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Conspectus: In this Account, we outline our investigation into the supramolecular resorcinarene 

capsule as a catalyst. Molecular capsules are not only of interest due to the similarities of their 

binding pockets with those of natural enzymes but also feature potential advantages for catalysis. 

Due to the restricted internal volume of the binding pockets, substrate selectivities are commonly 

observed. Substrates that are encapsulated more efficiently will be converted selectively in the 

presence of less suitable substrates. This size selectivity cannot be obtained in a regular solution 

experiment. In addition, because of the distinct chemical environment inside the capsule, different 

product selectivities may be observed. Furthermore, the encapsulation of reactive catalysts inside 

confined environments may improve catalyst compatibility for multicatalyst tandem reactions.  
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Although the potential advantages of performing catalysis inside closed microenvironments are 

generally recognized, the number of known catalytically active supramolecular host systems is 

still very limited. There are several reasons, the most important of which is that it is very difficult 

to predict the catalytic potential of known supramolecular host systems. In several cases, even the 

encapsulation behavior of host systems is not completely understood or explored. Therefore, it is 

evident that further research is required to explore the potential of catalysis inside supramolecular 

capsules.  

Our initial research mainly focused on understanding the puzzling encapsulation behavior of the 

self-assembled resorcinarene capsule I and the closely related pyrogallolarene capsule II. After 

the elucidation of the decisive differences between these two systems, we explored the catalytic 

potential of capsule I. A variety of different reactions was successfully performed inside its cavity. 

The most important examples highlighted in this article are iminium catalysis, the tail-to-head 

terpene cyclization and the carbonyl-olefin metathesis. In the case of proline-mediated iminium 

catalysis, we were able to demonstrate that the enantioselectivity for the product formation was 

increased when the reaction was performed inside the cavity of capsule I. This is remarkable since 

the capsule is formed from achiral building blocks and, therefore, not adding chiral information to 

the reaction mixture. The tail-to-head terpene cyclization is the most complex reaction performed 

so far inside capsule I. The cyclic monoterpenes eucalyptol and α-terpinene were formed in useful 

yields. Interestingly, these products have not yet been synthetically accessible in solution directly 

from acyclic terpene precursors. Furthermore, we demonstrated that the cocatalytic system of 

capsule I and HCl is suitable for carbonyl-olefin metathesis. HCl was shown to be an inefficient 

catalyst for this reaction in solution experiments. This demonstrates that the different chemical 

environment inside the supramolecular container can lead to altered product selectivity. In general, 
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we hope to demonstrate in this article that research of catalysis inside supramolecular capsules, 

although still in its infancy, is starting to produce first synthetically relevant results. 

Introduction 

Enzymes, nature’s catalysts, have been serving as an inspiration for chemists due to their catalytic 

efficiency.1-2 Especially, their ability to accelerate reactions by many orders of magnitude under 

mild conditions and to produce products with excellent regio- and stereocontrol is fascinating. 

Since Linus Pauling’s idea that transition state stabilization3 is a hallmark feature of enzymes, 

much effort has been devoted to understanding how enzymes actually work. The discussion is still 

ongoing but electrostatic interactions likely play a key role.4-5 Chemists initially tried to mimic the 

basic working principle of enzymes with preorganized open or macrocyclic structures.1-2 In the last 

decades, supramolecular chemists have shifted the attention towards more closed structures, so 

called molecular capsules.6-19 Such containers feature a defined cavity where substrates can bind  ̶  

in analogy to the binding sites of enzymes. One of the few supramolecular capsules which has 

been successfully exploited for the catalysis of a wide range of reactions is the resorcinarene 

hexamer I, originally reported by the Atwood research group.20 It self-assembles via hydrogen 

bonds from six resorcinarene units 1 and eight water molecules in apolar solvents like chloroform 

and benzene.21-22 It does not feature large openings at the surface. Therefore, substrate uptake is 

believed to occur via the dissociation of one resorcinarene unit.23 Ammonium salts are well 

encapsulated inside the cavity of capsule I, most likely due to cation-π interactions with the 

aromatic walls of the container.21, 24 Interestingly, it was also reported that it binds tertiary amines, 

although there should not be strong interactions with the cavity.25-26 
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Scheme 1. Structures of resorcinarene 1 and pyrogallolarene 2, and their respective self-assembled 

molecular capsules I and II. In capsule I, four out of the eight water molecules in the hydrogen 

bond network feature a free hydrogen bond donor site (three highlighted with purple circles, the 

fourth one is hidden by the central water molecule in the front). In the structures of the capsules, 

the undecyl groups are replaced by methyl groups for clarity. 
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The very closely related molecular capsule II, originally reported by Mattay27 self-assembles from 

six pyrogallolarene units 2. In contrast to capsule I, it does not require water to complete its 

hydrogen bond network. Surprisingly, capsule II does not bind ammonium salts but does bind 

tertiary amines.25-26 However, encapsulated amines were expelled upon the addition of acid. These 

seemingly contradicting observations were also identified as a “mystery” in a review article about 

the hexameric capsules in 2011.22 As it turned out, research in our laboratory solved this puzzle 

and, subsequently, led to the discovery of the catalytic potential of capsule I for a series of 

reactions. However, let us start chronologically. 

Our Investigations 
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Motivation. Our research group became interested in capsule I for several reasons: (1) The groups 

of Scarso and Reek reported in 2011 that capsule I is able to encapsulate a gold(I) catalyst.28 They 

demonstrated that the entrapped catalyst displays different product selectivities when operating 

inside this closed environment, although at a reduced reaction rate. (2) The puzzling observation 

that capsule I binds tertiary amines as strong as ammonium salts. Moreover, that capsule II binds 

amines but not ammonium salts. (3) The ready availability of capsule I since resorcinarene 1 is 

synthetically accessible in one single step without the need for chromatography. (4) The unusually 

large inner volume of capsule I (approx. 1400 A3). It is large enough for the encapsulation of a 

wide range of substrates. For instance, ammonium salts as large as tetraoctylammonium bromide 

can be encapulated.23,24 (5) We speculated that iminium chemistry should be feasible inside capsule 

I due to its strong affinity for ammonium salts. 

Understanding the differences between capsule I and II 

Our investigations started with the study of amine uptake inside capsule I. Titration experiments 

with triethylamine, studied by 1H NMR spectroscopy, revealed that a proton transfer from capsule 

I onto the amine is responsible for its uptake.29 The formed ammonium species is stabilized inside 

capsule I due to ion-ion and cation-π interactions. The negative charge on the capsule surface is 

delocalized over the hydrogen bond network as indicated by 1H NMR spectra and also DFT 

calculations. The acidity of the hexamer I was estimated by titration experiments with bases of 

varying basicity. A surprisingly high acidity (pKa of 5.5-6) was determined for capsule I. Recent 

DFT calculations by the groups of Rescifina and Gaeta confirmed this mean pKa value and found 

that there are four localized zones with a microenvironmental pKa of approx. 2.5.30 These zones 

correspond to the four water molecules integrated into the hydrogen bond network of I that feature 

a free hydrogen bond donor (see purple markings in Scheme 1). 
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Subsequently, we identified that protonation of tertiary amines also occurs inside capsule II, 

although its acidity is much lower (pKa of 9.5-10). This explained the uptake of amines and 

indicated that cations are stabilized inside this system.31 But then why do ammonium salts resist 

encapsulation inside II? It was found that beside cation-π stabilization, capsule I is also able to 

bind the counterion of ammonium cations. Evidence for counterion encapsulation was obtained 

from the NMR experiments using mesylate as the counterion. The four water molecules that 

function as single H-bond donors in the H-bond network are able to stabilize anions via H-bonds. 

This stabilization of anions is lacking in capsule II, which does not feature water in its H-bond 

network. This finally explained the surprising encapsulation behavior of capsule II: tertiary amines 

are bound in their protonated state and the counterion is the negatively charged capsule. Upon 

addition of external acid, for instance hydrochloric acid (HCl), the negatively charged capsule is 

protonated and an ion pair of protonated amine and chloride anion is formed. This ion pair is not 

a good guest for capsule II anymore since the anion cannot be properly stabilized, in contrast to 

capsule I. Therefore, the ion pair is released. 

Our investigations into the encapsulation behavior of capsule I and II not only clarified the 

puzzling encapsulation behavior, but also encouraged investigations into catalysis. Due to the 

discovered moderate Brønsted acidity of capsule I and its ability to stabilize cationic species via 

cation-π interactions, we became interested in the exploration of reactions with cationic transition 

states. 

Catalytic applications 

Acetal hydrolysis. After having identified the acidity of hexamer I that is responsible for the good 

uptake of tertiary amines, we tried to translate this finding to catalytic applications. As a simple 
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test reaction, we chose acetal hydrolysis.29 In the presence of catalytic amounts of capsule I 

(10 mol%), hydrolysis of small diethyl acetals like 3 (Scheme 2) was rapid, while larger derivatives 

like acetal 4 were hydrolyzed much slower. This was consistent with a reaction on the inside of 

the capsule where smaller substrates are encapsulated more efficiently than larger ones. In 

addition, after blocking the cavity with the high-affinity guest tetrabutylammonium bromide, the 

reaction of the small substrate 3 was efficiently suppressed. Admittedly, acetal hydrolysis is not 

an exciting reaction and can be readily performed in solution. However, if the reaction is indeed 

catalyzed only inside the container under these conditions, a size selective reaction should be 

feasible. Indeed, the smaller acetal 3 is hydrolyzed with excellent selectivity in the presence of the 

larger acetal 4, to produce mainly acetaldehyde 5 (98:2 selectivity, Scheme 2). As expected, in 

solution using trifluoroacetic acid as the catalyst, no significant selectivity was observed. This 

result highlights one of the advantages9 of performing chemistry inside supramolecular capsules: 

size selectivity. Later investigations in our group uncovered that trace amounts of HCl are required 

for the hydrolysis inside the capsule.32 Although precautions were taken to exclude traces of HCl 

from the solvent chloroform (filtration through basic aluminium oxide), it turned out that 

resorcinarene 1, prepared under aqueous acidic conditions, contains traces of HCl.33 Nevertheless, 

catalysis takes place inside the container and HCl functions only as a cocatalyst. HCl alone under 

such conditions (0.1 mol% HCl) is not able to hydrolyze the acetals.32 

  

Scheme 2. Size selective acetal hydrolysis catalyzed inside capsule I. 
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Iminium catalysis. As mentioned earlier, our interest in capsule I was also sparked by the idea to 

influence iminium-catalyzed reactions via encapsulation of the iminium ion. Due to the high 

affinity of capsule I for ammonium salts, we speculated that also iminium species should be 

encapsulated well. In asymmetric iminium catalysis, an α,ß-unsaturated aldehyde (7, Scheme 3) is 

condensed with a chiral optically active secondary amine catalyst 8, to produce the activated 

iminium electrophile 9.34 If the formed iminium species 9 is encapsulated quantitatively to produce 

complex A, the addition of the nucleophile would have to take place inside the confined space of 

capsule I. Therefore, different selectivities might be observable inside the capsule than in a regular 

solution experiment. After hydrolysis of the formed enamine (complex C) via complex D, the 

product should be released to close the catalytic cycle. Several reactions were investigated and the 

1,4-reduction using Hantzsch ester 11 as a formal hydride source was chosen as a model reaction 

(Figure 1a). We were able to demonstrate that indeed intriguing differences in enantioselectivity 

were occurring in the presence and absence of catalytic amounts of capsule I.35-36 For instance, the 

use of L-proline (20 mol%), a poorly performing catalyst for iminium chemistry, delivers 

unsurprisingly only 9±2% ee (S) in the solution experiment. However, if capsule I is present, the 

product is obtained with much higher enantioselectivity, 74±0% ee (S). Several control 

experiments indicated that the modulation of enantiomeric excess indeed stems from an 
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encapsulation effect. In other words, this strong modulation effect is only observed if the reaction 

takes place inside capsule I. This is especially remarkable when considering that capsule I just 

forms from achiral building blocks 1 and water molecules. Although the assembly I is chiral due 

to the twisted orientation of the resorcinarene units,20 it is of course only present in racemic form. 

What could then cause this modulation of enantioselectivity (∆ee of 65%) inside capsule I? One 

potential explanation may lie in the preferential binding of the iminium species from the less 

hindered side – anti to the carboxylic acid – to the inner capsule walls (see Fig. 1b). This would 

mainly leave the top face for attack by the nucleophile and would deliver, as observed, the S-

enantiomer preferentially. Alternatively, the chiral amine/iminium species may also impose optical 

activity onto capsule I,37 although this explanation seems less likely to us since we would not 

expect such a large effect in this case. Interestingly, capsule II did not display any significant 

modulation of enantioselectivity for this reaction (Fig. 1a). At first, this might seem surprising. 

But the iminium species 9 is present as an ion pair in the relatively apolar solvent chloroform (the 

chloride counterion stems from the HCl formed via photodegradation of chloroform), and as 

discussed before, capsule II does not bind ion pairs well due to its inability to stabilize anions. 

Therefore, the failure of capsule II to encapsulate ion pairs is the most likely explanation for its 

inability to influence iminium catalysis. 

Further investigation into the iminium-catalyzed reaction inside I revealed that ortho-substituted 

derivatives of 7a display even more pronounced modulation effects (Figure 1c). For instance in 

the case of the o-methyl derivative 7b, a ∆ee of 92% was observed. Additionally, 

benzothiazolidines of the general structure 12 (Figure 1d) were investigated as alternative hydride 

donors.36 The results obtained indicate that the substituent ‘R’ on the benzothiazolidine plays a 

crucial role for the selectivity observed inside the capsule. In the case of phenyl-substitution a 
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reversal in selectivity was observed and the (R)-product formed preferentially inside the capsule 

in the presence of L-proline as chiral catalyst. The exact origin of this reversal is not clear yet but 

non-covalent interactions with the phenyl ring that lead to different binding modes seem most 

likely. 

Scheme 3. General overview of iminium catalysis inside capsule I. Catalytic amounts of capsule 

I should be sufficient to encapsulate the iminium ions produced in the catalytic cycle. 
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Figure 1. Iminium catalysis inside capsule I. a) The 1,4-reduction of aldehyde 7a was performed 

in the presence and absence of capsule I and II. ∆ee is defined as the difference between the 

enantiomeric excess obtained from the reaction in the presence and in the absence of capsule I. 

∆∆G≠ is defined as the difference between the energy barriers for the formation of the R- and the 

S-product, respectively (∆∆G≠ = ∆G𝑅𝑅
≠ - ∆G𝑆𝑆≠). b) Binding of the iminium ion to the inner capsule 

walls from the less hindered side may explain the increased enantioselectivities observed inside 

capsule I. c) Ortho-substituted substrates displayed an increased difference in enantioselectivity. 

d) The benzothiazolidines of the general structure 12 were investigated as alternative hydride 

donors. 
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Terpene cyclizations. In our eyes, the most fascinating example for catalysis inside capsule I is 

the tail-to-head38 terpene cyclization (Scheme 4). This reaction enables nature to build up the large 

and structurally diverse group of terpene natural products from just a few simple acyclic terpenes. 

In contrast to the head-to-tail terpene cyclization that has been successfully reproduced in 

solution,39 man-made catalysts for the more challenging tail-to-head cyclization are lacking. One 

main issue is that regular Lewis or Brønsted catalysts lack the ability to influence the conformation 

of the flexible acyclic terpene precursor (e.g. nerol 13, Scheme 4a) in a meaningful way. Therefore, 

it is necessary to develop catalysts with binding pockets that potentially allow control over the 

substrate conformation. Inspiration to investigate this reaction class came from reports that 

aromatic residues play a key role in stabilizing cationic intermediates and transition states in 

natural cyclase enzymes via cation-π interactions.40-41 Since cationic species are bound well inside 

I, investigation of this reaction class seemed obvious, although we expected limited prospects of 

success with this simple system. To our surprise, initial experiments of commercially available 

nerol already led to a tail-to-head cyclization with eucalyptol (16) as the main product (39%, see 

Scheme 4b).42 A series of alternative leaving groups was investigated and acetate turned out to be 

well suitable. For instance, the cyclization of geranylacetate (GOAc, 17) inside I yielded mainly 

α-terpinene (19, 35%). The cyclization to α-terpinene seems to be a “non-stop” cyclization as we 

were not able to detect intermediates. In contrast to natural enzymes which bind intermediates 

strongly, capsule I does not retain neutral intermediate products and allows their detection by NMR 

and gas chromatography. A detailed investigation revealed that more polar/functionalized leaving 

groups that bind stronger to the cavity via H-bonds and/or π-π interactions display an altered 

selectivity.43 Further studies revealed that the observed catalytic activity depends on the synergistic 

interplay between capsule I and HCl. No cyclization reaction was observed when either capsule I 
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or HCl was omitted. Much higher concentrations of HCl were required to observe a reaction in 

solution and led to the formation of a different cyclization product (α-terpinyl chloride). A series 

of control experiments indicate that that the reaction occurs inside the cavity. When capsule I was 

blocked by a strongly binding inhibitor (nBu4NBr), only trace amounts of cyclization products 

were formed. One of the strongest control experiments is the competition experiment between 

geranylacetate and its elongated derivative 20 of comparable reactivity (Scheme 4c). The larger 

substrate which is not encapsulated as efficiently as GOAc, is converted much slower (after 24h 

only 2% conversion as compared to 81% conversion of GOAc). This pronounced size selectivity 

provides very strong evidence that the reaction is indeed accelerated inside the capsule.  

The cyclization of GOAc was investigated in detail, in order to learn more about the catalytic cycle 

and the rate-limiting step. 1H NMR experiments indicate a fast protonation of the capsule when 

the cocatalyst HCl is present in solution. Evidence for substrate uptake was also obtained by 1H 

NMR experiments. Our current hypothesis is that the substrate is then activated via protonation. 

The cleavage of the leaving group was found to be the rate-limiting step. The measured positive 

entropy of activation, as well as the normal secondary isotope effect ruled out other possibilities. 

After isomerization of the transoid allylic cation to its cisoid conformation (18), cyclization can 

take place. This is most likely followed by a 1,2 or 1,3 hydride shift and subsequent proton 

elimination to produce α-terpinene. Due to the less polar nature of the cyclization product as 

compared to the starting material, product release is facile. Therefore, product inhibition was not 

observed. 
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Scheme 4. Tail-to-head terpene cyclizations performed inside capsule I. a) The cyclization of nerol 

(13) produces eucalyptol (16) as the major product. b) Geranyl acetate (17) undergoes selective 

„non-stop“ cyclization to yield α-terpinene (19). c) The selective converison of geranyl acetate 

(17) in the presence of its extended analogue 20 provides strong evidence that the cyclization 

occurs inside capsule I. 
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Currently, we are investigating the cyclization of more complex sesquiterpenes, containing fifteen 

carbon atoms, inside the cavity of I. These studies will be reported in due course.  

We also looked at related reactions. The formation of cyclic ethers like eucalyptol is more general 

and different six- and seven-membered rings can be formed in good to excellent yields inside 

capsule I.44 Related terpene-like cyclization of tertiary alcohols/acetates were also investigated and 

yielded complex cyclopentene structures and in one case even a cyclobutanone.45 For more details, 

we refer the reader to the respective publications. 
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Carbonyl-olefin metathesis. Very recently, we applied the cocatalytic system of capsule I and 

HCl to the carbonyl-olefin metathesis (Scheme 5).46 In 2016, the Schindler group demonstrated 

that FeCl3 is a competent catalyst for this type of reaction.47 Our interest was mainly sparked 

because it was reported that Brønsted acids like HCl are not suitable for this reaction in solution.48 

We wondered if that limitation can be overcome by using capsule I as a reaction vessel. Indeed, 

the reaction was successfully realized using 10 mol% of I and 5 mol% of HCl. The control 

experiments performed indicate that indeed both catalyst components are required and that the 

reaction takes place inside the cavity of I. For instance, blocking the cavity with the strongly 

binding tetrabutylammonium bromide inhibited the reaction. Furthermore, differently sized 

substrates with similar reactivity in solution displayed contrasting reactivity in the presence of the 

capsule. The smaller substrate that is encapsulated more efficiently is converted much faster than 

the larger counterpart. The substrate scope was explored and it was found that especially δ,ɛ-

unsaturated ketones like 21a-c were converted in much higher yields to the corresponding 

cyclopentenes as compared to the solution benchmark catalyst FeCl3. Preliminary mechanistic 

investigations indicated that the oxetane intermediate is likely formed in a step-wise fashion. 

Detailed mechanistic investigations, as well as exploration of intermolecular carbonyl-olefin 

metathesis reactions are currently under way. 

Scheme 5. The carbonyl-olefin metathesis was explored inside capsule I. Especially ketone 

substrates like 21a-c were converted more efficiently with the HCl/capsule I system as compared 

to the benchmark solution catalyst FeCl3.  
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Prerequisites for catalytic activity. The ability to stabilize cationic intermediates and transition 

states has been postulated as a main reason for the observed acceleration of reactions inside capsule 

I and related supramolecular containers. Surprisingly, capsule II proved inactive in catalyzing 

reactions with cationic transition states, although substrates were encapsulated. Initially, due to the 

different acidities of capsule I (pKa of 5.5-6) and II (pKa of 9.5-10), the inability of capsule II to 

protonate the substrate seemed to be the likely cause for its catalytic inability.31 However, since a 

strong external acid (HCl) is required as an essential cocatalyst anyway,32, 43 this hypothesis seemed 

unlikely. The protonation of the substrate with HCl in solution would deliver an ion pair. 

Therefore, we speculated that the inability of capsule II to encapsulate ion pairs (see discussion 

above) is the main reason for its inability to catalyze reactions.43 In the case of iminium catalysis, 

where the iminium ion is encapsulated as ion pair, this remains to be our best hypothesis to explain 

capsule II´s inability to influence the enantioselectivity of the reaction. However, in the case of 

acid-catalyzed reactions, unpublished results with a series of derivatives of capsules I and II 

indicate an alternative explanation. After corroborating these findings, we expect to publish these 

findings in due course. 

Summary and Outlook 
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Our curiosity-driven research into the puzzling encapsulation behaviors of the supramolecular 

capsules I and II triggered the discovery of a series of reactions that can be catalyzed inside I. The 

acetal hydrolysis performed inside the capsule displayed good size selectivity, which cannot be 

achieved in solution. Furthermore, we demonstrated that iminium catalysis can be performed 

inside capsule I. The reactive iminium ion is encapsulated efficiently due to cation-π interactions 

and has to react in the confined environment. This resulted in increased enantioselectivities (up to 

a Δee of 92%). Most surprisingly, the tail-to-head terpene cyclization, which provides the vast 

variety of cyclic terpene natural products, was mimicked with the catalyst combination of capsule 

I and HCl in the case of monoterpenes. The natural products eucalyptol and α-terpinene, which so 

far were not accessible in a one-pot procedure from acyclic terpene precursors were formed in 

39% and 35% yield, respectively. Terpene cyclizations continue to be one main focus of our 

research and the results of sesquiterpene cyclizations are about to be published. Further efforts will 

be devoted to developing less symmetric capsules to influence the conformation of the bound 

substrate. Additionally, we reported that the carbonyl-olefin metathesis can be achieved using the 

cocatalytic system of capsule I and HCl. These results were surprising since HCl alone in solution 

was reported to be an ineffective catalyst for this reaction. Although a wide range of further 

reactions can be accelerated inside capsule I, we currently focus on reactions where the capsule 

modulates reaction selectivity. Only in these cases, we expect capsule catalysis to have a potential 

synthetic application.  

Our research, summarized in this article, as well as results from other groups demonstrated that 

certain supramolecular capsules are promising catalysts. They are able to confer different 

selectivities onto the reaction product as compared to regular solution experiments. Nevertheless, 

most studies so far constitute basic research with little synthetic relevance. To become more 
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synthetically relevant, further research is certainly required. First, the prerequisites for catalytic 

activity have to be fully understood. Afterwards, the design of novel, more selective 

supramolecular hosts will be the focus, which potentially should lead to more selective, and, 

therefore, more synthetically relevant examples. 
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