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Typical data sets for treatment studies

 Clinic- or lab-based studies
» Bountiful measures, limited observations

 Large healthcare databases
» Bountiful observations, limited measures




Where ensembles and deep learning shine

v Bountiful measures + bountiful observations (AKA “Big Data”)
» Complex patterns can be both discovered and validated

 Clinic- or lab-based studies?
» Bountiful measures, limited observations

» Deep phenotypes, but complexity cannot be validated
» Expect little or no improvement over simpler models

 Large healthcare databases?

» Bountiful observations, limited measures
» Shallow phenotypes, so complexity cannot be discovered
» Expect little or no improvement over simpler models




How do we get the very large, feature-rich
data sets we need?
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Data from clinical trial of Deprexis

Includes:

» Psycho-education

« Behavioral Activation
» Cognitive Modification
» Relaxation

» Acceptance and
Mindtulness

Problem-Solving
Interpersonal Skills
Positive Psychology

But also: Dream work and
Childhood experiences




Data from clinical trial of Deprexis

» 8-week course of Internet intervention (N = 283)

» Candidate predictors (P = 120)
Baseline depression (QIDS and HRSD items)
Demographics
Other Psychopathology (PDSQ scales)
Treatment expectations
Sheehan Disability Scale
History of early life stress (risky families)
Family history of mental illness
Antidepressant usage
“INA”
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“INA”: ZIP code predictors

* Some examples:
median household income
ethnic/racial diversity
population density
crime rate
access to mental healthcare providers




Prediction R?

HRSD

Benchmark

0.07-0.26

Random forest

0.14-0.31

Elastic net

0.14-0.33

Random forest/elastic net
ensemble

0.16-0.33

Gain for ensemble model

+0.008 to +0.15

Disability

Benchmark

0.10-0.31

Random forest

0.13-0.34

Elastic net

0.15-0.33

Random forest/elastic net
ensemble

0.16-0.35

Gain for ensemble model

—0.003 to +0.10

IDAS-Well Being

Benchmark

0.08-0.27

Random forest

0.19-0.34

Elastic net

0.19-0.40

Random forest/elastic net
ensemble

0.21-0.38

Gain for ensemble model

+0.05 to +0.19




Elastic Net and Random Forest make similar
predictions

Post-Deprexis HRSD

Cross-validation hold-out predictions
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Predictions by elastic net




Partial Dependence of HRSD on Dysthymia

Elastic Net Random Forest Elnet-RF Ensemble

—

2 4 6
PDSQ dysthymia PDSQ dysthymia PDSQ dysthymia




Relative importance of predictors of
RSD outcome

Elastic Net

PDSQ dysthymia
HRSD total

PDSQ somatization
ZIP disposable income
HRSD slowness
HRSD weight loss
CEQ credibility

Accept (min)

ZIP education

QIDS agitation

Relate (min)

CSSRS intensity

SDS total

Relax (min)

SDS missed work
PDSQ agoraphobia
PDSQ PTSD

PDSQ OCD

HRSD insomnia middle

QIDS suicidality

0.06
Relative variable importance

Random Forest

PDSQ dysthymia
HRSD total

PDSQ total

SDS total

PDSQ MDD

PDSQ somatization
Accept (min)

HRSD disinterest
Cope (min)

SDS workplace
Relax (min)

QIDS total score
PDSQ OCD

HRSD weight loss
PDSQ hypochondria
IDAS Il temper
PDSQ GAD

HRSD psychic anxiety
CEQ credibility

Relate (min)

0.05 0.10
Relative variable importance




Better outcomes for those living in less
affluent ZIP codes

100000 4

Residualized
change in HRSD
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Tree O

pdsq_mdd < 11.771484 usage_accept < 74.5

Zipcode_Median_Disposable_Income < 449225 | pdsq_dysthymia < 5.4960938 |
[NA]
>=
Zipcode_Prent_Married < 25.0 pdsq_ocd <2.125 Zipcode_Longitude <-97.5 | pdsq_ptsd <8 496094 | Zipcode_Latitude < 36. 0 | hrsd_anxiety_soma < 2.5

[NA] o < [NA]
< >=
usage_relax < 28.5 | I hrsd_appetite_loss < 1.5 | I CEQ_expectancy < 60.. 5 5 888889 | CSSRS_ideation < 15 | age <305 | Zipcode_Total_Crime_Risk < 82.5 | @
[NA] < [NA]
< >=

idas_well_being < 7.5 |

8.833333

idas_panic < 4.5

CEQ_credibility < 49.5 | | Zipcode_Prent_White < 73.5 | @

< [NA] [NA] =
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Averaging dumb trees = smart forest
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ipeode_Prent_Married < 25. n pd.lq_oed <2125 Zipeode_Longitude <-97.5 | | pdsq_ptsd < 8.496094 ‘ | Zipeode_Latitude < 36.0 I | hrsd_anxiety_soma <2.5
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Opportunities and Challenges

» Depression prognosis either has huge amount of irreducible error
or depends on complex phenotypes.

 Ensemble machine learning methods—like random forest—have
potential to identify these phenotypes, but will require
sufficiently large samples that can provide multiple examples of
these phenotypes.

» We need scalable data collection and therapeutic interventions to
realize full potential of these methods.
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