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Abstract:  

Background: The early detection of acute kidney injury (AKI) in patients with chronic 

kidney disease (CKD) is an unmet clinical need. ProEnkephalin (PENK) might improve 

the early detection of AKI. 

Methods: 111 hospitalized CKD patients undergoing radiographic contrast procedures 

were enrolled. PENK was measured in a blinded fashion at baseline (before contrast 

media administration) and on day 1 (after contrast media administration). The potential 

of PENK levels to predict contrast-induced AKI was the primary endpoint.  

Results: Baseline creatinine and baseline PENK were similar in AKI and no-AKI 

patients. In AKI patients day 1 PENK (198pmol/l vs. 121pmol/l, p<0.01) was 

significantly higher compared to no-AKI patients. The area under the curve (AUC) for 

the prediction of AKI by day 1 PENK was 0.79, 95%CI 0.70-0.87, similar to serum 

creatinine: 0.78, 95%CI 0.61-0.95. Delta PENK was significantly higher in AKI 

compared to no-AKI patients (53pmol/l vs. 1pmol/l, p<0.01). The AUC for the prediction 

of AKI by delta PENK was high (0.92, 95%CI 0.82-1.00) and remained high for 

creatinine-blind AKI (0.94, 95%CI 0.87-0.97).  

Conclusion: Delta PENK levels improve the early detection of contrast-induced AKI 

in CKD patients over serial creatinine sampling. Delta PENK accelerates the detection 

of creatinine-blind AKI by 24 hours.   
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Introduction:  

Acute kidney injury (AKI) is a clinical syndrome defined by a sudden decline in 

glomerular filtration rate affecting about 5% of all hospitalized patients 1. Its incidence 

has steadily increased over the last decade 2 and estimates assume that annually 

about 17 million hospital admissions in the United States are complicated by AKI 3. 

Iodinated contrast media (CM) administration is one of the most important triggers of 

AKI 4 and contrast-induced kidney injury has repeatedly been linked to increased 

morbidity, mortality and treatment costs 5-7. Hence, the accurate early detection of AKI 

is an unmet clinical need.  

The novel biomarker ProEnkephalin (PENK) is a stable fragment derived from 

the precursor Enkephalins, which are known as small endogenous opioid peptides and 

are produced throughout the human body, including the kidneys 8. Spot measurements 

of PENK were recently shown to reflect renal function in healthy subjects and elevated 

levels are independently associated with an accelerated decline in renal function and 

a progression to chronic kidney disease 9. However, PENK is a dynamic parameter 

and its levels can significantly change within hours. For example, a small pilot study 

recently showed PENK levels to increase within 6 hours after cardiac surgery in 

patients experiencing post-surgical AKI, while simultaneously measured serum 

creatinine levels showed a delayed increase 10. Hence, these data suggest that PENK 

levels might improve the early detection of AKI 10,11.  

These previous studies predominantly included patients with preserved renal function, 

despite chronic kidney disease (CKD) being a powerful risk factor for the development 

of AKI 12,13. Hence, any biomarker aiming to improve the early detection of AKI in 

clinical practice needs to retain its diagnostic potential in the vulnerable CKD patient 

population. We therefore aimed to examine the potential of PENK levels to improve 
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the early detection of AKI over the current clinical gold-standard of serial serum 

creatinine sampling in hospitalized CKD patients.  
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Methods:  

This study uses prospectively collected plasma obtained in a multicenter, randomized, 

open-label, controlled trial (Clinicaltrials.gov Identifier: NCT00130598) that compared 

two regimens of sodium bicarbonate vs. standard volume supplementation with 

isotonic sodium chloride in the prevention of contrast-induced AKI in hospitalized 

patients with chronic renal dysfunction. The study was conducted between March 2005 

and December 2009 and its details have been described before 14. In short, renal 

dysfunction was defined as serum creatinine level >93 μmol/L for women and >117 

μmol/L for men or an estimated glomerular filtration rate (eGFR) <60 mL/min/1.73 m2 

(assessed 24 hours before the radiographic procedure). Patients were excluded if they 

were <18 years old, pregnant, or allergic to radiographic contrast, were undergoing 

dialysis, had severe heart failure (NYHA III-IV), had taken N-acetylcysteine ≤24 hours 

before CM administration, or suffered from a vulnerable condition requiring continuous 

fluid therapy (e.g. severe sepsis). For this study only patients with complete baseline-

day 1 plasma sample pairs were included. The study was conducted according to the 

principles of the revised Declaration of Helsinki, had been approved by the local ethical 

committees and all participants gave written informed consent for the study. The 

authors designed the study, gathered, analyzed and report the data according to the 

STARD guidelines for studies of diagnostic accuracy (Table S1 Supplementary 

Appendix) and made the decision to submit it for publication. TB, CJ and CM had full 

access to all of the data in the study and vouch for the accuracy and completeness of 

the data, the analysis, and the presentation, take responsibility for the integrity of the 

data and the accuracy of the data analysis. TB and CM wrote the first draft of the 

manuscript.  

 



 
 

6 
 
 

Biomarker Measurements 

Plasma samples were prospectively collected at baseline and Day 1. After 

centrifugation, samples were frozen at −80°C until assayed in a blinded fashion in a 

single batch. The assay for stable PENK (molecular weight 4,586 Da) was previously 

described 15, and has since been modified 16 (sphingotest® penKid). In brief, 2 mouse 

monoclonal anti-PENK antibodies were developed by immunization with PENK 

peptide. Standards or samples (50μl plasma) were immobilized by the capture 

antibody (2μg coated on polystyrene tubes). The detector antibody was labeled with 

methylacridinium ester, and bound chemiluminescence was measured. The normal 

range was mean ± SEM of 46.6 ± 14.1pmol/l, with a median of 45pmol/l (range 9 to 

518pmol/l) 15. Creatinine measurements were performed on a Roche Modular P1 

analyzer with the enzymatic Creatinine-PAP method for quantification (Roche 

Diagnostics, Rotkreuz, Switzerland). The estimated glomerular filtration rate (eGFR) 

was calculated using the abbreviated Modification of Diet in Renal Disease Study 

(MDRD) equation17.  

Endpoint 

The ability of PENK levels to detect the occurrence of contrast-induced AKI was 

assessed as the primary endpoint. Development of contrast-induced AKI was defined 

as a serum creatinine increase of ≥25% or an increase of ≥44μmol/L over the baseline 

serum creatinine concentration within the first 48 h after CM administration14,18. 

Creatinine-blind AKI was defined as AKI occurring between day 1 and day 2, i.e. not 

detectable by creatinine at day 1. Creatinine-blind AKI was considered as a secondary 

endpoint.  
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Statistical analysis 

The statistical analyses were performed using the SPSS/PC (version 22.0, 

IBM SPSS, IL, USA) and MedCalc (version 9.2., MedCalc, Ostend, Belgium) software 

packages. A statistical significance level of 0.05 was used. All hypothesis testing was 

two-tailed. Discrete variables are expressed as counts (percentage) and continuous 

variables as means ± standard deviation (SD) or median and interquartile range [IQR], 

unless stated otherwise. The comparison between the two groups was done using chi-

square test, Fishers’ exact test, t-test, Mann-Whitney U or Wilcoxon test as 

appropriate. Spearman rank correlation was used to perform correlation analyses. The 

prognostic accuracy of the different models was evaluated using receiver operating 

characteristic (ROC) curve analysis. Univariate binary regression analysis was applied 

to identify predictors of contrast-induced AKI.  
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Results 
 
Study Population 

A patient flow chart for the current study is displayed in Figure 1. Detailed 

characteristics of study population are summarized in Table 1. The median age of the 

111 patients was 77 years (IQR 72-80). Most patients had stage 3 CKD with a median 

eGFR at baseline of 45mL/min/1.73 m2 (IQR 38–50). Hypertensive nephropathy was 

the main aetiology of CKD (41%), followed by combined hypertensive and diabetic 

nephropathy (26%) and other not further specified nephropathies (18%). The majority 

of patients underwent either computer tomography scans (50%) or cardiac 

catheterization with (17%) or without PCI (21%). A median of 100ml of CM (IQR 70-

140) was administered during contrast procedures. Overall, 7 of 111 patients (6%) 

developed contrast-induced AKI.  

Baseline ProEnkephalin levels 

Baseline PENK levels were moderately correlated to baseline creatinine (r=0.27; 

p<0.01), heart rate (r=0.22; p=0.02) and body mass index (r=-0.23; p=0.02), but not to 

age (p=0.18) and systolic blood pressure (p=0.31). The median PENK level in the 

overall patient population was 126pmol/l [IQR 100-166] and 97 patients (87%) 

displayed PENK levels above the upper limit of normal (80pmol/L); 80 patients (75%) 

displayed PENK levels above 100pmol/L. As shown in table 1, baseline characteristics 

were well balanced between patients with or without subsequent AKI. Baseline 

creatinine (141umol/l [IQR: 137-164] vs. 133umol [IQR: 109-166], p=0.65), and 

baseline PENK (166pmol/l [IQR: 87-237] vs. 124pmol/l [IQR: 100-162], p=0.36) were 

similar in AKI and no-AKI patients (Figure 2a). Consequently, the AUC for the 

prediction of contrast-induced AKI was poor for baseline PENK (0.60, 95%CI 0.34-
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0.86) and baseline creatinine (0.55, 95%CI 0.37-0.74) (Figure 3). In binary regression 

analyses both biomarkers baseline values failed to predict the subsequent occurrence 

of AKI (p=0.69 and 0.72, respectively). A secondary analysis applied the serum criteria 

of the KDIGO AKI classification; 8 out of 111 patients developed contrast-induced 

KDIGO AKI. In this secondary analysis baseline PENK achieved a similar AUC (0.63, 

95%CI 0.40-0.87) for the prediction of contrast-induced KDIGO AKI.  

Serial ProEnkephalin levels for the prediction of contrast-induced AKI 

In patients experiencing contrast-induced AKI, PENK levels (198pmol/l [143-293] vs. 

121pmol/l [92-169], p<0.01) at day 1 were significantly higher compared to no-AKI 

patients (Figure 2b). To evaluate the potential of day 1 PENK levels to detect the 

occurrence of AKI, ROC analyses were performed. The AUC for the prediction of AKI 

was: 0.79, 95%CI 0.70-0.87, similar to the AUC obtained by serum creatinine: 0.78, 

95%CI 0.61-0.95 (Figure 3). In a secondary analysis, which applied the serum criteria 

of the KDIGO AKI classification day 1 PENK achieved a similar AUC (0.81, 95%CI 

0.69-0.94) for the prediction of contrast-induced KDIGO AKI. 

ProEnkephalin levels for the prediction of creatinine-blind AKI 

Overall, 5 of the 7 AKI cases were already detectable by day 1 serum creatinine. When 

restricting the analysis to creatinine-blind AKI cases, occurring between day 1 and day 

2, day 1 PENK achieved a AUC of 0.94 (95%CI 0.88-0.98) for the prediction of late 

AKI, while the AUC for day 1 serum creatinine was only moderate (0.72, 95%CI 0.54-

0.91). When entering day 1 biomarker levels into a binary regression analysis, day 1 

PENK levels detected overall AKI (OR per standard deviation increase: 1.71, 95%CI 

1.02-2.87, p=0.04) but did not significantly predict creatinine-blind AKI (OR per 

standard deviation increase: 1.89, 95%CI 0.91-3.87, p=0.08). Similarly, day 1 serum 
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creatinine levels were associated with overall AKI (OR per standard deviation increase: 

1.75, 95%CI 1.02-3.01, p=0.04) but not with creatinine-blind AKI (OR per standard 

deviation increase: 1.19, 95%CI 0.36-3.88, p=0.78). 

Delta ProEnkephalin for the prediction of contrast-induced AKI 

In the overall patient population, there was no change between baseline and 

day 1 PENK levels (median change: 2.23 pmol/l, p=0.47). However, delta PENK was 

significantly higher in AKI compared to no-AKI patients (53pmol/l [36-83] vs. 1pmol/l [-

14 – 17], p<0.01) (Figure 2c). Delta PENK was moderately correlated to the maximal 

serum 48h creatinine increase (r=0.24, p=0.01) but not to baseline PENK (p=0.09), or 

baseline serum creatinine (p=0.61). To evaluate the potential of delta PENK to predict 

the occurrence of AKI, ROC analyses were performed. The AUC for the prediction of 

AKI by delta PENK was high: 0.92, 95%CI 0.82-1.00 (Figure 3). In a secondary 

analysis, which applied the serum criteria of the KDIGO AKI classification delta PENK 

achieved a similar AUC (0.93, 95%CI 0.84-1.00) for the prediction of contrast-induced 

KDIGO AKI. When restricting the analysis to creatinine-blind AKI cases, occurring 

between day 1 and day 2, delta serum creatinine only achieved a moderate AUC (AUC 

0.65, 95%CI 0.23-1.00). In contrast the predictive potential of delta PENK for 

creatinine-blind AKI (AUC 0.94, 95%CI 0.87-0.97) remained high. When entering the 

biomarkers into a univariate binary regression analysis delta creatinine (OR per 

standard deviation increase: 15.78, 95%CI 2.88-86.58; p<0.01) and delta PENK (OR 

per standard deviation increase: 6.60, 95%CI 2.25-19.35; p=0.01) predicted the 

occurrence of overall AKI. In contrast, age (p=0.85), gender (p=0.25), BMI (p=0.25), 

systolic blood pressure (0.28), steady state renal function (eGFR p=0.98), medical 

therapy (ACE-I p=0.10; ARB p=0.11; diuretics p=0.49) and the volume of CM (p=0.96) 

all were not suitable to predict the occurrence of AKI. When restricting the regression 
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analysis to creatinine-blind AKI cases, occurring between day 1 and day 2, only delta 

PENK remained significantly associated with the occurrence of late AKI (OR per 

standard deviation increase: 3.13, 95%CI 1.02-9.64, p=0.04).  
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Discussion 

In this investigation we examined the potential of PENK levels at baseline and serially 

thereafter to predict the occurrence of contrast-induced AKI in 111 hospitalized CKD 

patients. We report five major findings. First, baseline PENK levels drawn before the 

administration of CM were significantly correlated to steady state renal function. 

Second, baseline PENK and baseline creatinine levels were similar in AKI and no-AKI 

patients and failed to predict the subsequent occurrence of contrast-induced AKI. The 

similarity of baseline serum creatinine in AKI and no-AKI patients is probably due to 

the selective inclusion of CKD patients into our study. Since CKD is the most common 

risk factor for CIN 12,13, studies enrolling patients irrespective of prior renal 

function frequently describe higher baseline creatinine levels in patients 

subsequently developing CIN 10,11. Third, PENK levels increased significantly after 

the administration of CM in patients developing contrast-induced AKI, while remaining 

stable in no-AKI patients. Consequently, day 1 PENK levels after CM administration 

were significantly higher in AKI compared to no-AKI patients. Forth, Day 1 PENK and 

serum creatinine levels detected overall AKI with similar accuracy.  Fifth, delta PENK 

achieved the best diagnostic accuracy for the detection of overall AKI and creatinine-

blind AKI, providing AUCs of 0.92 and 0.94, respectively.  

Our results extend and corroborate previous studies investigating the potential 

clinical applicability of PENK. The correlation of baseline PENK with concurrently 

drawn serum creatinine values has been described before 10,15,19. This link between 

baseline PENK levels and steady state renal function is further highlighted by the 

strong association of published PENK levels with steady state renal function described 

across a wide range of populations, which appear to show a near linear increase of 
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PENK with decreasing renal function (i.e. healthy participants: eGFR 91ml/min, PENK 

46pmol/L9; cardiac surgery: eGFR 75ml/min, PENK 85pmol/L 11; acute heart failure: 

eGFR 56ml/min, PENK 97pmol/l19; CKD current study: eGFR 45ml/min, PENK 

126pmol/l). 

This link between chronic renal function and baseline PENK levels might also 

explain the apparent disagreement between our results and two recent studies 

investigating patients undergoing cardiac surgery 10,11. These studies found baseline 

PENK levels drawn before surgery to be increased in patients suffering from post-

surgical AKI 10,11. However, both studies showed pronounced differences in the 

prevalence of CKD between AKI and no-AKI patients, with CKD being four times more 

common in AKI compared to the no-AKI patients. We therefore believe that the 

increased baseline PENK levels observed for AKI patients mainly represent impaired 

chronic renal function, rather than an early AKI signal. This interpretation is backed by 

Mossanen and co-workers, who found the diagnostic accuracy of baseline PENK 

levels to decrease after the exclusion of patients with known CKD and subsequently 

elevated baseline PENK levels 11. Importantly, both studies found preoperative PENK 

levels to not improve the prediction of AKI over baseline serum creatinine 10,11.  

In this CKD cohort, the vast majority of patients displayed PENK levels above the 

previously suggested universal cut-off value of 100pmol/L but did not develop 

subsequent AKI. This observation might at least partially be caused by PENK 

accumulation in CKD patients and the strong association of PENK with chronic renal 

dysfunction. It highlights the need for further studies to establish clinically applicable 

cut-off values in CKD patients.  

The early PENK increase in patients experiencing AKI compared to the stable 

values in no-AKI patients observed in the current study suggests delta PENK as 
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powerful marker for the early detection of AKI. Importantly, delta PENK was strongly 

associated with overall AKI and retained its diagnostic accuracy for the detection of 

creatinine-blind AKI, thereby accelerating the clinical diagnosis of creatinine-blind AKI 

by 24hours. The diagnostic potential of early PENK changes was also observed by 

Shah and co-workers, who assessed 92 patients undergoing cardiac surgery 10 and 

also found delta PENK to best predict late AKI.  

Despite the lack of causative therapeutic interventions currently available for the 

treatment of AKI the early detection of AKI is of vital importance and offers a window 

of opportunity for the initiation of supportive measures (i.e. volume management, 

maintenance of adequate blood pressure, avoidance of nephrotoxins) to reduce the 

duration of the AKI episode 20,21. The enormous potential of early supportive therapy 

was recently highlighted in a study assessing the impact of electronic automated AKI 

alerts. This study showed a convincing 7-fold decrease in the requirement of renal 

replacement therapy and a 2.4-fold decrease in mortality in patients receiving 

supportive therapy on the day of the alert compared to patients receiving delayed 

supportive therapy (day 1 or later) 22. Of note, this intervention was based on the review 

of serial creatinine measurements and the additional 24 hour window of opportunity 

provided delta PENK could potentially provide even bigger benefits 23.  

Potential limitations of the current study merit consideration. First, our study has 

a moderate number of patients and only few developed AKI.  However, the strong 

correlation of baseline PENK with stable serum creatinine values observed in our study 

is in line with various other publications 10,15,19. We are therefore confident, that our 

baseline PENK results will apply to other populations. Nevertheless, due to the low 

number of AKI cases observed in our cohort, we cannot exclude the possibility of a 

Type II error for the serial sampling part of our study.  Second, we did not include the 
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any urine output criteria into the definition of contrast-induced AKI. However, while 

recent data suggest, that including urine output criteria into the AKI definition might 

increase the AKI incidence24, most previously published studies assessing the 

predictive potential of AKI biomarkers in the non-ICU setting, also opted to exclude the 

urine output criteria for AKI diagnosis 10,15,25 since measuring urine output in a non-ICU 

setting is tedious and error-prone. When routinely measuring urine output via a urinary 

catheter any additional information obtained by measuring urine output needs to be 

carefully weighed against the potential morbidity, mortality, and healthcare expenditure 

associated with catheter-associated urinary tract infections26. Third, a general 

limitation for the comparison of a novel marker of interest for the prediction of AKI with 

creatinine is that this is principally biased by the fact that creatinine is a constituent of 

the AKI definition.  

Conclusion: 

Delta PENK levels improve may the early detection of contrast-induced AKI over serial 

creatinine sampling. Delta PENK may accelerate the detection of creatinine-blind AKI 

by 24 hours.   
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Table 1: Baseline Characteristics 

 
Total 

 
Overall 
(n=111) 

 
AKI 

(n=7) 

 
No AKI 
(n=104) 

 
p value 

Sex (male) 69 (62) 3 (42) 66 (64) 0.53 

Age (years) 77 [72-80] 78 [68-85] 76 [67-81] 0.82 

Comorbidities:      

Diabetes mellitus – no. (%) 48 (43%) 4 (57%) 44 (42%) 0.23 

Hypertension – no. (%) 94 (85) 6 (100) 88 (85) 0.30 

Coronary Heart Disease – no. (%) 65 (59) 4 (57) 61 (59) 0.68 

Congestive Heart Failure – no. (%) 37 (33) 2 (29) 45 (43) 0.60 

Peripheral Artery Disease – no. (%) 30 (27) 0 (0) 30 (29) 0.13 

COPD – no. (%) 29 (26) 2 (29) 27 (26) 0.68 

Hypercholesterinemia – no. (%) 66 (60) 2 (29) 64 (62) 017 

Nephropathy:  
    

Hypertensive Nephropathy– no. 
(%)  

45 (41)) 2 (33) 43 (41) 0.71 

Diabetic Nephropathy – no. (%) 9 (8) 1 (17) 8 (8) 0.43 

Hypertensive and Diabetic 
Nephropathy – no. (%) 

29 (26) 2 (33) 27 (25) 0.68 

Other Nephropathy– no. (%)  20 (18) 1 (17) 19 (18) 0.93 

eGFR (MDRD) baseline (ml/min) 45 [38-50] 41 [32-46] 45 [34-53] 0.64 

Medication: 
    

ACEI/ARB – no. (%) 86 (77) 5 (71) 51 (78) 0.64 

Diuretics – no. (%) 81 (73) 6 (86) 75 (72) 0.58 

Statins – no. (%) 52 (47) 2 (29) 50 (48) 0.48 

Oral Antidiabetics – no. (%) 23 (21) 2 (29) 21 (20) 0.44 

Aspirin – no. (%) 71 (64) 5 (71) 66 (63) 0.32 

Intervention:  
    

amount of contrast (ml) 100 [70-140] 100 [70-100] 100 [70-140] 0.99 

Data are presented as median [interquartile range], number of patients (%) as appropriate 
Abbrevations: ACEI/ARB denotes angiotensin converting enzyme inhibitor or angiotensin receptor blocker, AKI 
denotes contrast-induced acute kidney injury, COPD denotes chronic obstructive pulmonary disease, eGFR 
denotes estimated glomerular filtration rate; MDRD denotes  modification of diet in renal disease formula 
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Table S1: STARD checklist for reporting of studies of diagnostic accuracy 
 

Section and Topic Item 

# 

 On page # 

TITLE/ABSTRACT/ 

KEYWORDS 

1 Identify the article as a study of diagnostic accuracy (recommend MeSH 

heading 'sensitivity and specificity'). 
1 

INTRODUCTION 2 State the research questions or study aims, such as estimating diagnostic 

accuracy or comparing accuracy between tests or across participant 

groups. 

3,4 

METHODS    

Participants 3 The study population: The inclusion and exclusion criteria, setting and 

locations where data were collected. 
5 

 4 Participant recruitment: Was recruitment based on presenting symptoms, 

results from previous tests, or the fact that the participants had received 

the index tests or the reference standard? 

5 

 5 Participant sampling: Was the study population a consecutive series of 

participants defined by the selection criteria in item 3 and 4? If not, 

specify how participants were further selected. 

5 

 6 Data collection: Was data collection planned before the index test and 

reference standard were performed (prospective study) or after 

(retrospective study)? 

5 

Test methods 7 The reference standard and its rationale. 6 

 8 Technical specifications of material and methods involved including how 

and when measurements were taken, and/or cite references for index 

tests and reference standard. 

6 

 9 Definition of and rationale for the units, cut-offs and/or categories of the 

results of the index tests and the reference standard. 
6 

 10 The number, training and expertise of the persons executing and reading 

the index tests and the reference standard. 
6 

 11 Whether or not the readers of the index tests and reference standard 

were blind (masked) to the results of the other test and describe any 

other clinical information available to the readers. 

6 

Statistical methods 12 Methods for calculating or comparing measures of diagnostic accuracy, 

and the statistical methods used to quantify uncertainty (e.g. 95% 

confidence intervals). 

7 

 13 Methods for calculating test reproducibility, if done. na 

RESULTS   
 

Participants 14 When study was performed, including beginning and end dates of 

recruitment. 
5 

 15 Clinical and demographic characteristics of the study population (at least 

information on age, gender, spectrum of presenting symptoms). 
8,  

Table 1 

 16 The number of participants satisfying the criteria for inclusion who did or 

did not undergo the index tests and/or the reference standard; describe 

why participants failed to undergo either test (a flow diagram is strongly 

recommended). 

Figure 1 

Test results 17 Time-interval between the index tests and the reference standard, and 

any treatment administered in between. 
n.a. 

 18 Distribution of severity of disease (define criteria) in those with the target 

condition; other diagnoses in participants without the target condition. 
n.a. 

 19 A cross tabulation of the results of the index tests (including 

indeterminate and missing results) by the results of the reference 

standard; for continuous results, the distribution of the test results by the 

results of the reference standard. 

Figure 3 

 20 Any adverse events from performing the index tests or the reference 

standard. 
na 

Estimates 21 Estimates of diagnostic accuracy and measures of statistical uncertainty 

(e.g. 95% confidence intervals). 
8-10 

Figure 3 
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 22 How indeterminate results, missing data and outliers of the index tests 

were handled. 
6,  

Figure 1 

 23 Estimates of variability of diagnostic accuracy between subgroups of 

participants, readers or centers, if done. 
n.a. 

 24 Estimates of test reproducibility, if done.      na 

DISCUSSION 25 Discuss the clinical applicability of the study findings. 11-14 
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Figure Legends:  
 
Figure 1: Patient flow chart 

 

Figure 2: Boxplots showing (a) baseline PENK, (b) day 1 PENK and (c) delta PENK 

levels in patients with or without contrast-induced AKI.  

 

Figure 3: Receiver operating characteristic curves displaying the diagnostic accuracy 

of baseline PENK, day 1 PENK and delta PENK for the early detection of contrast-

induced AKI  

 


