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Abstract
Implementing cost‐effective monitoring programs for wild bees remains challenging 
due to the high costs of sampling and specimen identification. To reduce costs, next‐
generation sequencing (NGS)‐based methods have lately been suggested as alterna-
tives to morphology‐based identifications. To provide a comprehensive presentation 
of the advantages and weaknesses of different NGS‐based identification methods, 
we assessed three of the most promising ones, namely metabarcoding, mitogenomics 
and NGS barcoding. Using a regular monitoring data set (723 specimens identified 
using morphology), we found that NGS barcoding performed best for both species 
presence/absence and abundance data, producing only few false positives (3.4%) and 
no false negatives. In contrast, the proportion of false positives and false negatives 
was higher using metabarcoding and mitogenomics. Although strong correlations 
were found between biomass and read numbers, abundance estimates significantly 
skewed the communities’ composition in these two techniques. NGS barcoding re-
covered the same ecological patterns as morphology. Ecological conclusions based 
on metabarcoding and mitogenomics were similar to those based on morphology 
when using presence/absence data, but different when using abundance data. In 
terms of workload and cost, we show that metabarcoding and NGS barcoding can 
compete with morphology, but not mitogenomics which was consistently more ex-
pensive. Based on these results, we advocate that NGS barcoding is currently the 
seemliest NGS method for monitoring of wild bees. Furthermore, this method has 
the advantage of potentially linking DNA sequences with preserved voucher speci-
mens, which enable morphological re‐examination and will thus produce verifiable 
records which can be fed into faunistic databases.
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1  | INTRODUC TION

During the last decades, insect pollinators, and especially bees, have 
declined in several regions of the world (Bartomeus, Stavert, Ward, 
& Aguado, 2019; Biesmeijer et al., 2006; Burkle, Marlin, & Knight, 
2013; Ollerton, Erenler, Edwards, & Crockett, 2014; Potts et al., 
2016). While these losses are extensively monitored in managed 
honeybees (Potts et al., 2010; vanEngelsdorp & Meixner, 2010), less 
is known on the status, trends and stressors of wild bee popula-
tions, as they are more difficult to survey (Goulson, Nicholls, Botías, 
& Rotheray, 2015; Potts, Biesmeijer, Bommarco, Kleijn, & Scheper, 
2015). Due to the lack of adequate cost‐effective monitoring pro-
grams, trends for the vast majority of European bee species are un-
known (Goulson et al., 2015; Nieto et al., 2015; Potts et al., 2010, 
2016). Therefore, there is an urgent need for developing and testing 
comprehensive, robust and systematic monitoring programs that de-
liver the information needed for policymakers to decide on the most 
appropriate conservation measures.

To date, most monitoring programs have relied on morpholog-
ical identifications, which require a sound knowledge of taxon-
omy and careful analysis of each individual specimen, making it a 
lengthy and expensive procedure (Lebuhn et al., 2013). The recent 
advances of “next‐generation sequencing” (NGS) techniques offer 
new opportunities for the assessment of biodiversity (e.g., Schnell 
et al., 2012; Taberlet, Bonin, Zinger, & Coissac, 2018). Molecular 
species identifications by DNA barcoding are particularly appeal-
ing when classical morphological identifications are not possible 
[e.g., eDNA, diet assessments; (Rodgers et al., 2017; Taberlet, 
Coissac, Pompanon, Brochmann, & Willerslev, 2012)], but DNA 
barcoding has also been suggested for the taxonomical assess-
ment of morphologically identifiable taxa as a mean to reduce 
costs (Brunner, Fleming, & Frey, 2002; Hebert, Cywinska, Ball, & 
DeWaard, 2003).

Although DNA‐based monitoring methods have emerged only re-
cently, there have been numerous efforts to establish reliable molec-
ular identification pipelines (e.g., Gibson et al., 2015; Ji et al., 2013). 
For the successful implementation of NGS‐identification tools into 
monitoring programs, the approach should be reliable, reproducible, 
cost‐ and time‐effective, easily applicable and, ideally, quantitative 
to enable assessing species abundance (Joseph, Field, Wilcox, & 
Possingham, 2006). To date, a variety of tools have been developed, 
and even though most tools have great potential, each is associated 
with limitations. Presently, most approaches have been assessed 
in terms of accuracy (species detection and abundance), but only 
few have been compared with regard to costs and workload (e.g., 
Elbrecht, Vamos, Meissner, Aroviita, & Leese, 2017). Furthermore, 
substantial variation in terms of species detection rates and abun-
dance estimates can be observed among studies applying the same 
molecular methods (although with slightly different parameters), 
casting doubt on their reproducibility (e.g., see Liu et al., 2013 and 
Yu et al., 2012 for interstudy variation, or Brandon‐Mong et al., 2015 
for intrastudy variation). There is thus an urgent need for a com-
prehensive and reliable benchmark study assessing the strengths 

and weaknesses of different methods not only in terms of species 
detection and abundance estimates, but also in terms of cost and 
workload. In this study, we assessed and compared three NGS ap-
proaches likely to be among the most suitable to be implemented in 
routine monitoring programs, namely metabarcoding (MB; Taberlet 
et al., 2012; Yu et al., 2012), mitogenomics (MG; Zhou et al., 2013) 
and NGS barcoding (NGSB; Shokralla et al., 2014).

As in conventional barcoding, MB relies on the amplification of a 
taxonomically informative gene fragment (“barcode”). However, the 
DNA extraction used as template in MB comes from a bulk mixture 
of specimens (Ji et al., 2013), rendering quantification of species 
abundance difficult. With NGS methods, abundance inference is 
generally based on the assumption that the number of output reads 
correlates with the initial amount of input DNA, a proxy for biomass. 
Thus, if the biomass of each species in the bulk mixture was known 
in advance, it should theoretically be possible to infer the number 
of specimens per operational taxonomical unit (OTU). Nevertheless, 
due to the very nature of the amplification steps involved in MB, this 
method can be subject to heavy bias, making quantifications doubt-
able (Dowle, Pochon, Banks, Shearer, & Wood, 2016; Elbrecht & 
Leese, 2015; Elbrecht et al., 2016; Piñol, Mir, Gomez‐Polo, & Agustí, 
2015; Tang et al., 2015; Yu et al., 2012).

To cope with the current lack of solid quantitative output from 
MB techniques, a PCR‐free approach has been suggested (Zhou 
et al., 2013): MG, also referred to as mitochondrial metagenomics 
(Crampton‐Platt et al., 2015) or mito‐metagenomics (Tang et al., 
2014), an ultradeep sequencing approach using mitochondrial DNA 
as a “super‐DNA‐barcode” (Tang et al., 2015). Derived from bacterial 
metagenomics, it has been successfully applied for mitochondrial 
mining on arthropod communities (Choo, Crampton‐Platt, & Vogler, 
2017; Crampton‐Platt et al., 2015; Gillett et al., 2014; Gomez‐
Rodriguez, Crampton‐Platt, Timmermans, Baselga, & Vogler, 2015; 
Linard, Crampton‐Platt, Gillett, Timmermans, & Vogler, 2015; Linard 
et al., 2018; Liu et al., 2016; Tang et al., 2015, 2014; Wilson, Brandon‐
Mong, Gan, & Sing, 2019; Zhou et al., 2013). Using total DNA ex-
traction of bulk mixtures, shotgun sequencing on high‐throughput 
NGS platforms is performed and raw data are bioinformatically 
assembled either de novo or mapped to reference databases. MG 
is not subject to an amplification bias, making it more suitable for 
quantitative inference (Gomez‐Rodriguez et al., 2015; Tang et al., 
2015; Zhou et al., 2013). However, even though estimates of spe-
cies abundance are approaching morphology‐based results, MG is 
still facing methodological limitations, mostly due to the low cover-
age of target sequences (Crampton‐Platt, Yu, Zhou, & Vogler, 2016). 
Although mitochondria are found in vast copy numbers in animals, 
mitochondrial DNA (mtDNA) only accounts for a small fraction of the 
total DNA compared to nuclear sequences. Consequently, the vast 
majority of data (e.g., 99.47%, in Zhou et al., 2013) produced with 
MG is not informative, making this approach hardly cost‐efficient. 
Furthermore, as initially presented, MG relies on databases contain-
ing full mitogenomes for all investigated species. Because only few 
full mitogenomes are currently available, this approach is not realis-
tic at this point. To overcome this problem, Gomez‐Rodriguez et al. 
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(2015) compared results obtained using full mitogenomic databases 
with those obtained using only cytochrome oxidase I (COI) reference 
databases and found only a slight decrease in species detection and 
abundance rates in the latter.

In the third method investigated here, NGSB, each specimen is 
processed separately from extraction to sequencing, unlike in MB 
and MG (Shokralla et al., 2014). Similar to MB, this method relies on 
the amplification of a genetic marker, but instead of amplifying from 
total bulk extracts, PCR amplifications are done individually. Because 
each specimen is uniquely tagged, this approach is quantitative by 
design and therefore independent of species biomass information. 
An additional advantage of this method is that each specimen can 
be preserved for subsequent identification verification or simply to 
be archived in natural history collections (Wang, Srivathsan, Foo, 
Yamane, & Meier, 2018). However, processing all specimens individ-
ually increases cost and workload related to the library preparation, 
which constitutes the main limitation of this approach.

To assess the suitability of these three methods for monitoring 
purposes, we used a data set collected under regular monitoring 
conditions. The data were sampled to measure the effectiveness of 
three different types of flower strips (FS) in promoting wild and man-
aged bees, and the crop pollination services they provide, in Swiss 
agricultural landscapes. To answer this question, we compared bee 
species richness and abundance (relative and absolute) found across 
the three different types of FS. Additionally, we evaluated the influ-
ence of plant species richness on wild bee abundance and diversity.

This realistic monitoring data set allowed us to assess the perfor-
mance of each NGS method with respect to variation levels found 
among sampling sites under realistic conditions. The number of spe-
cies and specimens characterizing a data set has a large influence on 
the overall precision, cost and workload associated with the differ-
ent NGS methods, which is why estimations of those metrics only 
make sense with a realistic data set. Finally, using a realistic data 
set allowed us to determine whether the accuracy level (presence/
absence, relative and absolute abundance) of the explored methods 
would allow us to detect ecological patterns and reach similar con-
clusions, and thus validate their use in monitoring programs.

Overall, in this study we compared (a) species detection rates 
(presence/absence data only), (b) relative and absolute species abun-
dances, (c) ecological patterns and finally (d) costs and workload of 
the three different NGS‐identification methods outlined above com-
pared to morphological identification.

2  | MATERIAL AND METHODS

2.1 | Sampling

The data set (sampling material) used in this study was collected in 
2017 in agricultural landscapes of the central Swiss Midland. The 
sampling scheme was designed to identify the effectiveness of three 
types of sown FS for providing foraging resources to pollinators. 
In total, 20 different FS were sampled three times over the flower 
season (two FS were collected four times and one FS two times). 

FS were sown either in April 2013 (FS type 1, n = 8), April 2016 (FS 
type 2, n = 8), and September 2016 (FS type 3, n = 8). All three types 
of FS harboured unique floral mixtures, composed of species of an-
nual (all three types) and perennial flowering plants (types 1 and 2), 
which were primarily selected due to their high pollen and nectar 
production.

To be able to obtain quantitative information on the number of 
pollinators present at each sampling round, a strict sweep‐netting 
protocol was applied. During each sampling round, transects were 
slowly walked up while sweeping two times 25 sweeps with one‐
minute pause in between. After 50 sweeps, the collected material 
was transferred into a plastic bag and directly stored at −20°C in a 
portable freezer.

Furthermore, during each sampling round, we monitored plant 
species richness, allowing us to additionally assess the importance 
of this parameter in promoting bees.

To determine the degree of variation within each FS, the exact 
same protocol was repeated within the same FS after five minutes 
(hereafter referred to as “transect I” and “transect II”). Transect II 
started from the end point of transect I. In total, the data set en-
compasses 122 sampling points [hereafter referred to as “communi-
ties”: (17 FS × 3 sampling rounds × 2 transects) + (2 FS × 4 sampling 
rounds × 2 transects) + (1 FS × 2 sampling rounds × 2 transects)].

2.2 | Identification methods

2.2.1 | Morphological identification

In the laboratory, raw sampling material was sorted to isolate wild 
bees from plant material, other insects, as well as honeybee work-
ers. Each specimen (n = 723) was then pinned, labelled, dried for 
at least 72 hr in a desiccator containing silica gel and identified by 
an expert. Most specimens were identified to species‐level, but 
in the following cases, morphological identifications were per-
formed to species‐group level: Bombus terrestris group for work-
ers belonging to B. terrestris, B. lucorum and B. cryptarum; Halictus 
simplex group for females of H. simplex, H. langobardicus and H. eu‐
rygnathus; and Andrena ovatula group for females of A. ovatula and 
A. wilkella. Morphological identification was complemented by 
Sanger sequencing using COI barcoding for all specimens identified 
to species‐group level and not to species level (n = 29) or left unde-
termined because of lack of intact morphological criteria (n = 11). 
For clarity, we still refer to this data set as “morphological” even if 
for a limited number of specimens, morphological identifications 
have been complemented using Sanger sequencing. Details of the 
Sanger sequencing protocol are given in Supporting Information S1.

2.2.2 | Metabarcoding

Bulk DNA extractions were performed on each community using a 
proteinase K solution and digested overnight at 56°C. Volumes of 
proteinase K solutions were adapted according to the number of 
specimens per community so that all specimens were immersed 
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into the solution. To reduce costs linked to commercial kits, we puri-
fied the extracts following the Canadian Center for DNA Barcoding 
(CCDB) DNA extraction protocol (Ivanova, Dewaard, & Hebert, 
2006). For each community, to increase species detection rates 
and normalize template abundance, DNA purifications were per-
formed in triplicates and immediately pooled after extraction. To 
reduce workflow and limit numbers of PCRs required during the 
library preparation, amplification was carried out using fusion prim-
ers. In addition to the priming sequence, fusion primers have over-
hangs composed of Illumina indexes and a unique tag of eight base 
pairs (bp) designed using the software Barcode generator (Meyer & 
Kircher, 2010). The overhangs allow amplicons to be directly loaded 
onto the Illumina sequencer. To overcome the inherent limitation of 
Illumina platforms in sequencing low complexity libraries, we added 
a “heterogeneity spacer” between the labelled tag and the priming 
sequence, as recommended in Fadrosh et al. (2014). The PCR primer 
sequences of the fusion primers were those of mlCOIintF and of 
HCO2198 (Leray et al., 2013) and targeted a 313‐bp region of the 
COI gene. Overall, forward and reverse primers were 95 bp long 
(±3 bp). Per community, bulk amplification was performed in five 
different PCR replicates, each harbouring a unique combination of 
forward and reverse tags. Further details on MB library preparation 
are given in Supporting Information S2. Final library was sequenced 
on an Illumina MiSeq using a v3 kit (2 × 300 bp) and spiked with 20% 
Phix.

The majority of bioinformatics analyses (detailed in Supporting 
Information S3) were performed using QIIME1 (Caporaso et al., 
2010). Briefly, raw data were trimmed based upon the FASTQC 
profile before joining paired‐end reads. After demultiplexing, 
adaptors, spacers and primer sequences were trimmed. Chimeric 
sequences were identified de novo and removed using usearch61 
(Edgar, 2010). Filtered sequences were then clustered using the 
UCLUST algorithm (Edgar, 2010) at the default similarity threshold 
of 97%. Taxonomical assignment of OTUs was performed using the 
same algorithm by fitting reads to reference sequences. To deter-
mine the impact of database quality on the species detection per-
formance, OTUs were assigned using two separate COI databases. 
The first database (“uncurated”) encompassed all available COI se-
quences of bee species (barcodes for ca. 2,000 species) available 
on BOLD (Barcode of Life Database) and GenBank (downloaded in 
June 2017). Additional verifications were made to ensure the pres-
ence of multiple barcodes (n ≥ 3) for all species present in our data 
set. The second database (“curated”) was downloaded from BOLD 
and corresponds to sequences deposited by Schmidt, Schmid‐
Egger, Morinière, Haszprunar and Hebert (2015) in their extensive 
barcoding study on western European bees (dx.doi.org/10.5883/
DS‐GBAPI). This data set was initially missing barcodes of two spe-
cies present in our data set (i.e., Andrena flavipes and Chelostoma 
florisomne), and barcodes for these two species were downloaded 
from other projects on BOLD and manually added to the database. 
Similarly, to determine the best similarity threshold, the MB bioin-
formatic pipeline was run several times using different similarities 
thresholds (from 90% [default] to 99%). Corresponding community 

matrices were compared to the morphological community matrix, 
and the threshold performing best was retained for downstream 
analyses. The same empirical approach was applied to determine 
the optimal cross‐validation setting among replicates (i.e., minimal 
occurrence of a species among replicates to be validated).

2.2.3 | Mitogenomics

Aliquots of the DNA extracts used for MB (prior to library prepara-
tion) were sheared using an ultrasonicator (Bioruptor). The MG li-
brary was built using a commercial Illumina 96 TruSeq DNA Nano 
kit following the manufacturer's recommendations. To reduce dif-
ferences in sequencing depth, we homogenized sequencing depth 
on the number of specimens per community by applying the same 
correction factor as for MB (Supporting Information S2). The library 
was sequenced on an Illumina MiSeq using a v3 kit (2 × 300 bp) and 
spiked with 1% Phix.

Two different bioinformatics approaches were compared 
[i.e., (a) de novo assembly and (b) raw read mapping], and the ap-
proach recovering the highest number of species was retained 
for downstream analyses. (a) The de novo assembly approach 
mainly followed Crampton‐Platt et al. (2015). Details are given in 
Supporting Information S3; briefly, libraries were quality assessed 
using FASTQC and residual adaptors trimmed with Trimmomatic 
(Bolger, Lohse, & Usadel, 2014). Then, libraries were filtered to re-
tain only mitochondrial reads using blastn (Camacho et al., 2009) 
and a database containing all publically available (partial and full) 
mitogenomes of bee species (336 mitogenomes of 82 species; 
among which 18 present in our data set). Putative mtDNA reads 
were then assembled using IDBA‐UD (Peng, Leung, Yiu, & Chin, 
2012) with a 98% similarity threshold. Contigs were mapped at a 
98% similarity against a custom database using BBMap (Bushnell, 
2015). Since only 18 reference mitogenomes were available for 
the investigated species, additional COI barcodes from the cu-
rated COI database were added to the mitogenome database. 
Finally, SAMtools (Li et al., 2009) was used to index and extract 
the number of reads that mapped reference sequences. (b) The 
raw read mapping approach relied on BBMap (Bushnell, 2015) to 
map unfiltered reads against COI reference sequences. Because 
only a small fraction of sequences will match to the COI refer-
ence database, it is crucial for this approach that the database 
is not only comprehensive, but also well curated. The presence 
of uncurated sequences (e.g., numts) will have a major influence 
upon the outcome, much more than for amplicon‐based approach 
where coverage‐based filtering will in most cases obliterate errors 
originated from the database. Therefore, only the curated data-
base was used in this approach. To further reduce false positives 
due to mapping of reads in the flaking regions of COI, sequencing 
spanning over the classical 658‐bp COI barcoding region was fil-
tered out of the curated database. As in Tang et al. (2015), a high 
similarity threshold (99%) was used to reduce false positives and 
reads were mapped once. Mapped reads were indexed and ex-
tracted using SAMtools (Li et al., 2009).
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2.2.4 | NGS barcoding

Before performing bulk DNA extractions described above, a single 
leg of each specimen was taken for DNA extraction (one extrac-
tion per specimen) following the CCDB protocol. As for MB, fusion 
primers were used to amplify individually all extractions and PCRs 
were conducted following the same conditions as for MB. After 
amplification, each PCR product was examined on a 1.5% agarose 
gel and amplicons were pooled equimolarly as estimated based 
on their amplification intensity. Pooled PCR products were puri-
fied with NucleoFast 96 PCR clean‐up kits (Macherey‐Nagel) using 
300 μl of PCR product per well and eluted in 100 μl ddH2O. Cleaned 
PCR products were sequenced on an Illumina MiSeq using a v3 kit 
(300 bp × 2) spiked with 20% Phix.

Data processing of the NGSB library is similar to the MB proce-
dure. The filtered reads were clustered using UCLUST at a similar-
ity threshold of 99%, and OTUs were taxonomically assigned using 
the same algorithm but with a default threshold parameter (90%). 
A lower taxonomical assignment threshold than for MB was used 
to decrease the number of unassigned OTUs since only the most 
abundant species assignment per specimen was retained in the final 
matrix. The number of false positives was therefore not affected by 
this lower threshold. As for MB, taxonomical assignments of OTUs 
were performed using the two different databases (curated and 
uncurated).

2.3 | Data analyses

2.3.1 | Species richness

For all NGS methods, we compared species richness with morpho-
logical species richness for each community and assessed species 
detection rates using the Jaccard similarity index (Jaccard, 1912). To 
determine variation between two transects collected five minutes 
apart within the same FS, we also computed the Jaccard index be-
tween the samples identified based on morphology.

2.3.2 | Quantitative inference

In this study, species quantification (relative and absolute abun-
dance) for both bulk methods (i.e., MB and MG) was defined as a 
measure of the species biomass and not numbers of specimens per 
species. To assess quantification accuracy for MB and MG, we cor-
related the number of reads per species (ln‐transformed) with the 
corresponding species biomass measurements. For solitary bees, 
dry weight can be accurately estimated by the following exponen-
tial relationship (Cane, 1987): y = 0.77(x)0.405, where y is the shortest 
linear distance between the wing plates (intertegular distance; mm) 
and x is the dry weight (mg). A photograph was taken of each speci-
men using a stereomicroscope‐mounted camera (Leica M4000), and 
intertegular distance was measured, which enabled to measure bio-
mass for each specimen. To compare quantitative data on the num-
ber of specimens per species among all methods, we transformed 

the morphological absolute abundance (number of specimens per 
species) into relative abundance of biomass.

2.3.3 | Comparison of ecological patterns

To determine whether the detected ecological patterns would be 
similar across our three NGS approaches as well as the classic mor-
phological approach, we applied the same statistical analyses on 
presence/absence data and on relative and absolute abundance 
data. First, to explore how much of the observed variance in spe-
cies composition across sampling sites was explained by the iden-
tification method, we performed a nonparametric multivariate 
analysis of variance using distance matrices [i.e., PERMANOVA; 
(Anderson, 2001)]. The same test was also performed on the mor-
phological data set to determine the biological variance found 
between the two transects sampled five minutes apart. These 
PERMANOVA tests (adonis function in the R cran vegan package) 
were performed using the Jaccard dissimilarity index for presence/
absence data and the Bray–Curtis distance dissimilarity index for 
both relative and absolute abundance data. All adonis analyses 
were run with 10,000 permutations. Second, to complement the 
adonis analyses, we performed nonmetric multidimensional scal-
ing (NMDS) to visualize and compare community compositions 
of FS among the identification methods. The goodness of fit be-
tween the superimposed shapes of NMDS plots was assessed 
by Procrustes tests computed with the protest function (vegan 
package). The NMDS analyses were performed with the meta‐
MDS function implemented in the vegan package with the noshare 
function activated to use extended dissimilarities when sampling 
sites did not share species. “Spider” diagrams were added to con-
nect communities sharing the same FS type. Third, to determine 
and compare the effectiveness of the three different types of FS 
in promoting wild bees, we ran linear mixed models (LMM) and 
generalized linear mixed models (GLMM) using the lme4 package 
(Bates, Mächler, Bolker, & Walker, 2015). Species richness and spe-
cies abundance (relative and absolute) were used as response variables 
(see details of models in Supporting Information S12). Finally, to 
determine the importance of flower richness on promoting wild 
bees, we applied similar models with the predictor variable being 
the interaction between plant species richness and identification 
method. The relationship between plant species richness and bee 
richness or abundance was plotted using linear regressions with 
95% confidence intervals.

2.4 | Cost and workload

Costs estimates are based upon suppliers’ prices applied in 2018 
in Switzerland and do not contain cost linked to workload. To com-
pensate for the cost of wet laboratory consumables, overall costs 
were increased by 15%. For the morphological identifications, the 
workload includes mounting, labelling and databasing of the speci-
mens and the cost corresponds to the identifications performed by 
the taxonomist. Regarding the workload estimate for NGS methods, 
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only hands‐on laboratory processes were recorded, leaving out time 
needed for overnight digestions, PCR amplifications, electrophore-
sis or other incubation times.

To predict the relationship between overall cost and total num-
ber of specimens, we divided the price per specimen into fixed (i.e., 
independent from the number of specimens) and variable costs (de-
pendent on the number of specimens). For the three NGS methods, 
we thus subtracted the cost of the sequencing kit (variable cost) to 
the grand total and divided the result by the number of specimens 
(fixed cost). Cost estimates for morphological identifications only in-
cluded fixed costs.

Finally, since Illumina platforms offer the possibility to run differ-
ent kits harbouring variable outputs, we estimated the overall cost 
and sequencing depth for all kits allowing to span our targeted read 
length (~ 450 bp; including tags and technical sequences) for MB 
and NGSB, namely the MiSeq v3 (2 × 300 bp), MiSeq v2 (2 × 250 bp) 
and the MiSeq v2 Nano (2 × 250 bp) kit; and for MG, the MiSeq v3 
(2 × 300 bp), HiSeq 4000 (1 × 50 bp) and HiSeq 4000 (2 × 75) kit.

3  | RESULTS

3.1 | Morphological identification

Wild bees were found in 83 of the 122 sampling points. After sort-
ing wild bees from the honeybees (n = 1,422 honeybees) and other 
arthropods (mainly aphids, dipterans and coleopterans), we counted 
723 wild bee specimens. A total of 683 specimens were identified 
morphologically to species level, 29 to species‐group level (among 
which 20 were identified as workers from the B. terrestris group), and 
11 remained unidentified. Sanger sequencing, used as complement 
for the identification to the species level of the species‐groups and 
undetermined specimens, was successful for 39 of 40 specimens. 
The one unidentified specimen for whom Sanger sequencing failed 
was classified as “unidentified”.

The morphological data set, complemented with Sanger se-
quencing, comprised 723 specimens and 58 species, of which 
382 specimens belonged to the transects I and 341 to transects II 
(Supporting Information S4). The median number of specimens per 
community was 5 and the mean (± SD) number 8.71 (± 10.12), with a 
minimum of 1 and a maximum of 55 specimens.

3.2 | Sequencing outputs

The MiSeq runs produced 13.8, 17.5 and 9.0 million reads, respec-
tively, for the MB, MG and NGSB libraries (Supporting Information 
S5). After read merging, demultiplexing and data filtering, the MB 
and NGSB data sets encompassed respectively 4.5 and 3.4 million 
reads. Raw reads from the MG library were not filtered but directly 
mapped to the COI reference database. In total, 28.26%, 0.02% and 
32.22% of reads mapped to the database, for MB, MG and NGSB, 
respectively. To estimate the average coverage per specimen and 
community, the number of mapped reads was divided by either 
the number of specimens (n = 723) or the number of communities 

(n = 83). On average, the number of reads per specimen was 5,450, 
4 and 3,959 for MB, MG and NGSB, respectively, and 47,471, 38, 
34,485 per community, respectively.

3.3 | Impact of the quality of the COI reference 
databases in MB and NGSB

For both MB and NGSB, species detection rates were higher while 
using the uncurated COI reference database (Supporting Information 
S6). The use of this database uncovered more true positives and 
decreased the number of false negatives. For NGSB, using the un-
curated database, however, introduced one supplementary false 
positive. Based on these results, the uncurated database was used 
for all subsequent analyses.

3.4 | MB parameters

Similarity thresholds for the taxonomical assignment of OTUs consid-
erably influenced the overall number of false positives and negatives 
(Supporting Information S7A). The similarity threshold providing the 
highest species detection rates (Jaccard similarity index) was 97% and 
98%. Since species detection rates were similar for 98% and 97%, the 
more widely accepted threshold of 97% was favoured and used in all 
subsequent analyses. At this threshold, the mean percentage of unas-
signed OTUs per community was 18.1% (Supporting Information S8).

Cross‐validation thresholds had a lesser effect and produced 
similar number of false positives and false negatives when vali-
dating species present in at least 1, 2, 3, 4 or 5 out of 5 replicates 
(Supporting Information S7B.). The less stringent thresholds (i.e., 1/5 
and 2/5) introduced one additional false positive while the correla-
tion between biomass and read numbers was slightly higher than 
for the more stringent thresholds. Because the higher correlation 
between biomass and read number did not reduce the overall dif-
ference found between the morphological and MB matrices, and 
because this less stringent threshold slightly increased the false‐
positive rate, the more conservative threshold of three out of five 
replicates was favoured and used for subsequent analyses.

3.5 | MG pipelines

The Jaccard index for the de novo assembly pipeline was considera-
bly lower than for the raw mapping pipeline (Supporting Information 
S9). The former pipeline uncovered 17 true positives whereas the 
latter 53 true positives. Based on these results, the raw mapping 
pipeline was favoured for downstream analyses.

3.6 | Species richness

The Jaccard similarity index between morphological and NGS data 
sets was highest for NGSB, followed by MB and MG (Table 1). For 
NGSB, all species present in the morphological data set were re-
covered and only two additional species (false positives) were iden-
tified (Supporting Information S4). The number of false negatives 
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was similar for MB (n = 5) and MG (n = 5), although MG harboured 
substantially more false positives (n = 16) than MB (n = 4). There 
was no clear overlap in species identity between the false positives 
and negatives found in those two methods (Supporting Information 
S4). The lowest Jaccard similarity index was found among transects 
of the morphological identification method (Jaccard index = 0.508). 
Jaccard indexes between transects of each NGS method were con-
sistently close (Supporting Information S10).

3.7 | Quantitative inference

Individual species biomass (as computed based on morphological 
identifications and measured intertegular distances) was significantly 
correlated with the sequencing output for both MB and MG for 
relative and absolute abundance (Figure 1, Supporting Information 
S11). For both NGS methods, correlations were higher when using 
relative abundance than absolute abundance. MG displayed higher 
correlation coefficients than MB, especially for relative abundance 
(Figure 1).

3.8 | Ecological patterns

PERMANOVA tests, performed to analyse and quantify differences in 
community compositions between NGS and morphological data sets, 
revealed significant differences in the abundance data for both MB and 
MG, but not for NGSB (Table 2). With presence/absence data, the differ-
ences were significant only for MG data sets. Overall, the identification 
method explained 0.1%, 9.0% and 10.7% of the variance found com-
pared to the morphological data set for MPS, MB and MG, respectively.

The NMDS ordinations showed similarities in community com-
position across the morphological and the NGS methods (Figure 2, 
Supporting Information S12). This was especially true for the NGSB 
data sets for whom the Procrustes tests revealed highly similar com-
munity compositions to the morphological one (Table 2). For the MB 
and MG data sets, Procrustes tests also depicted significant correla-
tions with the morphological data set in community composition, 
although with lower correlation coefficients. As in PERMANOVA 
analyses, the lowest correlation coefficient for MB and MG was 
found with absolute abundance data.

TA B L E  1   Jaccard similarity index between the global diversity of morphological (Morpho) and molecular (MB, MG and NGSB) data sets. 
Similarity indexes per transect for the molecular methods are given in Supporting Information S10

Data sets Transects Species richness # Shared species False positives False negatives Jaccard index

Between 
transects of 
Morpho

I 43 30 (30/43 = 69.8%) — — 0.508

II 46 30 (30/46 = 65.2%) — — 0.508

I and II 58 — — — —

Between MB and 
Morpho

I and II 57 53 (53/57 = 93.0%) 4 (4/57 = 7.0%) 5 (5/57 = 8.8%) 0.855

Between MG and 
Morpho

I and II 69 53 (76.8%) 16 (23.2%) 5 (7.5%) 0.716

Between NGSB 
and Morpho

I and II 60 58 (96.7%) 2 (3.4%) 0 (0%) 0.967

F I G U R E  1  Correlation between the ln‐transformed relative read number per bee species and the ln‐transformed estimate proportional 
biomass per species for metabarcoding and mitogenomics data sets. Grey areas represent the 95% confidence interval. Proportions were 
cumulated across all sampling sites. Each coloured dot represents a different species. Correlations were significant with p‐values < 0.0001 
[Colour figure can be viewed at wileyonlinelibrary.com]
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While testing for difference in bee species richness or abun-
dance among the three different types of FS, the GLMM (pres-
ence/absence) and LMM (relative and absolute abundance) 
analyses depicted no statistical difference among FS types for 
all identification methods (Figure 4, Supporting Information S13). 
Similarly, using the plant species richness as predictor, all identifi-
cation methods showed comparable relationships between plant 

species richness and bee species richness (Supporting Information 
S14–S15). However, the relationships between plant species rich-
ness and bee relative abundance were significantly different from 
the morphological data set for MB or MG (Figure 3, Supporting 
Information S15). Indeed, MB and MG showed a negative relation-
ship between bee abundance and plant species richness whereas 
this relationship was positive for the morphological and NGSB 

F I G U R E  2  Nonmetric multidimensional scaling (NMDS) of bees’ relative abundance obtained by four different species identification 
methods. The NMDS analyses were performed using the Bray–Curtis index with the metaMDS function implemented in the vegan package. 
“Spider” diagrams connect communities sharing the same flower stripes (FS) type. Goodness of fit between the superimposed shapes of the 
molecular NMDS plots with the corresponding morphological NMDS plots was assessed using Procrustes tests, computed with the protest 
function (vegan package) (see Table 2). Note the close similarity between data sets based on morphology and NGBS [Colour figure can be 
viewed at wileyonlinelibrary.com]
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data sets. Furthermore, MG overall underestimated the bee rela-
tive abundance, whereas MB overestimated it for plots low in spe-
cies abundance and underestimated it for species‐rich abundant 
plots (Figure 3).

3.9 | Cost and workload

With respect to cost, morphological identification was approxi-
mately half the price of the cheapest NGS‐identification method 

F I G U R E  4  Mean relative abundance of bees for three different types of flowering strips (FS). Means were computed per identification 
methods, and error bars correspond to the mean standard error. Statistical difference among means within each identification method was 
assessed with linear mixed models. No statistical difference among types of FS was found within method [Colour figure can be viewed at 
wileyonlinelibrary.com]
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F I G U R E  3   Relationship between 
plant species richness and the relative 
abundance of bees for different 
identification methods. Lines were 
computed by linear regressions as 
implemented in ggplot2. Coloured areas 
represent the 95% confidence interval. 
Statistical differences in relationships 
of the molecular identification method 
compared to the morphological 
identification method were assessed by 
linear mixed models. For bee species 
richness, no difference in relationship 
was found between the morphology and 
NGSB (regressions overlap), while MB 
and MG showed significant deviation 
compared to the relationship based 
on morphological identifications (See 
Supporting Information S15 for LMM 
results) [Colour figure can be viewed at 
wileyonlinelibrary.com]

0.000

0.005

0.010

0.015

0.020

0.025

5 10
Plant species richness

B
ee

 re
la

tiv
e 

ab
un

da
nc

e

Identification
Morpho
MB
MG
NGSB

www.wileyonlinelibrary.com
www.wileyonlinelibrary.com


     |  857GUEUNING et al.

(MB) and approximately three times cheaper than the priciest 
one (MG) (Supporting Information S16), when cost was estimated 
based on the number of specimens included in this study. For all 
investigated NGS methods, the sequencing kits used in this study 
represented the principal fraction of the overall cost. Since the se-
quencing kit cost is independent from the number of specimens 
sequenced (as long as the desired sequencing depth is reached), we 
calculated costs with increasing number of specimens. Based on 
this calculation, after approximately 1,795 and 4,639 specimens, 
MB and NGSB would become respectively more cost‐efficient than 
morphology‐based identifications for the MiSeq v3 kits (Supporting 
Information S17, see Supporting Information S18 for cost details). 
Because of sequencing depth limitations, MG stayed largely costlier 
than morphological identification. Alternatively, instead of increas-
ing specimen numbers, cost could be reduced by using smaller, less 
expensive sequencing kits. Based on the mean sequencing depth 
of MB and NGSB, we estimated the coverage and overall cost for 
two alternative kits (Miseq v2 [2 × 250 bp] and MiSeq v2 Nano 
[2 × 250 bp]; Supporting Information S19). Although sequencing 
depth attained in this study for MB and NGSB was slightly under-
optimal (Supporting Information S4), coverage estimations based 
on these figures suggest sufficient sequencing depth, even for the 
smallest sequencing kits (Supporting Information S19).

Regarding workload, MB was the identification method requir-
ing less workload. Morphological and MG required similar workloads 
and NGSB moderately more (Supporting Information S15).

4  | DISCUSSION

Overall, our results show that (a) NGSB provided the data set most 
similar to the morphological data set, both in terms of species detec-
tion and abundance. (b) As predicted, the correlation between biomass 
and read numbers was stronger for MG than for MB. Nevertheless, 
MG produced more false positives (23.2% against 7.0% for MB) and 
therefore considerably decreased similarities in community composi-
tions compared to the morphological data set. (c) For both MB and 
MG, species abundance estimates were better when using relative 
abundance than absolute abundance. (d) Ecological patterns were 
similar across all identification methods when using presence/ab-
sence data. However, when using abundance data (both relative and 
absolute), the conclusions based on MB and MG identification, but 
not NGSB, differed from those based on morphology; (e) finally, the 
overall cost of all three NGS methods was higher than morphological 
identifications. However, MB and NGSB become more cost‐effective 
by either using smaller sequencing kits (e.g., MiSeq v2 Nano kit) or by 
increasing specimen numbers. Hereafter, we summarize the advan-
tages and weaknesses of each NGS method.

4.1 | Metabarcoding

Since Taberlet et al. (2012) proposed MB as a modern tool for as-
sessing biodiversity, MB has been widely accepted when alternative 

means of species identification are lacking (e.g., eDNA, diet analy-
ses). However, for cases where morphological identification is pos-
sible (e.g., pollinators surveys), MB is still in a validation phase. To 
date, the vast majority of MB studies have been tested against labo-
ratory‐assembled communities of known composition (e.g., Elbrecht 
& Leese, 2015; Elbrecht et al., 2016; Piñol et al., 2015; Tang et al., 
2015; Yu et al., 2012), and the reported detection rates are highly 
variable. For instance, Tang et al. (2015) compared the accuracy of 
MB and MG on a data set taxonomically similar to ours (33 wild bee 
species represented by 250 specimens) and found as many as 11 
false negatives and 49 false positives, for 53 true positives. Based 
on these figures, the Jaccard similarity index between morphological 
and MB identification would be 0.47.

As illustrated in the study by Tang et al. (2015), MB detection rates 
are frequently obliterated by high numbers of false positives and nega-
tives (Gentile Francesco Ficetola, Taberlet, & Coissac, 2016), a problem 
that strongly biases the overall interpretation of species detectabil-
ity (Lahoz‐Monfort, Guillera‐Arroita, & Tingley, 2016). To overcome 
this limitation, replicates are crucial (Mata et al., 2019). Although it is 
possible to estimate the number of required replicates (Ficetola et al., 
2015), the optimal replication level largely depends on the data set. In 
our study, we empirically tested different settings and observed no 
major differences among them. Although detection rates may vary 
across studies, to our knowledge, all rates of species detection were 
under 100%. Because a perfect match between NGS and morpholog-
ical identification is illusive, Ji et al. (2013) investigated the effect of 
such discrepancies on policymaking and management issues. To do so, 
they compared MB with standard morphology‐based data sets and 
found that both exhibited similar alpha‐ and beta‐diversities, leading 
to similar policy conclusions. Although insightful and pioneering, this 
study was conducted on a very large data set (55,813 arthropods and 
bird specimens) in which small variations in species presence/absence 
would be unlikely to have a strong influence. Applying a similar ap-
proach to our much smaller data set resulted in similar conclusions: 
morphological and MB data sets exhibited similar species composition 
(Table 2), revealing similar ecological patterns with (a) no differences 
in bee species richness among the three different types of FS and (b) 
similar positive relationships between plant species richness and bee 
species richness (Supporting Information S14–S15).

Nevertheless, these conclusions are based on presence/absence 
data while the majority of monitoring programs rely on species abun-
dance data, which gives a more precise picture of community com-
position (Joseph et al., 2006; MacKenzie, 2005). Therefore, there 
has been numerous efforts to foster the reliability of MB species 
count, and currently, there is an equal number of studies claiming or 
disclaiming quantification reliability (see Piñol, Senar, & Symondson, 
2019). A study investigating the variability in quantification recorded 
the level of variance in read numbers associated with individual nem-
atodes between PCR/library replicates and found an overall very 
consistent read count per individual (R2 = 0.99) (Porazinska, Sung, 
Giblin‐Davis, & Thomas, 2010). However, their results also high-
lighted consistent variance in read numbers among species, even 
after correcting for their body size. In a similar attempt to uncover 
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variation sources in read quantification at the interspecies level, 
Elbrecht and Leese (2015) sequenced libraries build with the exact 
same biomass of different species and found substantial differences 
in read abundance among species (up to four times higher or lower 
read abundances). These results underline an inherent problem 
linked to PCR‐based techniques, that is the primers’ species‐specific 
efficiency. PCR amplification efficiency is primarily (73%) influenced 
by the number of template‐primer mismatches (Piñol et al., 2015), 
and therefore, the selection of primers will greatly influence the 
quantitative output (Piñol et al., 2019). While testing 15 common 
universal COI primer pairs, Piñol et al. (2019) found a significant re-
lationship between DNA concentration pre‐ and post‐PCR for the 
vast majority of primers (14/15) although R2 values were variable. 
The primer pair used in our study performed relatively well, even 
though other primers performed better (e.g., ArF5 & ArR5, Gibson et 
al., 2014). The problems outlined above likely contribute to the large 
differences in quantification inference reported in the literature. 
Furthermore, bulk‐based approaches might inform on the biomass, 
but not necessarily on specimen numbers because of intraspecific 
biomass variations (e.g., sex or “cast” polymorphism in social bees).

In our study, we found strong correlations between read num-
bers and estimated biomass, especially when using relative abun-
dance data (up to R2 = 0.704; Figure 1). The beta‐diversity of MB 
and morphological data sets was also highly similar for relative 
abundance with only 2.2% variance explained by the identification 
methods alone (Table 2). Furthermore, the Procrustes test depicted 
a relatively high correlation between the NMDS shapes of the MB 
and morphological data sets (R2 = 0.819, p‐value < 0.001; Figure 2). 
Although these results are promising, we still found evidence of a 
bias introduced because of quantitative inference. Indeed, the LMM 
analysis depicted contrasting relationships between plant species 
richness and bee relative abundance depending on the identifica-
tion method (Figure 3, Supporting Information S15); while the rela-
tionship between these variables was positive for the morphological 
data set, it was slightly negative for the MB data set (Figure 3). These 
results show that regardless of high correlations between estimated 
biomass and inferred abundance in morphology and MB, the overall 
ecological patterns are skewed by a biased estimate of species abun-
dance, ultimately leading to incorrect ecological conclusions.

4.2 | Mitogenomics

As initially suggested by Zhou et al. (2013) and several follow‐up 
studies (Gomez‐Rodriguez et al., 2015; Tang et al., 2015), we cor-
roborate that quantitative inference based on biomass is less biased 
with a PCR‐free approach: regardless of the quantitative commu-
nity format, Pearson's correlations were higher for MG (relative 
abundance: R2 = 0.861; absolute abundance: R2 = 0.623) than MB 
(relative abundance: R2 = 0.704; absolute abundance: R2 = 0.549) 
(Figure 1, Supporting Information S11). Interestingly, the correla-
tion coefficients found in our study are similar to those found in 
other MG analyses (Zhou et al., 2013: R2 = 0.64; Gomez‐Rodriguez 
et al., 2015: R2 = 0.69; but see Tang et al., 2015: R2 = 0.25).

While estimates of biomass appear to be more reliable and 
precise when using MG, the higher number of false positives and 
negatives (Table 1) skewed the overall species composition and 
introduced greater variance than with MB (Table 2). Although 
often claimed as less prone to false positives and negatives than 
PCR‐based methods (Tang et al., 2015; Zhou et al., 2013), we nev-
ertheless found in our study substantially more false positives 
(23.2%) than with MB (7.0%). We argue that these high rates could 
mainly be attributed to two factors: the reference database and 
the low coverage. First, the database used in our study featured 
sequences for considerably more species (>450 species) than 
present in our data set (58 species). This approach was favoured 
to mimic monitoring conditions with limited a prior knowledge 
on species richness. To date, previous studies often opted for a 
more conservative approach and used the same DNA extracts for 
building the reference databases and the NGS library (e.g., Gomez‐
Rodriguez et al., 2015), which most likely increases the mapping 
success. Additionally, using a full mitogenomes reference data-
base has been shown to slightly decrease the false negatives and 
positives rates (Gomez‐Rodriguez et al., 2015), but is presently 
illusive for monitoring purposes due to the lack of published and 
annotated mitogenomes. In our study, the reduced number of false 
positives found with the de novo assembly approach (Supporting 
Information S9) also indicates that an exhaustive database can 
considerably improve the outcome of MG. Second, higher cover-
age rates could help reducing false discovery rates by filtering out 
all mappings under a certain threshold or by adding replicates to 
cross‐validate species presence/absence as we did here on the MB 
data set. In general, sequencing depth is a major limitation for MG 
as the vast majority of sequences produced with MG do not cor-
respond to mitochondrial sequences and are therefore currently 
uninformative (although see Linard et al., 2015). In our study, ap-
proximately 0.02% of all reads mapped to the COI reference da-
tabase for the raw read mapping pipeline (Supporting Information 
S5). For the de novo assembly pipeline, approximately 5% of the 
reads were mapped to the mtDNA reference database. Using full‐
mitogenome databases unsurprisingly increases the overall per-
centage of mapped reads, but in most cases, the mitochondrial 
fraction will nevertheless plateau around 1% (see review on MG 
by Crampton‐Platt et al., 2016).

Despite these limitations, this PCR‐free method has the advan-
tage of not relying on taxon‐specific primers and is therefore uni-
versally applicable to any group of animal, or even to plants, fungi or 
bacteria if other organelles or genes are targeted.

4.3 | NGS barcoding

In terms of species detection and abundance, NGSB performed 
best by far. Indeed, we found highly similar community composi-
tions compared to the morphological identification data (Tables 
2, Figures 2‒4, Supporting Information S4–S10). Noteworthy, in 
transect II, two specimens belonging two H. simplex (as deter-
mined by Sanger sequencing) were most probably miss‐identified 
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as H. langobardicus by NGSB, a species for which barcoding is 
often challenged due to the co‐amplification of nuclear copies of 
mitochondrial genes (i.e., numts; unpublished data C. Praz). For 
most western European bee fauna, COI barcoding is reliable and 
provides enough resolution to discriminate at the species level; 
however, there are some known cases of barcode sharing. In our 
data set, only one problematic case of barcoding sharing species 
was sampled (i.e., Andrena dorsata, which shares barcodes with A. 
propinqua). After verification, this species was correctly identified 
for two out of the three methods (i.e., MB and NGSB). For MG, A. 
dorsata was not identified however neither was its sister species 
(i.e., A. propinqua). Therefore, potential biases due to barcoding 
sharing can be excluded in our study.

The PERMANOVA and Procrustes tests on relative or absolute 
abundance data also indicate high similarity between this method 
and morphology in terms of species abundance and ecological pat-
terns (Figures 2,3). The level of accuracy found in this study is in 
the range of previous studies. For instance, Shokralla et al. (2015) 
applied NGSB to a diverse data set of arthropods (11 orders) and 
obtained an overall recovery rate of 97.3% (n = 1,010), and 96.5% 
for Hymenoptera alone (n = 226). Likewise, Wang et al. (2018) se-
quenced over 4,000 ants using NGSB and obtained 95% of corre-
spondence between taxonomy and morphology.

Besides high accuracy, NGSB holds several other advantages over 
bulk‐based approaches (i.e., MB and MG). First, individual DNA ex-
tractions and the preservation of associated specimens provide the 
possibility of verifying unexpected records (e.g., rare species or species 
outside their known range) through morphology since exoskeletons 
remain mostly unaltered after proteinase K digestions. Alternatively, 
DNA extractions can be performed on single legs as done in our study, 
and reference specimens could be kept nearly intact, although at the 
cost of additional workload. The preservation of reference specimens 
provides a valuable back‐up, and therefore, NGSB data are more likely 
to be considered for national or international databases, which can 
be used for purposes other than monitoring (e.g., compiling red lists 
or more generally for conservation biology). Second, DNA barcodes 
generated using NGSB can be fed into existing DNA databases since 
a link to the specimen is maintained. Third, DNA extractions can fur-
ther be used for population genetic or phylogenetic studies. Finally, 
contrary to MB, NGSB does not require PCR replicates. Thereby, the 
sequencing runs of NGSB can encompass larger data sets and provide 
higher coverages and thus further reduce costs.

Dealing at the specimen instead of community level has, how-
ever, a major drawback. Individual extractions and PCRs consider-
ably increase cost and workload linked to the library preparation. 
This additional workload and cost difference with bulk‐based ap-
proaches will, however, largely depend on the number of specimens 
sampled per community.

4.4 | Cost and workload effectiveness

One of the main arguments brought forward for promoting NGS‐
identification tools in monitoring programs is the potential cost 

reduction in identifications. Although often stated as more cost‐
efficient than morphological identification, only few studies have 
systematically assessed the financial advantages of NGS tools over 
morphology using “real” monitoring data sets. Overall, we found 
that all investigated NGS‐identification methods were costlier than 
morphological identification (Supporting Information S16). For MB 
and NGSB, sequencing kits constituted the largest fraction of the 
total cost (Supporting information S18). To reduce the overall cost 
for both methods, it is possible to either use smaller sequencing 
kits or increase the number of specimens by sequencing run. Based 
upon estimations, the smallest MiSeq sequencing kit able to span 
our targeted fragment would considerably decrease costs without 
compromising sequencing depths (Supporting Information S19). 
Although the output of a MiSeq v2 Nano kit (2 × 250 bp) corre-
sponds to approximately 1/30 of a MiSeq v3 kit, the estimated cov-
erage will remain high, with over 100 mapped reads per specimens. 
Higher coverages can be expected if clustering optima during se-
quencing runs are reached. Using the MiSeq v2 Nano sequencing kit, 
the overall cost of MB and NGSB is largely reduced and drop in the 
range of morphological identification (Supporting Information S19). 
Alternatively, with the same sequencing kit used in this study, we 
estimated that MB and NGSB become more cost‐efficient than mor-
phology after 1,675 and 4,434 specimens, respectively. Noteworthy, 
several steps of our pipeline could be optimized to even further re-
duce cost and labour time. For instance, one could reduce hands‐on 
time required for DNA extraction to only a few minutes by using 
quick DNA extraction kits such as QuickExtract DNA Extraction 
kit (Lucigen; see Kranzfelder, Ekrem, & Stur, 2016). Studies reduc-
ing as much as possible laboratory costs report that sequencing can 
be performed for approximately 0.50$ per specimen (Wang et al., 
2018). Nevertheless, such cost reduction often implies fine‐tuning 
protocols for the targeted taxon, mainly because DNA is amplified 
through direct PCR (Wong, Tay, Puniamoorthy, Balke, Cranston & 
Meier, 2014). Additionally, such price optimization requires run-
ning libraries on partial kits/lanes, which is not always possible or 
proposed by sequencing suppliers. For MG, our cost estimations 
on the Illumina MiSeq platform show that this method will hardly 
overpass morphology in terms of cost‐efficiency. Indeed, sequenc-
ing depth is a main bottleneck for this method since only a minor 
fraction of the data is informative. Therefore, we would recommend 
sequencing MG libraries on more appropriated platforms, such as 
HiSeq 4000, HiSeq X or even NovaSeq 6000. Although there are 
indications that the ability to sequence shorter fragments negatively 
affects the overall mitochondrial proportion, and therefore, the frac-
tion of reads corresponding to mitochondrial DNA may be reduced 
on a HiSeq sequencer (Crampton‐Platt et al., 2016; Maddock et al., 
2016), using larger scale sequencing platforms will drastically reduce 
costs and increase species detection rates.

In terms of workload, MB was the least labour‐intensive method 
with approximately 27% less hands‐on work than morphological iden-
tification. NGSB is unsurprisingly the method requiring most workload, 
although it is in a close range to MG and morphological identifica-
tion. Compared to MB, NGSB relies on individual DNA extraction, 
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which is a time demanding procedure, especially since extractions 
were performed on single legs. With a well‐organized protocol, the 
sorting and DNA extractions required for NGSB may considerably be 
reduced, potentially to a similar level than MB. Indeed, bulk‐based ap-
proaches such as MB or MG also require presorting of raw sampling 
material to isolate bees from plant material, from numerous honey-
bees (n = 1,422, thus nearly twice as many wild bees in our data set) 
and other insects. If none‐targeted taxa, and especially honeybees, 
are not removed, the sequencing depth, and therefore detection rates 
and biomass estimations would largely be affected.

4.5 | Conclusions

For routine monitoring of wild bees using molecular identification 
methods, we recommend NGSB. The reliability and accuracy levels 
of this method are hardly attainable with bulk‐based approaches, 
especially for species abundance estimation. Furthermore, this ap-
proach provides a valuable supplementary security since specimens 
can be re‐examined morphologically if required. NGSB is thus more 
likely to yield occurrence data that can be validated and integrated 
into national faunistic databases and thus used by bee experts and 
by conservation practitioners. Feeding national faunistic data-
bases is an important by‐product of monitoring programs (e.g., in 
Switzerland: http://www.biodiversitymonitoring.ch/en/home.html).
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