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Mass drug administration (MDA) campaigns are designed to empirically treat at-risk popula-

tions for neglected tropical diseases caused by infections with bacteria (e.g., trachoma) and

parasites (e.g., schistosomiasis and soil-transmitted helminthiasis) in a defined geographic

region. Decisions to initiate treatment in communities are often made based on predefined

prevalence thresholds, but once treatment is undertaken, it is typically provided to all individu-

als of certain age groups (e.g., school-age children or all community members aged 5 years and

above) without individual diagnosis. Such campaigns are a hallmark of neglected tropical dis-

ease control and elimination in low- and middle-income countries (LMICs) [1, 2]. Recent suc-

cess stories include considerable reductions in the global incidence of lymphatic filariasis [3],

onchocerciasis [4], and trachoma [5] through MDA programs, as well as reduction in the prev-

alence and intensity of soil-transmitted helminth infection and schistosomiasis [6, 7].

A recent cluster-randomized trial conducted in Malawi, Niger, and Tanzania revealed that

twice-annual MDA with azithromycin for children aged 1–59 months reduced all-cause mor-

tality by approximately 14% [8]. A major distinction between this study and prior MDA efforts

is that the treatment was not targeted to particular pathogens but rather was trialed on the

basis of beneficial, unintended effects that were seen in the context of earlier azithromycin

MDA programs for trachoma [9, 10]. Although the specific mechanisms for mortality reduc-

tion have yet to be elucidated, it is hypothesized that azithromycin may have prevented deaths

from respiratory infection, infectious diarrhea, and malaria in treated children and even per-

haps in close contacts of treated children in the community (similar to herd immunity seen

with vaccination campaigns). Of note, pneumonia, diarrhea, and malaria are leading causes of

infection-related death in pediatric populations from LMICs [11]. Hence, this finding may be

seen as an obvious success story; lives can be saved with a simple and relatively inexpensive

MDA intervention. Interestingly, a 2-year follow-up of the multicountry study [8] focusing on

Tanzanian study sites did not demonstrate mortality reduction or differences in rates of diar-

rhea, fever, anemia, or cough between azithromycin or placebo treatment arms [12].

Health policy makers are now reviewing evidence for azithromycin MDA to consider

whether such programs should be scaled up in settings with high childhood mortality.

Although we agree with the urgency of finding effective solutions to address this public health

issue, in our view, utmost caution is needed before scaling up MDA with antibacterial agents

beyond existing trachoma control and elimination programs. We are convinced about the
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crucially important role of anthelmintic MDA programs for large-scale morbidity control of

parasitic worm (helminth) infections; however, the use of antibacterial agents poses consider-

ably greater threats both within communities where MDA is performed and more globally.

A major concern when administering any antimicrobial agent on a mass scale, be it an anti-

bacterial or anthelmintic drug, is the development and subsequent spread of drug resistance.

As articulated by the O’Neill commission in 2016, antimicrobial resistance (AMR) is one of

the biggest global health threats of our time [13]. The number of global deaths related to AMR

is currently unknown because of inadequate surveillance, but contemporary projections of

several hundred thousand deaths per year are gaining recognition, and these numbers are

expected to rise [14]. Global efforts to reduce antimicrobial use are slow, but large-scale stew-

ardship campaigns are taking shape with plans to both reduce consumption and facilitate the

development of new antibacterial compounds [15].

Bacteria and helminths have very different mechanisms and time courses for developing

resistance. Indeed, resistance appears to emerge more readily and rapidly in bacteria, which

have a shorter reproductive time and can share resistance genes horizontally, facilitating their

spread [16]. AMR was already detected in the 1940s, shortly after the discovery and first use of

penicillin, and has developed across all classes of antibiotics [17]. As early as 1995, Streptococ-
cus pneumoniae resistance was documented in children treated with a single dose of azithro-

mycin as part of trachoma control programs, with 1.3% of swabs demonstrating resistance

before MDA and 21.3% of samples demonstrating resistance up to 2 months following treat-

ment [18]. A more recent prospective study from a trachoma control program in Niger dem-

onstrated significantly more macrolide-resistant S. pneumoniae strains in children from

communities treated with azithromycin twice per year (60%) compared with communities

treated once per year (40%) [19]. Although other studies also documented an increase in

resistant S. pneumoniae strains after azithromycin MDA [20], some studies did not make this

observation [21, 22]. It appears that communities with a higher baseline burden of azithromy-

cin-resistant S. pneumoniae are at greater risk of selecting for such resistant strains in the con-

text of azithromycin MDA [23].

Although much of the focus in macrolide MDA is on resistant S. pneumoniae, enteric infec-

tions present another major threat [24, 25]. Many gastrointestinal pathogens are now resistant

to commonly used antibacterial agents after years of unselective use, and effective treatment

options are increasingly limited. Azithromycin is now one of the first-line oral drug choices

for treatment of shigellosis, enteric fever (caused by Salmonella Typhi and Paratyphi A), and

invasive nontyphoidal salmonelloses, all of which have seen widespread fluoroquinolone non-

susceptibility following years of overuse and misuse [26]. At present, azithromycin is the only

oral treatment option available for an emerging “extensively drug resistant” (XDR) Salmonella
Typhi strain [27], which is resistant to third-generation cephalosporins [28]. There are also

many other diarrhea-causing Enterobacteriaceae with emerging azithromycin resistance genes

[16], and we can only expect more macrolide resistance to develop in the near future in these

organisms in the face of heightened indiscriminate use.

It is conceivable that the mortality benefits of azithromycin MDA [8] will have only a nar-

row window before the prevalence of AMR organisms reaches levels that negate these benefits

in their intended communities. Moreover, recent experience has demonstrated that resistant

bacterial infections, including Salmonella and Shigella, may spread far beyond their commu-

nity of origin within years [26, 29] and negatively impact communities distant from where a

targeted MDA program is offered (Table 1). When macrolide AMR prevalence rises, these

drugs are no longer recommended as a first-line empiric treatment for common infections like

community-acquired pneumonia or infectious diarrheal illness because of the possibility of

treatment failure [30]. With nonselective overuse of azithromycin, a previously effective,

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0007315 May 23, 2019 2 / 6

https://doi.org/10.1371/journal.pntd.0007315


relatively inexpensive, widely available, and well-tolerated oral therapy will no longer be useful

for areas that are most in need, and there is a shrinking list of alternative antibiotics with these

same attributes.

By contrast, the history of MDA campaigns against helminth infections had a different

course. Indeed, MDA programs for schistosomiasis and soil-transmitted helminth infections

have been in place for some two decades with praziquantel (against schistosomiasis) and

albendazole or mebendazole (against soil-transmitted helminthiasis) serving as mainstays of

treatment. MDA for helminth infections has also faced similar critiques. Yet, we believe that

some of these critiques are misplaced, as they are largely outweighed by the benefits, as sum-

marized in Table 1. Although the efficacy of albendazole and mebendazole varies between dif-

ferent species of soil-transmitted helminths [31], and certainly cure rates of schistosomiasis

are lower for higher-intensity infections [32], there is no evidence for sustained anthelmintic

drug resistance developing in human populations despite hundreds of millions of treatments

over many years of use on a global scale. There is evidence of anthelmintic drug resistance to

praziquantel developing in veterinary practice and sporadic evidence in helminths infecting

humans [33]; however, clinically relevant anthelmintic resistance has not emerged on a mass

scale considering the enormous breadth of schistosomiasis MDA campaigns [34]. Addition-

ally, because of complex life cycles and ecological niches of helminths, their geographic range

is far more limited, and resistance—if emergent—is unlikely to spread as swiftly as it may in

bacterial infections. Numerous examples of rapid global dissemination of bacterial resistance

genes underscore this point—for example, with the mobilized colistin resistance gene (mcr-1)

[35] and the New Delhi metallo-β-lactamase-1 gene (NDM-1) [36] developing locally but

spreading globally over a short time, both of which portend resistance to most classes of anti-

bacterial drugs.

The judicious use of all antimicrobial agents is essential to prevent the development and

spread of resistance; however, much greater caution is needed when using antibacterial com-

pared with anthelmintic agents on a mass scale. Expanding azithromycin MDA outside of

trachoma programs has the potential for widespread and sustained harm secondary to AMR

development and spread. More data are needed to justify the wider use of azithromycin MDA

if it is to be used for survival benefit outside of trachoma control programs, and consultation

with local communities, neighboring communities, and public health stakeholders should

determine if the potential benefits outweigh the risks (Table 2). For helminth infections (and

malaria), modeling has been used to examine tradeoffs between reductions in transmission

Table 1. Summary of evidence for MDA campaigns targeting helminth infections versus nonselective targets of

antibacterial agents.

Evidence Helminth Bacteria

Risk of developing AMR Limited in human populations Rapid emergence in human populations

Risk for subsequent AMR

transmission

Limited to ecological niches of

helminth

Local and global transmission over short time

periods

“Off-target” effects of

treatment

Relatively limited to very few

helminths in the targeted MDA

region

Many antibacterial agents (e.g., azithromycin) are

not selective and have broad activity against gram-

positive and gram-negative organisms

Efficacy in reducing local

transmission of disease

Considerable Unclear which organisms are attributed to

mortality reduction; uncertain efficacy in reducing

local transmission

Durability Sustained efficacy in reduced

helminth transmission over years

Lack of data

Abbreviations: AMR, antimicrobial resistance; MDA, mass drug administration.

https://doi.org/10.1371/journal.pntd.0007315.t001
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and the rise of drug resistance [37]; for azithromycin MDA, in the absence of understanding

the mechanisms of mortality reduction, such modeling is currently impossible. Moreover, it is

challenging, if not impossible, to project the duration for which azithromycin MDA may have

benefits before it is undermined by AMR.

Empirical data concerning durability of mortality reduction are needed before implement-

ing this strategy programmatically. Until such data become available, we would recommend

against azithromycin MDA in regions where AMR is common or in which azithromycin is

widely used for pneumonia or gastrointestinal diseases. Instead, we suggest taking a more

cautious approach and seeking other methods to reduce mortality in high-risk settings rather

than expand azithromycin MDA beyond trachoma programs because of the risks of long-term

harms of AMR. Should these programs expand, AMR and rigorous clinical surveillance must

scale up in tandem to closely monitor for the emergence and spread of resistant pathogens,

which would trigger public health responses. With the increasing global burden of highly

drug-resistant bacterial infections, for which azithromycin remains a critical drug in the arse-

nal, the stakes are high, and the evidentiary bar for its long-term safety in widespread use

should be also high.
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