-effective,	easily	applicable	and,	 ideally,	quantitative	
to enable assessing species abundance (Joseph, Field, Wilcox, & 
Possingham, 2006). To date, a variety of tools have been developed, 
and even though most tools have great potential, each is associated 
with limitations. Presently, most approaches have been assessed 
in terms of accuracy (species detection and abundance), but only 
few have been compared with regard to costs and workload (e.g., 
Elbrecht,	Vamos,	Meissner,	Aroviita,	&	Leese,	2017).	Furthermore,	
substantial variation in terms of species detection rates and abun-
dance estimates can be observed among studies applying the same 
molecular methods (although with slightly different parameters), 
casting doubt on their reproducibility (e.g., see Liu et al., 2013 and 
Yu	et	al.,	2012	for	interstudy	variation,	or	Brandon-Mong	et	al.,	2015	
for intrastudy variation). There is thus an urgent need for a com-
prehensive and reliable benchmark study assessing the strengths 

and weaknesses of different methods not only in terms of species 
detection and abundance estimates, but also in terms of cost and 
workload. In this study, we assessed and compared three NGS ap-
proaches likely to be among the most suitable to be implemented in 
routine	monitoring	programs,	namely	metabarcoding	(MB;	Taberlet	
et	al.,	2012;	Yu	et	al.,	2012),	mitogenomics	(MG;	Zhou	et	al.,	2013)	
and NGS barcoding (NGSB; Shokralla et al., 2014).

As	in	conventional	barcoding,	MB	relies	on	the	amplification	of	a	
taxonomically	informative	gene	fragment	(“barcode”).	However,	the	
DNA	extraction	used	as	template	in	MB	comes	from	a	bulk	mixture	
of specimens (Ji et al., 2013), rendering quantification of species 
abundance difficult. With NGS methods, abundance inference is 
generally based on the assumption that the number of output reads 
correlates with the initial amount of input DNA, a proxy for biomass. 
Thus, if the biomass of each species in the bulk mixture was known 
in advance, it should theoretically be possible to infer the number 
of specimens per operational taxonomical unit (OTU). Nevertheless, 
due	to	the	very	nature	of	the	amplification	steps	involved	in	MB,	this	
method can be subject to heavy bias, making quantifications doubt-
able (Dowle, Pochon, Banks, Shearer, & Wood, 2016; Elbrecht & 
Leese,	2015;	Elbrecht	et	al.,	2016;	Piñol,	Mir,	Gomez-Polo,	&	Agustí,	
2015;	Tang	et	al.,	2015;	Yu	et	al.,	2012).

To cope with the current lack of solid quantitative output from 
MB	 techniques,	 a	 PCR-free	 approach	 has	 been	 suggested	 (Zhou	
et	al.,	2013):	MG,	also	 referred	 to	as	mitochondrial	metagenomics	
(Crampton-Platt	 et	 al.,	 2015)	 or	 mito-metagenomics	 (Tang	 et	 al.,	
2014), an ultradeep sequencing approach using mitochondrial DNA 
as	a	“super-DNA-barcode”	(Tang	et	al.,	2015).	Derived	from	bacterial	
metagenomics, it has been successfully applied for mitochondrial 
mining	on	arthropod	communities	(Choo,	Crampton-Platt,	&	Vogler,	
2017;	 Crampton-Platt	 et	 al.,	 2015;	 Gillett	 et	 al.,	 2014;	 Gomez-
Rodriguez,	Crampton-Platt,	Timmermans,	Baselga,	&	Vogler,	2015;	
Linard,	Crampton-Platt,	Gillett,	Timmermans,	&	Vogler,	2015;	Linard	
et	al.,	2018;	Liu	et	al.,	2016;	Tang	et	al.,	2015,	2014;	Wilson,	Brandon-
Mong,	Gan,	&	Sing,	2019;	Zhou	et	al.,	2013).	Using	 total	DNA	ex-
traction	of	bulk	mixtures,	 shotgun	sequencing	on	high-throughput	
NGS platforms is performed and raw data are bioinformatically 
assembled	either	de	novo	or	mapped	 to	 reference	databases.	MG	
is not subject to an amplification bias, making it more suitable for 
quantitative	 inference	 (Gomez-Rodriguez	 et	 al.,	 2015;	 Tang	 et	 al.,	
2015;	Zhou	et	al.,	2013).	However,	even	though	estimates	of	spe-
cies	 abundance	 are	 approaching	morphology-based	 results,	MG	 is	
still facing methodological limitations, mostly due to the low cover-
age	of	target	sequences	(Crampton-Platt,	Yu,	Zhou,	&	Vogler,	2016).	
Although mitochondria are found in vast copy numbers in animals, 
mitochondrial DNA (mtDNA) only accounts for a small fraction of the 
total DNA compared to nuclear sequences. Consequently, the vast 
majority of data (e.g., 99.47%, in Zhou et al., 2013) produced with 
MG	 is	not	 informative,	making	 this	 approach	hardly	 cost-efficient.	
Furthermore,	as	initially	presented,	MG	relies	on	databases	contain-
ing full mitogenomes for all investigated species. Because only few 
full mitogenomes are currently available, this approach is not realis-
tic	at	this	point.	To	overcome	this	problem,	Gomez-Rodriguez	et	al.	
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(2015)	compared	results	obtained	using	full	mitogenomic	databases	
with those obtained using only cytochrome oxidase I (COI) reference 
databases and found only a slight decrease in species detection and 
abundance rates in the latter.

In the third method investigated here, NGSB, each specimen is 
processed	 separately	 from	extraction	 to	 sequencing,	unlike	 in	MB	
and	MG	(Shokralla	et	al.,	2014).	Similar	to	MB,	this	method	relies	on	
the amplification of a genetic marker, but instead of amplifying from 
total bulk extracts, PCR amplifications are done individually. Because 
each specimen is uniquely tagged, this approach is quantitative by 
design and therefore independent of species biomass information. 
An additional advantage of this method is that each specimen can 
be preserved for subsequent identification verification or simply to 
be archived in natural history collections (Wang, Srivathsan, Foo, 
Yamane,	&	Meier,	2018).	However,	processing	all	specimens	individ-
ually increases cost and workload related to the library preparation, 
which constitutes the main limitation of this approach.

To assess the suitability of these three methods for monitoring 
purposes, we used a data set collected under regular monitoring 
conditions. The data were sampled to measure the effectiveness of 
three different types of flower strips (FS) in promoting wild and man-
aged bees, and the crop pollination services they provide, in Swiss 
agricultural landscapes. To answer this question, we compared bee 
species richness and abundance (relative and absolute) found across 
the three different types of FS. Additionally, we evaluated the influ-
ence of plant species richness on wild bee abundance and diversity.

This realistic monitoring data set allowed us to assess the perfor-
mance of each NGS method with respect to variation levels found 
among sampling sites under realistic conditions. The number of spe-
cies and specimens characterizing a data set has a large influence on 
the overall precision, cost and workload associated with the differ-
ent NGS methods, which is why estimations of those metrics only 
make sense with a realistic data set. Finally, using a realistic data 
set allowed us to determine whether the accuracy level (presence/
absence, relative and absolute abundance) of the explored methods 
would allow us to detect ecological patterns and reach similar con-
clusions, and thus validate their use in monitoring programs.

Overall, in this study we compared (a) species detection rates 
(presence/absence data only), (b) relative and absolute species abun-
dances, (c) ecological patterns and finally (d) costs and workload of 
the	three	different	NGS-identification	methods	outlined	above	com-
pared to morphological identification.

2  | MATERIAL AND METHODS

2.1 | Sampling

The data set (sampling material) used in this study was collected in 
2017	 in	 agricultural	 landscapes	 of	 the	 central	 Swiss	Midland.	 The	
sampling scheme was designed to identify the effectiveness of three 
types of sown FS for providing foraging resources to pollinators. 
In total, 20 different FS were sampled three times over the flower 
season (two FS were collected four times and one FS two times). 

FS were sown either in April 2013 (FS type 1, n = 8), April 2016 (FS 
type 2, n = 8), and September 2016 (FS type 3, n = 8). All three types 
of FS harboured unique floral mixtures, composed of species of an-
nual (all three types) and perennial flowering plants (types 1 and 2), 
which were primarily selected due to their high pollen and nectar 
production.

To be able to obtain quantitative information on the number of 
pollinators	present	at	each	sampling	 round,	a	 strict	 sweep-netting	
protocol was applied. During each sampling round, transects were 
slowly	walked	up	while	 sweeping	 two	 times	25	 sweeps	with	one-
minute	pause	 in	between.	After	50	sweeps,	 the	collected	material	
was	transferred	into	a	plastic	bag	and	directly	stored	at	−20°C	in	a	
portable freezer.

Furthermore, during each sampling round, we monitored plant 
species richness, allowing us to additionally assess the importance 
of this parameter in promoting bees.

To determine the degree of variation within each FS, the exact 
same protocol was repeated within the same FS after five minutes 
(hereafter	 referred	 to	 as	 “transect	 I”	 and	 “transect	 II”).	 Transect	 II	
started from the end point of transect I. In total, the data set en-
compasses 122 sampling points [hereafter referred to as “communi-
ties”:	(17	FS	×	3	sampling	rounds	×	2	transects)	+	(2	FS	×	4	sampling	
rounds	×	2	transects)	+	(1	FS	×	2	sampling	rounds	×	2	transects)].

2.2 | Identification methods

2.2.1 | Morphological identification

In the laboratory, raw sampling material was sorted to isolate wild 
bees from plant material, other insects, as well as honeybee work-
ers. Each specimen (n = 723) was then pinned, labelled, dried for 
at least 72 hr in a desiccator containing silica gel and identified by 
an	 expert.	 Most	 specimens	 were	 identified	 to	 species-level,	 but	
in the following cases, morphological identifications were per-
formed	 to	 species-group	 level:	Bombus terrestris group for work-
ers belonging to B. terrestris, B. lucorum and B. cryptarum; Halictus 
simplex group for females of H. simplex, H. langobardicus and H. eu‐
rygnathus; and Andrena ovatula group for females of A. ovatula and 
A. wilkella.	 Morphological	 identification	 was	 complemented	 by	
Sanger sequencing using COI barcoding for all specimens identified 
to	species-group	level	and	not	to	species	level	(n = 29) or left unde-
termined because of lack of intact morphological criteria (n = 11). 
For	clarity,	we	still	refer	to	this	data	set	as	“morphological”	even	if	
for a limited number of specimens, morphological identifications 
have been complemented using Sanger sequencing. Details of the 
Sanger sequencing protocol are given in Supporting Information S1.

2.2.2 | Metabarcoding

Bulk DNA extractions were performed on each community using a 
proteinase	K	 solution	and	digested	overnight	 at	56°C.	Volumes	of	
proteinase	 K	 solutions	 were	 adapted	 according	 to	 the	 number	 of	
specimens per community so that all specimens were immersed 
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into the solution. To reduce costs linked to commercial kits, we puri-
fied the extracts following the Canadian Center for DNA Barcoding 
(CCDB) DNA extraction protocol (Ivanova, Dewaard, & Hebert, 
2006). For each community, to increase species detection rates 
and normalize template abundance, DNA purifications were per-
formed in triplicates and immediately pooled after extraction. To 
reduce workflow and limit numbers of PCRs required during the 
library preparation, amplification was carried out using fusion prim-
ers. In addition to the priming sequence, fusion primers have over-
hangs composed of Illumina indexes and a unique tag of eight base 
pairs	(bp)	designed	using	the	software	Barcode	generator	(Meyer	&	
Kircher,	2010).	The	overhangs	allow	amplicons	to	be	directly	loaded	
onto the Illumina sequencer. To overcome the inherent limitation of 
Illumina platforms in sequencing low complexity libraries, we added 
a	“heterogeneity	spacer”	between	the	labelled	tag	and	the	priming	
sequence, as recommended in Fadrosh et al. (2014). The PCR primer 
sequences of the fusion primers were those of mlCOIintF and of 
HCO2198	(Leray	et	al.,	2013)	and	targeted	a	313-bp	region	of	the	
COI	 gene.	 Overall,	 forward	 and	 reverse	 primers	 were	 95	bp	 long	
(±3 bp). Per community, bulk amplification was performed in five 
different PCR replicates, each harbouring a unique combination of 
forward	and	reverse	tags.	Further	details	on	MB	library	preparation	
are given in Supporting Information S2. Final library was sequenced 
on	an	Illumina	MiSeq	using	a	v3	kit	(2	×	300	bp)	and	spiked	with	20%	
Phix.

The majority of bioinformatics analyses (detailed in Supporting 
Information	 S3)	 were	 performed	 using	 QIIME1	 (Caporaso	 et	 al.,	
2010). Briefly, raw data were trimmed based upon the FASTQC 
profile	 before	 joining	 paired-end	 reads.	 After	 demultiplexing,	
adaptors, spacers and primer sequences were trimmed. Chimeric 
sequences were identified de novo and removed using usearch61 
(Edgar, 2010). Filtered sequences were then clustered using the 
UCLUST algorithm (Edgar, 2010) at the default similarity threshold 
of 97%. Taxonomical assignment of OTUs was performed using the 
same algorithm by fitting reads to reference sequences. To deter-
mine the impact of database quality on the species detection per-
formance, OTUs were assigned using two separate COI databases. 
The	first	database	(“uncurated”)	encompassed	all	available	COI	se-
quences of bee species (barcodes for ca. 2,000 species) available 
on BOLD (Barcode of Life Database) and GenBank (downloaded in 
June 2017). Additional verifications were made to ensure the pres-
ence of multiple barcodes (n	≥	3)	for	all	species	present	in	our	data	
set.	The	second	database	(“curated”)	was	downloaded	from	BOLD	
and	 corresponds	 to	 sequences	 deposited	 by	 Schmidt,	 Schmid-
Egger,	Morinière,	Haszprunar	and	Hebert	(2015)	in	their	extensive	
barcoding	 study	on	western	European	bees	 (dx.doi.org/10.5883/
DS-GBAPI).	This	data	set	was	initially	missing	barcodes	of	two	spe-
cies present in our data set (i.e., Andrena flavipes and Chelostoma 
florisomne), and barcodes for these two species were downloaded 
from other projects on BOLD and manually added to the database. 
Similarly,	to	determine	the	best	similarity	threshold,	the	MB	bioin-
formatic pipeline was run several times using different similarities 
thresholds (from 90% [default] to 99%). Corresponding community 

matrices were compared to the morphological community matrix, 
and the threshold performing best was retained for downstream 
analyses. The same empirical approach was applied to determine 
the	optimal	cross-validation	setting	among	replicates	(i.e.,	minimal	
occurrence of a species among replicates to be validated).

2.2.3 | Mitogenomics

Aliquots	of	the	DNA	extracts	used	for	MB	(prior	to	library	prepara-
tion)	were	 sheared	using	 an	ultrasonicator	 (Bioruptor).	 The	MG	 li-
brary was built using a commercial Illumina 96 TruSeq DNA Nano 
kit following the manufacturer's recommendations. To reduce dif-
ferences in sequencing depth, we homogenized sequencing depth 
on the number of specimens per community by applying the same 
correction	factor	as	for	MB	(Supporting	Information	S2).	The	library	
was	sequenced	on	an	Illumina	MiSeq	using	a	v3	kit	(2	×	300	bp)	and	
spiked with 1% Phix.

Two different bioinformatics approaches were compared 
[i.e., (a) de novo assembly and (b) raw read mapping], and the ap-
proach recovering the highest number of species was retained 
for downstream analyses. (a) The de novo assembly approach 
mainly	followed	Crampton-Platt	et	al.	(2015).	Details	are	given	in	
Supporting Information S3; briefly, libraries were quality assessed 
using FASTQC and residual adaptors trimmed with Trimmomatic 
(Bolger, Lohse, & Usadel, 2014). Then, libraries were filtered to re-
tain only mitochondrial reads using blastn (Camacho et al., 2009) 
and a database containing all publically available (partial and full) 
mitogenomes of bee species (336 mitogenomes of 82 species; 
among which 18 present in our data set). Putative mtDNA reads 
were	 then	assembled	using	 IDBA-UD	 (Peng,	Leung,	Yiu,	&	Chin,	
2012) with a 98% similarity threshold. Contigs were mapped at a 
98%	similarity	against	a	custom	database	using	BBMap	(Bushnell,	
2015).	 Since	 only	 18	 reference	mitogenomes	were	 available	 for	
the investigated species, additional COI barcodes from the cu-
rated COI database were added to the mitogenome database. 
Finally,	SAMtools	 (Li	et	al.,	2009)	was	used	to	 index	and	extract	
the number of reads that mapped reference sequences. (b) The 
raw	read	mapping	approach	relied	on	BBMap	(Bushnell,	2015)	to	
map unfiltered reads against COI reference sequences. Because 
only a small fraction of sequences will match to the COI refer-
ence database, it is crucial for this approach that the database 
is not only comprehensive, but also well curated. The presence 
of uncurated sequences (e.g., numts) will have a major influence 
upon	the	outcome,	much	more	than	for	amplicon-based	approach	
where	coverage-based	filtering	will	in	most	cases	obliterate	errors	
originated from the database. Therefore, only the curated data-
base was used in this approach. To further reduce false positives 
due to mapping of reads in the flaking regions of COI, sequencing 
spanning	over	the	classical	658-bp	COI	barcoding	region	was	fil-
tered	out	of	the	curated	database.	As	in	Tang	et	al.	(2015),	a	high	
similarity threshold (99%) was used to reduce false positives and 
reads	were	mapped	 once.	Mapped	 reads	were	 indexed	 and	 ex-
tracted	using	SAMtools	(Li	et	al.,	2009).
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2.2.4 | NGS barcoding

Before performing bulk DNA extractions described above, a single 
leg of each specimen was taken for DNA extraction (one extrac-
tion	per	specimen)	following	the	CCDB	protocol.	As	for	MB,	fusion	
primers were used to amplify individually all extractions and PCRs 
were	 conducted	 following	 the	 same	 conditions	 as	 for	 MB.	 After	
amplification,	each	PCR	product	was	examined	on	a	1.5%	agarose	
gel and amplicons were pooled equimolarly as estimated based 
on their amplification intensity. Pooled PCR products were puri-
fied	with	NucleoFast	96	PCR	clean-up	kits	(Macherey-Nagel)	using	
300 μl of PCR product per well and eluted in 100 μl ddH2O. Cleaned 
PCR	products	were	sequenced	on	an	Illumina	MiSeq	using	a	v3	kit	
(300	bp	×	2)	spiked	with	20%	Phix.

Data	processing	of	the	NGSB	library	is	similar	to	the	MB	proce-
dure. The filtered reads were clustered using UCLUST at a similar-
ity threshold of 99%, and OTUs were taxonomically assigned using 
the same algorithm but with a default threshold parameter (90%). 
A	 lower	 taxonomical	 assignment	 threshold	 than	 for	MB	was	 used	
to decrease the number of unassigned OTUs since only the most 
abundant species assignment per specimen was retained in the final 
matrix. The number of false positives was therefore not affected by 
this	lower	threshold.	As	for	MB,	taxonomical	assignments	of	OTUs	
were performed using the two different databases (curated and 
uncurated).

2.3 | Data analyses

2.3.1 | Species richness

For all NGS methods, we compared species richness with morpho-
logical species richness for each community and assessed species 
detection rates using the Jaccard similarity index (Jaccard, 1912). To 
determine variation between two transects collected five minutes 
apart within the same FS, we also computed the Jaccard index be-
tween the samples identified based on morphology.

2.3.2 | Quantitative inference

In this study, species quantification (relative and absolute abun-
dance)	 for	both	bulk	methods	 (i.e.,	MB	and	MG)	was	defined	as	 a	
measure of the species biomass and not numbers of specimens per 
species.	To	assess	quantification	accuracy	for	MB	and	MG,	we	cor-
related	 the	number	of	 reads	per	 species	 (ln-transformed)	with	 the	
corresponding species biomass measurements. For solitary bees, 
dry weight can be accurately estimated by the following exponen-
tial relationship (Cane, 1987): y = 0.77(x)0.405, where y is the shortest 
linear distance between the wing plates (intertegular distance; mm) 
and x is the dry weight (mg). A photograph was taken of each speci-
men	using	a	stereomicroscope-mounted	camera	(Leica	M4000),	and	
intertegular distance was measured, which enabled to measure bio-
mass for each specimen. To compare quantitative data on the num-
ber of specimens per species among all methods, we transformed 

the morphological absolute abundance (number of specimens per 
species) into relative abundance of biomass.

2.3.3 | Comparison of ecological patterns

To determine whether the detected ecological patterns would be 
similar across our three NGS approaches as well as the classic mor-
phological approach, we applied the same statistical analyses on 
presence/absence data and on relative and absolute abundance 
data. First, to explore how much of the observed variance in spe-
cies composition across sampling sites was explained by the iden-
tification method, we performed a nonparametric multivariate 
analysis	 of	 variance	 using	 distance	matrices	 [i.e.,	 PERMANOVA;	
(Anderson, 2001)]. The same test was also performed on the mor-
phological data set to determine the biological variance found 
between the two transects sampled five minutes apart. These 
PERMANOVA	tests	(adonis function in the R cran vegan package) 
were performed using the Jaccard dissimilarity index for presence/
absence data and the Bray–Curtis distance dissimilarity index for 
both relative and absolute abundance data. All adonis analyses 
were run with 10,000 permutations. Second, to complement the 
adonis analyses, we performed nonmetric multidimensional scal-
ing	 (NMDS)	 to	 visualize	 and	 compare	 community	 compositions	
of FS among the identification methods. The goodness of fit be-
tween	 the	 superimposed	 shapes	 of	 NMDS	 plots	 was	 assessed	
by Procrustes tests computed with the protest function (vegan 
package).	 The	 NMDS	 analyses	 were	 performed	 with	 the	meta‐
MDS function implemented in the vegan package with the noshare 
function activated to use extended dissimilarities when sampling 
sites	did	not	share	species.	“Spider”	diagrams	were	added	to	con-
nect communities sharing the same FS type. Third, to determine 
and compare the effectiveness of the three different types of FS 
in	 promoting	wild	 bees,	we	 ran	 linear	mixed	models	 (LMM)	 and	
generalized	 linear	mixed	models	 (GLMM)	 using	 the	 lme4 package 
(Bates,	Mächler,	Bolker,	&	Walker,	2015).	Species	richness	and	spe-
cies abundance (relative and absolute) were used as response variables 
(see details of models in Supporting Information S12). Finally, to 
determine the importance of flower richness on promoting wild 
bees, we applied similar models with the predictor variable being 
the interaction between plant species richness and identification 
method. The relationship between plant species richness and bee 
richness or abundance was plotted using linear regressions with 
95%	confidence	intervals.

2.4 | Cost and workload

Costs estimates are based upon suppliers’ prices applied in 2018 
in Switzerland and do not contain cost linked to workload. To com-
pensate for the cost of wet laboratory consumables, overall costs 
were	 increased	by	15%.	For	 the	morphological	 identifications,	 the	
workload includes mounting, labelling and databasing of the speci-
mens and the cost corresponds to the identifications performed by 
the taxonomist. Regarding the workload estimate for NGS methods, 
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only	hands-on	laboratory	processes	were	recorded,	leaving	out	time	
needed for overnight digestions, PCR amplifications, electrophore-
sis or other incubation times.

To predict the relationship between overall cost and total num-
ber of specimens, we divided the price per specimen into fixed (i.e., 
independent from the number of specimens) and variable costs (de-
pendent on the number of specimens). For the three NGS methods, 
we thus subtracted the cost of the sequencing kit (variable cost) to 
the grand total and divided the result by the number of specimens 
(fixed cost). Cost estimates for morphological identifications only in-
cluded fixed costs.

Finally, since Illumina platforms offer the possibility to run differ-
ent kits harbouring variable outputs, we estimated the overall cost 
and sequencing depth for all kits allowing to span our targeted read 
length	 (~	 450	bp;	 including	 tags	 and	 technical	 sequences)	 for	MB	
and	NGSB,	namely	the	MiSeq	v3	(2	×	300	bp),	MiSeq	v2	(2	×	250	bp)	
and	the	MiSeq	v2	Nano	(2	×	250	bp)	kit;	and	for	MG,	the	MiSeq	v3	
(2	×	300	bp),	HiSeq	4000	(1	×	50	bp)	and	HiSeq	4000	(2	×	75)	kit.

3  | RESULTS

3.1 | Morphological identification

Wild bees were found in 83 of the 122 sampling points. After sort-
ing wild bees from the honeybees (n = 1,422 honeybees) and other 
arthropods (mainly aphids, dipterans and coleopterans), we counted 
723 wild bee specimens. A total of 683 specimens were identified 
morphologically	 to	species	 level,	29	to	species-group	 level	 (among	
which 20 were identified as workers from the B. terrestris group), and 
11 remained unidentified. Sanger sequencing, used as complement 
for	the	identification	to	the	species	level	of	the	species-groups	and	
undetermined specimens, was successful for 39 of 40 specimens. 
The one unidentified specimen for whom Sanger sequencing failed 
was	classified	as	“unidentified”.

The morphological data set, complemented with Sanger se-
quencing,	 comprised	 723	 specimens	 and	 58	 species,	 of	 which	
382 specimens belonged to the transects I and 341 to transects II 
(Supporting Information S4). The median number of specimens per 
community	was	5	and	the	mean	(± SD) number 8.71 (± 10.12), with a 
minimum	of	1	and	a	maximum	of	55	specimens.

3.2 | Sequencing outputs

The	MiSeq	runs	produced	13.8,	17.5	and	9.0	million	reads,	respec-
tively,	for	the	MB,	MG	and	NGSB	libraries	(Supporting	Information	
S5).	After	 read	merging,	demultiplexing	and	data	 filtering,	 the	MB	
and	NGSB	data	sets	encompassed	respectively	4.5	and	3.4	million	
reads.	Raw	reads	from	the	MG	library	were	not	filtered	but	directly	
mapped to the COI reference database. In total, 28.26%, 0.02% and 
32.22%	of	reads	mapped	to	the	database,	for	MB,	MG	and	NGSB,	
respectively. To estimate the average coverage per specimen and 
community, the number of mapped reads was divided by either 
the number of specimens (n = 723) or the number of communities 

(n	=	83).	On	average,	the	number	of	reads	per	specimen	was	5,450,	
4	and	3,959	 for	MB,	MG	and	NGSB,	 respectively,	 and	47,471,	38,	
34,485	per	community,	respectively.

3.3 | Impact of the quality of the COI reference 
databases in MB and NGSB

For	both	MB	and	NGSB,	species	detection	rates	were	higher	while	
using the uncurated COI reference database (Supporting Information 
S6). The use of this database uncovered more true positives and 
decreased the number of false negatives. For NGSB, using the un-
curated database, however, introduced one supplementary false 
positive. Based on these results, the uncurated database was used 
for all subsequent analyses.

3.4 | MB parameters

Similarity thresholds for the taxonomical assignment of OTUs consid-
erably influenced the overall number of false positives and negatives 
(Supporting Information S7A). The similarity threshold providing the 
highest species detection rates (Jaccard similarity index) was 97% and 
98%. Since species detection rates were similar for 98% and 97%, the 
more widely accepted threshold of 97% was favoured and used in all 
subsequent analyses. At this threshold, the mean percentage of unas-
signed OTUs per community was 18.1% (Supporting Information S8).

Cross-validation	 thresholds	 had	 a	 lesser	 effect	 and	 produced	
similar number of false positives and false negatives when vali-
dating	species	present	in	at	 least	1,	2,	3,	4	or	5	out	of	5	replicates	
(Supporting	Information	S7B.).	The	less	stringent	thresholds	(i.e.,	1/5	
and	2/5)	introduced	one	additional	false	positive	while	the	correla-
tion between biomass and read numbers was slightly higher than 
for the more stringent thresholds. Because the higher correlation 
between biomass and read number did not reduce the overall dif-
ference	 found	 between	 the	 morphological	 and	MB	matrices,	 and	
because	 this	 less	 stringent	 threshold	 slightly	 increased	 the	 false-
positive rate, the more conservative threshold of three out of five 
replicates was favoured and used for subsequent analyses.

3.5 | MG pipelines

The Jaccard index for the de novo assembly pipeline was considera-
bly lower than for the raw mapping pipeline (Supporting Information 
S9). The former pipeline uncovered 17 true positives whereas the 
latter	 53	 true	 positives.	 Based	 on	 these	 results,	 the	 raw	mapping	
pipeline was favoured for downstream analyses.

3.6 | Species richness

The Jaccard similarity index between morphological and NGS data 
sets	was	highest	for	NGSB,	followed	by	MB	and	MG	(Table	1).	For	
NGSB, all species present in the morphological data set were re-
covered and only two additional species (false positives) were iden-
tified (Supporting Information S4). The number of false negatives 
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was	similar	for	MB	(n	=	5)	and	MG	(n	=	5),	although	MG	harboured	
substantially more false positives (n	=	16)	 than	MB	 (n = 4). There 
was no clear overlap in species identity between the false positives 
and negatives found in those two methods (Supporting Information 
S4). The lowest Jaccard similarity index was found among transects 
of	the	morphological	identification	method	(Jaccard	index	=	0.508).	
Jaccard indexes between transects of each NGS method were con-
sistently close (Supporting Information S10).

3.7 | Quantitative inference

Individual species biomass (as computed based on morphological 
identifications and measured intertegular distances) was significantly 
correlated	 with	 the	 sequencing	 output	 for	 both	 MB	 and	 MG	 for	
relative and absolute abundance (Figure 1, Supporting Information 
S11). For both NGS methods, correlations were higher when using 
relative	abundance	than	absolute	abundance.	MG	displayed	higher	
correlation	coefficients	than	MB,	especially	for	relative	abundance	
(Figure 1).

3.8 | Ecological patterns

PERMANOVA	tests,	performed	to	analyse	and	quantify	differences	in	
community compositions between NGS and morphological data sets, 
revealed	significant	differences	in	the	abundance	data	for	both	MB	and	
MG,	but	not	for	NGSB	(Table	2).	With	presence/absence	data,	the	differ-
ences	were	significant	only	for	MG	data	sets.	Overall,	the	identification	
method explained 0.1%, 9.0% and 10.7% of the variance found com-
pared	to	the	morphological	data	set	for	MPS,	MB	and	MG,	respectively.

The	NMDS	ordinations	showed	similarities	 in	community	com-
position across the morphological and the NGS methods (Figure 2, 
Supporting Information S12). This was especially true for the NGSB 
data sets for whom the Procrustes tests revealed highly similar com-
munity	compositions	to	the	morphological	one	(Table	2).	For	the	MB	
and	MG	data	sets,	Procrustes	tests	also	depicted	significant	correla-
tions with the morphological data set in community composition, 
although	 with	 lower	 correlation	 coefficients.	 As	 in	 PERMANOVA	
analyses,	 the	 lowest	 correlation	 coefficient	 for	 MB	 and	 MG	 was	
found with absolute abundance data.

TA B L E  1   Jaccard	similarity	index	between	the	global	diversity	of	morphological	(Morpho)	and	molecular	(MB,	MG	and	NGSB)	data	sets.	
Similarity indexes per transect for the molecular methods are given in Supporting Information S10

Data sets Transects Species richness # Shared species False positives False negatives Jaccard index

Between 
transects of 
Morpho

I 43 30 (30/43 = 69.8%) — — 0.508

II 46 30	(30/46	=	65.2%) — — 0.508

I and II 58 — — — —

Between	MB	and	
Morpho

I and II 57 53	(53/57	=	93.0%) 4	(4/57	=	7.0%) 5	(5/57	=	8.8%) 0.855

Between	MG	and	
Morpho

I and II 69 53	(76.8%) 16 (23.2%) 5	(7.5%) 0.716

Between NGSB 
and	Morpho

I and II 60 58	(96.7%) 2 (3.4%) 0 (0%) 0.967

F I G U R E  1  Correlation	between	the	ln-transformed	relative	read	number	per	bee	species	and	the	ln-transformed	estimate	proportional	
biomass	per	species	for	metabarcoding	and	mitogenomics	data	sets.	Grey	areas	represent	the	95%	confidence	interval.	Proportions	were	
cumulated across all sampling sites. Each coloured dot represents a different species. Correlations were significant with p‐values < 0.0001 
[Colour figure can be viewed at wileyonlinelibrary.com]
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While testing for difference in bee species richness or abun-
dance	 among	 the	 three	 different	 types	 of	 FS,	 the	GLMM	 (pres-
ence/absence)	 and	 LMM	 (relative	 and	 absolute	 abundance)	
analyses depicted no statistical difference among FS types for 
all identification methods (Figure 4, Supporting Information S13). 
Similarly, using the plant species richness as predictor, all identifi-
cation methods showed comparable relationships between plant 

species richness and bee species richness (Supporting Information 
S14–S15).	However,	the	relationships	between	plant	species	rich-
ness and bee relative abundance were significantly different from 
the	morphological	 data	 set	 for	MB	or	MG	 (Figure	 3,	 Supporting	
Information	S15).	Indeed,	MB	and	MG	showed	a	negative	relation-
ship between bee abundance and plant species richness whereas 
this relationship was positive for the morphological and NGSB 

F I G U R E  2  Nonmetric	multidimensional	scaling	(NMDS)	of	bees’	relative	abundance	obtained	by	four	different	species	identification	
methods.	The	NMDS	analyses	were	performed	using	the	Bray–Curtis	index	with	the	metaMDS function implemented in the vegan package. 
“Spider”	diagrams	connect	communities	sharing	the	same	flower	stripes	(FS)	type.	Goodness	of	fit	between	the	superimposed	shapes	of	the	
molecular	NMDS	plots	with	the	corresponding	morphological	NMDS	plots	was	assessed	using	Procrustes	tests,	computed	with	the	protest 
function (vegan package) (see Table 2). Note the close similarity between data sets based on morphology and NGBS [Colour figure can be 
viewed at wileyonlinelibrary.com]
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data	sets.	Furthermore,	MG	overall	underestimated	the	bee	rela-
tive	abundance,	whereas	MB	overestimated	it	for	plots	low	in	spe-
cies	 abundance	and	underestimated	 it	 for	 species-rich	 abundant	
plots (Figure 3).

3.9 | Cost and workload

With respect to cost, morphological identification was approxi-
mately	half	 the	price	of	 the	 cheapest	NGS-identification	method	

F I G U R E  4  Mean	relative	abundance	of	bees	for	three	different	types	of	flowering	strips	(FS).	Means	were	computed	per	identification	
methods, and error bars correspond to the mean standard error. Statistical difference among means within each identification method was 
assessed with linear mixed models. No statistical difference among types of FS was found within method [Colour figure can be viewed at 
wileyonlinelibrary.com]
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Supporting	Information	S15	for	LMM	
results) [Colour figure can be viewed at 
wileyonlinelibrary.com]
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(MB)	 and	 approximately	 three	 times	 cheaper	 than	 the	 priciest	
one	(MG)	(Supporting	Information	S16),	when	cost	was	estimated	
based on the number of specimens included in this study. For all 
investigated NGS methods, the sequencing kits used in this study 
represented the principal fraction of the overall cost. Since the se-
quencing kit cost is independent from the number of specimens 
sequenced (as long as the desired sequencing depth is reached), we 
calculated costs with increasing number of specimens. Based on 
this	 calculation,	 after	 approximately	 1,795	 and	 4,639	 specimens,	
MB	and	NGSB	would	become	respectively	more	cost-efficient	than	
morphology-based	identifications	for	the	MiSeq	v3	kits	(Supporting	
Information S17, see Supporting Information S18 for cost details). 
Because	of	sequencing	depth	limitations,	MG	stayed	largely	costlier	
than morphological identification. Alternatively, instead of increas-
ing specimen numbers, cost could be reduced by using smaller, less 
expensive sequencing kits. Based on the mean sequencing depth 
of	MB	and	NGSB,	we	estimated	the	coverage	and	overall	cost	for	
two	 alternative	 kits	 (Miseq	 v2	 [2	×	250	bp]	 and	 MiSeq	 v2	 Nano	
[2	×	250	bp];	 Supporting	 Information	 S19).	 Although	 sequencing	
depth	attained	in	this	study	for	MB	and	NGSB	was	slightly	under-
optimal (Supporting Information S4), coverage estimations based 
on these figures suggest sufficient sequencing depth, even for the 
smallest sequencing kits (Supporting Information S19).

Regarding	workload,	MB	was	the	 identification	method	requir-
ing	less	workload.	Morphological	and	MG	required	similar	workloads	
and	NGSB	moderately	more	(Supporting	Information	S15).

4  | DISCUSSION

Overall, our results show that (a) NGSB provided the data set most 
similar to the morphological data set, both in terms of species detec-
tion and abundance. (b) As predicted, the correlation between biomass 
and	read	numbers	was	stronger	for	MG	than	for	MB.	Nevertheless,	
MG	produced	more	false	positives	(23.2%	against	7.0%	for	MB)	and	
therefore considerably decreased similarities in community composi-
tions	compared	to	the	morphological	data	set.	(c)	For	both	MB	and	
MG,	species	abundance	estimates	were	better	when	using	relative	
abundance than absolute abundance. (d) Ecological patterns were 
similar across all identification methods when using presence/ab-
sence data. However, when using abundance data (both relative and 
absolute),	the	conclusions	based	on	MB	and	MG	identification,	but	
not NGSB, differed from those based on morphology; (e) finally, the 
overall cost of all three NGS methods was higher than morphological 
identifications.	However,	MB	and	NGSB	become	more	cost-effective	
by	either	using	smaller	sequencing	kits	(e.g.,	MiSeq	v2	Nano	kit)	or	by	
increasing specimen numbers. Hereafter, we summarize the advan-
tages and weaknesses of each NGS method.

4.1 | Metabarcoding

Since	Taberlet	et	al.	 (2012)	proposed	MB	as	a	modern	tool	 for	as-
sessing	biodiversity,	MB	has	been	widely	accepted	when	alternative	

means of species identification are lacking (e.g., eDNA, diet analy-
ses). However, for cases where morphological identification is pos-
sible	 (e.g.,	pollinators	surveys),	MB	 is	 still	 in	a	validation	phase.	To	
date,	the	vast	majority	of	MB	studies	have	been	tested	against	labo-
ratory-assembled	communities	of	known	composition	(e.g.,	Elbrecht	
&	Leese,	2015;	Elbrecht	et	al.,	2016;	Piñol	et	al.,	2015;	Tang	et	al.,	
2015;	Yu	et	al.,	2012),	and	the	reported	detection	rates	are	highly	
variable.	For	instance,	Tang	et	al.	(2015)	compared	the	accuracy	of	
MB	and	MG	on	a	data	set	taxonomically	similar	to	ours	(33	wild	bee	
species	 represented	 by	 250	 specimens)	 and	 found	 as	many	 as	 11	
false	negatives	and	49	false	positives,	 for	53	true	positives.	Based	
on these figures, the Jaccard similarity index between morphological 
and	MB	identification	would	be	0.47.

As	illustrated	in	the	study	by	Tang	et	al.	(2015),	MB	detection	rates	
are frequently obliterated by high numbers of false positives and nega-
tives (Gentile Francesco Ficetola, Taberlet, & Coissac, 2016), a problem 
that strongly biases the overall interpretation of species detectabil-
ity	 (Lahoz-Monfort,	Guillera-Arroita,	&	Tingley,	 2016).	 To	overcome	
this	limitation,	replicates	are	crucial	(Mata	et	al.,	2019).	Although	it	is	
possible to estimate the number of required replicates (Ficetola et al., 
2015),	the	optimal	replication	level	largely	depends	on	the	data	set.	In	
our study, we empirically tested different settings and observed no 
major differences among them. Although detection rates may vary 
across studies, to our knowledge, all rates of species detection were 
under 100%. Because a perfect match between NGS and morpholog-
ical identification is illusive, Ji et al. (2013) investigated the effect of 
such discrepancies on policymaking and management issues. To do so, 
they	 compared	MB	with	 standard	morphology-based	data	 sets	 and	
found	that	both	exhibited	similar	alpha-	and	beta-diversities,	leading	
to similar policy conclusions. Although insightful and pioneering, this 
study	was	conducted	on	a	very	large	data	set	(55,813	arthropods	and	
bird specimens) in which small variations in species presence/absence 
would be unlikely to have a strong influence. Applying a similar ap-
proach to our much smaller data set resulted in similar conclusions: 
morphological	and	MB	data	sets	exhibited	similar	species	composition	
(Table 2), revealing similar ecological patterns with (a) no differences 
in bee species richness among the three different types of FS and (b) 
similar positive relationships between plant species richness and bee 
species	richness	(Supporting	Information	S14–S15).

Nevertheless, these conclusions are based on presence/absence 
data while the majority of monitoring programs rely on species abun-
dance data, which gives a more precise picture of community com-
position	 (Joseph	 et	 al.,	 2006;	MacKenzie,	 2005).	 Therefore,	 there	
has	 been	 numerous	 efforts	 to	 foster	 the	 reliability	 of	MB	 species	
count, and currently, there is an equal number of studies claiming or 
disclaiming	quantification	reliability	(see	Piñol,	Senar,	&	Symondson,	
2019). A study investigating the variability in quantification recorded 
the level of variance in read numbers associated with individual nem-
atodes between PCR/library replicates and found an overall very 
consistent read count per individual (R2 = 0.99) (Porazinska, Sung, 
Giblin-Davis,	 &	 Thomas,	 2010).	 However,	 their	 results	 also	 high-
lighted consistent variance in read numbers among species, even 
after correcting for their body size. In a similar attempt to uncover 
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variation sources in read quantification at the interspecies level, 
Elbrecht	and	Leese	(2015)	sequenced	libraries	build	with	the	exact	
same biomass of different species and found substantial differences 
in read abundance among species (up to four times higher or lower 
read abundances). These results underline an inherent problem 
linked	to	PCR-based	techniques,	that	is	the	primers’	species-specific	
efficiency. PCR amplification efficiency is primarily (73%) influenced 
by	 the	number	of	 template-primer	mismatches	 (Piñol	et	al.,	2015),	
and therefore, the selection of primers will greatly influence the 
quantitative	 output	 (Piñol	 et	 al.,	 2019).	While	 testing	 15	 common	
universal	COI	primer	pairs,	Piñol	et	al.	(2019)	found	a	significant	re-
lationship	between	DNA	concentration	pre-	and	post-PCR	 for	 the	
vast	majority	of	primers	 (14/15)	although	R2 values were variable. 
The primer pair used in our study performed relatively well, even 
though	other	primers	performed	better	(e.g.,	ArF5	&	ArR5,	Gibson	et	
al., 2014). The problems outlined above likely contribute to the large 
differences in quantification inference reported in the literature. 
Furthermore,	bulk-based	approaches	might	inform	on	the	biomass,	
but not necessarily on specimen numbers because of intraspecific 
biomass	variations	(e.g.,	sex	or	“cast”	polymorphism	in	social	bees).

In our study, we found strong correlations between read num-
bers and estimated biomass, especially when using relative abun-
dance data (up to R2	=	0.704;	 Figure	 1).	 The	 beta-diversity	 of	MB	
and morphological data sets was also highly similar for relative 
abundance with only 2.2% variance explained by the identification 
methods alone (Table 2). Furthermore, the Procrustes test depicted 
a	relatively	high	correlation	between	the	NMDS	shapes	of	the	MB	
and morphological data sets (R2 = 0.819, p-value	<	0.001;	Figure	2).	
Although these results are promising, we still found evidence of a 
bias	introduced	because	of	quantitative	inference.	Indeed,	the	LMM	
analysis depicted contrasting relationships between plant species 
richness and bee relative abundance depending on the identifica-
tion	method	(Figure	3,	Supporting	Information	S15);	while	the	rela-
tionship between these variables was positive for the morphological 
data	set,	it	was	slightly	negative	for	the	MB	data	set	(Figure	3).	These	
results show that regardless of high correlations between estimated 
biomass	and	inferred	abundance	in	morphology	and	MB,	the	overall	
ecological patterns are skewed by a biased estimate of species abun-
dance, ultimately leading to incorrect ecological conclusions.

4.2 | Mitogenomics

As	initially	suggested	by	Zhou	et	al.	 (2013)	and	several	follow-up	
studies	(Gomez-Rodriguez	et	al.,	2015;	Tang	et	al.,	2015),	we	cor-
roborate that quantitative inference based on biomass is less biased 
with	a	PCR-free	approach:	regardless	of	the	quantitative	commu-
nity	 format,	 Pearson's	 correlations	 were	 higher	 for	MG	 (relative	
abundance: R2 = 0.861; absolute abundance: R2	=	0.623)	than	MB	
(relative abundance: R2 = 0.704; absolute abundance: R2	=	0.549)	
(Figure 1, Supporting Information S11). Interestingly, the correla-
tion coefficients found in our study are similar to those found in 
other	MG	analyses	(Zhou	et	al.,	2013:	R2	=	0.64;	Gomez-Rodriguez	
et	al.,	2015:	R2	=	0.69;	but	see	Tang	et	al.,	2015:	R2	=	0.25).

While estimates of biomass appear to be more reliable and 
precise	when	using	MG,	the	higher	number	of	false	positives	and	
negatives (Table 1) skewed the overall species composition and 
introduced	 greater	 variance	 than	 with	 MB	 (Table	 2).	 Although	
often claimed as less prone to false positives and negatives than 
PCR-based	methods	(Tang	et	al.,	2015;	Zhou	et	al.,	2013),	we	nev-
ertheless found in our study substantially more false positives 
(23.2%)	than	with	MB	(7.0%).	We	argue	that	these	high	rates	could	
mainly be attributed to two factors: the reference database and 
the low coverage. First, the database used in our study featured 
sequences	 for	 considerably	 more	 species	 (>450	 species)	 than	
present	 in	our	data	set	 (58	species).	This	approach	was	favoured	
to mimic monitoring conditions with limited a prior knowledge 
on species richness. To date, previous studies often opted for a 
more conservative approach and used the same DNA extracts for 
building	the	reference	databases	and	the	NGS	library	(e.g.,	Gomez-
Rodriguez	et	al.,	2015),	which	most	 likely	 increases	 the	mapping	
success. Additionally, using a full mitogenomes reference data-
base has been shown to slightly decrease the false negatives and 
positives	 rates	 (Gomez-Rodriguez	 et	 al.,	 2015),	 but	 is	 presently	
illusive for monitoring purposes due to the lack of published and 
annotated mitogenomes. In our study, the reduced number of false 
positives found with the de novo assembly approach (Supporting 
Information S9) also indicates that an exhaustive database can 
considerably	 improve	the	outcome	of	MG.	Second,	higher	cover-
age rates could help reducing false discovery rates by filtering out 
all mappings under a certain threshold or by adding replicates to 
cross-validate	species	presence/absence	as	we	did	here	on	the	MB	
data	set.	In	general,	sequencing	depth	is	a	major	limitation	for	MG	
as	the	vast	majority	of	sequences	produced	with	MG	do	not	cor-
respond to mitochondrial sequences and are therefore currently 
uninformative	(although	see	Linard	et	al.,	2015).	In	our	study,	ap-
proximately 0.02% of all reads mapped to the COI reference da-
tabase for the raw read mapping pipeline (Supporting Information 
S5).	For	the	de	novo	assembly	pipeline,	approximately	5%	of	the	
reads	were	mapped	to	the	mtDNA	reference	database.	Using	full-
mitogenome databases unsurprisingly increases the overall per-
centage of mapped reads, but in most cases, the mitochondrial 
fraction	will	nevertheless	plateau	around	1%	 (see	review	on	MG	
by	Crampton-Platt	et	al.,	2016).

Despite	these	limitations,	this	PCR-free	method	has	the	advan-
tage	of	not	 relying	on	 taxon-specific	primers	and	 is	 therefore	uni-
versally applicable to any group of animal, or even to plants, fungi or 
bacteria if other organelles or genes are targeted.

4.3 | NGS barcoding

In terms of species detection and abundance, NGSB performed 
best by far. Indeed, we found highly similar community composi-
tions compared to the morphological identification data (Tables 
2,	 Figures	 2‒4,	 Supporting	 Information	 S4–S10).	Noteworthy,	 in	
transect II, two specimens belonging two H. simplex (as deter-
mined	by	Sanger	sequencing)	were	most	probably	miss-identified	
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as H. langobardicus by NGSB, a species for which barcoding is 
often	challenged	due	to	the	co-amplification	of	nuclear	copies	of	
mitochondrial genes (i.e., numts; unpublished data C. Praz). For 
most western European bee fauna, COI barcoding is reliable and 
provides enough resolution to discriminate at the species level; 
however, there are some known cases of barcode sharing. In our 
data set, only one problematic case of barcoding sharing species 
was sampled (i.e., Andrena dorsata, which shares barcodes with A. 
propinqua). After verification, this species was correctly identified 
for	two	out	of	the	three	methods	(i.e.,	MB	and	NGSB).	For	MG,	A. 
dorsata was not identified however neither was its sister species 
(i.e., A. propinqua). Therefore, potential biases due to barcoding 
sharing can be excluded in our study.

The	PERMANOVA	and	Procrustes	tests	on	relative	or	absolute	
abundance data also indicate high similarity between this method 
and morphology in terms of species abundance and ecological pat-
terns (Figures 2,3). The level of accuracy found in this study is in 
the	 range	of	previous	studies.	For	 instance,	Shokralla	et	al.	 (2015)	
applied NGSB to a diverse data set of arthropods (11 orders) and 
obtained an overall recovery rate of 97.3% (n	=	1,010),	 and	96.5%	
for Hymenoptera alone (n = 226). Likewise, Wang et al. (2018) se-
quenced	over	4,000	ants	using	NGSB	and	obtained	95%	of	corre-
spondence between taxonomy and morphology.

Besides high accuracy, NGSB holds several other advantages over 
bulk-based	approaches	 (i.e.,	MB	and	MG).	First,	 individual	DNA	ex-
tractions and the preservation of associated specimens provide the 
possibility of verifying unexpected records (e.g., rare species or species 
outside their known range) through morphology since exoskeletons 
remain	mostly	unaltered	after	proteinase	K	digestions.	Alternatively,	
DNA extractions can be performed on single legs as done in our study, 
and reference specimens could be kept nearly intact, although at the 
cost of additional workload. The preservation of reference specimens 
provides	a	valuable	back-up,	and	therefore,	NGSB	data	are	more	likely	
to be considered for national or international databases, which can 
be used for purposes other than monitoring (e.g., compiling red lists 
or more generally for conservation biology). Second, DNA barcodes 
generated using NGSB can be fed into existing DNA databases since 
a link to the specimen is maintained. Third, DNA extractions can fur-
ther be used for population genetic or phylogenetic studies. Finally, 
contrary	to	MB,	NGSB	does	not	require	PCR	replicates.	Thereby,	the	
sequencing runs of NGSB can encompass larger data sets and provide 
higher coverages and thus further reduce costs.

Dealing at the specimen instead of community level has, how-
ever, a major drawback. Individual extractions and PCRs consider-
ably increase cost and workload linked to the library preparation. 
This	 additional	 workload	 and	 cost	 difference	with	 bulk-based	 ap-
proaches will, however, largely depend on the number of specimens 
sampled per community.

4.4 | Cost and workload effectiveness

One	of	 the	main	 arguments	brought	 forward	 for	 promoting	NGS-
identification tools in monitoring programs is the potential cost 

reduction	 in	 identifications.	 Although	 often	 stated	 as	 more	 cost-
efficient than morphological identification, only few studies have 
systematically assessed the financial advantages of NGS tools over 
morphology	 using	 “real”	 monitoring	 data	 sets.	 Overall,	 we	 found	
that	all	investigated	NGS-identification	methods	were	costlier	than	
morphological	 identification	 (Supporting	 Information	S16).	For	MB	
and NGSB, sequencing kits constituted the largest fraction of the 
total cost (Supporting information S18). To reduce the overall cost 
for both methods, it is possible to either use smaller sequencing 
kits or increase the number of specimens by sequencing run. Based 
upon	estimations,	 the	 smallest	MiSeq	 sequencing	 kit	 able	 to	 span	
our targeted fragment would considerably decrease costs without 
compromising sequencing depths (Supporting Information S19). 
Although	 the	 output	 of	 a	 MiSeq	 v2	 Nano	 kit	 (2	×	250	bp)	 corre-
sponds	to	approximately	1/30	of	a	MiSeq	v3	kit,	the	estimated	cov-
erage will remain high, with over 100 mapped reads per specimens. 
Higher coverages can be expected if clustering optima during se-
quencing	runs	are	reached.	Using	the	MiSeq	v2	Nano	sequencing	kit,	
the	overall	cost	of	MB	and	NGSB	is	largely	reduced	and	drop	in	the	
range of morphological identification (Supporting Information S19). 
Alternatively, with the same sequencing kit used in this study, we 
estimated	that	MB	and	NGSB	become	more	cost-efficient	than	mor-
phology	after	1,675	and	4,434	specimens,	respectively.	Noteworthy,	
several steps of our pipeline could be optimized to even further re-
duce	cost	and	labour	time.	For	instance,	one	could	reduce	hands-on	
time required for DNA extraction to only a few minutes by using 
quick DNA extraction kits such as QuickExtract DNA Extraction 
kit	 (Lucigen;	 see	Kranzfelder,	Ekrem,	&	Stur,	2016).	Studies	 reduc-
ing as much as possible laboratory costs report that sequencing can 
be	performed	 for	approximately	0.50$	per	specimen	 (Wang	et	al.,	
2018).	Nevertheless,	such	cost	 reduction	often	 implies	 fine-tuning	
protocols for the targeted taxon, mainly because DNA is amplified 
through direct PCR (Wong, Tay, Puniamoorthy, Balke, Cranston & 
Meier,	 2014).	 Additionally,	 such	 price	 optimization	 requires	 run-
ning libraries on partial kits/lanes, which is not always possible or 
proposed	 by	 sequencing	 suppliers.	 For	 MG,	 our	 cost	 estimations	
on	 the	 Illumina	MiSeq	platform	 show	 that	 this	method	will	 hardly	
overpass	morphology	in	terms	of	cost-efficiency.	Indeed,	sequenc-
ing depth is a main bottleneck for this method since only a minor 
fraction of the data is informative. Therefore, we would recommend 
sequencing	MG	 libraries	 on	more	 appropriated	platforms,	 such	 as	
HiSeq 4000, HiSeq X or even NovaSeq 6000. Although there are 
indications that the ability to sequence shorter fragments negatively 
affects the overall mitochondrial proportion, and therefore, the frac-
tion of reads corresponding to mitochondrial DNA may be reduced 
on	a	HiSeq	sequencer	(Crampton-Platt	et	al.,	2016;	Maddock	et	al.,	
2016), using larger scale sequencing platforms will drastically reduce 
costs and increase species detection rates.

In	terms	of	workload,	MB	was	the	least	labour-intensive	method	
with	approximately	27%	less	hands-on	work	than	morphological	iden-
tification. NGSB is unsurprisingly the method requiring most workload, 
although	 it	 is	 in	 a	 close	 range	 to	MG	and	morphological	 identifica-
tion.	 Compared	 to	MB,	NGSB	 relies	 on	 individual	DNA	 extraction,	
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which is a time demanding procedure, especially since extractions 
were	performed	on	single	 legs.	With	a	well-organized	protocol,	 the	
sorting and DNA extractions required for NGSB may considerably be 
reduced,	potentially	to	a	similar	level	than	MB.	Indeed,	bulk-based	ap-
proaches	such	as	MB	or	MG	also	require	presorting	of	raw	sampling	
material to isolate bees from plant material, from numerous honey-
bees (n = 1,422, thus nearly twice as many wild bees in our data set) 
and	other	 insects.	 If	none-targeted	 taxa,	and	especially	honeybees,	
are not removed, the sequencing depth, and therefore detection rates 
and biomass estimations would largely be affected.

4.5 | Conclusions

For routine monitoring of wild bees using molecular identification 
methods, we recommend NGSB. The reliability and accuracy levels 
of	 this	method	 are	 hardly	 attainable	with	 bulk-based	 approaches,	
especially for species abundance estimation. Furthermore, this ap-
proach provides a valuable supplementary security since specimens 
can	be	re-examined	morphologically	if	required.	NGSB	is	thus	more	
likely to yield occurrence data that can be validated and integrated 
into national faunistic databases and thus used by bee experts and 
by conservation practitioners. Feeding national faunistic data-
bases	 is	 an	 important	 by-product	 of	monitoring	 programs	 (e.g.,	 in	
Switzerland: http://www.biodiversitymonitoring.ch/en/home.html).
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