
Copyright

by

Cuong Kim Chau

2019

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/222930839?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Cuong Kim Chau
certifies that this is the approved version of the following dissertation:

A Hierarchical Approach to Formal Modeling and

Verification of Asynchronous Circuits

Committee:

Warren A. Hunt, Jr., Supervisor

Mohamed Gouda

Vladimir Lifschitz

Marly Roncken

Ivan Sutherland

A Hierarchical Approach to Formal Modeling and

Verification of Asynchronous Circuits

by

Cuong Kim Chau

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2019

Dedicated to my maternal grandparents.

Acknowledgments

I would like to thank my supervisor and mentor, Warren Hunt, for his

guidance, support, and encouragement. I enjoyed my time with him discussing

ideas, research, industry, and life in general. He also gave me the freedom to

explore ideas. I am grateful to Matt Kaufmann for his exceptional mentoring.

I know I would not have got this far without his help. He was the person in our

research group I felt most comfortable discussing technical and mathematical

problems with. He also played a significant role in my learning to use ACL2.

I thank J Moore for bringing me to the ACL2 world as well as the UT ACL2

research group. I felt very lucky to be part of this super friendly and supportive

research group.

I thank Marly Roncken and Ivan Sutherland for their useful feedback,

corrections, and discussions on this project. I thank Mohamed Gouda and

Vladimir Lifschitz for their time, expertise, and feedback. I thank Ruben

Gamboa and Marijn Heule for helping me through the other projects involving

ACL2r and SAT solving, respectively.

I want to thank the people I worked with at Oracle and Centaur Tech-

nology, including David Rager, Jo Ebergen, Anna Slobodova, Jared Davis, Sol

Swords, and Shilpi Goel. My ACL2 skills, especially arithmetic reasoning and

defining macros, improved a lot while working with them.

v

Thanks to Shilpi Goel for being a good friend of mine. She was always

available when I needed her help. We had a lot of fun hanging out and watching

movies together. I thank Lindy Aleshire for her excellent administration help.

She and Matt Kaufmann are my wonderful English teachers. It is always fun

to chat with Lindy about our taste in music.

I thank the Defense Advanced Research Projects Agency (DARPA)

for their support. The work presented in this dissertation was supported by

DARPA under contract number FA8650-17-1-7704.

Thanks to my friends and my volleyball people for keeping me a sane

and happy human being. Finally, I want to thank my family, my brother, my

sister, and especially, my maternal grandparents. They have always been and

will forever be with me in my life journey.

vi

A Hierarchical Approach to Formal Modeling and

Verification of Asynchronous Circuits

Publication No.

Cuong Kim Chau, Ph.D.

The University of Texas at Austin, 2019

Supervisor: Warren A. Hunt, Jr.

The self-timed (or asynchronous) approach to circuit design has demon-

strated benefits in a number of different areas for its low energy consumption,

high operating speed, composability, and modularity. Nonetheless, the asyn-

chronous paradigm exposes challenges that are not found in the synchronous

(or clock-driven) paradigm. For the verification task, a challenge emerges

from the large number of potential operational interleavings exhibited in the

asynchronous paradigm. Simply exploring all interleavings is, in general, in-

tractable because the number of interleavings can grow exponentially.

This dissertation focuses on developing scalable methods that are ca-

pable of reasoning effectively about the interleaving problem exhibited in self-

timed systems. We specify and verify finite-state-machine representations of

self-timed circuit designs using the DE system, a formal hardware descrip-

tion language defined using the ACL2 theorem-proving system. We apply a

vii

link-joint paradigm to model self-timed circuits as networks of channels that

communicate with each other locally via handshake protocols. This link-joint

model has been shown to be a universal model for various self-timed circuit

families. In addition, this model has a clean formalization in the ACL2 logic

and provides a protocol level that abstracts away timing constraints at the

circuit level.

Unlike many efforts for validating timing and communication proper-

ties of self-timed systems, we are interested in verifying functional properties.

Specifically, we verify the functional correctness of self-timed systems in terms

of relationships between their input and output sequences. To mitigate the

consideration of all interleavings simultaneously, we address the verification

problem hierarchically and avoid exploring the internal structures of verified

submodules as well as their operational interleavings. The input-output rela-

tionship of a verified submodule is determined based on the communication

signals at the submodule’s input and output ports, while abstracting away all

execution paths internal to that submodule.

viii

Table of Contents

Acknowledgments v

Abstract vii

List of Tables xii

List of Figures xiii

Part I Preliminaries 1

Chapter 1. Introduction 2

1.1 Motivation . 6

1.2 Related Work . 8

1.3 Objectives . 11

1.4 Contributions . 12

1.5 Organization . 13

Chapter 2. DE System 16

2.1 DE Description . 17

2.2 DE Simulator . 19

2.2.1 Output Evaluator . 20

2.2.2 State Evaluator . 23

2.3 Value and State Lemmas . 27

Part II Approach 32

Chapter 3. Modeling 33

3.1 Link-Joint Model . 34

ix

3.2 Self-Timed Module Modeling 43

3.2.1 Complex Joint . 44

3.2.2 Complex Link . 47

Chapter 4. Verification 52

4.1 Value and State Lemmas . 56

4.2 Multi-Step State Lemma . 60

4.3 Single-Step-Update Properties 61

4.4 Multi-Step Input-Output Relationship 64

4.5 Functional Correctness . 66

Part III Case Studies 71

Chapter 5. Data-Loop-Free Circuits 72

5.1 Example 1: A FIFO Circuit Model 72

5.2 Example 2: Hierarchical Reasoning 75

5.3 Example 3: Complex Links . 78

Chapter 6. Iterative Circuits 86

6.1 Example 1: Shift Register . 86

6.2 Example 2: Serial Adder . 91

6.3 Example 3: GCD . 98

6.3.1 GCD1 . 99

6.3.2 GCD2: Combinational-to-Sequential Substitution 103

6.3.3 GCD3: Sequential-to-Sequential Substitution 106

Chapter 7. Arbitrated Merge 110

7.1 Arbitrated Merge Joint . 111

7.2 Experiments . 116

7.2.1 Example 1 . 118

7.2.2 Example 2 . 119

7.2.3 Example 3 . 121

x

Part IV Epilogue 125

Chapter 8. Conclusions 126

8.1 Summary . 126

8.2 Future Work . 129

Bibliography 132

xi

List of Tables

5.1 Proof times for the self-timed circuits discussed in this chapter.
All experiments used an Apple laptop with a 2.9 GHz Intel Core
i7 processor, 4MB L3 cache, and 8GB memory. The proof time
for a module excludes proof times for its submodules. 85

6.1 Proof times for the self-timed circuits discussed in this chapter 109

7.1 Specification of arb-merge1 112

7.2 Specification of joint M shown in Figure 7.1. In each of the
cases listed in the table, it is also required that S0 and S1 must
be full and empty respectively; and when M acts, it also fills S1

and drains S0. 113

7.3 Proof times for the self-timed circuits discussed in Section 7.2 124

xii

List of Figures

2.1 Schematic diagrams of three circuit examples 17

3.1 A diagram of a link-joint circuit is shown. It has two links, L0
and L1, and three joints A, B, and C. Only joint B is shown in
its entirety. The upper and lower boxes in each link represent
link data and link full/empty status, respectively. 35

3.2 Link-Joint circuit evaluation when GO = 0 37

3.3 Link-Joint circuit evaluation when GO = 1 38

3.4 Example of a complex joint and a complex link. The figure
displays only the data flow; it omits both the flow control of
the joints and the link states for the sake of simplicity. Circles
represent joints, rectangles represent links. The primitive joints
shown in (a) are buffers. Recall that primitive joints are storage-
free. 43

3.5 Data flow of Q7: a FIFO queue of seven links composed of two
instances of Q3. Dashed circles represent complex joints. . . . 46

3.6 Data flow of Q4′. Note that links L0 and L3 are placed at the
input and output ports, respectively. Thus Q4′ is a complex link. 48

3.7 Data flow of Q8′. Dashed rectangles represent complex links. . 50

4.1 Verification flow . 55

4.2 Verification steps . 56

5.1 An example illustrating the multi-step input-output relation-
ship for Q3 . 74

5.2 Data flow of module C: a circuit that performs bitwise OR in
joint out. Dashed circles represent complex joints, Q2 and Q3. 75

5.3 Data flow of a wig-wag circuit, WW 79

5.4 Data flow of a round-robin circuit, RR1 82

5.5 Data flow of Q5′ . 82

5.6 Data flow of a round-robin circuit, RR2. Dashed rectangles
represent complex links. 83

xiii

5.7 Data flow of Q10′ . 83

6.1 Data flows of (a) a SIPO shift register and (b) a double PISO2
shift register. m and n denote the counter and data sizes, re-
spectively. 88

6.2 Data flow of a serial adder s-add. Unless specified, every arrow
carries one-bit data. 92

6.3 Data flow of gcd1. n is the number of bits in each operand.
Dashed, rounded-corner rectangles identify joints. 100

6.4 Data flow of gcd2. Three circles inside complex joint body also
represent joints. The dotted circle performs the subtraction. . 103

7.1 Data flow of arb-merge2 . 112

7.2 Data flow of interl . 118

7.3 Data flow of igcd . 119

7.4 Data flow of comp-interl . 121

xiv

Part I

Preliminaries

1

Chapter 1

Introduction

Self-timed (or asynchronous) circuits have shown their potential advan-

tages over clock-driven (or synchronous) circuits for low energy consumption,

high operating speed, low electromagnetic interference, elimination of clock

skew problems, and offering of composability and modularity [39, 78, 45, 47,

77, 3, 2, 44, 64]. On the other hand, the self-timed paradigm encounters

challenges that do not occur in the clocked paradigm. Verification of large

self-timed systems must deal with the large number of operational interleav-

ings exhibited in those systems. As verification is a critical component of any

complex digital design, scalable methods for self-timed system verification are

highly desirable.

Although research on self-timed circuit design is promising, results

about the verification of self-timed systems have been limited. Most research

efforts in self-timed system verification have appealed to timing verification

techniques to validate handshake protocols implemented in self-timed sys-

tems [41, 36, 8, 7, 4, 34, 29, 15, 37, 51]. This dissertation takes a different

approach: developing a hierarchical (or compositional) methodology for veri-

fying self-timed circuits’ functionality. Our approach views self-timed circuits

2

as networks of communication channels and functional units, while ignoring

circuit-level timing constraints by relying on the timing analysis, as suggested

by Park et al. [51]. Using the ACL2 theorem-proving system [33, 1, 32, 31],

we develop a framework for specifying and verifying the functional correctness

of those networks.

Our work focuses on developing scalable methods for reasoning about

the functional correctness of self-timed systems. Our verification framework

appeals to hierarchical reasoning and induction to support scalability [10].

We specify and verify self-timed circuit designs using the DE (Dual-Eval)

system [25], which is defined in the ACL2 logic. DE is a formal hardware

description language (HDL) that permits the hierarchical definition of Mealy

machines. It has been used to specify and verify microprocessor designs [9, 27].

DE provides a library of verified hardware circuit generators that can be used

to develop and analyze complex hardware systems [9]. A key feature of the

DE system is that it supports hierarchical verification, which is critical for

verifying correctness of circuit behavior at large scale. By abstracting away the

internal structures of verified subsystems, hierarchical reasoning is amenable

to verifying correctness of large systems. Moreover, this method enables the

localization of faults to subsystems; thus permitting the resolution of faults

to occur locally, while the verification procedure for bigger systems containing

those subsystems still remains unaltered.

Our self-timed modeling is based on the link-joint model proposed by

Roncken et al. [58], a universal generalization for various self-timed circuit

3

families (e.g., Click [54], Mousetrap [62], Micropipeline [69], and GasP [70]).

We use DE to model self-timed circuits as networks of (communication) links

and (computation) joints that inter-operate via the link-joint model. Self-

timed circuits and systems operate in a CSP-style manner; communication is

coordinated locally, on a point-to-point basis. In circuit implementation terms,

this means that instead of using a global-clock signal to indicate when all

clocked storage elements should accept new data, self-timed storage elements

(links) accept input only when they are ready and the input data are valid

— and when a link accepts new input, it signals to its datum provider that

the provider may proceed to calculate its next output value(s). We formally

model all computation joints introduced by Roncken et al. [59]. These joints

cover various computation models that are sufficient to build general-purpose

computing machines such as computers.

A key issue addressed by our self-timed circuit model is allowing links

and joints to proceed at their own rate. When we compose circuit modules we

prove, no matter how each module might proceed internally, that their com-

position meets a specification consistent with the composed module’s specifi-

cation. Our approach scales by combining properties of verified submodules

without concern for their internal structures. This is a key enabler for self-

timed circuit verification, as the number of interleavings grows exponentially as

the circuit size increases. When we confirm that a circuit module meets a func-

tional (stream-oriented) specification, we consider all possible interleavings of

its internal operations. Circuit interleavings are considered in a hierarchical

4

manner; we first verify that a module meets its specification, and then we

use only this specification when including this module within another module.

This allows consideration of all possible circuit interleavings without an explo-

sion of cases that must be considered. To our knowledge, we are the first to

apply theorem proving with a hierarchical functional verification methodology

to self-timed circuit models designed at the link-joint level.

We apply our methodology to various self-timed circuit models, in-

cluding circuits performing non-deterministically arbitrated merges. The case

studies presented in this dissertation are sufficiently complex to demonstrate

the generality and scalability of our approach. They perform a variety of be-

haviors that are also present in modern microprocessors, such as pipelining,

arithmetic and logical operations, bit shifting, conditional branching and merg-

ing, counting, register models, and first-come-first-served (FCFS) arbitrated

merging. Given the experiments provided in this dissertation, we expect our

framework can be applied to very large scale integration (VLSI) systems, such

as self-timed microprocessors.

We present the motivation of this dissertation project in Section 1.1. A

survey of existing work related to this research is discussed in Section 1.2. In

Sections 1.3 and 1.4, we present the objectives and contributions of this project,

respectively. The organization of this dissertation is given in Section 1.5.

5

1.1 Motivation

The removal of a global clock from self-timed systems shows potential

benefits in many aspects of system design. This potentially reduces power

consumption due to low standby power consumption on data movement, which

occurs only when and where needed [72, 71, 17, 20, 46, 48]. On the other hand,

the constant activity of a global clock in synchronous systems consumes power

by distributing the clock signal to every part of those systems, even though

some parts may not be processing any data.

Synchronous circuit designers must deal with clock skew problems that

the global clock signal arrives at different components of a circuit at different

times due to a variety of reasons, such as differences in physical placement,

temperature, and path length. As a result, the clock rate depends on the

global worst-case scenario to ensure that all data have stabilized before being

sampled. The clock period need be increased to ensure correct operation in

the presence of clock skew, thus yielding slower circuits. The absence of a

global clock in the self-timed paradigm may yield higher performance since

it eliminates clock skew problems and the operating speed is determined by

actual local latencies rather than the global worst-case latency as specified in

the clocked paradigm [40].

Synchronous circuits create substantial electromagnetic noise in very

narrow frequency bands around the clock frequency and its harmonics; self-

timed circuits generate electromagnetic interference that is much more evenly

distributed across the spectrum with lower peak noise [72, 53]. This is because

6

there is less correlation between operations in self-timed circuits; they tend to

be executed at different points in time, resulting in a more distributed noise

spectrum.

Another advantage of self-timed design is that it offers modularity: self-

timed modules can plug together through simple handshake protocols, and

they simply work without any external clock because each module acts only

in its proper order [43, 38, 49, 69, 65]. Individual components in self-timed

circuits have interfaces that operate correctly with arbitrary delays in the wires

used for inter-module communication, i.e., interfaces use delay-insensitive (DI)

protocols [75]. On the contrary, composing modules in clocked design requires

validating global timing constraints on the composed circuit. This in turn can

result in modifying the design in order to meet the global timing requirements,

and consequently requiring re-verification of the entire design.

Despite the advantages mentioned above, lack of computer-aided design

(CAD) tools and verification methods prevents the self-timed paradigm from

being widely adopted by industry. This dissertation attempts to improve the

verification methodology for self-timed systems. More specifically, we aim to

develop a specification and mechanical verification environment for analyzing

self-timed systems. Unlike many efforts in validating timing and communica-

tion properties of self-timed systems, we are interested in verifying functional

properties of these systems. Our work relies on local timing analysis to justify

our abstraction of self-timed circuits to finite-state-machine representations of

networks of communication channels, thus ignoring circuit-level timing con-

7

straints. The expected outcome of our work is a framework for formally spec-

ifying and verifying the functional correctness of self-timed systems, which we

believe is valuable to the asynchronous community. We also believe that this

work provides foundational principles of self-timed circuit verification so that

future work can apply and build on top of them.

1.2 Related Work

Most verification efforts that use formal techniques for analyzing self-

timed circuit implementations concern circuit-level timing properties. Depend-

ing on the choice of technology (e.g., delay insensitive (DI) [68], quasi-delay

insensitive (QDI) [42], bundled data [69], etc.), electrical-level timing analysis

must be conducted to assure that signal propagation of ready signals is always

slower than data propagation so that data are valid when sampled.

Timing verification of self-timed circuits has been investigated by sev-

eral groups [41, 36, 8, 7, 4, 34, 29, 15, 37, 51]. For instance, Park et al. [51]

developed the ARCtimer framework for modeling, generating, and verifying

timing constraints on individual handshake components. ARCtimer uses the

NuSMV model checker for its analysis. The authors’ goal was to ensure that

the network of logic gates and wires, along with their associated delays, meets

the component’s protocol requirements. In contrast, our goal concerns prov-

ing that a self-timed circuit or system meets its functional specification, while

ignoring circuit-level timing constraints that can be investigated by tools like

ARCtimer.

8

Most existing work on self-timed circuit verification has either examined

circuits that do not include any data path or do not concern computations on

the data paths in its verification objectives. These methods have primarily

explored strategies for checking communication sequences with respect to a

specification. For example, Dill [16] developed a trace theory for hierarchical

verification of communication sequences in speed-independent circuits. The

author focused only on control circuits, while data circuits were not involved.

His method checks circuit properties by simply searching through the state-

transition graph that models the circuit behavior. Although this approach

is automatic, it explicitly represents and stores all possible states. This is

quite inefficient when dealing with circuits consisting of a large number of

states. And while the author proposed two theories for modeling and checking

safety and liveness properties of speed-independent circuits, only the theory

for dealing with safety properties was implemented.

The use of hierarchical verification methods in self-timed circuit con-

texts has also been explored by Clarke and Mishra [13], in their attempt to

verify safety and liveness circuit properties automatically. Their analysis ap-

proach is based on model checking, and they investigated the correctness of a

self-timed FIFO queue element specified in Computation Tree Logic (CTL).

Their approach assumes a unit delay for each gate in a self-timed circuit, where

our approach avoids imposing any restrictions on gate delays.

Previous applications of ACL2 to asynchronous circuit designs have

focused on properties other than their functional correctness. Verbeek and

9

Schmaltz [74] have formalized and verified blocking (failing to transmit data)

and idle (failing to receive data) conditions about delay-insensitive primitives

from the Click circuit library. By using ACL2, these conditions were translated

into SAT/SMT instances to confirm deadlock freedom in the self-timed circuits

investigated. Peng et al. [56] presented a framework for detecting glitches that

occur in synthesized clock-domain-crossing netlists but are not apparent in the

original RTL specifications. The authors’ approach integrates ACL2 with a

SAT solver for verifying, in synthesized netlists, the glitch-free property of each

state-bit associated with a corresponding flip-flop output. They demonstrated

their tool on commercial designs from Oracle Microelectronics.

Loewenstein [35] formally verified some properties of the asynchronous,

Sproull counterflow pipeline processor (CFPP) architecture using the higher-

order logic, HOL theorem prover [21, 22]. He modeled the CFPP as an au-

tomaton at an abstract, architectural level. However, no connection between

that high-level model and a low-level circuit design was conducted. In con-

trast, we are interested in verifying that the gate-level netlist description of a

self-timed circuit complies with its high-level functional specification.

Srinivasan and Katti [67] applied a refinement-based method for ver-

ifying safety properties of desynchronized pipelined circuits. Their approach

attempts to reduce non-determinism by adding extra sequential dependencies

between controller events to circuit designs. Wijayasekara et al. [76] applied

the same method for verifying the functional equivalence of NULL Conven-

tion Logic (NCL) circuits against their synchronous counterparts. While both

10

frameworks are highly automated by using decision procedures, they provided

quite limited scalability and no liveness properties were verified. Our approach,

on the other hand, has been shown to be scalable by exploiting hierarchical

verification and induction. We also avoid imposing any such additional re-

strictions on circuit designs.

1.3 Objectives

The goal of this dissertation is to develop a formal framework for hierar-

chically modeling and verifying functional properties of asynchronous circuit

designs. This project concentrates on creating a comprehensive verification

strategy by leveraging existing work in the clocked design paradigm and cre-

ating new approaches for verifying asynchronous systems. We follow the link-

joint model introduced by Roncken et al. [58] in modeling self-timed systems as

networks of storage links that communicate with each other via computation

joints. Our modeling task attempts to represent self-timed circuits as coop-

erating finite-state-machines (FSMs) using the DE system — a formal HDL

system already proven to be successful for synchronous circuit modeling and

verification. DE provides combinational primitives as well as several latches

suitable for creating links and joints. We propose to model self-timed sys-

tems fulfilling the following three facts that are absent from the synchronous

paradigm.

1. Avoid a global clock signal; state-holding devices update their states

based on local signaling.

11

2. Channels communicate with each other via local communication proto-

cols.

3. Exhibit all possible interleavings of circuit operations due to variable

delays in wires and gates.

For the verification task, our objective is to develop a methodology

along with a library for verifying the functional correctness of self-timed circuit

designs at scale. We are interested in developing a method that is amenable

to analyzing the operational interleavings efficiently. A desired approach must

be able to confirm correctness of circuit behavior under all possible orderings

of circuit operations. The modularity of self-timed systems presents an oppor-

tunity for creating a modular, hierarchical verification flow. Hence our goal is

to develop a hierarchical reasoning approach that is capable of verifying large

systems efficiently without bothering about the internal details of their verified

subsystems.

1.4 Contributions

We have generalized the DE-based, synchronous-style verification sys-

tem to one that is capable of analyzing self-timed system models. This general-

ization advances analysis of circuit specification and verification, and provides

a means to support building reliable complex hardware systems using the self-

timed paradigm.

• We have provided a framework for modeling self-timed circuit designs

12

using the link-joint paradigm. Our framework also supports simulation

capability for those circuit models.

• We have develop a compositional, mechanized methodology for scalable

formal verification of functional properties of self-timed circuit designs.

This work has involved implementing strategies for reasoning about non-

deterministic circuit behavior efficiently. Our methodology is able to deal

with the non-determinism appearance in both event sequence and time

at which events happen. In contrast to most of existing work of applying

hierarchical reasoning to self-timed circuit and system verification, our

approach verifies circuit functionality while others verify circuit timing

and/or communication properties.

A successful outcome from this dissertation in connection with circuit-

level implementation will support a computing specification and verification

paradigm where systems can proceed at their best rate and no longer require

clock signals.

1.5 Organization

The rest of this dissertation is organized as follows.

Part I: Preliminaries gives an introduction to this research, along with some

background.

Chapter 2 reviews the DE system that we use to specify and verify

self-timed circuit models.

13

Part II: Approach presents our modeling and verification methodology for

self-timed circuit designs.

Chapter 3 introduces our modeling approach to self-timed circuit de-

signs using the link-joint paradigm.

Chapter 4 introduces our hierarchical approach to functionally veri-

fying self-timed circuit models.

Part III: Case Studies demonstrates the applicability of our methodology by

modeling and verifying the functional correctness of various self-timed circuit

designs.

Chapter 5 describes our modeling and verification of several circuit

synthesizers that generate data-loop-free circuits.

Chapter 6 further demonstrates our framework through case studies

of circuits that contain feedback loops in their data flows.

Chapter 7 describes our strategy for verifying circuits involving arbi-

trated merge operations. These operations are frequently used in self-timed

systems in order to grant mutually exclusive accesses to shared resources. Un-

like the circuits discussed in Chapters 5 and 6, circuits with arbitrated merges

essentially produces non-deterministic outputs due to arbitrary arrival times

of requests at arbitrated merges’ inputs.

Part IV: Epilogue summarizes this research and gives some concluding re-

marks.

14

Chapter 8 concludes this dissertation and discusses potential for fu-

ture research.

15

Chapter 2

DE System

DE (Dual-Eval) is a circuit description language developed in ACL2 for

describing and analyzing hierarchical Mealy machines [25]. It has previously

been used to model hierarchical synchronous circuits where all state-holding

primitives update their values simultaneously [25, 27, 9]. In this dissertation,

we show that the DE system can be adapted for modeling and analyzing self-

timed systems as well. The only extension we make is to add a single primitive

to the DE primitive database that models the validity of data stored in a com-

munication link. The benefit of using DE is that we are able to reuse the

DE hierarchical circuit verification approach [25]; originally, this automated

approach was used to verify the FM9001 microprocessor design [5]. We gen-

eralize the semantics of this HDL-based circuit specification and verification

approach to allow the analysis of self-timed circuits whose implementations

proceed at their best rate. In this chapter we will review the DE system

and show how to use it model and evaluate circuit modules through concrete

examples. Chapter 3 will describe our self-timed modeling using DE.

16

L0bit-in

en

L0-out

L0-out∼

L1
bit-out

bit-out∼
G en∼

(a) Flip-flop

g1

g0

A
B Carry

Sum

(b) Half-adder

Half-Adder

g0

A

B

Carry

Sum
Half-Adder

g1

A

B

Carry

Sum

A

B

C

Carry1

Sum1 Carry2

g2

Carry

Sum

(c) Full-adder

Figure 2.1: Schematic diagrams of three circuit examples

2.1 DE Description

A well-formed DE netlist is an ordered list of modules, where each mod-

ule may include references to previously defined modules or to DE primitives.

Each module definition consists of five ordered entries: a unique module name,

input names, output names, internal-state names, and a list of occurrences that

references previously defined submodules or DE primitives. Each occurrence in

a module consists of four ordered entries: a module-unique occurrence name, a

17

list of output names, a reference to a DE primitive or a submodule, and a list

of input names. The DE system includes an ACL2 predicate that recognizes

a syntactically well-formed netlist; this predicate enforces syntactic require-

ments on naming, arity, occurrence structure, and signal connectivity. Below

is a DE netlist containing three module definitions: a flip-flop circuit built

from two latches L0 and L1, a half-adder, and a full-adder composed of two

half-adders. Figure 2.1 offers the schematic diagrams of these three circuits.

(defconst *netlist*

’((flip-flop ;; Module’s name

(en bit-in) ;; Inputs

(bit-out bit-out∼) ;; Outputs

(L0 L1) ;; Internal states

;; Occurrences

((L0 (L0-out L0-out∼) latch (en bit-in))

(G (en∼) b-not (en))

(L1 (bit-out bit-out∼) latch (en∼ L0-out))))

(full-adder

(c a b)

(sum carry)

() ;; No internal states

((g0 (sum1 carry1) half-adder (a b))

(g1 (sum carry2) half-adder (sum1 c))

(g2 (carry) b-or (carry1 carry2))))

(half-adder

(a b)

(sum carry)

() ;; No internal states

((g0 (sum) b-xor (a b))

(g1 (carry) b-and (a b))))))

As the netlist example above may suggest, a module can have multiple

18

references to a primitive or a submodule. However, for a physical realization,

each reference indicates a completely new copy of the referenced primitive

or submodule. In addition, the definition of a referenced module must ap-

pear after its referencing modules’ definitions in the netlist. For instance, the

definition half -adder appears after the definition of full-adder in the above

netlist.

2.2 DE Simulator

The semantics of the DE language are given by a simulator whose se

(single eval) function computes the outputs and whose de (dual eval) function

computes the next state for a module from the module’s current inputs and

current state. The de simulation function operates in two passes: it first

propagates values from primary inputs and internal states throughout the

netlist, calculating values for every internal “wire”. Once the values of all wires

are known, de produces the module’s outputs by accessing the appropriate

wire values. To produce the next state, de makes a second pass over the entire

netlist propagating previously-calculated wire values into storage elements.

Both simulation functions se and de require the following four ordered

arguments: the name of the module to evaluate, its input values, its current-

state value, and a well-formed DE netlist containing the definition of the mod-

ule and submodules to be simulated. These simulation functions are actually

defined in two sets of mutually recursive functions. The following two subsec-

tions discuss their definitions in detail.

19

2.2.1 Output Evaluator

Here we present the definitions of the output evaluator se and its mu-

tually recursive peer function se-occ. Function se evaluates a module and

returns its output values. se evaluates primitives using the se-primp-apply

function. If argument fn identifies a defined module, its definition is extracted

from netlist for further evaluation. Function se-occ evaluates occurrences

and appends the newly computed outputs of the current occurrence onto a

growing list of name-value pairs. Before se-occ is called by se to evaluate the

occurrences of a module, two association lists are created binding input and

state names to their respective values.

(mutual-recursion

(defun se (fn ins st netlist)

(if (primp fn) ;; fn is a primitive.

(se-primp-apply fn ins st)

;; Extract the module definition and evaluate its outputs

(let ((module (assoc-eq fn netlist)))

(if (atom module)

nil

(let* ((md-ins (md-ins module))

(md-outs (md-outs module))

(md-st (md-st module))

(md-occs (md-occs module))

(wire-alist (pairlis$ md-ins ins))

(st-alist (pairlis$ md-st st)))

(assoc-eq-values

md-outs

(se-occ md-occs wire-alist st-alist

(delete-to-eq fn netlist))))))))

20

(defun se-occ (occs wire-alist st-alist netlist)

(if (atom occs)

wire-alist

(let* ((occ (car occs))

(occ-name (occ-name occ))

(occ-outs (occ-outs occ))

(occ-fn (occ-fn occ))

(occ-ins (occ-ins occ))

(ins (assoc-eq-values occ-ins wire-alist))

(st (assoc-eq-value occ-name st-alist))

(new-vals (se occ-fn ins st netlist))

(new-alist (pairlis$ occ-outs new-vals))

(new-wire-alist (append new-alist wire-alist)))

(se-occ (cdr occs) new-wire-alist st-alist netlist)))))

Function assoc-eq(x, alist) returns the first key-value pair of the association

list alist whose key is x, or nil if no such pair exists. Function assoc-eq-value

returns only the value from the pair produced by assoc-eq. Function assoc-eq-values

returns a list of values and is defined recursively in terms of assoc-eq-value.

For example,

(assoc-eq ’B ’((A . 5) (B . 3) (B . 4))) = ’(B . 3),

(assoc-eq-value ’B ’((A . 5) (B . 3) (B . 4))) = 3,

(assoc-eq-values ’(B A) ’((A . 5) (B . 3) (B . 4))) = ’(3 5).

Function pairlis$(x, y) zips together two lists x and y.

(pairlis$ ’(B A C) ’(1 3 2)) = ’((B . 1) (A . 3) (C . 2))

(pairlis$ ’(1 3 2) nil) = ’((1) (3) (2))

Function delete-to-eq(fn, netlist) returns a subnetlist by walking through

netlist until passing module fn and removing all modules that it passes (in-

21

cluding fn). Primitive evaluation is simply function application as is shown

in the definition of function se-primp-apply. For the DE system, we use the

ACL2 constants t and nil to represent Boolean true and false, respectively.

The new primitive link-cntl is added to the DE system for modeling the

validity of data stored in communication links. We will discuss the use of

this primitive in Chapter 3 when we present our self-timed circuit modeling

approach.

(defun se-primp-apply (fn ins st)

(case fn

(b-and (list (f-and (car ins) (cadr ins))))

(b-buf (list (f-buf (car ins))))

(b-if (list (f-if (car ins) (cadr ins) (caddr ins))))

(b-not (list (f-not (car ins))))

(b-or (list (f-or (car ins) (cadr ins))))

(b-xor (list (f-xor (car ins) (cadr ins))))

(ff (list (f-buf (car st))

(f-not (car st))))

(latch (list (f-if (car ins)

(cadr ins)

(car st))

(f-if (car ins)

(f-not (cadr ins))

(f-not (car st)))))

(link-cntl (list (f-buf (car st))))

(vdd (list t))

(vss (list nil))

(wire (list (car ins)))

;; [... elided entries ...]

(otherwise nil)))

The primitive evaluation functions used in se-primp-apply are defined in four-

valued logic. For instance, below are the definitions of f -and, f -buf , and

22

f -if . The latter two are defined in terms of function 3v-fix that coerces a

non-Boolean value to an “unknown” value.

(defun f-and (a b)

(if (or (equal a nil) (equal b nil))

nil

(if (and (equal a t) (equal b t))

t

x))) ;; Constant *x* represents an “unknown” value.

(defun 3vp (x)

(or (equal x t)

(equal x nil)

(equal x *x*)))

(defun 3v-fix (x)

(if (3vp x) x *x*))

(defun f-buf (x)

(3v-fix x))

(defun f-if (c a b)

(if (equal c t)

(3v-fix a)

(if (equal c nil)

(3v-fix b)

x)))

2.2.2 State Evaluator

The state evaluator de and its mutually recursive peer function de-occ

are defined in a manner similar to se and se-occ. However, de calls de-occ

with an embedded call to se-occ so that the output values of all occurrences

are first computed; de-occ then goes through each occurrence the second time

and binds the occurrence (state) name to a (possibly empty) next state.

23

(mutual-recursion

(defun de (fn ins st netlist)

(if (primp fn)

(de-primp-apply fn ins st)

(let ((module (assoc-eq fn netlist)))

(if (atom module)

nil

(let* ((md-ins (md-ins module))

(md-st (md-st module))

(md-occs (md-occs module))

(wire-alist (pairlis$ md-ins ins))

(st-alist (pairlis$ md-st st))

(new-netlist (delete-to-eq fn netlist)))

(assoc-eq-values

md-st

(de-occ md-occs

(se-occ md-occs wire-alist st-alist new-netlist)

st-alist

new-netlist)))))))

(defun de-occ (occs wire-alist st-alist netlist)

(if (atom occs)

st-alist

(let* ((occ (car occs))

(occ-name (occ-name occ))

(occ-fn (occ-fn occ))

(occ-ins (occ-ins occ))

(ins (assoc-eq-values occ-ins wire-alist))

(st (assoc-eq-value occ-name st-alist))

(new-st-alist

(update-alist occ-name

(de occ-fn ins st netlist)

st-alist)))

(de-occ (cdr occs) wire-alist new-st-alist netlist)))))

24

Function de-primp-apply returns the next state for each primitive.

(defun de-primp-apply (fn ins st)

(case fn

((ff latch) (list (f-if (car ins) (cadr ins) (car st))))

(link-cntl (list (f-sr (car ins) (cadr ins) (car st))))

(otherwise nil)))

The next state of a link-control primitive is specified by function f -sr that

operates like set-reset latch updates.

(defun f-sr (s r st)

(cond ((and (equal s nil) (equal r nil))

(3v-fix st))

((and (equal s nil) (equal r t)) ;; Reset

nil)

((and (equal s t) (equal r nil)) ;; Set

t)

(t *x*)))

Below is an example of evaluating the outputs and next state for the

flip-flop module using the se and de functions, respectively. The semantics

of latch is given as follows: when the enable signal is on, latch will prop-

agate the input value to the output and update its internal state with the

input value; otherwise it will report the current state to the output and its

state remains unchanged. The single quotation marks require the evaluator

to use the inputs as given, thus the expression ’(nil nil) provides a list of

two Boolean values: false, false. In this example, we instantiate en := nil,

bit-in := nil, L0 := ’(t), and L1 := ’(nil). Note that we use the ACL2

(LISP-prefix) syntax to describe the definitions and formulas in this chapter.

The later chapters may also use the infix syntax when convenient.

25

(se ’flip-flop ’(nil nil) ’((t) (nil)) *netlist*) = ’(t nil)

(de ’flip-flop ’(nil nil) ’((t) (nil)) *netlist*) = ’((t) (t))

To model the effect of inputs changing over time, the DE simulator is

used repeatedly to evaluate a circuit netlist description whenever any primary

input changes. We have defined the de-n function that returns an updated

state after applying de n times. Through the repeated use of the DE simulator,

Mealy machines are modeled advancing forward in time.

(defun de-n (fn inputs-seq st netlist n)

(if (zp n) ;; n is not a positive integer.

st

(de-n fn

(cdr inputs-seq)

(de fn (car inputs-seq) st netlist)

netlist

(- n 1))))

In synchronous circuits, storage elements update their values simultaneously

at every global clock tick, where the clock rate is fixed. Hence the duration

represented by two consecutive de evaluations of a synchronous module is

fixed to model exactly one clock cycle. In self-timed circuits, however, storage

elements update their values whenever their local communication conditions

are met; and hence the duration represented by two consecutive de evaluations

of a self-timed module varies.

26

2.3 Value and State Lemmas

The DE system provides a hierarchical approach to analyze DE circuit

descriptions. In particular, we prove the following two lemmas in a hierarchical

manner for every DE module: a value lemma characterizing a module’s out-

puts and a state lemma characterizing a module’s next state — and for other

than the lowest-level modules, these two lemmas are proved by automatic ap-

plication of the value and state lemmas of submodules, without referencing the

internal details of the submodules. A purely combinational module requires

only a value lemma. For example, here are the value lemmas for combinational

modules half -adder and full-adder,

(defthm half-adder$value

(implies (half-adder& netlist)

(equal (se ’half-adder inputs st netlist)

(half-adder$outputs inputs st))))

(defthm full-adder$value

(implies (full-adder& netlist)

(equal (se ’full-adder inputs st netlist)

(full-adder$outputs inputs st))))

where the outputs functions half -adder$outputs and full-adder$outputs are

defined as symbolic logical expressions characterizing the outputs of half -adder

and full-adder, respectively.

(defun half-adder$outputs (inputs st)

(declare (ignorable st))

(let ((a (car inputs))

(b (cadr inputs)))

(list (f-xor a b) ;; Sum

(f-and a b)))) ;; Carry

27

(defun full-adder$outputs (inputs st)

(declare (ignorable st))

(let ((c (car inputs))

(a (cadr inputs))

(b (caddr inputs)))

(list

;; Sum

(car

(half-adder$outputs

(list (car (half-adder$outputs (list a b) ()))

c)

()))

;; Carry

(f-or

(cadr (half-adder$outputs (list a b) ()))

(cadr

(half-adder$outputs

(list (car (half-adder$outputs (list a b) ()))

c)

()))))))

Note, we avoid exploring the internal structure of half -adder when proving

the value lemma for full-adder; we apply the hierarchical reasoning by using

the half -adder’s value lemma instead.

For each DE module, we introduce a predicate module&(netlist) that

checks if that module and all of its referenced submodule(s) are defined in

netlist. See the definitions of half -adder& and full-adder& below for exam-

ples.

(defun half-adder& (netlist)

(equal (assoc ’half-adder netlist)

(caddr *netlist*)))

28

(defun full-adder& (netlist)

(let ((subnetlist (delete-to-eq ’full-adder netlist)))

(and (equal (assoc ’full-adder netlist)

(cadr *netlist*))

(half-adder& subnetlist))))

For a module that contains state-holding elements, e.g. flip-flop, we

prove both the value and state lemmas for that module.

(defthm flip-flop$value

(implies (flip-flop& netlist)

(equal (se ’flip-flop inputs st netlist)

(flip-flop$outputs inputs st))))

(defthm flip-flop$state

(implies (flip-flop& netlist)

(equal (de ’flip-flop inputs st netlist)

(flip-flop$step inputs st))))

The outputs and step functions flip-flop$outputs and flip-flop$step are de-

fined as symbolic logical expressions characterizing the outputs and next state

of flip-flop, respectively.

(defun flip-flop$outputs (inputs st)

(let ((en (car inputs))

(bit-in (cadr inputs))

(L0.data (caar st))

(L1.data (caadr st)))

(list (f-if (f-not en)

(f-if en bit-in L0.data)

L1.data)

(f-if (f-not en)

(f-not (f-if en bit-in L0.data))

(f-not L1.data)))))

29

(defun flip-flop$step (inputs st)

(let ((en (car inputs))

(bit-in (cadr inputs))

(L0.data (caar st))

(L1.data (caadr st)))

(list ;; L0’s next state

(list (f-if en bit-in L0.data))

;; L1’s next state

(list (f-if (f-not en)

(f-if en bit-in L0.data)

L1.data)))))

From the state lemma, we prove the following multi-step state lemma for

flip-flop by induction,

(defthm flip-flop$de-n

(implies (flip-flop& netlist)

(equal (de-n ’flip-flop inputs-seq st netlist n)

(flip-flop$run inputs-seq st n))))

where flip-flop$run is defined recursively in terms of flip-flop$step.

(defun flip-flop$run (inputs-seq st n)

(if (zp n)

st

(flip-flop$run (cdr inputs-seq)

(flip-flop$step (car inputs-seq) st)

(- n 1))))

Once the state and multi-step state lemmas are proved, we use only

the step and run functions in reasoning about the module behavior. We reuse

much of the DE machinery developed years ago, however avoiding the re-

quirement to update state based on a single clock input. Recent use of this

30

technology in clocked system verification is being made by Centaur Technol-

ogy to verify properties of their contemporary x86-compatible microprocessor

designs [63, 26]. We extend DE with a single link-control primitive that mod-

els the validity of data stored in a link. Thus, instead of advancing the values

held by state-holding primitives with a clock, we allow the design to proceed

at its own rate moderated by oracle values — extra input values modeling

non-determinacy — that can cause any part of the logic to delay an arbitrary

amount. Because circuit propagation speeds are unknown, we are obliged to

consider all possible interleavings of circuit operations.

Of course, the consideration of all possible interleavings places an ad-

ditional substantial burden on the verification methodology. To manage this

complexity, we pursue our proofs in a hierarchical manner. For example, when

we prove the correctness of a sequential circuit, we abstract away all of the

internal delays and interleavings in the specification of sub-circuits; and we

demonstrate that no matter when calculations occur internally, the external

interface obeys its specification. Details of our verification methodology will

be discussed in Chapter 4.

31

Part II

Approach

32

Chapter 3

Modeling

Self-timed circuits can be viewed as networks of communication chan-

nels (links) and handshake components (joints). Various circuit families (such

as Micropipeline [69], GasP [70], Mousetrap [62], and Click [54]) have been pro-

posed for designing self-timed circuits. Previous work on the design of these

circuit families treated the links as merely communication channels of nothing

but wires and put all the logic and storage in the joints. This made these

circuit families much harder to exchange or combine because they provided

various interfaces. Roncken et al. [58] proposed a different point of view that

unified the existing families. In particular, their approach put more emphasis

on links in which data are stored along with a validity signal, while joints are

storage-free circuits that implement flow control and data operations. Under

this point of view, the differences between the existing circuit families are seen

only in the links, while the joints become identical. This allows different types

of links to be interchangeable. Henceforth, we refer this point-of-view approach

as the link-joint model. Because of its universality, we choose to follow this

link-joint paradigm in modeling self-timed circuits with DE 1. It is sufficiently

1This chapter is based on our previous publication [10]. The author of this dissertation
did most of the technical work and wrote the first draft of that paper.

33

general to develop models of conventional and network processors. We show

that this model has a clean formalization in the ACL2 logic and provides a

protocol level that abstracts away timing constraints at the circuit level.

3.1 Link-Joint Model

Here we describe the link-joint model that we use to represent self-

timed circuits with the DE language. Links are communication channels in

which data are stored along with a validity signal. Joints are combinational

circuits performing data operations and implementing flow control. Joints are

the meeting points that coordinate links and share link data. A self-timed

system can be viewed as a directed graph with links as edges and joints as

nodes: the input or output of a link connects to exactly one joint each, so the

link serves as a directed edge between those two joints. Figure 3.1 shows an

example of a simple self-timed circuit using the link-joint model. This circuit

consists of a joint associated with an input link L0 and an output link L1. A

joint can have more than one input and/or output link(s) connected to it [58].

Links receive fill or drain commands from, and report their full/empty

states and data to, their connected joints. A full link carries valid data, while

an empty link holds data that are not yet or no longer valid. When an empty

link receives a fill command at its input end, it changes its state to full. A

full link will change to the empty state only if it receives a drain command at

its output end. We model the full/empty state of a link using the link-cntl

34

D0d0-in

S0. F D /

fullL0 fullin

Combinational
Logic

fireB

fireA
drain

fireC

D1 d1-out

S1. F D /

fullL1

fill

emptyout

JointLink Link

L0 L1

GO

Figure 3.1: A diagram of a link-joint circuit is shown. It has two links, L0 and
L1, and three joints A, B, and C. Only joint B is shown in its entirety. The
upper and lower boxes in each link represent link data and link full/empty
status, respectively.

primitive that is specified in the DE primitive database. This primitive helps

abstract away implementation details of link and joint control circuitry at

the electrical circuit level. We refer the interested reader to Roncken et al.’s

work [58] for examples of link and joint control circuitry.

Joints receive the full/empty states of their links and issue the fill and

drain commands when their communication conditions are satisfied. Primitive

joints are storage-free and they perform data computation and drain and fill

storage links. The control logic of a joint is an AND function of the conditions

necessary for it to act. A joint can have multiple such AND functions to

guard different actions, which are usually mutually exclusive. To enable a

joint action, all input and output links of that action must be full and empty,

respectively, as illustrated by the AND gate in Figure 3.1. Enabled joints (that

35

is, when at least one action is enabled) may fire in any order due to arbitrary

delays in wires and gates. We model this non-deterministic circuit behavior

by associating each joint with a so-called go signal as an extra input to the

AND function in the control logic of that joint. In case a joint has multiple

such AND functions, they may share the same go signal as long as at most one

function can fire at a time. The value of the go signal will indicate whether

the corresponding joint will fire when it is enabled. In our framework, when

applying the de function that computes the next state of a self-timed circuit,

only enabled joints with enabled go signals will fire. When a joint acts, the

following three tasks will execute in parallel: 2

• using data from full input links, compute results to transfer to empty

output links;

• fill (possibly a subset of) the empty output links, leaving them full; and

• drain (possibly a subset of) the full input links, leaving them empty.

Figures 3.2 and 3.3 illustrate how the self-timed module in Figure 3.1

progresses given concrete values of current inputs and state. The Combi-

national Logic oval, which represents the data computation of the joint in

Figure 3.1, is a storage-free amplifier in these illustrations.

2Park et al. [51] used ARCtimer for generating and validating timing constraints in joints
in order to guarantee that when a joint acts, its fire pulse is enabled for long enough for
the three actions to execute properly. Our work assumes that we have a valid circuit that
satisfies necessary circuit-level timing constraints, as might be guaranteed by ARCtimer.

36

5d0-in

1. F D /

fullL0 fullin

fireB

fireA
drain

fireC

d1-out

0. F D /

fullL1

fill

emptyout

JointLink Link

L0 L1

GO

0 0

7

0

Current inputs and state

5d0-in

1. F D /

fullL0 fullin

fireB

fireA
drain

fireC

d1-out

0. F D /

fullL1

fill

emptyout

L0 L1

GO

0 0

7

0

1 0

0

5 5 x

First pass: wire evaluation

5d0-in

1. F D /

fullL0 fullin

fireB

fireA
drain

fireC

d1-out

0. F D /

fullL1

fill

emptyout

L0 L1

GO

0 0

7

0

1 0

0

5 5 x

Second pass: state evaluation. The state remains unchanged.

Figure 3.2: Link-Joint circuit evaluation when GO = 0

37

5d0-in

1. F D /

fullL0 fullin

fireB

fireA
drain

fireC

d1-out

0. F D /

fullL1

fill

emptyout

JointLink Link

L0 L1

GO

0 0

7

1

Current inputs and state

5d0-in

1. F D /

fullL0 fullin

fireB

fireA
drain

fireC

d1-out

0. F D /

fullL1

fill

emptyout

L0 L1

GO

0 0

7

1

1 0

1

5 5 5

First pass: wire evaluation

5d0-in

0. F D /

fullL0 fullin

fireB

fireA
drain

fireC

5 d1-out

1. F D /

fullL1

fill

emptyout

L0 L1

GO

0 0

7

1

1 0

1

5 5 5

Second pass: state evaluation

Figure 3.3: Link-Joint circuit evaluation when GO = 1

38

Before describing our DE description of a link, we first introduce some

functions and macros that are used in our definitions of DE module generators.

Macro list∗ builds a list of objects from given elements and a tail. For example,

(list* ’3 ’5 ’(4 2 3)) = ’(3 5 4 2 3).

Function si returns a symbol that its name is combined with an index. Func-

tion sis(s, i, n) returns a list of n symbols starting from index i. For example,

(si ’sym 5) = ’SYM 5

(sis ’x 2 3) = ’(X 2 X 3 X 4).

The ACL2 macro, module-generator, is used to create DE modules with pa-

rameterized data sizes. The following form defines a circuit generator that can

produce a link of any data size. Notice that there are two state-holding devices

residing in a link: one stores the link’s full/empty status and one stores the

link data.

(module-generator

link* (data-size) ;; Generator’s name and its parameter

(si ’link data-size) ;; Module’s name

(list* ’fill ’drain (sis ’data-in 0 data-size)) ;; Inputs

(list* ’status (sis ’data-out 0 data-size)) ;; Outputs

’(s d) ;; Internal states

;; Occurrences

(list

;; Link status

’(s (status) link-cntl (fill drain))

;; Link data

(list ’d

(sis ’data-out 0 data-size)

(si ’latch-n data-size) ;; Submodule reference

(list* ’fill (sis ’data-in 0 data-size)))))

39

Module latch-n consists of a list of one-bit latches sharing the same enable

signal.

(module-generator

latch-n* (n) ;; Generator’s name and its parameter

(si ’latch-n n) ;; Module’s name

(list* ’EN (sis ’D 0 n)) ;; Inputs

(sis ’Q 0 n) ;; Outputs

(sis ’G 0 n) ;; States

(latch-n-body 0 n)) ;; Occurrences

The occurrences of latch-n are generated by the recursive function latch-n-body.

(defun latch-n-body (m n)

(if (zp n)

nil

(cons

;; Occurrence

(list (si ’G m) ;; Occurrence’s name

(list (si ’Q m) (si ’Q∼ m)) ;; Outputs

’latch ;; Primitive reference

(list ’EN (si ’D m))) ;; Inputs

(latch-n-body (+ m 1) (- n 1)))))

Our DE description of a self-timed module allows links and joints to appear

in any order in the module’s occurrence list, except that each link must be

declared before its input and output joints so that when the module is be-

ing evaluated, the se function called in the first pass will extract the links’

full/empty states and data and provide these values as inputs for the corre-

sponding joints; the de function will make the second pass to update the link’s

full/empty states and data using the joints’ output values calculated from the

40

first pass. Below is the generator for the self-timed module shown in Fig-

ure 3.1, where D0 and D1 are n-bit latches, and the Combinational Logic oval

is an n-bit storage-free amplifier (v-buf below).

(module-generator

link-joint* (n)

(si ’link-joint n)

(list* ’fireA ’fireC

(append (sis ’d0-in 0 n) ’(go)))

(list* ’l0-status ’l1-status (sis ’d1-out 0 n))

’(l0 l1)

;; Occurrences

(list

;; Link L0

(list ’l0

(list* ’l0-status (sis ’d0-out 0 n))

(si ’link n)

(list* ’fireA ’fireB (sis ’d0-in 0 n)))

;; Link L1

(list ’l1

(list* ’l1-status (sis ’d1-out 0 n))

(si ’link n)

(list* ’fireB ’fireC (sis ’d1-in 0 n)))

;; Joint B

’(jb-cntl (fireB) joint-cntl (l0-status l1-status go))

(list ’jb-op

(sis ’d1-in 0 n)

(si ’v-buf n)

(sis ’d0-out 0 n))))

Module joint-cntl implements the control logic, which is an AND function, of

a joint.

41

’(joint-cntl

(full-in full-out go)

(act)

() ;; No internal states

((g0 (empty-out-) b-not (full-out))

(g1 (ready) b-and (full-in empty-out-))

(g2 (b-go) b-bool (go)) ;; b-bool converts a non-Boolean to t.

(joint-act (act) b-and (ready b-go))))

Module v-buf is composed of a list of one-bit buffers generated by function

v-buf -body.

(defun v-buf-body (m n)

(if (zp n)

nil

(cons (list (si ’g m)

(list (si ’y m))

’b-buf

(list (si ’x m)))

(v-buf-body (+ m 1) (- n 1)))))

(module-generator

v-buf* (n)

(si ’v-buf n)

(sis ’x 0 n)

(sis ’y 0 n)

()

(v-buf-body 0 n))

As an example, we use the list ’(((t) ((nil) (nil))) ((nil) ((t) (nil))))

to represent the state of module link-joint 2 where link L0 is full and its data

value is ’(nil nil), and link L1 is empty and its data value is ’(t nil). Note

that when a link is empty, its data are invalid.

42

in

L0 L1 L2

out

(a) Complex joint: a queue of length three, Q3

L0

L1

J0

L2

L3

L4

J1 L5

(b) Complex link

Figure 3.4: Example of a complex joint and a complex link. The figure displays
only the data flow; it omits both the flow control of the joints and the link
states for the sake of simplicity. Circles represent joints, rectangles represent
links. The primitive joints shown in (a) are buffers. Recall that primitive
joints are storage-free.

3.2 Self-Timed Module Modeling

We construct self-timed modules using links and joints as described in

the previous section. In principle, we can place a link or a joint at each mod-

ule’s input/output port, provided that the link-joint topology is preserved:

links are connected via joints, and joints are connected via links. We gener-

ally model self-timed modules as complex joints, as illustrated in Part III. A

module is a complex joint if only joints appear at its input and output ports

(Figure 3.4a). A complex joint can replace any other joint in the system that

has the same configuration of inputs and outputs, without violating the link-

joint topology. We also demonstrate the potential advantage of complex links

43

for significantly improving the verification time of a circuit; see Section 5.3 of

Chapter 5. A module is a complex link if only links appear at its input and

output ports (Figure 3.4b). It is typical that self-timed modules receive and

send data via different links, using separate input and output communication

signals.

3.2.1 Complex Joint

Our generator for the complex joint Q3 in Figure 3.4a, a FIFO queue

of three links, is defined as follows.

(module-generator

queue3* (data-size)

;; Module’s name

(si ’queue3 data-size)

;; Inputs

(list* ’full-in ’empty-out-

(append (sis ’data-in 0 data-size)

(sis ’go 0 4))) ;; Four GO signals

;; Outputs

(list* ’in-act ’out-act

(sis ’data-out 0 data-size))

;; Internal states

’(l0 l1 l2)

;; Occurrences

(list

;; LINKS

;; L0

(list ’l0

(list* ’l0-status (sis ’d0-out 0 data-size))

(si ’link data-size)

(list* ’in-act ’trans1-act (sis ’d0-in 0 data-size)))

44

;; L1

(list ’l1

(list* ’l1-status (sis ’d1-out 0 data-size))

(si ’link data-size)

(list* ’trans1-act ’trans2-act (sis ’d1-in 0 data-size)))

;; L2

(list ’l2

(list* ’l2-status (sis ’d2-out 0 data-size))

(si ’link data-size)

(list* ’trans2-act ’out-act (sis ’d2-in 0 data-size)))

;; JOINTS

;; In

(list ’in-cntl

’(in-act)

’joint-cntl

(list ’full-in ’l0-status (si ’go 0)))

(list ’in-op

(sis ’d0-in 0 data-size)

(si ’v-buf data-size)

(sis ’data-in 0 data-size))

;; Transfer data from L0 to L1

(list ’trans1-cntl

’(trans1-act)

’joint-cntl

(list ’l0-status ’l1-status (si ’go 1)))

(list ’trans1-op

(sis ’d1-in 0 data-size)

(si ’v-buf data-size)

(sis ’d0-out 0 data-size))

;; Transfer data from L1 to L2

(list ’trans2-cntl

’(trans2-act)

’joint-cntl

(list ’l1-status ’l2-status (si ’go 2)))

45

(list ’trans2-op

(sis ’d2-in 0 data-size)

(si ’v-buf data-size)

(sis ’d1-out 0 data-size))

;; Out

(list ’out-cntl

’(out-act)

’joint-cntl

(list ’l2-status ’empty-out- (si ’go 3)))

(list ’out-op

(sis ’data-out 0 data-size)

(si ’v-buf data-size)

(sis ’d2-out 0 data-size))))

The following module-generator form illustrates our modeling of a self-timed

module consisting of self-timed submodules. Specifically, we model a queue of

seven links by connecting two three-link queues via a link (Figure 3.5). Note

that we use a link to connect two three-link queues in order to maintain the

link-joint topology.

Q3-0 L Q3-1

Figure 3.5: Data flow of Q7: a FIFO queue of seven links composed of two
instances of Q3. Dashed circles represent complex joints.

(module-generator

queue7* (data-size)

(si ’queue7 data-size)

(list* ’full-in ’empty-out-

(append (sis ’data-in 0 data-size)

(sis ’go 0 8))) ;; Eight GO signals

46

(list* ’in-act ’out-act

(sis ’data-out 0 data-size))

’(l q3-0 q3-1)

(list

;; Link L

(list ’l

(list* ’l-status (sis ’d-out 0 data-size))

(si ’link data-size)

(list* ’q3-0-out-act ’q3-1-in-act (sis ’d-in 0 data-size)))

;; Complex joint Q3-0

(list ’q3-0

(list* ’in-act ’q3-0-out-act

(sis ’d-in 0 data-size))

(si ’queue3 data-size)

(list* ’full-in ’l-status

(append (sis ’data-in 0 data-size)

(sis ’go 0 4))))

;; Complex joint Q3-1

(list ’q3-1

(list* ’q3-1-in-act ’out-act

(sis ’data-out 0 data-size))

(si ’queue3 data-size)

(list* ’l-status ’empty-out-

(append (sis ’d-out 0 data-size)

(sis ’go 4 4))))))

3.2.2 Complex Link

In contrast to a complex joint, a complex link inputs the act signals

from external joints and outputs the status of the links at its interface. For

47

instance, below is our DE description of the complex link Q4′, a FIFO queue

of length four. The data flow of Q4′ is shown in Figure 3.6.

L0 L1 L2 L3

Figure 3.6: Data flow of Q4′. Note that links L0 and L3 are placed at the
input and output ports, respectively. Thus Q4′ is a complex link.

(module-generator

queue4-l* (data-size)

(si ’queue4-l data-size)

(list* ’in-act ’out-act

(append (sis ’data-in 0 data-size)

(sis ’go 0 3)))

(list* ’ready-in- ’ready-out

(sis ’data-out 0 data-size))

’(l0 l1 l2 l3)

(list

;; LINKS

;; L0

(list ’l0

(list* ’l0-status (sis ’d0-out 0 data-size))

(si ’link data-size)

(list* ’in-act ’trans1-act (sis ’data-in 0 data-size)))

;; L1

(list ’l1

(list* ’l1-status (sis ’d1-out 0 data-size))

(si ’link data-size)

(list* ’trans1-act ’trans2-act (sis ’d1-in 0 data-size)))

;; L2

(list ’l2

(list* ’l2-status (sis ’d2-out 0 data-size))

(si ’link data-size)

(list* ’trans2-act ’trans3-act (sis ’d2-in 0 data-size)))

48

;; L3

(list ’l3

(list* ’l3-status (sis ’data-out 0 data-size))

(si ’link data-size)

(list* ’trans3-act ’out-act (sis ’d3-in 0 data-size)))

;; JOINTS

;; Transfer data from L0 to L1

(list ’trans1-cntl

’(trans1-act)

’joint-cntl

(list ’l0-status ’l1-status (si ’go 0)))

(list ’trans1-op

(sis ’d1-in 0 data-size)

(si ’v-buf data-size)

(sis ’d0-out 0 data-size))

;; Transfer data from L1 to L2

(list ’trans2-cntl

’(trans2-act)

’joint-cntl

(list ’l1-status ’l2-status (si ’go 1)))

(list ’trans2-op

(sis ’d2-in 0 data-size)

(si ’v-buf data-size)

(sis ’d1-out 0 data-size))

;; Transfer data from L2 to L3

(list ’trans3-cntl

’(trans3-act)

’joint-cntl

(list ’l2-status ’l3-status (si ’go 2)))

(list ’trans3-op

(sis ’d3-in 0 data-size)

(si ’v-buf data-size)

(sis ’d2-out 0 data-size))

;; Input port’s status

’(in-status (ready-in-) wire (l0-status))

49

;; Output port’s status

’(out-status (ready-out) wire (l3-status))))

Two complex links can communicate with each other via joints, as

illustrated in the data flow of the complex link Q8′ shown in Figure 3.7. As

we see, two instances of complex link Q4′ are connected via a buffer joint. The

DE description of Q8′ is given below.

Q4’-0 Q4’-1

Figure 3.7: Data flow of Q8′. Dashed rectangles represent complex links.

(module-generator

queue8-l* (data-size)

(si ’queue8-l data-size)

(list* ’in-act ’out-act

(append (sis ’data-in 0 data-size)

(sis ’go 0 7)))

(list* ’ready-in- ’ready-out

(sis ’data-out 0 data-size))

’(q4-l0 q4-l1)

(list

;; LINKS

;; Complex link Q4-L0

(list ’q4-l0

(list* ’ready-in- ’q4-l0-ready-out

(sis ’q4-l0-data-out 0 data-size))

(si ’queue4-l data-size)

(list* ’in-act ’trans-act

(append (sis ’data-in 0 data-size)

(sis ’go 1 3))))

50

;; Complex link Q4-L1

(list ’q4-l1

(list* ’q4-l1-ready-in- ’ready-out

(sis ’data-out 0 data-size))

(si ’queue4-l data-size)

(list* ’trans-act ’out-act

(append (sis ’q4-l1-data-in 0 data-size)

(sis ’go 4 3))))

;; JOINT

;; Transfer data from Q4-L0 to Q4-L1

(list ’trans-cntl

’(trans-act)

’joint-cntl

(list ’q4-l0-ready-out ’q4-l1-ready-in- (si ’go 0)))

(list ’trans-op

(sis ’q4-l1-data-in 0 data-size)

(si ’v-buf data-size)

(sis ’q4-l0-data-out 0 data-size))))

51

Chapter 4

Verification

We develop a methodology for verifying the functional correctness of

self-timed circuits (and systems) in terms of the relationships between their

input and output sequences. We consider self-timed circuits that involve both

data operations and flow control, while most existing work has concerned only

flow control. Those efforts have mainly explored strategies for validating tim-

ing and communication properties, while our approach concerns functional

properties of a self-timed system as a whole. Our approach supports scalabil-

ity via hierarchical reasoning and induction. We would like to emphasize that

although we aim to verify the multi-step input-output relationship for each self-

timed module, our hierarchical reasoning is applied only at one-step updates.

Once the one-step update on the output sequence is established, the multi-step

input-output relationship can then be proved by induction. In order to specify

the input-output relationship at one step, we introduce a set of extraction func-

tions for each sequential module. An extraction function extract(st) returns

a sequence of values computed from valid data residing in state st. We use

such a function to abstract away state transitions internal to its corresponding

module. Applying extract to the step function, i.e. extract(step(inputs, st)),

will compute the one-step update on the abstracted state given the current

52

inputs inputs and current state st. Recall that step symbolically specifies the

module’s next state in one (de) step (see flip-flop$step in Chapter 2 for an ex-

ample). To establish the multi-step input-output relationship by induction, we

prove the following key lemma, which is called the single-step-update property,

extract(step(inputs, st)) = extracted-step(inputs, st) (4.1)

where extracted-step is the specification for the one-step update on the ab-

stracted state. An important property of extracted-step is that its definition

avoids exploring the module’s internal operations and their possible interleav-

ings. To illustrate our definition of extracted-step, let us consider an example

where a module has one input port and one output port, and let in-act and

out-act denote the communication signals at the input and output ports respec-

tively. The value of in-act indicates whether the module is currently accepting

a new input data item; and the value of out-act indicates whether the module

is currently reporting a valid output data item (t indicates yes, and nil indi-

cates no for both signals). Our definition of extracted-step is then defined as

follows,

extracted-step(inputs, st) :=
extract(st), if in-act = nil ∧ out-act = nil

[op(inputs.data)] ++ extract(st), if in-act = t ∧ out-act = nil

remove-last(extract(st)), if in-act = nil ∧ out-act = t

[op(inputs.data)] ++ remove-last(extract(st)), otherwise

(4.2)

where

53

• ++ is the concatenation operator,

• remove-last(l) returns list l except for its last element,

• op performs the module’s functionality on the input data; in other words,

op is the functional specification for the module.

Note that the parameter inputs we mention in the definitions and formulas

presented in this dissertation consists of both input data and input control

signals, including go signals for every joint. We write inputs.data to denote

the data part of the inputs. As we see, extracted-step is defined in terms of

extract; and while it depends on the values of in-act and out-act, it avoids

considering the internal structure of the module. It is critical that step and

extract are defined hierarchically so that the single-step-update property (4.1)

can be proved hierarchically. A naive approach that expands the definitions

of the step and extract functions of submodules when proving (4.1) may lead

to a computational explosion. Our proofs cover all possible interleavings of

circuit operations by considering all combinations of go signals’ values. Much

of our proof process is stylized. We automate the proof process by introducing

proof idioms via macros and by developing lemma libraries.

Figure 4.1 displays our verification flow for a self-timed module. Our

goal is to prove the gate-level netlist representation of a self-timed circuit cor-

rectly implements its functional specification. Our approach introduces two

intermediate levels in connecting the low-level netlist to the high-level func-

tional specification. Thus, we specify a self-timed module at four levels of ab-

54

Gate-level netlist

Value and state lemmas,
Multi-step state lemma

Four-valued level

Single-step-update properties

Extraction level

Multi-step input-output relationship

Functional spec

Figure 4.1: Verification flow

straction: netlist, four-valued, extraction, and functional. Functions outputs,

step, and run, discussed in Section 2.3, serve as the specification at the four-

valued level, while the extracted next-state function extracted-step, described

above, serves as the specification for the extraction level. Figure 4.2 depicts

the verification steps in our process of connecting these four levels together.

The value and state lemmas and multi-step state lemma confirm the equiva-

lence between the gate-level netlist and the four-valued level of a module. The

single-step-update properties connect the four-valued level with the extrac-

tion level, while the multi-step input-output relationship links the four-valued

level with the functional level through the extraction level. Our functional

correctness proof combines the multi-step state lemma with the multi-step

input-output relationship to justify that the netlist level implements the func-

55

Single-step-update
properties

Multi-step
input-output
relationship

Value and
state lemmas

Multi-step
state lemma

Functional
correctness

Induction

Induction

step run

Hierarchical reasoning

Figure 4.2: Verification steps

tional level. The following sections will describe each step in our verification

procedure in further detail.

4.1 Value and State Lemmas

The first verification step in our procedure is to prove the correspon-

dence between the netlist level and the four-valued level for a module. In par-

ticular, we prove a value lemma, a state lemma, and a multi-step state lemma

for each sequential module as described in Chapter 2. A combinational-logic-

only module lacks an internal state and hence requires only a value lemma.

Since reasoning about module behavior through the low-level DE interpreter

is complicated, we use those lemmas to “lift” a link-joint representation to the

realm of pure ACL2 functions that abstract away the DE interpreter and netlist

description. Recall that a value lemma characterizes a module’s outputs, and

a state lemma characterizes a module’s next state. Value and state lemmas

56

are proved in a hierarchical manner as presented in Chapter 2. We currently

specify the outputs and step functions manually for each module. However,

the definitions of these functions can be mechanically produced by the ACL2’s

simplification process. Possible future work might consider applying the ACL2

simplifier to generate these functions automatically.

For parameterized-data-width module synthesizers whose DE descrip-

tions or occurrences are defined recursively, we apply induction in proving

the value and state lemmas for those synthesizers. For instance, synthesizer

latch-n∗ defined in Chapter 3 contains the recursively defined occurrence gen-

erator latch-n-body; we prove, by induction, the following two lemmas for

latch-n-body in support of proving the value and state lemmas for latch-n∗.

These two lemmas characterize the wire and state evaluations for latch-n-body

using the simulation functions se-occ and de-occ, respectively.

(defthm latch-n-body$value

(implies (natp m)

(equal (assoc-eq-values

(sis ’Q m n)

(se-occ (latch-n-body m n)

wire-alist st-alist netlist))

(fv-if (assoc-eq-value ’EN wire-alist)

(assoc-eq-values (sis ’D m n) wire-alist)

(strip-cars

(assoc-eq-values (sis ’G m n) st-alist))))))

(defthm latch-n-body$state

(implies (and (natp m)

(subsetp (sis ’G m n) (strip-cars st-alist)))

(equal (assoc-eq-values

57

(sis ’G m n)

(de-occ (latch-n-body m n)

wire-alist st-alist netlist))

(pairlis$

(fv-if (assoc-eq-value ’EN wire-alist)

(assoc-eq-values (sis ’D m n) wire-alist)

(strip-cars

(assoc-eq-values (sis ’G m n) st-alist)))

nil))))

Function strip-cars(x) collects up all first components of cons pairs in list x.

For example,

(strip-cars ’((1 2 3) (4 5 6) (7 8 9))) = ’(1 4 7)

(strip-cars ’((2) (1) (5))) = ’(2 1 5)

Function fv-if performs if-then-else tests and returns a corresponding bit-

vector. It is defined in terms of function f -if .

(defun fv-if (c a b)

(if (atom a)

nil

(cons (f-if c (car a) (car b))

(fv-if c (cdr a) (cdr b)))))

The value and state lemmas for a sequential self-timed module with a param-

eterized data size have the following form.

(defthm module$value

(implies (and (module& netlist data-size)

(module$input-format inputs data-size)

(module$st-format st data-size))

(equal (se (si ’module data-size)

inputs st netlist)

(module$outputs inputs st data-size))))

58

(defthm module$state

(implies (and (module& netlist data-size)

(module$input-format inputs data-size)

(module$st-format st data-size))

(equal (de (si ’module data-size)

inputs st netlist)

(module$step inputs st data-size))))

Predicatemodule& is the module recognizer (see half -adder& and full-adder&

in Chapter 2 for examples). Predicate module$input-format imposes con-

straints on the inputs. For example, function queue3$input-format described

below checks the following conditions on the argument inputs of Q3 (Fig-

ure 3.4a). Notice that the last condition requires the input data to be a bit

(Boolean) vector when the full-in signal is high.

queue3$input-format(inputs, data-size) :=

booleanp(inputs.full-in) ∧

booleanp(inputs.empty-out-) ∧

len(inputs.data) = data-size ∧

(¬inputs.full-in ∨ bvp(inputs.data))

Predicate module$st-format(st, data-size) requires the data of each link in

state st to be stored as a list of data-size singletons. This link data condi-

tion is checked via the predicate link$st-format(link, data-size). For exam-

ple, if the data of a link L are stored as the list ’((t) (x) (nil)), this link

would satisfy the condition link$st-format(L, 3). Below is the definition of

59

queue3$st-format.

queue3$st-format(st, data-size) :=

link$st-format(st.L0, data-size) ∧

link$st-format(st.L1, data-size) ∧

link$st-format(st.L2, data-size)

4.2 Multi-Step State Lemma

The multi-step state lemma for a module characterizes the state up-

date for that module after a parameterized-multi-step execution. This lemma

is proved by induction after establishing the state lemma. We automate this

verification step by introducing a macro called simulate-lemma. An applica-

tion of this macro in one of the following forms will automatically generate

the proof for the corresponding multi-step state lemma.

(simulate-lemma <name>)

(simulate-lemma <name> :clink t) ;; Applied for complex links

As an example, the following multi-step state lemma for Q3 will be proved

automatically by executing the term (simulate-lemma queue3), given that the

state lemma is already established.

(defthm queue3$de-n

(implies (and (queue3& netlist data-size)

(queue3$input-format-n inputs-seq data-size n)

(queue3$st-format st data-size))

(equal (de-n (si ’queue3 data-size)

inputs-seq st netlist n)

60

(queue3$run inputs-seq st data-size n))))

Functions queue3$input-format-n and queue3$run are recursively defined in

terms of functions queue3$input-format and queue3$step, respectively.

(defun queue3$input-format-n (inputs-seq data-size n)

(if (zp n)

t

(and (queue3$input-format (car inputs-seq) data-size)

(queue3$input-format-n (cdr inputs-seq)

data-size

(- n 1)))))

(defun queue3$run (inputs-seq st data-size n)

(if (zp n)

st

(queue3$run (cdr inputs-seq)

(queue3$step (car inputs-seq) st data-size)

data-size

(- n 1))))

4.3 Single-Step-Update Properties

The key step in our verification effort is to map the four-valued level

to the extraction level. The purpose of introducing the extraction level is to

abstract away the internal structure of a module as well as its operational in-

terleavings when reasoning about the module behavior. Our trick introduces

a set of extraction functions for each sequential module as described earlier.

Precisely, we define one extraction function for each sequential module with

deterministic outputs; for circuits with non-deterministic outputs presented

61

later in Chapter 7, we define multiple extraction functions for each of those

systems. We currently define these functions manually, depending on module

design. The key property of these functions is to abstract away state transi-

tions internal to their corresponding modules; such a function will return the

same sequence for any two input states of the corresponding module if one of

those states can reach the other through merely internal transitions. We for-

malize this property through single-step-update properties of the form (4.1).

After this step, we expand only the definition of the specification function at

the extraction level, i.e. function extracted-step, when reasoning about the

module behavior. Recall that extracted-step performs case analysis only on

the communication signals at the module’s interface, while the internal transi-

tions do not affect its calculation (see definition (4.2) for an example). Thus,

extracted-step is a clean specification function that allows us to avoid rea-

soning about the complex step function. Induction may be involved in this

verification step when circuits contain feedback loops in their data flows (see

Chapter 6). For example, this appears in the context of reasoning about the

recursively defined algorithmic specification functions for those circuits. Our

proof of (4.1) imposes certain conditions on the inputs and internal state. We

specify those conditions manually for each module. For example, the following

single-step-update property for Q3 requires the inputs and state to satisfy the

62

predicates queue3$input-format and queue3$valid-st, respectively.

queue3$input-format(inputs, data-size) ∧ queue3$valid-st(st, data-size)

⇒ queue3$extract(queue3$step(inputs, st, data-size)) =

queue3$extracted-step(inputs, st, data-size) (4.3)

Predicate queue3$valid-st is defined as follows,

queue3$valid-st(st, data-size) :=

link$valid-st(st.L0, data-size) ∧

link$valid-st(st.L1, data-size) ∧

link$valid-st(st.L2, data-size)

where the predicate link$valid-st(L, data-size) checks the following conditions

for link L.

• the link data satisfies the predicate link$st-format(L, data-size);

• the link status is either full or empty; and

• when the link is full, its data value must be a bit vector of length

data-size.

The next three chapters will describe the definitions of functions extract

and extracted-step through specific circuit models. Here we present the ex-

traction function for module Q3 that extracts data from links that are full at

63

state st, while preserving the queue order,

queue3$extract(st) := extract-valid-data([st.L0, st.L1, st.L2]) (4.4)

where the projection function extract-valid-data(l) returns the list generated

by mapping over the links in l, collecting the data item of each full link and

ignoring each empty link. For example, suppose links L0 and L2 are full, and

link L1 is empty in state st; then extract-valid-data([st.L0, st.L1, st.L2]) will

return [d0, d2], where di is the data item of link Li.

4.4 Multi-Step Input-Output Relationship

This step connects the four-valued level with the functional level via the

extraction level. Our approach validates functional correctness of self-timed

circuit models in terms of the functional relationships between their input

and output sequences. More specifically, we verify the following multi-step

input-output relationship for each sequential module,

extract(run(inputs-seq, st, n)) ++ out-seq =

op-map(in-seq) ++ extract(st) (4.5)

where

• inputs-seq consists of both input data and input control signals, includ-

ing go signals for every joint in the module;

• in-seq is the sequence of input data extracted from inputs-seq that are

accepted by the module;

64

• out-seq is the sequence of data items that are reported to the output;

and

• op-map performs the module’s functionality over a data sequence.

The above property considers a general case where the initial and final states

may contain valid data. When there are no valid data residing in these two

states, we obtain the following corollary.

out-seq = op-map(in-seq)

We prove property (4.5) by induction, using single-step-update prop-

erties as supporting lemmas. Since these supporting lemmas impose some

constraints on the module’s state as discussed in the previous section, our

induction proof for (4.5) requires that those constraints are invariant. For in-

stance, the following property indicates that queue3$valid-st is an invariant.

queue3$input-format(inputs, data-size) ∧ queue3$valid-st(st, data-size)

⇒ queue3$valid-st(queue3$step(inputs, st, data-size), data-size)

We automate this verification step through the following macro appli-

cation, given the state invariants for the corresponding module are already

certified.

(in-out-stream-lemma <module-name>)

65

4.5 Functional Correctness

The last step in our verification procedure combines the multi-step state

lemma and multi-step input-output relationship to certify that the netlist level

implements the functional level. Our main theorem, stated below, is generated

automatically from an application of macro in-out-stream-lemma mentioned

in the previous verification step. This theorem is a direct corollary of the multi-

step input-output relationship that is stated in terms of the de-n function,

while that relationship is formalized in terms of the run function as presented

in equation (4.5),

extract(de-n(module-name, inputs-seq, st, netlist, n)) ++ out-seq-netlist =

op-map(in-seq-netlist) ++ extract(st)

where in-seq-netlist and out-seq-netlist are specified at the netlist level, while

in-seq and out-seq in property (4.5) are specified at the four-valued level. To be

more specific, the former two are defined in terms of the se and de functions,

while the latter two are defined in terms of the outputs and step functions. We

are of course obliged to prove the equivalence between in-seq-netlist and in-seq,

and between out-seq-netlist and out-seq. Our framework introduces the macro

seq-gen that automatically generates the definitions of those sequences as well

as their equivalence proofs. For example, consider the following application of

seq-gen,

66

(seq-gen queue3 in in-act

0 ;; 0 is the index of the in-act signal from the output list.

(queue3$data-in inputs data-size))

where function queue3$data-in returns the data part of the inputs. Execut-

ing the term above will generate the following events in which the theorem

queue3$in-seq-lemma confirms the equivalence between queue3$in-seq-netlist

and queue3$in-seq.

(progn

(defun queue3$in-seq (inputs-seq st data-size n)

(if (zp n)

nil

(let* ((inputs (car inputs-seq))

(in-act (queue3$in-act inputs st data-size))

(data (queue3$data-in inputs data-size))

(seq (queue3$in-seq (cdr inputs-seq)

(queue3$step inputs st data-size)

data-size

(- n 1))))

(if (equal in-act t)

(append seq (list data))

seq))))

(defun queue3$in-seq-netlist (inputs-seq st netlist data-size n)

(if (zp n)

nil

(let* ((inputs (car inputs-seq))

(outputs (se (si ’queue3 data-size)

inputs st netlist))

;; Extract in-act at index 0 of outputs

(in-act (nth 0 outputs))

(data (queue3$data-in inputs data-size))

(seq (queue3$in-seq-netlist (cdr inputs-seq)

67

(de (si ’queue3 data-size)

inputs st netlist)

netlist
data-size

(- n 1))))

(if (equal in-act t)

(append seq (list data))

seq))))

(defthm queue3$in-seq-lemma

(implies

(and (queue3& netlist data-size)

(queue3$input-format-n inputs-seq data-size n)

(queue3$st-format st data-size))

(equal (queue3$in-seq-netlist inputs-seq st netlist data-size n)

(queue3$in-seq inputs-seq st data-size n)))))

Similarly, the following application of seq-gen produces the corresponding

events for Q3’s output sequence,

(seq-gen queue3 out out-act

1 ;; 1 is the index of the out-act signal from the output list.

(queue3$data-out st)

:netlist-data (nthcdr 2 outputs))

where queue3$data-out(st) and nthcdr(2, outputs) return the output data

computed at the four-valued and netlist levels, respectively. Here are the

events generated by executing the term above.

(progn

(defun queue3$out-seq (inputs-seq st data-size n)

(if (zp n)

nil

(let* ((inputs (car inputs-seq))

(out-act (queue3$out-act inputs st data-size))

68

(data (queue3$data-out st))

(seq (queue3$out-seq (cdr inputs-seq)

(queue3$step inputs st data-size)

data-size

(- n 1))))

(if (equal out-act t)

(append seq (list data))

seq))))

(defun queue3$out-seq-netlist (inputs-seq st netlist data-size n)

(if (zp n)

nil

(let* ((inputs (car inputs-seq))

(outputs (se (si ’queue3 data-size)

inputs st netlist))

;; Extract out-act at index 1 of outputs

(out-act (nth 1 outputs))

(data (nthcdr 2 outputs))

(seq (queue3$out-seq-netlist (cdr inputs-seq)

(de (si ’queue3 data-size)

inputs st netlist)

netlist
data-size

(- n 1))))

(if (equal out-act t)

(append seq (list data))

seq))))

(defthm queue3$out-seq-lemma

(implies

(and (queue3& netlist data-size)

(queue3$input-format-n inputs-seq data-size n)

(queue3$st-format st data-size))

(equal (queue3$out-seq-netlist inputs-seq st netlist data-size n)

(queue3$out-seq inputs-seq st data-size n)))))

69

The next three chapters will demonstrate the applicability of our ver-

ification framework through a sequence of increasingly complex self-timed

circuit models, including data-loop-free circuits (Chapter 5), iterative cir-

cuits (Chapter 6), and circuits performing non-deterministically arbitrated

merges (Chapter 7). The source code for these case studies is available at

https://github.com/acl2/acl2/tree/master/books/projects/async. We will

discuss only the single-step-update properties and multi-step input-output re-

lationship in our case studies. The other verification steps are totally routine,

so we will skip them to keep our presentation concise.

70

https://github.com/acl2/acl2/tree/master/books/projects/async

Part III

Case Studies

71

Chapter 5

Data-Loop-Free Circuits

This chapter demonstrates our verification framework through case

studies of several data-loop-free self-timed circuits 1. We handle parameter-

ized families of implementations: we mechanically generate circuit descrip-

tions with data buses of arbitrary width, and we verify such parameterized

HDL circuit generators. We describe our hierarchical verification process over

data-loop-free circuits. These circuits are simple, yet illustrate our verifica-

tion process entirely. We also show the advantage of using complex links in

substantially reducing the verification time of a self-timed module. In the

next chapter, we will show that our framework is also applicable to iterative

circuits, i.e., circuits with feedback loops in their data flows.

5.1 Example 1: A FIFO Circuit Model

Our first example is the FIFO queue model of length three, Q3, as

mentioned in Chapters 3 and 4. This circuit model contains three links and

four joints that pass data items from its input to its output (Figure 3.4a). Let

1This chapter is based on our previous publication [10]. The author of this dissertation
did most of the technical work and wrote the first draft of that paper.

72

in-act denote the fire signal from the AND gate (not illustrated) in the control

logic of joint in. Module Q3 accepts a new data item each time the in-act

signal fires. We define in-seq, the accepted input sequence, as the sequence

of data items that have passed joint in. Similarly, let out-act denote the fire

signal from the AND gate (not illustrated) in the control logic of joint out.

We define out-seq, the valid output sequence, as the sequence of data items

that have passed through joint out when out-act fires. Note, in-act cannot

fire when L0 is full, and out-act cannot fire when L2 is empty.

The extraction function queue3$extract simply extracts valid data from

Q3 as defined in (4.4). We introduce the extracted next-state function

queue3$extracted-step, an instance of function extracted-step defined in (4.2),

to extract valid data at the next state of Q3. This function is defined in terms

of queue3$extract as shown below,

queue3$extracted-step(inputs, st, data-size) :=
queue3$extract(st), if in-act = nil ∧ out-act = nil

[inputs.data] ++ queue3$extract(st), if in-act = t ∧ out-act = nil

remove-last(queue3$extract(st)), if in-act = nil ∧ out-act = t

[inputs.data] ++ remove-last(queue3$extract(st)), otherwise

where signals inputs.data, in-act, and out-act are produced by functions that

are defined in terms of parameter data-size. Note that function

queue3$extracted-step avoids considering internal operations of Q3; it con-

siders only the values of queue3$extract and the in-act and out-act signals

at Q3’s input and output ports respectively, thus reducing the complexity of

extracting valid data from Q3’s next state to four cases.

73

in

[1, 4, 3]
8 5

out

[1, 4, 3] ++ [8, 5]

(a)

in

1

out

[4, 3, 8, 5]

[1] ++ [4, 3, 8, 5]

(b)

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]

Figure 5.1: An example illustrating the multi-step input-output relationship
for Q3

We verify the functional correctness of Q3 by proving that after an

n-step execution from its initial state, the concatenation of the valid data in

the final state and the output sequence is identical to the concatenation of the

input sequence and the valid data in the initial state. Let us represent in-

valid data as . Given that the input sequence consumed by Q3 is [1, 4, 3],

and the initial content of Q3 was [8, , 5] (Figure 5.1a), Q3 will deliver the

valid data from its initial state first then followed by the input sequence. If

Q3 delivers all data from the initial state and the input sequence, the output

sequence must be [1, 4, 3, 8, 5]. Specifically, the output sequence is the concate-

nation of the input sequence and the valid data of the initial state. However,

suppose at some time the content of Q3’s state is [1, ,], then the output

74

in

A0 Q2 A1

B0 Q3 B1

∨
out

Bitwise OR

Figure 5.2: Data flow of module C: a circuit that performs bitwise OR in joint
out. Dashed circles represent complex joints, Q2 and Q3.

sequence must be [4, 3, 8, 5] (Figure 5.1b). In this case, the following equa-

tion states the relationship between the input and output sequences of Q3:

[1] ++ [4, 3, 8, 5] = [1, 4, 3] ++ [8, 5]. This relation is formalized as follows.

queue3$extract(queue3$run(inputs-seq, st, data-size, n)) ++ out-seq =

in-seq ++ queue3$extract(st) (5.1)

It trivially follows that out-seq = in-seq when the initial and final states

contain no valid data. Recall that in-seq and out-seq contain only data and

are devoid of control information. Moreover, in-seq is extracted from the inputs

in inputs-seq that are accepted by Q3, specifically when: L0 is empty, the link

providing the input data is full, and the corresponding go signal is active. Our

ACL2 proof of (5.1) uses induction and the single-step-update property (4.3)

as a key supporting lemma.

5.2 Example 2: Hierarchical Reasoning

The next example illustrates how we apply hierarchical reasoning to

verify a circuit C that contains Q2 and Q3 as submodules (Figure 5.2), where

Q2 is a FIFO queue of two links. In terms of input-output relationship, C

75

simply performs the bitwise OR operation on paired input data. Joint in

splits the input data items into two, equal-sized fields, a and b. The operation

of C over a data sequence is specified as follows,

c$op-map(seq) :=

if (seq = NULL)

then [] // an empty list

else

let in := first(seq)

return [v-or(in.a, in.b)] ++ c$op-map(rest(seq))

where v-or(a, b) performs the bitwise OR operation over fields a and b. We

then define an extraction function that computes the future output sequence

from the current state, st, as described below,

c$extract(st)

:=

let data-seq0 := extract-valid-data([st.A0]) ++ queue2$extract(st.Q2) ++

extract-valid-data([st.A1]),

data-seq1 := extract-valid-data([st.B0]) ++ queue3$extract(st.Q3) ++

extract-valid-data([st.B1])

return c$op-map(data-seq0 ⊗ data-seq1)

where ⊗ is the pairlis$ operation that zips together two lists, e.g.,

[1, 3, 5] ⊗ [2, 4, 6] = [[1, 2], [3, 4], [5, 6]]. A key invariant for the state of C is

76

that the number of valid data of queue (A0 → Q2 → A1) equals the number

of valid data of queue (B0 → Q3 → B1). We formalize this invariant as

follows.

c$inv(st)

:=(
len
(
extract-valid-data([st.A0, st.A1]) ++ queue2$extract(st.Q2)

)
=

len
(
extract-valid-data([st.B0, st.B1]) ++ queue3$extract(st.Q3)

))
Then the following property of C holds, assuming c$inv(st).

c$extract(c$run(inputs-seq, st, data-size, n)) ++ out-seq =

c$op-map(in-seq) ++ c$extract(st) (5.2)

This functional property states that the output sequence is computed by per-

forming the bitwise OR on the members of the input sequence. Our ACL2

proof of (5.2) follows the same proof strategy as we used previously in (5.1);

we use induction with the single-step-update property (described below) as a

supporting lemma,

c$extract(c$step(inputs, st, data-size)) =

c$extracted-step(inputs, st, data-size) (5.3)

77

where the definition of c$extracted-step is given as follows.

c$extracted-step(inputs, st, data-size) :=
c$extract(st), if in-act = nil ∧ out-act = nil

[v-or(inputs.a, inputs.b)] ++ c$extract(st), if in-act = t ∧ out-act = nil

remove-last(c$extract(st)), if in-act = nil ∧ out-act = t

[v-or(inputs.a, inputs.b)] ++ remove-last(c$extract(st)), otherwise

Property (5.3) holds when c$inv(st) holds. In this case, in order to

prove (5.2) by using induction and (5.3), we need to prove that c$inv(st′)

holds for any possible next state st′ that can be reached from the current state

st, given that c$inv(st) holds. In other words, we must prove that c$inv is

indeed an invariant.

Let us emphasize an important fact: our proof of the invariant c$inv

and (5.3) avoids considering the internal details of Q2 and Q3. Instead, we use

their single-step-update properties to prove c$inv and (5.3). In other words,

we employ a hierarchical strategy to prove single-step-update properties for a

self-timed module.

5.3 Example 3: Complex Links

In this example, we demonstrate the benefit of specifying a module as

a complex link. This approach aids our proof of both a self-timed system’s

invariant as well as its single-step-update property. First let us introduce a

“wig-wag” circuit WW , illustrated in Figure 5.3. The branch joint in WW

accepts input data and places them alternately into links L0 and L1. The

78

−<

branch

I0I1
L0

L1

>−
merge

O0 O1

Figure 5.3: Data flow of a wig-wag circuit, WW

merge joint takes data alternately from links L0 and L1 and delivers them

as outputs. Links I0 and O0 hold binary values that retain the alternation

state. Joints branch and merge have two mutually exclusive actions each.

When the branch joint fires, it fills either link L0 or link L1 according to the

input alternation state (0 or 1, respectively). Likewise, the merge joint will

drain either L0 or L1 when it fires, according to the output alternation state.

In addition, joint branch delivers the negated value of I0 to I1. This new

alternation value returns to joint branch via I0. The same mechanism applies

in the merge joint. An interesting property of WW is that its functionality is

equivalent to Q2, but potentially has higher performance because of its lower

latency:

• WW can input data into either L0 or L1, while Q2 can input data only

into L0;

• WW can output data from either L0 or L1, while Q2 can output data

only from L1.

79

Given that the full/empty states of I0 and I1 must differ, we define the

select signal of the branch joint as follows.

branch-select(st) :=

if full(st.I0.s)

then st.I0.d

else st.I1.d

Similarly, the definition of the select signal of the merge joint is given

below.

merge-select(st) :=

if full(st.O0.s)

then st.O0.d

else st.O1.d

We verify the correctness of WW by proving the same property we used

to specify Q2: the concatenation of valid internal data in the final state with

the output sequence is identical to the concatenation of the input sequence

with the initial valid data.

ww$extract(ww$run(inputs-seq, st, data-size, n)) ++ out-seq =

in-seq ++ ww$extract(st) (5.4)

80

The extraction function for WW is defined as follows.

ww$extract(st) :=

if (merge-select(st) = 0)

then data([st.L1, st.L0])

else data([st.L0, st.L1])

Our proof of (5.4) requires the initial state st to satisfy the following

condition.

ww$inv(st) :=

st.I0.s 6= st.I1.s ∧

st.O0.s 6= st.O1.s ∧((
st.L0.s = st.L1.s ∧

branch-select(st) = merge-select(st)
)
∨(

full(st.L0.s) ∧ empty(st.L1.s) ∧

branch-select(st) = 1 ∧merge-select(st) = 0
)
∨(

empty(st.L0.s) ∧ full(st.L1.s) ∧

branch-select(st) = 0 ∧merge-select(st) = 1
))

Assuming the current state st satisfies the ww$inv condition, we prove

the single-step-update property of WW as an auxiliary lemma for proving

(5.4). In addition, in order to prove (5.4) by induction, we also prove that

ww$inv is an invariant.

81

−<

branch

I0I1
A0 Q2 A1

B0 Q3 B1

>−
merge

O0 O1

Figure 5.4: Data flow of a round-robin circuit, RR1

Now let us consider an extended version of WW in which links L0 and

L1 are replaced by the queues (A0 → Q2 → A1) and (B0 → Q3 → B1), as

shown in (Figure 5.4). We call this circuit round-robin RR1. Recall that Q2

and Q3 are complex joints. The verification time of RR1 is about 32.5 minutes,

while verifying WW takes only 9 seconds on a contemporary laptop. Why?

There are many case splits required to prove the invariant as well as the single-

step-update property for RR1. It takes 6.3 minutes to prove the invariant and

nearly 25.6 minutes to prove the single-step-update property. Most case splits

arise from considering the full/empty states of four links A0, A1, B0, and B1

along with the case splits in the correlation between the numbers of valid data

items in Q2 and Q3.

L0 L1 L2 L3 L4

Figure 5.5: Data flow of Q5′

To reduce the number of case splits in this problem, we abstract two

queues (A0 → Q2 → A1) and (B0 → Q3 → B1) as two complex links.

We call these two links Q4′ (Figure 3.6) and Q5′ (Figure 5.5) respectively. We

82

−<

branch

I0I1
Q4’

Q5’

>−
merge

O0 O1

Figure 5.6: Data flow of a round-robin circuit, RR2. Dashed rectangles rep-
resent complex links.

follow the same procedure of formalizing the relationship between input and

output sequences for Q4′ and Q5′, as described in previous examples. The

verification times of Q4′ and Q5′ are 4 and 8 seconds respectively. By using

Q4′ and Q5′ as submodules we construct an alternative round-robin circuit,

which we call RR2, as depicted in Figure 5.6. The verification time of RR2 is

a mere 22 seconds, which shows the benefit of using a hierarchical verification

approach with complex links.

Q5’-0 Q5’-1

Figure 5.7: Data flow of Q10′

To demonstrate the scalability of our approach, we specify and verify

a larger round-robin circuit model, which we call RR3. RR3 replaces Q4′ and

Q5′ with longer queues Q8′ (Figure 3.7) and Q10′ (Figure 5.7), respectively.

Q8′ is a complex link representing a queue of eight links and is constructed

by concatenating two instances of Q4′ via a buffer joint. Similarly, Q10′ is

constructed by concatenating two instances ofQ5′. Our proof ofRR3 is exactly

83

the same as that of RR2 and its verification time is also 22 seconds. The

verification times for Q8′ and Q10′ are 3 seconds each. We claim that our

compositional proof for a round-robin circuit is independent of the queue size.

To further support this claim, we apply our framework to the round-robin

circuit model RR4 that substitutes Q8′ and Q10′ in RR3 with two 40-link

queues Q40′s. The complex link Q40′ is modeled from two instances of Q20′,

which in turn is a complex link constructed from two instances of Q10′. Our

proof for RR4 just takes 25 seconds, which is about the same as RR2 and RR3.

Table 5.1 reports the verification times of the self-timed circuits discussed in

this chapter, along with the number of go signals in these circuits and the

number of go signals actually affecting our hierarchical reasoning method.

84

Table 5.1: Proof times for the self-timed circuits discussed in this chapter.
All experiments used an Apple laptop with a 2.9 GHz Intel Core i7 processor,
4MB L3 cache, and 8GB memory. The proof time for a module excludes proof
times for its submodules.

Circuit Proof time # go signals
go signals

affecting reasoning

Q2 2s 3 3
Q3 3s 4 4
Q4′ 4s 3 3
Q5′ 8s 4 4
Q8′ 3s 7 1
Q10′ 3s 9 1
Q20′ 3s 19 1
Q40′ 3s 39 1
C 11s 9 6

WW 9s 4 4
RR1 32.5m 11 8
RR2 22s 11 4
RR3 22s 20 4
RR4 25s 82 4

85

Chapter 6

Iterative Circuits

In the previous chapter we described our verification process over data-

loop-free circuits. We now further demonstrate the robustness and scalability

of our method by showing that it can be applied to iterative circuits as well.

The difference between verifying data-loop-free and iterative circuits using our

approach falls into proving their single-step-update properties, which involves

reasoning about their functional specifications: the specification for a data-

loop-free circuit is given by a function without recursion, while we define a

recursive function for an iterative circuit. To exhibit our approach to iterative

circuits, we use it to specify and verify three types of iterative circuits: shift

registers, serial adders, and circuits computing the greatest-common-divisor

(GCD) of two natural numbers. These relatively simple examples are suffi-

ciently complex to demonstrate the generality of our approach.

6.1 Example 1: Shift Register

We formalize two shift register models: serial-in, parallel-out (SIPO);

and parallel-in, serial-out (PISO). These two models include counters that keep

track of the number of shift operations performed. The value of a counter is

86

initially set to the size of the corresponding shift register’s internal data. This

value will be decremented by one every time a shift operation occurs. Our

SIPO shift register will shift in an input bit to the most-significant-bit (MSB)

position of its internal data when the counter value is non-zero. It will report

its internal data (a bit-vector) to the output when the counter value is zero;

at this point the counter value will be reset back to the size of the internal

data. Similarly, our PISO shift register will input a bit-vector when its counter

value is zero and reset the counter value back to the size of the internal data;

it will shift out the least significant bit (LSB) from its internal data only if the

counter value is non-zero.

We construct shift registers from links and joints. Here we discuss

our link-joint model of the SIPO shift register. The PISO shift register is

constructed in a similar manner. The data flow of our SIPO shift register

model forms a feedback loop as shown in Figure 6.1a. Links Rd and Wd store

internal data, while links Rc and Wc hold counter values. Joint sh performs

two mutually exclusive actions, depending on the value of Rc. Both actions

require that Rd and Rc are full, and that Wd and Wc are empty. If the value of

Rc is non-zero, sh will shift in bit-in to the MSB position of the data reported

from Rd and store the result in Wd. In the meantime, sh will also subtract

Rc’s value by one and store the result in Wc. When Rc’s value is zero, sh will

output Rd’s data and reset the value in Wc back to the size of Rd’s data.

Figure 6.1b displays the data flow of a complex joint PISO2 that con-

sists of two PISO shift registers sharing the same communication signal at

87

shbit-in d

Rc

Rd

Wc

Wd

1
�

n
�

m
�

m
�

n
�

n
�

n
�

n
�

m
�

m
�

(a) SIPO

shd0, d1
bit0-out

R0c

R0d

W0c

W0d

bit1-out

R1c

R1d

W1c

W1d

2n
�

1
�

m
�

m
�

n
�

n
�

n
�

n
�

m
�

m
�

1
�

m
�

m
�

n
�

n
�

n
�

n
�

m
�

m
�

(b) PISO2

Figure 6.1: Data flows of (a) a SIPO shift register and (b) a double PISO2
shift register. m and n denote the counter and data sizes, respectively.

their input ports. This means that they must accept their corresponding in-

puts at the same time but can report their outputs at different times. We use

PISO2 in our design of the serial adder described in the next section. Joint

sh in PISO2 has three actions: one accepts two input operands d0 and d1, the

other two report outputs from d0 and d1 accordingly.

We now present the single-step-update property and multi-step input-

output relationship for SIPO. Those properties for PISO2 are formalized in a

88

similar manner. Below is the single-step-update property for SIPO.

sipo-sreg$extract(sipo-sreg$step(inputs, st, data-size)) =

sipo-sreg$extracted-step(inputs, st) (6.1)

The extraction function sipo-sreg$extract returns the valid data stored in

SIPO, given that Rd and Rc are either both full or both empty, Wd and Wc

are either both full or both empty, and Rd’s status is different from Wd’s status.

sipo-sreg$extract(st) :=

if full(st.Rd.s)

then nthcdr(v-to-nat(strip-cars(st.Rc.d)), strip-cars(st.Rd.d))

else nthcdr(v-to-nat(strip-cars(st.Wc.d)), strip-cars(st.Wd.d))

Function nthcdr(n, l) removes the first n elements from the list l, and function

v-to-nat(v) converts the bit-vector v into its natural number representation.

For example, v-to-nat([1, 0, 1, 1]) = 13. Note that in our bit-vector representa-

tion, lower-order bits are stored at lower indices. Therefore, the four-bit vector

[1, 0, 1, 1] represents the binary number 11012, which is 13 in decimal.

The extracted next-state function sipo-sreg$extracted-step is given as

follows. Note, signals in-act and out-act cannot be both active at the same

89

time since they are associated with two mutually exclusive actions of joint sh.

sipo-sreg$extracted-step(inputs, st) :=
[], if out-act = t

sipo-sreg$extract(st) ++ [inputs.bit-in], if in-act = t

sipo-sreg$extract(st), otherwise

Property (6.1) holds when the following predicate is satisfied.

sipo-sreg$inv(st) :=

st.Rd.s = st.Rc.s ∧

st.Wd.s = st.Wc.s ∧

st.Rd.s 6= st.Wd.s ∧

(empty(st.Rc.s) ∨ v-to-nat(strip-cars(st.Rc.d)) ≤ len(st.Rd.d)) ∧

(empty(st.Wc.s) ∨ v-to-nat(strip-cars(st.Wc.d)) ≤ len(st.Wd.d))

Once property (6.1) is established and sipo-sreg$inv is proved to be

invariant, the following multi-step input-output relationship can be certified

by induction.

[sipo-sreg$extract(sipo-sreg$run(inputs-seq, st, data-size, n))] ++ out-seq =

pack-rev(data-size, sipo-sreg$extract(st) ++ rev(in-seq))

90

Function rev reverses a list. Function pack-rev is defined as follows,

pack-rev(n, l) :=

if n ≤ 0 ∨ l = []

then []

else if len(l) ≤ n

then [l]

else pack-rev(n, nthcdr(n, l)) ++ [take(n, l)]

where take(n, l) collects the first n elements of the list l. Below is an example

of applying pack-rev to concrete arguments.

pack-rev(3, [1, 2, 3, 4, 5, 6, 7]) = [[7], [4, 5, 6], [1, 2, 3]]

6.2 Example 2: Serial Adder

A serial adder is a digital circuit that performs binary addition via bit

additions, from LSB to MSB, one at a time. Bit addition is performed using a

1-bit full-adder. Unlike our previous design [12], the new serial adder model,

s-add (Figure 6.2), is not associated with any external counter; the counters are

entirely internal to the shift registers. This eases the compositional reasoning

task for the serial adder. In our new design, two input operands are stored in

the double PISO2 shift register piso2 and the accumulated sum is stored in

the SIPO shift register sipo. Link Ci stores a carry-in bit for bit addition and

is initially set to 0. The carry-out result from a bit addition will be used as

91

piso2a, b
A

B

Ci

+

S

Co

c Done

sipo sum
2n
�

n
�

Figure 6.2: Data flow of a serial adder s-add. Unless specified, every arrow
carries one-bit data.

the carry-in for the next bit addition, except for the final bit addition on two

current operands. In our serial adder model, joint c will copy the carry-out

bit in link Co to link Ci when the binary value reported from link Done is 0;

otherwise joint c will reset the value in link Ci back to 0. The value stored

in link Done indicates whether the serial adder has finished its computation

on the current operands. When joint sipo receives a sum bit from link S, it

detects, by consulting its counter value, if this bit is the result from the bit

addition on the MSBs of two current operands. If yes, it will issue a high

signal to link Done; otherwise link Done will get a low signal.

92

Consider the following binary addition function.

add(ci, a, b) :=

if (a = NULL)

then [ci]

else

let ai := first(a),

bi := first(b),

co := or3(and(ai, bi), and(ai, ci), and(bi, ci))

return [xor3(ci, ai, bi)] ++ add(co, rest(a), rest(b))

We prove that s-add implements the above addition algorithm, except

that it excludes the last carry-out bit from the final result and the initial

carry-in bit is set to 0. Thus, it computes an n-bit sum from two n-bit input

operands a and b, as specified in the following function.

sum(a, b) := remove-last(add(0, a, b))

Below is the multi-step input-output relationship for s-add,

let stf := s-add$run(inputs-seq, st, data-size, n)

return s-add$extract(stf , data-size) ++ out-seq =

s-add$op-map(in-seq) ++ s-add$extract(st, data-size) (6.2)

where function s-add$op-map performs the functionality of s-add over a data

93

sequence.

s-add$op-map(seq) :=

if (seq = NULL)

then [] // an empty list

else

let in := first(seq)

return [sum(in.a, in.b)] ++ s-add$op-map(rest(seq))

From (6.2), it trivially follows that out-seq = s-add$op-map(in-seq)

when the initial and final states of s-add contain no valid data. Theorem (6.2)

involves the extraction function s-add$extract(x, data-size) that computes the

future output sequence from state x; notice that at most two pairs of operands

can reside in the internal state of s-add.

s-add$extract(st, data-size) :=

let A.valid-d := if full(st.A.status) then [st.A.data] else [],

B.valid-d := if full(st.B.status) then [st.B.data] else [],

// The full/empty states of Ci and Co must be different.

// See the definition of s- add$inv.

c := if full(st.Ci.status) then st.Ci.data else st.Co.data,

S.valid-d := if full(st.S.status) then [st.S.data] else [],

// Extract valid data from the first shift register of piso2

94

piso0.valid-d := piso2$extract0(st.piso2),

// Extract valid data from the second shift register of piso2

piso1.valid-d := piso2$extract1(st.piso2),

// Extract valid data in sipo

sipo.valid-d := sipo$extract(st.sipo),

in0 := A.valid-d ++ piso0.valid-d,

in1 := B.valid-d ++ piso1.valid-d,

out := sipo.valid-d ++ S.valid-d

return

cases:

len(in0) + len(out) = 2 ∗ data-size : // st contains two operand pairs.

cases:

len(out) < data-size :

[sum(piso0.valid-d, piso1.valid-d), out ++ [xor3(c, st.A.data, st.B.data)]]

len(out) = data-size : [sum(in0, in1), out]

otherwise: [S.valid-d ++ remove-last(add(c, in0, in1)), sipo.valid-d]

len(in0) + len(out) = data-size : // st contains one operand pair.

cases:

len(out) = 0 : [sum(in0, in1)]

len(out) < data-size : [out ++ remove-last(add(c, in0, in1))]

otherwise: [out]

95

otherwise: [] // st contains no data.

Theorem (6.2) is proved by induction after proving the following single-

step-update property.

s-add$extract(s-add$step(inputs, st), data-size) =

s-add$extracted-step(inputs, st, data-size) (6.3)

The extracted next-state function s-add$extracted-step extracts the future

output sequence from the next state in terms of the s-add$extract function,

as defined below,

s-add$extracted-step(inputs, st, data-size) :=
s-add$extract(st, data-size), if in-act = nil ∧ out-act = nil

[sum(inputs.a, inputs.b)] ++ s-add$extract(st, data-size), if in-act = t ∧ out-act = nil

remove-last(s-add$extract(st, data-size)), if in-act = nil ∧ out-act = t

[sum(inputs.a, inputs.b)] ++ remove-last(s-add$extract(st, data-size)), otherwise

where in-act and out-act denote the communication signals associated with

the input and output ports of s-add respectively. Note that s-add and piso2

share the same in-act signal; and s-add and sipo share the same out-act signal.

s-add accepts a new input data item each time the in-act signal fires. Similarly,

s-add reports a data item to the output when out-act fires.

Lemma (6.3) is proved in a hierarchical manner using the single-step-

update properties of submodules piso2 and sipo. (6.3) holds only when st

satisfies the following condition.

96

s-add$inv(st, data-size) :=

let A.valid-d := if full(st.A.status) then [st.A.data] else [],

B.valid-d := if full(st.B.status) then [st.B.data] else [],

S.valid-d := if full(st.S.status) then [st.S.data] else [],

piso0.valid-d := piso2$extract0(st.piso2),

piso1.valid-d := piso2$extract1(st.piso2),

sipo.valid-d := sipo$extract(st.sipo),

in0 := A.valid-d ++ piso0.valid-d,

in1 := B.valid-d ++ piso1.valid-d,

out := sipo.valid-d ++ S.valid-d

return

st.Ci.status 6= st.Co.status ∧

(empty(st.Ci.status) ∨ empty(st.Done.status)) ∧

(empty(st.Co.status) ∨ st.S.status 6= st.Done.status) ∧

(empty(st.S.status) ∨ (full(st.Co.status) ∧ empty(st.Done.status))) ∧

(empty(st.Ci.status) ∨ (len(in0) 6= 0 ∧ len(in0) 6= data-size) ∨ st.Ci.data = 0) ∧

(empty(st.Done.status) ∨

if len(sipo.valid-d) = 0 ∨ len(sipo.valid-d) = data-size

then st.Done.data = 1

else st.Done.data = 0) ∧

97

len(in0) = len(in1) ∧

len(in0) + len(out) ∈ {0, data-size, 2 ∗ data-size} ∧

piso2$inv(st.piso2) ∧ // piso2’s state invariant

sipo$inv(st.sipo) // sipo’s state invariant

Since we prove that s-add$inv is an invariant, our induction proof

for (6.2) is applicable to any initial state that satisfies s-add$inv. Once prop-

erty (6.3) is established, we expand only the definition of s-add$extracted-step

when reasoning about s-add’s behavior. Notice that s-add$extracted-step per-

forms case analysis only on the communication signals in-act and out-act at

s-add’s input and output ports respectively, while ignoring how the internal

operations may proceed.

6.3 Example 3: GCD

We now illustrate the advantage of our hierarchical reasoning method

in substituting functionally equivalent submodules. We show that, without

altering the proofs, the functionality of a module still remains unchanged when

replacing its submodules with functionally equivalent ones. We experiment

with iterative self-timed circuit models that compute the greatest-common-

divisor (GCD) of two natural numbers. We prove that those GCD circuit

98

models implement the following algorithm.

gcd-alg(a, b) :=

if (a = 0) then b

else if (b = 0) then a

else if (a = b) then a

else if (a < b) then gcd-alg(b− a, a)

else gcd-alg(a− b, b)

gcd-alg is formalized in ACL2 to serve as the functional specification for gcd.

By proving the following properties (where d is any common divisor of a and

b), we show that gcd-alg correctly computes the GCD of two natural numbers

a and b.

a mod gcd-alg(a, b) = 0,

b mod gcd-alg(a, b) = 0,(
(a > 0) ∨ (b > 0)

)
∧ (a mod d = 0) ∧ (b mod d = 0)

⇒ 0 < gcd-alg(a, b) ∧ d ≤ gcd-alg(a, b)

6.3.1 GCD1

We first describe our verification of a GCD circuit model, called gcd1,

whose loop computation is performed by a storage-free joint [11]. We then

show that, without the need to rework proofs, replacing that circuit with a

functionally equivalent sequential circuit still preserves the functionality of

99

0

1

S

L0

a 6= 0 &
b 6= 0 &
a 6= b

0

1

L1

a < b

a− b, b

b− a, a

0

1

L2

a, b gcd(a, b)
2n
� 2n

�

1
�

1
�

2n
�

1�

2n�

2n
�

1
�

2n
�

2n
�

2n
�

2n�

n
�

in

out

body

Figure 6.3: Data flow of gcd1. n is the number of bits in each operand. Dashed,
rounded-corner rectangles identify joints.

the GCD circuit model. Figure 6.3 displays the data flow, based on Sparso’s

design [64], of gcd1. Link S holds a binary value that acts as the mux select

signal for joint in. The two operands stored in link L0 will be passed to joint

out to check if they are non-zero and do not have the same value — we call this

condition the GCD condition. If the GCD condition is true, the two operands

will enter the body of the loop and be stored in link L1. Otherwise, the circuit

will report the result and be ready to accept new inputs after the result has

been accepted (because in this case 0 will be stored in link S). In the case the

two operands have entered the loop and been stored in link L1, the greater

100

operand will be updated as described in the gcd-alg algorithm. The updated

operand and the remaining operand will then be stored in link L2.

When joint in fires, it drains either link L2 or the link providing the

external input 1, according to the value of the mux select signal. Thus, joint

in has two mutually exclusive actions. In a similar manner, joint out also has

two mutually exclusive actions: when it fires, it fills link S and either link L1

or the link accepting the final output 2, depending on the value of the demux

select signal. Joint body updates the operands as described below.

gcd-body$op(a, b) :=

if (a < b) then swap(a, b)

return (a− b, b)

The subtraction operations in joint body are executed by two combinational-

logic ripple-carry subtractors. We confirm that gcd1 satisfies the following

multi-step input-output property,

gcd1$extract(gcd$run(inputs-seq, st, data-size, n)) ++ out-seq =

gcd$op-map(in-seq) ++ gcd1$extract(st) (6.4)

where gcd$op-map is recursively defined in terms of gcd-alg, in the same man-

ner as presented in the definition of s-add$op-map; the extraction function

1The link that provides the external input is represented only by the small arrow at the
left of the drawing labeled a, b in Figure 6.3.

2The link that accepts the final output is represented only by the small arrow at the
right of the drawing labeled gcd(a, b) in Figure 6.3.

101

gcd1$extract(st) extracts the future output sequence from state st as defined

below.

gcd1$extract(st) := gcd$op-map(extract-valid-data([st.L0, st.L1, st.L2]))

Note that the order of data items to be extracted does not affect our correctness

proof for gcd1, because we impose a condition that there be at most one

operand pair in the system at any time. In particular, we require the following

condition, which we prove is an invariant.

gcd1$inv(st) :=

if full(st.S.s) ∧ (st.S.d = 0)

then len(gcd1$extract(st)) = 0

else len(gcd1$extract(st)) = 1

This invariant is necessary to maintain the first-in-first-out relationship be-

tween input and output sequences. The single-step-update property for gcd1,

that is used as a supporting lemma for our induction proof of (6.4), is shown

below,

gcd1$extract(gcd$step(inputs, st, data-size)) =

gcd1$extracted-step(inputs, st, data-size) (6.5)

102

where the extracted next state function gcd1$extracted-step is given as follows.

gcd1$extracted-step(inputs, st, data-size) :=
gcd1$extract(st), if in-act = nil ∧ out-act = nil

[gcd-alg(inputs.a, inputs.b)] ++ gcd1$extract(st), if in-act = t ∧ out-act = nil

remove-last(gcd1$extract(st)), if in-act = nil ∧ out-act = t

[gcd-alg(inputs.a, inputs.b)] ++ remove-last(gcd1$extract(st)), otherwise

Equation (6.5) holds when gcd1$inv(st) holds. Since we already proved

that gcd1$inv is an invariant, our induction proof for (6.4) still applies as long

as the initial state of gcd1 satisfies gcd1$inv.

6.3.2 GCD2: Combinational-to-Sequential Substitution

0

1

S

L0

a 6= 0 &
b 6= 0 &
a 6= b

0

1

L1swap

X0

X1

–

sub

X2

L2

a, b gcd(a, b)
2n
� 2n

�

1
�

1
�

2n
�

1�

2n�

2n
�

2n
�

n
�

2n
�

n
�

n
�

n
�2n

�

2n�

n
�

in

out

body

Figure 6.4: Data flow of gcd2. Three circles inside complex joint body also
represent joints. The dotted circle performs the subtraction.

103

Now let us consider another GCD circuit model, called gcd2, whose joint

body is a sequential circuit (see Figure 6.4). While this complex joint contains

three links, it uses only one combinational-logic ripple-carry subtractor. On

the other hand, the storage-free joint body in gcd1 includes two ripple-carry

subtractors executing in parallel (see Figure 6.3). We prove that complex

joint body in gcd2 follows the same specification gcd-body as described in

Section 6.3.1 for primitive joint body in gcd1. We impose a state invariant,

gcd-body2$inv, on joint body of gcd2 that when link X1 is empty, both links

X0 and X2 are also empty; and when X1 is full, either X0 or X2 is full.

gcd-body2$inv(st) :=

len(extract-valid-data([st.X0, st.X2])) = len(extract-valid-data([st.X1]))

Under the condition imposed by gcd-body2$inv, the extraction function

for joint body is given as follows.

gcd-body2$extract(st, data-size) :=

if empty(st.X1.s)

then []

else if full(st.X0.s)

then [sub(take(data-size, strip-cars(st.X0.d)),

nthcdr(data-size, strip-cars(st.X0.d)))

++ strip-cars(st.X1.d)]

else [strip-cars(st.X2.d) ++ strip-cars(st.X1.d)]

104

gcd-body2$extract(st, data-size) extracts the future output sequence from state

st. Once joint body is verified, gcd2 can then be verified in the same manner

as described for gcd1. In other words, our verification framework allows sub-

stitution of functionally equivalent submodules without altering the proofs.

The step function of gcd2 must incorporate the step function of its joint body

because this joint contains state-holding devices. Furthermore, our approach

introduces a set of extraction functions for a sequential circuit. Therefore,

when a combinational submodule is substituted by a sequential submodule,

the extraction functions for a larger module comprising that sequential sub-

module must take into account the extraction functions for that submodule.

In the case of gcd2, its extraction function also considers valid data stored in

complex joint body, as defined below.

gcd2$extract(st, data-size) :=

gcd$op-map(extract-valid-data([st.L0, st.L1, st.L2]) ++

gcd-body2$extract(st.body, data-size))

As a consequence, the state invariant of gcd2 also includes the state invariant

105

of body.

gcd2$inv(st, data-size) :=

(if full(st.S.s) ∧ (st.S.d = 0)

then len(gcd2$extract(st, data-size)) = 0

else len(gcd2$extract(st, data-size)) = 1)

∧ gcd-body2$inv(st.body)

6.3.3 GCD3: Sequential-to-Sequential Substitution

We now demonstrate the fact that substitutions among functionally

equivalent sequential modules do not affect our proofs at all. This also ap-

plies for substitutions among functionally equivalent combinational modules.

We experiment with replacing the complex joint body in gcd2 with a func-

tionally equivalent complex joint that performs subtraction via a sequential

serial subtractor. We call the corresponding GCD circuit model gcd3. Note,

gcd2 and gcd3 differ only in the subtractor design: the former contains a

combinational-logic ripple-carry subtractor, while the latter contains a func-

tionally equivalent, sequential serial subtractor. The modeling and verification

of our sequential serial subtractor model are absolutely similar to those of the

serial adder model mentioned in Section 6.2. The reader may also think of

using two serial subtractors in place of the two ripple-carry subtractors in

gcd1. However this violates the link-joint topology because our serial subtrac-

tor model is a complex joint, while the two ripple-carry subtractors in gcd1

are just part of the data operations of joint body.

106

Before verifying the functional equivalence between gcd2 and gcd3, we

first certify the functional equivalence between their submodules bodys. This

step is an analogy to verifying the functional equivalence between gcd1 and

gcd2 described in Section 6.3.2. Here we prove that substituting a combina-

tional subtractor with a functionally equivalent sequential subtractor preserves

the functionality of joint body. That is, we prove that joint body in gcd3

meets the specification gcd-body$op. The step function and extraction function

of this joint now incorporate the step function and extraction function of the

serial subtractor, respectively. Here we show the definition of the extraction

function as an illustration.

gcd-body3$extract(st, data-size) :=

if empty(st.X1.s)

then []

else if full(st.X0.s)

then [sub(take(data-size, strip-cars(st.X0.d)),

nthcdr(data-size, strip-cars(st.X0.d)))

++ strip-cars(st.X1.d)]

else if full(st.X2.s)

then [strip-cars(st.X2.d) ++ strip-cars(st.X1.d)]

else [first(s-sub$extract(st.sub, data-size)) ++ strip-cars(st.X1.d)]

In addition, the state invariant of joint body also includes the state invariant

107

of the serial subtractor.

gcd-body3$inv(st, data-size) :=

len(extract-valid-data([st.X0, st.X2]) ++ s-sub$extract(st.sub, data-size))

= len(extract-valid-data([st.X1]))

∧ s-sub$inv(st.sub, data-size)

Once joint body is verified, the corresponding GCD module can then

be verified in the same manner. Recall that the internal operations of a verified

module are abstracted away by using the single-step-update properties for that

module. Those properties enable our framework to expand only the definitions

of the extracted next state functions, which avoid exploring the module’s in-

ternal structure, when reasoning about the module behavior. See (4.2) for

an example of an extracted next state function. Since our hierarchical proofs

do not rely on implementation details of verified submodules, our proofs for

both gcd2 and gcd3 are exactly the same, regardless of how their submodules

bodys are implemented.

As we see that our verification process for iterative circuits presented

in this chapter is quite similar to that of data-loop-free circuits discussed in

Chapter 5; this further demonstrates the generality and applicability of our

framework. Moreover, our case study of the GCD circuit models illustrates the

flexibility of our framework that, without the need to rework proofs, the func-

tionality of a module is maintained under functionally equivalent submodule

108

Table 6.1: Proof times for the self-timed circuits discussed in this chapter

Circuit Proof time # go signals
go signals

affecting reasoning

SIPO 10s 2 2
PISO2 2.2m 5 5
s-add 2.3m 9 7
s-sub 2.5m 9 7

gcd-body1 2s 1 1
gcd-body2 4s 3 3
gcd-body3 9s 11 4
gcd1 8s 3 3
gcd2 11s 5 4
gcd3 11s 13 4

substitutions. While we are required to update the step function, the extrac-

tion functions, and possibly the state invariants for a module when replacing its

combinational submodules with functionally equivalent sequential submodules

(or in the opposite direction), the proof process for that module still remains

unchanged. Table 6.1 reports the verification times of the self-timed circuits

discussed in this chapter.

109

Chapter 7

Arbitrated Merge

All the circuits discussed in the previous two chapters have the first-

in-first-out input-output property. For each of those circuits, even though

there can be lots of interleavings of link updates happening internally due

to non-deterministic delays, the order in the output sequence is completely

determined. This chapter will discuss another well-known type of self-timed

circuit that produces non-deterministic output sequences, that is, circuits al-

locating mutually exclusive access to shared resources. These circuits require

storing additional information about which request is granted first when there

are two requests arriving at approximately the same time. A mutual-exclusion

circuit or arbiter is commonly used in self-timed systems to provide mutually

exclusive access to a shared resource on a first-come-first-served (FCFS) ba-

sis [60]. Since the arrival times of requests are variable, the grant outcomes

are essentially non-deterministic.

In this chapter we present our modeling and verification method for self-

timed circuits involving the non-deterministically arbitrated operation men-

tioned above. In particular, we first describe our formalization of two ar-

bitrated merge joint models that provide mutually exclusive access to their

110

output links from their two corresponding input links [59]. We then present

our strategy for proving the relationships between the input and output se-

quences for modules containing such arbitrated merge joints. We believe that

having arbitrated merge operations formalized and verified enhances the ap-

plicability of our verification system to a broad collection of self-timed circuit

models.

7.1 Arbitrated Merge Joint

We formalize two arbitrated merge joint models:

1. A simple model, arb-merge1, that always transfers data randomly from

one of the two full input links to the empty output link if both input

links are full “nearly” at the same time.

2. A more complicated model, arb-merge2, that supports fairness by mem-

orizing its current selection and using this information as an indicator

for exclusively servicing the other input link next.

We model arb-merge1 as a storage-free joint, to which we add an oracle

signal called select to perform random selections when necessary. Although

quite simple, this arbitrated merge model serves our purpose of illustrating

the handling of non-determinism in our verification framework [11]. We prove

that arb-merge1 follows the specification described in Table 7.1.

We design arb-merge2 as a complex joint. Figure 7.1 displays the

data flow of arb-merge2. When two inputs are available nearly at the same

111

Table 7.1: Specification of arb-merge1

Conditions Actions
in0.s in1.s out.s select go dr(in0) dr(in1) fi(out) out.d

full empty? empty 1 yes no yes in0.d
empty? full empty 1 no yes yes in1.d

full full empty 0 1 yes no yes in0.d
full full empty 1 1 no yes yes in1.d

fi: fill, dr: drain.
?: an empty input link of a joint in our modeling is equivalent to a not full

input link at the lower circuit level.

M
in0

in1
out

select
S0 S1

n
�

n
�

n
�

1�3
�

3
�

3
�

3
�

Figure 7.1: Data flow of arb-merge2

time, arb-merge2 will randomly select one of them to service first. In that

case, arb-merge2 will memorize its selection and use this information as an

indicator for exclusively servicing the other input next. Once the other input

is serviced, the selection information will be erased from the merge and the

process will start over. We also use an oracle signal select to perform random

selections in arb-merge2.

We model arb-merge2’s operation in two phases: it first grants access

for one of the two input links, and then transfers data from the granted input

link to the output link. Each of the two internal links S0 and S1 of the merge

112

Table 7.2: Specification of joint M shown in Figure 7.1. In each of the cases
listed in the table, it is also required that S0 and S1 must be full and empty
respectively; and when M acts, it also fills S1 and drains S0.

Conditions Actions
in0.s in1.s out.s S0.d select goM dr(in0) dr(in1) fi(out) S1.d out.d

full empty? 0 no no no 010 x
empty? full 0 no no no 110 x

full full 0 0 no no no 011 x
full full 0 1 no no no 111 x
full empty 010 1 yes no yes 000 in0.d

full empty 110 1 no yes yes 000 in1.d
full empty 011 1 yes no yes 110 in0.d

full empty 111 1 no yes yes 010 in1.d

: any value, x: do nothing.
?: an empty input link of a joint in our modeling is equivalent to a not full

input link at the lower circuit level.

contains three-bit data:

• The lowest-order bit (memoir bit): the merge will memorize its selection

only if this bit is on.

• The middle bit (grant bit) indicates whether the merge already grants

access or not: 0 means no, 1 means yes.

• The highest-order bit (selection bit) indicates which input link to be

served. The merge consults this bit only when the grant bit is on.

Table 7.2 specifies arb-merge2’s operation in granting access and trans-

ferring data. The first four cases specify how the merge grants access for the

input links. The last four cases specify the merge action when transferring

113

data from the granted input link to the output link. We show two theorems

validating the first and last cases in Table 7.2; the other cases are similar. Here

is the theorem for the first case.

let st′ := de(si(‘arg-merge2, data-size), inputs, st, netlist)

return arb-merge2&(netlist, data-size) ∧

arb-merge2$input-format(inputs, data-size) ∧

arb-merge2$st-format(st) ∧

st.S0.d[1] = 0 ∧ // The grant bit in link S0 is 0.

inputs.full-in0 = t ∧

¬inputs.full-in1 ∧

full(st.S0.s) ∧

empty(st.S1.s)

⇒ empty(st′.S0.s) ∧

full(st′.S1.s) ∧

st′.S1.d = [0, 1, 0] ∧

// Do not drain link in0

¬arb-merge2$act0(inputs, st, data-size) ∧

// Do not drain link in1

¬arb-merge2$act1(inputs, st, data-size) ∧

// Do not fill link out

¬arb-merge2$act(inputs, st, data-size)

114

The following theorem validates the last case in Table 7.2.

let st′ := de(si(‘arg-merge2, data-size), inputs, st, netlist)

return arb-merge2&(netlist, data-size) ∧

arb-merge2$input-format(inputs, data-size) ∧

arb-merge2$st-format(st) ∧

st.S0.d = [1, 1, 1] ∧

inputs.goM = t ∧

inputs.full-in1 = t ∧

¬inputs.empty-out- ∧

full(st.S0.s) ∧

empty(st.S1.s)

⇒ empty(st′.S0.s) ∧

full(st′.S1.s) ∧

st′.S1.d = [0, 1, 0] ∧

// Do not drain link in0

¬arb-merge2$act0(inputs, st, data-size) ∧

// Drain link in1

arb-merge2$act1(inputs, st, data-size) = t ∧

// Fill link out

arb-merge2$act(inputs, st, data-size) = t ∧

out.d = inputs.d1

115

7.2 Experiments

We experiment with several self-timed circuit designs involving arbi-

trated merges. For each circuit model described in this section, we experi-

ment with both arbitrated merge models arb-merge1 and arb-merge2; and

the properties reported here are also applied for both models. These experi-

ments further demonstrate the stability of our hierarchical reasoning approach

in substituting functionally equivalent submodules. Due to variable arrival

times of the two input sequences of an arbitrated merge, the corresponding

output sequence can be any possible interleaving of the two input sequences.

We use the membership relation (∈) and the interleaving operation (⊗) for

establishing the multi-step input-output relationships for self-timed circuits

performing arbitrated merge operations. For example, the output sequence

from an arbitrated merge can be expressed as a member of all possible inter-

leavings of the two input sequences, as follows: out-seq ∈ (in0-seq ⊗ in1-seq).

The interleaving operation ⊗ computes all interleavings of its two input se-

quences, e.g.,

[5, 1, 2]⊗ [a, b] = [[5, 1, 2, a, b], [5, 1, a, 2, b],

[5, 1, a, b, 2], [5, a, 1, 2, b],

[5, a, 1, b, 2], [5, a, b, 1, 2],

[a, 5, 1, 2, b], [a, 5, 1, b, 2],

[a, 5, b, 1, 2], [a, b, 5, 1, 2]].

Verifying the multi-step input-output relationships for circuits perform-

116

ing arbitrated merges involves developing a library that supports reasoning

about the membership relation and the interleaving operation. In this library,

referred to as mem-interl-lib, we prove lemmas about the preservation of the

membership under the concatenation operation with the presence of the inter-

leaving operation. For example,

x ∈ (y ⊗ z)⇒ (x ++ x1) ∈ ((y ++ x1)⊗ z) ∧

(x ++ x1) ∈ (y ⊗ (z ++ x1)). (7.1)

We will present more key lemmas from mem-interl-lib when we dis-

cuss our experiments below. As we did for the self-timed circuits mentioned

in the previous two chapters, our strategy for proving the multi-step rela-

tionship is based on single-step-update properties. For circuits involving ar-

bitrated merges, we introduce two extraction functions to extract two valid

input streams for each arbitrated merge; and we prove a single-step-update

property for each extraction function, as shown below,

extract0(step(inputs, st)) = extracted0-step(inputs, st),

extract1(step(inputs, st)) = extracted1-step(inputs, st)

where extracti is an extraction function, and extractedi-step is the corre-

sponding specification for the one-step update on the output sequence. Each

extractedi-step function is defined in the same manner as presented in defini-

tion (4.2). Note that there are two mutually exclusive actions at each arbi-

trated merge; and each extractedi-step function depends on either one of the

two actions.

117

7.2.1 Example 1

in0

in1

Q’40a

Q’40b

A

arbitrated merge

out

Figure 7.2: Data flow of interl

Our first example considers a circuit that connects two 40-link queues

to the two input ports of an arbitrated merge (Figure 7.2). Note that these

queues are complex links. Let in0-seq and in1-seq represent two accepted

input sequences connected to Q′
40a and Q′

40b, respectively. We prove that

for any interleaving x of two data sequences remaining in the final state, the

concatenation of x and the output sequence must be a member of (seq0⊗seq1);

where seq0 is the concatenation of in0-seq and the valid data sequence in Q′
40a

at the initial state, and seq1 is the concatenation of in1-seq and the valid data

sequence in Q′
40b at the initial state. Formally, we prove the following property,

let stf := interl$run(inputs-seq, st, n),

∀x ∈
(
interl$extract0(stf)⊗ interl$extract1(stf)

)
.

(x ++ out-seq) ∈
((
in0-seq ++ interl$extract0(st)

)
⊗(

in1-seq ++ interl$extract1(st)
))

(7.2)

where interl$extract0 and interl$extract1 extract valid data from Q′
40a and

Q′
40b, respectively. When the initial and final states have no valid data, we ob-

tain the corollary out-seq ∈ (in0-seq ⊗ in1-seq). We prove property (7.2) by

118

induction after proving two single-step-update properties (one for each extrac-

tion function) and lemma (7.1). Note that the single-step-update properties

for interl are proved in a hierarchical manner. Specifically, these properties

are proved by applying the single-step-update properties of submodules Q′
40a

and Q′
40b accordingly, without exploring the operations internal to these sub-

modules.

7.2.2 Example 2

interl
in0

in1
L gcd out

2n
�

2n
�

2n
�

2n
�

n
�

Figure 7.3: Data flow of igcd

The next example further illustrates hierarchical reasoning: the verifi-

cation of a self-timed module that contains self-timed submodules with and

without arbitration. We model a module, called igcd, that connects the out-

put port of interl to the input port of gcd via a link (Figure 7.3). Notice

that each item in each input stream of igcd carries a pair of operands for a

GCD operation. We verify the correctness of igcd by proving that this circuit

produces a sequence of GCDs over any interleaving of two input sequences.

Our approach uses three extraction functions that compute the GCDs of the

valid data residing in interl.Q′
40a, interl.Q

′
40b, and the concatenation of L and

119

gcd, respectively.

igcd$extract0(st) := gcd$op-map(interl$extract0(st.interl)),

igcd$extract1(st) := gcd$op-map(interl$extract1(st.interl)),

igcd$extract2(st) :=

gcd$op-map(extract-valid-data([st.L])) ++ gcd$extract(st.gcd)

We formalize the multi-step input-output relationship for igcd in terms

of function prepend-rec(x, y) that prepends each list in x to y. For example,

prepend-rec([[1, 2], [−3, 6, 4]], [a, b]) = [[1, 2, a, b], [−3, 6, 4, a, b]].

Below is the multi-step input-output relationship for igcd that we for-

malize.

let stf := igcd$run(inputs-seq, st, n),

∀x ∈
(
igcd$extract0(stf)⊗ igcd$extract1(stf)

)
.

(x ++ igcd$extract2(stf) ++ out-seq) ∈

prepend-rec
((
gcd$op-map(in0-seq) ++ igcd$extract0(st)

)
⊗(

gcd$op-map(in1-seq) ++ igcd$extract1(st)
)
,

igcd$extract2(st)
)

Our proof applies the following lemma in mem-interl-lib.

e ∈ x⇒ (e ++ e1) ∈ prepend-rec(x, e1)

120

Again, we apply our hierarchical approach to prove the single-step-

update properties for igcd from the single-step-update properties of submod-

ules interl and gcd accordingly.

7.2.3 Example 3

interl0
in0

in1

L0

interl1
in2

in3

L1

interl2 out

Figure 7.4: Data flow of comp-interl

We continue illustrating our hierarchical reasoning method via a cir-

cuit model, comp-interl, that composes three instances of interl as displayed

in Figure 7.4. Loosely speaking, we prove that the output sequence from

comp-interl is an interleaving of its four input sequences. Our method intro-

duces six extraction functions for comp-interl, two for each instance of interl.

comp-interl$extract0(st) := interl$extract0(st.interl0),

comp-interl$extract1(st) := interl$extract1(st.interl0),

comp-interl$extract2(st) := interl$extract0(st.interl1),

comp-interl$extract3(st) := interl$extract1(st.interl1),

comp-interl$extract4(st) :=

extract-valid-data([st.L0]) ++ interl$extract0(st.interl2),

121

comp-interl$extract5(st) :=

extract-valid-data([st.L1]) ++ interl$extract1(st.interl2).

Our correctness theorem for comp-interl is stated in terms of the nested

interleaving operator, ⊗2, where x⊗2 y interleaves each list in x with each list

in y. For example,

[l1, l2, l3]⊗2 [l4, l5] = (l1 ⊗ l4) ++ (l1 ⊗ l5) ++ (l2 ⊗ l4) ++

(l2 ⊗ l5) ++ (l3 ⊗ l4) ++ (l3 ⊗ l5).

We apply the following property from our library, mem-interl-lib, in

proving the multi-step input-output relationship for comp-interl.

x ∈ (y ⊗2 z)⇒ (x ++ x1) ∈ (prepend-rec(y, x1)⊗2 z) ∧

(x ++ x1) ∈ (y ⊗2 prepend-rec(z, x1))

122

Here is the multi-step input-output relationship for comp-interl.

let stf := comp-interl$run(inputs-seq, st, n),

∀x ∈
(
prepend-rec

(
comp-interl$extract0(stf)⊗ comp-interl$extract1(stf),

comp-interl$extract4(stf)
)

⊗2

prepend-rec
(
comp-interl$extract2(stf)⊗ comp-interl$extract3(stf),

comp-interl$extract5(stf)
))
.

(x ++ out-seq) ∈(
prepend-rec

((
in0-seq ++ comp-interl$extract0(st)

)
⊗(

in1-seq ++ comp-interl$extract1(st)
)
,

comp-interl$extract4(st)
)

⊗2

prepend-rec
((
in2-seq ++ comp-interl$extract2(st)

)
⊗(

in3-seq ++ comp-interl$extract3(st)
)
,

comp-interl$extract5(st)
))

Table 7.3 reports the verification times of the self-timed circuits dis-

cussed in Section 7.2. The proof times were the same for both arbitrated

merge models, except for the case of module interl where it took 5 seconds

using arb-merge1 but 9 seconds using arb-merge2. This makes sense be-

cause arb-merge1 is a combinational circuit, while arb-merge2 contains state-

holding devices, specifically, two links S0 and S1. In the latter case, the step

123

Table 7.3: Proof times for the self-timed circuits discussed in Section 7.2

Arbiter Circuit Proof time # go signals
go signals

affecting reasoning

interl 5s 81 3
arb-merge1 igcd 12s 84 5

comp-interl 23s 243 9
interl 9s 82 3

arb-merge2 igcd 12s 85 5
comp-interl 23s 246 9

function for interl also takes into account the step function for arb-merge2;

this would take more time to reason about the step function for interl. On the

other hand, the implementation detail of an arbitrated merge does not affect

the verification times of modules igcd and comp-interl because the merge is

hidden by interl in these two modules.

124

Part IV

Epilogue

125

Chapter 8

Conclusions

8.1 Summary

This dissertation presents a framework for formally modeling and veri-

fying self-timed circuits using the ACL2 theorem-proving system. Our goal is

to develop a methodology that is capable of verifying the functional correctness

of self-timed circuit designs at scale. This project also provides a library for

analyzing self-timed systems in ACL2. Our modeling approach is based on the

link-joint model to represent self-timed systems as networks of links commu-

nicating with each other locally via handshake components, which are called

joints. We show that the existing DE system already proven to be successful for

synchronous circuits is adaptable for handling self-timed systems by reasoning

with go signals as well as state-holding elements that have their own gating.

This hierarchical HDL provides combinational primitives as well as several

latches suitable for creating links and joints. We extend DE to represent self-

timed circuits by adding a single link-control primitive that coordinates the

means to update the state of a link. Using the extended DE system to describe

circuit implementations, we show how those implementations can be lifted into

more abstract four-valued models that have required properties; subsequently,

these four-valued models are shown to have single-step-update properties that

126

can be derived from the single-step-update properties of sub-circuits. This

method demonstrates the verification of Mealy machines hierarchically; it can

be used to verify both clocked and self-timed circuit models.

We have discussed the specification and verification of self-timed cir-

cuits represented with a formally-defined, hierarchical HDL. These circuits

may have loops, arbitrated merges, and may be parameterized by data width.

Hierarchical verification is a key methodology supporting efficiency of our cor-

rectness proofs.

The sequential nature of circuits can be coarse-grained, such as in a

globally-clocked circuit, or it can be fine-grained, such as in a self-timed circuit.

Generally the number of reachable states in a self-timed circuit is much greater

than its equivalent clocked circuit — this state explosion increases the difficulty

of analysis and verification, but it may simplify the design and implementation

by avoiding the global timing closure problem.

We model the interleavings of event-ordering in self-timed circuits by

associating each joint with an external go signal that, when disabled, prevents

a joint from firing. A joint action will fire only when all of its input-output con-

ditions and its externally-provided (from an oracle) go signal are valid. Thus,

when we undertake the verification of a circuit composed of combinational-logic

joints and state-holding links, we are modeling all of the possible interleavings

of circuit activity. All proofs about our self-timed circuit models reported here

are carried out respecting this circuit advancement freedom.

127

Note, the non-determinism considered in the proofs presented is at the

level of state-holding links and combinational joints. Our model makes no

mention of the actual, real-time delay of corresponding circuit implementa-

tions, although physical circuit implementations must provide non-zero delay

through links, which is of course unavoidable in actual circuits. Even so, to

implement self-timed circuits successfully, such as those discussed in this dis-

sertation, it would be necessary to use traditional, circuit-level, timing-analysis

tools to make sure that internally-produced done signals arrive after all bun-

dled data arrives at the receiving (storage) links. Such timing analysis can be

carried out only after a design has been committed to a specific technology.

Our specification and verification approach can also be used for purely DI and

QDI circuits. In fact, we believe our analysis approach may extend to more

general computational models, such as Hoare’s CSP [24].

We believe this is the first approach using theorem proving with a

hierarchical functional verification methodology for self-timed circuit models

specified at the link-joint level. As the hierarchical approach we are employing

for self-timed circuits represents a generalization of earlier efforts using DE, we

believe we will be able to verify arbitrarily large, general-purpose, self-timed

circuit designs. In fact, we believe our approach is sufficiently general that

it may be used to model and analyze combined synchronous and self-timed

systems [55, 73, 23, 6, 57]; for instance, certifying the correctness of data

exchange between two synchronous systems over an asynchronous interconnect

fabric.

128

8.2 Future Work

This section discusses ideas for extending this research.

We currently have no mechanism to check if our self-timed circuit mod-

els actually follow the link-joint topology: links are connected via joints, and

joints are connected via links. Potential future work may develop a syntactic

checker that detects link-joint topology violations in self-timed circuit designs.

We imagine such a checker can operate in a hierarchical manner by adding

some annotations to each module informing the checker the component type,

i.e. either link or joint, at each module’s input/output port. That way we

can validate this information for each submodule separately and then use it to

verify the link-joint topology compliance of larger modules composing of those

submodules.

It would make our framework more practical if one can implement

tools that convert our DE descriptions of self-timed modules to other HDL

formats commonly used by designers (such as Verilog) and/or vice versa. A

challenge emerging from this work is to ensure the equivalence between any

two formats. In other words, we may need to guarantee the correctness of

implemented transformations. Some proof obligations may be required to

assure the reliability of those transformations.

There is a lot of room for increasing automation of our framework

through the further introduction of macros. For instance, the value and state

lemmas proof process can be done automatically as this step is quite routine:

129

the outputs and step functions at the four-valued level of a module can be

produced using the ACL2 simplifier. We believe the APT tool developed at

Kestrel Institute [14, 28] would be suitable for generating value and state

lemmas mechanically.

Another possible direction for future work is to extend our methodol-

ogy to other types of self-timed circuits, for instance self-timed, parameterized

FFT circuits. Very high performance FFT implementations are well served by

self-timed implementations, especially when used in multi-gigahertz direct sig-

nal conversion for 5G transceivers. Self-timed circuits with non-deterministic

outputs are also interesting as they potentially impose great challenges for

circuit analysis. Studying such systems could enhance our framework by de-

veloping strategies and libraries that support reasoning about new operations

pertinent to those systems. This would benefit the ACL2 community as well,

particularly for those who also use those operations in their work.

The DE system has been used to specify and verify synchronous micro-

processor designs, such as the FM9001 microprocessor design [9]. An interest-

ing project may apply the extended DE system along with our methodology to

modeling self-timed microprocessors and verifying their functional properties.

One could consider modeling the self-timed version of FM9001 and verifying

its functional correctness in terms of input and output sequences, using the

hierarchical verification technique presented in this dissertation. Such work

can benefit from the previous work on the synchronous FM9001 specification

and verification [5, 9], especially reusing combinational modules of the ex-

130

isting FM9001 model in designing primitive joints for a self-timed FM9001

design. Modeling a register file in the link-joint paradigm can follow the idea

of storing two copies of registers in two links, as applied in our shift registers’

designs (see Section 6.1). A memory model can also follow that same model-

ing idea. A further goal in this direction would be applying our framework to

self-timed pipelined microprocessor designs, which are an active research area

in the asynchronous community [69, 18, 52, 66, 35, 20, 40, 19, 30, 50, 61].

We also expect to consider the verification of mixed self-timed, syn-

chronous circuits. For instance, we wish to verify the correctness of data ex-

change between two synchronous systems over an asynchronous interconnect

fabric. Such an advance could contribute to the use of self-timed networks to

reduce the use of inter-clock-domain synchronizers.

131

Bibliography

[1] ACL2 User Manual. http://www.cs.utexas.edu/users/moore/acl2/manuals/

current/manual/?topic=ACL2____TOP.

[2] P. A. Beerel, R. O. Ozdag, and M. Ferretti. A Designer’s Guide to

Asynchronous VLSI. Cambridge University Press, 2010.

[3] P. A. Beerel and M. E. Roncken. Low Power and Energy Efficient Asyn-

chronous Design. Low Power Electronics (JOLPE-2007), 3(3):234–253,

2007.

[4] M. Bozga, H. Jianmin, O. Maler, and S. Yovine. Verification of Asyn-

chronous Circuits using Timed Automata. Electronic Notes in Theoreti-

cal Computer Science, 65(6):47–59, 2002.

[5] B. C. Brock and W. A. Hunt Jr. The DUAL-EVAL Hardware Descrip-

tion Language and Its Use in the Formal Specification and Verification

of the FM9001 Microprocessor. In Formal Methods in System Design,

volume 11, pages 71–104. Kluwer Academic Publishers, 1997.

[6] J. Carmona, J. Cortadella, M. Kishinevsky, and A. Taubin. Elastic

Circuits. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 28(10):1437–1455, 2009.

132

http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____TOP
http://www.cs.utexas.edu/users/moore/acl2/manuals/current/manual/?topic=ACL2____TOP

[7] S. Chakraborty, D. I. Dill, and K. Y. Yun. Min-Max Timing Analysis

and an Application to Asynchronous Circuits. In Proc of the IEEE,

volume 87, pages 332–346, 1999.

[8] S. Chakraborty, K. Y. Yun, and D. L. Dill. Practical Timing Analysis

of Asynchronous Circuits Using Time Separation of Events. In Proc of the

IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143),

pages 455–458, 1998.

[9] C. Chau. Extended Abstract: Formal Specification and Verification of

the FM9001 Microprocessor Using the DE System. In Proc of the Four-

teenth International Workshop on the ACL2 Theorem Prover and Its Ap-

plications (ACL2-2017), pages 112–114, 2017.

[10] C. Chau, W. A. Hunt Jr., M. Kaufmann, M. Roncken, and I. Suther-

land. Data-Loop-Free Self-Timed Circuit Verification. In Proc of the

Twenty Fourth IEEE International Symposium on Asynchronous Circuits

and Systems (ASYNC-2018), pages 51–58, 2018.

[11] C. Chau, W. A. Hunt Jr., M. Kaufmann, M. Roncken, and I. Sutherland.

A Hierarchical Approach to Self-Timed Circuit Verification. In Proc of

the Twenty Fifth IEEE International Symposium on Asynchronous Cir-

cuits and Systems (ASYNC-2019), 2019. To appear.

[12] C. Chau, W. A. Hunt Jr., M. Roncken, and I. Sutherland. A Framework

for Asynchronous Circuit Modeling and Verification in ACL2. In Proc

133

of the Thirteenth Haifa Verification Conference (HVC-2017), pages 3–18,

2017.

[13] E. Clarke and B. Mishra. Automatic Verification of Asynchronous Cir-

cuits. In Proc of the Workshop on Logic of Programs, pages 101–115,

1983.

[14] A. Coglio, M. Kaufmann, and E. Smith. A Versatile, Sound Tool for Sim-

plifying Definitions. In Proc of the Fourteenth International Workshop

on the ACL2 Theorem Prover and Its Applications (ACL2-2017), pages

61–77, 2017.

[15] K. Desai, K. S. Stevens, and J. O’Leary. Symbolic Verification of Timed

Asynchronous Hardware Protocols. In Proc of the IEEE Computer Soci-

ety Annual Symposium on VLSI (ISVLSI-2013), pages 147–152, 2013.

[16] D. L. Dill. Trace Theory for Automatic Hierarchical Verification of Speed-

Independent Circuits. MIT press, 1989.

[17] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, S. Temple, and J. V.

Woods. The Design and Evaluation of an Asynchronous Microprocessor.

In Proc of the IEEE International Conference on Computer Design: VLSI

in Computers and Processors (ICCD-1994), pages 217–220, 1994.

[18] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, and J. V. Woods.

AMULET1: A Micropipelined ARM. In Proc of COMPCON ’94, pages

476–485, 1994.

134

[19] S. B. Furber, J. D. Garside, and D. A. Gilbert. AMULET3: A High-

Performance Self-Timed ARM Microprocessor. In Proc of the IEEE

International Conference on Computer Design: VLSI in Computers and

Processors (ICCD-1998), pages 247–252, 1998.

[20] S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver.

AMULET2e: An Asynchronous Embedded Controller. In Proc of the

Third International Symposium on Advanced Research in Asynchronous

Circuits and Systems (ASYNC-1997), pages 290–299, 1997.

[21] M. Gordon. HOL: A Machine Oriented Formulation of Higher Order

Logic. Technical report, University of Cambridge, Computer Laboratory,

1985.

[22] M. J. C. Gordon. HOL: A Proof Generating System for Higher-Order

Logic. In G. Birtwistle and P. A. Subrahmanyam, editors, VLSI Specifi-

cation, Verification and Synthesis, pages 73–128. Springer, Boston, MA,

1988.

[23] E. Grass, B. Sarker, and K. Maharatna. A Dual-Mode Synchronous/Asynchronous

CORDIC Processor. In Proc of the Eighth International Symposium on

Asynchronous Circuits and Systems (ASYNC-2002), pages 76–83, 2002.

[24] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,

1985.

135

[25] W. A. Hunt Jr. The DE Language. In M. Kaufmann, P. Manolios, and

J S. Moore, editors, Computer-Aided Reasoning: ACL2 Case Studies,

chapter 10, pages 151–166. Springer US, 2000.

[26] W. A. Hunt Jr., M. Kaufmann, J S. Moore, and A. Slobodova. Industrial

Hardware and Software Verification with ACL2. Philosophical Transac-

tions of the Royal Society, 375(2104), 2017.

[27] W. A. Hunt Jr. and E. Reeber. Applications of the DE2 Language. In

Proc of the Sixth International Workshop on Designing Correct Circuits

(DCC-2006), 2006.

[28] Kestrel Institute. Automated Program Transformations. https://www.

kestrel.edu/home/projects/apt/, 2019.

[29] P. Joshi, P. A. Beerel, M. Roncken, and I. Sutherland. Timing Verifi-

cation of GasP Asynchronous Circuits: Predicted Delay Variations Ob-

served by Experiment. In D. Dams, U. Hannemann, and M. Steffen,

editors, Lecture Notes in Computer Science, chapter 17, pages 260–276.

Springer Berlin Heidelberg, 2010.

[30] H. K. Kapoor. Formal Modelling and Verification of an Asynchronous

DLX Pipeline. In Proc of the Fourth IEEE International Conference on

Software Engineering and Formal Methods (SEFM-2006), pages 118–127,

2006.

136

https://www.kestrel.edu/home/projects/apt/
https://www.kestrel.edu/home/projects/apt/

[31] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:

ACL2 Case Studies. Kluwer Academic Press, Boston, MA, 2000.

[32] M. Kaufmann, P. Manolios, and J S. Moore. Computer-Aided Reasoning:

An Approach. Kluwer Academic Press, Boston, MA, 2000.

[33] M. Kaufmann and J S. Moore. ACL2 Home Page. http://www.cs.

utexas.edu/users/moore/acl2/, 2019.

[34] H. Kim, P. A. Beerel, and K. Stevens. Relative Timing Based Verification

of Timed Circuits and Systems. In Proc of the Eighth International

Symposium on Asynchronous Circuits and Systems (ASYNC-2002), pages

115–124, 2002.

[35] P. N. Loewenstein. Formal Verification of Counterflow Pipeline Archi-

tecture. In Proc of the Eighth International Conference on Higher Order

Logic Theorem Proving and Its Applications (TPHOLs-1995), pages 261–

276, 1995.

[36] O. Maler and A. Pnueli. Timing Analysis of Asynchronous Circuits us-

ing Timed Automata. In Proc of the IFIP WG 10.5 Advanced Research

Working Conference on Correct Hardware Design and Verification Meth-

ods (CHARME-1995), pages 189–205, 1995.

[37] J. V. Manoranjan and K. S. Stevens. Qualifying Relative Timing Con-

straints for Asynchronous Circuits. In Proc of the Twenty Second In-

137

http://www.cs.utexas.edu/users/moore/acl2/
http://www.cs.utexas.edu/users/moore/acl2/

ternational Symposium on Asynchronous Circuits and Systems (ASYNC-

2016), pages 91–98, 2016.

[38] A. J. Martin. Compiling communicating processes into delay-insensitive

VLSI circuits. Distributed Computing, 1(4):226–234, 1986.

[39] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewin-

dus. The First Asynchronous Microprocessor: The Test Results. ACM

SIGARCH Computer Architecture News, 17(4):95–98, 1989.

[40] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. South-

worth, U. Cummings, and T. K. Lee. The Design of an Asynchronous

MIPS R3000 Microprocessor. In Proc of the Seventeenth Conference on

Advanced Research in VLSI (ARVLSI-1997), pages 164–181, 1997.

[41] T. M. McWilliams. Verification of Timing Constraints on Large Digital

Systems. In Proc of the Seventeenth Design Automation Conference

(DAC-1980), pages 139–147, 1980.

[42] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-

Wesley, 1980.

[43] D. E. Muller. Asynchronous Logics and Application to Information Pro-

cessing. In Proc of Symposium on Application of Switching Theory in

Space Technology, pages 289–297, 1963.

[44] C. J. Myers. Asynchronous Circuit Design. Wiley, 2001.

138

[45] C. D. Nielsen and A. J. Martin. Design of a Delay-Insensitive Multiply-

Accumulate Unit. Integration, 15(3):291–311, 1993.

[46] L. S. Nielsen. Low-power Asynchronous VLSI Design. PhD thesis,

Department of Information Technology, Technical University of Denmark,

1997.

[47] L. S. Nielsen, C. Niessen, J. Sparso, and K. van Berkel. Low-Power

Operation Using Self-Timed Circuits and Adaptive Scaling of the Supply

Voltage. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2(4):391–397, 1994.

[48] L. S. Nielsen and J. Sparso. An 85 µW Asynchronous Filter-Bank for

a Digital Hearing Aid. In Proc of the IEEE International Solid State

circuits Conference, pages 108–109, 1998.

[49] C. Niessen, C. H. van Berkel, M. Rem, and R. W. J. J. Saeijs. VLSI

Programming and Silicon Compilation; A Novel Approach from Philips

Research. In Proc of the IEEE International Conference on Computer

Design: VLSI (ICCD-1988), pages 150–166, 1988.

[50] S. M. Nowick and M. Singh. High-Performance Asynchronous Pipelines:

An Overview. IEEE Design & Test of Computers, 28(5):8–22, 2011.

[51] H. Park, A. He, M. Roncken, X. Song, and I. Sutherland. Modular

Timing Constraints for Delay-Insensitive Systems. Computer Science

and Technology, 31(1):77–106, 2016.

139

[52] N. C. Paver. The Design and Implementation of an Asynchronous Micro-

processor. PhD thesis, Department of Computer Science, The University

of Manchester, 1994.

[53] N. C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien, and J. Liu.

A Low-Power, Low-Noise, Configurable Self-Timed DSP. In Proc of the

Fourth International Symposium on Advanced Research in Asynchronous

Circuits and Systems (ASYNC-1998), pages 32–42, 1998.

[54] A. Peeters, F. te Beest, M. de Wit, and W. Mallon. Click Elements:

An Implementation Style for Data-Driven Compilation. In Proc of the

Sixteenth IEEE International Symposium on Asynchronous Circuits and

Systems (ASYNC-2010), pages 3–14, 2010.

[55] A. Peeters and K. van Berkel. Synchronous Handshake Circuits. In Proc

of the Seventh International Symposium on Asynchronous Circuits and

Systems (ASYNC-2001), pages 86–95, 2001.

[56] Y. Peng, I. W. Jones, and M. R. Greenstreet. Finding Glitches Using

Formal Methods. In Proc of the Twenty Second IEEE International

Symposium on Asynchronous Circuits and Systems (ASYNC-2016), pages

45–46, 2016.

[57] M. Roncken, C. Cowan, B. Massey, S. M. Gilla, H. Park, R. Daasch,

A. He, Y. Hei, W. Hunt Jr., X. Song, and I. Sutherland. Beyond Carrying

Coal To Newcastle: Dual Citizen Circuits. In A. Mokhov, editor, This

140

Asynchronous World Essays dedicated to Alex Yakovlev on the occasion

of his 60th birthday, pages 241–261. Newcastle University, 2016.

[58] M. Roncken, S. M. Gilla, H. Park, N. Jamadagni, C. Cowan, and I. Suther-

land. Naturalized Communication and Testing. In Proc of the Twenty

First IEEE International Symposium on Asynchronous Circuits and Sys-

tems (ASYNC-2015), pages 77–84, 2015.

[59] M. Roncken, I. Sutherland, C. Chen, Y. Hei, W. Hunt Jr., C. Chau, S. M.

Gilla, H. Park, X. Song, A. He, and H. Chen. How to Think about Self-

Timed Systems. In Proc of the Fifty First IEEE Asilomar Conference

on Signals, Systems, and Computers (Asilomar-2017), pages 1597–1604,

2017.

[60] C. L. Seitz. System Timing. In C. Mead and L. Conway, editors,

Introduction to VLSI Systems, chapter 7, pages 218–262. Addison-Wesley,

1980.

[61] J. Simatic, A. Cherkaoui, F. Bertrand, R. P. Bastos, and L. Fesquet. A

Practical Framework for Specification, Verification, and Design of Self-

Timed Pipelines. In Proc of the Twenty Third IEEE International Sym-

posium on Asynchronous Circuits and Systems (ASYNC-2017), pages 65–

72, 2017.

[62] M. Singh and S. M. Nowick. MOUSETRAP: High-Speed Transition-

Signaling Asynchronous Pipelines. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 15(6):684–698, 2007.

141

[63] A. Slobodova, J. Davis, S. Swords, and W. Hunt Jr. A Flexible For-

mal Verification Framework for Industrial Scale Validation. In Proc of

the Ninth ACM/IEEE International Conference on Formal Methods and

Models for Codesign (MEMOCODE-2011), pages 89–97, 2011.

[64] J. Sparso and S. Furber. Principles of Asynchronous Circuit Design - A

Systems Perspective. Springer US, 2001.

[65] J. Sparso and J. Staunstrup. Delay-insensitive multi-ring structures.

INTEGRATION, the VLSI Journal, 15(3):313–340, 1993.

[66] R. F. Sproull, I. E. Sutherland, and C. E. Molnar. The Counterflow

Pipeline Processor Architecture. IEEE Design & Test, 11(3):48–59, 1994.

[67] S. K. Srinivasan and R. S. Katti. Desynchronization: Design for Verifica-

tion. In Proc of the Eleventh International Conference on Formal Meth-

ods in Computer-Aided Design (FMCAD-2011), pages 215–222, 2011.

[68] J. Staunstrup and M. R. Greenstreet. Designing Delay-Insensitive Cir-

cuits using Synchronized Transitions. In IMEC IFIP International Work-

shop on Applied Formal Methods for Correct VLSI Design, 1989.

[69] I. Sutherland. Micropipelines. Communications of the ACM, 32(6):720–

738, 1989.

[70] I. Sutherland and S. Fairbanks. GasP: A Minimal FIFO Control. In

Proc of the Seventh International Symposium on Asynchronous Circuits

and Systems (ASYNC-2001), pages 46–53, 2001.

142

[71] K. van Berkel, R. Burgess, J. Kessels, A. Peeters, M. Roncken, F. Schalij,

and R. van de Wiel. A Single-Rail Re-implementation of a DCC Error

Detector Using a Generic Standard-Cell Library. In Proc of the Second

Working Conference on Asynchronous Design Methodologies, pages 72–

79, 1995.

[72] K. van Berkel, R. Burgess, J. Kessels, M. Roncken, F. Schalij, and A. Peeters.

Asynchronous Circuits for Low Power: A DCC Error Corrector. IEEE

Design & Test of Computers, 11(2):22–32, 1994.

[73] K. van Berkel, A. Peeters, and F. te Beest. Adding Synchronous and

LSSD Modes to Asynchronous Circuits. In Proc of the Eighth Inter-

national Symposium on Asynchronous Circuits and Systems (ASYNC-

2002), pages 161–170, 2002.

[74] F. Verbeek and J. Schmaltz. Verification of Building Blocks for Asyn-

chronous Circuits. In Proc of the Eleventh International Workshop on the

ACL2 Theorem Prover and Its Applications (ACL2-2013), pages 70–84,

2013.

[75] T. Verhoeff. Delay-insensitive codes - an overview. Distributed Comput-

ing, 3(1):1–8, 1988.

[76] V. M. Wijayasekara, S. K. Srinivasan, and S. C. Smith. Equivalence

Verification for NULL Convention Logic (NCL) Circuits. In Proc of

the Thirty Second IEEE International Conference on Computer Design

(ICCD-2014), pages 195–201, 2014.

143

[77] T. Williams, N. Patkar, and G. Shen. SPARC64: A 64-b 64-Active-

Instruction out-of-Order-Execution MCM Processor. IEEE Journal of

Solid State Circuits, 30(11):1215–1226, 1995.

[78] T. E. Williams and M. A. Horowitz. A Zero-Overhead Self-Timed 160-ns

54-b CMOS divider. IEEE Journal of Solid State Circuits, 26(11):1651–

1661, 1991.

144

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Part I Preliminaries
	Chapter 1. Introduction
	Motivation
	Related Work
	Objectives
	Contributions
	Organization

	Chapter 2. DE System
	DE Description
	DE Simulator
	Output Evaluator
	State Evaluator

	Value and State Lemmas

	Part II Approach
	Chapter 3. Modeling
	Link-Joint Model
	Self-Timed Module Modeling
	Complex Joint
	Complex Link

	Chapter 4. Verification
	Value and State Lemmas
	Multi-Step State Lemma
	Single-Step-Update Properties
	Multi-Step Input-Output Relationship
	Functional Correctness

	Part III Case Studies
	Chapter 5. Data-Loop-Free Circuits
	Example 1: A FIFO Circuit Model
	Example 2: Hierarchical Reasoning
	Example 3: Complex Links

	Chapter 6. Iterative Circuits
	Example 1: Shift Register
	Example 2: Serial Adder
	Example 3: GCD
	GCD1
	GCD2: Combinational-to-Sequential Substitution
	GCD3: Sequential-to-Sequential Substitution

	Chapter 7. Arbitrated Merge
	Arbitrated Merge Joint
	Experiments
	Example 1
	Example 2
	Example 3

	Part IV Epilogue
	Chapter 8. Conclusions
	Summary
	Future Work

	Bibliography

