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 Characterization of Petrophysical Properties of Organic-rich Shales by 

Experiments, Lab Measurements and Machine Learning Analysis 

 

Han Jiang, Ph.D. 

The University of Texas at Austin, 2018 

 

Supervisor:  Hugh Daigle 

 

The increasing significance of shale plays leads to the need for deeper 

understanding of shale behavior. Laboratory characterization of petrophysical properties is 

an important part of shale resource evaluation. The characterization, however, remains 

challenging due to the complicated nature of shale. This work aims at better 

characterization of shale using experiments, lab measurements, and machine leaning 

analysis.  

During hydraulic fracturing, besides tensile failure, the adjacent shale matrix is 

subjected to massive shear deformation. The interaction of shale pore system and shear 

deformation, and impacts on production remains unknown. This work investigates the 

response of shale nanoscale pore system to shear deformation using gas sorption and 

scanning electron microscope (SEM) imaging. Shale samples are deformed by confined 

compressive strength tests. After failure, fractures in nanoscale are observed to follow 

coarser grain boundaries and laminae of OM and matrix materials. Most samples display 

increases in pore structural parameters. Results suggest that the hydrocarbon mobility may 

be enhanced by the interaction of the OM laminae and the shear fracturing. 

Past studied show that the evolution of pore structure of shale is associated with 

thermal maturation. However, the evolution of shale transport propreties related to thermal 
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maturation is unclear due to the difficulty of conducting permeability measurement for 

shale.This work studies evolution of permeability and pore structure measurements using 

heat treatment. Samples are heated from 110°C to 650°C. Gas sorption and GRI (Gas 

Research Institute) permeability measurements are performed. Results show that those 

petrophysical parameters, especially permeability, are sensitive to drying temperature. 

Multiscale pore network features of shale are also revealed in this study. 

Characterizing fluids in shale using nuclear magnetic resonance (NMR) T1-T2 maps 

is often done manually, which is difficult and subjected to human decisions. This work 

proposes a new approach based on Gaussian mixture model (GMM) clustering analysis. 

Six clustering algorithms are performed on T1-T2 maps. To select the optimal cluster 

number and best algorithm, two cluster validity indices are proposed. Results validate the 

two indices, and GMM is found to be the best algorithm. A general fluid partition pattern 

is obtained by GMM, which is less sensitive to rock lithology. In addition, the clustering 

performance can be enhanced by drying the sample.  
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Chapter 1: Introduction 

1.1 MOTIVATION AND OBJECTIVES  

In recent decades, shale gas has become a significant resource play in the USA. The 

combination of horizontal drilling and hydraulic fracturing allows the extraction of huge 

quantities of hydrocarbon from shale formations with extremely low permeability, which 

were previously thought to be either impractical or uneconomic (Wang et al., 2014; EIA 

2018). According to the U.S. Energy Information Administration (EIA 2018), the 

continued development of shale gas and tight oil resources supports growth in natural gas 

plant liquids production, which is projected to reach 5.0 million bbl/d in 2023, a nearly 

35% increase from the 2017 level. 

The increasing significance of shale gas plays leads to the need for deeper 

understanding of shale behavior. Laboratory characterization of petrophysical properties is 

an important part of shale gas resource evaluation. There are many petrophysical properties 

which govern whether a particular shale will become a shale gas resource. Josh et al. (2012) 

summarized the key factors for shale plays: (1) organic matter abundance, type and thermal 

maturity, (2) porosity-permeability relationships and pore size distribution, and (3) 

mechanical properties (brittleness) and their relationship to mineralogy and rock fabric. 

Shale is a fine-grained, organic-rich sedimentary rock with low porosity and low 

permeability, which behaves as both the source of and the reservoir for the hydrocarbons 

(Loucks and Ruppel 2007; Bhandari et al. 2015). Consisting of fine grains and organic 

matter, shale commonly contains a large proportion of micropores (< 2 nm) and mesopores 

(2-50 nm) (Loucks et al., 2009; Loucks et al., 2012). Gas sorption, especially N2 and CO2 

sorption, is one of the most widely used techniques to quantitatively characterize micropore 

and mesopore structure in shale (e.g. Bustin et al., 2008; Ross and Bustin, 2009; Adesida 
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et al., 2011; Chalmers et al., 2012; Kuila and Prasad, 2013a, b; Clarkson et al., 2013; Wang 

et al., 2014). The main information that we can obtain from gas sorption is porosity, pore 

size distribution, and pore structure (Kruk and Jaroniec 2001; Kuila and Prasad, 2013a, b). 

These are important properties of a porous medium and affect most of its behavior, 

including elastic and mechanical behavior and flow of fluids (Kuila and Prasad, 2013b). 

The economical production of hydrocarbon from shale depends on hydraulic 

fracturing. During hydraulic fracturing, a network of highly conductive fractures is created 

by tensile failure, which enhances hydrocarbon transport to the wellbore (Nolte, 2000; 

Arthur et al., 2009). The adjacent shale matrix is subjected to massive shear deformation, 

as shear mechanism is found active in the microseismicity induced by hydraulic fracturing 

(Maxwell and Cipolla, 2011; Williams-Stroud et al., 2013; Busetti et al., 2014; Roux, 

2016). Whether shear deformation may lead to microfractures and enhance hydrocarbon 

transportation from nano-scale organic matter pores to the larger tensile fracture remain 

unknown. It is vitally important for laboratory measurements to characterize the pore 

system at nanoscale and quantify the response to the shear deformation.  

Laboratory measurements of shale are challenging, and a lack of standardization in 

certain techniques makes comparing results difficult. Permeability measurements of shale 

typically employ unsteady-state methods, which include the pulse decay method (Brace et 

al., 1968; Dicker and Smits, 1988) and the GRI (Gas Research Institute) method (Luffel et 

al., 1993; Cui et al., 2009). For gas-based (e.g. helium, nitrogen) permeability methods, the 

shale sample often requires drying before the permeability measurement to obtain as 

accurate an estimate of the intrinsic permeability as possible (e.g. Cui et al., 2013; Alnoaimi 

et al., 2014; Heller et al., 2014; Ghanizadeh et al., 2015). However, in practice the drying 

temperature is often below 120°C, which may still cause the pore system to be only 

partially accessible to the probe gas, resulting in an incomplete characterization of shale 
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transport properties. In addition, past research has shown that when the temperature is 

above 300°C, the OM can be matured and create new pores and alter the structure of the 

pore system. All this leads to the need for a systematic investigation the evolution of shale 

permeability and pore structure after heat treatment.  

Characterizing the distribution of water, hydrocarbon, and organic matter within 

organic shale is an important aspect of shale analysis, and developing more reliable 

laboratory and analysis methods to this is another challenge. Low-field nuclear magnetic 

resonance (NMR) has proved to be a powerful technique for characterizing shale rock and 

tight oil (e.g. Mullen, 2010; Odusina et al., 2011; Lewis et al., 2013; Tinni et al., 2014). 

Recently, NMR T1-T2 2-D maps are commonly used for fluid characterization in shale 

(Washburn and Birdwell, 2013; Daigle et al., 2014; Gips et al., 2014; Fleury and Romero-

Sarmiento, 2016; Mehana and El-monier, 2016). However, the interpretation of the 

measurements result is often done manually, which is challenging and often subjected to 

human decisions. Furthermore, the complex nature of the shale pore/fluid system adds 

uncertainty for the interpretation. To overcome the challenge of the manual 

characterization method, it requires the exploration and development of advanced 

techniques such as machine learning.    

The main objectives of this dissertation are 1) to systematically investigate the 

response of the shale pore system to shear deformation at the nanoscale; 2) to study the 

effects of removal of fluids and thermal maturation on shale permeability and pore structure 

measurements; and 3) to develop a new fluid characterization approach using NMR T1-T2 

maps in shale based on clustering analysis. By the integration of experiments, lab 

measurements, and machine leaning analysis, this work allows a better characterization of 

shale petrophysical properties.   
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1.2 OUTLINE OF DISSERTATION 

The dissertation consists of 7 chapters, and the content of each chapter is briefly 

summarized below: 

Chapter 1 describes the problems and introduces the motivation and objectives of 

this project. 

Chapter 2 reviews the properties of the shale and shale pore system, and techniques 

that have been applied to study the petrophysical properties of shale including gas sorption, 

permeability methods, and NMR. The theory of clustering and related algorithms are also 

reviewed. 

Chapter 3 studies the response of shale pore system at nanoscale to shear 

deformation. Shale samples from the northern Rocky Mountains (NoRM) and the Eagle 

Ford (EF) Formations are experimentally deformed using confined compressive strength 

tests. N2/ CO2 sorption and scanning electron microscope (SEM) imaging are performed to 

characterize fracture effects on pore morphology at nanoscale. After failure, fractures with 

widths ranging from 10-100 nm up to 1-2 µm are observed to follow coarser grain 

boundaries and laminae of OM and matrix materials. Most samples display increases in 

pore structural parameters including Brunauer-Emmett-Teller (BET) surface area, N2/ CO2 

porosity and surface fractal dimensions after failure. Compared to other parameters, surface 

fractal dimensions are less sensitive to shear failure. The interaction of the OM laminae 

and the shear fracturing may improve the connectivity of the OM laminae to the adjacent 

rock matrix, and thus enhance the hydrocarbon mobility. 

Chapter 4 studies effects of removal of fluids and thermal maturation on 

permeability and pore structure measurements of shale. NoRM and EF shale samples are 

dried at four temperature levels (110°C, 250°C, 450°C, >= 600°C). N2 gas sorption and 

GRI (Gas Research Institute) permeability measurements are performed after each heating 
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level. Results show that BET surface area, N2 pore volume, GRI porosity and GRI 

permeabilities increase as drying temperature increases, due to a combination of 

progressive loss of volatiles with increasing temperature and artificially induced thermal 

maturation at high temperatures. GRI permeabilities are strongly affected by heating 

temperature, which suggest that caution is warranted in interpreting permeability 

measurements performed on shales. The results also indicate the multiscale pore network 

structure of the shale where a certain fraction of small pores could be partially or 

completely disconnected from the overall structure. 

Chapter 5 proposes a new fluid characterization approach of NMR T1-T2 in shale 

based on clustering analysis. Six clustering algorithms including Gaussian mixture model 

(GMM) are performed on T1-T2 maps of NoRM and EF samples at as-received and dried 

at 110°C conditions. Two cluster validity indices are proposed for the selection of cluster 

number and best algorithm. GMM is shown to be the best algorithm in most of the cases. 

The drying procedure helps to reveal the NMR footprint from organic matter, allowing 

better performance of clustering compared to fluid condition at as-received conditions.  

Chapter 6 extends the analysis of GMM clustering approach through the application 

to 4 organic-rich shale samples at as-received and dried at 110°C conditions. The two 

indices and GMM approach are further validated. Heating at 110°C can help to reveal the 

footprint of OM, generating better cluster performance. Fluid types identified at dried at 

110°C conditions are comparable with previous studies. In addition, the fluid partitioning 

rule obtained by GMM show a general pattern that is less sensitive to rock lithology. 

Chapter 7 summarizes this project and provides recommendations for future work. 
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Chapter 2: Background 

2.1 SHALE PORE SYSTEM 

Shale is a fine-grained, organic-rich sedimentary rock with low porosity and low 

permeability, which behaves as both the source of and the reservoir for the hydrocarbons 

(Loucks and Ruppel 2007; Bhandari et al. 2015). Consisting of fine grains and organic 

matter, shale commonly contains a large proportion of micropores (< 2 nm) and mesopores 

(2-50 nm) (Loucks et al., 2009; Loucks et al., 2012). These structures are critical for 

analyzing shale's sealing ability and mechanisms of hydrocarbon migration, as well as the 

storage state of gas and oil in shale (Wang and Ju, 2015). The characterization of the pore 

size distribution, specific surface area and total volume of micropores and mesopores is 

becoming the focus of a great deal of research (Bustin et al., 2008; Loucks et al., 2009; 

Ross and Bustin, 2009; Clarkson et al., 2013). 

Matrix-related pore networks for shale are composed of nanometer- to micrometer-

sized pores (Loucks et al., 2012). According to the classification system of Loucks et al. 

(2012), there are mainly three types of pores in shale: interparticle and intraparticle pores 

associated with the mineral matrix, and organic matter (OM) pores. The interparticles are 

pores found between particles and crystals (Figure 2.1). Intraparticle pores are pores 

located within particles, such as interplatelet pores with clay aggregates, and 

intercrystalline pores within pyrite framboids. OM pores are located within organic matter 

(Figure 2.2). Fracture pores are not part of the classification, as they are not controlled by 

the individual particles (Loucks et al., 2012) 

The OM pores are created during hydrocarbon maturation (Jarvie et al., 2007; 

Loucks et al., 2009; Bernard et al., 2012), and exhibit irregular ellipsoidal shapes with a 

pore size range from about 1 to 500 nm in most gas shale systems. This nanoporosity has 
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been interpreted as resulting from the exsolution of gaseous hydrocarbons during the 

secondary thermal cracking of retained oil and has been suggested to greatly influence, if 

not control, gas storage capacity and permeability of gas shale systems (Ambrose et al., 

2010; Curtis et al., 2010, 2012; Passey et al., 2010; Slatt and O'Brien, 2011).  

 

Figure 2.1 Example of interparticle (interP) and intraparticle (intraP) pores within shales. 
(a) Interparticle pores between quartz (Qtz) and calcite grains with cement 
overgrowths. The shale sample was from Lower Cretaceous Pearsall 
Formation, Maverick County, Texas. Vitrinite reflectance (Ro) = 1.5% 
(Loucks et al., 2012). (b) Sample contains intercrystalline-appearing interP 
pores. Intraparticle pores are also present in the center of the coccolith and 
along cleavage planes of distorted clay grains. The shale sample is from 
Upper Cretaceous Austin Chalk, La Salle County, Texas (Loucks et al., 
2012). Vitrinite reflectance (Ro) = 0.9 %. Two plots are from Figure 6 in 
Loucks et al. (2012).  

Vitrinite reflectance (Ro) is used to quantify the maturity of the shale samples. 

Shale with Ro less than 0.5~0.7% is considered immature; 0.5 to 0.7% < Ro <1.3% is 

referred to as the oil window; 1.3% < Ro < 2% is referred to as the zone of wet gas and 

condensate; and Ro > 2% is referred to as the dry gas zone (Tissot and Welte 2012). Besides 

thermal maturity, total organic carbon (TOC) content, mineral composition and OM type 
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can also affect the generation of OM-associated pores (Milliken et al. 2013; Mastalerz et 

al. 2013). 

 

Figure 2.2 Example of organic matter (OM) pores within shales. (a) Large OM particle 
with OM pores. Vitrinite reflectance (Ro) = approximately 1.6%. Sample 
was from Mississippian Barnett Shale, Wise County, Texas (Loucks et al., 
2012). (b) Organic-matter pores slightly aligned and showing complexity in 
third dimension. The shale sample had approximately 1.6% Ro. It was from 
Mississippian Barnett Shale, Wise County, Texas (Loucks et al., 2012). Two 
plots are from Figure 10 in Loucks et al. (2012).  

2.2 PORE CONNECTIVITY AND MULTIPLE SCALES 

OM-associated pores can be developed in both depositional OM and migrated OM. 

Depositional OM retains its position and shape from the time of deposition, while migrated 

OM may change shape and location in response to temperature and pressure during burial 

(Loucks and Reed, 2014). Increasing maturation can convert kerogen into bitumen, which 

can stay in place or migrate into the adjacent interparticle pores. Depositional OM and 

migrated OM can reduce the connectivity with adjacent inorganic matrix, which was 

supported by measurements of shale samples before and after OM removal (Kuila et al., 

2014). 
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The pore system in shales consists of disconnected networks of cracks and voids at 

multiple scales (Jiang et al. 2015; Daigle et al., 2017a, 2017b, 2018). The concept of 

multiscale pore network is depicted in Figure 2.3 (Daigle et al., 2017a). At the scale of 

about 10 microns, the individual organic matter clusters have a connected pore network. 

Those connected organic porosity clusters are connected through the intervening inorganic 

matter (Figure 2.3b). At higher scale (about 100 mirons), groups of organic matter clusters 

are connected through the inorganic matter (Figure 2.3c). An example of a pore network 

extracted from an x-ray microcomputed tomography (micro-CT) image is shown in Figure 

2.3d, which indicating typical multiscale networks.  

The importance of multiscale pore network features on shale permeability has been 

similarly demonstrated by other researchers (e.g. Ambrose et al., 2012; Mehmani et al., 

2013; Mehmani and Prodanović, 2014; Jiang et al., 2015; Xu et al., 2016; Tian and Daigle, 

2018b). For example, Tian and Daigle (2018b) constructed a shale network model based 

on nitrogen sorption isotherms of Barnett shale samples. By matching the measured 

permeability, the model showed that the pore spatial arrangement is related to the size of 

the pores, where pores with small size (< 8 nm) tend to develop on the walls of pores with 

larger size (> 8 nm). 

Petrophysical measurements performed on crushed shale samples present 

challenges to interpretation due to multiple scales of the shale pore system (Jiang et al. 

2015; Daigle et al., 2018). The disconnected network at multiple scales of shale pore 

systems causes sample fragments to have size-dependent response to mercury injection 

capillary pressure (MICP) and gas sorption measurements (Jiang et al. 2015). Daigle et al. 

(2018) computed the connectivity of the shale pore network using percolation theory based 

on MICP and gas sorption data. The results showed that many samples do not percolate at 

the scale of laboratory measurements, indicating a multiscale network.  
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Figure 2.3 Multiscale pore system in shale. (a) Individual connected organic porosity 
cluster. White circles indicate pores, and white lines indicate connections 
between pores. (b) Connected organic clusters. They are connected through 
the intervening inorganic matrix. (c) Grouping of organic matter clusters, 
themselves connected through the inorganic matrix. (d) Example rendering 
of pore and fracture network in one of the intact siliceous shale samples 
based on a segmented x-ray microcomputed tomography (micro-CT) 
volume, showing typical multiscale features. Pores are represented by red 
spheres, and connections are represented by white lines/planes. Figure is 
based on Daigle et al. (2017a) 
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2.3 GAS SORPTION 

Gas sorption, especially nitrogen (N2) and carbon dioxide (CO2) sorption, is one of 

the most widely used techniques to quantitatively characterize micropore and mesopore 

structure in shale (e.g. Bustin et al., 2008; Ross and Bustin, 2009; Adesida et al., 2011; 

Chalmers et al., 2012; Kuila and Prasad, 2013a, 2013b; Clarkson et al., 2013; Wang et al., 

2014). The main information we can obtain from gas sorption is porosity, pore size 

distribution, and pore structure (Kruk and Jaroniec, 2001; Kuila and Prasad, 2013a, 2013b).  

N2 is the most widely used gas and can measure pores with pore size between 0.8 

and 200 nm. CO2 sorption is used to characterize micropores (< 2 nm). The drawback of 

the sorption technique is its inability to measure pores with sizes larger than 200 nm. For 

a full characterization of the entire pore range, combining of gas sorption with traditional 

MICP measurements is suggested (Bustin et al, 2008; Ross and Bustin, 2009). This should 

be done with caution as the inverted pore information from different measurements are 

based on different simplifying assumptions and the different techniques record different 

aspects of the pore structure.  

During the sorption measurement (Figure 2.4), the adsorbate N2 is dosed into the 

sample in controlled pressure increments. The pressure is allowed to equilibrate between 

doses. The adsorbate molecules physisorb on the surface of the solid through 

intermolecular forces. At the end of adsorption, the internal surface of the sample will be 

completely covered and all pores will be filled by condensed adsorbate. Desorption then 

proceeds by withdrawal of gas in prescribed pressure decrements. The result, a set of 

pressures and adsorbed gas quantities, is called the isotherm. Pressure is reported as relative 

pressure, which is the normalized pressure with respect to saturation vapor pressure (about 

1 atm for N2 at 77 K). Adsorbed quantity is reported in gas volume over unit sample mass 

at standard pressure and temperature condition. 
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Figure 2.4 Example of gas adsorption and desorption isotherm of a shale sample using 
N2. The isotherm is the change of adsorption (desorption) gas quantity in 
term of relative pressure. The lower branch is the adsorption branch and the 
upper branch is desorption branch. Blue circles are the isotherm points 
collected during the measurements. Arrows indicate the direction of the 
pressure. Pressure is reported as relative pressure, which is the normalized 
pressure with respect to saturation vapor pressure (1 atm for N2 at 77K). The 
range of relative pressure is from 0 to 1. Adsorbed quantity is reported in 
gas volume per unit sample mass at standard pressure and temperature 
conditions.  

Since shale is rich in micropores and mesopores (Loucks et al., 2009; Loucks et al., 

2012), the adsorption process on shale pore walls starts with micropore filling, which 

occurs at very low relative pressure. As pressure increases, the adsorption for mesopores 

take places with two distinct stages: monolayer-multilayer adsorption and capillary 

condensation (Sing, 1985). In monolayer adsorption, all the adsorbed molecules are in 

contact with the surface of the adsorbent. In multilayer adsorption, the adsorption space 

accommodates more than one layer of molecules so that not all adsorbed molecules are in 
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direct contact with the surface of the adsorbent (Sing, 1985). In capillary condensation, the 

residual pore space which remains after multilayer adsorption has occurred is filled with 

condensed adsorbate separated from the gas phase by menisci.  

2.3.1 Hysteresis Mechanisms 

Gas adsorption-desorption isotherms exhibit hysteresis loops, where the desorption 

isotherm does not retrace the adsorption isotherm but rather lies above it over a range of 

relative pressures. The relative pressure point at which the loop is closed depends on the 

nature of adsorbate. For nitrogen at 77 K, the closure pressure point of the adsorption-

desorption isotherm is around P/P0 = 0.42 (Ravikovitch and Neimark, 2002).  

There are mainly three factors contributing to the adsorption/desorption hysteresis, 

including capillary condensation effects (Gregg and Sing, 1982; Pinson et al., 2018), pore 

network effects (Mason, 1982; Seaton 1991; Tanev and Vlaev, 1993), and cavitation effects 

(Kadlec and Dubinin, 1969; Burgess and Everett, 1970; Ravikovitch and Neimark, 2002; 

Thommes et al., 2006).  

The first effect is called the capillary condensation effect, which is due to 

differences in the shape of the liquid-vapor interface in an isolated pore during wetting and 

drying (Gregg and Sing, 1982; Pinson et al., 2018). Consider a simple pore consisting of a 

spherical cavity with a narrow cylindrical neck (Ravikovitch and Neimark, 2002). During 

adsorption, the pore filling process by condensation follows the formation of a liquid film 

on the cavity wall and thus is controlled by the radius of the curvature of the cavity 𝑟௖. 

During desorption, evaporation occurs after the formation of a hemispherical meniscus in 

the pore neck and is controlled by the radius of the neck 𝑟௡. The condensation pressure 

𝑝௖  is a function of the radius, according to the Kelvin-Laplace equation 
௣೎

௣బ
=

exp (−
ଶஓ୴భ

ோ்௥
), where 𝑝଴ is the saturation vapor pressure at the given temperature 𝑇, γ is 
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the liquid-vapor surface tension, vଵis the liquid molar volume, and 𝑅 is the universal gas 

constant. Since the cavity radius 𝑟௖ is greater than the neck radius 𝑟௡, the condensation 

pressure during desorption is higher than that of adsorption. 

The second effect is the pore network effect, which can act to broaden hysteresis in 

a system with a wide range of pore sizes and good pore connectivity (Pinson et al., 2018). 

The additional hysteresis is due to some pores remaining full below the relative pressure at 

which the empty state is thermodynamically favored, because they lack the connection with 

the vapor phase that is necessary to nucleate the liquid-to-vapor transition (Seaton 1991; 

Tanev and Vlaev, 1993).  

The third effect that controls desorption at low relative pressure is called cavitation 

(Ravikovitch and Neimark, 2002; Groen et al., 2003; Thommes et al., 2006). This theory 

is developed to explain the lower closure point of sorption hysteresis loops (Kadlec and 

Dubinin, 1969; Burgess and Everett, 1970). The cause of the closure of desorption and 

adsorption branch is that the condensed phase becomes unstable at sufficiently low 

pressure. Upon further pressure decrease, the liquid-vapor meniscus ceases to exist and 

results in a forced closure of the hysteresis loop (Groen et al., 2003). 

2.3.2 BET Surface Area 

The Brunauer-Emmett-Teller (BET) method is used to calculate the specific surface 

area (Brunauer et al., 1938; Gregg and Sing, 1982; Sing, 1985; Roque-Malherbe, 2007). 

This method is derived in a similar fashion to the Langmuir isotherm, but with the 

allowance for multilayer adsorption. The relative pressure range used for calculation is 

between 0.05 to 0.3 (Webb and Orr, 1997). The relative pressure and the quantity of gas 

adsorbed may be transformed into a linear relationship (Brunauer et al., 1938): 
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1

𝑄(
𝑝଴

𝑝
− 1)

= ൬
𝐶 − 1

𝑄௠𝐶
൰ ൬

𝑝

𝑝଴
൰ +

1

𝑄௠𝐶
, (2.1) 

where 𝑄 is the gas adsorbed quantity, 𝑝/𝑝଴ is the relative pressure, 𝑄௠ is the monolayer 

capacity, and 𝐶 is a constant.  

The BET method treats the expression on the left-hand side as a linear function in 

terms of  𝑝/𝑝଴  on the right-hand side. Using a least-squares fit, one can obtain the slope 

and intercept. Two coefficients 𝑄௠ and C and be obtained from that, and specific surface 

area (hereinafter referred as BET surface area) can be calculated from the following 

equation (Sing, 1985):  

𝐴஻ா் = 𝑁஺

𝑄௠

𝑄௠௢௟
𝜎, (2.2) 

where 𝑁஺ is the Avagadro constant, 𝜎 is the cross-sectional area effectively occupied by 

an adsorbed molecule (Roque-Malherbe, 2007), and 𝑄௠௢௟ is the adsorption quantity per 

unit mass at standard temperature and pressure. 

2.3.3 Pore Size Distribution  

Geometric topology information like pore size distribution can be extracted from 

the adsorption isotherm. The Barrett-Joyner-Halenda (BJH) method and density functional 

theory (DFT) are two common methods applied to compute pore size distribution (Roque-

Malherbe, 2007). BJH considers the adsorption process as monolayer-multilayer 

adsorption and condensation based on Kelvin’s equation and a statistical adsorbed film 

thickness equation (Barrett et al. 1951). DFT, on the other hand, provides a modern 

statistical thermodynamic approach for calculating pore size distribution (Adesida et al., 

2011). A detailed description of DFT can be found in Roque-Malherbe (2007). Because 
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the BJH model cannot account for interaction between adsorbed molecules and the 

opposing pore wall, which becomes important in pores < 7 nm in width, it fails to interpret 

micropores in a rigorous fashion (Lastoskie et al. 1993). DFT takes this interaction into 

consideration and works well in micropores, but it does not provide a direct relation 

between pressure and pore size which makes sorption modeling difficult. More details  

can be found from Appendix A. 

2.4 OVERVIEW OF PERMEABILITY MEASUREMENTS 

The low permeability of shale not only presents a challenge for commercial 

production, but also for experimental measurements of rock samples. Methods to determine 

permeability of low permeability rock cores and crushed rock samples directly can be 

divided into two categories: steady-state and unsteady-state.  

2.4.1 Steady-state Method 

The steady-state method is the standard to determine permeability for conventional 

rocks in the laboratory (e.g. Jones and Meredith,1998; Amann-Hildenbrand et al., 2012, 

2013; Dong et al., 2012; Gensterblum et al., 2014). It is regarded as an accurate and reliable 

technique, with the advantage of a comparatively simple experimental set-up and a 

straightforward analytical solution (Sander et al., 2017). However, the time required to 

reach equilibrium is usually very long for rock samples with low permeability (Cui et al., 

2009). For this reason, steady-state techniques are typically not used to measure the 

permeability of shale. 
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2.4.2 Pulse Decay Method 

Due to the low permeability of shale, the most popular methods are unsteady-state 

methods, which include the pulse decay method and GRI method. These involve 

calculating the permeability based on pressure vs. time data. 

The pulse decay method (Figure 2.5) appears to be the most commonly applied 

experimental method to determine permeability in low-permeability porous media (e.g. 

Brace et al., 1968; Kwon et al., 2001; Escoffier et al., 2005; Billiotte et al., 2008; Fedor et 

al., 2008; Chalmers et al., 2012; Firouzi et al., 2014; Mokhtari and Tutuncu, 2015; Zhang 

et al., 2015, 2016; Cao et al., 2016; Kumar et al., 2016). This method gains its popularity 

from its shorter experimental run times, and higher resolution for very low permeability 

measurements, compared with the steady-state method (Coyner et al., 1993; Cui et al., 

2009). 

 

Figure 2.5 Example of the set-up of a pulse decay experiment. It consists of an upstream 
reservoir of volume Vu, a downstream reservoir of volume Vd, and a cell 
capable of applying hydrostatic confining pressure (Pc) and containing a 
cylindrical rock sample with a total pore volume Vp. The figure is from Cui 
et al. (2009). 
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Brace et al. (1968) proposed the pulse decay method to determine the nanodarcy 

permeability of granite using water and argon. The basic setup is presented in Figure 2.5. 

The pulse decay apparatus consists of an upstream reservoir, a downstream reservoir, and 

a cell capable of applying confining pressure. The sample, which is usually cylindrical, is 

held in the pressurized cell. Upstream and downstream pressures are measured by pressure 

transducers. The pressure difference between the upstream and downstream ends is 

measured by differential pressure transducers (Sander et al., 2017; Cui et al., 2009). Many 

set-ups also allow for an axial load to be applied to the sample during the experiment 

(Sander et al., 2017). 

2.4.3 GRI Method 

The GRI method, proposed by Luffel et al. (1993), is a variation of the pulse decay 

method (Sander et al., 2017). It is also commonly referred to as the pressure fall-off method 

(Cui et al., 2013). It provides an permeability estimation using a crushed sample. The 

crushed sample is analyzed in an apparatus consisting of a reference and a sample cell, 

valves and pressure transducers (Figure 2.6). The system should be temperature controlled, 

as gas properties like compressibility are assumed to be constant for permeability 

calculation (Cui et al., 2009). No confining pressure can be applied to the sample in this 

experimental set-up (Luffel et al., 1993).  

The advantages of the GRI method applied to crushed samples (also known as the 

‘crushed method’) lie in the speed of the experiments compared with core plug experiments 

(Luffel et al., 1993), as well as in the ability to use cuttings, which are typically easier to 

obtain than intact core plugs. The other advantage of the GRI method is that can provide a 

better estimation of shale matrix permeability, as crushing is believed to eliminate fractures 
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created by coring and handling (Luffel et al., 1993; Handwerger et al., 2011; Cui et al., 

2013; Ghanizadeh et al., 2015).  

The drawbacks of the method are: (1) performing measurements on crushed 

samples potentially eliminates the influence of larger scale features (such as microcracks), 

(2) the inability to perform measurements at reservoir conditions or measure how 

permeability evolves during production (Heller et al., 2014), and (3) no ability to control 

the direction of flow. In other words, only isotropic permeability can be measured. 

 

 

Figure 2.6 Example of the set-up of the GRI method using crushed sample. It consists of 
a reference chamber and a sample chamber. Black particles represent 
crushed shale samples. The reference chamber and sample chamber are kept 
in a temperature-controlled box (not shown in the figure) to keep a constant 
temperature. 

2.4.4 Measurement and Calculation of GRI Method 

The apparatus for the GRI measurement is shown in Figure 2.6. Initially, all valves 

are opened to the atmosphere through the outlet. A known weight of crushed sample is 

introduced to the sample chamber. Before the measurement, the sample is allowed to 
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stabilize for a few hours. The system is then evacuated using a vacuum pump (depicted as 

Stage 1 in Figure 2.7a). Then valves 1 and 3 are closed, and valves 2 and 4 are sequentially 

opened. Pressurized helium gas (around 220 psi) fills the reference chamber, and the 

system is allowed to equilibrate for a few minutes for stabilization (Stage 2 in Figure 2.7a). 

Then valve 1 is opened and the helium expands from the reference chamber into the sample 

chamber. The helium pressure immediately drops to a new value by filling the dead space 

in the sample chamber and subsequently decays as gas permeates the shale particles (Stage 

3 in Figure 2.7). 

Bulk porosity of the shale sample can be computed from the GRI measurement 

based on the Boyle’s law. The vacuum pressure (𝑃ଵ) at Stage 1 is calculated by the mean 

of pressure points with values less than 0.5 psi. The pressure at Stage 2 (𝑃ଶ) is the mean of 

pressure points during that period. The final decay equilibrium pressure (𝑃ଷ) at Stage 3 is 

the mean of the last several pressure points. The porosity is calculated using the following 

equation (Cui et al., 2009):  

𝛷 = ൤𝑉௥ ൬
𝑃ଶ

𝑧ଶ
−

𝑃ଷ

𝑧ଷ
൰ + (𝑉௦ − 𝑉௕) ൬

𝑃ଵ

𝑧ଵ
−

𝑃ଷ

𝑧ଷ
൰൨ /(

𝑃ଷ

𝑧ଷ
−

𝑃ଵ

𝑧ଵ
)𝑉௕ , (2.3) 

where 𝑉௥, 𝑉௦ are volumes of reference and sample chambers, 𝑉௕ is the bulk volume of 

the sample, and 𝑧ଵ, 𝑧ଶ, and 𝑧ଷ are the compressibility factors of helium at pressures 𝑃ଵ, 

𝑃ଶ, and 𝑃ଷ.  

Gas transport in tight and fine-grained porous rocks may be due to diffusion, 

advection, or a combination of both (Cui et al., 2009). In either case, gas transport can be 

described by diffusion-type equations with density (or gas pressure) as the primary 

unknown (Cui et al., 2009). Sample particles are assumed to be spheres, so the diffusivity 

equation in spherical coordinates is expressed as:   
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Figure 2.7 Example of recorded pressure data over time using a shale sample. (a) 
Pressure data includes Stage 1, Stage 2, and early time for Stage 3. (b) Early 
time for Stage 3 of the selected window in the plot of (a). Stage 1 is the 
period when the system is evacuated by a vacuum pump. Stage 2 is the 
period when pressurized helium gas fills the reference chamber. The Stage 3 
is the period when helium expands from the reference chamber into the 
sample chamber. The entire measurement for Stage 3 is about 17-24 hours. 
The units of the time are second, and the units of pressure are psi.  

𝜕𝜌

𝜕𝑡
=

𝐾

𝑟ଶ

𝜕

𝜕𝑟
൬𝑟ଶ

𝜕𝜌

𝜕𝑟
൰ . (2.4) 

The transport coefficient 𝐾 is defined as: 

𝐾 =  
𝑘

𝜇𝑐௚𝛷
 , (2.5) 

where the 𝑐௚  is the gas compressibility, 𝜇  is the viscosity of the gas, 𝑘  is the 

permeability and 𝛷 is the porosity of the sample.  
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The boundary conditions are: 

𝜕𝜌

𝜕𝑟
= 0       𝑎𝑡 𝑟 = 0 , (2.6𝑎) 

−4𝑁𝜋𝑅௔
ଶ

𝑘

𝜇𝑐௚

𝜕𝜌

𝜕𝑟
= 𝑉௖

𝜕𝜌

𝜕𝑡
      𝑎𝑡 𝑟 = 𝑅௔  , (2.6𝑏) 

where 𝑁 = 3𝑀/4𝜌௕𝜋𝑅௔
ଷ, 𝑀 is the sample mass, 𝜌௕ is the sample bulk density, and 𝑉௖ 

is the dead volume of both sample cell and reference cell.  

The initial conditions are: 

𝜌 = 𝜌଴       𝑓𝑜𝑟 0 ≤ 𝑟 < 𝑎    𝑎𝑡 𝑡 = 0 , (2.7𝑎)  

and 

𝜌 = 𝜌௖଴       𝑓𝑜𝑟  𝑟 =  𝑅௔    𝑎𝑡 𝑡 = 0 , (2.7𝑏) 

where 𝜌଴ is the initial free gas density in the sample particles before gas expansion, 𝜌௖଴ is 

the average initial free gas density in the dead space in both sample and reference cells.  

The analytical solution for gas density 𝜌 in the void volume of the reference and 

sample cells given above conditions is expressed as (Carslaw and Jaeger, 1959; Cui et al., 

2009): 

𝜌 = 𝜌௖଴ −  
𝜌௖଴ − 𝜌଴

(𝐾௖ + 1)
+ 6𝐾௖(𝜌௖଴ − 𝜌଴) ෍

𝑒
ି

௄ఈ೙
మ

ோೌ
మ ௧

𝐾௖
ଶ𝛼௡

ଶ + 9(𝐾௖ + 1)

ஶ

௡ୀଵ

 , (2.8) 

where α௡ is the 𝑛௧௛ root of  

𝑡𝑎𝑛 𝛼 =  
3𝛼

3 + 𝐾௖𝛼ଶ
 . (2.9) 
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𝐾௖ is expressed as a function of reference volume 𝑉௥, sample volume 𝑉௦, sample 

bulk volume 𝑉௕ and porosity Φ.  

𝐾௖ =
(𝑉௥  +  𝑉௦)

 𝑉௕  𝛷
  , (2.10) 

Rearrange the above equation, we have  

𝐹𝑅(𝑡) = 6𝐾௖(𝐾௖ + 1) ෍
𝑒

ି
௄ఈభ

మ

ோೌ
మ ௧ 

𝐾௖
ଶ𝛼௡

ଶ + 9(𝐾௖ + 1)
 , (2.11)

ஶ

௡ୀଵ

 

where 𝐹𝑅(𝑡) is defined as the gas fraction in the void volume of the reference and sample 

cells that will, but has not yet, penetrated into the sample particles. In addition, the 

adsorption effect of helium on the pore space can be ignored.   

If 𝐾௖ is large (e.g. 𝐾௖ > 50), which implies that the gas reservoir or total void 

volume of the reference and sample cells are much larger than the gas storage capacity of 

the sample particles, the logarithmical value of 𝐹𝑅 becomes a linear function of time (Cui 

et al., 2009). The logarithm form of Equation (2.11) can be expressed as 

𝑙𝑛(𝐹𝑅) =  𝑏 −
𝐾𝛼ଵ

ଶ

𝑅௔
ଶ

𝑡 . (2.12)  

Through linear regression, the slope 
௄ఈభ

మ

ோೌ
మ   of Equation (2.12) can be obtained. Based 

upon Equation (2.5), the permeability 𝑘 can thus be estimated.  

2.5 NUCLEAR MAGNETIC RESONANCE 

Nuclear magnetic resonance (NMR) refers to the response of atomic nuclei to 

magnetic fields (Callaghan, 1993, Coates et al., 1999). It is a non-destructive method for 

characterization of porous materials. The two fundamental parameters that are investigated 
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are the longitudinal relaxation time T1 and the transverse relaxation time T2. The values of 

T1 and T2 depend on the fluid types, pore sizes and materials that make up the pore walls 

(Coates et al., 1999; Daigle et al., 2014). Based on those features, NMR measurements give 

insight of the pore structures and fluids of the rock. It is routinely applied in downhole 

logging (Mullen, 2010; Lewis et al., 2013) as well as lab investigation (Odusina et al., 

2011; Tinni et al., 2014). 

2.5.1 NMR Theory 

NMR measurements can be made on nuclei with an odd number of protons or 

neutrons or both, such as hydrogen (1H), carbon (13C), and sodium (23Na). Hydrogen, which 

has only one proton and no neutrons, is abundant in both water and hydrocarbons, has a 

relatively large magnetic moment, and produces a strong signal. Almost all NMR logging 

and NMR rock studies of porous media are based on responses of the nucleus of the 

hydrogen atom (Coates et al., 1999). 

The first step of making an NMR measurement is to align magnetic nuclei with an 

external magnetic field B0. When subjected to B0, the hydrogen nuclei tend to precess and 

align with the direction of external magnetic field. The precessional frequency 𝑓 is called 

Larmor frequency, and is given by: 

𝑓 =
𝛾𝐵଴

2𝜋
 , (2.13) 

where 𝛾 is the gyromagnetic ratio, a measure of the strength of the nuclear magnetism.  

Different nuclei have different 𝛾 values. For 1H, 𝛾/2𝜋 = 42.58 MHz/T (Coates 

et al., 1999). For a given nuclear species, the gyromagnetic ratio has a fixed value, and the 

Larmor frequency is a function of the strength of the static magnetic field (Coates et al., 

1999). 
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A measurable net magnetization in the longitudinal direction (z axis; Figure 2.8) is 

established through the alignment of protons. Applying a 90° oscillating B1 in the 

transverse plane perpendicular to B0 causes the magnetization to tip 90° to transverse plane 

(x-y plane; Figure 2.9). When the B1 field is turned off, the proton population begins to 

dephase, or lose phase coherency—that is, the precessions of the protons will no longer be 

in phase with one another. Therefore, as dephasing progresses, the net magnetization 

decreases (Figure 2.9; Coates et al., 1999). 

The longitudinal relaxation T1 is measured by the inversion recovery method. In 

the inversion recovery method, the first 180° pulse inverts the magnetization 180° relative 

to the static magnetic field. After a specific wait time (the inversion time), a 90° pulse 

rotates the magnetization into the transverse plane, and the degree of recovery of the initial 

magnetization is measured (Coates et al., 1999). 

The transverse relaxation T2 is measured by CPMG (Carr-Purcell-Meiboom-Gill) 

sequence (Carr and Purcell, 1954; Meiboom and Gill, 1958). CPMG is a series of 180° 

pulses following the 90° oscillating pulse B1. This pulse sequence can partially rephase the 

protons and generate a series of magnetization signals called a spin-echo train. Due to 

irreversible dephasing of molecular interactions and diffusion, the magnitude of the spin-

echo train decays, and is characterized by a time constant T2 (Coates et al., 1999).  
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Figure 2.8 Buildup of magnetization in z direction. The magnetization is denoted by the 
red arrow. 

 

Figure 2.9 Decay of magnetization in x-y plane. The magnetization is denoted by the red 
arrow. 

The expressions for T1 and T2 are: 

𝑀௭(𝑡) = 𝑀଴௭ ൬1 − 𝑒
ି

೟

೅భ൰ , (2.14)  

𝑀௫௬(𝑡) = 𝑀଴௫௬𝑒
ି

௧

మ்  , (2.15) 

where 𝑀௭(𝑡) is the magnitude along the z axis. 𝑀଴௭ is the final and maximum 

magnetization. 𝑀௫௬(𝑡) is the magnitude along the x-y plane. 𝑀଴௫௬ is the initial 

magnetization for the transverse relaxation. 
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2.5.2 Relaxation Mechanisms 

For fluids in porous media, three independent relaxation mechanism are involved: 

bulk fluid processes, which affect both T1 and T2 relaxation; surface relaxation, which 

affects both T1 and T2 relaxation; and diffusion in the presence of magnetic field gradients, 

which only affects T2 relaxation (Coates et al., 1999).  

T1 and T2 of pore fluids may be expressed as:  

1

𝑇ଶ
=

1

𝑇ଶ஻
+

1

𝑇ଶௌ
+

1

𝑇ଶ஽
, (2.16)  

1

𝑇ଵ
=

1

𝑇ଵ஻
+

1

𝑇ଶௌ
 . (2.17) 

𝑇ଵ୆ and 𝑇ଶ஻ are the bulk relaxation the pore fluid as it would be measured in a 

container so large that container effects would be negligible. Tଶୗ and 𝑇ଶ௦ are the surface 

relaxation times of the pore fluid resulting from the pore surface. 𝑇ଶ஽ is the T2 diffusion 

relaxation time of the pore fluid as induced by diffusion in the magnetic field gradient. 

Furthermore, T2 can be written as: 

1

𝑇ଶ
=

1

𝑇ଶ஻
+ 𝜌ଶ ൬

𝑆

𝑉
൰ +

𝐷(𝛾𝐺 𝑇𝐸)ଶ

12
 , (2.18) 

where 𝜌ଶ is T2 surface relaxivity (T2 relaxing strength of the grain surfaces), 
ௌ

௏
 is ratio of 

pore surface area to volume, D is molecular diffusion coefficient, 𝛾  is gyromagnetic 

ratio of a proton, G is field-strength gradient, and TE is inter-echo spacing used in the 

CPMG sequence. 

T1 can be written as: 

1

𝑇ଵ
=

1

𝑇ଵ஻
+ 𝜌ଵ ൬

𝑆

𝑉
൰ , (2.19) 
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where 𝜌ଵ is T1 surface relaxivity (T1 relaxing strength of the grain surfaces) and 
ௌ

௏
 is ratio 

of pore surface area to volume. 

2.5.3 NMR Inversion 

2.5.3.1 Multi-exponential Decay 

Equation (2.15) can be expressed in units of porosity (or fluid volume) by assuming 

100% water saturation, which can be done by calibration sample made of a known volume 

of water:  

𝑚(𝑡) = 𝜙𝑒
ି

௧

మ்  , (2.20) 

where 𝜙 is the rock porosity.  

A natural rock commonly exhibits a distribution of pore sizes and frequently 

contains more than one type of fluid. Thus, instead of a single-exponential decay, Equation 

(2.20) should be expressed as a summation of multiple exponential components:  

𝑚(𝑡) = ෍ 𝜙௝𝑒
ି

௧
்మೕ  , (2.21) 

where 𝜙௝ is the porosity coefficient which contributes to the total porosity from pores 

associated with the 𝑗௧௛ component and 𝑇ଶ௝ is the decay constant of the 𝑗௧௛ component 

of transverse relaxation.  

In the measurement data, the decay function 𝑚(𝑡) is a function of amplitude over 

n points of timestamp. Furthermore, the continuous T2 distribution is discretized into q 

points. Expressing Equation (2.21) as a system of equations yields  
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⎝

⎜
⎛

𝑚ଵ

𝑚ଶ…
𝑚௜…
𝑚௡⎠

⎟
⎞

=

⎝

⎜⎜
⎛

𝐾ଵ,ଵ ∗ 𝜙ଵ + 𝐾ଵ,ଶ ∗ 𝜙ଶ + ⋯ + 𝐾ଵ,௝ ∗ 𝜙௝ + ⋯ + 𝐾ଵ,௤ ∗ 𝜙௤

𝐾ଶ,ଵ ∗ 𝜙ଵ + 𝐾ଶ,ଶ ∗ 𝜙ଶ + ⋯ + 𝐾ଶ,௝ ∗ 𝜙௝ + ⋯ + 𝐾ଶ,௤ ∗ 𝜙௤
…                                   …                               …

𝐾௜,ଵ ∗ 𝜙ଵ + 𝐾௜,ଶ ∗ 𝜙ଶ + ⋯ + 𝐾௜,௝ ∗ 𝜙௝ + ⋯ + 𝐾௜,௤ ∗ 𝜙௤
…                                   …                               …

𝐾௡,ଵ ∗ 𝜙ଵ + 𝐾௡,ଶ ∗ 𝜙ଶ + ⋯ + 𝐾௡,௝ ∗ 𝜙௝ + ⋯ + 𝐾௡,௤ ∗ 𝜙௤⎠

⎟⎟
⎞

, (2.22) 

where 𝐾௜,௝ = 𝑒
ି

೟೔
೅మೕ, 𝑖 is the 𝑖௧௛ time index, 𝑗 is the 𝑗௧௛ pore component index. 

The matrix form of Equation (2.22) is: 

𝑚 = 𝐾𝜙,         𝐾 ∈ ℝ௡∗௤ ,     𝑚 ∈ ℝ௡,    𝜙 ∈ ℝ௤   , (2.23) 

2.5.3.2 Inversion Technique 

One common method is using direct matrix inversion to find out the best porosity 

components ϕ୧(i = 1, . . . , n) (Hansen, 2010; Medellín et al., 2015; Medellín et al., 2016). 

The residual 𝑒௜ is defined as: 

𝑒௜  =  𝑚௜  − ෍ 𝐾௜,௝𝜙௝ , (2.24) 

It represents the difference between the 𝑖௧௛  observed decay and 𝑖௧௛  response 

value that is predicted by the linear model. The residual sum of squares (RSS) is defined 

as: 

𝑅𝑆𝑆 = 𝑒ଵ
ଶ + 𝑒ଶ

ଶ + ⋯ + 𝑒௜
ଶ + ⋯ + 𝑒௡

ଶ , (2.25) 

or: 

𝑅𝑆𝑆 = ෍(𝑚௜  − ෍ 𝐾௜,௝𝜙௝)
ଶ

௡

௜ୀଵ

, (2.26)   

RSS is called loss function. The goal is to find out the best porosity components 

ϕ୧(i = 1, . . . , n), so that the loss function can be minimized (Hansen, 2010). However, due 
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to the nature of inversion problem, a small random perturbation of 𝑚 can lead to very 

large perturbation of ϕ. In practice, an additional term called a regularization term is added 

to the RSS (Hansen, 2010). The final expression for the loss function with regularization 

is: 

𝐿𝑜𝑠𝑠 = ෍(𝑚௜  − ෍ 𝐾௜,௝𝜙௝)
ଶ

+ 

௡

௜ୀଵ

𝜆 ෍ 𝜙௝
ଶ = 𝑅𝑆𝑆 + 𝜆 ෍ 𝜙௝

ଶ

௣

௝ୀଵ

௣

௝ୀଵ

, (2.27)   

where λ is a tuning parameter for the regularization term.  

A small λ poses a small regularization effect on the cost function, so the solution 

might still be affected by noise in the measurement. On the other hand, a large λ can lead 

to artificial smoothing of the solution. The choice of λ needs to be made carefully. A 

detailed discussion of choosing the tuning parameter can be found in Bauer and Lukas 

(2011).   

Since 𝜙 cannot below zero, non-negative least square (NNLS) or linear 

programming (LP) can be used to solve for the loss function. The algorithm of NNLS 

follows the work of Lawson and Hanson (1995), which is available in MATLAB as 

LSQNONNEG.  

2.5.4 NMR 2-D T1-T2 Measurement 

For conventional reservoirs, the standard T2 NMR measurement is sufficient to 

detect the quantity of water or gas in the porous media. However, for complex porous 

media such as shales, a single type T2 or T1 is not enough (Fleury and Romero-Sarmiento, 

2016). The pore sizes are typically in the nanometer range, leading to very short T2 

relaxation times. In addition, a significant amount of the porosity in shales resides in 

organic phases (Washburn and Birdwell, 2013), giving rise to the possibility of 
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homonuclear dipolar coupling between fluids present and the organic matrix. This makes 

the interpretation of the shale system challenging. Although T1 is easier to measure 

compared with T2, the amount of signal measured from the T1 experiments is often 

significantly less than what is determined by T2 experiments. The low signal quality of T1 

leads to difficulty in characterizing the sample, and new NMR techniques are required to 

better understand the describe shale samples (Washburn and Birdwell, 2013)  

Because of the above problems, using T1/T2 2D measurement on shale has become 

popular in recent years (Washburn and Birdwell, 2013; Daigle et al., 2014; Gips et al., 

2014; Fleury and Romero-Sarmiento, 2016). The T1-T2 method provides better 

differentiation between the different fluids responses. T1/T2 ratio is a function of fluid 

viscosity and pore size (Daigle et al., 2014; Fleury and Romero-Sarmiento, 2016). For a 

small-molecular size and low-viscosity fluid like water, the T1/T2 ratio is close to 1. The 

ratio will increase with an increase in molecular size and viscosity.  

Furthermore, Daigle et al., (2014) introduced a method to map T1 and T2 to two 

new variables: T1/T2 ratio (denoted as 𝑅) and secular relaxation time (denoted as 𝑇𝑠): 

𝑅 =
𝑇ଵ

𝑇ଶ
 , (2.28)  

𝑇𝑠 =  
1

1
𝑇ଶ

−
1
𝑇ଵ

 =
𝑇ଶ𝑇ଵ

𝑇ଵ − 𝑇ଶ
 , (2.29)  

𝑅 and 𝑇𝑠 are functions of pore size and viscosity. 𝑅 is about 1 for viscosity less 

than 1000 poise and increases at higher viscosities. On the contrary, 𝑇𝑠 is large at low 

viscosity and decreases with increasing viscosity (Daigle et al., 2014). What’s more, 𝑇𝑠 

is sensitive to the variation of the pore size. In smaller pores, interactions with 

paramagnetic ions on pore walls become important cause of relaxation, causing 𝑇𝑠 to 
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decrease (Daigle et al., 2014). Based on characteristics of 𝑅 and Ts, seven regions are 

defined and shown in Figure 2.10. Linear decision boundaries are chosen to cut the new 2-

D space into non-overlapping sub-spaces where each sub-space represents one fluid type 

(Daigle et al., 2014; Jiang et al., 2018b). 

 

Figure 2.10 Relaxation regimes on 𝑅 and 𝑇𝑠. Seven regions are defined. Figure is 
modified from Daigle et al. (2014). 

2.6 CLUSTER ANALYSIS  

Machine learning is a branch of artificial intelligence based on the idea that systems 

can learn from data, identify patterns and make decisions with minimal human 

intervention. Cluster analysis is a type of machine learning approach to discover the natural 

groups of a set of observations (Jain et al., 1999; Gan et al., 2007; Jain, 2010; Aggarwal 

and Reddy, 2013). Cluster analysis has been widely applied in numerous fields such as 

image segmentation (Shi and Malik, 2000; Comaniciu and Meer, 2002), document retrieval 
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(Sahami and Koller, 1998; Bhatia and Deogun, 1998), biology (Baldi and Hatfield, 2002; 

Yeung et al., 2003), and geochemistry (Templ et al., 2008; Grunsky, 2010). It can be an 

alternative method for fluid characterization of T1-T2 maps in shale. 

2.6.1 Basic Notions 

A dataset used for clustering is a set of n observations denoted as {𝒙𝟏, 𝒙𝟐, … 𝒙𝒏}. 

An observation 𝒙𝒊 is a single data item, which consists of a vector of m elements:  𝒙𝒊 =

(𝑥௜,ଵ, 𝑥௜,ଶ, … 𝑥௜,௠). The individual elements are called features or dimensions. The dataset 

can be viewed as a 𝑛 × 𝑚 matrix. 

A distance measure is a metric of the n-dimensional feature space used to quantify 

the similarity of observations (Jain et al., 1999). The most popular distance measure is the 

Euclidean distance. A detailed discussion of distances can be found in Jain et al. (1999). 

The expression for Euclidean distance between 2 observations 𝒙௜ and 𝒙௝ is below: 

𝑑൫𝒙𝒊, 𝒙𝒋൯ = ඩ෍(𝑥௜,௞ − 𝑥௝,௞)ଶ

௠

௞ୀଵ

, (2.30) 

where 𝑥௜,௞ − 𝑥௝,௞  is the difference of the two observations 𝑖  and 𝑗  in the 𝑘௧௛ 

dimension.  

2.6.2 Algorithms 

The process of clustering is to assign observations to different groups, so that 

observations in the same group are as similar as possible, and observations in different 

groups are as dissimilar as possible (Jain, 2010; Aggarwal and Reddy, 2013). There are 

thousands of clustering algorithms proposed in the literature (Jain, 2010), and the popular 
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algorithms can be described with the help of the taxonomy of clustering (Figure 2.11; Jain 

et al., 1999; Jain, 2010).  

Clustering algorithms can be broadly divided into two branches at the top level: 

hierarchical and partitional (Jain et al., 1999; Jain, 2010). In the hierarchical method, each 

observation starts with itself as a cluster, and clusters are successively merged together to 

form larger clusters. The algorithm recursively produces a nested series of partitions. The 

partitional method, on the other hand, produces all the partitions at the same time without 

imposing the hierarchical structures. There are 5 major approaches including squared error, 

density-based, model-based, graph theoretic, and mode seeking (Jain et al., 1999; Jain, 

2010). 

 

Figure 2.11 Taxonomy of clustering approaches.  

Most hierarchical algorithms are variants of the single linkage (Sneath and Sokal, 

1973), complete linkage (King, 1967) and minimum-variance or Ward linkage (Ward, 

1963; Murtagh, 1983). The difference in between the three methods are the definition of 

cluster distance. In simple linkage, the distance between the two clusters is the minimum 
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of the distances between all pairs of observations drawn from the two clusters. In complete 

linkage, the distances are the maximum distances of all pairwise observation distances. In 

Ward linkage, the distance is the increase in the sum of cluster distances when the new 

observation is added to the cluster.   

For partitional algorithms, the most intuitive and frequently used criterion function 

is the squared error criterion (Jain et al., 1999). The expression of the squared error criterion 

for a clustering 𝛼 of a data set A is: 

𝑒ଶ(𝛼, 𝐴) = ෍ ෍ቛ𝒙𝒊
(𝒋)

− 𝒄𝒋ቛ
ଶ

௡ೕ

௜ୀଵ

௄

௝ୀଵ

, (2.31) 

Where 𝒙𝒊
(௝) is the 𝑖௧௛ data point belonging to the 𝑗௧௛ cluster, 𝒄𝒋 is the centroid of the 

𝑗௧௛ cluster. 𝐾 is the total cluster number. 𝑛௝  is the total number of points for 𝑗௧௛ 

cluster. 

The most popular and simplest algorithm for squared error criterion is k-means 

(Steinhaus, 1956; Ball and Hall, 1965; MacQueen, 1967). The k-means algorithm starts by 

randomly choosing k observations as cluster centers. Observations are assigned to the 

closest cluster centers. Then, the mean of observations within each cluster becomes the 

new cluster center. This process is repeated until some convergence criteria are met (e.g. 

no new reassignment of cluster labels).  

One type of partitional methods is the density-based clustering. In density-based 

clustering, clusters are defined as the high-density regions in the feature space separated 

by low-density regions. It can be used for detecting clustering with an arbitrary geometry. 

One widely used method is density-based spatial clustering of applications with noise 

(DBSCAN) (Ester et al., 1996).  
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Another type of clustering is called model-based clustering. It assumes that data is 

generated from a mixture of components, where each component is described by one 

probability distribution. Often the distribution is assumed to be Gaussian (Day, 1969; 

McLachlan et al., 1999; Fraley and Raftery, 2006), so the method is called the Gaussian 

mixture model (GMM). Model parameters are solved iteratively by the expectation-

maximization algorithm (Dempster et al., 1977; Neal and Hinton, 1998; McLachlan and 

Krishnan, 2007).  

Graph theoretic clustering is one type of clustering method. One popular such 

algorithm is called spectral clustering (Shi and Malik, 2000; Stella and Shi, 2003). It builds 

a weighted graph in which nodes correspond to observations and edges are related to the 

distance between the observations (Jain 1999, Ng et al., 2002). It separates the graph into 

exactly two parts and recursively finds k clusters (Ng et al., 2002).  

The last branch that is covered in this article is mode seeking. The mode is the local 

maxima of probability density functions (Sasaki et al., 2017). One famous method, mean 

shift, makes use of modes of the estimated density function for clustering (Fukunaga and 

Hostetler, 1975; Cheng, 1995). The mean shift method starts by regarding all data samples 

as potential cluster centers. It interactively updates them toward the nearest modes. The 

observations that converge to the same mode are assigned the cluster labels (Sasaki et al., 

2017). 
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Chapter 3: Porosity-deformation Relationships in Organic-rich Shale1 

3.1 INTRODUCTION 

Shales exhibit a wide range of textures, compositions, and mechanical properties 

(Loucks et al., 2009; Loucks et al., 2012; Pommer and Milliken, 2015; Eliyahu et al., 2015; 

Emmanuel et al., 2016). Diagenesis controls much of this variation through burial, 

compaction, cementation, and thermal maturation. As the original porosity in the sediment 

collapses with burial (e.g. Velde, 1996), some pores can be preserved within both detrital 

and diagenetically produced or altered grains (e.g. Desbois et al., 2009). Intragranular 

porosity is particularly important in organic matter (OM) (Loucks et al., 2009; Loucks et 

al., 2012; Pommer and Milliken, 2015), as opposed to intergranular pores between grains 

in the surrounding matrix of clay, cement, and other materials (e.g. Schneider et al., 2011). 

These pore systems can be related to one another, because the fine pore network and 

connectivity can be dependent not just on the abundance of OM, but also on its distribution 

(Loucks and Reed, 2014). Here, we explore how deformation that occurs during 

unconventional production via hydraulic fracturing can have a varying effect on porosity 

due to these diagenetically produced textural variations. 

Diagenetic processes directly lead to the properties of shale, in turn impacting 

production efforts at the field scale. During hydraulic fracturing, a network of highly 

conductive fractures enhances hydrocarbon transport to the wellbore (Nolte, 2000; Arthur 

et al., 2009). The fluid injection brings the rock volume to shear failure, causing micro-

                                                 

1 This chapter is based on: Jiang, H., H. Daigle, N. W. Hayman, and K. L. Milliken. “Porosity-
deformation relationships in organic-rich shale”, AAPG memoir (2018a). (in press)  

Daigle, H., N. W. Hayman, E. D. Kelly, K. L. Milliken, and H. Jiang. "Fracture capture of organic 
pores in shales." Geophysical Research Letters 44, no. 5 (2017b): 2167-2176. 
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seismicity and enhanced permeability (Dusseault, 2011; Maxwell and Cipolla, 2011; 

Williams-Stroud et al., 2013; Busetti et al., 2014; Roux, 2016). Modeling of field 

production data suggests that the permeability of the rock lying between the main, induced, 

meter-spaced fractures is enhanced by a factor of 10-100 (Patzek et al., 2013). It stands to 

reason that as the main fractures are reactivated, additional damage in the matrix between 

the fractures could further expand the zone responsible for production, and numerical 

simulations have indeed shown that the shear deformation may be able to reactivate 

networks of pre-existing fractures and faults (Johri and Zoback, 2013).  

The induced shear deformation may cause microfractures and enhance hydrocarbon 

transportation from nano-scale organic matter pores to the larger tensile fracture. 

Characterization the shale pore system at nanoscale, however, remains challenging. Shale 

commonly contains a large proportion of micropores (< 2 nm) and mesopores (2-50 nm) 

(Loucks et al., 2009; Loucks et al., 2012). Some clay pores are even less than 1 nm (Kuila 

and Prasad, 2013b), which is below the resolution of imaging techniques. Gas sorption, 

especially N2 and CO2 sorption, can quantitatively characterize micropore and mesopore 

structure in shale (e.g. Bustin et al., 2008; Ross and Bustin, 2009; Adesida et al. 2011; 

Chalmers et al., 2012; Kuila and Prasad 2013a, 2013b; Clarkson et al., 2013; Wang et al., 

2014). The main information we can obtain from gas sorption is porosity, pore size 

distribution, and pore structure (Kruk and Jaroniec 2001; Kuila and Prasad 2013a, 2013b).  

In this study, we experimentally introduced shear deformation on shale samples 

using confined compressive strength tests. Gas sorption was used to characterize pore 

structure before and after failure at the nanometer (nm) scale as well as scanning electron 

microscope (SEM) imaging. We used data from multiple aliquots of each sample to reduce 

bias of results due to sample heterogeneity. Key parameters of pore morphology including 

pore size distribution (PSD), BET surface area, and surface fractal dimension were 
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calculated from sorption measurements. When complemented by (SEM) imaging, this 

allows the more comprehensive study of deformation changes associated with shale nano-

scale pore structure. Furthermore, effects including bedding, total clay and cementation, 

shape and distribution of organic matter were discussed.  

3.2 DIAGENETIC HISTORY 

The focus of this study is on the mechanisms for nanoscale porosity change due to 

field-scale hydraulically induced fracture by considering the micromechanics of failure. 

The distinct depositional setting, characteristic grain assemblages, and systematic contrast 

in organic matter content of the two shale units we focus on here impact the evolution of 

porosity and mechanical rock properties (Milliken, 2014). By contrasting two very 

different shale types (see Table 3.1 for X-ray diffraction (XRD) data), we aim to resolve 

the role of diagenetic components in the deformation.  

The Eagle Ford Formation, in southern Texas, is a coccolithic, organic-rich shale 

that contains a mixture of mineral- and OM-hosted pores of both primary and secondary 

origins (Pommer and Milliken, 2015). Destruction of primary porosity and generation of 

secondary porosity in high-maturity samples is controlled by the relative physical and 

chemical stabilities of the grain assemblage and early diagenetic components as they 

undergo later diagenesis burial diagenetic processes, including abundant microquartz 

cement (Milliken et al., 2016). Pommer and Milliken (2015) reported the maturity of the 

samples by vitrinite reflectance ranges from low maturity (0.5% Ro) to high maturity (1.3% 

Ro). The total organic carbon (TOC) has a wide range from 1.2-13.6 wt.%.  

In contrast, the samples from the northern Rocky Mountains are considerably more 

quartz-rich (40-60 wt.%). In general, the quartz in siliceous shales takes several forms: 

extrabasinal detrital silt (some with an earlier diagenetic history as exemplified by 
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transported pre-transport overgrowths), replacement of skeletal debris, minor overgrowths 

on detrital quartz and replaced radiolaria, pore-filling in the intragranular pores of 

allochems, and authigenic microquartz that is dispersed through the clay-size matrix 

(Milliken and Olson, 2017). The overall porosity decline is compaction-dominated, despite 

the exceptional abundance of cement. Milliken and Olson (2017) proposed that the 

presence of significant volumes of cement would lead to brittle behavior where cements 

are most prominently developed. The maturity of shale samples by vitrinite reflectance 

ranges from 0.72% - 1.1% Ro, and the total organic carbon (TOC) ranges from 1.55 to 3.75 

wt.% (Milliken and Olson, 2017). We return to this topic of cementation and embrittlement 

in the Discussion section. 

3.3 METHODS 

The sampling and experimental workflow is shown in Figure 3.1. Samples were 

from an organic shale in the northern Rocky Mountains (NoRM) and the Eagle Ford shale 

(EF). We drilled core plugs parallel and perpendicular to the bedding planes. Samples were 

deformed by confined compressive strength tests. After the tests, failed samples drilled 

parallel to bedding are referred to as horizontally failed (HFail), while failed samples 

drilled perpendicular to bedding are referred to as vertically failed (VFail). Imaging and 

sorption measurements were performed on intact and shear failed samples. Detailed 

procedures are described below.  

3.3.1 Samples 

A total of 8 organic-rich shale cores were used in this study, with 3 samples (EF 

1_223, EF 2_50, EF 2_93) from the Eagle Ford unit (hereinafter referred as EF shale), and 

5 samples (NoRM 3_14, NoRM 3_42, NoRM 3_53, NoRM 4_14, NoRM 4_34) from the 
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northern Rocky Mountains, referred to as NoRM shale. The location of the NoRM shale is 

withheld by the donor though the samples are similar to those described by Milliken and 

Olson (2017). All samples were preserved in mineral oil until experimentation. We found 

no sign of mineral oil imbibing into the samples through nuclear magnetic resonance 

measurements (Daigle et al., 2017b).  

 

 

Figure 3.1 Sampling and experimental workflow. NoRM refers to the shales from the 
northern Rocky Mountains. EF refers to the shales from Eagle Ford. Failed 
samples drilled parallel to bedding are referred to as horizontally failed 
(‘HFail’). Failed samples drilled perpendicular to bedding are referred to as 
vertically failed (‘VFail’). Samples without confined compressive strength 
tests are referred to as ‘Intact’. 
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3.3.2 XRD and Rock-eval 

The mineralogy of the shale was analyzed using XRD by Weatherford Laboratories 

in Houston, Texas. The data are listed in Table 3.1. Following Milliken (2014), the total 

clay content and total cement content are estimated by the following equations:  

𝑇𝑜𝑡𝑎𝑙 𝑐𝑙𝑎𝑦 =  𝐼𝑙𝑙𝑖𝑡𝑒/𝑀𝑖𝑐𝑎 +  𝑀𝑥 𝐼/𝑆 , (3.1) 

𝑇𝑜𝑡𝑎𝑙 𝑐𝑒𝑚𝑒𝑛𝑡 =  𝑐𝑎𝑙𝑐𝑖𝑡𝑒 ∗  0.5 +  𝑞𝑢𝑎𝑟𝑡 ∗  0.85, (3.2) 

where Mx I/S is mixed-layer illite/smectite.  

Assumptions for the above equations are that 50% of calcite takes the form of 

cement, which is a common assumption in carbonate-rich rocks (Bathurst, 1972); and 

authigenic quartz has recently been reported to be 85% (or more) of total quartz in both the 

EF and NoRM shales (see Milliken et al., 2016; Milliken and Olson, 2017). 

Table 3.1 Summary of XRD results in weight percent. Mx I/S is mixed-layer 
illite/smectite. The total clay = Illite/Mica + Mx I/S. The total cement = 
calcite * 0.5 + quartz * 0.85. Samples from the Eagle Ford formation have 
names starting with ‘EF’. Samples from the northern Rocky Mountains 
formation have names starting with ‘NoRM’.  

Sample 
Illite/ 
Mica Mx I/S Calcite Quartz 

Total  
clay 

Total 
cement 

EF 1_223 11 8 62 13 19 42 
EF 2_50 19 21 40 13 40 31 
EF 2_93 6 7 70 10 13 44 

NoRM 3_14 19 19 3 41 38 36 
NoRM 3_42 13 10 1 55 23 47 
NoRM 3_53 9 11 1 54 20 46 
NoRM 4_14 10 9 0 63 19 54 
NoRM 4_34 19 13 0 52 32 44 
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XRD shows that calcite dominates the EF shale samples, whereas quartz dominates 

the NoRM samples. Clay minerals (illite/smectite and illite/mica) are present in significant 

amounts in both lithologies, whereas the quartz and calcite contents differ quite 

dramatically between the two. The bulk mineralogy is generally consistent with that found 

from previous research on EF shale (Pommer and Milliken, 2015) and NoRM shale 

(Milliken and Olson, 2017).  

Rock-eval analysis was conducted by Weatherford Laboratories in Houston, Texas. 

According to the results (Table 3.2), the total organic carbon (TOC) content of the Eagle 

Ford samples varies from 3.12 to 4.73 wt.%, while the TOC of NoRM samples has a wider 

variation, from 2.82 to 4.56 wt.%. 

Table 3.2 Summary of rock-eval results. TOC = Total Organic Content wt.%; S1 = 
volatile hydrocarbon content, mg/g; S2 = remaining hydrocarbon generative 
potential, mg/g; S3 = carbon dioxide content, mg/g; HI = hydrogen index; OI 
= oxygen index.  

Sample 
TOC 
(%) S1 S2 S3 

Tmax 
(°C) HI OI 

EF 1_223 3.12 8.69 4.83 0.46 445 155 15 
EF 2_50 3.79 7.26 5.44 0.45 444 144 12 
EF 2_93 4.73 7.83 4.92 0.41 448 104 9 

NoRM 3_14 4.40 4.54 2.6 0.37 454 59 8 
NoRM 3_42 4.56 5.02 2.72 0.43 460 60 9 
NoRM 3_53 3.15 2.42 1.56 0.25 452 50 8 
NoRM 4_14 3.64 5.18 2.36 0.21 459 65 6 
NoRM 4_34 2.82 2.58 1.57 0.24 457 56 9 

3.3.3 Confined Compressive Strength Test 

The received shale cores were subsampled using a low-rate coring machine with 

mineral oil as a lubricating fluid. One core plug was drilled parallel to the bedding planes, 

and another one was drilled perpendicular to the bedding planes (Figure 3.2a). Each plug 
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was 2.54 cm (1”) in diameter and 5-7 cm in length. They were preserved in light mineral 

oil until experimentation.  

Shear failure was induced by subjecting samples to confined compressive strength 

tests (Figure 3.2b). The core plug was wrapped in a thermo-shrinkable sleeve before being 

loaded into the testing cell. During the test, the confining stress increased to 10 MPa over 

the course of 1 min. The axial stress was increased by displacing the axial ram at a rate of 

0.01" per minute. The test was completed when sample failure occurred.   

 

 

Figure 3.2 (a) Illustraion of coring. One core plug is drilled parallel to the bedding planes, 
and another one is drilled perpendicular to the bedding planes. (b) Stress 
conditions during confined compressive strength tests. (c) Illustration of 
where imaging and gas sorption material was taken from the failed samples. 
We took the material from the main fractures plane for images and gas 
sorption.  
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Figure 3.3 Illustraion of SEM material of (a) intact NoRM sample, (b) failed NoRM 
sample, (c) intact EF sample, (d) failed EF sample. The subsamples are 
chosen to be on or near the major fractures. The orientation of subsample 
preparation provided views of the bedding planes (‘Bed’) or cross-sectional 
views (‘X section’). 

3.3.4 SEM Imaging 

For imaging, 46 subsamples (Figure 3.2c, Figure 3.3) were selected from 8 samples 

of the NoRM and Eagle Ford shales (Daigle et al., 2017b). These samples reflect deformed 

and intact counterparts. The orientation of subsample preparation provided views of the 

bedding planes (‘Bed’) or cross-sectional views (‘X section’), from cores either 

‘horizontally failed’ or ‘vertically failed’ with respect to bedding. The SEM images for 

failed samples were chosen to be on or close to the major fractures as shown in Figure 3.3. 
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Imaging was performed using a FEI Nova Nano SEM 430 FE-SEM (field-emission 

scanning electron microscope). Prior to the confined compressive strength tests, about 1 

cm of material was removed from the bottom of the core plugs for imaging. After the test, 

a 1 cm slice of material was removed from the middle of each core plug for imaging. 

Subsamples were prepared in-house via ion milling (Milliken et al., 2013) and Ir coating 

(4-5 nm thickness). Both backscattered electron and x-ray elemental maps via EDS (energy 

dispersive x-ray spectroscopy) were collected. 

3.3.5 Gas Sorption 

Low pressure N2 and CO2 sorption measurements were conducted using a 

Micrometitics 3Flex surface analyzer. We performed measurements on multiple aliquots 

of materials of each sample to ensure repeatability and mitigate the effects of cm-scale 

heterogeneity. Sample material was collected from the core plugs before and after the 

confined compressive strength tests. A total of 8 HFail samples and 2 VFail samples (EF 

1_223 and NoRM 3_53) were used for the measurements. Samples were oven dried at 

110°C for 24 hours and hand crushed to less than 40 US mesh (0.42 mm). Approximately 

1-1.5 g of crushed sample was used for N2 gas sorption at 77 K and CO2 sorption at 273.15 

K.  

Given the area covered by each adsorbed molecule, the surface area of the solid 

surface thus can be calculated. The method used to calculate the surface area is called 

Brunauer-Emmett-Teller (BET) method, which incorporates multilayer coverage during 

adsorption (Brunauer et al., 1938; Yang et al., 2014). The pore size distribution (PSD) 

represents the pore volume abundance of each pore size in the sample. Here, we computed 

PSDs by nonlocal density functional theory (NLDFT; Roque-Malherbe, 2007; Adesida et 
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al., 2011) with slit-shaped carbon pores (Tarazona, 1985; Tarazona and Vicente, 1985). 

More details on gas sorption theory can be referred to Chapter 2.3. 

Integrating the N2 and CO2 pore size distributions, we calculated the meso-

/macropore volume (pore diameter > 2 nm) and the micropore volume (pore diameter < 2 

nm), according to the classification of International Union of Pure and Applied Chemistry 

(IUPAC; Sing, 1985).  

3.3.6 Surface Fractal Dimension 

Shale is a multi-scale, heterogeneous material with a complex pore structure. As 

such, it is difficult to describe the geometry of the solid surface. Fractal theory provides a 

powerful tool to characterize heterogeneous media like shale. We computed two fractal 

dimensions based on N2 adsorption data ( 𝐷ଵ  and 𝐷ଶ ). 𝐷ଵ  is the fractal dimension 

calculated from the N2 adsorption isotherm with relative pressure < 0.45, and 𝐷ଶ is the 

dimension from the isotherm with relative pressure > 0.45. Detailed description about 

fractal theory and surface fractal dimension are in the following section.  

3.3.6.1 Overview of Fractal Dimension 

To describe the fractal dimension, we first introduce the concept in a simple fashion 

by using an example of a regular 1-D line (Figure 3.4). The line initially has unit length. If 

we magnify the line by a factor of 2 (the magnification factor 𝑟), the line becomes two 

units long. The total number (𝑁) of unit length lines is also 2.  

The dimension 𝐷 for a regular l-D line is:  

 𝐷 =
𝑙𝑜𝑔(𝑁) 

𝑙𝑜𝑔(𝑟)
 =

𝑙𝑜𝑔(2) 

𝑙𝑜𝑔(2)
=  1 . (3.3)  
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Figure 3.4 Example of a regular 1-D line. A line may be broken into 𝑁 self-similar sub-
lines, each with magnification factor r. For a normal 1-D line, 𝑟 and 𝑁 are 
the same. 

Using this formula, we can calculate the fractal dimension of a Koch curve, a 

mathematical fractal curve (Addison, 1997). As shown in Figure 3.5, when the line length 

increases from unit length to 3 unit lengths (𝑟 = 3), the total number of unit lines becomes 

4 instead of 3.  

 

Figure 3.5 Illustration of fractal theory using a 1-D Koch curve. 𝑟 is the magnification 
factor. 𝑁 is the total number of unit length lines. Note: The fractal 
dimension of the line given 𝑟 = 9 is also equal to 1.26. 

The fractal dimension 𝐷 is: 

𝐷 =
𝑙𝑜𝑔(𝑁) 

𝑙𝑜𝑔(𝑟)
 =

𝑙𝑜𝑔(4) 

𝑙𝑜𝑔(3)
=

𝑙𝑜𝑔(16) 

𝑙𝑜𝑔(9)
 =  1.26 . (3.4) 

3.3.6.2 Surface Fractal Dimension from N2 Sorption 

One widely used fractal model is the surface fractal, where surfaces or boundaries 

separating mass and pore spaces are fractal. Surface fractal are measured by surface fractal 

dimension 𝐷. For simplicity, we use the notation 𝐷 for surface fractal dimension. The 

value of the surface fractal dimension varies from 2 to 3. A value of 2 indicates a smooth 

surface, whereas 3 indicates an extremely rough surface.  
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N2 adsorption data can be used to compute the surface fractal dimension. The 

method used for this purpose is called Frenkel-Halsey-Hill (FHH) method (Frenkel, 1946; 

Hill, 1946; Halsey, 1948), and it is the most effective and widely used model for evaluating 

surface fractal dimension from gas adsorption data (e.g. Yang et al., 2014; Liu et al., 2015; 

Jiang et al., 2016).  

The surface fractal dimension 𝐷 can be determined as  

𝑉

𝑉௠
 ∝ [ 𝑅𝑇 𝑙𝑛 ൬

𝑃଴

𝑃
൰]

௞

, (3.5)  

where 𝑉 is the volume of adsorbed gas molecules at equilibrium pressure 𝑃, 𝑉௠ is the 

volume of gas molecules in a monolayer, 𝑅  is the universal gas constant, 𝑇  is the 

absolute temperature when the isotherm is obtained, and 𝑃଴ is the saturated vapor pressure 

of nitrogen at temperature 𝑇  (Sokołowska et al., 2001; Yang et al., 2014). 𝑘  is a 

coefficient related to the surface fractal dimension D as D = k + 3 (Jaroniec et al., 1997).    

Incorporating this relationship between 𝐷 and 𝑘, Equation 3.5 can be written in 

log-log form:  

𝑙𝑛(𝑉) = (𝐷 − 3) 𝑙𝑛(𝑙𝑛(𝑃଴/𝑃)) + 𝐶 , (3.6) 

where 𝐶 is an additional constant that accounts for the amount of adsorbed volume when 

the fractal regime is first reached (Jiang et al., 2016). The value of 𝐷 is obtained by 

applying a linear regression for regression for 𝑙𝑛(𝑉) versus 𝑙𝑛(𝑙𝑛(𝑃଴/𝑃)). 

In this work, we computed two fractal dimensions based on N2 adsorption data (𝐷ଵ 

and 𝐷ଶ). 𝐷ଵ is the fractal dimension calculated from N2 adsorption isotherm with relative 

pressure < 0.45, and 𝐷ଶ is the dimension from the isotherm with relative pressure > 0.45. 

Previous studies showed that the two fractal dimensions have different values, which is 
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probably due to different gas sorption mechanisms in these two regions (Wang et al., 2015; 

Jiang et al., 2016). 

3.3.7 About Experiments and Measurements 

The limitation for SEM images is that only a local region is chosen for imaging, 

which is ususally around tens of micrometers in scale. It therefore may not be 

representative of the entire core plug. There is also a lack of information about the third 

dimension of the pore structure. The limitation of pore sizes determined fromgas sorption 

is that it is an indirect method, and all parameters are calculated based on physical models, 

which may not represent natural rocks like shale with chemically heterogeneous pore 

surfaces. The pore size distribution is computed using an inversion technique (Appendix 

A), and may not represent the actual pore size distribution due to errors from inversion. In 

addition, there might still be disconnected pore networks which were not accessed by the 

probing gas, although we crushed the rock. 

In any laboratory study of fracturing behavior, there is always the question of which 

fractures are induced experimentally, which are generated during core retrieval and 

handling, and which are present in situ in the subsurface. Specifically, the hand crushing 

procedure for the gas sorption measurements may open new fractures. Though we cannot 

rule out that some of the fractures were caused by the sampling process, we note that there 

were quantifiable differences between pre- and post-failure porosity that was correlated 

with lithology, and hence diagenetic history. Since we applied the same handling 

procedures for porosity measurements of intact and failed rock, the uncertainty due to 

artifacts from that particular measure is assumed to be minimized. 
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3.4 RESULTS 

3.4.1 SEM Imaging 

  SEM images provide the in-situ documentation of the microfracture and pore 

system in NoRM vs. EF samples, as well as information on the amount of cement and 

detrital clay minerals, and textural information about porosity distribution (Figures 3.6-

3.8). The microstructure of NoRM samples are a mixture of laminated and particulate OM 

between predominantly quartz grains. On the other hand, the EF samples are dominated by 

coarser calcite grains, and most organic matter is dispersed throughout the samples.  

After failure (Figure 3.7), fractures with widths ranging from 10-100 nm up to 1-2 

µm are observed to follow coarser grain boundaries and laminae of OM and matrix 

materials. In more laminated materials, fracture lengths are up to hundreds of micrometers, 

which are likely continuous across entire sample volume. Some fractures initiate along 

grain contacts and primarily propagate through OM.  

Though the textural and diagenetic controls on porosity distribution are 

undoubtedly more complex, our limited observations find that the siliceous NoRM samples 

in particular have instances where the least cemented sample (e.g. Figure 3.8a, b) have 

highly porous OM and enhanced porosity within deformed clay aggregates. More 

cemented samples (e.g. Figure 3.8c, d) have less porous OM and less ‘distributed’ porosity 

within the cemented matrix.  

Above analysis provides a qualitative assessment of the characteristics of fracture 

induced by shear deformation. In addition, Tian and Daigle (2018a) proposed an automated 

fracture detection technique on image based on machine learning, and analyzed 100 SEM 

images obtained from these same intact and failed samples. Twenty-four of the images 

were measured from EF samples, and 76 were from NoRM samples. Their results showed 
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that the failed NoRM samples had slightly more detectable microfractures (2.2 

fractures/image) than the intact samples (1.7 fractures/image). The lengths of the fractures 

in failed NoRM samples tended to be longer than those in intact samples. On the other 

hand, failed EF samples had a similar number fractures on average compared to intact 

samples (1.6 fractures/image), and the lengths of the fractures in failed EF samples were 

smaller than those in intact EF samples. They concluded that the observed fractures were 

evidence of interaction of preexisting fabric of the samples with the experimentally induced 

deformation (Tian and Daigle, 2018a) 

 

 

Figure 3.6 SEM images of the intact samples from two shale formations. (a) SEM image 
of an intact NoRM 3_42 sample. The brightest regions are pyrite framboids. 
The OM particulates contain a complex pore structure. The darkest regions 
of the images are mostly organic matter. The brightest regions are pyrite 
(Py), while pores appear black. (b) SEM image of an intact EF sample (EF 
1_223). Pores (black) occur within organic matter (OM) dispersed within 
calcareous matrix of predominately coocolith fragments (white). NoRM 
refers to the shales from the northern Rocky Mountains. EF refers to the 
shales from Eagle Ford. Image IDs are (a) 12-3_42_BP_Xsec_Sample12, 
(b) 40-1_223_BN_Xsec_40_area5a. 
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Figure 3.7 SEM images of horizontally failed shale samples. Axial stress is applied 
normal to image. (a) SEM image of a horizontally failed NoRM 3_14 
sample. The fracture intersected pores in OM, but bypassed intergranular 
pores. (b) SEM image of a horizontally failed EF 2_93 sample. NoRM 
refers to the shale form the northern Rocky Mountains. EF refers to shale 
from Eagle Ford. Image IDs are (a) 08-3_14_BP_Xsec_BSE_FEI_8Area1, 
(b) 34-2_93_BP_Xsec_34_area_2b. 

3.4.2 Gas Sorption 

Eight horizontally failed samples and two vertically failed (EF 1_223 and NoRM 

3_53) samples were characterized using N2 and CO2 gas sorption measurements. The 

calculated BET specific surface areas, N2 total pore volume, CO2 total pore volume and 

two surface fractal dimensions 𝐷ଵ and 𝐷ଶ for all samples are presented in Table 3.3.   

3.4.2.1 Isotherms and Pore Size Distributions 

Gas sorption isotherms are shown in Figure 3.9 and Figure 3.10 for N2 and CO2, 

respectively. Failed and intact samples from the same core are plotted in the same sub-

figure. After shear failure, most samples from the two formations show an increase of their 

sorption quantity for both N2 and CO2. Sample NoRM 3_14 has the largest increase in the 

sorption quantity for N2, while NoRM 4_14 has the largest increase in the sorption quantity 
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for CO2. The vertically failed samples, including samples EF 1_223 and NoRM 3_53, 

exhibit greater sorption quantities compared with the horizontally failed samples.   

 

Figure 3.8 More SEM images of horizontally failed siliceous NoRM shale samples. (a) 
EDS-BSE compositional map of the horizontally failed NoRM 3_14 
illustrating the composition (relatively cement poor and clay rich), and 
cracks both along the central fracture as well as within clay aggregates. (b) 
SEM image of the vertically failed NoRM 3_14 showing OM pores next to 
cracked clay aggregates, (c) SEM image of the vertically failed NoRM 
3_53, which was relatively cement rich and clay poor, (d) SEM image of the 
horizontally failed NoRM 4_34 with relatively nonporous OM. Image IDs 
are (a) 08-3_14_BP_Xsec_EDS_8area3, (b) 10-3_14_BN_Xsec_10, (c) 26-
3_53_BN_Xsec_26_Area6, and (d) 38-4_34_BP_Xsec_BSE_38_area2a.  
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Table 3.3 Summary of pore structural parameter results. ‘HF’ refers to horizontally failed 
samples, ‘VF’ refers to vertically failed samples, and ‘In’ refers to intact 
samples. NoRM refers to the shales from the northern Rocky Mountains. EF 
refers to the shales from Eagle Ford. 

Sample Label 

BET 
surface 

area 
(m2/g) 

N2 pore 
volume 
(cm3/g) 

CO2 pore 
volume  

(10-3 

cm3/g) 

Fractal 
dimension 

𝐷ଵ 

Fractal 
dimension 

𝐷ଶ 

EF 1_223 
 
 
 

HF 1 4.80 0.015 0.72 2.42 2.64 
HF 2 4.80 0.016 0.77 2.41 2.62 
VF 1 5.27 0.015 0.87 2.43 2.63 
VF 2 5.56 0.016 - 2.45 2.64 
In 1 4.32 0.014 0.65 2.40 2.63 
In 2 4.94 0.015 0.85 2.41 2.63 

EF 2_50 
 
 

HF 1 6.19 0.019 0.75 2.41 2.64 
HF 2 5.38 0.017 0.82 2.40 2.64 
In 1 6.22 0.019 0.95 2.40 2.63 
In 1 6.29 0.019 1 2.41 2.63 

EF 2_93 
 
 

HF 1 7.34 0.022 0.86 2.43 2.65 
HF 2 7.98 0.023 0.75 2.41 2.65 
In 1 6.90 0.021 0.81 2.42 2.64 
In 2 6.82 0.021 0.77 2.41 2.64 

NoRM 3_14 
 
 
 

HF 1 11.25 0.021 1.93 2.51 2.65 
HF 2 11.77 0.021 2.03 2.54 2.64 
In 1 8.06 0.014 1.54 2.53 2.65 
In 2 7.70 0.013 1.57 2.54 2.65 
In 3 8.02 0.013 - 2.55 2.66 
In 4 8.44 0.014 - 2.53 2.65 

NoRM 3_42 
 

 
 

HF 1 10.44 0.010 1.48 2.65 2.71 
HF 2 8.95 0.010 1.45 2.62 2.70 
In 1 9.80 0.013 1.78 2.61 2.67 
In 2 10.22 0.011 1.77 2.62 2.69 
In 3 9.23 0.011 1.69 2.63 2.68 
In 4 9.02 0.010 1.75 2.64 2.68 

NoRM 3_53 
 
 
 

HF 1 7.36 0.017 1.56 2.55 2.64 
HF 2 7.24 0.016 - 2.55 2.63 
VF 1 7.79 0.017 1.56 2.54 2.63 
In 1 6.78 0.015 1.4 2.56 2.64 
In 2 6.76 0.015 1.35 2.57 2.64 
In 3 6.69 0.016 - 2.55 2.64 
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Table 3.3 Continued. 

Sample 
 

Label 
 

BET 
surface 

area 
(m2/g) 

N2 pore 
volume 
(cm3/g) 

CO2 pore 
volume  

(10-3 

cm3/g) 

Fractal 
dimension 

𝐷ଵ 

Fractal 
dimension 

𝐷ଶ 

NoRM 4_14 
 
 
 

HF 1 8.77 0.009 1.68 2.64 2.69 
HF 2 9.39 0.009 1.75 2.63 2.70 
HF 3 8.54 0.010 1.38 2.62 2.71 
In 1 6.91 0.009 1.14 2.59 2.67 
In 2 6.85 0.009 1.08 2.58 2.67 
In 3 6.29 0.009 - 2.56 2.67 

NoRM 4_34 
 
 

HF 1 7.13 0.013 1.73 2.68 2.65 
HF 2 6.91 0.014 1.88 2.66 2.68 
In 1 8.62 0.015 1.95 2.64 2.69 
In 2 8.18 0.015 1.87 2.65 2.68 
In 3 7.26 0.013 1.96 2.66 2.67 
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Figure 3.9 Comparisons of N2 isotherms for failed and intact samples of the calcareous 
EF and siliceous NoRM shale. EF1_223 and NoRM 3_53 had vertically 
failed samples. Intact samples are represented by blue circles. Horizontally 
failed samples are represented by red diamonds. Vertically failed samples 
are represented by green triangles. Note that only one measurement from 
intact and failed samples are plotted in the graph. 
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Figure 3.10 Comparisons of CO2 isotherms for failed and intact samples of the calcareous 
EF and siliceous NoRM shale. The CO2 adsorption isotherms are Type I, 
indicating microporous solids. Intact samples are represented by blue 
circles. Horizontally failed samples are represented by red diamonds. 
Vertically failed samples are represented by green triangles. Note that only 
one measurement from intact and failed samples are plotted in the graph. 
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Pore size distributions of N2 and CO2 are calculated, and N2 results are shown in 

Figure 3.11. The N2 pore size ranges from 1.8 nm to 100 nm. After failure, most of the 

samples display an increase in pore volume in both the micro- and meso-/macropore range. 

NoRM samples show a more significant change. The shape of NoRM 3_14 changes after 

failure. Similar to the isotherm and BET surface area, the vertically failed samples EF 

1_223 and NoRM 3_53 have larger increases in pore volume compared to the horizontally 

failed samples. 

3.4.2.2 BET Surface Area and Pore Volume 

BET surface area and pore volume are shown in Figure 3.12. Surface area (Figure 

3.12a) of intact of EF samples vary from 4.32 to 6.98 m2/g. The surface areas of the intact 

NoRM samples have higher values, varying from 6.78 to 12.08 m2/g. After shear failure, 

most of the failed rocks display an increase in surface area, especially for 3_14 and 4_14. 

The vertically failed samples have a larger surface area compared to both horizontally 

failed and intact samples.  

N2 and CO2 pore volume are shown in Figure 3.12b and Figure 3.12c. The intact 

EF shales have higher N2 pore volumes than the intact NoRM samples, whereas smaller 

CO2 pore volumes for those EF shales. After shear failure, most of the failed samples show 

an increase in both N2 and CO2. Sample NoRM 3_14 displays large increases for both 

volumes.   

Furthermore, we calculated the ratio of failed samples and intact samples in terms 

of meso-/macropore (≥ 2 nm) volume and micropore (< 2 nm) volume (Figure 3.13). The 

meso-/macropore is the total N2 pore volume with pore size greater than 2nm. The 

micropore volume is the sum of both CO2 pore size and N2 pore volume with pore size less 

than 2nm. 
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Figure 3.11 N2 pore size distributions of intact (green) and horizontally failed (red) 
samples. N2 Pore size distributions are based on non-local functional theory 
model using slit-shape pores. The regularization parameter is 1.0. The range 
of the pore width is from 1.8 to 100 nm. The pore volume is reported in 
dV/dlog(w), which is the derivative pore volume (V) normalized to natural 
logarithm of pore width (w).  
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Figure 3.12 (a) BET surface area of intact and failed samples. (b) N2 pore volume of 
intact and failed samples. (c) CO2 pore volume of intact and failed samples. 
The error bar is shown in the plot as the black line. 
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Figure 3.13 Ratio of meso-/macropore (≥ 2 nm) volume and ratio of micropore (< 2 nm) 
volume of the shale samples. The ratio is the pore volume of failed samples 
over the pore volume of intact samples. The micropore volume is the sum of 
both CO2 pore size and N2 pore volume with pore size less than 2nm. EF 
samples are marked in green diamonds (HFail) and a green square (VFail). 
NoRM samples are marked in red circles (HFail) and a red triangle (VFail).  

Most samples from both formations show an increase in pore volume in both the 

meso-/macropore and micropore size range after failure, although a few failed samples 

have a decrease in porosity. Some samples have their pore volume increase about 1.5 fold. 

One EF sample and two NoRM samples, however, have a roughly 5%-10% reduction in 

pore volume after failure. 

3.4.2.3 Fractal Dimension 

The surface fractal dimensions 𝐷ଵ and 𝐷ଶ are shown in Figure 3.14. All intact 

EF samples had similar 𝐷ଵ  as well as 𝐷ଶ , indicating a more consistent rock fabric 

structure. Compared to BET surface area and pore volume, the surface fractal dimensions 
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are less sensitive to shear failure. However, NoRM 4_14 and NoRM 3_42 increase their 

fractal dimension to some degree. This might be the sign that the shear failure cause 

systematic changes in shale nanoscale pore surface, producing more complex surface 

textures. However, the magnitudes of such changes are likely small. 

 

In short, BET surface area, N2/ CO2 porosity, pore size distribution and surface 

fractal dimensions indicate the impact of shear deformation on the nanoscale pores. The 

pore volume ratio data show that the porosity change is greater in the NoRM samples than 

in the EF samples during deformation. Similarly, the fractal surface dimension appear to 

be more greatly impacted by deformation in the NoRM samples than the EF samples.  

3.5 DISCUSSIONS 

3.5.1 Effect of Bedding  

According to Figures 3.9-3.14, the absolute change in pore volume for any given 

sample depend primarily on the direction of loading. The vertically failed samples tend to 

have a larger increase in the total pore volume than the horizontally failed ones. For sample 

NoRM 3_53, the vertically failed sample has a similar increase of pore volume for meso-

/macropore range and micropore range compared to the horizontally failed sample. The 

vertically failed EF sample (EF_1_223), on the other hand, shows a larger micropore 

volume increase and a smaller meso-/macropore volume increase. In this context, the 

primary fabric anisotropy (bedding) in combination with variable cementation states may 

be imparting heterogeneity in mechanical response. 
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Figure 3.14 (a) Fractal dimension 𝐷ଵ and (b) fractal dimension 𝐷ଶ of intact and failed 
shale samples. The error bar is shown in the plot as the black line. 

3.5.2 Effects of Total Clay and Cementation  

We offer the following hypothesis for a further role for diagenesis in governing the 

mechanics of pore-volume and surface-area change with deformation. This hypothesis 

stems from the ratio of surface area and total pore volume (N2 pore volume plus CO2 pore 

volume) in failed samples relative to intact samples. We plot the surface area ratio and total 

pore volume ratio with total clay content and total cement content in Figures 3.15 and 3.16. 
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The plots show that the EF and NoRM shales have similar linear tends. However, an outlier 

(sample NoRM 3_14) has higher BET surface area ratio and total pore volume ratio. 

Notwithstanding the outlier, the analyses from the two formations have similar tends, 

indicating the general impact of minerology on porosity changes with deformation. Note 

that the total clay content has a negative impact on surface area ratio and total pore volume 

ratio. We suggest that this is because, in general, clay-rich samples also have less cement 

and have pores that are more prone to collapse during the deformation. On the other hand, 

the total cement content has a positive impact on surface area ratio and total pore volume 

ratio, because cement favors fracturing surface increase.  

The outlier (NoRM 3_14) potentially highlights two important aspects of our 

hypothesized relationship between mechanics and diagenetic history. Firstly, this sample 

is anomalously cement-poor and clay rich for the samples we investigated and therefore 

the opening of pores within deforming clay aggregates is enhanced relative to fracturing 

(Figure 3.8a). Secondly, the OM in this sample appears to be especially particulate and 

pore-rich (Figure 3.8b). Thus, there is an intrinsic high porosity at the sub-micron scale 

that is not widely observed in the other NoRM samples. Though clearly limited by the few 

numbers of samples we observed, this hypothesis highlights how thermal maturation 

leading to OM porosity is one control, while cementation and the heterogeneous 

distribution of clay mineral content is another, and the two together can lead to anomalous 

porosity increases during hydraulic fracturing. 
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Figure 3.15 (a) Ratio of BET and total clay content. (b) Ratio of BET and total cement 
content. The total clay = Illite/Mica + Mx I/S. The total cement = calcite * 
0.5 + quartz * 0.85. The EF samples are marked in green diamonds and 
NoRM samples except NoRM 3_14 are marked in red circles. The outlier 
NoRM 3_14 is marked with a red square. Linear equations for two 
formations are obtained by removing NoRM 3_14.  
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Figure 3.16 (a) Ratio of total pore volume and total clay content. (b) Ratio of total pore 
volume and total cement content. The total clay = Illite/Mica + Mx I/S. The 
total cement = calcite * 0.5 + quartz * 0.85. The EF samples are marked in 
green diamonds and NoRM samples except NoRM 3_14 are marked in red 
circles. The outlier NoRM 3_14 is marked with a red square. Linear 
equations for two formations are obtained by removing NoRM 3_14.  
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3.5.3 Effect of OM  

The SEM images of intact samples (e.g. Figure 3.6) suggest that the NoRM samples 

had more fine-scale organic matter laminations than the EF samples. The mechanically soft 

(OM and clay) and stiff minerals (quartz and carbonate) are more discretely partitioned in 

laminae for NoRM samples. Under shear deformation, fractures propagate into the OM-

rich soft zone at the mechanical contrast of the two layers. SEMs of failed samples (Figure 

3.7 and Figure 3.8) indicate that the fracture further propagate along the OM boundary and 

into the OM pores. Previous research has shown that OM, especially kerogen, has a lower 

modulus than surrounding carbonate and silicate grains (Eliyahu et al., 2015; Emmanuel et 

al., 2016), and that some kinds of OM can fracture under certain circumstances (Daigle et 

al., 2017b). In contrast, the clay in the shale matrix exhibits ductile (distributed) 

deformational textures that formed through grain rearrangements and porosity closure 

during deformation (Dehandschutter et al., 2004; Laurich et al., 2014).  

OM-associated pores can be developed in both depositional OM and migrated OM. 

Depositional OM retains its position and shape from the time of deposition, while migrated 

OM may change shape and location in response to temperature and pressure during burial 

(Loucks and Reed, 2014). Loucks and Reed (2014) suggest that the connectivity decreases 

in the laminated OM compared with the dispersed OM due to OM isolation. Our study 

indicates that, in contrast, the laminated OM is more sensitive to the shear deformation. 

The poorer connectivity of the laminated OM will receive relatively greater improvements 

with deformation. Through the newly formed pathway the hydrocarbons are connected 

with the main flow channels. Compared to the dispersed OM, the shear failure is more 

effective to capture laminated OM pores, enhancing the production of shale with the 

laminated OM. In turn, because many of these microstructural and mechanical properties 

are developed early in the diagenetic history, the pore evolution of the shale over geologic 
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time will also be impacted by this contrast between shear and fracture deformation across 

contrasting distributions and types of OM and surrounding matrix. Future research should 

consider the timing and role of cementation in establishing these OM relationships, and 

also the relative importance of cementation to these “granular” controls on syn-

deformational porosity change. 

3.6 CONCLUSIONS 

The effects of shear deformation on shale pore structure at nanoscale was 

investigated using SEM analysis and gas sorption measurements. Confined compressive 

strength tests were conducted on preserved shale core plugs that were drilled parallel and 

perpendicular to the bedding planes.  

According to the SEM analysis, fractures with widths ranging from 10-100 nm up 

to 1-2 µm are observed to follow coarser grain boundaries and laminae of OM and matrix 

materials. In more laminated materials, fracture lengths are up to hundreds of micrometers, 

which are likely continuous across entire sample volume. Some fractures initiate along 

grain contacts and primarily propagated through OM.  

N2/ CO2 sorption measurements were performed on intact and failed samples The 

BET surface area, N2/ CO2 porosity, N2/ CO2 pore size distribution and surface fractal 

dimensions indicate the impact of shear deformation on the nanoscale pores. Most samples 

show an increase in their sorption quantity, pore volume, and BET surface area following 

failure.  

Diagenetic differences between calcareous EF and siliceous NoRM samples may 

lead to different responses to deformation. The differences in rock fabric created by 

different diagenetic histories cause different nanoscale fracture patterns, including 

anomalous porosity increases due to pore distributions within OM, heterogeneous 
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distribution of cement between samples, and enhanced porosity within deformed clay 

aggregates.  

Fractures tend to propagate along the OM laminae and get access to the OM pores. 

The interaction of the OM laminae and the shear fracturing may improve the connectivity 

of the OM laminae to the adjacent rock matrix, and thus enhance the hydrocarbon mobility.  
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Chapter 4: Effects of fluids removal and thermal maturation on 
permeability and pore structure of organic-rich shale: Results from heat 

treatment experiments2 

4.1 INTRODUCTION  

Oil and gas present in unconventional shale systems account for a significant 

portion of the world’s hydrocarbon resources (Wang et al., 2014; EIA 2018). The 

increasing significance of shale gas plays has led to the need for deeper understanding of 

shale reservoir properties. Using laboratory measurements to determine porosity, pore size 

distribution and permeability of unconventional reservoirs is critical for reservoir 

characterization, forecasting production, determination of well spacing, and designing 

hydraulic fracture treatments (Cui et al., 2013).  

Permeability is an important parameter for characterizing shale transport properties. 

Permeability measurements typically employ unsteady-state methods, which include the 

pulse decay method (e.g. Brace et al., 1968; Dicker and Smits 1988; Alnoaimi et al., 2014; 

Heller et al., 2014; Bhandari et al., 2015; Ghanizadeh et al., 2015; Bhandari et al., 2017), 

and the GRI (Gas Research Institute) method (e.g. Luffel et al., 1993; Egermann et al., 

2005; Cui et al., 2009; Tinni et al., 2012; Cui and Brezovski, 2013; Cui et al., 2013).  

The general approach for the pulse decay method is to establish a differential 

pressure between the upstream and downstream ends of the core sample, usually cylindrical 

in shape. The record of differential pressure versus time is used to calculate the sample’s 

axial permeability (Brace et al., 1968; Dicker and Smits 1988; Cui et al., 2009). This 

method gains its popularity from its shorter experimental run times, and higher resolution 

                                                 
2 This chapter is based on Jiang, H., Daigle, H. Effects of drying temperature on permeability 
and pore structure measurements of organic-rich shale. Journal of petroleum science and 
engineering. (under review)  
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for very low permeability measurements, compared with the steady-state method (Coyner 

et al., 1993; Cui et al., 2009). 

The GRI method, on the other hand, provides a fast estimation of permeability using 

a crushed sample. In this method, the sample is placed in an evacuated chamber, and then 

a probing gas is allowed to expand into the chamber. The gas pressure falls off due to the 

probe gas filling the interior pore space of the sample, and this pressure decay can be used 

to estimate permeability by numerical modeling (Luffel et al., 1993) or analytical solution 

(Cui et al, 2009). A detailed review on permeability methods can be found in Chapter 2.4. 

For permeability methods, especially those based on gas (e.g. helium, nitrogen), the 

moisture of the sample can significantly affect the measured permeability (Ghanizadeh et 

al., 2014; Gao and Li, 2018). Gao and Li (2018) measured the permeability of shale at 

different water saturations, and showed that decreasing water saturation can exponentially 

increase the permeability coefficient (Gao and Li, 2018). For this reason, the sample often 

requires drying before the permeability measurement to obtain as accurate an estimate of 

the intrinsic permeability as possible (e.g. Cui et al., 2013; Heller et al., 2014; Alnoaimi et 

al., 2014; Ghanizadeh et al., 2015). By removing the moisture, the probe gas is able to 

access pores that would otherwise have been blocked by in-situ fluids such as water. 

Ghanizadeh et al. (2014) reported that the permeability increased by a factor of 6 compared 

to the as-received state after drying at 105°C.   

However, in practice the drying temperature is often below 120°C, which may still 

cause the pore system to be only partially accessible to the probe gas, resulting in an 

incomplete characterization of shale transport properties. Past studies have used 

experiments and theoretical models to investigate the evaporation behavior of confined 

fluids from nanopores (Fisher et al., 1981; Narayanan et al., 2011; Lu et al., 2015). Their 

results showed that, for a given temperature (e.g. 90°C), the thickness of adsorbed water 
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film on pore walls increases as the pore geometry decreases. It can be even more difficult 

for fluids evaporation from shale matrix due to the abundance of nanopores, poor network 

connectivity, and multiscale pore system (Jiang et al., 2015; Daigle et al., 2017a). In 

addition, pores associated with clay aggregates are a fundamental textural feature of shale 

nanostructure (Kuila et al., 2014), which affect the pore structure and flow properties. The 

temperature for removing water from clay interlayers needs to be higher than 200°C (Al-

Harahsheh et al., 2011; Alnoaimi et al., 2014).  

In addition, when the temperature is above 300°C (Al-Harahsheh et al., 2011), the 

OM can be matured and create new pores. Past experiments used hydrous pyrolysis to 

study the evolution of pores during the thermal maturation of OM (Ko et al., 2014; Hu et 

al., 2015; Ko et al., 2016; Ko et al., 2018). SEM imaging results and gas sorption results 

showed that OM pores were found to be associated with stages of OM maturation, and 

formation of new pores was related to gas generation and structural rearrangement of OM 

(Hu et al., 2015; Ko et al., 2016). 

To understand the effects of fluids removal and thermal maturation by heat 

treatment on shale permeability and pore structure, we investigated the evolution of 

permeability and pore structure of shale by heating the samples at multiple temperature 

stages. Shale samples were pyrolyzed at 110°C, 250°C, 450°C and ≥ 600°C. By using 

the same sample, the effect of shale heterogeneity at the core scale is greatly reduced. For 

each heating level, the GRI method was chosen to determine the apparent gas permeability 

and bulk porosity (hereinafter referred as GRI permeability and GRI porosity). The GRI 

method is believed to eliminate the microfractures introduced by coring and handling 

through the crushing process, which provides a better estimation of shale matrix 

permeability (Luffel et al., 1993; Handwerger et al., 2011; Cui et al., 2013; Ghanizadeh et 

al., 2015). In addition, the pore characteristics at the nanoscale (<100 nm) such as pore size 
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distribution and surface area were determined by N2 gas sorption. All those measurements 

provide useful information about the effects of fluids removal and thermal maturation for 

sample preparation procedures on laboratory measurements. 

4.2 METHODS 

The workflow of this study is shown in Figure 4.1. Four preserved shale samples 

were used for this work. They were crushed and sieved using 20-35 US mesh trays. They 

were then dried in an oven at 110°C for 2-4 days, and the same samples were pyrolyzed in 

a tubing furnace at 250°C,450°C, and ≥ 600°C for 24 hours under the protection of argon. 

For every heating level, samples were cooled down, and GRI measurements were 

conducted on about 40 g of sample. GRI porosity and GRI permeabilities were then 

computed. In addition, N2 gas sorption measurements were conducted on 1-1.5 g of sample 

with fragment size < 35 mesh (<500 μm). N2 pore volume, N2 pore size distribution and 

Brunauer-Emmett-Teller (BET) surface area were obtained. Detailed procedures are 

described below. 

4.2.1 Samples 

In this study, four shale samples from two formations were used for lab 

measurements. Two samples (EF 1_223, EF 2_93) were from the Eagle Ford shale (Karnes 

County, TX) and the other two samples (NoRM 3_14, NoRM 4_34) were from a siliceous 

shale in the northern Rocky Mountains, USA (the location and identity of the siliceous 

shale has been withheld at the donor’s request). All samples were preserved in mineral oil 

until experimentation. We found no sign of mineral oil imbibing into the samples based on 

nuclear magnetic resonance measurements (Daigle et al., 2017b).  
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The X-ray diffraction (XRD) results (Table 3.1 of Chapter 3) provide 

concentrations of minerals, indicating a wide mineral variation among samples from the 

same formation. Calcite dominates samples from the Eagle Ford formation, whereas quartz 

dominates the NoRM samples. Clay minerals also make up a significant fraction of both 

formations, ranging from 13 to 38 wt.%. According the rock-eval report (Table 3.2 of 

Chapter 3), the Total Organic Content (TOC) varies from 2.82 to 4.73 wt.%.  

 

 

Figure 4.1 Workflow of this study. Two samples were from the Eagle Ford formation 
(denoted as ‘EF’). Two samples were from the northern Rocky Mountains 
formation (denoted as ‘NoRM’). Pyrolysis experiments were conducted in a 
tubing furnace under an argon atmosphere. GRI stands for Gas Research 
Institute. PSD stands for pore size distribution. BET stands for Brunauer-
Emmett-Teller.  

The sample bulk density at as-received conditions is determined using the oil-

immersion method. A sample mass is first measured in air. It is then fully immersed in a 

light mineral oil (with density of 0.808 cm3/g) and its apparent mass upon immersion is 
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recorded. According to Archimedes' principle, the bulk volume of the sample equals to the 

volume of oil that the sample displaces. The oil volume is obtained by dividing the mass 

difference of sample before and after immersion in oil by the oil density. 

Samples were crushed and sieved using 20 and 35 US mesh size (0.841 mm to 0.5 

mm) trays. About 40 g of samples between 20 to 35 mesh size was collected for GRI 

measurements, and 1-1.5 g of samples with size under 35 mesh were collected for N2 

sorption measurements. Sizes between 20 to 35 mesh size are the recommended values for 

GRI method (Luffel et al., 1993; Cui et al., 2009), whereas smaller particle sizes are 

preferable for the gas sorption measurement (Kulia and Prasad, 2013a).  

4.2.2 Heating 

After crushing, samples were dried in an oven for 2-4 days at a temperature of 

110°C. The mass before and after drying were recorded. Pyrolysis was conducted on 

samples in a tubing furnace under an argon atmosphere at 250°C, 450°C, and ≥ 600°C 

(600°C or 650°C) for 24 hours.  

The setup of the tubing furnace is shown in Figure 4.2. The inlet of the tubing is 

connected to the high pressure argon gas cylinder. The tubing outlet is connected to an 

Erlenmeyer flask (a laboratory flask with a flat bottom) filled with water. The sample is 

first weighted and placed in a crucible boat. The boat is moved to the center of the tubing. 

The tubing is then sealed by tightening the screws of the flanges on both ends. During the 

pyrolysis, the sample is protected by the argon gas. After the pyrolysis, the weight of the 

sample is recorded again.  

The sample mass after the heating is reduced due to the fluid loss. By assuming that 

the bulk volume 𝑉௕ is the same before and after heating, bulk density 𝜌ଶ after heating can 

be estimated:  
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𝑉௕ =
𝑚ଶ

𝜌ଶ
=

𝑚ଵ

𝜌ଵ
 , (4.1𝑎) 

𝜌ଶ =
𝑚ଶ

𝑚ଵ
𝜌ଵ , (4.1𝑏) 

where 𝜌ଵ and 𝜌ଶ are sample bulk density before and after heating, and 𝑚ଵ and 𝑚ଶ are 

sample mass before and after heating. Bulk densities for 4 samples at all heating levels as 

well as as-received conditions are listed in Table 4.1. 

After each temperature level, both GRI and N2 sorption measurements were 

conducted. As the pyrolysis and measurements were conducted on the same sample, the 

effect of shale heterogeneity at the core scale is anticipated to be greatly reduced.  

 

Figure 4.2 Example of the set-up of the tubing furnace for shale sample pyrolysis. The 
pyrolysis are conducted at 250°C, 450°C and ≥ 600°C for 24 hours. The 
sample particles are placed in a crucible boat and moved to the center of the 
tubing (in blue color). During pyrolysis, the sample is protected by the argon 
gas (red cylinder). Valve 1 controls the flow of argon gas from the gas 
cylinder. Valve 2 controls the outlet of the tubing. The gas outlet was 
connected to an Erlenmeyer flask (a laboratory flask with a flat bottom) 
filled with water.  
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Table 4.1 Bulk densities for 4 shale samples after heating different heating levels as well 
as as-received conditions. Samples from the Eagle Ford formation have 
names starting with ‘EF’. Samples from the northern Rocky Mountains 
formation have names starting with ‘NoRM’. 

 
Sample 

Bulk Density (cm3/g) 
As-received 110°C 250°C 450°C ≥ 600°C 

EF 1_223 2.491 2.473 2.434 2.425 2.394 
EF 2_93 2.461 2.405 2.400 2.367 2.338 

NoRM 3_14 2.437 2.400 2.395 2.355 2.294 
NoRM 4_34 2.524 2.505 2.486 2.451 2.394 

4.2.3 N2 Sorption  

N2 sorption measurements were conducted at 77K using a Micromeritics 3Flex 

surface analyzer. Samples were first dried in the oven at 110°C for 24 hours to remove 

hygroscopic moisture. Then, 1-1.5 g of sample was placed in a sample tube and degassed 

under a N2 stream at 150°C for 4 hours to remove any remaining hygroscopic moisture 

(Daigle et al., 2017b; Jiang et al., 2018a). This preparation step was applied for all samples 

regardless of heating level.  

Based on gas sorption measurements, surface area was calculated based the 

Brunauer-Emmett-Teller (BET) method (Brunauer et al., 1938), and pore size distributions 

were interpreted by nonlocal density functional theory (NLDFT, Roque-Malherbe, 2007; 

Adesida et al., 2011) using the model for slit-shaped carbon pores. In the pore size 

distribution, the pore volume is reported in dV/dlog(w), which is the derivative pore 

volume (V) normalized to natural logarithm of pore width (w). This is the most commonly 

graphical representation of pore size distribution, which normalizes the effect of irregular 

experimental point spacing (Kuila and Prasad, 2013a). More details on gas sorption can be 

found in Chapter 2.3.  
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4.2.4 GRI Method 

4.2.3.1 Experiment Setup  

GRI permeability of the sample was conducted in a pycnometer using helium (He) 

gas (Figure 4.3). The setup consists of two chambers: the reference chamber and sample 

chamber. To reduce the influence of the ambient temperature, the setup is kept in an 

isothermal cabinet with a constant temperature of 30°C, which is slightly above the room 

temperature.  

Initially, all valves are opened to the atmosphere through the outlet. A known 

weight of crushed sample is introduced to the sample chamber. Before the measurement, 

the sample is allowed to stabilize for a few hours. The system is then evacuated using a 

vacuum pump (depicted as Stage 1 in Figure 4.4a).  

In Stage 2, valves 1 and 3 are closed, and valves 2 and 4 are sequentially opened. 

Pressurized helium gas (around 220 psi) fills the reference chamber, and the system is 

allowed to equilibrate for a few minutes for stabilization (Figure 4.4a).  

In Stage 3, valve 1 is opened and the helium gas expands from the reference 

chamber into the sample chamber. The helium pressure immediately drops to a level by 

filling the dead space in the sample chamber and subsequently decays as gas permeates the 

shale particles (Figure 4.4a/ Figure 4.4b).  

4.2.3.2 GRI Porosity 

According to Boyle’s law, Bulk porosity 𝛷 of the shale sample can be computed 

. The vacuum pressure (𝑃ଵ) at Stage 1 is the mean of pressure points that are less than 0.5 

psi. The pressure at Stage 2 (𝑃ଶ) is the mean of pressure points during that period. The final 

decay equilibrium pressure (𝑃ଷ) at Stage 3 is the mean of the last several pressure points. 

The porosity is calculated using the following equation (Cui et al., 2009):  
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)𝑉௕ , (4.2) 

where 𝑉௥, 𝑉௦ are volumes of reference and sample chambers, 𝑉௕ is the bulk volume, and 

𝑧ଵ, 𝑧ଶ, and 𝑧ଷ are the compressibility factors of helium at pressures 𝑃ଵ, 𝑃ଶ, and 𝑃ଷ. The 

bulk volume is based on Table 4.1.  

 

Figure 4.3 (a) Schematic and (b) actual set-up of the GRI method using crushed sample. 
It consists of a reference chamber and a sample chamber. The reference 
chamber and sample chamber are kept in a temperature-controlled plastic 
box to keep a constant temperature. Valve 1 controls the gas passage 
between the reference chamber and the sample chamber. Note: for (a), black 
particles represent crushed shale samples. 
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Figure 4.4 Example of recorded pressure data over time. (a) Pressure data includes Stage 
1, Stage 2, and early time for Stage 3. (b) Early time for Stage 3 of the 
selected window in (a). Stage 1 is the period when the system is evacuated 
by a vacuum pump. Stage 2 is the period when pressurized helium gas fills 
the reference chamber. The Stage 3 is the period when helium expands from 
the reference chamber into the sample chamber. The entire measurement for 
Stage 3 is about 17-24 hours. The time is in the unit of second, and the 
pressure is in the unit of psi.  

4.2.3.3 GRI Permeability 

Furthermore, permeability can be calculated based on the pressure decay data in 

Stage 3 (Cui et al., 2009). Since the gas first fills up the pores of the high permeability 

zones and then slowly migrates into the low permeability zone, there can be more than one 

permeability value from the measurement (Cui et al., 2013). Here we computed two 
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permeabilities 𝑘ଵ and 𝑘ଶ: 𝑘ଵ is the early time permeability for 𝑙𝑛(𝐹𝑅) between -1.5 

and -2.5, and 𝑘ଶ is the late time permeability with 𝑙𝑛(𝐹𝑅) between -3.5 and -4. 𝐹𝑅 is 

defined below.  

𝐹𝑅 is the mass fraction of potential gas relative to the total gas that is taken by the 

sample at the end of Stage 3 (Cui et al., 2009). The potential gas is defined as the gas mass 

in the void volume of the reference and sample chambers that will eventually be taken up 

by sample particles. The expression for FR at a given time t is:  

𝐹𝑅(𝑡) = 1 −
(𝐾௖ + 1)൫𝜌௖ − 𝜌(𝑡)൯

𝜌௖ − 𝜌ଵ
 , (4.3) 

where 𝐾௖ is the ratio of gas storage capacity of the total void volume of the reference and 

sample chambers, 𝜌(𝑡) is the gas density at time 𝑡. 𝜌ଵ is the initial gas density in the 

sample pore space (same as the average gas density for Stage 1), and 𝜌௖ is the average 

initial gas density in the sample and reference chambers at the beginning of Stage 3. 𝐾௖ 

and 𝜌௖ are expressed as: 

𝐾௖ =
(𝑉௥  +  𝑉௦)

 𝑉௕  𝛷
 , (4.4) 

𝜌௖ =
𝜌ଶ𝑉௥  + 𝜌ଵ(𝑉௦ −  𝑉௕) 

𝑉௥ + 𝑉௦ −  𝑉௕
 , (4.5)   

where 𝑉௥ , 𝑉௦  are volumes of reference and sample chambers, 𝑉௕  is the bulk volume, 

and𝜌ଵ, 𝜌ଶ are the density at pressures 𝑃ଵ and 𝑃ଶ given in Equation (4.2). 

By assuming the size particles are spheres with a relatively uniform radius (𝑅௔), 

𝐹𝑅 has an analytical form (Cui et al., 2009):  

𝐹𝑅(𝑡) = 6𝐾௖(𝐾௖ + 1) ෍
𝑒ି 𝐾𝛼௡

ଶ

𝑅௔
ଶ 𝑡

𝐾௖
ଶ𝛼௡

ଶ + 9(𝐾௖ + 1)

ஶ

௡ୀଵ

 , (4.6) 
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where α௡ is the 𝑛௧௛ root of  

𝑡𝑎𝑛 𝛼 =  
3𝛼

3 + 𝐾௖𝛼ଶ
 , (4.7) 

and 𝐾 is:  

𝐾 =  
𝑘

𝜇𝑐௚𝛷
 , (4.8) 

where 𝑘 is the permeability, 𝜇 is the gas viscosity, 𝑐௚ is the gas compressibility, and 𝛷 

is the porosity.  

If 𝐾௖  is large (e.g. 𝐾௖  > 50), the logarithmical value of 𝐹𝑅 becomes a linear 

function of time (Cui et al., 2009). The natural logarithm form of Equation (4.6) can be 

expressed as 

𝑙𝑛(𝐹𝑅) = 𝑏 −
𝐾𝛼ଵ

ଶ

𝑅௔
ଶ

𝑡 , (4.9)  

Through linear regression, the slope of Equation (4.9) can be combined with 

Equation 4.9 to compute the permeability 𝑘. Details of permeability calculation using GRI 

method can be found in Chapter 2.4.4. 

The reproducibility of the GRI measurements was tested using two samples. We 

performed GRI measurements twice for sample NoRM 3_14 after drying at 110°C. The 

porosities were 8.55% and 8.50%, and permeabilities 𝑘ଵ  were 19.12 and 22.50 

nanodarcies (nD) while permeabiliies 𝑘ଶ  were 2.80 and 0.58 nD. We performed 

measurements sample NoRM 4_34 after drying at 40°C. The porosities from the two 

measurements were 3.36% and 2.83%. Permeabilities 𝑘ଵ  were 0.3 and 0.36 nD, and 

permeabilities 𝑘ଶ were 0.22 and 0.86 nD. The tests show that the variability of porosity 
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and 𝑘ଵ is small, whereas the variation is higher for 𝑘ଶ. GRI data shown in the Results 

section have a greater variation than those due to measurement error.  

4.3 RESULTS 

4.3.1 Gas Sorption  

Nitrogen adsorption-desorption isotherms for EF and NoRM samples are shown in 

Figures 4.5 and 4.6. All samples exhibit H3 hysteresis loops, indicating that the material 

has both mesopores (2-50 nm) and macropores (>50 nm) (Sing, 1985). As heating 

temperature increases, the adsorption and desorption quantity of the sample increase, 

implying an increase tend of pore volume. The most significant quantity increase occurs 

after heating at temperatures ≥ 600°C. On the other hand, heating from 110°C to 250°C 

is associated with less significant change to the isotherms, suggesting that the change of 

pore volume between 110°C and 250°C is not significant.  

N2 pore size distributions are calculated from the isotherms, and depicted in Figure 

4.7 and Figure 4.8. The pore size ranges from 1.8 to 100 nm. Similar to the isotherms, the 

most significant increase occurs when heating temperatures ≥ 600°C. The variation of 

pore volume is not strong when the temperature increases from 110°C to 250°C. In 

addition, pore volume in pores larger than 10 nm display a more significant increase 

compared to those smaller than 10 nm. Besides the increase in adsorbed quantity, the shape 

of the isotherm, however, remains similar through all temperature levels, indicating little 

change in pore network connectivity (e.g. Seaton, 1991). Note that the exception is sample 

EF 2_93 at 650°C, which could be the demineralization of carbonates in some degree when 

the temperature ranges from 650 and 850°C (Al-Harahsheh et al. 2011)  

BET surface areas and N2 pore volumes are also obtained. The results are shown in 

Figure 4.9 and summarized in Table 4.2. Most shale samples generally show a increasing 
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trend in surface areas as the heating temperature increases. For samples EF 2_93 and 

NoRM 4_34, the maximum surface area occurs after heating at 450°C.  

 

Figure 4.5 N2 gas sorption measurements for samples (a) EF 1_223 and (b) EF 2_93. The 
two samples were from Eagle Ford formation (Karnes County, Texas, 
USA). Isotherms (marked by different colors) were collected after heating at 
4 different temperature levels. Pressure is reported as relative pressure, and 
adsorbed quantity is reported in gas volume per unit sample mass at 
standard pressure and temperature conditions.  
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Figure 4.6 N2 gas sorption measurements for samples (a) NoRM 3_14 and (b) NoRM 
4_34. The two samples were from the northern Rocky Mountains formation 
(USA). Isotherms (marked by different colors) were collected after heating 
at 4 different temperature levels. Pressure is reported as relative pressure, 
and adsorbed quantity is reported in gas volume per unit sample mass at 
standard pressure and temperature conditions. 
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Figure 4.7 N2 pore size distributions of four samples of (a) EF 1_223 and (b) EF 2_93. 
Pore size distributions after different heating levels are in different colors. 
The pore size distribution was based on nonlocal density functional theory 
using the model for slit-shaped pores. The regularization value is 1.0. The 
range of the pore width is from 1.8 to 100 nm. The pore volume is reported 
in dV/dlog(w), which is the derivative pore volume (V) normalized to 
natural logarithm of pore width (w).  
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Figure 4.8 N2 pore size distributions of four samples of (a) NoRM 3_14 and (b) NoRM 
4_34. Pore size distributions after different heating levels are in different 
colors. The pore size distribution was based on nonlocal density functional 
theory using the model for slit-shaped pores. The regularization value is 1.0.  
The range of the pore width is from 1.8 to 100 nm. The pore volume is 
reported in dV/dlog(w), which is the derivative pore volume (V) normalized 
to natural logarithm of pore width (w). 
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Figure 4.9 (a) BET surface areas and (b) N2 pore volumes of four samples after heating at 
4 levels.  
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Table 4.2 BET surface areas and N2 pore volumes of 4 shale samples based on gas 
sorption measurements. The BET surface area (N2 pore volume) ratio is the 
value at a given temperature level with respect to the value at 110°C. The 
units of BET surface area are m2/g, and the units of N2 pore volume are 
cm3/g. 

 

 

N2 (total) pore volume (Figure 4.9b) is obtained from the pore size distribution. It 

displays an increasing trend as temperature increases, although the increase for individual 

pore volume in the pore size distribution plots (e.g. Figure 4.7) is not that visually 

significant. After heating at 450°C, all samples increase their pore volume by 10% - 31% 

with respect to 110°C, and have a further increase after heating ≥ 600°C. This indicates 

that pore volumes at the nanoscale depend highly on the temperature level. In addition, EF 

and NoRM shales show different pore volume responses after heating from 110°C to 

250°C. The EF samples have 6% - 14% of increase in pore volume, whereas the NoRM 

samples show almost no change.  

Sample 
Heating 

level 
BET surface area N2 pore volume 
Value Ratio Value Ratio 

EF 1_223 
 
 

110°C 6.32 1 0.017 1 
250°C 7.15 1.13 0.018 1.06 
450°C 10.04 1.59 0.022 1.31 
600°C 12.34 1.95 0.028 1.65 

EF 2_93 
 
 

110°C 12.17 1 0.025 1 
250°C 14.11 1.16 0.029 1.14 
450°C 15.12 1.24 0.030 1.17 
650°C 12.28 1.00 0.057 2.24 

NoRM 3_14 
 
 

110°C 8.44 1 0.022 1 
250°C 10.09 1.20 0.022 1.00 
450°C 9.63 1.24 0.024 1.10 
650°C 14.65 1.74 0.032 1.46 

NoRM 4_34 
 
 

110°C 5.89 1 0.015 1 
250°C 5.76 0.98 0.015 1.00 
450°C 7.28 1.24 0.019 1.29 
600°C 6.27 1.07 0.022 1.49 
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4.3.2 GRI Method 

GRI porosity and two permeabilities 𝑘ଵ  and 𝑘ଶ  are obtained from the GRI 

measurements. The permeability is the apparent permeability to gas and no gas slip 

correction is applied. Adding corrections like the Klinkenberg effect provides little benefit, 

since there are no measurement or data analysis standards for GRI method (Heller et al., 

2014). The data are plotted in Figure 4.10 and listed in Table 4.3.  

The GRI porosity ranges from 4.7 to 8.6% after heating at 110°C (Figure 4.10a). 

Similar to N2 pore volume, GRI porosity shows an increasing trend against temperature . 

After heating ≥ 600°C, the porosity has the highest increase, ranging from 8.4 to 12.8%. 

The maximum increase is about 1.8-fold compared to the value at 110°C conditions.  

Most of the GRI permeabilities are within the range of 1 to 30 nanodarcy (nD). 

Similar to porosity, there is a general increase for both permeabilities 𝑘ଵ and 𝑘ଶ against 

the heating temperature (Figures 4.10b, c). 𝑘ଵ at the 110°C level shows a wider variation 

than 𝑘ଶ. They both have a significant increase after heating at 450°C. A few samples, 

however, have a reduction of permeability after heating ≥ 600°C. The correlation plot 

(Figure 4.11) shows that 𝑘ଵ has a positive correlation with 𝑘ଶ, with values higher than 

𝑘ଶ.  

Furthermore, the GRI porosity shows a good correlation with 𝑘ଵ, while there is a 

more scattered relation between the porosity and 𝑘ଶ (Figure 4.12). The linear regression 

between log(𝑘ଵ) and the porosity is performed by removing the outlier point (indicated by 

the red arrow in Figure 4.12a). 
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Figure 4.10 Results from GRI method for 4 shale samples after heating at 4 different 
levels: (a) GRI porosity, (b) GRI permeability 𝑘ଵ, and (c) GRI permeability 
𝑘ଶ. The units of GRI porosity are %, and the units of permeability are nano-
Darcies. Permeabilities of (b) and (c) are in log scale. 
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Table 4.3 GRI porosities, and permeabilities of 4 shale samples. The units of GRI 
porosity are %, and the units of permeability are nano-Darcies. 𝑘ଵ is the 
permeability obtained with 𝑙𝑛(𝐹𝑅) of 1.5 - 2.5. 𝑘ଶ is the permeability 
obtained with 𝑙𝑛(𝐹𝑅) of 3.5 - 4.0. The ratio is the permeability value with 
respect to 110°C. R2 is the R squared value, a measure of goodness of fit of 
the linear regression. Note that a few EF samples only have 𝑘ଶ reported, as 
the 𝑘ଵ was not able to be computed due to the fast drop of 𝑙𝑛(𝐹𝑅) at the 
early period. 

 

To sum up, the above results show that heating has a significant impact on pore 

structure parameters and permeability measurements of shale. Heating at 110°C produces 

measurable pore space for the probing gas by removing the fluid to some degree. Heating 

at 250°C introduces more accessible space by further fluids removal including bound water 

of clay aggregates. Heating at 450°C and ≥ 600°C can further expose the pore space by 

the continuous fluid removal. They may also create new pores through thermal maturation 

of organic matter, leading to additional increase of porosity and permeability. The pore 

structure parameters such as BET surface area, N2 pore volume, and GRI porosity have 

Sample 
Heating 

level 
GRI porosity GRI permeability 𝑘ଵ GRI permeability 𝑘ଶ 

Value Ratio Value Ratio R2 Value Ratio R2 

EF 
1_223 

 

110°C 6.80 1 7.60 1 0.99 2.34 1 0.76 
250°C 8.16 1.20 25.86 3.40 0.98 1.48 0.63 0.94 
450°C 9.72 1.43 - - - 5.06 2.16 0.65 
600°C 10.93 1.61 - - - 9.25 3.95 0.69 

EF 
2_93 

 

110°C 7.98 1 - - - 0.70 1 0.62 
250°C 8.33 1.15 - - - 4.56 6.52 0.14 
450°C 9.56 1.32 - - - 8.16 11.67 0.97 
650°C 12.84 1.78 - - - 6.11 8.75 0.81 

 
NoRM 
3_14 

 

110°C 8.55 1 22.50 1 0.99 2.8 1 0.99 
250°C 8.50 0.98 29.74 1.32 0.99 12.60 4.50 0.67 
450°C 8.36 1.22 33.16 1.47 0.98 3.29 1.17 0.96 
650°C 10.67 1.26 10.04 0.45 0.89 0.02 0.01 0.71 

 
NoRM 
4_34 

 

110°C 4.67 1 2.07 1 0.99 1.83 1 0.56 
250°C 6.31 1.35 16.19 7.81 0.99 3.95 2.16 0.67 
450°C 7.70 1.65 45.36 21.88 0.99 31.21 17.09 0.83 
600°C 8.43 1.81 28.15 13.58 0.89 2.78 1.5 0.85 
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good correlations with the heating temperatures. The GRI permeabilities are significantly 

affected by the temperature, which show an increasing trend with a more complicated 

scattered pattern.  

 

Figure 4.11 Correlation between GRI permeability 𝑘ଵ and GRI permeability 𝑘ଶ. 
Samples (circles) from the Eagle Ford formation have names starting with 
‘EF’. Samples (triangles) from the northern Rocky Mountains formation 
have names starting with ‘NoRM’. The units of permeability are 
nanodarcies. The dashed line represents 1:1 equivalence. 
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Figure 4.12 (a) Correlation between GRI porosity and permeability 𝑘ଵ. The linear 
regression coefficients by removing the outlier point (marked by the red 
arrow) is shown on the plot. The dashed line represents the line based on 
linear regression. (b) Correlation between GRI porosity and permeability 
𝑘ଶ. Samples (circles) from the Eagle Ford formation have names starting 
with ‘EF’. Samples (triangles) from the northern Rocky Mountains 
formation have names starting with ‘NoRM’. The units of permeability are 
nanodarcies.  
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4.4 DISCUSSION  

4.4.1 Effects of heat treatments 

The pore parameters I consider include BET surface area, N2 pore volume and GRI 

porosity measurements. These parameters all increase as heating temperature increases. 

These increases can be first ascribed to continuous loss of fluids. After heating at 110°C, 

free fluids like water and hydrocarbons in large pores are mostly likely to be removed. This 

creates accessible pore space for the probe gas. After heating at 250°C, capillary bound 

fluids in small pores and clay bound water can be further removed, resulting in an increase 

in measurable pore volume and surface area. After heating at 450°C and above 600°C, 

besides removal of clay bound water, OM can be matured. The thermal maturation can 

cause organic matter to degrade and produce new pores space, contributing to additional 

increases in pore parameters.   

The increase of pore volume can explain the increase of permeability from heating 

temperature of 110°C to 450°C. Permeability, however, decreases after heating above 

600°C. One reason may be hydrocarbon production due to thermal maturation: the 

produced hydrocarbons remain in the organic pores and block the pore system, causing a 

decrease in overall permeability.    

Although almost all isotherms remain similar at all thermal stages, sample EF 2_93 

experienced a significant change to its shape after heating at 650°C. The hysteresis of the 

isotherm decreased, indicating an increase of pore connectivity (Seaton, 1991). EF 2_93 

also showed a 2.24-fold increase in its N2 pore volume relative to that after heating at 

110°C. This may be due to the decomposition of carbonate in the sample (e.g., Al-

Harahsheh et al. 2011), as it has a significantly high calcite content (70 wt. %). The 

degradation of carbonate can create new mineral-hosted pores that increase the pore 
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volume and pore connectivity, even though the permeability measurement doesn’t show 

strong increase evidence after 650°C.    

Note that our heat treatment to mature shale is conducted at atmospheric pressure 

and without the presence of water. Another way to mature shale is by hydrous pyrolysis, 

which is conducted in a high pressure stainless-steel reactor with a 5 wt. % NaCl solution 

(Lewan, 1993; Hu et al., 2015). Hydrous pyrolysis is believed to better simulate natural 

petroleum formation. The presence and absence of liquid water can affect the thermal 

decomposition of generated bitumen (Lewan, 1997). In the absence of liquid water, the 

formation of an insoluble bitumen (e.g. pyrobitumen) is the dominant reaction pathway, 

whereas the formation of saturated-enriched oil is the dominant reaction pathway in the 

presence of liquid water. The different OM products due to different heat conditions might 

affect the formation of pore system and pathway. Caustion is warranted when compared 

with results from hydrous pyrolysis.   

4.4.2 Correlation between Gas Sorption and GRI Measurements   

Cross-plots of N2 pore volume and GRI porosity as well as permeabilities are shown 

in Figure 4.13. The N2 pore volume shows good correlations with both GRI porosity and 

permeability 𝑘ଵ. Since N2 pore volume is a measure of shale matrix pore space at the 

nanoscale (pores smaller than 100 nm), this suggests that the shale matrix at the nanoscale 

is positively correlated the porosity and permeability properties. Note that the relationship 

between N2 pore volume and 𝑘ଶ is more complicated (Figure 4.13c).  

Those results imply that the larger pores that contribute to 𝑘ଵ are well connected, 

while the smaller ones that contribute more to 𝑘ଶ appear to be more poorly connected. It 

should be noted here that these “larger” pores are smaller than about 100 nm in width, as 

this is the largest pore that can be seen by nitrogen sorption. This result is consistent with 
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modeling performed by Jiang et al. (2015) and Tian and Daigle (2018b) on Barnett shale 

samples, wherein a certain fraction of small pores were assumed to be partially or 

completely disconnected from the overall structure. The importance of multiscale pore 

network features on shale permeability has been similarly demonstrated by other 

researchers (Ambrose et al., 2012; Mehmani et al., 2013; Mehmani and Prodanović, 2014; 

Tahmasebi et al., 2015). This result is therefore consistent with other literature and serves 

as a further indication of pore size-dependent connectivity within the pore network of 

organic shales. 

4.4.3 Permeability Measurement Interpretation 

An interesting related issue is raised by recalling that the variations in pore volume 

observed in our samples are brought about by heating at different temperatures. 

Permeability ratios of 𝑘ଵ and 𝑘ଶ at higher levels with respect to values at 110°C are 

shown in Figure 4.14.  

Accordingly, 𝑘ଵ  is strongly affected by heating temperature, with individual 

samples exhibiting a nearly tenfold increase in permeability over the range of temperatures. 

𝑘ଶ  is also affected, though the magnitude of the effect is somewhat smaller and 

considerably more varied. These effects occur even at temperatures low enough that 

diagenetic reactions (e.g. maturation) are limited. Caution is therefore warranted in 

interpreting permeability measurements performed on shales, as the preparation technique 

appears to have a significant influence on the results. 



 99 

 

Figure 4.13 Correlation between N2 pore volume and (a) GRI porosity, (b) permeability 
𝑘ଵ, and (c) permeability 𝑘ଶ. The ellipse shows data points with a good 
correlation. Samples (circles) from the Eagle Ford formation have names 
starting with ‘EF’. Samples (triangles) from the northern Rocky Mountains 
formation have names starting with ‘NoRM’.  
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Figure 4.14 Permeability ratios of 𝑘ଶ (green) and 𝑘ଶ (red) with respect to 110°C, at (a) 
250°C (b) 450°C and (c) 600°C (or 650°C). 
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4.4.4 Effect of TOC 

The plot for N2 pore volume against TOC (measured on unheated sample; Table 

3.2) for each sample is shown in Figure 4.15.  

 

 

Figure 4.15 Plot of N2 pore volume after heating at 4 different levels against TOC (Total 
Carbon Content).  

The TOC is positively correlated with the N2 pore volume, indicating a good 

correlation between organic matter and pore volume at nanoscale. Impact of organic matter 

maturation due to heating on the nanoscale pore volume is much higher for higher TOC. 

Please notice that the NORM 3_14 and EF 2_93 were heated at 650°C instead of 600°C. 

The higher temperature may also contribute to some amount of increase. Overall, it 

indicates that organic matter maturation plays an important role in pore volume evolution. 

4.5 CONCLUSIONS 

Through heating samples at 4 different temperature levels, we observed changes in 

petrophysical parameters include BET surface area, N2 pore volume, pore size distribution, 
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GRI porosity, and permeabilities 𝑘ଵ and 𝑘ଶ. Those petrophysical properties are sensitive 

to the heating temperature for the sample preparation. Surface area, N2 pore volume, GRI 

porosity are positively correlated with heating temperatures, whereas permeabilities 𝑘ଵ 

and 𝑘ଶ show general increase trends.  

Compared to other parameters, GRI permeabilities are strongly affected by heating 

temperature. The high sensitivity of permeability measurement to drying temperature 

suggest that caution is warranted in interpreting permeability measurements performed on 

shales, as the preparation technique appears to have a significant influence on the results. 

Two factors contributing to the increase of those petrophyscial properties. The 

fluids are continuously removed for multiple-stage heating, resulting in an increase of 

accessible pore space for probe gas. The thermal maturation can also be a source for the 

increase of pore structure parameters and permeability, especially for temperature above 

600°C.  

The cross-plots between N2 pore volume and GRI porosity and permeabilities 

indicate that the shale matrix at the nanoscale (< 100 nm) is correlated with these larger-

scale properties. And the larger pores that contribute to 𝑘ଵ are well connected, while the 

smaller ones that contribute more to 𝑘ଶ  appear to be more poorly connected. This 

indicates the multiscale network features, where a certain fraction of small pores are 

assumed to be partially or completely disconnected from the overall structure. 
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Chapter 5: Investigation of Clustering Algorithms for Fluid 
Characterization Using NMR T1-T2 Maps of Organic-rich Shale3   

5.1 INTRODUCTION 

Nuclear magnetic resonance (NMR) has proven to be a powerful technique for 

characterizing unconventional oil and gas resources. It has been used to estimate important 

petrophysical quantities such as total porosity, movable-fluid porosity, fluid type, and 

saturation (e.g. Mullen, 2010; Odusina et al., 2011; Lewis et al., 2013; Tinni et al., 2014). 

In addition, the advanced 2-D T1-T2 measurement has become popular for shale 

characterization (Washburn and Birdwell, 2013; Daigle et al., 2014; Gips et al., 2014; 

Fleury and Romero-Sarmiento, 2016; Mehana and El-monier, 2016). The result of the T1-

T2 measurement is shown as a 2-D T1-T2 map, where the fluid volume is a function of T2 

(x-axis) and T1 (y-axis).  

In the T1-T2 map, fluid characterization is performed based on the T1/T2 ratio (e.g. 

Daigle et al., 2014; Fleury and Romero-Sarmiento, 2016; Singer et al., 2016; Jiang et al., 

2018b). According to Bloembergen-Purcell-Pound (BPP) theory, T1 and T2 can be 

expressed as a function of correlation time (Bloembergen et al., 1947). The correlation time 

describes the average time for a molecule to rotate one radian, and is controlled by the 

molecule size and viscosity. For mobile liquids, T1 and T2 have a similar value, so their 

ratio is close to one. For larger molecules and more viscous fluid, the ratio is greater than 

1. Under the framework of BPP theory, the characterizing of different fluid populations 

from the T1-T2 maps are done by specific T1/ T2 ratios. For water in large pores, T1/T2 ratio 

is around 1. T1/T2 ratio of hydrocarbon increases due to the increase of the molecular size 

                                                 
3 This chapter is based on Jiang, H., Daigle, H., Tian, X., Pyrcz, M., Griffith, C., Zhang, B. A 
Comparison of Clustering Algorithms applied to Fluid Characterization using NMR T1-T2 Maps 
of Shale. Computer & Geosciences. (under review)  
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and viscosity. The ratio for organic matter (OM; bitumen and kerogen) is even higher 

(Fleury and Romero-Sarmiento, 2016).  

Most fluid characterization is done manually. For example, Fleury and Romero-

Sarmiento (2016) defined several elliptical-shaped fluid regions on the T1-T2 maps to 

identify components like water, methane and kerogen (Figure 5.1a). Daigle et al. (2014) 

introduced a partitioning approach (Figure 5.1b) by projecting the NMR distribution from 

T1-T2 space to T1/T2 ratio (denoted as 𝑅) versus secular relaxation time (denoted as 𝑇𝑠). 

They are defined in Equation (2.29) and (2.30). Linear decision boundaries are chosen to 

cut the new 2-D space into several non-overlapping sub-spaces where each sub-space 

represents one fluid type (Daigle et al., 2014; Jiang et al., 2018b).  

Those manual approaches, however, are often empirical and subjected to human 

decisions. In the method of Fleury and Romero-Sarmiento (2016), the elliptical-shaped 

fluid regions are empirically defined based on a few sample measurements, and regions 

outside the ellipses remain undefined. In the method of Daigle et al. (2014), boundary 

locations are determined empirically, and the linearity assumption of the boundary is not 

sufficiently validated. Furthermore, the complex nature of the shale pore/fluid system adds 

uncertainties for interpretation using manual partitioning methods. Most fluids are seen to 

have a connected fingerprint in the T1-T2 domain, and regularization used in the NMR 

inversion technique can cause further smoothing of the distribution (Venkataramanan et 

al., 2018). In a low signal-to-noise scenario (e.g. downhole measurements), differentiation 

of multiple fluids is even more difficult (Xie and Xiao, 2011). As a result, manual 

partitioning of the T1-T2 distribution may be subjected to great uncertainties, and is not 

practical in those cases.  
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Figure 5.1 Two manual approaches for fluid characterization of NMR T1-T2 maps. (a) 
First approach introduced by Fleury and Romero-Sarmiento (2016). Four 
expected fluid component regions are defined. The diagonal lines 
correspond to T1/T2 ratios = 1, 2 and 100. Note that the hydroxyl component 
refers to hydroxyl groups in clay. The subplot is from Fleury and Romero-
Sarmiento (2016). (b) Second approach based on 𝑅 versus 𝑇𝑠. The vertical 
boundaries correspond to T1/T2= 10 and 100. The subplot is modified from 
Daigle et al. (2014).  
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Recently, machine learning approaches have been presented for NMR 

interpretation (e.g. Jain et al., 2013; Birdwell and Washburn, 2015; Venkataramanan et al., 

2018). Jain et al. (2013) applied exploratory factor analysis for NMR T2 logging 

measurements to identify fluid components from the T2 distribution. Venkataramanan et 

al. (2018) proposed an unsupervised method based on blind source separation (BSS) for 

the T1-T2 distribution. The method identified different fluid components for a continuous 

T1-T2-depth log by combining non-negative matrix factorization and a hierarchical 

clustering method (Venkataramanan et al., 2018). In addition, quantitative correlations 

between T1-T2 maps and organic geochemical properties can be achieved by a partial least-

squares regression approach (Birdwell and Washburn, 2015).   

In this study, we investigated the performances of different clustering algorithms 

for fluid characterization using T1-T2 maps. Two cluster validity indices were proposed to 

evaluate the clustering quality, providing quantitative guidance for both choosing the 

cluster number and selecting the best algorithm. Rather than using continuous logging data, 

we performed clustering analysis on individual T1-T2 maps of shale samples in the as-

received state and after drying at 110°C. The drying procedure helps to reveal the footprint 

from organic matter, allowing identification of low-signal fluids in OM pores (Note: OM 

is called ‘fluid component’ in this study for simplicity; Fleury and Romero-Sarmiento, 

2016). The best algorithm was selected based on the two validity indices. The results of 

the best algorithm were further qualitatively validated by comparing the identified fluid 

centers to those documented in literature. Our work provides a practical guide for applying 

cluster analysis in fluid characterization in NMR T1-T2 core analysis.  
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5.2 METHODS 

The workflow of this study is shown in Figure 5.2. We collected NMR T1-T2 data 

from two organic-rich shales at as-received and dried at 110°C conditions. T1-T2 data were 

processed and fed into 6 different clustering algorithms. Two cluster validity indices were 

calculated and the best algorithm was selected based on the evaluation. Detailed procedures 

are described below.    

5.2.1 Samples 

Samples used in this study are organic-rich shales from the Eagle Ford formation 

(denoted as EF) and a siliceous formation from the northern Rocky Mountains (denoted as 

NoRM). Samples include EF 1_223 and NoRM 3_14. Details of the samples can be found 

in Chapter 3.3. Samples were hand crushed and sieved through multiple trays. About 60 g 

of particles with mesh size between 20-35 US mesh were collected and dried in an oven at 

110°C for 2-4 days.  

NMR measurements were performed for both samples immediately after crushing 

(marked as as-received) and after oven drying at 110°C. All measurements were made at 

ambient pressure and temperature. We assume that a negligible amount signal was lost due 

to crushing. Drying in the oven can reveal the signal from organic matter (Fleury and 

Romero-Sarmiento, 2016), thus helping detecting signals from OM and fluids in OM-

hosted pores. The measurements were conducted by an Oxford GeoSpec 2 low-field NMR 

instrument with an operating frequency of 2.15 MHz. T1-T2 data were acquired with 

inversion recovery steps followed by a Carr-Purcell-Meiboom-Gill (CPMG) sequence with 

an echo spacing TE = 0.1 ms (Carr and Purcell, 1954; Meiboom and Gill, 1958; Singer et 

al., 2016; Nicot et al., 2016). CPMG is a series of 180° pulses following the 90° oscillating 
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pulse B1 in the x-y plane. The echo spacing is the time between the excitation 180° pulses. 

More details can be found in Chapter 2.5. 

 

 

Figure 5.2 Workflow of clustering analysis. NoRM refers to the shales from the northern 
Rocky Mountains. EF refers to the shales from Eagle Ford. 

T1-T2 data were processed by an in-house NMR inversion package (Medellín et al., 

2015; Medellín et al., 2016). The computed T1-T2 distribution is a set of data points. Each 
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point contains three elements: T2, T1, and the fluid volume. The range of T1 and T2 are 

from 0.01 ms to 1000 ms. 

5.2.2 Data Preprocessing 

A manifold for the T1-T2 map needs to be defined, on which the clustering 

algorithm is performed (Venkataramanan et al., 2018). A sub-space of the T1-T2 domain is 

obtained by ignoring the region where T1/T2 ratio is less than 0.5, as the theoretical T1/T2 

value is anticipated to be equal or larger than 1 according to BPP theory (Bloembergen et 

al., 1947). Since T1 and T2 values span several orders of magnitude, a logarithmic transform 

is applied, which converts heavily skewed data to a more symmetric distribution (Templ et 

al., 2008).  

Fluid volume 𝑓 is the third dimension of the distribution data (T1, T2, 𝑓). It is the 

density function of T1-T2, which represents the abundance (frequency) for a grid point (T1, 

T2) in terms of volume. The clustering requires converting the 3-D data to a 2-D T1-T2 

distribution, where the frequency is represented by the number of points on the grid (T1, 

T2). To do that, 𝑓 is normalized by the following equation:   

𝑓௡௢௥௠ =  𝑟𝑜𝑢𝑛𝑑 ቆ
𝑓(𝑇ଵ, 𝑇ଶ)

𝑓௖
ቇ , (5.1) 

where 𝑓௡௢௥௠  is the normalized fluid volume and  𝑓௖  is a threshold that represents the 

minimum fluid volume to be considered for the manifold.  

The threshold 𝑓௖ is similar to the normalization threshold coefficient 𝜏ଵ defined 

in Venkataramanan et al. (2018), and the choice of its value reflects the trade-off between 

noise variance and bias. When the threshold is large, gird points with information of the 

fluids may be erroneously omitted. When the threshold is small, grid points close to or less 
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than the noise level may be erroneously included. Through trial and error, 10% of the 

maximum fluid volume is chosen as 𝑓௖ in this study.  

Through this normalization, a fluid volume greater than  𝑓௖  is converted to an 

integer that is greater or equal to 1. Fluid volumes smaller than  𝑓௖ are ignored. Each grid 

point is then duplicated 𝑓௡௢௥௠ times to produce the 2-D dataset for clustering. 

5.2.3 Clustering  

Clustering algorithms can be broadly divided into hierarchical and partitional 

method at the top level (Figure 5.3; Jain et al., 1999; Jain, 2010). In the hierarchical method, 

each observation starts with itself as a cluster, and clusters are successively merged 

together to form larger clusters. The algorithm recursively produces a nested series of 

partitions. The partitional method, on the other hand, produces all the partitions at the same 

time without imposing the hierarchical structures.  

Six commonly used algorithms are selected (Figure 5.3). Three algorithms are from 

the family of hierarchical methods (Ward linkage, complete linkage and balanced iterative 

reducing and clustering using hierarchies or BIRCH). Three algorithms are from partitional 

methods (k-means, Gaussian mixture model or GMM, and spectral clustering). More 

details about clustering algorithms can be found in Chapter 2.6. 

Clustering is performed on the T1-T2 manifold using scikit-learn, an open source 

python machine learning library (Pedregosa et al., 2011). The T1-T2 dataset is fed into the 

selected clustering model. The model starts the training process by iteratively learning the 

cluster model parameters until some convergence criteria is met (Jain et al., 1999). After 

completing the training process, the trained model generates the cluster label for each T1-

T2 pair. More details of clustering using scikit-learn can be found in its documentation 
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(Pedregosa et al., 2011). Details of clustering based on python can be found in Appendix 

B. 

 

Figure 5.3 Taxonomy of clustering methods. Clustering names in boxes are methods used 
in this study. DBSCAN is short for density-based spatial clustering of 
applications with noise. GMM is short for Gaussian mixture model. BIRCH 
is short for balanced iterative reducing and clustering using hierarchies. 

5.2.4 Evaluation of Clustering 

Evaluating cluster quality is essential since any clustering algorithm will produce 

several different results for every dataset (Templ et al., 2018). The validity measures should 

support the decision for selecting the optimal cluster number. More importantly, they 

should also provide a value for judging the quality of the clustering result, so that the best 

clustering algorithm can be selected.   

Here, we propose two validity indices for the T1-T2 fluid characterization problem. 

These indices are based on the assumption from BPP theory that individual fluid 

populations will be characterized by a single value or narrow range of T1/T2 ratio. One 
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index measures the quality of the single cluster, and the other measures the quality between 

different clusters.  

5.2.4.1 Range Ratio 

The first index is the T1/T2 ratio range (RR). The expression is defined below:  

𝑅𝑅 =
𝑚𝑎𝑥 ቀ

𝑇ଵ

𝑇ଶ
ቁ

𝑚𝑖𝑛 ቀ
𝑇ଵ

𝑇ଶ
ቁ

 , (5.2) 

where 𝑚𝑎𝑥(𝑇ଵ/𝑇ଶ)  is the maximum T1/T2 ratio for grid points in one cluster. 

𝑚𝑖𝑛(𝑇ଵ/𝑇ଶ) is the mimimum T1/T2 ratio for the same cluster. Since the ratio spans several 

orders of magnitude, the maximum and minimum T1/T2 ratios are divided rather than 

subtracted.  

RR tries to measure the variation of T1/T2 ratio within the same cluster. A fluid with 

similar compositions should exhibit similar properties like viscosity and molecular size, 

resulting in a similar T1/T2 ratios on the T1-T2 map. Thus, a good cluster, which can 

represent a single fluid population, should have a small variation of T1/T2 ratios over its 

grid point population (Figure 5.4a). This means that a small RR is preferable, and a cluster 

with low quality will have a large RR (Figure 5.4b).  

5.2.4.2 Angle Difference 

The second index is the angle difference (AD), and is expressed below:  

𝐴𝐷 = | 𝛼 –  45°| , (5.3) 

where 𝛼 is expressed in degrees, and is the slope of the two-fluid partitioning boundary 

by linear regression in log(T2) - log(T1) space.  
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Figure 5.4 Illustration for (a) good clustering quality and (b) low clustering quality. 
Cluster labels are denoted by different colors. Three lines correspond to 
T1/T2 ratio = 1, 10, 100. The circle labeled number 1 represents the smallest 
T1/T2 ratio for the yellow cluster. The circle labeled number 2 represents the 
largest T1/T2 ratio for the same yellow cluster. 

We use grid points that are close to or on the boundary to represent the cluster 

boundary. Since all our algorithms apply hard assignment, this means each grid point can 

only belong to one cluster. In addition, if a grid point 𝛼௜ from Cluster 𝛼 is close to the 

boundary of Cluster 𝛼 and Cluster 𝛽, its neighbors within a critical distance should have 

a least one point from Cluster 𝛽. If 𝛼௜ doesn’t contains points from 𝛽 within the critical 

distance, 𝛼௜ is not on the boundary. If, one the other hand, there is more than one point 

from 𝛽 within the critical distance, the point with the minimum distance to 𝛼௜ (denoted 

as 𝛽௜) , as well as 𝛼௜ are considered as points on the boundary. The critical distance will 

have effects on the width of the boundary. A large critical distance will generate a wide 

boundary, and a small critical distance will generate a narrow boundary. In this work, we 

chose 0.05 as the critical distance, which yields a reasonable result (Figure 5.5). The 
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outcome is a set of points that are at the close or on the boundary as shown in Figure 5.5. 

Applying linear regression for the boundary points, we can obtain its slope. Based on this, 

we developed an algorithm to extract the boundary grid points. The pseudocode is shown 

below:  

 

Algorithm: extract grid points for two-fluid boundary 

  Input: cluster 𝛼, and cluster 𝛽, critical distance 𝑑௖ 
  Output: boundary points 𝐵 

compute the number of grid points (𝑛ఈ, 𝑛ఉ) of 𝛼 and 𝛽 
initiate 𝐵 

 for 𝑖 =  0 to 𝑛ఈ do 
     for 𝑗 =  0 to 𝑛ఉ do  

         𝑑௝ = ඥ(𝛼௜,଴ − 𝛽௝,଴)ଶ + (𝛼௜,ଵ − 𝛽௝,ଵ)ଶ   
     𝑑௠௜௡ ← minimum of 𝑑௝ for all 𝑗 
     if 𝑑௠௜௡ < 𝑑௖ then 
              𝑘 ← the index for minimum 𝑑௝  
              add 𝛼௜ and 𝛽௞ to 𝐵 
      remove duplicate points of 𝛼௜ or 𝛽௞ in 𝐵 

AD tries to measure the angle deviation of the fluid partitioning boundary to a 

theoretical fluid boundary line with a constant T1/T2 ratio. When partitioning fluids with 

different characteristic T1-T2 ratios on the maps, a good fluid partitioning boundary should 

have a slope which is roughly close to a constant T1/T2 ratio (Figure 5.4). This results in a 

small difference between the slopes of the partitioning boundary and 45°, and thus a smaller 

AD indicates a better partitioning boundary. 
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Figure 5.5 (a) Clustering result given 7 cluster numbers. Cluster labels are denoted by 
different colors. (b) Boundary points extracted by the algorithm. Different 
color denote points belong to different boundaries.   

5.3 RESULTS 

Clustering were performed on T1-T2 maps of shale sample NoRM 3_14 and EF 

1_223 at as-received and dried at 110°C conditions.  

5.3.1 T1-T2 Maps  

The T1-T2 maps for sample NoRM 3_14 at as-received and dried at 110°C 

conditions are depicted in Figure 5.6. The sample at as-received conditions (Figure 5.6a) 

has a total fluid volume of 2.87 cm3. It displays a large volume of signal from T2 < 1 ms 

region, and expands along the T1 axis. The large variation of T1/T2 ratios indicates a 

mixture of multiple fluid components. In addition, a distinct distribution is found in the T2 

> 1 ms region. After drying at 110°C (Figure 5.6b), the sample reduces its total fluid 

volume to 1.31 cm3. Most signal from the region of T2 > 1 ms disappears. 
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Figure 5.6 T1-T2 map for siliceous shale sample NoRM 3_14 (a) at as-received and (b) 
dried at 110°C conditions. The warmer colors indicate greater pore volume. 
The units of pore volume are cm3. T1 and T2 both range from 10-2 ms to 103 
ms. Three dashed lines correspond to T1/T2 ratio = 1, 10, 100. NoRM refers 
to the shales from the northern Rocky Mountains. 

The T1-T2 maps for sample EF 1_223 at as-received and dried at 110°C conditions 

are depicted in Figure 5.7. Sample EF 1_223 has a total fluid volume of 2.86 cm3 for its 

as-received conditions (Figure 5.7a). Most of the fluid volume is located in the region of 

T2 > 1 ms, forming an elliptical shape. The center of the ellipse has a T1/T2 ratio close to 

10. The distribution extends to the T2 < 1 ms region with a tail-like shape. The peak volume 

of the tail has a T1/T2 ratio around 8.  

After drying at 110°C, the total fluid volume of EF 1_223 is greatly reduced to 0.51 

cm3 due to fluid evaporation. As depicted in Figure 5.7b, most of the signal from the region 

of T2 > 1 ms disappears. The peak fluid volume shifts to smaller T2 region, with the shape 

widely extending along T1 axis. The signal of organic matter, suppressed at as-received 

conditions, is anticipated to be more prevalent. 
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Figure 5.7 T1-T2 map of calcareous shale sample EF 1_223 (a) at as-received and (b) 
dried at 110°C conditions. The warmer colors indicate greater pore volume. 
The units of pore volume are cm3. T1 and T2 both range from 10-2 ms to 103 
ms. Three dashed lines correspond to T1/T2 ratio = 1, 10, 100.  EF refers to 
the shales from Eagle Ford. 

5.3.2 Clustering Results 

Six clustering algorithms were applied to the 2 shale samples at both as-received 

and dried at 110°C conditions. We started with a small value of cluster number and 

successively increased the cluster number until 6-7. A large cluster number should be 

avoided as it can cause difficulty in interpretation of individual clusters.  

We plotted the two validity indices RR and AD against the number of clusters for 

each algorithm. For each cluster number, there are multiple cluster groups and thus multiple 

values of the index, so the highest index value is selected to represent the cluster quality. 

Small values of both indices are preferable. The optimal cluster number can be selected 

according to the graph. In addition, the best clustering algorithm can also be selected by 

comparing the different plots.  
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5.3.2.1 Clustering for NoRM 3_14 at As-received Conditions 

The results of the two validity indices of NoRM 3_14 at as-received conditions are 

shown in Figure 5.8 and Figure 5.9. Figure 5.8 shows plots of the two validity indices 

against the number of clusters of algorithms including BIRCH, complete linkage and 

GMM. Figure 5.9 shows plots of the other 3 algorithms (k-means, spectral clustering and 

Ward linkage). GMM displays a clear minimum of RR at a cluster number of 4. The small 

RR value indicates that the partitioning clusters given that cluster number have narrow 

ranges of T1/T2 ratios. One the other hand, the other 5 methods show a decreasing trend 

against the cluster number, implying that a larger cluster number is preferable.  

For the second validity index AD, GMM shows a minimum AD value for a cluster 

number of 4. The small AD value indicates that those boundaries have good alignments 

with the T1/T2 ratio line. The other methods, however, have at least one large AD value 

when cluster number is greater than 3, implying that the boundaries are not well aligned to 

the T1/T2 ratio line at large cluster number.  

The analysis of RR and AD concludes that GMM with cluster number of 4 yields 

the best partitioning result, whereas other algorithms fail to provide a good quality of 

partitioning.  

Figure 5.10 shows clustering results of the 6 algorithms with cluster number of 4. 

Partitioning methods yield smooth boundaries whereas hierarchical methods generate non-

smooth boundaries. On the other hand, the hierarchical methods start the process by 

treating the individual point as one cluster, then progressively reduce cluster number by 

merging two small clusters into one cluster. This iterative merging of clusters generates 

non-linear boundaries. Figure 5.10 show that GMM gives the best partitioning results, 

which visually validate the capability of cluster validity indices. The two decision 
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boundaries of GMM almost parallel to the reference T1/T2 ratio lines. Decision boundaries 

of other algorithms are not consistent to the reference ratio lines. 

 

Figure 5.8 Two cluster validity indices RR and AD given different number of clusters for 
sample NoRM 3_14 at as-received conditions: Algorithms include (a) 
BIRCH, (b) complete linkage, and (c) GMM. The number of clusters is from 
2 to 6. Small values of RR and AD indicate better clustering performance. 
The optimal clustering number is 4 for GMM as indicated by red arrows.  
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Figure 5.9 Two cluster validity indices RR and AD given different number of clusters for 
sample NoRM 3_14 at as-received conditions: Algorithms include (a) k-
means, (b) spectral clustering, and (c) Ward linkage. The number of clusters 
is from 2 to 6. Small values of RR and AD indicate better clustering 
performance.  
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Figure 5.10 Clustering results of 6 algorithms for NoRM 3_14 at as-received conditions. 
The cluster number is 4. The results are plotted on log-log scales. Cluster 
labels are denoted by different colors. Three lines correspond to T1/T2 ratio 
= 1, 10, 100.   
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5.3.2.2 Clustering for NoRM 3_14 and EF 1_223 at Dried at 110°C Conditions 

The two indices are computed for samples NoRM 3_14 and EF 1_223 dried at 

110°C conditions against the number of clusters. Based on the same evaluation procedure, 

GMM with an optimal cluster number of 5 produces the most suitable partitioning results, 

as predicted by two indices (Figure 5.11 and Figure 5.12). Other algorithms fail to generate 

good partitioning results. Clustering results on the T1-T2 map with 5 clusters are shown in 

Figures 5.13 and 5.14 for NoRM 3_14 and EF 1_223, which visually validates the 

conclusion from the two indices. 

 

 

Figure 5.11 Two cluster validity indices (a) ratio range (RR) and (b) angle difference 
(AD) of GMM for NoRM 3_14 dried at 110°C. The number of clusters is 
from 2 to 7. Small values of RR and AD indicate better clustering 
performance. The optimal clustering number is 5 for GMM method as 
indicated by red arrows. 
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Figure 5.12 Two cluster validity indices (a) ratio range (RR) and (b) angle difference 
(AD) of GMM for EF 1_223 dried at 110°C conditions. The number of 
clusters is from 2 to 7. Small values of RR and AD indicate better clustering 
performance. The optimal clustering number is 5 for GMM method as 
indicated by red arrows. 

5.3.2.3 Clustering for EF 1_223 at As-received Conditions 

 Clustering is applied for EF 1_223 at as-received conditions. The results, however, 

don’t yield good performance even with GMM, according the two indices in Figure 5.15. 

The partitioning on the T1-T2 map (Figure 5.16) suggests that the GMM cluster boundaries 

don’t well align with the reference T1/T2 ratio lines. Other methods fail as well. All 6 

algorithms try to create sub-partitions in the large T2 region, where one fluid component is 

anticipated due to its narrow T1/T2 ratio range.  
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Figure 5.13 Clustering results of 6 algorithms for NoRM 3_14 dried at 110°C conditions. 
The cluster number is 5. The results are plotted on log-log scales. Cluster 
labels are denoted by different colors. Three lines correspond to T1/T2 ratio 
= 1, 10, 100.   



 125 

 

Figure 5.14 Clustering results of 6 algorithms for EF 2_93 dried at 110°C conditions. The 
cluster number is 5. The results are plotted on log-log scales. Cluster labels 
are denoted by different colors. Three lines correspond to T1/T2 ratio = 1, 
10, 100. 
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Figure 5.15 Two cluster validity indices (a) ratio range (RR) and (b) angle difference 
(AD) for GMM given different number of clusters for sample EF 1_223 at 
as-received conditions. The number of clusters is from 2 to 7. Small values 
of ratio range and angle difference indicate better clustering performance.  

Unlike NoRM 3_14, sample EF 1_223 at as-received conditions is dominated by 

fluid in the larger T2 region (Figure 5.7a). The footprint of kerogen and bitumen in the 

small T2 region is not clearly observable, which may be suppressed by the dominant fluid 

signal. During the clustering training process, the optimization algorithm may be sensitive 

to the large signal intensity in the large T2 region, causing sub-partitions in that region. 

This results in a relatively overall low quality of GMM partitioning.  

 

In summary, the proposed two validity indices based on BPP theory yield good 

quantitative estimation of cluster quality, providing a practical guide for selecting cluster 

number and best algorithm. In most cases, GMM with cluster number to be 4-5 is the best 

algorithm, which shows the highest consistence respect to the reference fluid boundaries. 

Other algorithms, however, fail to provide good clustering based on the two indices and 

partitioning plot on T1-T2 maps. 
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Figure 5.16 Clustering results of 6 algorithms for EF 1_223 at as-received conditions. 
The cluster number is 4. The results are plotted on log-log scales. Cluster 
labels are denoted by different colors. Three lines correspond to T1/T2 ratio 
= 1, 10, 100.   
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5.4 INTERPRETATION OF FLUID POPULATIONS 

5.4.1 Theory of GMM  

We first introduce the theory of GMM. GMM belongs to one type of clustering 

approach called model-based clustering (Jain et al., 1999; Aggarwal and Reddy, 2013). 

The model-based clustering assumes that data is generated from a mixture of components, 

where each component is described by a probability model. In GMM, the Gaussian 

probability distribution is used (Day, 1969; McLachlan et al., 1999; Fraley and Raftery, 

2006).   

For a 2-D case, the Gaussian distribution function is expressed as:  

𝑓(𝒙) =  
1

ඥ(2𝜋)ଶ|𝑽|
𝑒𝑥𝑝 ൤−

1

2
(𝒙 − µ)்𝑽ିଵ (𝒙 − µ)൨ , (5.4) 

where 𝑽 is the 2-D covariance matrix. |𝑽| is its determinant,  𝒙 is the two-dimensional 

variable, which contains two features Tଶ, Tଵ, and µ is the 2-D mean vector (Tଶ
തതത, Tଵ

ഥ ). 

The 2-D covariance matrix 𝑽 is defined:   

𝑽(𝑇ଶ, 𝑇ଵ)  =  ൤
𝑉𝐴𝑅(𝑇ଶ) 𝐶𝑂𝑉(𝑇ଶ, 𝑇ଵ)

𝐶𝑂𝑉(𝑇ଵ, 𝑇ଶ) 𝑉𝐴𝑅(𝑇ଵ)
൨ , (5.5) 

where the variance 𝑉𝐴𝑅 and covariance 𝐶𝑂𝑉 is defined as: 

𝑉𝐴𝑅(𝑋) = ෍
(𝑋௜ − 𝑋ത)(𝑋௜ − 𝑋ത)

𝑁

ே

௜ୀଵ

 , (5.6) 

𝐶𝑂𝑉(𝑋, 𝑌) =  ෍
(𝑋௜ − 𝑋ത)(𝑌௜ − 𝑌ത)

𝑁

ே

௜ୀଵ

 , (5.7) 

where 𝑁 is the total number of observations, and 𝑋ത (or 𝑌ത) is the mean of the variable.  
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The 2-D GMM is a probability density function expressed in a weighted summation 

of individual 2-D Gaussian distributions: 

𝑔(𝒙; 𝝅) =  ෍ 𝜋௞𝑓௞(𝒙)

௄

௞ୀଵ

 , (5.8) 

where 𝐾  represents the total number of components and 𝜋௞  is the 𝑘௧௛  component 

density (weight), which is the prior probability that an observation is drawn from the 𝑘௧௛ 

Gaussian model represented by 𝑓௞ (Jain et al., 1999; Aggarwal and Reddy, 2013).  

The GMM parameters, including component density and each set of Gaussian 

distribution parameters (mean and covariance matrix), are estimated from the given dataset 

with the use of the expectation maximization algorithm (EM; Dempster et al., 1977; Neal 

and Hinton, 1998; McLachlan and Krishnan, 2007). From the trained model, observations 

are assigned to the components with the highest probabilities.  

5.4.2 Fluid Typing 

Clustering results at dried at 110°C conditions are generally better than as-received 

conditions, and both 5 cluster are identified. Results from dried conditions are used for 

fluid typing. Means µ (interpreted as the fluid population centers in the T1-T2 map) and 

covariances 𝑽 of dried condition are plotted in Figure 5.17 for the two samples. We use 

T2 of 0.5 ms to separate fluids into large pores (T2 > 0.5 ms) and small pores (T2 < 0.5 ms), 

as a larger T2 value roughly corresponds to a larger pore size.  

GMM fluid types are qualitatively confirmed by comparing the identified fluid 

centers to those documented in literature. The mean values are summarized in Table 5.1, 

along with expected fluid population centers from the literature (Fleury and Romero-
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Sarmiento, 2016; Nicot et al., 2016; Washburn and Cheng, 2017; Romero-Sarmiento et al., 

2017). 

 

Figure 5.17 GMM results for (a) NoRM 3_14 and (b) EF 1_223 dried at 110°C condition. 
Cluster labels are denoted by different colors, which including bound water 
(blue), bound hydrocarbon (yellow), bitumen (red), kerogen (green) and free 
fluid (purple). The covariance matrix of each Gaussian distribution is 
represented by the black ellipse, and the mean is represented by a black dot 
in the center of ellipse. Three lines represent T1/T2 ratio = 1, 10, 100. 

According to Table 5.1, fluid types predicted by GMM are comparable with 

previous studies. The GMM cluster component of NoRM 3_14 in the large T2 region has 

an average T2 around 0.8 ms, and an average T1/T2 ratio around 16. The GMM cluster of 

EF 1_223 has an average T2 around 10 ms, and an average T1/T2 ratio round 5.3. The fluid 

is likely to be hydrocarbon in large pores (Nicot et al., 2016; Romero-Sarmiento et al., 

2017). 

 



 131 

Table 5.1 Comparison of fluid components identified from this study and previous 
studies. Samples were dried at 110°C conditions. NoRM refers to the shales 
from the northern Rocky Mountains. EF refers to the shales from Eagle 
Ford. Notes: [1] is methane. [2] is free hydrocarbon is light oil (isopar L).   

 
Sample 

Small pores Large pores 
Bound water Bound 

hydrocarbon 
Bitumen Kerogen Free fluid 

T2 
(ms) 

T1/T2 T2 
(ms) 

T1/T2 T2 
(ms) 

T1/T2 T2 
(ms) 

T1/T2 T2 
(ms) 

T1/T
2 

EF 1_223 0.16 0.9 0.18 3.3 0.17 21.8 0.14 208.7 10.38 5.3 
NoRM 3_14 0.10 0.9 0.09 3.2 0.08 21.7 0.07 210.1 0.79 15.2 
Fleury and 
Romero-

Sarmiento 
(2016) 

- 1-2 - - - - 0.01-
0.1 

50, 
180, 
250 

- 15-
20[1] 

Nicot et al. 
(2016) 

0.1-1 1-2 - > 3[2] - - - - - > 
3[2] 

Washburn 
and Cheng 

(2017) 

- - - 4-10 - 20-
30 

- 1000 2 4-10 

Romero-
Sarmiento 

et al. (2017) 

- - 0.25 4 0.07 14.2 0.5 160 - - 

 

Furthermore, the other 4 components with small T2 (< 0.5 ms) of both two samples 

suggest fluids in small pores, which is also confirmed by the previous studies listed in 

Table 5.1. The cluster component in blue with an average T1/T2 ratio close to unity (0.9) 

tends to be bound water (e.g. clay-bound water; Fleury and Romero-Sarmiento, 2016; 

Nicot et al., 2016). The yellow component with T1/T2 of 3 is likely to be bound 

hydrocarbon, as a ratio around 4 is a typical signature of oil relaxing in the pore network 

(Nicot et al., 2016; Romero-Sarmiento et al., 2017). The red component with higher T1/T2 

around 22 is classified as bitumen, as suggested by Washburn et al. (2013), and Washburn 

and Cheng (2017). The green component with T1/T2 ratio above 200 is classified as kerogen 
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accordingly (Washburn et al., 2013; Romero-Sarmiento et al. 2017; Washburn and Cheng, 

2017).  

5.4.3 Computation of Fluid Volumes 

After the clustering is performed on the dried at 110°C conditions, the T1-T2 space 

is partitioned, where each grid point in the space is assigned with a cluster label. By 

summation of fluid volumes for each cluster, the fluid volume of each fluid component can 

be obtained.  

Since the clustering performed relatively poorly for samples at as-received 

conditions, we use the clustering results from dried at 110°C conditions to inform the 

clustering at as received conditions to mitigate the effects of the dominant fluid. For the 

sample at as-received conditions, T1-T2 grid points are assigned with the corresponding 

cluster labels from dried at 110°C conditions (Figure 5.18). The assumption of this ‘label- 

transferring’ is that the same number of fluid components is present and the composition 

and identity of those fluids have not changed after heating at 110°C.  

Fluid volumes for 5 fluid components of both two samples are listed in Table 5.2. 

NoRM 3_14 shows a similar fluid portion for both as-received condition and dried at 110°C 

conditions. For EF 1_223 at the as-received conditions, the hydrocarbon at large T2 region 

dominates the NMR signal. After heating at 110°C, the hydrocarbon in the large pore 

significantly is reduced.  

In this work, we validated the cluster centers using data from literature. The 

computed volumeshowever, need experimental validation. This could be done by 

comparing fluid volumes extracted by other methods such as the Dean-Stark method. Other 

ways for validation can be the injection of known fluids with known fluid volume or 

performing clustering on conventional rocks like sandstones with a simpler pore geometry. 
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Figure 5.18 Fluid volume computation for as-received conditions of (a) NoRM 3_14 and 
(b) EF 1_223 using clustering from samples dried at 110°C conditions. The 
T1-T2 distributions at as-received conditions are shown using contour plots 
for better visualization. GMM fluid regions at dried at 110°C conditions are 
denoted by different colors, including bound water (blue), bound 
hydrocarbon (yellow), bitumen (red), kerogen (green) and free fluid 
(purple). The results are plotted on log-log scales. 

Table 5.2 Fluid volumes in cm3 of 5 fluid components of 2 samples at as-received and 
dried at 110°C conditions. EF refers to the shales from Eagle Ford. NoRM 
refers to the shales from the northern Rocky Mountains.  

 
 

 
Sample 

Small pores  

 
Large 
pores  

Bound 
water 

 
Bound 

hydrocarbon Bitumen Kerogen Free fluid 
EF 1_223, as-received 0.098 0.462 0.781 0.073 1.442 
EF 1_223, dried at 110°C 0.048 0.115 0.218 0.067 0.066 
NoRM 3_14, as-received 0.287 0.775 0.984 0.328 0.494 
NoRM 3_14, dried at 110°C 0.157 0.342 0.503 0.126 0.183 
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5.5 DISCUSSIONS 

5.5.1 Physical Meaning of GMM 

GMM clustering matches the fluid partitioning predicted by BPP theory. As Jain 

(2010) pointed out: When there is a good match between the clustering algorithm and the 

data, good partitions are obtained. On one hand, GMM is a generative process, which tries 

to understand the underlying process through which clustering is generated, instead of 

simply learning the decision boundaries (Aggarwal and Reddy, 2013). The GMM assumes 

that the observations are drawn from a mixture of Gaussian probability distributions. On 

the other hand, fluid properties like the viscosity of individual components can be modeled 

with a Gaussian probability distribution. On the T1-T2 map, the mean of the signal 

represents the average property value, and the spread of the property can be modeled by 

the covariance matrix in two-dimensions. The physical mixture of multiple fluid 

components in the porous medium yields the mixture of multiple fluid responses in the 

NMR T1-T2 distribution. As a result, the GMM assumption is physically consistent with 

the fluid distribution in shale. 

5.5.2 Comparison of GMM and Manual Methods 

The fluid partitioning obtained by GMM can be linked to partitioning results 

obtained from Fleury and Romero-Sarmiento (2016). The covariance matrix of GMM 

(Figure 5.17) is consistent with the elliptical partitioning regions based on the manual 

method (Figure 5.1a), since the ellipse is the geometrical representation of the covariance 

matrix. This can be proved by the eigen-decomposition of the covariance matrix, where the 

eigenvectors represent the directions of the major and minor axis and the magnitudes of 

the two axes are the eigenvalues.  
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On the other hand, compared to manual partitioning, GMM provides a robust data-

driven way to automatically obtain the fluid regions and fluid centers. Through statistically 

learning the pattern from the data, it overcomes the subjective nature of manually choosing 

the shape and boundaries. 

5.6 CONCLUSIONS 

We investigated 6 clustering algorithms for fluid characterization in NMR T1-T2 

measurements from 2 organic-rich shale samples at as-received and dried at 110°C 

conditions. Two cluster validity indices including T1/T2 ratio range (RR) and angle 

difference (AD) were proposed. These indices are based on the assumption from BPP 

theory that individual fluid populations will be characterized by a single value or narrow 

range of T1/T2 ratio.  

For most cases, GMM is the best algorithm, as its partitions shows the highest 

consistency with the theoretical fluid boundary lines predicted by BPP theory. Other 5 

algorithms fail to generate good partitioning results. 

Clustering algorithms are sensitive to the fluid distribution. For sample EF 1_223 

at as-received conditions, none of the algorithms (include GMM) produce good clustering 

results, which could be due to the relatively large volume in the large T2 region. Compared 

to as-received conditions, drying the sample producing better clustering results by 

revealing the footprint of organic matter.  

We further evaluated GMM approach using its cluster centers from dried at 110°C 

conditions. Five fluid components were identified using the cluster centers of GMM, 

including free fluid in large pores (T2 > 0.5 ms) and 4 fluid components in small pores (T2 

< 0.5 ms). The 4 components are bound water, bound hydrocarbon, bitumen and kerogen. 

Their values are consistent with the expected fluid responses from literature. In addition, 
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we computed the fluid volume of each cluster and transferred the labels to as-received 

conditions. 

The GMM-based clustering approach is suitable for fluid characterization NMR T1-

T2 measurements of shale where multiple fluid components are present in different pore 

systems. Compared to the manual partitioning methods, it overcomes the subjective nature 

of human decisions and provides a robust machine learning approach for fluid partitioning 

in NMR T1-T2 for shales. 
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Chapter 6: Characterization of Fluid Distributions in NMR T1-T2 Maps 
of Shales based on Gaussian Mixture Model Clustering Analysis 

6.1 INTRODUCTION 

In Chapter 5, we introduced a new fluid partitioning approach for NMR T1-T2 

maps in shale using Gaussian mixture model (GMM) clustering analysis. We proposed 

two indices including T1/T2 ratio range (RR) and angle difference (AD) based on 

Bloembergen-Purcell-Pound (BPP) theory. Six clustering algorithms were performed on 

T1-T2 maps of 2 organic-rich shale samples for both as-received conditions and dried at 

110°C conditions. The comparison of 6 clustering algorithms indicate that GMM is the 

best algorithm for most of the cases, as its partitions show the highest consistency with 

the theoretical fluid boundary lines predicted by BPP theory. In addition, clustering is 

found to be sensitive to the fluid distribution. Heating can help the performance of 

clustering, whereas clustering tends to perform relatively poorly at as-received 

conditions.  

To further validate the GMM clustering approach, in this chapter, we present a 

more thorough analysis using multiple EF and NoRM samples. Four organic-rich shales 

(two EF and two NoRM samples) were used in this work, and their T1-T2 maps were 

collected at both as-received and dried at 110°C conditions. We applied GMM on the T1-

T2 maps and computed the two indices against cluster number for selecting optimal 

cluster number. In addition, we focus on discussing fluid patterns of shales from different 

formations.   
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6.2 METHODS 

Shale samples used in this study are from the Eagle Ford formation (denoted as 

EF) and from the northern Rocky Mountains (denoted as NoRM). A total of 4 samples 

were used (EF 2_50, EF 2_93, NoRM 4_14, NoRM 4_34). Details of the sample 

properties can be found in Chapter 3.3. About 60 g of sample particles with mesh size 

between 20-35 US mesh were collected and dried in an oven at 110°C for 2-4 days. NMR 

T1-T2 measurements were performed for both samples immediately after crushing and 

after oven drying at 110°C. T1-T2 data were acquired with inversion recovery steps 

followed by a Carr-Purcell-Meiboom-Gill (CPMG) sequence (Carr and Purcell, 1954; 

Meiboom and Gill, 1958). The T1-T2 maps were computed by the Matlab-based inversion 

program (Medellín et al., 2015; Medellín et al., 2016). More details on sample 

preparation and measurement procedures can be found in Chapter 5.2.  

We applied the GMM clustering analysis described in Chapter 5. The workflow is 

briefly summarized here: First, a sub-space of T1-T2 domain is obtained by ignoring the 

region where T1/T2 ratio is less than 0.5. Second, a logarithmic transform is applied to the 

T1 and T2 values to convert the heavily skewed data to a more symmetric distribution. 

Fluid volume 𝑓 is normalized using Equation (5.1), and the threshold 𝑓௖ is chosen as 

10% of the maximum fluid volume. The normalization converts 𝑓 to 𝑓௡௢௥௠, an positive 

integer. Volume values smaller than  𝑓௖ are ignored. The clustering requires converting 

the 3-D data (T1, T2, 𝑓) to a 2-D T1-T2 distribution, where the frequency is represented 

by the number of points on the grid point (T1, T2). As a result, each grid point is 

duplicated 𝑓௡௢௥௠ times to produce the 2-D clustering dataset.  

GMM belongs to one type of clustering approach called model-based clustering 

(Jain et al., 1999). GMM assumes that data is generated from a mixture of components, 

and each component is described by a Gaussian probability distribution (Day, 1969; 
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McLachlan et al., 1999; Fraley and Raftery, 2006). The cluster number needs to be pre-

defined before performing clustering. One starts with a small value of cluster number and 

successively increases the cluster number. The maximum cluster number is restricted to 7 

to avoid the difficulty of fluid typing interpretation. For a given cluster number, GMM is 

trained using the python machine learning library scikit-learn (Pedregosa et al., 2011). 

After training the model, the cluster label for each grid point is generated. This is 

achieved by assigning the grid point to the cluster with the highest probabilities.  

After clustering, two cluster validity indices, ratio range (RR) and angle 

difference (AD), are calculated. Their expressions are defined in Equation (5.2) and (5.3). 

They provide guidance for selecting the optimal cluster number. RR measures the 

variation of T1/T2 ratio within the same cluster, whereas AD measures the angle deviation 

of the fluid partitioning boundary to a theoretical fluid boundary line with a constant 

T1/T2 ratio. Small values of RR and AD are preferable. More details can be found in 

Chapter 5.2.2 – 5.2.4.  

6.3 RESULTS AND DISCUSSIONS 

6.3.1 T1-T2 Maps  

The T1-T2 maps for 2 EF samples and 2 NoRM at as-received conditions are 

shown in Figure 6.1. The T1-T2 maps for samples dried at 110°C conditions are in Figure 

6.2. The total NMR fluid volumes are listed in Table 6.1.  

For as-received conditions, samples from the same formation have a similar fluid 

distribution pattern, whereas samples from different formations have distinct distribution 

characteristics. The two EF samples are dominated by the fluid in the region of T2 > 1 

ms. The dominant fluid forms an elliptical shape. Some signal extends to the smaller T2 

region (T2 < 1 ms), forming a tail-like shape. On the other hand, NoRM samples display a 
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more complicated geometry: there is a distinct separation of signal in T2 > 1 ms and T2 < 

1 ms regions. Yet, the peak volume locations of the two samples are different: The peak 

volume is in T2 > 1 ms for NoRM 4_14, whereas the peak fluid volume for NoRM 4_34 

is in the T2 < 1 ms region.  

 

 

Figure 6.1 T1-T2 maps for samples at as-received conditions: (a) EF 2_50, (b) EF 2_93, 
(c) NoRM 4_14, and (d) NoRM 4_34. The warmer colors indicate greater 
pore volume. The units of pore volume are cm3. T1 and T2 both range from 
10-2 ms to 103 ms. Three dashed lines correspond to T1/T2 ratio = 1, 10, 100.  
EF refers to the shales from Eagle Ford. NoRM refers to the shales from the 
northern Rocky Mountains. 
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Figure 6.2 T1-T2 maps for samples dried at 110°C conditions: (a) EF 2_50, (b) EF 2_93, 
(c) NoRM 4_14, and (d) NoRM 4_34. The warmer colors indicate greater 
pore volume. The units of pore volume are cm3. T1 and T2 both range from 
10-2 ms to 103 ms. Three dashed lines correspond to T1/T2 ratio = 1, 10, 100. 
EF refers to the shales from Eagle Ford. NoRM refers to the shales from the 
northern Rocky Mountains. 

After heating the samples, the fluid volume is reduced due to evaporation (Table 

6.1). The NMR signal shows a significant change compared to as-received conditions. The 

fluid volume, especially in the large T2 region, is greatly reduced, and the peak fluid volume 

shifts to smaller T2 region. The signal of organic matter (OM), which was suppressed at 

as-received conditions, is anticipated to be more prevalent in these measurements. 
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In addition, both EF and NoRM samples show a similar distribution pattern after 

heating. The fluid distribution difference at as-received conditions may stem from 

different rock diagenetic histories, and this difference is reduced by the heating effect.  

Table 6.1 Total NMR fluid volumes of 3 EF samples and 3 NoRM samples at as-received 
and dried at 110°C conditions. EF refers to the shales from Eagle Ford. 
NoRM refers to the shales from the northern Rocky Mountains.  

Sample 
 

Total fluid volume (cm3) 
As-received 
conditions 

Dried at 110°C 
conditions 

EF 1_223 2.86 0.51 
EF 2_50 3.57 0.82 
EF 2_93 2.93 1.00 

NoRM 3_14 2.87 1.31 
NoRM 4_14 2.12 0.62 
NoRM 4_34 2.38 0.51 

6.3.2 Clustering Results 

6.3.2.1 Dried at 110°C Conditions 

GMM clustering was first performed on T1-T2 data of samples dried at 110°C 

conditions, since heating helps to reveal the footprint of OM, generating better cluster 

performance. The two cluster validity indices RR and AD are plotted against the cluster 

number (Figure 6.3, 6.4), which can analyze the clustering performance and select the 

optimal cluster number.  

For each cluster number, the highest value point is chosen to represent the cluster 

quality.  Most of the indices show a V-shape against the cluster number, where the 

optimal cluster number can be easily found on the bottom. According to the analysis, the 

optimal number is 5, as there is often a minimum value for the two indices when cluster 

number is 5. In a few cases (e.g. Figure 6.3a), values for a cluster number of 4 are similar 
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or even lower than those for a cluster number of 5. However, we choose a fixed cluster 

number, which allows the comparison of fluid types among samples.  

 

Figure 6.3 Cluster validity indices of GMM clustering against different number of 
clusters for T1-T2 maps dried at 110°C conditions: (a) RR of EF 2_50, (b) 
AD of EF 2_50, (c) RR of EF 2_93, and (d) AD of EF 2_93. RR is ratio 
range and AD is angle difference. EF refers to the shales from Eagle Ford. 
The optimal clustering number is indicated by the red arrow. 
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Figure 6.4 Cluster validity indices of GMM clustering against different number of 
clusters for T1-T2 maps dried at 110°C conditions: (a) RR of NoRM 4_14, 
(b) AD of NoRM 4_14, (c) RR of NoRM 4_34, and (d) AD of NoRM 4_34. 
RR is ratio range and AD is angle difference. The optimal clustering number 
is indicated by the red arrow. 

The clustering results for 4 samples are plotted in Figure 6.5. Partitioning results 

show good consistency with the reference T1/T2 ratio lines, especially for EF samples. 

The decision boundaries parallel the reference lines. On the other hand, NoRM fluid 

boundaries show a small deviation against the reference lines. One possible explanation 
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is because the presence of the purple cluster in the large T2 region, whose footprint is 

mixed with clusters in the small T2 region. 

 

Figure 6.5 Clustering results for 4 samples dried at 110°C conditions. The cluster number 
is 5. The results are plotted on log-log scales. Cluster labels are denoted by 
different colors. Three lines correspond to T1/T2 ratio = 1, 10, 100.   
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6.3.2.2 As-received Conditions 

 We applied GMM with cluster number of 5 to samples at as-received conditions 

(Figure 6.6). Most of the clustering results for as-received conditions have relatively poor 

performance. The cluster boundaries don’t align well with the reference lines. For EF 

samples, GMM tries to make sub-partitions in the large T2 region. For sample NoRM 

4_14 (Figure 6.6c), however, it shows good clustering results. Similar to NoRM 3_14 in 

Chapter 5 (Figure 5.9c), both samples have a clear separation of the cluster (purple) in 

larger T2 and rest clusters in smaller T2 regions. This separation might allow the model to 

choose a better partitioning pattern.  

6.3.3 Fluid Typing  

 Compared to as-received conditions, clustering results for dried at 110°C 

conditions show better partitioning. As a result, fluid typing is conducted using means 

(interpreted as fluid population centers) for GMM results from dried at 110°C conditions. 

Centers for the five identified fluids are summarized in Table 6.2 as well as those 

documented in literature. The results include EF 1_223 and NoRM 3_14 from Chapter 5.  

Again, fluid types predicted by GMM are comparable with previous studies. We 

use T2 of 0.5 ms to separate fluids in large pores (T2 > 0.5 ms) and small pores (T2 < 0.5 

ms) since a larger T2 value generally corresponds to a larger pore size. The free fluid in 

large pores (purple) shows a wide range of T2 and T1/T2 ratio (Table 6.2). Its composition 

is likely to be hydrocarbon.  
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Figure 6.6 Clustering results for 4 samples at as-received conditions. The cluster number 
is 5. The results are plotted on log-log scales. Cluster labels are denoted by 
different colors. Three lines correspond to T1/T2 ratio = 1, 10, 100.   
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Table 6.2 Comparison of fluid components identified from this study and previous 
studies. fluid components were identify using GMM clustering in samples 
dried at 110°C conditions. EF refers to the shales from Eagle Ford. NoRM 
refers to the shales from the northern Rocky Mountains. Note: [1] is 
methane. [2] is light oil (isopar L).   

 
 

Sample 

Small pores Large pores 
Bound 
water 

Bound 
hydrocarbon 

Bitumen Kerogen Free fluid 

T2 
(ms) 

T1/
T2 

T2 
(ms) 

T1/T2 T2 
(ms) 

T1/T2 T2 
(ms) 

T1/T2 T2 
(ms) 

T1/T
2 

EF 1_223 0.16 0.9 0.18 3.3 0.17 21.8 0.14 208.7 10.38 5.3 
EF 2_50 0.16 0.9 0.17 3.6 0.16 23.8 0.13 222.0 8.2 4.2 
EF 2_93 0.12 1.6 0.17 6.2 0.11 30.5 0.07 309.4 0.83 16.9 

NoRM 3_14 0.10 0.9 0.09 3.2 0.08 21.7 0.07 210.1 0.79 15.2 
NoRM 4_14 0.15 1.0 0.13 3.2 0.10 14.8 0.09 87.0 2.99 7.0 
NoRM 4_34 0.17 0.8 0.18 2.7 0.16 16.8 0.10 130.1 3.30 8.7 
Fleury and 
Romero-

Sarmiento 
(2016) 

- 1-2 - - - - 0.01-
0.1 

50, 
180, 
250 

- 15-
20[1] 

Nicot et al. 
(2016) 

0.1-1 1-2 - > 3[2] - - - - - > 
3[2] 

Washburn 
and Cheng 

(2017) 

- - - 4-10 - 20-
30 

- 1000 2 4-10 

Romero-
Sarmiento et 

al. (2017) 

- - 0.25 4 0.07 14.2 0.5 160 - - 

 

Four fluids in small pores include bound water, bound hydrocarbon, bitumen, and 

kerogen. They have very similar T2 and T1/T2 ratios across all 6 samples, which validate 

the GMM clustering performance. This also reveals that samples from the two formations 

have a similar fluid partitioning pattern after heating. It implies that GMM obtains a 

general fluid partitioning rule that is less sensitive to rock lithology. 

Furthermore, the fluid volume of each fluid at dried at 110°C conditions can be 

obtained by summation of the fluid volume of each cluster label. In addition, the ‘label-
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transferring’ approach in Chapter 5.4.3 is applied for T1-T2 maps for as-received 

conditions. Grid points on the map are assigned the corresponding cluster labels from dried 

at 110°C conditions (Figure 6.7) and their fluid volume are thus obtained.  

Fluid volumes for 5 fluid components are listed in Table 6.3. The relative 

proportions are computed and shown in stacked bar-plots in Figure 6.8. At as-received 

conditions, the free fluid at large T2 dominates the NMR signal. For all EF and NoRM 4_14 

samples, the dominant fluid makes up 50%-60% of the total fluid volume. The dominant 

fluid in large pores may suppress the NMR signal of other components such as bound water 

and kerogen. After heating at 110°C, the fluid in large pores significantly reduces to less 

than 20%. The contribution of kerogen, bitumen to the signal increase. The change of 

relative fluid saturation helps the clustering algorithm to generate a better partitioning 

result.  

6.4 CONCLUSIONS  

We extended the GMM clustering approach through the application to 4 organic-

rich shale samples at as-received and dried at 110°C conditions. Through the clustering 

analysis, we validated the two proposed indices for their ability of selecting optimal cluster 

number. Most of the indices show a V-shape against the cluster number, where the optimal 

cluster number corresponds to the minimum index value. 

Clustering is sensitive to the fluid distribution. For as-received conditions, 

clustering may perform poorly if the distribution is dominated by signal at large T2 values, 

and if the dominated signal is mixed with signal from small T2 values. Heating at 110°C 

can help to reveal the footprint of OM, generating better cluster performance. The 

identified fluid clusters at dried conditions are comparable with fluid types from previous 
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studies. In addition, the fluid partitioning rule obtained by GMM show a general pattern 

that is less sensitive to rock lithology. 

 

 

Figure 6.7 Fluid volume computation for as-received conditions of (a) EF 2_50, (b) EF 
2_93, (c) NoRM 4_14, and (d) NoRM 4_34 using clustering from samples 
dried at 110°C conditions. The T1-T2 distributions at as-received conditions 
are shown using contour plots for better visualization. GMM fluid regions at 
dried at 110°C conditions are denoted by different colors, including bound 
water (blue), bound hydrocarbon (yellow), bitumen (red), kerogen (green) 
and free fluid (purple). The results are plotted on log-log scales. 
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Figure 6.8 Relative portions of 5 fluid components for 4 samples at both the as-received 
and dried at 110°C conditions. The units of the relative portion is percentage 
(%), and 5 portions are summed to be 1 (100%). Fluid components include 
bound water (blue), bound hydrocarbon (yellow), bitumen (red), kerogen 
(green) and free fluid (purple).  
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Table 6.3 Fluid volumes in cm3 of 5 fluid components at as-received and dried at 110°C 
conditions. Six samples are included. EF refers to the shales from Eagle 
Ford. NoRM refers to the shales from the northern Rocky Mountains. 

 
 

Sample Small pores  

 
Large 
pores  

Bound 
water 

 
Bound 

hydrocarbon Bitumen Kerogen Free fluid 
EF 1_223, as-received 0.098 0.462 0.781 0.073 1.442 
EF 1_223, dried at 110°C 0.048 0.115 0.218 0.067 0.066 
EF 2_50, as-received 0.104 0.752 1.616 0.133 0.971 
EF 2_50, dried at 110°C 0.090 0.217 0.362 0.097 0.054 
EF 2_93, as-received 0.069 0.315 0.592 0.073 1.886 
EF 2_93, dried at 110°C 0.091 0.213 0.448 0.119 0.128 
NoRM 3_14, as-received 0.287 0.775 0.984 0.328 0.494 
NoRM 3_14, dried at 110°C 0.157 0.342 0.503 0.126 0.183 
NoRM 4_14, as-received 0.167 0.408 0.618 0.138 0.791 
NoRM 4_14, dried at 110°C 0.060 0.138 0.259 0.072 0.090 
NoRM 4_34, as-received 0.268 0.852 0.800 0.191 0.265 
NoRM 4_34, dried at 110°C 0.056 0.117 0.191 0.044 0.103 

 

Samples from the same formation have a similar fluid distribution for as-received 

conditions, whereas samples from different formations have distinct fluid distribution 

characteristics. The fluid distribution difference at as-received conditions may stem from 

different rock diagenetic histories. The heating, one the other hand, reduces the difference 

through fluid evaporation. 
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Chapter 7: Conclusions and Future Work 

7.1 CONCLUSIONS 

The goal of this PhD work was to determine petrophysical properties of organic-

rich shale using experiments, lab measurements, and machine learning analysis. To achieve 

this, we used mature organic-rich shale samples from Eagle Ford (EF) and the northern 

Rocky Mountains (NoRM) formations. X-ray diffraction (XRD) and rock-eval analysis 

were performed on the samples to characterize minerologies and organic geochemical 

properties. Calcite dominated the EF shale samples, whereas quartz dominated the NoRM 

samples. Effects of shear deformation on shale pore structure at the nanoscale was 

investigated using N2/ CO2 gas sorption and scanning electron microscope (SEM) analysis. 

In addition, effects of drying temperature on shale permeability and pore structure 

measurement were studied using N2 gas sorption and Gas Research Institute (GRI) method. 

Furthermore, to overcome the limitation of manual methods for interpreting nuclear 

magnetic resonance (NMR) T1-T2 maps of shale, a new fluid characterization approach 

based on Gaussian mixture model (GMM) clustering analysis was developed. 

N2/ CO2 sorption measurements were combined with SEM imaging to characterize 

the response of shale pore system to the shear deformation at nanoscale. Confined 

compressive strength tests were conducted on preserved NoRM and EF shale core plugs. 

After failure, most samples displayed increases in pore structure parameters including 

Brunauer-Emmett-Teller (BET) surface area, N2/ CO2 porosity, pore size distribution, and 

surface fractal dimensions. Compared to other parameters, surface fractal dimensions were 

less sensitive to shear failure. After failure, fractures with widths ranging from 10-100 nm 

up to 1-2 µm were observed to follow coarser grain boundaries and laminae of OM and 

matrix materials. The interaction of the OM laminae and the shear fracturing may improve 
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the connectivity of the OM laminae to the adjacent rock matrix, and thus enhance the 

hydrocarbon mobility. In addition, different responses to deformation of samples between 

the two formations shales may be due to diagenetic differences. The differences in rock 

fabric created by different diagenetic histories cause different nanoscale fracture patterns, 

including anomalous porosity increases due to pore distributions within OM, 

heterogeneous distribution of cement between samples, and enhanced porosity within 

deformed clay aggregates.  

N2 sorption and GRI measurements were conducted on NoRM and EF samples 

dried at 4 different temperatures to characterize the effects of fluid removal and thermal 

maturation under heat treatment. BET surface area, N2 pore volume, N2 pore size 

distribution, GRI porosity, and GRI permeabilities showed increasing trends against 

heating temperature, indicating those petrophysical properties are sensitive to the drying 

temperature for the sample preparation. GRI permeabilities were strongly affected by 

heating temperature, which suggest that caution is warranted in interpreting permeability 

measurements performed on shales, as the preparation technique appears to have a 

significant influence on the results. Two factors contributing to the increase of those 

petrophysical properties include continuous removal of fluids, and thermal maturation at 

high temperatures (especially above 600°C). The multiscale pore network features were 

reflected by the cross-plots between N2 pore volume and GRI permeabilities, which 

indicates that larger pores are well connected, while the smaller ones appear to be more 

poorly connected. This is consistent with modeling performed by Jiang et al. (2015) and 

Tian and Daigle (2018b) on Barnett shale samples, wherein a certain fraction of small pores 

were assumed to be partially or completely disconnected from the overall structure. 

A new fluid characterization approach was developed for NMR T1-T2 maps in shale 

based on GMM clustering analysis. Three hierarchical methods and three partitional 
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clustering methods, including GMM, were applied on T1-T2 maps in NoRM and EF shales 

at as-received and dried at 110°C conditions. We proposed two cluster validity indices 

including T1/T2 ratio range (RR) and angle difference (AD) to evaluate the cluster quality. 

These indices are based on the assumption from Bloembergen-Purcell-Pound (BPP) theory 

that individual fluid populations will be characterized by a single value or narrow range of 

T1/T2 ratio. Results show that the two indices provide guidance for selecting the optimal 

cluster number and best algorithm. For most cases, GMM was the best algorithm, as its 

partitions showed the highest consistency with the theoretical fluid boundary lines 

predicted by BPP theory. Furthermore, clustering algorithms were sensitive to the fluid 

distribution on the T1-T2 map. For sample EF 1_223 at as-received conditions, none of the 

algorithms (including GMM) produced good clustering results, which could be due to the 

relatively large volume in the large T2 region. One the other hand, drying the sample helped 

to reveal the footprint of organic matter, producing better clustering results. Compared to 

manual partitioning methods, GMM-based clustering overcomes the subjective nature of 

human decisions and provides a robust machine learning approach for fluid 

characterization in NMR T1-T2 for shales. 

We extended the analysis of GMM clustering approach by applying to 4 organic-

rich shale samples at as-received and dried at 110°C conditions. The two indices and GMM 

approach were further validated by the results. Heating at 110°C can help to reveal the 

footprint of OM, generating better cluster performance. Fluid types identified at dried at 

110°C conditions were comparable with previous studies. In addition, the fluid partitioning 

rule obtained by GMM show a general pattern that is less sensitive to rock lithology. 
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7.2 FUTURE WORK 

Our work on shale nanoscale pore response to shear deformation shows that the 

shear failure is more effective to capture laminated OM pores, compared to the dispersed 

OM. Future research should consider the timing and role of cementation in establishing 

these OM relationships, and also the relative importance of cementation to these “granular” 

controls on syn-deformational porosity change. In addition, while the properties of the 

induced microfractures have been characterized (Tian and Daigle, 2018a), the resulting 

permeability enhancement has yet to be quantified. Future research should focus on such 

quantification, along with identification of the rock properties and operational parameters 

that yield optimal results. 

 Permeabilities measured by GRI method were strongly affected by heating 

temperature. Future work can extend this study from GRI method to pulse decay method 

using uncrushed samples. In addition, the data collected from N2 sorption and permeability 

measurements can be used to build a pore network model to better understand the shale 

pore structure and its transport properties. Finally, a detailed analysis should be conducted 

to determine the preparation procedures that yield the permeability value most relevant for 

completion and production considerations. 

The GMM-based fluid characterization approach was developed using data 

collected from core samples. For practical implementation, the information from core 

analysis should be combined and applied to logging measurements. Future work can be 

done by testing and extending our clustering workflow using logging measurements. In 

additional, other fundamental laboratory measurements can be done for further 

investigation and validation of our clustering approach, including re-saturation of shale 

samples with known fluid, extracting fluid compositions from shale samples by Dean-Stark 

method.   
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Appendix A: Pore Size Distribution from Gas Sorption 

The pore size distribution can be computed from the adsorption isotherm of the 

sample. Assuming that adsorption in each pore acts independently, the pore size 

contribution to the total adsorption isotherm is proportional to the fraction of the total pore 

volume of the sample. The total amount adsorbed quantity 𝑄(𝑝)  is expressed as an 

integration of the product of individual isotherm kernel function 𝑞  and pore size 

distribution function 𝑓 in respect to pore size 𝐻:  

𝑄(𝑝) =  න 𝑞(𝑝, 𝐻) ∗ 𝑓(𝐻)𝑑𝐻, (𝐴 − 1) 

where 𝑄(𝑝)  is the quantity adsorbed at pressure 𝑝 . 𝑞(𝑝, 𝐻)  is the isotherm kernel 

function, which describes the quantity adsorbed under pressure 𝑝 and pore size 𝐻 per 

pore volume. 𝑓(𝐻) is the pore volume distribution function, with 𝑓(𝐻)𝑑𝐻 being the 

pore volume having pore size between 𝐻 and 𝐻 + 𝑑𝐻. Numerical values of the kernel 

function can be derived using modern statistical mechanics like density functional theory 

or molecular simulations (Adesida et al., 2011; Roque-Malherbe, 2007). They also can be 

calculated from classical thermodynamic theories such as BJH method (Barrett et al. 1951).   

Equation (A-1) should be discretized into as a summation of multiple pore volume 

components:  

𝑄(𝑝) = ෍ 𝐹௝𝑞൫𝑝, 𝐻௝൯ , (𝐴 − 2) 

𝐹௝ = 𝑓൫𝐻௝൯∆𝐻 , (𝐴 − 3)  

where 𝐹௝ is the pore volume for pore size 𝐻௝.  
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In the measured data, the adsorbed quantity 𝑄(𝑝) is a function of pressure over 𝑛 

points. Expressing Equation (A-1) as a system of equations yields: 

⎝

⎜
⎛

𝑄ଵ

𝑄ଶ…
𝑄௜…
𝑄௡⎠

⎟
⎞

=

⎝

⎜⎜
⎛

𝑞ଵ,ଵ ∗ 𝐹ଵ + 𝑞ଵ,ଶ ∗ 𝐹ଶ + ⋯ + 𝑞ଵ,௝ ∗ 𝐹௝ + ⋯ + 𝑞ଵ,௠ ∗ 𝐹௠

𝑞ଶ,ଵ ∗ 𝐹ଵ + 𝑞ଶ,ଶ ∗ 𝐹ଶ + ⋯ + 𝑞ଶ,௝ ∗ 𝐹௝ + ⋯ + 𝑞ଶ,௠ ∗ 𝐹௠
…                                   …                               …

𝑞௜,ଵ ∗ 𝐹ଵ + 𝑞௜,ଶ ∗ 𝐹ଶ + ⋯ + 𝑞௜,௝ ∗ 𝐹௝ + ⋯ + 𝑞௜,௠ ∗ 𝐹௠
…                                   …                               …

𝑞௡,ଵ ∗ 𝐹ଵ + 𝑞௡,ଶ ∗ 𝐹ଶ + ⋯ + 𝑞௡,௝ ∗ 𝐹௝ + ⋯ + 𝑞௡,௠ ∗ 𝐹௠⎠

⎟⎟
⎞

, 

         (𝐴 − 4) 

Similar to NMR T2 distribution in Chapter 2.5.3, one can solve for 𝐹 using direct matrix 

inversion technique. The loss function is expressed as:  

𝐿𝑜𝑠𝑠 = ෍(𝑄௜  − ෍ 𝑞௜,௝𝐹௝)
ଶ

+ 

௡

௜ୀଵ

𝜆 ෍ 𝐹௝
ଶ = 𝑅𝑆𝑆 + 𝜆 ෍ 𝐹௝

ଶ

௣

௝ୀଵ

௣

௝ୀଵ

, (𝐴 − 5)   

where λ is a tuning parameter for the regularization term. RSS is the residual sum of 

squares. 

The error of fit or root mean squared (RMS) error is defined as: 

 𝑅𝑀𝑆 = ට
ோௌௌ

௡ିଵ
, (𝐴 − 6) 

As shown from Figure A-1a, the 3Flex software allows the user to decide the 

value for the regularization parameter λ. According to Figure A-1b, different values yield 

similar reconstructed isotherms. The shape of the pore size distribution, however, is 

sensitive to λ (Figure A-1c). A smaller λ (e.g. 0.0001) poses a small regularization effect 

on the cost function, causing a significant variation of the pore size distribution 

amplitude. On the other hand, a larger λ (e.g. 1) can produce a smooth pore size 
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distribution. Here, we chose 1.0 for the value, as a smoother pore size distribution is 

expected for shale. We applied the same λ through all samples for consistency.   

 

Figure A-1 (a) The error of fit (green) and roughness of the distribution (red) against 
regularization parameter λ. (b) Reconstructed isotherms given different 
regularization λ values (0.0001, 0.0316, 1). (c) Pore size distributions 
different regularization λ values (0.0001, 0.0316, 1).  
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Appendix B: Documentation for NMR Clustering Source Code  

The source code is open sourced and can be found on Github4. Details of the 

documentation can also be found on GitHub. Feel free to email the author 

(jianghan2013@gmail.com) for any question.  

 Before you run this code, you need to have python (3.6 recommended) installed. 

You also need to install packages including numpy, matplotplib, pandas, and sklearn. You 

may also want to install jupyter notebook to run the notebook file. Those packages can be 

installed simultaneously if you install using anaconda (https://www.anaconda.com/).  

Click ‘clone and download’ to clone using git in command window or download the 

zip file.  

yourcomputer> git clone https://GitHub.com/jianghan2013/NMR_clustering_paper.git 

Once you clone the NMR_clustering_paper folder from the GitHub repo, go to into the 

folder and you will find 4 folders.  

 

 

Figure B-1 Files in the GitHub repo.  

The test data is stored in the data folder, the processed data is stored in the 

data_process folder, and core python functions are stored in the utilis folder. 

 To run your first testing example, open python in command window or create a 

new jupyter notebook, and follow the step shown below (Figure B-2). A demo notebook 

can be found in the demo.ipynb file.  

                                                 
4 https://github.com/jianghan2013/NMR_clustering_paper. 
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Figure B-2 Steps to run your first test case.  

The ‘Model runner’ class is the top class for this work. It contains functions 

including ‘__init_’, ‘load_data’, ‘preprocess’, ‘fit’, and ‘evaluate’. In ‘__init__’ function, 

the user can set parameters for all the rest functions and file locations. You can set the 

parameters for data preprocessing, clustering model used for clustering, total number of 

clustering. In ‘load_data’ function, it load input data T1,T2, and fluid volume from external 

files. In ‘preprocess’ function, it converts the input data to data used for clustering. It starts 

from creating a sub-space of T1-T2 domain to the last step where each grid point is 
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duplicated 𝑓௡௢௥௠ times to produce the 2-D clustering dataset. In ‘fit’ function, it initiates 

cluster model based on sklearn package and performs clustering. In ‘evaluate’ function, it 

computes the two evaluation indices.   
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