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Abstract 

Background: Urinary schistosomiasis, caused by Schistosoma haematobium, remains a significant public health prob-
lem worldwide, despite years of efforts to control it. Haematuria is one of the notable indirect indicators of 
S. haematobium infection and is commonly assessed along with other routine screens using a urinary dipstick test. A 
portable “field friendly” electronic analyser would offer an automated and thus more objective read-out compared to 
visual-read dipstick methods.

Methods: Within the framework of a Phase 2 praziquantel dose finding study in preschool- and school-aged children 
infected with S. haematobium, in southern Côte d’Ivoire, we compared a visual-read of the urine dipstick strips (Multi-
stix PRO, Siemens Healthcare Diagnostics) to an automated reader (CLINITEK Status+ analyser™ Siemens Healthcare 
Diagnostics). Urine samples were collected from 148 pre-school aged and 152 school-aged children for urinalysis. 
Values were compared using a linear weighted kappa statistic and Bland–Altman analysis.

Results: A very good correlation between the two methods for nitrites and haematuria was observed (κ coefficient 
of 0.88 and 0.82, respectively), while a good correlation was observed for leukocytes (κ coefficient of 0.63) A moderate 
to fair correlation was calculated (κ coefficient ≤ 0.6) for all other parameters. When the results were stratified accord-
ing to infection intensity, the agreements were stronger from the high infection intensity sample measurements, for 
most of the parameters.

Conclusion: Our results demonstrate the device’s utility in detecting haematuria and nitrites but underline the need 
for further development of this tool in order to improve its performance in the field.
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Background
Schistosoma haematobium is one of the three main 
human species of schistosomes and causes the uri-
nary form of schistosomiasis [1–3]. The flukes reside 
in blood vessels surrounding the urinary tract and the 
eggs they produce become trapped in the tissue, caus-
ing inflammation and leading to ulceration and pathol-
ogy of the bladder and kidney. Consequently, urinalysis 
is recognised as a rapid indirect tool for assessment of 
urinary tract morbidity caused by schistosomiasis [4, 
5]. Haematuria is defined as the presence of red blood 
cells in urine. It can be detected by macroscopic uri-
nalysis, where the presence of blood in urine is seen by 
naked eye, or via microscopic urinalysis, where the use 
of a microscope is needed [6]. Studies have shown that 
people shedding S. haematobium eggs also commonly 
have haematuria [1, 7–11]. Therefore, although epide-
miological surveys and studies use egg counts directly, 
haematuria is one of the first indicators of urinary 
schistosomiasis in general clinical evaluations and can 
also indicate morbidity caused by the disease [12, 13].

There are several ways to detect haematuria, depend-
ing on the resources, conditions and environment. 
Commercial dipstick tests designed to detect haem in 
urine have proven to be a good proxy for detecting and 
mapping urinary schistosomiasis [12]. Their simplicity 
and rapid turnover are of particular importance when 
it comes to low-resource settings and where interven-
tion is urgently required. In addition to blood in urine, 
other parameters are also detected and quantified using 
the urine stick: leukocyturia (LEU); nitrites (NIT); 
urobilinogen (UBG); proteinuria (PROT); pH, specific 
gravity (SG); ketones (KET); bilirubin (BIL); and glu-
cose (GLU) (Table 1). These parameters are commonly 
used to diagnose different diseases and some parame-
ters, such as proteinuria, can be indicators of schisto-
somiasis-related morbidity [14–16]. All the parameters 
can be read out visually; however, the consistency of 
the read-outs may vary between individuals. In clinical 
settings, an automatic urinalysis reader is typically used 
as it eliminates bias due to subjective reading by naked 
eye and increases the throughput of read-outs (each 
read only requires one minute to process) [17]. Port-
able, battery-operated versions of these devices have 
been introduced which would, in theory, render them 
usable in more remote areas [6, 18].

In this study, we compared the performance of the 
CLINITEK Status+ Analyser™ (Siemens Healthcare 
Diagnostics, Erlangen, Germany), to manual read-outs 
of urine strips (Multistix PRO, Siemens Healthcare 
Diagnostics).

Methods
Urine samples were collected as part of a Phase 2 dose-
finding clinical trial with praziquantel in S. haematobium-
infected children [19]. Collectively, 174 school-aged and 
170 preschool-aged children were enrolled in the trial, 
which took place in November 2015 in Côte d’Ivoire, in 
the health district of Adzopé.

Urine samples were collected prior to treatment as a 
part of physical examination. The urine dipsticks were 
first read by a trained member of medical staff and, 
immediately after the visual analysis, with the CLIN-
ITEK Status+ Analyser, according to manufacturer’s 
instructions. Results were recorded on the case report 
forms (CRF) of each patient and transferred into elec-
tronic form (Microsoft Excel, 2011) at the end of the 
trial. For the leukocyte, urobilinogen, proteins, blood, 
ketone bodies and bilirubin parameters, findings were 
compared employing linear weighted Cohen’s kappa (κ) 
coefficient statistic using MATLAB 2018a (Mathworks 
Inc., Natick, USA) [20] to determine the agreement in 
measured values between both methods for each param-
eter. An unweighted Cohen’s kappa statistic was used for 
the nitrites parameter, as it only provides positive/nega-
tive assessments. The agreement between the two used 
techniques was calculated by the Cohen coefficient κ 
using the following grading: very good (0.81–1.00); good 
(0.61–0.80); moderate (0.41–0.60); fair (0.21–0.40); and 
poor (≤ 0.2). For the continuous metrics, the pH and spe-
cific gravity (SG), a Bland–Altman plot, created in Excel 
was used to visualise agreement. Results were then also 
stratified according to infection intensity using WHO 
standards for S. haematobium infection intensity clas-
sification: egg count of 1–49 eggs per 10  ml urine was 
regarded as light; and egg count of ≥ 50 eggs/10 ml urine 
was regarded as heavy infection [21].

Results
152 school- and 148 preschool-children provided urine 
samples where both measurements with the CLINITEK 
Status+ Analyser and by visual readout could be obtained 
and were included in our comparison (Table  1). Over 
half the participants were female (54.7%). The mean age, 
weight and height of the study population was 6.4 ± 0.2 
years, 19.9  ±  0.4 kg and 112.2  ±  1.1  cm, respectively. 
Their average temperature was 36.6 ± 0.18  °C and their 
mean haemoglobin measurements were 11.0 ± 0.1 g/dl. 
The children harboured predominantly light intensity 
infections (83.7% of samples) and this was true for both 
pre-school-aged (90.5% of samples) and school-aged 
children (72.4% of samples). The mean egg count for 
light intensity infections was 7.2 ± 1.0 eggs/10 ml urine, 
whereas those harbouring heavy infections averaged 
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Table 1 Number and (%) of manual and analytical evaluation of various parameters

Key: na, not applicable; nd, no data; +, small; ++, moderate; +++, large; ++++, very large
a One or both read-outs don’t offer a trace (rank 1) read, only negative or gradients of positive
b Dipsticks offer gradients of positive readout (+, ++, +++) but machine reads only negative or positive
c Full glucose read-out gradients not shown as almost all children were negative except for 3 small positives

Parameter Descriptive Numeric Rank Visual read
(out of N = 300)

CLINITEK
(out of N = 300)

Leukocytes (Leu/µl) neg/normal 0 0 139 (46.3) 102 (34.0)

trace 15 1 38 (12.7) 73 (24.3)

+ 70 2 39 (13.0) 73 (24.3)

++ 125 3 68 (22.7) 25 (8.3)

+++ 500 4 14 (4.7) 23 (7.7)

nd 2 (0.7) 4 (1.3)

Nitritesa,b neg/normal na 0 272 (90.7) 263 (87.7)

positive na 2 28 (9.3) 35 (11.7)

nd 0 (0) 2 (0.7)

Urobilinogena (E.U./dl; mmol/l) neg/normal 0.2,1; 3.2, 16 0 292 (97.3) 280 (93.3)

+ 2; 33 2 5 (1.7) 9 (3.0)

++ 4; 66 3 2 (0.7) 6 (2.0)

+++ ≥ 131; 8 4 1 (0.3) 2 (0.7)

nd 0 (0) 3 (1.0)

Proteins (g/l; mg/dl) neg/normal 0 0 154 (51.3) 96 (32.0)

trace 0.2; trace 1 59 (19.7) 31 (10.3)

+ 0.3; 30 2 50 (16.7) 69 (23.0)

++ 1; 100 3 29 (9.7) 76 (25.3)

+++ ≥ 3; 300 4 8 (2.7) 26 (8.7)

nd 0 (0) 2 (0.7)

Blood (Eur/µl) neg/normal 0 0 107 (35.7) 111 (37.0)

trace 10 1 38 (12.7) 40 (13.3)

+ 25 2 14 (4.7) 18 (6.0)

++ 80 3 45 (15.0) 51 (17.0)

+++ 200 4 95 (31.7) 80 (26.7)

nd 1 (0.3) 0 (0)

Ketone bodies (mg/dl) neg/normal 0 0 278 (92.7) 264 (88.0)

trace 5 1 20 (6.7) 33 (11.0)

+ 15 2 1 (0.3) 2 (0.7)

++ 40 3 0 (0) 0 (0)

+++ 80 4 0 (0) 0 (0)

++++ 160 5 0 (0) 0 (0)

nd 1 (0.3) 0 (0)

Bilirubina neg/normal na 0 220 (73.3) 220 (73.3)

+ na 2 51 (17.0) 74 (24.7)

++ na 3 25 (8.3) 5 (1.7)

+++ na 4 3 (1.0) 1 (0.3)

nd 1 (0.3) 0 (0)

Glucosec (g/dl; mg/dl) neg 0 0 299 (99.7) 297 (99.0)

+ 0.25; 250 2 0 (0) 3 (1.0)

nd 1 (0.3) 0 (0)
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97.9 ±  48.8 eggs/10  ml urine. With respect to relevant 
co-infections, 10.7% of the children also had an S. man-
soni infection, none presented with other helminth infec-
tions and 42.3% tested positive for malaria using rapid 
diagnostic tests, though none of these presented with 
clinically significant symptoms.

Of the children found to have eggs in their urine, hae-
maturia was detected in 64.3% of their samples by visual 
read-out and in 63.0% of their samples by machine read-
out (Table  1). When stratified according to infection 
intensity, blood in urine was predictive of light infection 
in 58.1% and 56.9% of the children using the manual and 
machine read-out, respectively, and of heavy infection in 
92.3% of the children, regardless of the method used.

The agreement between the two methods for each 
parameter is presented in Table  2. The observed agree-
ment between the two techniques was fair for biliru-
bin and ketone bodies (κ = 0.38 and 0.32, respectively), 
moderate for urobilinogen and proteins (κ  =  0.60 and 
0.44, respectively), good for leukocytes (κ  =  0.63) and 
very good for nitrites and haematuria (κ  =  0.88 and 
κ =  0.82, respectively). Only 3 children had glucose in 
urine according to the automatic readout whereas none 
was detected using the manual readout, hence a kappa 
statistic could not be calculated for this parameter. When 
stratified according to infection intensity, the agreements 
are stronger in heavy infection samples for all parame-
ters, except for leukocytes, where agreement was inferior, 
and for nitrites where the agreement statistic was not 
calculable.

The mean pH was 7.31 and 7.44 for the visual and 
CLINITEK read-outs, respectively, while the mean SG 
values were 1.013 and 1.018, respectively. There was a 
moderate agreement between the two read-out methods 
with respect to these two parameters (Fig. 1). The Bland–
Altman non-parametric analysis revealed a mean bias of 
− 0.14 (95% CI: − 0.20 to − 0.08) for pH, with an under-
estimation by machine readout influenced largely at pH 
values of 6.5 to 7.5. The mean bias for SG was −  0.004 
(95% CI: −  0.005 to −  0.004) wherein underestimation 
by machine read-out occurred between values of 1.010 
and 1.025. The Pearson’s correlation coefficient between 
the two read-outs was 0.88 for pH and 0.72 for SG. These 
metrics, stratified according to infection intensity, are 
presented in Table 3.

Discussion
The use of an automated urine dipstick read-out machine 
would help in diagnosing haematuria and key clinical 
parameters with high accuracy, increased speed com-
pared to manual read-out and reduced inter-reader vari-
ability. Point-of-care testing requiring little equipment 
and minimal training can improve healthcare globally, 
in particular in settings where high quality medical care 
is a challenge [22]. Many studies have compared perfor-
mance of visual read-out vs automated read outs (using 
CLINITEK or other devices), where they tended to dem-
onstrate on-par or superior performance of the ana-
lyser as compared to visual read-out [17, 23]. However, 
they were largely evaluated in controlled laboratory or 

Table 2 Agreement between analytical vs. manual evaluation of various parameters on the Multistix PRO urine dipstick tests

Note: P-values for all parameters measured were lower than 0.0001 except where noted
a Unweighted kappa statistic was applied, as the parameter is binary
b Collapsed amount of blood measure to just positive or negative for haematuria
c P = 0.0056
d P = 0.0002
e P = 0.0035
f P = 0.0825

Abbreviation: nc, not calculable, due to lack of values in one measuring technique

Parameter Light infection Heavy infection Combined

kappa SE Z kappa SE Z kappa SE Z

Leukocytes (LEU) 0.64 0.06 12.02 0.49d 0.15 3.74 0.63 0.06 13.33

Nitrites (NIT)a 0.87 0.05 13.43 nc nc nc 0.88 0.05 14.78

Urobilinogen (URO) 0.57 0.20 6.83 0.74 0.32 4.52 0.60 0.18 8.66

Proteins (PROT) 0.38 0.07 4.64 0.48e 0.14 2.92 0.44 0.06 6.25

Blood (BLO) 0.79 0.04 15.64 0.81 0.12 7.35 0.82 0.03 17.59

BLO yes/no  onlyb 0.81 0.04 12.71 1.00 0.00 7.21 0.83 0.03 14.41

Ketone bodies (KET) 0.30c 0.18 2.77 0.39f 0.28 1.74 0.32 0.15 4.65

Bilirubin (BIL) 0.32 0.12 5.08 0.61 0.19 5.28 0.38 0.10 7.15

Glucose (GLU) nc nc nc nc nc nc nc nc nc
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hospital settings [24, 25], and usually focused on a single 
parameter to about three parameters [15, 26]. As such, 
limited data are available to support the use of automated 
dipstick readers in the field. We compared, for the first 
time, visual readout to the CLINITEK system in chil-
dren infected with S. haematobium in a rural African 

setting. We found that the visual read-out and the CLIN-
ITEK device had very good agreement for the meas-
urement of haematuria (κ =  0.83) as well as for nitrites 
(κ = 0.88), a biomarker for urinary tract infections [27]. 
It also had good agreement for leukocytes, which some-
what reflects a previous finding in routine hospital tests, 

Fig. 1 Difference in measurement between a visual vs a CLINITEK readout for pH and specific gravity. Bland–Altman plots are shown to indicate 
difference in agreement for a pH for all samples as well as pH stratified by: b light infection intensity and c high infection intensity. The parallel plots 
are shown for specific gravity (d–f). Dashed black line indicates the mean difference while the grey dotted lines are the upper and lower limits of 
agreement

Table 3 Comparison and agreement of pH and specific gravity measures between the visual vs machine read-out, stratified by 
infection intensity

Parameter Infection intensity Mean ± SD from 
visual read

Mean ± SD from 
machine read

Mean bias (95% CI) Pearson’s r

pH Combined 7.31 ± 0.97 7.44 ± 1.03 − 0.14 (− 0.20, − 0.08) 0.88

Light infection 7.37 ± 0.91 7.53 ± 1.00 − 0.16 (− 0.21, − 0.10) 0.89

Heavy infection 6.94 ± 1.16 6.99 ± 1.05 − 0.05 (− 0.24, 0.15) 0.80

Specific gravity Combined 1.013 ± 0.007 1.018 ± 0.005 − 0.004 (− 0.005, − 0.004) 0.72

Light infection 1.013 ± 0.007 1.017 ± 0.005 − 0.004 (− 0.005, − 0.004) 0.71

Heavy infection 1.015 ± 0.007 1.020 ± 0.006 − 0.005 (− 0.006, − 0.003) 0.70
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where agreement between visual and automated read-
outs (using another analyser) was very good for nitrites 
and good for haematuria albeit poor for leukocytes 
[17]. The agreement was, however, only fair to moder-
ate for all other biomarkers. For example, the machine 
read-out provided on average lower readings for pH and 
SG than the visual read-out. In one study, the Multistix 
combined with the CLINITEK was found to over- and 
underestimate urine pH for high and low pH values, 
respectively [16]; however, in our study the disagree-
ments were stronger for the middle pH ranges. Moreover, 
as the specific gravity measurements are affected by pH, 
the CLINITEK automatically adds 0.005 to the specific 
gravity read-out for pH values ≥ 6.5, but this should have 
resulted in a slight overestimation when comparing the 
two.

It is not altogether clear why the agreement for the 
other parameters would be underwhelming, but a few 
factors may have influenced some of the poorer out-
comes. First, although the machine is portable and does 
not require much power, it still appears to be more suit-
able for a laboratory setting than the humid tropical heat 
of our sites. Specifically, we were not able to keep the 
machine in sunlight as this caused it to sporadically shut 
down, requiring a restart. Also, it is advised to store the 
reagent strips in a closed dry container in a cool place and 
not expose them to temperatures > 30  °C and, although 
we kept the container closed throughout the day, it is 
not possible to avoid the other conditions during a field 
trial. Secondly, instructions from Siemens also warned 
that high values of some biomarkers would affect the 
readout values of other ones: for example, a high urine 
pH (pH > 8) would falsely increase proteinuria read-outs, 
and indeed about 24–32% of our samples had a pH > 8. 
Finally, a limitation of this study is that, with exception 
to measuring the suitability of haematuria read-outs as a 
proxy for S. haematobium infection, it was not designed 
to discern which read-out method, the visual or auto-
mated, better agrees with gold standard laboratory assays 
for the different parameters, only how much they agree.

The detection of eggs in urine correlated with detec-
tion of haematuria only in 63% and 64% of the cases, 
for machine and visual read-out, respectively. This is in 
contrast to a meta-analysis on the performance of urine 
dipstick tests in detection of urinary schistosomiasis, 
where dipstick sensitivity and specificity for detection 
of egg-positive urine were 81% and 89%, respectively 
[12]. The authors did note that sensitivity was high-
est among heavy infection intensities and dropped to 
only 65% for individuals with low-intensity infections, 
and our study mirrors this trend. Interestingly, in high 
intensity infections, the agreement between haematuria 
detection between the two methods was 1:1. Indeed, 

the agreement between most parameters improved 
when high intensity samples were measured, which 
hints that they might be clinically relevant for schis-
tosomiasis-related morbidity. Our findings reaffirm 
that, although haematuria might be a good indicator 
of morbidity due to urinary schistosomiasis, its utility 
as a diagnostic tool in areas of low-intensity infections 
is dubious, therefore underscoring the urgent need for 
more sensitive point-of-care diagnostic tools [28].

Conclusions
The agreement between visual and automated readout 
of the Multistix Pro urine dipsticks was fair to moderate 
for most parameters. However, a very good agreement 
was observed for haematuria and nitrites, two param-
eters in detecting S. haematobium as well as urinary tract 
infections, which are often associated with schistoso-
miasis. We believe that the rural tropical environment 
does affect the performance of both the sticks and the 
analyser, which would affect their utility for measuring 
many of the parameters in such a setting. The study thus 
demonstrates that the machine is currently not superior 
to visual read-outs in field settings and offers insight into 
possible future improvements for its use in field studies.
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