
 

 

 

 

 

 

 

 

 

Copyright 

by 

Aaron Thomas Hill, Jr. 

2016 

 

  



The Dissertation Committee for Aaron Thomas Hill, Jr. Certifies that this is the 

approved version of the following dissertation: 

 

 

Numerical Simulations of Riveted Connections                                  

under Quasi-Static and Dynamic Loadings 

 

 

 

 

 

Committee: 

 

Eric B. Williamson, Supervisor 

Michael D. Engelhardt 

Todd A. Helwig 

Patricia Clayton 

Eric M. Taleff 

Charles K. Crane 



Numerical Simulations of Riveted Connections                                  

under Quasi-Static and Dynamic Loadings 

 

by 

Aaron Thomas Hill, Jr., B.S.; M.S.; M.C.E. 

 

 

Dissertation 

Presented to the Faculty of the Graduate School of  

The University of Texas at Austin 

in Partial Fulfillment  

of the Requirements 

for the Degree of  

 

Doctor of Philosophy 

 

 

The University of Texas at Austin 

May 2016 

 



Dedication 

"But my life is worth nothing to me unless I use it for finishing                                                  

the work assigned me by the Lord Jesus…."                                                                                                                  

-Acts of the Apostles 20:24 

 

 

This dissertation is dedicated to my Lord and Savior Jesus Christ for blessing me 

with this once in a lifetime opportunity to pursue a doctoral degree.  May I never be a fan; 

instead, let me always look for ways to be a committed and unquestioned active follower.   

I will continue to use this blessing to motivate, educate, and train tomorrow’s leaders in a 

myriad of venues. 

 



 v 

Acknowledgements 

 

First of all, I must thank the United States Army and the United States Military 

Academy for this opportunity to pursue a doctoral degree. I would like to thank the U.S 

Army Engineer Research and Development Center, and especially Dr. Kennan Crane and 

Chris Rabalais, for their expertise throughout this research endeavor. Thanks to fellow 

graduate student Michalis Hadjioannou for his LS-DYNA (2013) tutelage. Thanks also to 

the members of my dissertation committee for their guidance and expertise throughout my 

doctoral pursuit. 

Dr. Eric Williamson’s expertise, support, and patience over the past three years is 

greatly appreciated.  I would recommend any potential graduate student to seek out his 

expertise as a supervisor.  Not only did he provide educational guidance and motivation 

when needed, he genuinely cared about my development as a father, husband, and military 

officer.  I hope to have the opportunity to work with Dr. Eric Williamson throughout the 

rest of my career. 

Finally, I am forever grateful to my beautiful wife, Diana, and wonderful kids, 

Aaron III, Alyssa, and Amaya, for their support and encouragement over the last three 

years.  Their unwavering confidence in me pushed me to cross the finish line.  Thank God 

for blessing me with such a phenomenal team of professional experts, family members, 

and friends.  



 vi 

Numerical Simulations of Riveted Connections                                  

under Quasi-Static and Dynamic Loadings 

 

 

Aaron Thomas Hill, Jr., Ph.D. 

The University of Texas at Austin, 2016 

 

Supervisor:  Eric B. Williamson 

 

Despite years of concerted effort in the war against terrorism, there still exist 

terrorist networks and lone wolf actors that continue to threaten people and infrastructure 

around the world. Among the potential targets of terrorists are the more prominent, high 

value, and symbolic locations that make up the United States’ critical transportation 

network. This is an urgent national security issue. While many organizations such as the 

Federal Highway Administration (FHWA) and the Association of State Highway and 

Transportation Officials (AASHTO) continue to sponsor experts from professional 

practice, academia, and other agencies to develop strategies to deter and disrupt such 

attacks, there is little known about the specific response of riveted connections under high 

rates of loading. A general lack of access and expertise with riveted connections, which 

have not been widely used in construction of bridges since the 1950s, and the expense 

and difficulty in replicating and collecting accurate data for close-in detonation testing on 

riveted steel connections make it a challenge to analyze and estimate the capacity and 

behavior of riveted connections.   



 vii 

This research focuses on numerical simulation of riveted steel connections under 

high rates of loading. Finite element modeling using LS-DYNA (2013) is first developed 

to match the physical testing of A502 Grade 2 riveted structural connections subjected to 

dynamic and quasi-static shear loadings completed at the U.S. Army Engineer Research 

and Development Center (ERDC). This initial modeling serves as validation for the LS-

DYNA (2013) model parameters for response. Subsequent analyses expand on the 

validated modeling to serve as a numerical prediction of additional riveted connections 

subjected to dynamic loads. Results from the testing and numerical simulations can serve 

to expand the capabilities of existing anti-terrorist planning software and serve as an 

addition to existing bridge protection guidelines. The numerical simulation modeling will 

fill an important gap in the current knowledge base on the performance of riveted 

connections under high loading rates that will be of value to the U.S. Army Corps of 

Engineers and the Federal Highway Administration. Understanding the capacity and 

behavior of these connections will assist future researchers in developing mitigation 

strategies against blast loadings. 
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Chapter 1:  Introduction 

"Let us all take a moment to remember the 3000 people who died in the World 

Trade Center on September 11th. And let us all remember that it will likely happen again. 

Such is the nature of revenge that this war will never be won, but instead will be fought 

for as long as there are people with revenge in their hearts. May whatever god you 

worship forgive us all. May God teach us forgiveness, understanding and peace."  

-William Jefferson Clinton, 2007 

 

1.1 INTRODUCTION 

 

On September 11, 2001, as 19 al-Qaeda terrorists hijacked four planes to attack the 

World Trade Center and the Pentagon, the entire world was put on alert that no nation, no 

piece of infrastructure, and no group of people are immune to the threat of terrorist attack. 

While terrorism has been around for centuries, the U.S. was largely fortunate to avoid 

large-scale terrorist activity within its borders until the 1993 bombing of the World Trade 

Center’s Tower One underground parking garage by al-Qaeda trained terrorists. The 

detonation of this 1,310-pound bomb resulted in 6 dead, 1,040 injured, and a crater 100 

feet wide that went through four sublevels of reinforced concrete (Dusenberry, 2010). Two 

years later, in an act of domestic terrorism, two disgruntled militia movement sympathizers 

detonated an ammonium nitrate/fuel oil (ANFO) bomb that killed 168 people and injured 

over 680 others in downtown Oklahoma City (Dusenberry, 2010). These horrific events 

http://www.lilith-ezine.com/articles/politics/United-States-of-America.html#september11th
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within the U.S. are just a few of many examples of terrorism worldwide that demonstrate 

why engineers have invested in developing innovative approaches to protect society.    

The trend of increasing terrorism demands the need for enhanced security for 

vulnerable infrastructure. Statistics from a declassified Canadian intelligence report reveal 

there were 190 explosive attacks against bridges and tunnels alone from 2002 through 2008 

('Terrorist Attack Methodology And Tactics Against Bridges And Tunnels: January 2002 

- December 2008'). What makes this statistic even more concerning is that these numbers 

do not include attacks in active combat zones, such as those attacks conducted in Iraq or 

Afghanistan. With over 700,000 bridges in the U.S. carrying millions of people daily, 

terrorists have thousands of targets that would undoubtedly result in the closure of a critical 

transportation route, a significant economic impact for a region, and significant loss of life. 

To make matters worse, a large number of the nation’s bridges have been weakened 

structurally from wear and age. The 2013 American Society of Civil Engineers (ASCE) 

Report Card for America’s Infrastructure exposed the poor state of the U.S.’s bridges with 

one in nine rated as structurally deficient (Infrastructurereportcard.org, 2013). With an 

average age of 42 years, design and construction from the early 1900s make up a good 

portion of the nation’s aging infrastructure inventory.   

Most of the steel bridges designed and built prior to 1950 used hot-driven rivets to 

connect plates and other shapes. Today, high-strength bolts and nuts are almost exclusively 

used as the steel connector of choice. In fact, in today’s literature, mention of the rivet as a 

structural connector is often merely a footnote. Ironically, the rivet serves as the structural 

connector for some of the U.S.’s most iconic bridges, such as the Golden Gate Bridge and 
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the Brooklyn Bridge. Furthermore, terrorists have had a long fascination with bridges and 

have taught tactics in bringing them down in their terrorist training camps (Weiser and 

Baker, 2011). As federal and local governments fight to prevent these attacks, private and 

academic organizations have collaborated to understand and develop technology to both 

prevent and to mitigate the effects of terrorism. To date, there has been little to no literature 

found that discusses the response of steel riveted connections subjected to blast loads. 

These riveted connections, responsible for holding together some of the world’s most well-

known bridges, are vital for maintaining strategic and commercial interests, potentially 

making them a prime target for terrorist activity. 

While the risk of attack and severity of consequences associated with an attack will 

vary among bridges, there is little debate that the nation’s older bridges are likely 

vulnerable and are under an elevated threat relative to other bridges. The research presented 

in this dissertation is designed to provide bridge engineers an understanding and techniques 

to predict and assess the response of steel riveted connections subjected to blast loads. This 

information will assist engineers and force protection experts in developing new techniques 

to implement blast-resistant design strategies. This chapter outlines the motivation and 

research approach for this endeavor.    
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1.2 MOTIVATION 

 

 With the United States and its allies bringing a decade and a half of conflict 

in Iraq and Afghanistan to a close, many Americans are under the misconception that 

terrorism is no longer a major concern. While the world did see a dip in terrorism 

worldwide as U.S. combat operations in those countries transitioned to support and 

training, the trend over the past few years has reversed. In fact, the former head of the 

Defense Intelligence Agency, Lt. Gen. Michael Flynn, contended as recently as 2014 that 

the core Al-Qa’ida ideology was stronger than ever (Baier, 2015). While the leadership 

losses suffered by Al-Qa’ida  has significantly weakened it over the years, the Islamic State 

in Iraq and the Levant (ISIS) has grown to contain thousands of jihadists and has quickly 

emerged as the world’s most dangerous terrorist organization.   

The growth of fighters flocking to join ISIS and other extremist groups has likely 

contributed to the increase in terrorist attacks. Between 2001 and 2009, there were 380 

international terrorist attacks and 91 homegrown terrorist attacks against U.S. interests 

(RAND Database of Worldwide Terrorism Incidents, 2009). More recently, 2013 alone 

saw 9,707 terrorist attacks tracked in 93 different countries, resulting in over 17,800 deaths 

and 32,500 injuries (U.S. Department of State, 2013). Statistics from 2014 were even worse 

with 13,463 terrorist attacks worldwide, resulting in over 32,700 deaths and 34,700 

injuries. These numbers reflect a 35% increase in terrorist attacks and an 81% increase in 

fatalities from 2013 to 2014 alone (U.S. Department of State, 2014). As shown in Fig. 1-1, 

ISIS and other terrorist organizations have shown an extraordinary ability to inspire 
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terrorist attacks through brutality and effective recruiting, leading to a recent increasing 

trend in terrorist incidents worldwide. While the United States has led a bombing campaign 

against ISIS, there has been no indication that this campaign will put an end to these acts 

of terror.   

 

 

Fig. 1-1: Histogram of Terrorist Incidents Worldwide (data from the Jewish Virtual 

Library, A Project of the American-Israeli Cooperative Enterprise, at 

https://www.jewishvirtuallibrary.org) 

 

While just over 60% of all terrorist attacks in 2014 occurred within Iraq, Pakistan, 

Afghanistan, India, and Nigeria, supporters of extreme organizations around the world 
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continue to present themselves as a serious and persistent threat within the U.S (U.S. 

Department of State, 2014). Prior to the 2015 Fourth of July holiday, FBI Director James 

Comey announced that authorities foiled attacks planned by Islamic State online recruits 

by arresting more than 10 people within the United States (Edwards and Hosenball, 2015). 

While fortunate that these attacks were thwarted, the Islamic State has persistently called 

for all followers to do whatever they can wherever they can to carry out violence on their 

behalf. The influence of ISIS revealed itself in San Bernardino, California, on December 

2, 2015, when two extremist sympathizers killed 14 and wounded 21. This marked the 12th 

domestic terror attack or plot in 2015 and the 75th publically known Islamic terrorist attack 

or plot since the tragic events on September 11, 2001 (Walters, 2015).   

This upward trend in terrorist incidents in the U.S. over the last four years is 

surprising considering enhancements made in border security limiting the travel of 

suspected terrorists into the U.S. However, with online recruitment of Islamic State 

recruits at an all-time high, the threat to the United States remains high. While testifying 

in front of the Senate Judiciary Committee, Comey revealed that the Islamic State’s 

sophisticated social media propaganda campaign allows it to reach 21,000 English-

language followers on Twitter. Furthermore, once the Islamic State adopts another 

recruit, it uses an encrypted mobile-messaging platform to issue kill orders (Edwards and 

Hosenball, 2015). Comey’s testimony is supported with the fact that at least 62 of the 75 

publically known Islamic terrorist plots or attacks actually involved an American citizen 

that was recruited and radicalized by jihadist terrorists (Inserra, 2015). As shown in Fig. 

1-2, statistics collected from the open-source Global Terrorism Database (GTD) reveals a 
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steady to increasing trend in terrorism within the U.S. when both domestic and 

international terrorist incidents are included. 

 

 

Fig. 1-2: Histogram of Terrorist Incidents in U.S. (data from the Global Terrorism 

Database, at http://www.start.umd.edu/gtd/) 

 

Historical data from law enforcement and transit official surveys reveal 

transportation assets such as bridges have been among the most likely targets for 

terrorists (Boyd and Sullivan, 2008). Furthermore, transportation infrastructure can be 

readily attacked using explosives. As shown in Fig. 1-3, from 2001 until 2009, the 

preferred method of terrorist attacks against U.S. interests worldwide was bombings at 
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55.6 percent (RAND Database of Worldwide Terrorism Incidents). More recently, 

bombing/explosion was cited as the most common tactic used by terrorists in 2013 and 

2014, accounting for 57% and 54% of all attacks, respectively (U.S. Department of State, 

2014). 

 

 

Fig. 1-3: Terror Tactics against the U.S. Worldwide: 2001 - 2009 (data from RAND 

Database of Worldwide Terrorism Incidents, at 

http://www.rand.orgnsrd/projects/terrorism-incidents.html) 
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The U.S.’s infrastructure has been a prime terrorist target for years (Muhlhausen 

and McNeill, 2011). As shown in Fig. 1-4, terrorists have studied and advertised 

techniques to destroy critical transportation infrastructure. In 1993, a fundamentalist 

Islamic cleric from Egypt and nine other men were stopped from executing their plans to 

blow up the United Nations Building, the George Washington Bridge, and the Lincoln 

and Holland Tunnels (Eversley, 2014). Shortly after the September 11, 2001 attacks, U.S. 

officials gathered intelligence indicating that high-profile bridges in San Francisco were 

identified as follow-on targets (San Jose Mercury News, 2003). Just two years later, a 

U.S. citizen with ties to Al-Qa’ida was arrested for conspiring to use blowtorches to 

collapse the Brooklyn Bridge, one of the oldest suspension bridges in the U.S. 

(Muhlhausen and McNeill, 2011). In 2006, a resident of Lebanon who spent seven years 

at a university in Canada was arrested for planning a massive bombing attack using 

vehicle borne improvised explosive devices (VBIEDs), suicide bombers, and backpacks 

filled with explosives. Targets included both the Brooklyn Bridge and the Golden Gate 

Bridge (Hagmann and McCleod, 2006). 
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Fig. 1-4: Terrorist Attack Diagram from the Encyclopedia of Afghan Resistance (from 

Public Intelligence, 2009) 

 

More recently, in 2013, transportation targets ranked 9th out of 20 different 

categories, accounting for 253 targets worldwide in 2013 (U.S. Department of State, 2013).  

In 2014, transportation targets once again ranked 9th among targets of terrorist attacks, 

accounting for 355 of the 13,911 targets (U.S. Department of State, 2014). As shown in 

Fig. 1-5, U.S. transportation infrastructure is considered a valuable target to terrorists. To 

make matters worse, roadways and bridges are not privy to the layered security checks 

afforded our nation’s airplanes and skies. There are no passenger screenings or watch lists 
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keeping people from crossing the Golden Gate Bridge, ranked one of the Seven Wonders 

of the Modern World by the American Society of Civil Engineers. 

 

 

Fig. 1-5: Histogram of Transportation Terror Attacks Worldwide (data from Global 

Terrorism Database, at http://www.start.umd.edu/gtd/) 

 

Despite the best efforts to eliminate terrorist attacks, it is simply not possible to 

secure every target in the world. Following the September 11, 2001, attacks, the American 

Association of State Highway and Transportation Officials (AASHTO) and the Federal 

Highway Administration (FHWA) teamed with bridge and tunnel experts from 

professional practice, academia, federal and state agencies, and toll authorities to form a 

Blue Ribbon Panel. Citing a 5% increase in Federal Bureau of Investigation (FBI) terrorism 
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investigations between FY 1997 and 2000 and anti-terrorism funding growing by 25% 

between FY 2000 and 2002 over concerns in domestic and international terrorism, these 

experts developed new strategies to deter, disrupt and mitigate terrorist attacks against U.S. 

bridges and tunnels (FHWA, 2003).   

One of the first things most people think about when it comes to protecting a target 

from blast is to fortify it structurally. However, the most important tenet for blast and 

survivability to engineers in the field of protective construction and design is stand-off. 

Increasing stand-off, defined here as the desired distance between a target and an explosive 

device, diminishes the blast load intensity on the intended target. For transportation targets 

such as subways, trains, highways, and bridges, designing for stand-off is not a realistic 

option because of the inevitable proximity of people with bags, briefcases, and/or their 

vehicles. Furthermore, funding limitations make it practically impossible to protect every 

component of every bridge in the world which has led some to develop a risk-based 

methodology to prioritize mitigation strategies for bridges (Ray, 2007). Thus, it is 

imperative that engineers understand the response of critical infrastructure components 

subject to blast and continue to develop innovative ways to protect them. An undoubtedly 

key bridge component easily accessible to terrorists is suspension bridge towers, illustrated 

in Fig. 1-6. While the nation’s older bridges have withstood the test of time, there is concern 

that extreme loads such as blast could cause severe damage beyond which these 

components can safely withstand. In addition to the significant loss of life, the Blue Ribbon 

Panel estimates that the loss of a critical bridge or tunnel could exceed $10 billion (FHWA, 

2003). With little to no research previously done on these riveted steel panels and 
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connections, there is a serious need to understand the behavior of rivets subjected to this 

real threat. As stated by the Army’s Chief of Staff in July 2015, the fight against ISIS will 

last at least 10 to 20 years (Mehta, 2015). In short, the terror threat is not a problem that is 

going away any time soon.   

 

 

Fig. 1-6: Riveted Golden Gate Bridge South Tower (photo from SFGate, at 

http://www.sfgate.com) 
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1.3 RESEARCH APPROACH 

 

With a clear motivation for understanding the response of suspension bridge towers 

to terrorist attacks, the primary objective of this research is to advance the body of 

knowledge on riveted connectors subjected to blast loads. Significant structural damage to 

a suspension bridge tower or connection could initiate collapse of an entire bridge. 

Significant effort is ongoing to mitigate the effects of blast loads on bridges and bridge 

components. To date, however, nothing has been written with respect to the response of a 

riveted panel or connection, which are critical structural elements in some of our nation’s 

iconic bridges. Understanding this behavior will provide a contribution to the bridge 

engineering community and to those developing countermeasures to mitigate blast effects. 

The aim of this research is to provide a major contribution to the protective design of steel 

structures with riveted connections by achieving three main objectives: 

 

- Provide guidance on modeling rivets using a nonlinear transient dynamic 

finite element analysis software package and reveal modeling issues that 

could lead to inaccuracies and shortcomings of the numerical modeling 

tools;  

 

- Provide recommendations with respect to modeling strain rate effects for 

steel rivets; 
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- Apply the recommended material model to a practical problem in 

determining the response of long riveted connections to dynamic loads. 

 

This dissertation is divided into five major sections. A review of relevant literature 

is provided in Chapter 2. This chapter focuses on experimental tests conducted on rivets 

and provides a review of the blast phenomena and structural loads resulting from blasts. 

Details of the LS-DYNA (2013) modeling of a rivet and riveted panel, in conjunction with 

a review of the work done by ERDC (Rabalais, 2015), which served to provide the test data 

needed to validate the finite element models developed for the research presented in this 

dissertation, are presented in Chapter 3. Chapter 4 addresses strain rate modeling 

recommendations and provides an application of the recommended model to long riveted 

connection behavior under high loading rates. Chapter 5 contains a discussion and 

summary of the main objectives, their significance to the structural engineering 

community, and recommendations for future research.    
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Chapter 2:  Literature Review 

 

"You can get help from your teachers, but you are going to have to learn a lot by 

yourself, sitting alone in a room." 

-Dr. Seuss, 1986 

 

2.1 A BRIEF HISTORY OF RIVETS 

 

As evident in some of our nation’s most well-known suspension bridge towers, 

rivets were once the principal fastener of choice for steel construction. However, its rare 

use as a structural fastener today makes it unfamiliar to many young engineers. For the 

most part, current knowledge is focused around retrofit of older riveted structures. The 

actual first uses of rivets date back to 3000 BC as an Egyptian joining element to create 

tools, and they were also used during the 7th and 8th century by the Vikings to install the 

planking of their boats (Collette et al., 2011). With the development of a hot riveting 

process and the need to connect sheets of iron due to its limited production size capability, 

the use of rivets as a connector became widely accepted in the 1800s. Despite its popularity, 

engineers focused their attention on developing machines rather than on the intricate details 

of the rivets holding everything together. As a result, there were a number of disastrous 

explosions that revealed some important limitations of riveted connections (de Jonge, 

1945). After seeing clear fractures along lines of rivets and permanent elongation between 
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rivet holes, double-riveted and triple-riveted lap joints developed. While attempting to 

consolidate and provide a comprehensive reference guide for riveted connections, A.E. 

Richard de Jonge uncovered the first known written document regarding riveted joints (de 

Jonge, 1945). The document was entitled “Report on Explosions of Steam Boilers” by the 

Committee of Franklin Institute of the State of Pennsylvania, for the Promotion of the 

Mechanical Arts in 1837.  

Between the 1840s and 1940s, the popularity and use of hot rivets expanded beyond 

boilers into the shipbuilding industry and into bridge and other structural work, becoming 

the primary fastener used to fabricate metal structures. In what is described by one historian 

as “the first great bridge to span a navigable stream in the United States”, the infamous 

John Augustus Roebling led the construction of 1857 Sixth-Street Bridge across the 

Allegheny River between Allegheny City and Pittsburgh. This suspension bridge was the 

first to have iron towers and wrought iron trusses in lieu of wood (West, 2015). This project 

expanded engineers’ research and understanding of the behavior of riveted connections 

across a number of applications. Throughout the second half of the 1800s, as steel gradually 

replaced wrought iron in construction applications, engineers continued to study the 

strength of riveted joints. This increased use of riveted connections, in combination with 

years of suspension structure design experience, led to the construction in 1884 of the 

Brooklyn Bridge, spanning the East River between Manhattan and Brooklyn. In what was 

at the time the longest spanning bridge in the world (main span of approximately 1600 

feet), the metal components of the bridge were fastened together with rivets. By the 1930s, 

confidence in the performance of rivets was at an all-time high, leading to the three year 
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and five month construction of the Golden Gate Bridge. Connecting San Francisco with 

the County of Marin, the six-lane iconic suspension bridge with a central span of 4,200 feet 

was constructed with over 600,000 rivets in each of the bridge’s two cellular towers (Starr, 

2010).  

In spite of the rivet’s popularity, installation costs were so high that it led engineers 

to investigate alternatives. This high cost of installation was an issue engineers had been 

looking into since the turn of the century, leading engineers to compare high-strength 

bolted and riveted connections to determine relative capacities. Even though early 

experiments found a somewhat superior strength of steel rivets to steel bolts, engineers 

suggested that bolts could be used in lieu of rivets. By the late 1930s, engineers started 

shifting their test procedures and comparison in performance from static loading to a 

variation of load or repeated load (fatigue). Despite the efforts of engineers and the use of 

rivets in iconic structures for decades, there was no AISC standard to address joints and 

their fasteners until the formation of the Research Council on Riveted and Bolted Structural 

Connections (currently known as the Research Council on Structural Connections or 

RCSC) in 1947. The formation of the RCSC led to a joint effort with the American Society 

for Testing and Materials (ASTM) to develop a high-strength bolt specification and a 

subsequent specification for structural joints in 1951. This specification authorized rivets 

to be replaced by bolts on a one-to-one basis (Fisher and Struik, 1974). The development 

and approval of high-strength bolts that required little skill to install subsequently reduced 

labor costs and caused the popularity of structural riveting to fade away. Of the last more 

renowned riveted bridges constructed in the U.S. were the Delaware Memorial Bridge 
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crossing the Delaware River between Delaware and New Jersey and the I-35W Bridge over 

the Mississippi River. Both of these bridges were completed before 1970 (Vermes, 2007). 

For decades, millions of people have relied upon and enjoyed these bridges on a daily basis, 

and the millions of rivets required to construct these bridges and keep them intact remain 

pivotal. Of particular note is the fact that there was no in-depth design standard for dynamic 

loads until the AISC Seismic provision was released in 1990. While this provision is 

relevant to earthquake loads, there are no references available regarding a monotonic 

dynamic load (i.e., blast) causing shear/bearing failure in a rivet connector. 

 

2.2 RIVET MATERIAL AND THE RIVETING PROCESS 

 

While the rivet seemed to be a simple structural element, installing a rivet required 

an experienced crew of four or five workers.  First a hole had to be either punched or drilled 

in the materials that were going to be connected.  The hole had to be slightly larger (about 

0.0625-in.) than the nominal diameter of the rivet. A rivet was developed from a circular 

steel or iron rod and was manufactured with a head on one end. While there was both a 

cold-riveting and hot-riveting technique, hot-riveting was more widely used due to its 

positive effect on the strength of a joint (Collette et al., 2011). Thus, rivets were heated to 

almost 2000 degrees Fahrenheit (often described as reaching a light cherry-red color) in a 

portable forge and then thrown to the riveter by a rivet boy. Once placed in the hole, 

pressure was maintained on the preformed head. The plain end of the rivet was squeezed 
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to form a rounded head, and the shank of the rivet completely or nearly filled its inserted 

hole. If completed in the shop, this head was created by a single hit from a hydraulic press. 

If out in the field, this head was created from multiple vigorous blows using hand-held 

pneumatic hammers. A depiction of the riveting process is shown in Fig. 2-1. 

 

 

Fig. 2-1: The Riveting Process: the rivet heating (left); the rivet head forging with 

pneumatic hammer (right) (from www.efd-induction.com) 

 

As the hot-driven rivet cooled, it contracted both longitudinally and laterally. The 

longitudinal contraction creates a residual tensile stress in the rivet that clamps the gripped 

material. This clamping force varied significantly from rivet to rivet and was not counted 

on for design calculations. The riveting process, with a great deal of uncertainty and 
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variability, undoubtedly required a high skill level. In fact, to account for this variability, 

it was considered standard practice in the field to install between 20 and 25 percent 

additional rivets than called for in design (Vermes, 2007). Fig. 2-2 shows the components 

of an installed rivet.  

 

 

Fig. 2-2: Installed Structural Rivet (from Guide to Design Criteria for Bolted and Riveted 

Connections, 1987) 

 

While properly installing a rivet was a difficult task under normal conditions, this 

task became even more of a challenge for some of the more extravagant projects. On the 

infamous Golden Gate Bridge, riveters experienced additional stresses: working in 

confined spaces, working in darkness, riveting at tremendous heights with difficult access, 

Rivet Shaft fills 

punched or 

drilled hole 

Connected 

Material 

Rivet Head 

Rivet Head 
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and dealing with occupational deafness and lead poisoning. On this particular iconic 

project, coal forges were typically placed on tower scaffolding where rivets were “warmed 

white” by a construction worker (Van Der Zee, 1986). This worker sent rivets into poorly 

ventilated and poorly lit 3.5 ft2 cell to the rivet team using pneumatic tubes. After catching 

the rivet with a cone, the rivet team used tongs to place the hot rivet into a prepared hole 

and used an iron bar to hold it in place until the riveter used their gun to forge the head.  

Rivet inspectors tested the adequacy of the riveting by hitting individual rivets with 

a hammer to see if they were loose. Loose rivets were cut out and replaced, costing the 

rivet team about 50 rivets of time. On the Golden Gate Bridge, shown in Fig. 2-3, 

experienced riveters would typically have to replace four to five rivets per day, while less 

experienced riveters had to replace between ten to twenty (Van Der Zee, 1986).  
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Fig. 2-3: View of Golden Gate Bridge Tower Cellular Nature (from Van Der Zee, 1986) 
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Other iconic projects involving the use of rivets experienced similar challenges. A 

lack of professional installation and the use of substandard material is largely attributed to 

the sinking of the once considered unsinkable Titanic cruise ship. With its strength 

provided from its steel shell plating and more than 3,000,000 hydraulically driven rivets, 

clues from the hull of the sunken ship and information gathered from archives reveal that 

the Northern Ireland builders’ substandard practices led to the tragic sinking and over 1,500 

deaths. During this time, the shipbuilding industry was shifting from using No. 4 iron bar 

to using steel rivets. However, as shown in Fig. 2-4, the builders only used steel rivets in 

the Titanic’s central hull, where the stresses were expected to be the greatest.   

 

 

Fig. 2-4: Titanic Rivet Material Flaws (from Jennifer Hooper McCarty and Tim Foecke at 

http://www.nytimes.com) 

 

The impact between the iceberg and the bow opened up six seams in the bow plates 

close to where the rivets transitioned from iron to steel. Faced with the pressure of 
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completing the ship in time for a set sail date, archives revealed the company expressed 

concern over the lack of skilled riveters. Mediocre work in getting the iron precisely heated 

to a cherry red color and beaten by the proper hammer blows likely resulted in an improper 

fit. To make matters worse, instead of using No. 4 iron bar in the stern and bow, the 

company used an even cheaper and weaker No. 3 bar. Dr. Tim Foecke, a specialist in metal 

fracture at the National Institute of Standards and Technology, conducted a microstructural 

analysis and found great variability in the results. In his analysis, he was astonished to find 

about three times more slag, which is a glassy residue of smelted metals, than occurs in 

modern wrought iron (Broad, 2008). The decohesion of an iron and slag interface served 

as a point of cracking and failure, especially when oriented perpendicularly to the load. 

Fig. 2-5 shows image analysis of micrographs along two recovered rivet cross-sections and 

reveals the high concentration of slag particles in the rivet heads oriented 90 degrees to the 

loading axis (McCarty, Weihs and Foecke, 2007). 
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Fig. 2-5: Loading Axis (from McCarty et al., 2007) 

 

The unskilled workers clearly worked the wrought iron inadequately and at too low 

of a temperature, causing brittle rivets prone to fracture along the rivet head and shaft seam. 

Investigation of the rivet holes also found small cracks that were ignored by shipbuilders 

at the time because they were so small. With the thought that a well-driven rivet exerts a 

clamping stress that would negate any risk from these cracks caused from the cold-punched 

holes, residual stresses from the punching process and impact of the plate at low 

temperatures could have caused these cracks to grow in a brittle manner (Foecke, 1998).  

The Titanic case study demonstrated the difficulty of finding experienced and technically 

proficient rivet boys, exposed a general lack of understanding at the time of the connector’s 
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importance in design, and revealed the importance of the development of stronger rivet 

material properties in the design of subsequent structures.  

While steel replaced iron in most structural components in the late 1800s, the 

transition from iron to steel rivets took some time. In the early 1900s, rivet steel was 

specified as ASTM A9 for buildings and ASTM A7 for bridges. After 1933, rivet steel was 

ordinarily specified as ASTM A141. This ASTM specification was withdrawn in 1967 and 

replaced with ASTM A502. Today, rivets in the construction industry are made from bar 

stock by either hot or cold forming the manufactured head in one of three ASTM A502 

grades recognized in the 1986 specifications. The ASTM A502 structural rivet, however, 

was withdrawn in 1999 with no replacement. Table 2-1 summarizes the material 

specifications used for rivets. 
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Table 2-1: Structural Rivet Types (from Guide to Design Criteria for Bolted and Riveted 

Joints, 1987 and Historical Building Construction, 2010) 

Rivet Type Composition Details  

ASTM A7 and A9  
A7 for bridges;        

A9 for buildings 

Tensile strength 45 ksi – 60 ksi; no 

specified level or high level of carbon 

led to poor weldability; popular from 

1900 – 1933 

ASTM A141 
Mild Steel                 

(< 0.1% carbon) 

Tensile strength 52 ksi – 62 ksi; 

popular from 1933 – 1967 

ASTM 502 Grade 1 Carbon Steel Rivet 
Used for general purposes; tensile 

strength 52 ksi – 62 ksi 

ASTM 502 Grade 2 
Carbon-Manganese 

Rivet Steel 

Used with high-strength carbon and 

high-strength low alloy structural 

steels; tensile strength 68 – 82 ksi 

ASTM 502 Grade 3 
Carbon-Manganese 

Rivet Steel 

Used with high-strength carbon and 

high-strength low alloy structural steels 

with enhanced corrosion resistance 

 

2.3 RIVETED CONNECTIONS AND MEMBER LIMIT STATES 

 

Engineers use a myriad of design procedures for structural members and connections 

that include determining and following a load path to each component and subsequently 

designing or analyzing that component for applicable limit states. Limit states are the 

conditions of a structural element or connection that cause it to cease to perform its 

intended function. The typical limit states to consider as it pertains to riveted connections 

include:  block shear rupture, member yielding, member rupture at the connection, 

bearing/tear out, and failure of the rivet. An in-depth discussion of each of these limit 

states is provided in the Steel Construction Manual (Muir et al., 2011); thus, only a brief 
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discussion of each is presented in the following subsections. Because the focus of this 

research is on the behavior of the rivets themselves as it pertains to riveted plate 

connections subject to blast loads, the focus of Sections 2.4, 2.5, and 2.6 is on the rivet 

connector subjected to three significant loading conditions:  pure shear, pure tension, and 

a combination of shear and tension. 

 

2.3.1 Block Shear Rupture 

 

The tearing limit state of block shear rupture typically occurs when the connecting 

elements are thin or the holes for the rivets are close together, causing plates to tear along 

the riveted holes. This two-part limit state consists of tension rupture on a plane 

perpendicular to loading and a shear yield or rupture on a plane parallel to loading. As 

demonstrated in Fig. 2-6, this failure can occur in either of the connecting elements. 
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Fig. 2-6: Block Shear Rupture (modified from AISC Tools Core Teaching Aids, aisc.org) 

 

2.3.2 Member Yielding and Member Fracture 

  

Member yielding is unrelated to connection behavior, and this limit state is 

checked over the gross cross-sectional area of the connected member. For this limit state 

to occur, the entire cross section must reach its yield stress, resulting in a stretching or 

excessive deformation failure of the member that occurs away from the connection. It is 

rare that this limit state would control a design unless the designer did so intentionally in 

order to design for ductility. This limit state would be calculated the same way for both a 

bolted and a riveted connection. On the contrary, the fracture limit state occurs at the 

connection and involves tearing at the holes and through the member. This limit state 

Block shear rupture from angle 

Block shear rupture from plate 
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differs from the block shear limit state because it involves a tension failure only that 

occurs perpendicular to the direction of the load.  Unlike the yielding limit state which 

fails in the member and away from the connection, this fracture (rupture) failure occurs 

along the holes at the connection. This is demonstrated in Fig. 2-7. 

 

 

Fig. 2-7: Member Yielding and Member Fracture (modified from AISC Tools Core 

Teaching Aids, aisc.org) 

 

2.3.3 Rivet Bearing / Tear Out 

 

The material strength of a rivet is typically greater than the material it is bearing 

on; thus, it is common to check for bearing issues on the material of the connected parts. 

Rupture failure occurs  

at the connection across 

the lead rivet line 

Yield failure is an excessive  

elongation along the length 

of the member 
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Bearing failures, as shown in Fig. 2-8, cause material crushing and subsequent excessive 

deformation around the rivet hole.  

 

 

Fig. 2-8: Bearing Limit State (modified from AISC Tools Core Teaching Aids, aisc.org) 

 

When the clear space to an adjacent hole or an edge is insufficient, the limit state 

of shear in the connecting material, also known as tear out, can control. As shown in Fig. 

2-9, the result is either a piece of the connecting material tearing between holes in the 

direction of force or a tearing out at the end of a connection.  

 

Excessive deformation of the rivet holes 

Rivets 
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Fig. 2-9: Tear Out Limit State (modified from AISC Tools Core Teaching Aids, aisc.org) 

 

2.4 RIVETS IN PURE TENSION 

 

 Variability associated with the riveting process leads to a great deal of uncertainty 

with respect to the amount of clamping force within a rivet shank. Differences in rivet 

dimensions, the driving and finishing temperatures, and driving time and pressure all 

contribute to that variability. The residual clamping force and pre-stressing in a rivet 

develops as the hot rivet cools and shrinks, pulling plates together. With so many variables 

however, a simplistic design assumption is made that no load is transferred between 

adjoining members through friction.   

Material can tear out due to the proximity of  

the hole and the rivet  bearing on the material 
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For the most part, design specifications have been in agreement with the shear 

capacity of a rivet. However, until testing was conducted by the Research Council on 

Riveted and Bolted Structural Joints and others between the 1930s and 1950s, design 

specifications were against the use of rivets to carry tensile forces, as demonstrated in Fig. 

2-10. Those that did allow the use of tension, such as in the American Association of State 

Highway Officials’ (AASHTO) specification, did so under the restriction that they could 

only be used in direct tension under one half the value allowed in shear. In 1946, the 

American Institute of Steel Construction (AISC) specification increased the allowable 

tension to 1.33 times the value allowed in shear (Higgins and Munse, 1952). 

 

 

Fig. 2-10: Example of Rivet Connector in Pure Tension 
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As indicated previously, most engineers today are familiar with the behavior and 

ultimate strength of A325 and A490 bolts, but they have little if any knowledge of rivets. 

Typical stress-strain curves for an undriven A502 rivet steel compared to today’s bolts are 

shown in Fig. 2-11. According to the Guide to Design Criteria for Bolted and Riveted 

Joints, the tensile strength for the more common A502 grade rivets range from 60 ksi for 

Grade 1 to 80 ksi for Grade 2 and Grade 3 (Kulak et al., 1987).  

  

 

Fig. 2-11: Coupon Stress versus Strain Relationship for Rivet and Bolt Materials (from 

Guide to Design Criteria for Bolted and Riveted Joints by Kulak et al., 

1987) 



 36 

Before the testing conducted by the Research Council on Riveted and Bolted 

Structural Joints, engineers were concerned with the existing tension in rivets approaching 

the elastic limit of the steel as a result of the stresses induced during the cooling process. 

The thought was that the rivet would be unable to resist additional tension and the rivet 

head would pop off. Pure tension studies conducted at the University of Illinois and the 

University of Toronto involved multiple tests of rivets in pure tension (Young and Dunbar, 

1928 and Wilson and Oliver, 1930). In the testing, variables such as type of head, length 

of grip (thickness of material being riveted), heating temperature when driven, and driving 

conditions were considered. It was determined that rivets with flattened heads failed in the 

head, even though they still developed 90% of the strength of the rod from which they were 

made. For all other rivets, the strength of the rivets was greater than the tensile strength of 

the rods from which they were made. It was also determined that rivets with a longer grip 

were not as strong as rivets with a shorter grip because the longer rivets did not fill the 

holes over the entire length as completely as the shorter ones. Rivets with a longer grip also 

had a greater initial stress than those with shorter grips. Variations in furnace temperature, 

soaking times, and driving times each had only a small effect on the ultimate strength of 

the rivets.   

Subsequent testing at the University of Illinois discovered that the biggest impact 

on rivet strength was the driving process (Wilson and Thomas, 1938). Hot-driven rivets 

had tensile strengths of 10% to 20% higher than undriven rivets, with the difference based 

on whether the rivet was driven using a pneumatic hand riveting hammer or a hydraulic 

riveting machine. A summary of these tests is shown in Table 2-2. It is clear that the early 
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fear engineers had for using rivets in tension was unwarranted. Pulling on the rivet head 

already in stress due to shrinkage does not increase the stress on the rivet. Instead, it relieves 

the pressure on the plates, unless the added tension exceeds the tension already in the rivet.   

 

Table 2-2: Comparison of Tensile Strength of Driven and Undriven Rivets (data from 

Fatigue Tests of Riveted Joints by Wilson and Thomas, 1938) 

Rivet Steel 

Material 

Grip 

(in) 

Driving 

Temp 

(deg F) 

Driving 

Method 

Driven 

Ultimate 

Strength 

(ksi) 

Undriven 

Rivet 

Strength  

(ksi) 

Percent 

Increase 

Carbon 3 2030 Hammer 75.35 57.62 21.5% 

Carbon 5 2030 Hammer 68.38 57.62 15.7% 

Manganese 3 1850 Hammer 105.15 79.75 24.1% 

Manganese 5 1850 Hammer 93 79.75 14.2% 

Carbon 3 1780 Hydraulic 78.25 57.62 26.4% 

Carbon 5 1780 Hydraulic 73.23 57.62 21.3% 

Manganese 3 1740 Hydraulic 110 79.75 27.5% 

Manganese 5 1740 Hydraulic 100.77 79.75 20.9% 
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2.5 RIVETS IN PURE SHEAR 

 

 When the lines of action between members are parallel, rivet connectors resist the 

pure shear between their connected parts through the friction generated between the two 

parts. As indicated earlier, this friction is due to the tension in the rivet that builds during 

the cooling process and has inherent variability due to the installation process. A contact 

pressure develops due to interaction between the riveted and connected parts. As shown in 

Fig. 2-12, this bearing stress is determined by multiplying the axial load in the plates 

causing the bearing by the characteristic area perpendicular to it.  

 

 

Fig. 2-12: Example of Rivet Connector in Pure Shear 

 

As summarized in Table 2-3, tests conducted at the University of Illinois Urbana showed 

a direct correlation between the tensile strength and shear strength (Munse and Cox, 1956). 

Because the riveting installation process increases the tensile strength of a rivet, it also 

increases the shear strength.   
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Table 2-3: Comparison of Shearing Strength of Driven and Undriven Rivets (from 

Historical Building Construction by Friedman, 2010) 

Rivet Material 

Driven Rivet Strength 

based on Nominal 

Rivet Diameter (ksi) 

Undriven Rivet 

Strength (ksi) 

 

Percent 

Increase 

Carbon Steel 58.96 46.28 21.5% 

Manganese Steel 80.52 66.26 17.7% 

 

 

In fact, common practice is to express the shear strength in terms of its tensile 

strength. The Guide to Design Criteria for Bolted and Riveted Connections reports an 

average shear-to-tensile strength ratio varying from 0.67 to 0.83, with an average of 0.75 

(Kulak et al., 1987). Testing variables such as rivet size, grip length, method of driving, 

and the method of rivet manufacturing all contribute to the range, although all have little 

effect on the average value. A summary of some of 403 tests that included tests on 0.75-

in., 0.875-in., and 1-in. rivets that were cold-formed or hot-formed, and were either hand-

pneumatic driven or machine driven at a steel fabrication shop, is provided in Table 2-4. 
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Table 2-4: Comparison of Shearing Strength of Driven and Undriven Rivets (from 

Historical Building Construction by Friedman, 2010) 

Series Number 

(insignificant for purposes 

of this summary) 

Strength in Shear (ksi) 

% Shear Strength to 

Tensile Strength 

 

1 47.7 75.7 

2 46.0 70.5 

3 44.2 78.7 

4 44.7 77.9 

5 46.2 75.4 

6 45.5 74.6 

7 42.5 76.5 

8 42.6 76.5 

 

 

For current ASTM A502 Grade 1 and Grade 2 rivets with tensile strengths of 60 and 80 

ksi respectively, expected shear strengths are between 45 ksi and 60 ksi for Grade 1 rivets 

and between 60 ksi and 80 ksi for Grade 2 rivets. Typical load versus deformation curves 

for ASTM A502 Grade 1 rivets are in Fig. 2-13.    
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Fig. 2-13: Shear vs. Deformation Curves for A502 Grade 1 Rivets (from Guide to Design 

Criteria for Bolted and Riveted Connections, 1987) 

 

The Guide to Design Criteria for Bolted and Riveted Connections (1987) provides 

the shear resistance, Su, of a rivet as: 

 

S  = 0.75 m A  σu ub
                    (2-1) 

 

where: m is the number of shear planes,  

 Ab is the cross-sectional area of the rivet before driving (in2), 

 u is the tensile strength of the rivet, and 

 0.75 accounts for the ratio of shear strength to tensile strength. 
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As shown in Eq. (2-1), the shear resistance is directly proportional to the number of shear 

planes and the cross-sectional area of the rivet. Reviewing more recent literature, the 

AASHTO Manual for Bridge Evaluation (MBE) (2011) indicates in Eq. (2-2) that the 

factored resistance of rivets in shear, Rn, is determined by:  

 

R = F m An r r                        (2-2) 

 

where: Fr is the factored shear strength of one rivet in single shear (ksi) from Table 2-5,  

m is the number of shear planes, and  

Ar is the nominal cross-sectional area of the rivet before driving (in2).   

 

The values shown in Table 2-5 are based on the von Mises shear yielding theory, which 

gives a ratio of 0.58 for shear-to-tensile yield strength, and a -factor of 0.67 (Ocel, 2013). 

Computed shear strength values using this approach are lower relative to those 

recommended in the Guide to Design Criteria for Bolted and Riveted Connections (1987). 
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Table 2-5: Rivet Factored Shear Strength, AASHTO 2nd Edition MBE (2011) 

Rivet Type or Year of Construction Fr, ksi 

Constructed prior to 1936 or of unknown origin 18 

Constructed after 1936 but of unknown origin 21 

ASTM 502 Grade 1 25 

ASTM 502 Grade 2 30 

 

 

Based on more current research conducted by D’Aniello, Portioli, and Landolfo 

(2011), both the AASHTO and the Eurocode factored shear design strength equations 

underestimate actual measured capacities. The authors tested 64 riveted connections made 

from the 1950s with different rivet diameters. The connections varied in eccentricity 

(symmetric or unsymmetric), geometry, configuration (single shear and double shear), and 

length. The authors compared their results to those predicted by the Eurocode EN 1993: 1-

8 (2002), which states that the shear strength of rivets, Fv, can be computed using Eq. (2-

3):  

    

            0.6F = f Av ur o                      (2-3) 

 

where: fur is the ultimate tensile strength of a rivet, and 

Ao is the area of the hole.   
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In their testing, the authors calculated the rivets to have a mean tensile strength of 

59.8 ksi, while noting a noticeable variability in the data attributed to a lack of quality 

control in the construction industry during that era. While not all of the connections failed 

by the limit state of rivet shear, the authors specified results of tests in which rivet shear 

was the controlling limit state. A comparison of measured data from the authors and results 

calculated using various codes is shown in Table 2-6. Based on these results, it is clear that 

current design guides and specifications provide rivet shear strengths lower than tested 

capacities (D’Aniello et. al, 2011).  
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Table 2-6: Rivet Ultimate Shear Stress Comparisons (portions from D’Aniello et. al, 

2011) 

Test 

Specimen 

Rivet 

Dia. 

(in.) 

Shear 

Type 

Rivet 

Rows 

Tested 

Shear 

Failure 

(k) 

Eurocode 

Shear 

Failure 

(k) 

AASHTO  

Shear 

Failure 

(k) 

Design 

Guide 

Shear 

Failure 

(k) 

U-16-10-1 0.630 Single 1 18.034 11.18 9.77 13.97 

U-19-10-1 0.748 Single 1 22.814 15.76 13.77 19.69 

U-19-12-1 0.748 Single 1 26.433 15.76 13.77 19.69 

U-22-10-1 0.866 Single 1 32.548 21.12 18.46 26.40 

U-22-12-1 0.866 Single 1 32.548 21.12 18.46 26.40 

U-16-10-2 0.630 Single 2 34.881 22.35 19.54 27.94 

U-19-10-2 0.630 Single 2 47.219 31.48 27.55 27.94 

U-22-12-2 0.866 Double 2 61.078 42.24 36.92 52.80 

 

 

Research conducted by Olson (2010) and Wang (2013) has also demonstrated 

AASHTO’s equation (2010) underestimates actual measured capacities. They tested 

salvaged individual rivets from a Washington State Department of Transportation bridge, 

noting that testing by D’aniello et al., (2011), was done on old unused rivets stored in a 

warehouse. As shown in Fig. 2-14, Olson and Wang were interested in the shear capacity 
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of rivets with different levels of corrosion and that had been in service experiencing years 

of cyclic loading. The authors found that corrosion effects on the shear capacity of the 

rivets was negligible and determined the shear strengths were twice that predicted by 

AASHTO (2010). 

 

 

Fig. 2-14: Three Different Corrosion Levels for Tested Rivets (from Wang, 2013) 

 

For riveted connections with a length greater than 50-in., as measured between 

extreme fasteners on one side of the connection, the factored shear strength of rivets is 80 

percent the value of its typical factored shear strength (Kulak et al., 1987). As a structural 

joint is loaded, the end fasteners take on a greater percentage of the stress. When these end 
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fasteners deform, load is redistributed to the other fasteners. The redistribution depends on 

the fasteners’ ductility. Once a fastener no longer has the ability to deform without fracture, 

it fails prematurely in shear. As a result, the end fastener fails before the other fasteners 

and starts an unbuttoning process in which each subsequent row of fasteners also fails. 

Hence, there is guidance to reduce the factored shear strength for long connections. 

Batho used the Principle of Least Work to confirm experimental research 

concluding rivets at the ends of connections would have a higher load than rivets in the 

middle of connections in the elastic state (Batho, 1916). Subsequent experimental work 

from the University of California in support of the construction of the San Francisco-

Oakland Bay Bridge systematically tested a myriad of connections with varying lengths, 

steel types, and rivet patterns (Davis et al., 1940). With long connection joints, the authors 

noted rivet shear failure premature to the sum of each rivet shear capacity in which the first 

row of rivets failed first, followed by each subsequent row in an unbuttoning or unzipping 

fashion. Bendigo, Hansen, and Rumpf (1963) and Fisher, Kulak, and Beedle (1965) tested 

several long structural splices connected by high-strength bolts of varying lengths and bolt 

patterns. All observed a decrease in the average connector ultimate strength with an 

increase in connection length. At shorter connection lengths, loads were distributed 

approximately equally among fasteners; however, for longer connection lengths, fasteners 

near the center of a joint carried only about half of the load carried by the fasteners on the 

end. In comparing riveted and bolted joints, Dlugosz (1962) concluded that while both 

failed in an unbuttoning mode, riveted connections demonstrated a more level stress 

distribution. Dlugosz (1962) also noted that rivet deformation changed significantly from 
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ultimate load to rupture load. In comparing A141 rivet deformation to A325 bolt 

deformation, the rivet deformed 20% more than the bolt after ultimate load, demonstrating 

the rivet’s ability to effectively redistribute load.  

The Guide to Design Criteria for Bolted and Riveted Connections (1987) 

demonstrates the influence of joint length on the ultimate strength of connectors, as shown 

in Fig. 2-15.  Shorter connections tested to capacity in shear demonstrate a simultaneous 

shearing.  For joints longer than approximately 10-in., however, fasteners start to exhibit 

an unzipping shear failure. More recent work by Olson (2010) and Wang (2013) 

demonstrates that the 20% blanket reduction for all long connections is too conservative. 

The authors conclude that the fastener capacity only needs the 20% reduction when 

connecting weak plates, or plates with a yield capacity less than the sum of the rivet shear 

strength. They found that long riveted connections connecting strong plates do not exhibit 

an unbuttoning failure mode; as a result, they recommend a smaller 10% reduction as a 

factor of safety. 
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Fig. 2-15: Effect of Joint Length on Ultimate Strength (from Guide to Design Criteria for 

Bolted and Riveted Connections, 1987) 

 

2.6 RIVETS IN COMBINED SHEAR AND TENSION 

 

Rivets are often subjected to some combination of shear and tension loads, as 

shown in Fig. 2-16. Past research has led to an elliptical interaction curve to describe the 

strength of rivets under combined shear and tension. In experimental work at the University 

of Toronto, while varying the amount of shear and tension on rivet connectors, it was 

concluded that adding shear to the rivet weakened the connector (Young and Dunbar, 

1928). In this testing, rivets with a tensile force equal to twice the shearing force had 

ultimate strengths about four percent lower than the ultimate strength of rivets in direct 
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tension. Meanwhile, rivets tested with a tensile force equal to the shearing force had 

ultimate strengths about 35 percent less than the ultimate strength of rivets in direct tension.  

 

 

Fig. 2-16: Example of Rivet Connectors in Combined Tension and Shear 

 

Tests done at the University of Illinois, Urbana, using ASTM A141 rivets were 

used to observe trends for different combinations of tension and shear (Munse and Cox, 

1956). Consistent with prior tests conducted by these researchers, variables included rivet 

diameter, driving procedure, and manufacturing process. The biggest difference in the 

capacity for each test lied in the amount of tension or shear implemented for that test. 

Typical fractures of different shear-tension ratios for the 403 tests are shown in Fig. 2-17. 

By inspection, it is clear there is a substantial difference in deformation capacity between 
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the different tests. The rivet deformation capacity increased as the loading changed from 

pure shear to increasing amounts of tension.   

 

  

Fig. 2-17: Typical Fractures at Four Shear-Tension Ratios (from Munse and Cox, 1956) 

 

The findings from this testing led to the development of Eq. (2-4) which determines 

the rivet strength, S, at any tension-to-shear ratio: 

 

                                               S = r×Ss                                                          (2-4) 

  

 

Shear 1 

Tension 0.577 

Shear 1 

Tension 0 

Shear 0.577 

Tension 1 

Shear 0 

Tension 1 



 52 

where:  r is calculated directly from Eq. (2-5) and ranges from a value of 1.0 when the  

rivet is in direct shear and 1.333 when the rivet is in direct tension,  

m = ratio of tensile force component to shear force component, and  

Ss = shear strength of the rivet. 

 

                                                   
2

2 2

1
1.333

(1.333)

+m
r =

+m
                                            (2-5) 

 

Munse and Cox (1956) also presented the strength of rivets at any shear-tension ratio 

graphically in the shape of an ellipse using Eq. (2-6):  

 

                                                       

2 2

2 2
1.0

1.33 1.00

y x
+ =                                                  (2-6) 

 

where: y = ratio of tensile component of force on rivet at ultimate strength to the ultimate  

shear strength of rivet, and  

x = ratio of shear component of force on rivet at ultimate strength to the ultimate  

shear strength of rivet.   

 

The latest version of this equation differs from Eq. (2-6) in that it is modified in terms of 

the ultimate tensile strength of the rivet. It appears in the Guide to Design Criteria for 

Bolted and Riveted Connections (Kulak et al., 1987) as: 
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2
2

2
1.0

0.75

x
+ y =                                              (2-7) 

 

where: x = ratio of shear stress to the rivet ultimate tensile strength, and  

y = ratio of tensile stress to the rivet ultimate tensile strength, with stresses  

determined from the applied loads and the strengths determined from pure  

tensile and pure shear capacity (Kulak et al., 1987). 

 

As was the case with (2-6), using (2-7) provides an elliptical interaction curve as shown 

in Fig. 2-18. The equations and elliptical curve reiterate the fact that rivets demonstrate a 

higher shear-to-tensile capacity than typically recommended for steel in the research 

literature (typically 0.6). As indicated in the Guide to Design Criteria for Bolted and 

Riveted Connections, the tested average shear-to-tensile strength ratio varies from 0.67 to 

0.83, with an average of 0.75 (by Kulak et al., 1987). As a result, the elliptical curve in 

Fig. 2-18, portraying rivet shear or tensile strength normalized by the rivet tensile 

strength, normalized by the rivet tensile strength, provides a value of 1 under pure tensile 

load, and a value of 0.75 under pure shear load. Of particular note is the fact that adding 

shear to a rivet weakens the connector. For example, when the tensile force is twice the 

shear force, the capacity of the rivet in comparison to the tensile strength only drops by 

4%.  When the amount of shear force on the rivet is equal to the tensile force on the rivet, 

however, the capacity of the rivet relative to the tensile strength drops by 35%. 
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Fig. 2-18: Combined Tension and Shear Interaction Curve (from Guide to Design 

Criteria for Bolted and Riveted Connections, 1987)  

 

2.7 BLAST LOADS AND SHOCK PHENOMENA 

 

A review of the relevant literature shows that rivets were studied in detail up until the 

1950s. At that time, high-strength bolts gained preference as a connector for structural 

steel. Although several in-depth studies provide a good understanding of rivet behavior 
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under a range of loading conditions, little to no work focused specifically on rivet behavior 

under high rates of loading such as those associated with blast. Testing of rivets considered 

only conventional loads such as dead, live, and wind. These loads are applied slowly and 

can remain constant for a relatively long period of time. Unless earthquake loads are 

considered, structures subjected to conventional loads are normally designed to stay in their 

elastic range. With the on-going and arguably never-ending threat that terrorists present to 

our infrastructure, it is important to understand how steel components joined by rivets 

behave under blast and other extreme loads they were not initially designed to resist. Unlike 

conventional loads, blast loads are impulsive, with peak pressures that can be extremely 

large relative to the material yield strength, though these pressures typically act over a very 

short duration (milliseconds).  The detonation of an explosive generates a sudden release 

of energy that dissipates through blast waves, propulsion of fragments from the explosive 

casing or propelled debris, and thermal radiation. A simple example of energy dissipating 

through blast waves due to a detonation is illustrated in Fig. 2-19. The blast loading and 

impulse for many design scenarios typically remain localized and do not have to 

necessarily engage the entire structure as other dynamic loads do, such as wind and 

earthquake. 
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Fig. 2-19: Blast Wave Propagation Demonstration 

 

The high pressures associated with an explosion can be categorized into either a 

deflagration or a detonation. A deflagration is a thermally initiated oxidation reaction that 

propagates below the speed of sound (typically at speeds ranging between 3 - 330 ft/sec) 

in the unreacted material (e.g., natural gas and air; gasoline vapor and air). The resulting 

pressure wave that radiates from the explosion source has a finite rise time.   

Unlike deflagrations, a detonation is an extremely rapid chemical reaction that proceeds 

through the explosive material at a supersonic velocity that typically ranges from 22,000 
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to 28,000 ft/sec for high explosives (e.g., Composition C-4 expands at 26,400 ft/sec) (UFC 

3-340-02, 2008). Fig. 2-20 shows a detonation within the first few microseconds of 

detonation and again at approximately one millisecond.  

 

 

Fig. 2-20: Detonation at First Few Microseconds (top) and Detonation at Approximately 

1 msec (bottom) (from Ray et. al, 2012) 
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The extremely fast detonation reaction rate results in an essentially instantaneous 

rise in pressure that is much higher than that from a deflagration. This incident wave, also 

defined as a “shock wave”, is generated as the explosive is converted from its solid, liquid, 

or gas physical state into a hot, dense, and high-pressure gas equal to its speed of detonation 

that expands and decreases speed as it propagates outward from the source of the explosive 

into the surrounding air. Fig. 2-21 illustrates the differences between a deflagration 

pressure wave and a detonation shock wave. 

 

 

 

Fig. 2-21: Blast Wave (Detonation) vs. Pressure Wave (Deflagration) (modified from 

http://www.hysafe.net/wiki/BRHS/ChemicalExplosions) 
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When reflected off a surface, the incident wave becomes a reflected wave. Because the 

incident wave heats and compresses the air in the immediate vicinity of the reflected wave, 

the reflected wave travels through the heated and compressed air at a greater velocity than 

the incident wave. As shown in Fig. 2-22, the supersonic velocity of the shock wave at 

impact can cause a pressure enhancement up to 13 times the incident pressure.  

 

 

 

Fig. 2-22: Peak Incident Pressure vs. Ratio of Normally Reflected Pressure/Incident 

Pressure for a Free Air Burst (modified from UFC 3-340-02, 2008) 
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When a blast wave reflects off of a rigid surface such as the ground, as shown in Fig. 

2-23, the reflected shock merges with the incident shock to produce the resultant shock, 

also known as the Mach front. The point at which the initial wave, the reflected wave, and 

the Mach front meet is called the triple point. This new wave is assumed to have a uniform 

pressure distribution. If the triple point is above the height of the target, the target 

experiences this uniform pressure distribution. In the event of an explosion close to the 

target, as would be likely for a riveted suspension bridge panel or riveted bridge 

connection, the triple point could hit below its full height. In this case, the Mach front 

uniform pressure impacts up to the triple point, resulting in two distinct pressure pulses 

above and below the triple point. 

 

 

Fig. 2-23: Formation of the Triple Point (from UFC 3-340-02, 2008) 



 61 

  

The most important blast load parameters needed to determine structural response 

are the peak overpressure, the net impulse, and fragments.  Pressure-time histories, such as 

the airblast shockwave pressure-time history shown in Fig. 2-24, provide information 

regarding the peak overpressure and net impulse. Once explosives are detonated at time t 

= 0, there is a finite time, ta (arrival time) before the nearly instantaneous shock front 

impinges its target. This instantaneous rise in pressure above the ambient atmospheric 

pressure is referred to as the peak positive incident overpressure, the free-field 

overpressure, or side-on overpressure (Pso). Over a total positive phase duration of to, this 

front decays exponentially, typically within milliseconds, as the shock wave expands 

outward from the detonation source. This positive phase duration is the most destructive 

time for a structure as it experiences both the peak overpressure and the positive specific 

impulse, is.  This impulse is determined by taking the area under the positive pressure curve. 

Shortly thereafter, the pressure immediately behind the front drops below the ambient 

pressure, Po. This negative phase, over a time, to-, is analogous to a suction, which can 

reverse load on a structure, albeit at a significantly smaller magnitude than the positive 

phase. This suction often has the ability to pick up and move debris back toward the 

explosion source. While all of the airblast shockwave pressure-time histories will have this 

same idealized form, the values for each parameter change with explosive charge and 

standoff distance.  

 



 62 

 
 

Fig. 2-24: Free-Field Pressure-Time History (from TM 5-855-1, 1986) 

 

As discussed previously, reflected pressures are generated when an incident 

pressure wave reflects off of a surface that is not parallel with the direction of travel of the 

incident wave.  With the reflected wave propagating through the heated and higher pressure 

air, the peak pressure is greater than the incident wave. Even so, the reflected pressure-time 

history has the same general shape as the free-field pressure-time history, with exact 

magnitudes governed by the magnitude of the incident wave and the angle of the inclined 

surface (location of the structure relative to the explosion source). A comparison of a 

typical reflected pressure-time history and free-field pressure-time history is shown in Fig. 

2-25. 
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Fig. 2-25: Reflected Pressure-Time History compared to Free-Field Pressure-Time 

History (from UFC 3-340-02, 2008) 

 

While there are any number of bulk explosive threat scenarios that could adversely 

affect riveted steel bridge panels and connections, there is a large amount of TNT 

experimental data available to characterize blast waves. Hence, it is common practice to 
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use empirically derived blast parameters in terms of an equivalent amount of spherical 

TNT. The TNT-equivalent charge weight dictates the amount of TNT required to produce 

a selected shock wave parameter magnitude (blast pressure, blast impulse, or explosion 

energy) equal to that produced by a unit weight of the explosive in question.  

Blast load effects vary significantly based on the parameters of spherical TNT 

equivalent charge weight (W) and stand-off from the center of the explosive source (R).  

Once the equivalent spherical TNT charge weight (W) is determined (available readily on 

a number of publicized charts), scaling equations relate the parameters needed to define 

pressure-time history curves. The most common practice to scale high explosive blast 

parameters was originally formulated by B. Hopkinson in 1915 and independently by C. 

Cranz in 1926 in a law known as Hopkinson-Cranz or “cube-root” scaling. This law states 

that “self-similar blast waves are produced at identical scaled distances when two explosive 

charges of similar geometry and of the same explosive, but of different sizes, are detonated 

in the same atmosphere” (Conrath, 1999). Verified experimentally, this equation is not 

applicable for scaled distances less than 0.4 ft/lb1/3. The scaled standoff (Z, in ft/lb1/3) in 

Eq. (2-8) reveals the intensity of the blast load, which is in turn used to determine the 

parameters that define a blast wave. 

 

                   
1/3

R
Z =

W
                                                    (2-8) 
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 In lieu of using the Hopkinson-Cranz scaling, average pressure and impulse TNT 

equivalencies for a number of explosives are provided in various publications. While these 

are suitable for design, it is important to again be aware that actual equivalency varies as a 

function of geometry, target orientation, and atmospheric conditions. In the event an 

explosive is detonated on or near a perfect reflecting surface, a simple approach for 

hemispherical burst airblast parameters can be approximated by doubling the effective 

charge weight. When significant ground cratering is present, 1.8 is more realistic to use as 

a reflection factor (Conrath, 1999).   

When a target is far away from the source, “cube-root” scaling is satisfactory. 

However, the concept behind this “cube-root” scaling is that the energy released from the 

center of the explosive source propagates with an expanding sphere of the shock wave.  

When the charge is close to the target, as would be the case when a riveted suspension 

bridge tower or riveted connection to a bridge is targeted, the shape of the charge defines 

the shock front. So while “cube-root” scaling would still be applicable for a spherical 

charge, a square root scaling might be used for an explosive cylindrical charge where the 

energy disseminates with an expanding cylindrical shock wave.   

Once a scaled distance, Z, is determined, “spaghetti” charts from the UFC 3-340-02 are 

often used to determine the magnitude for the key shock wave parameters (combinations 

of peak side-on overpressures, positive phase durations and corresponding impulses and 

dynamic wind pressures) both positive and suction/negative, that define the loading on the 

target. These “spaghetti” charts earned their name because of the many highly nonlinear 

curves that appear on a single log-log graph, which resembles a plate of cooked spaghetti. 
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These charts were developed from a combination of experimental data and theoretical 

predictions. Charts are available for both spherical (Fig. 2-26) and hemispherical (Fig. 2-

27) explosions. Other shaped charges fail to give pressure distributions with rotational 

symmetry; thus, information in design manual for other shapes should be used with caution 

for close-in explosions (Conrath, 1999). 
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Fig. 2-26: Positive Phase Shock Wave Parameters for Spherical TNT Explosion in Free 

Air at Sea Level (from UFC 3-340-02, 2008) 

Scaled Distance Z = R/W1/3

Figure 2-7. Positive phase shock wave parameters for a
spherical TNT explosion in free air at sea level
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Fig. 2-27: Positive Phase Shock Wave Parameters for a Hemispherical TNT Explosion in 

Free Air at Sea Level (from UFC 3-340-02, 2008) 

Scaled Distance Z = R/W1/3

Figure 2-15. Positive phase shock wave parameters for a
hemispherical TNT explosion on the surface at sea level
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As indicated previously, a third major consideration as it pertains to blast effects is the 

loading that can result from fragments. Some fragments originate from the casing of the 

explosive charge, while others are generated from debris or from damaged structural 

components. When near a target, blast waves travel at a greater velocity than fragments. 

Coupling the two could potentially expose the target to an amplified impulse relative to the 

blast acting alone. Conversely, when further away from the target, fragments may arrive 

before the blast wave. Many times, designers choose to ignore fragment loads because 

overpressure and impulse often dominate the response, and most threat scenarios involving 

terrorist attacks with large explosives rely on VBIEDs. VBIEDs are likely to come from 

thinly sheeted trucks, and fragments from such a scenario are expected to be 

inconsequential for structural response. Exceptions include large masses thrown from the 

VBIED (e.g. axle, engine block, or transmission). Cased military weapons can also produce 

a significant fragment load on structures, but such weapons are typically not considered in 

terrorist threat scenarios because they require access to such weapons and highly 

sophisticated personnel to properly execute them. Even when fragment loads occur, they 

can be very difficult to model and quantify because of their irregular shape and mass 

distribution. The research presented in this dissertation will specifically focus on the 

response of riveted connections under high loading rates. Fragment loading is not an 

element of this research.  
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2.8 STRUCTURAL RESPONSE TO BLAST LOADS 

 

As described in Section 2.7, a blast load is unique when compared to conventional 

loads. It is time dependent, acts over a very short duration, and could have pressures that 

are extremely high. Thus, not only are special criteria required to determine the load on a 

structure, determining structural response also requires analysis methods that are not 

typically employed for conventional loads. Analysis must consider dynamic structural 

response, inertial effects, and ineleastic material response under high strain rates. An 

increase in material strength under high loading rates improves a material’s structural 

resistance. A look at previous incidents involving terrorist attacks against buildings and the 

response of bridges to cased military weapons provided some of the initial understanding 

regarding how bridges might respond to a variety of terrorist threats (Williamson, 2010).  

Depending on the location of a blast relative to a bridge, uplift forces beneath a bridge deck 

could cause structural components to be loaded in a direction for which they are not 

otherwise designed. Tensile stresses can occur under compressive loadings and vice versa. 

Thus, it is both a material’s plastic (permanent) deformation ability to absorb explosion 

energy and its position relative to the blast that are critical to determine the 

component/system/material strength and response.   

Part of the complexity in analyzing response to blast is due to non-linear inelastic 

material behavior. A material’s behavior is usually predicted through determination of its 

mechanical properties, such as its stress versus strain relationship. The stress versus strain 

relationships for common grades of steel are shown in Fig. 2-28. Strain energy, U, which 
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is also often referred to as internal work, is the energy per unit volume stored in a deformed 

material. Graphically recognized as the area under the true stress-strain curve, with units 

of in-lbf/in3, it is the strain energy of a member that dissipates the kinetic energy of the 

blast. Physically, as a structural member is stressed into its inelastic region, plastic hinges 

develop within the member and absorb the blast energy. As a result, a material’s ability to 

achieve large deformations is a valuable characteristic of blast resistance.  

 

 

Fig. 2-28: Engineering Stress-Strain Curves for Different Steel Grades (from 

www.metalpass.com) 
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The ductility of low-carbon and medium-carbon steels such as A36, A572, and A992, 

allows them to achieve large strains prior to rupture. Higher-strength steels generally have 

less ductility than steels with lower strengths and may have less resistance to blast loads. 

While the higher-strength steels will have greater elastic resistance, defined as the area 

under the stress versus strain curve up to yield, internal resistance continues to increase as 

plastic regions are formed in a structural member. As a high-strength material begins to 

yield, the yield region becomes highly nonlinear. After achieving greater stress under 

additional load, a high-strength material typically has brittle fracture problems. Lower 

carbon steels, however, have long, flat yield plateaus after the defined yield point is 

reached. While the fracture strain shown for A36 and A992 steel are shown at 

approximately 20% in Fig. 2-28, testing reveals that the percent elongation reaches up to 

40%, providing a significantly larger amount of strain energy capacity than some of the 

higher-strength steels. The inelastic deformation of structural members dissipates energy 

from a blast. This suggests that lower carbon steels are often better suited for blast-resistant 

design because they deform well beyond the elastic limit without rupturing. 

When predicting the material properties for steel response, it is critical to know the true 

static properties of the material. Specifications provide various minimum and maximum 

requirements on a number of chemical and mechanical properties. For example, A36 steel 

has a required minimum yield strength of 36,000 psi and ultimate strength in the range of 

58,000 – 80,000 psi (ASTM A36, 2014). Manufacturers in practice usually go well above 

the minimum requirements dictated by ASTM. In fact, the average yield strength is 
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typically 25% higher than the minimum required yield strength, and the typical actual 

tensile strength is 10% higher than minimum required tensile strengths (Engelhardt, 2015). 

The 2010 AISC Seismic provisions refers to this higher yield strength and tensile strength 

as expected material strengths. As shown in Table 2-7, the expected yield strength of an 

A36 plate is 1.3 times higher than the specified minimum yield and 1.2 times higher than 

the specified ultimate tensile strength. In Table 2-7, the Ry term is the ratio of the expected 

yield stress to the minimum yield stress, while Rt is the ratio of expected tensile strength to 

the specified minimum tensile strength. The UFC 3-340-02 (2008) makes a much broader 

recommendation for strength increase factor, and simply recommends using a 1.1 strength 

increase factor for structural steels with a specified static yield strength of 50 ksi or less. 

For higher-strength steels, the UFC recommends ignoring any increase in ultimate strength 

because the average increase is likely below 5 percent (UFC 3-340-02, 2008). 
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Table 2-7: Expected Material Strengths for Different Steels (from AISC Seismic 

Provisions, 2010) 

Application Ry Rt 

Hot-rolled structural shapes and bars:   

*ASTM A36/A36M 1.5 1.2 

*ASTM A1043/1043M Gr. 36 (250) 1.3 1.1 

*ASTM A572/572M Gr. 50 (345) or 55 (380), ASTM 913/913M 

Gr. 50 (345), 60 (415), or 65 (450), ASTM A588/A588M, ASTM 

A992/A992M 

1.1 1.1 

*ASTM A1043/A1043M Gr. 50 (345) 1.2 1.1 

*ASTM A529 Gr. 50 (345) 1.2 1.2 

*ASTM A529 Gr. 55 (380) 1.1 1.2 

Hollow structural sections (HSS):   

*ASTM A500/A500M (Gr. B or C), ASTM A501 1.4 1.3 

Pipe:   

*ASTM A53/A53M 1.6 1.2 

Plates, Strips and Sheets:   

*ASTM A36/A36M 1.3 1.2 

*ASTM A1043/1043M Gr. 36 (250) 1.3 1.1 

*A1011/A1011M HSLAS Gr. 55 (380) 1.1 1.1 

*ASTM A572/A572M Gr. 42 (290) 1.3 1.0 

*ASTM A572/A572M Gr. 50 (345), Gr. 55 (380), ASTM 

A588/A588M 

1.1 1.2 

*ASTM 1043/1043M Gr. 50 (345) 1.2 1.1 
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Not only do steel members typically require an adjustment in their strength values due 

to steel suppliers surpassing minimum standards, but steel members also are found to be 

sensitive to rapidly applied loads. Under impulsive loadings associated with blast events, 

the strain rate, defined as the rate of deformation as a function of time, can drastically 

change the dynamic mechanical properties of steel and its corresponding structural 

behavior. Blast loads especially produce very high strain rates (greater than 102/s) in 

comparison to conventional static strain rates (less than 10-1/s).  Ranges for dynamic modes 

of loading are shown in Table 2-8.   

 

Table 2-8: Dynamic Modes of Loading vs. Strain Rate (portions from Impact 

Engineering by Hayashi and Tanaka, 1988) 

Strain Rate 

(1/s) 
10-5 – 10-1 10-1 – 101.5 101.5 – 104 > 104 

Loading Mode  
Static or  

quasi-static 
Dynamic Impact 

Hyper velocity 

impact 

Examples 

Dead or live 

load on 

structure 

Impulse 

pressure 

effects on 

high-speed 

craft 

Explosion, 

ship collision 
Bombing 

 

 

Under high rates of dynamic loading, steel materials achieve an enhanced strength 

that boosts their ability to resist loads. As the material is loaded rapidly, it cannot deform 

at the same rate at which the load is applied. A greater load is required to produce the same 



 76 

deformation than at a lower strain rate. For most steels, the modulus of elasticity and 

ultimate strain of steel are largely unaffected; however, a high strain rate creates an increase 

in the stress level at which both the yield stress occurs (up to 35%) and the ultimate stress 

occurs (up to 10%). These large increases are too significant to be ignored when predicting 

response. The increase in strength associated with the rapidly applied load is known as the 

dynamic increase factor (DIF) and is expressed numerically as the ratio of dynamic-to-

static stress. A typical change in the stress versus strain relationship for steel due to a 

change in strain rate is demonstrated in Fig. 2-29. 

 

 

Fig. 2-29: Typical Strain Rate Impacts on Steel (from UFC 3-340-02, 2008) 
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The degree of enhanced strength depends on the strain rate, the type of stress, and 

the strength of the material. As Fig. 2-30 demonstrates, the greater the strain rate, the 

greater the effect on yield strength DIF.  

 

 

Fig. 2-30: Yield Stress DIF as a Function of Strain Rate (from UFC 3-340-02, 2008) 

 

For ultimate strength DIF values, the values are independent of the low pressure or 

high pressure categories of Table 2-10. According to UFC 3-340-02, and as Table 2-9 

shows, there is simply one DIF provided for ultimate strength based on material type only. 
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Regarding stress type, the DIF differs because the peak value for one failure mode (e.g., 

flexural stress) is different than the peak value for another (e.g., shear). Flexural failures 

are considered a more ductile failure, allowing greater enhancement, while a more brittle 

shear failure requires conservativism. As Table 2-10 shows, for specific strain rates, the 

UFC provides DIF values for specific structural steels and different failure modes. 

Furthermore, lower-strength materials see a larger strength enhancement from dynamic 

effects.   

 

Table 2-9: Ultimate Strength DIF for Different Steels (from UFC 3-340-02, 2008) 

Material C 

A36 1.10 

A588 1.05 (Estimated) 

A514 1.00 

 

Table 2-10: Yield Strength DIF at Specific Strain Rates for Different Failure Modes 

(from UFC 3-340-02, 2008) 

Material 

Bending Tension or Compression 

Low Pressure       

( ε


= 0.10 in./in./sec) 

High Pressure    

( ε


= 0.30) 

Low Pressure 

( ε


  = 0.02) 

High Pressure 

( ε


= 0.05) 

A36 1.29 1.36 1.19 1.24 

A588 1.19 (est.) 1.24 (est.) 1.12 (est.) 1.15 (est.) 

A514 1.09 1.12 1.05 1.07 
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2.9 MATERIAL TESTING AND CONSTITUTIVE MODELS FOR HIGH STRAIN RATES 

 

Often, high strain-rate material testing is performed using the Split Hopkinson 

Pressure Bar test. As demonstrated in Fig. 2-31, this test involves four long pressure bars 

(striker, incident, transmission, and throw off/stop). The bar material is specifically 

selected to remain elastic. With the tested material specimen loaded between the 

transmission and incident bars, the striker bar, which is propelled by a highly compressed 

gas gun, strikes the incident bar generating a wave propagation, known as the incident 

wave. A portion of the stress pulse transmits through the specimen (transmitted wave) and 

into the transmission bar. The material specimen deforms, and the stop bar absorbs the 

impact of the transmission bar. This test allows the specimen to be taken to large strains. 

Instantaneously, another portion of the stress pulse is reflected back (reflected wave) to the 

incident bar as a tensile stress pulse. Strain gages capture the stress waves in both bars and 

measure the strain duration and amplification in the bars at a given strain rate. The reflected 

and transmitted waves are proportional to the specimen’s strain rate and stress, 

respectively, while the strain is determined by integrating the strain rate. The material 

specimen stress-strain properties are determined from a compilation of the data from the 

incident and transmission bars. Hopkinson Bar Tests are often conducted under varying 

temperatures by simply enclosing the tested material specimen within an oven or electric 

resistance furnace for several minutes prior to testing (Campbell and Ferguson, 1970). With 

modifications, this technique is effective for compression, tension, and torsion testing. The 

sole focus of the research presented in this dissertation was on the performance of a variety 
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of riveted connections subjected to high loading rates that put the rivets in shear. The 

laboratory testing done to date with respect to A502 Grade 2 rivets, described in depth in 

Chapter 3, did not include the Split Hopkinson Pressure Bar. 

 

 

Fig. 2-31: Dynamic Hopkinson Bar Testing (from relinc.net) 

 

In order for engineers and scientists to utilize tested material specimens in other 

applications, a constitutive model is often used to characterize the behavior of the material. 

Several empirical and semi-empirical models exist in the literature that capture the strain-

rate behavior of metals. In fact, some models include both strain-rate and temperature 

effects. Modern computer programs have incorporated many of these constitutive models 
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in their analysis codes providing results that are often limited only by the accuracy of the 

material characteristics input by the user.  

One of the most popular constitutive models used to describe the response of steel 

and other ductile metals at high strain rates is the Johnson-Cook model. The Johnson-Cook 

model is purely empirical and is incorporated and widely used within most commercial 

finite elements packages. The model (Johnson and Cook, 1983) states that the equivalent 

von Mises flow stress, Y , is given by Eq. (2-9): 

 

 ( ( ) )(1 ln )(1 ( ) )p N M

Y eff H= A+ B ε +C  ε - T


 (2-9) 

 

where: A = yield stress of the material obtained from experiment,  

B = hardening constant obtained from experiment, 

p

effε  = effective plastic strain,  

N = hardening exponent obtained from experiment, 

ε


= normalized strain rate, 

C = strain rate constant obtained from experiment, 

M = thermal softening exponent, and 

 

                                            
T -T

ref
T =

H T -T
melt ref

                        (2-10) 
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where: T = temperature of material, 

Tref = room temperature, and 

Tmelt = melting temperature. 

 

 As demonstrated in both Eqns. (2-9) and (2-10), the model consists of both material 

specific characteristics and different experimentally obtained parameters. This makes the 

model extremely useful in that it can be calibrated experimentally to specific materials. It 

captures strain hardening through B and N, strain rate effects logarithmically through ε


, 

and thermal softening through M. It is phenomenological in that it is not based on 

traditional plasticity theory. Tested parameters for A36 hot rolled steel are shown in Table 

2-11 (Schwer, 2007): 

 

Table 2-11: Johnson-Cook Parameters for A36 Steel 

A (ksi) B (ksi) n C *
ε p  M 

41.5 72.54 0.228 0.017          1.0 0.917 

      

 

Most software packages have also included the Johnson and Cook (1985) expansion 

of their basic model. This expanded model includes a cumulative-damage fracture model 

that accounts for stress triaxiality ( P / σ
eff

), strain rate, and local heating (Schwer, 2007). 

This model, as shown in Eq. (2-11), requires five additional material model parameters. 
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1 2 3 4 5( exp( ))(1 ln )(1 )F

H

eff

P
ε = D + D D + D ε + D T

σ



    (2-11) 

 

where:  Fε = fracture strain, 

D1-5 = various material model parameters obtained from experiment, 

effσ  = effective stress, and 

P = mean stress (pressure). 

 

Eq. (2-11) allows the computation of damage through the damage parameter D, in 

Eq. (2-12). Once the damage parameter reaches unity, failure occurs, and the failed 

element is deleted. 

 

                   

p

eff

F

Δε
D =

ε
  (failure occurs when D = 1)   (2-12) 

 

Another methodology to capture the differences in dynamic and static load effects 

is the Cowper Symonds model.  In 1957, Cowper and Symonds proposed the following 

constitutive equation (Eq. (2-13)) to calculate the dynamic yield strength of a material 

based on the strain rate (𝜀̇) and two empirical coefficients (C, q) that have been determined 

through testing: 
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𝜎𝑌𝑑 = 𝜎𝑌 + 𝜎𝑌 (
𝜀̇

𝐶
)
1
𝑞⁄
                                            (2-13) 

 

Unlike the logarithmic dependence of the Johnson-Cook model, the Cowper Symonds 

equation has an exponential strain rate dependence. Table 2-12 shows various coefficients 

for the Cowper Symonds equation. 

 

 

Table 2-12: Cowper-Symonds Coefficients 

Test C (1/s) q Reference 

Mild steel under uniaxial tension 

with mild strains 
40.4 5 Cowper & Symonds (1957) 

High tensile steels under 

compression 
3200 5 Paik & Chung (1999) 

Mild Steel under compression 

Split Hopkinson Pressure Bar tests 
844 2.207 Marais et al. (2004) 

Mild steel under uniaxial tension 

with large strains 
802 3.585 

University of Liverpool ref. by 

Abramowicz and Jones (1986) 

Mild steel square tubes axially 

crushed 
6884 3.91 Abramowicz and Jones (1986) 

Square tubular steel beams 

subjected to transverse blast loads 
844 2.207 

Jama, Bamback, Nurick, 

Grzebieta, and Zhao (2012) 

 

The original Cowper Symonds (1957) parameters (C = 40.4 s-1 and q = 5) were 

obtained from dynamic uniaxial tests having small strains that approached the yield strain. 

Similar dynamic uniaxial testing done at the University of Liverpool for large strains 

determined drastically different coefficients with C = 802 s-1 and q = 3.585 (Abramowicz 
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and Jones, 1986). Comparing large strain testing coefficients reveal a large difference in 

recommended C coefficient values while the q coefficient values are comparatively close. 

Differences in coefficient values are likely due to differences in material composition and 

testing techniques. While unable to find any literature regarding the behavior of steel rivets 

under high loading rates outside of the testing described in Chapter 3 of this dissertation, 

careful study of the constitutive models used for the behavior of other ductile steel provides 

valuable insight into likely coefficients to examine with regard to rivets under high loading 

rates. 

  

2.10 LITERATURE REVIEW SUMMARY 

 

The literature review presented for this dissertation provides a summary of the history 

of the use of rivets from approximately 3000 B.C. to today. In addition, there is discussion 

of the challenging riveting process, resulting in the construction industry transitioning to 

high-strength bolts in the 1950s. Following an in-depth look at the structural behavior of 

rivets and previously completed rivet experimental testing, this chapter provides an 

overview of blast loads and the structural response of steel to this physical phenomenon. 

The intent of this chapter was to provide a technical foundation upon which to build with 

the research from this dissertation. The next two chapters repeatedly depend on the 

knowledge gained from this literature review in order to develop a rivet model using a 

nonlinear transient dynamic finite element analysis software package, provide 
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recommendations with respect to constitutive modeling within the software package, and 

apply the developed model towards an untested practical problem. 
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Chapter 3:  Modeling Simple Riveted Connections 

 

"A good plan violently executed now is better than a perfect plan executed next week." 

“A good solution applied with vigor now is better 

than a perfect solution applied ten minutes later.” 

-George S. Patton, 1944 

 

 

3.1 AN INTRODUCTION 

 

From 1860 until the late 1950s, rivets dominated as the construction industry’s 

primary fastener of choice for bridge construction. Furthermore, as highlighted 

throughout the Chapter 2 Literature Review, rivets were also the most studied structural 

connection. However, the focus of this past research was on behavior in tension, shear, a 

combination of shear and tension, and fatigue. No attention was given to the behavior of 

riveted connections under blast loads, as the need to conduct such testing was previously 

nonexistent. The steady increase in terrorist attacks and fatalities since 1970 has changed 

the testing landscape. The Mineta Transportation Institute’s most recent report discussing 

long-term trends in attacks on public surface transportation reveals that 65% of attacks 

worldwide were bombings (Jenkins, 2016). With bridges such as the five mile Mackinac 

Bridge in Michigan shown in Fig. 3-1 and others mentioned throughout this dissertation 



 88 

being held together with millions of rivets (4,851,700 steel rivets for the Mackinac 

Bridge) (Steinman and Nevill, 1957), an understanding of their behavior under high 

loading rates is critical. This Mineta Transportation Institute report in combination with 

the data compiled and summarized in the rest of Chapter 1 have led to a rise in interest 

within the engineering community to gain an understanding of connection behavior 

subjected to blast loads. 

 

 

Fig. 3-1: Construction of the Five Mile Mackinac Riveted Bridge (from Mulcahy, 2007) 
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 This chapter opens with a summary of the limited field testing completed on 

riveted and bolted panels. This recent testing explains the importance of understanding 

the behavior of rivets specifically as it pertains to shear strength when experiencing high 

rates of loading. A summary of the laboratory testing involving simple riveted 

connections follows and serves as the comparative basis for the LS-DYNA (2013) 

modeling of simple connections conducted by this author. The primary focus of this 

chapter is to provide and validate the details for modeling simple riveted connections. As 

a necessary first step in the process towards validation, a finite element model was 

developed and simulated using quasi-static loading. This initial step was taken prior to 

the more complex validation of simulation using dynamic loading because of the large 

amount of quasi-static data available in literature. Thus, validation is achieved by 

comparing the computational results of ten different simple rivet connections under 

quasi-static loading with both recent experimental testing results (Rabalais, 2015) and the 

historical data discussed throughout Chapter 2. After this validation discussion, the 

chapter ends with a concluding summary. Further validation referencing high rate loading 

will be discussed in Chapter 4. 

 

3.2 THE RESULTS OF FIELD TESTING OF RIVETED PANELS UNDER BLAST LOADS 

 

Despite a clear need to investigate the blast loading response of riveted connections, 

no research had been started in this regard until laboratory and field tests were completed 
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by the Engineer Research Development Center (ERDC), U.S. Army Corps of Engineers. 

In research performed for the U.S. Department of Homeland Security and the Federal 

Highway Administration, ERDC conducted comparative explosion tests on a number of 

bridge tower components. Initial tests included an investigation of scaled models of steel 

bridge tower components using A36 steel (Walker et al., 2011a, 2011b, 2011c, 2011d, 

2011e). Subsequent work expanded on this research by comparing the A36 panel response 

with the response of vintage, pre-1940 A7 steel (Crane et al., 2015). Additional testing built 

upon these extensive tests by varying the types of fasteners used in the panels (Crane et al., 

2015). 

From these previous studies, the most relevant research for this dissertation is the 

testing of front plate suspension steel panels subjected to blast loadings, comparing the 

response of riveted panels with bolted panels. Specifically, this testing evaluated the 

ductility and fracture behavior of the different panels. Because the previous testing 

involving vintage A7 steel and modern A36 steel revealed a similar response to blast loads 

(Crane et al., 2015), it was determined suitable to conduct all testing using the same modern 

A36 steel. As a result, both the panels and their connecting angles for the models were 

constructed using A36 steel.  

The fasteners used to replicate pre-1950 construction were ASTM A502 standard 

strength rivets (ASTM, 2003). The fasteners used to replicate post-1950 construction were 

fully tensioned ASTM A307 standard strength bolts (ASTM, 2014). Targets were bolted 

or riveted in the exact same configuration with explosive charges suspended above each 

specimen.  
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 When evaluating the response of the bridge panel connected with the fully 

tensioned ASTM A307 standard strength bolts, the authors noted that the front face was 

severely damaged in a brittle fashion. There was very little reduction in the cross-sectional 

area of the plates along failure sites, defined as the portion of the plate supported by the 

stiffeners where the fracture propagated along the edge. This observation indicates that the 

blast load acting on the bolted panels resulted in a brittle, shear failure of the plates. In 

addition, as shown in Fig. 3-2, the bolts failed exclusively in shear as there was no 

noticeable tensile strain in the bolts. The diameter of the bolts following the tests was 

virtually identical to the diameter of the bolts prior to the test. 

 

 

Fig. 3-2: View of Bolts Shear Failure Following Testing (from Crane et al., 2015) 
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While the bolted plates failed in a brittle shear fashion, the steel plates connected 

with ASTM A502 standard strength rivets had a more ductile tension failure. This failure 

was evident by the significant reduction in steel plate cross-sectional area at the failure 

site, as shown in Fig. 3-3. In fact, the reduction in plate thickness at the tears was 

measured at nearly 35% (Crane et al., 2015). Despite the fact that the riveted plate failed 

differently in comparison to the bolted plate, the rivets failed identically to the bolts as no 

large tensile strain was observed in the rivets. As demonstrated earlier in Fig. 2-17 

(Munse and Cox, 1956), rivets have a varying amount of necking at failure depending 

upon the state of stress; there is no necking under a pure shear failure and significant 

necking under a pure tensile failure.   

 

 

Fig. 3-3: Significant Necking of Riveted Plate Material (from Crane et al., 2015) 
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Because the brittle failure of specimens with modern steel plates and fasteners 

provided a conservative estimate of the response of vintage plates fastened with rivets, 

the authors concluded that subsequent testing could be conducted effectively using 

modern materials and construction methods rather than go through the cost and expense 

to reclaim vintage steel that would be later fastened with rivets (Crane et al., 2015).  

These findings also validate the need to further understand the behavior of vintage 

rivets. With challenges in constructing and funding field tests, coupled with the difficulty 

in obtaining riveted samples to test and in finding the expertise to build riveted models, a 

numerical approach to study the behavior of riveted connections using sophisticated 

software is a valuable contribution to the engineering community. Furthermore, as 

mentioned in the quote to open the chapter, good numerical solutions available to 

engineers through relatively quickly obtained numerical models are better than perfect 

solutions obtained through exhaustive field or laboratory tests that will undoubtedly take 

a lot longer. 

 

3.3 EXPERIMENTAL TESTING OF SIMPLE RIVETED CONNECTIONS 

 

The field testing conducted by Crane et al. (2015) and described in Section 3.2 in 

this dissertation demonstrated that connectors of cellular suspension panel plates failed in 

shear regardless of connector type (bolt versus rivet). Simultaneous laboratory research 

narrowed the focus of the research to the behavior of the fastener under quasi-static and 
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dynamic loads. Specifically, riveted, non-pretensioned bolted, and pretensioned bolted 

lap-spliced specimens were tested in both quasi-static and dynamic loads to investigate 

how the different simple connections behaved under quasi-static and dynamic loads 

(Rabalais, 2015).  Testing included an investigation of four distinct variables: fastener 

type, single shear or double shear, joint configuration type and loading type. 

To conduct the laboratory testing, the authors used the 200-kip dynamic loader 

shown in Fig. 3-4 to apply loads to lap-spliced specimens. The 0.5-in. and 1-in. A36 

structural steel plates and spacing of the fasteners for each configuration were selected 

and designed to ensure the connectors would fail before the occurrence of any of the 

other connection failure methods (block shear rupture, member yielding, member 

fracture, bearing, and tear out) detailed in Section 2.3 of this dissertation. 

 



 95 

 

Fig. 3-4: 200-kip Dynamic Loader (from Rabalais, 2015) 

 

To evaluate the behavior of different fasteners, A502 Grade 2 standard strength 

rivets were compared with A307 Grade B standard strength bolts because they have 

similar mechanical properties. A picture of the typical fasteners used for single-shear 

configurations is shown in Fig. 3-5. The bolted fasteners had a nominal diameter of 0.5-

in., while the riveted fasteners had a nominal diameter of approximately 0.5625-in. As 
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expected, the rivets ended up with a greater nominal diameter because rivets tend to fill 

the hole to varying degrees during the hot-driving process. As described as typical 

practice in Section 2.2 of this dissertation, rivets for this laboratory testing program were 

driven by a hydraulic riveter after being heated to between 1500 and 1950 degrees 

Fahrenheit. A picture of the hot riveting process used for this experimentation is shown in 

Fig. 3-6. 

 

 

Fig. 3-5: A307 Grade B Bolt vs. A502 Grade 2 Rivet (modified from Rabalais, 2015) 
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Fig. 3-6: Riveting Process for Laboratory Testing (from Rabalais, 2015) 

 

As shown in Fig. 3-7, the second variable tested was the number of shear planes. 

Specifically, the testing involved fasteners in single shear or double shear. Single-shear 

tests consisted of two 0.5-in. steel plates connected by fasteners, while double-shear tests 

consisted of two 0.5-in. steel plates and one 1-in. plate connected by fasteners. While the 

bolt diameter remained unchanged, it was anticipated and revealed that the rivet diameter 

was smaller for the double shear tests. As explained in Section 2.5, longer rivets tend to 
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have a slightly lower strength than shorter rivets because longer rivets do not fill the hole 

throughout their entire length as well as rivets with shorter lengths (Munse and Cox, 

1956). This laboratory testing demonstrated an average rivet diameter for single-shear 

rivets of 0.560-in. (stress area 0.246 in.2) and an average rivet diameter for double shear 

rivets of 0.545-in. (stress area 0.233 in.2) (Rabalais, 2015). 

 

 

Fig. 3-7: Single Shear with Two 0.5-in. Plates (left) vs. Double Shear with Two 0.5-in. 

Plates and One 1-in. Plate (modified from Rabalais, 2015) 

 

Rarely is a single rivet used as a connector in practical applications. Thus, in 

addition to the simple Configuration 1: Single Rivet (as shown in Fig. 3-7), the authors 

also investigated multiple fastener configurations. The other four configurations tested 
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included: Configuration 2: Two Rivets Horizontal; Configuration 3: Two Rivets Vertical; 

Configuration 4: Four Rivets Square; and Configuration 5: Four Rivets Staggered. Each 

of the configurations was tested in single-shear and double-shear. These four multiple 

fastener configurations are shown in Fig. 3-8. 

As indicated previously, the 200-kip dynamic loader applied the quasi-static and 

dynamic loads to the lap-spliced specimens. To apply a quasi-static load, the loader was 

operated at the slowest loading rate. Under these conditions, failure of the rivets occurred 

between approximately 500 and 4000 milliseconds. When applying a dynamic load, the 

loader was operated at the fasted loading rate possible. For this case, failure of the rivets 

occurred between approximately 1 and 6 milliseconds. Specific loading rates were not 

measured. However, the 200-kip dynamic loader advertises an approximate range of 10 

to 100,000 lbf/msec (Rabalais, 2015). 

This section summarized the details of the 224 tests setup and executed by Chris 

Rabalais (2015) to determine the behavior of fasteners under quasi-static and dynamic 

loads. The remainder of this chapter focuses on model validation for quasi-static loaded 

specimens.  
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Fig. 3-8: Multiple Rivet Configurations: (a) Configuration 2, (b) Configuration 3, (c) 

Configuration 4, and (d) Configuration 5 (modified from Rabalais, 2015) 

 

 

 

(a) (b) 

(c) (d) 
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3.4 THE FINITE ELEMENT METHOD AND LS-DYNA (2013) 

 

Selection of finite element software was required to develop and analyze the 

response of riveted connections. A large variety of finite element analysis software 

capable of modeling riveted connections under high loading rates includes ANSYS, 

ABAQUS, and LS-DYNA (2013). However, with LS-DYNA (2013) largely considered 

the industry leader as it pertains to the response of structures under blast loads, LS-

DYNA (2013) was selected as the solver to conduct the analysis. Developed by 

Livermore Software Technology Corporation, LS-DYNA (2013) is a multi-purpose finite 

element software package that offers both implicit and explicit numerical integration of 

the governing equations of motion.  

Finite element analysis is one of several numerical methods available to estimate 

solutions to physical problems. Other examples include the finite difference method, the 

finite volume method, and the boundary element method. Numerical methods require the 

replacement of a physical domain by a set of geometric points, lines, triangles, 

quadrilaterals, or some other geometric entity. Elements, connected at points referred to 

as nodes, are assembled into a finite element structure creating a mesh. This mesh is 

programmed by the user to exhibit specific material and structural properties. Numerical 

models vary in intricacy, from simple one-dimensional models, to more complex two-

dimensional and three-dimensional models. Through discretization, the physical system 

with an infinite number of degrees of freedom is approximated into a finite number of 

degrees of freedom. Once discretized, the user defines all boundary conditions and loads. 
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Numerically, the discretized mesh leads to a system of algebraic equations. The 

numerical solver assembles these mathematical approximations and solves for unknown 

parameters at the nodes. Solutions are approximated element by element over the entire 

structure. In theory, a highly discretized system that is modeled correctly can nearly 

match the behavior of a complex physical system. 

Highly complicated three-dimensional models often involve significant time to 

both create and to analyze. However, this time requirement is small in comparison to the 

time required to conduct experimental testing, especially when it pertains to blast loads. 

On the contrary, experimental testing can often be very useful to users of numerical 

software packages because the collected data can serve as a validation tool for the 

numerical results. This validation helps engineers conducting numerical simulations gain 

confidence in their results and avoid consequences ranging from embarrassing to 

catastrophic. 

The rest of this chapter focuses on the use of LS-DYNA (2013) to conduct finite 

element analyses of rivets under the simple and often tested quasi-static condition. 

Specific topics of discussion include the discretization, approximation of boundary 

conditions and loading, and determination of a material model to dictate behavior. LS-

DYNA (2013) simulates the response of the defined model by conducting a highly 

nonlinear, transient dynamic finite element analysis using explicit time integration. The 

analysis is nonlinear in that the rivet experiences severe deformations prior to rupture, the 

rivet material properties exhibit nonlinear response, and the contact between parts (the 

rivet(s) and the plates) changes over time. The analyses conducted in Chapter 4 of this 
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dissertation are of transient dynamic models in which the plates are pulled in tension and 

rivet(s) fracture in shear over a matter of milliseconds. Thus, inertial forces become 

extremely important for this type of analysis. 

 

3.5 3-D FINITE ELEMENTS 

 

One of the useful characteristics of finite elements is that there are no geometric 

restrictions on the systems or structures that can be modeled. The models created within 

LS-DYNA (2013) are limited only by the expertise of the user. Each finite element 

analysis program has its own element library with a variety of user-defined elements that 

can be selected. LS-DYNA’s (2013) library includes beams, discrete elements, lumped 

inertias and masses, accelerometers, sensors, seatbelts, shells, solids, and thick shells. The 

two predominant element types for blast and impact simulations are shells and solids. 

Shells are typically used to model parts that have in-plane dimensions that are much 

greater than the through-thickness direction, whereas solids are more general and can be 

used to represent a variety of parts. With such a powerful tool available for this 

research—and with the intent of this research to serve as a building block for future blast 

modeling—solid elements were used to model the rivets and plates. The advantages to 

solid elements are that they are three-dimensional finite elements that can model solid 

bodies and structures without geometric simplifications. The solid elements can have any 

arbitrary shape; thus, the assembled finite element mesh visually approximates the 
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physical system. With a three-dimensional solid element, the user can input force vectors 

in any arbitrary direction, providing results that include six potential stress components 

(three normal and three shear) and corresponding deformations and displacements in all 

three dimensions. 

The 4-node and 10-node tetrahedral and 8-node hexahedra are typical solid 

elements used in three-dimensional analyses. Each of these solid elements is shown in 

Fig. 3-9, and each has their own characteristics with respect to nodes, surfaces, and 

degrees-of-freedom. For example, the 4-node tetrahedron element has four nodes and 

four surfaces per element. Because each element has three degrees of freedom (u, v, and 

w), there are a total of 12 degrees-of-freedom for the 4-node tetrahedron element. 

Meanwhile, the 8-node hexahedral element predominately used in this research has eight 

nodes, six faces, and 12 sides per element. Literature revealed that the 8-node hexahedra 

elements were easier to visualize than the tetrahedron elements, are computationally more 

efficient than tetrahedron elements, and have proven to provide more accurate results 

than the other element types (Erhart, 2011). More specifically, tetrahedron elements 

behave poorly in cases where elements are loaded in shear, while hexahedron elements 

with adequate discretization refinement approximate analytical solutions (Erhart, 2011).  
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Fig. 3-9: Examples of Solid Elements 

 

After choosing the 8-node hexahedra elements, decisions regarding element 

formulation were required. This decision is critical to the user as it impacts the accuracy 

of the results and the cost required to analyze the model under consideration. Stresses and 

strains are calculated at each integration point, and displacements are calculated at each 

node. Options considered for this research within LS-DYNA (2013) included ELFORM 3 

(fully integrated solid elements), ELFORM 2 (partially integrated solid elements), and 

ELFORM 1 (under-integrated constant stress elements). Under-integrated elements 

describe an element formulation in which stresses and strains are only calculated at the 

mid-point of each element, as shown in Fig. 3-10. The full integration and reduced 

integration options are typically two to four times more costly than the under-integrated 

element formulation, because they have to calculate the stiffness and mass at several 

more sampling (or integration) points within an element. When attempting to analyze 

relatively slower quasi-static models, using the fully- or partially-integrated elements for 

a simple model took several weeks to run. Comparatively, the quasi-static analysis with 

the under-integrated element formulation ranged between an hour and two days to run, 

4-node Tetrahedral 10-node Tetrahedral 8-node Hexahedral 
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depending on the complexity of the rivet configuration. Not only is the under-integrated 

element formulation considerably more efficient than the other considered element 

formulations, but it has been shown to be more accurate in situations with significant 

deformations (LS-DYNA Theory Manual, 2006). Thus, while the accuracy of integration 

is increased with additional integration points, the finite elements results are not 

necessarily improved. 

 

 

Fig. 3-10: Under-Integrated vs. Partially-Integrated Element Formulations (from Erhart, 

2011) 

 

Despite the potential for improved performance, one of the issues with the under-

integrated element formulation is the possibility of spurious deformation modes of the 

finite element mesh. An example of this phenomenon is shown in Fig. 3-11. In a situation 

where this element is subjected to pure bending, neither of the element characteristic 

lengths (a to b and c to d) change in length. The under-integrated stiffness matrix for this 

element only contains information at the center of the element (in this example, where the 

ELFORM 1 ELFORM 2 
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two dashed lines meet). The result is a zero-energy mode. No strain energy is generated, 

and all the components of stress at the single integration point are zero. The element has 

no stiffness in this mode and is unable to resist this type of deformation. An accumulation 

of this energy mode throughout a mesh may provide inaccurate results to the user. 

 

 

Fig. 3-11: Spurious Deformation for Under-Integrated Element 

 

LS-DYNA (2013) provides the user with a warning of spurious deformations by 

providing the histories of the hourglass energy, defined as the energy generated by 

unrealistic element behavior in which no stresses or strains are generated in those 

elements. As a general rule, the hourglass energy should be less than 5% - 10% of the 

internal energy. Physically, hourglass issues are evident by the zig-zag appearance of 

element shapes, as shown in Fig. 3-12. 

 

a 

b 

c d 

a 

b 

c d 
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Fig. 3-12: Example of Hourglassing (from 

http://www.dynaexamples.com/process_simulation/hourglass) 

 

LS-DYNA (2013) offers 12 different hourglass modes to help control spurious 

deformations for solid elements. These algorithms provide forces, or hourglass energy, to 

resist hourglass modes and take away from the physical energy of the system. A simple 

example of this is shown in Fig. 3-13 where internal nodal forces are introduced to 

counteract the hourglass mode issue demonstrated in Fig. 3-15. LS-DYNA (2013) offers 

several hourglass algorithms. The viscous forms of hourglass control (HG1, HG2, and 

HG3) are designed for analyses involving high strain rates as the algorithm generates 

hourglass forces proportional to the components of nodal velocity contributing to the 

hourglass modes (Forsberg, 2013). The stiffness forms of hourglass control (HG4 and 

HG5) are typically preferred for slower strain rate problems; they generate hourglass 

forces proportional the components of nodal displacement contributing to the hourglass 

modes (Forsberg, 2013).  
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Fig. 3-13: Illustration of Internal Nodal Forces Counteracting Hourglassing 

 

The other type of hourglass control considered for this research was the 

Belytschko-Bindeman (1993) formulation, known as HG6 within LS-DYNA (2013). This 

formulation dictates that the material properties of each element are used to calculate an 

assumed stress field from an assumed strain field. This calculated stress field is integrated 

over the element domain using a closed form to develop the hourglass forces required for 

fully-integrated element behavior (LSTC, 2012). After noticing little difference in the 

computed results among the different considered hourglass algorithms, a decision was 

finally made to use the Belytschko-Bindeman (1993) formulation for this research for 

two reasons. First, within LS-DYNA (2013), this hourglass type is required for implicit 

analyses. When replicating static uniaxial tension tests within LS-DYNA (2013) to 

develop a material model for the rivets, an implicit analysis was conducted because the 

number of steps required to conduct this test explicitly would be excessive and have a 

significant computational cost. The Belytschko-Bindeman (1993) is also permitted for 

explicit analyses, which were required for the dynamic testing of the rivets to capture the 

a 

b 

c d 
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rate-dependent aspects of the solution. With a desire to maintain as much consistency as 

possible among LS-DYNA (2013) analyses, it was deemed suitable for this research 

effort to select a single hourglass formulation. Secondly, LS-DYNA literature (LSTC, 

2012) advertises that the Belytschko-Bindeman (1993) algorithm is typically more 

effective than both the viscous hourglass controls and the stiffness hourglass controls 

when dealing with elements that become significantly skewed. With elements in the shaft 

of the rivet experiencing significant deformation under high shear stress, choosing the 

Belytschko-Bindeman (1993) proved appropriate for this research.  

LS-DYNA (2013) warns the user that the Belytschko-Bindeman (1993) 

formulation may artificially stiffen the results and that a reduced hourglass coefficient 

may be required to minimize this stiffening effect. This research described in this 

dissertation used an hourglass coefficient of 0.01, which is a reduction from the default 

value of 0.1 but is within the LS-DYNA (2013) recommended reduced range of 0.001 to 

0.01 for solid elements. Throughout this research, checks were made to ensure 

meaningful hourglass issues were not apparent visually (i.e., no zig zag distorted 

deformations) and numerically (hourglass energy was less than 10% of the internal 

energy for both the whole system via the glstat file (*DATABASE_GLSTAT) and each 

part via the matsum file (*DATABASE_MATSUM)) within LS-DYNA (2013). 

Another technique used to avoid element distortion was the use of invariant node 

numbering. Rivets under high shear to the point of fracture might lead to numerical issues 

where the distortion of elements change the element coordinate system and subsequently 

adversely impact element connectivity. By turning on invariant node numbering within 
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LS-DYNA (2013) using *CONTROL_ACCURACY (INN=3 for solid elements), 

element rotation calculations were independent of the order of the nodes, and the results 

were insensitive to the element connectivity. While early iterations that were run prior to 

turning on invariant node numbering admittedly provided similar results, turning on the 

invariant node numbering was highly recommended by LS-DYNA (2013) in modeling 

problems with large shear forces (Forsberg, 2013).   

 

3.6 BOUNDARY CONDITIONS AND LOADING 

 

Another powerful aspect of finite element modeling is that a wide range of 

loadings and boundary conditions can be specified. Any concentrated or distributed force 

can be applied to one area of a body while another part of a body can be supported. With 

the decision to choose solid elements (as discussed in Chapter 3.5 above), loadings and 

boundary conditions are treated more realistically because they are applied on a three-

dimensional model in the same manner without dimensional simplifications. 

Several different boundary condition configurations and loadings were used 

within LS-DYNA (2013) to try to replicate the shear testing conducted by Chris Rabalais 

(2015) using the 200-kip dynamic loader. Care is required in dictating these support 

conditions within LS-DYNA (2013). Even the smallest changes that appear to be trivial 

have the potential to have a major impact on the computed results. Thus the details and 

intent of the laboratory setup were critical in determining modeled boundary conditions. 



 112 

In the laboratory testing, one end of a riveted connection was attached to a 

reaction structure (the top of the loader) and was held in such a way that it was unable to 

move. The other end of the riveted connection was attached to a piston. The pressure 

needed to hold one end of the riveted connection in place and to move the other end of 

the riveted connection was provided from a compressible fluid. This piston moved 

downward at a rate of speed that depended upon how pressure was released through 

different sized orifices, ranging from 4.5-in. diameter (high loading rate) to 0.0625-in. 

diameter (quasi-static loading rate). 

The gripping mechanism used to attach each end of the loader is shown in Fig. 3-

14. The grips were designed to minimize slip and ensure failure occurred in the riveted 

connection. Each end of the grips consisted of six A490 bolts to tighten SAE 4140 steel 

plates to the riveted lap splice connection and six A490 bolts to attach the SAE 4140 steel 

plates to a main “T” grip that was shimmed and gripped into the loader. 
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Fig. 3-14: Gripping Mechanism Assembly (from Rabalais, 2015) 
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While not impossible, modeling the exact gripping mechanism assembly with the 

dynamic loader system was unnecessary to meet the objectives of this research. As a 

result, simplified models were used to replicate the testing in such a way as to obtain 

timely yet useful results. The model created in LS-DYNA (2013) simplified the gripping 

mechanism system at the plate end that was stationary in the dynamic loader by applying 

a fixed boundary condition at every node on that end of the plate. Thus, all displacements 

in three-dimensional space were prohibited from moving (DOFX, DOFY, DOFZ within 

LS-DYNA (2013) under *BOUNDARY_SPC_SET). Similarly, the gripping mechanism 

system and piston that pulled down on the other end of the riveted plate was simplified in 

LS-DYNA (2013) by applying a displacement-controlled prescribed motion of that 

moving end for each analysis. A comparison of the model to the test setup is illustrated in 

Fig. 3-15. 
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Fig. 3-15: Model Setup (top) and Laboratory Setup (bottom) (photo from Rabalais, 2015) 
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One challenge with finite element modeling is that boundary conditions are not 

always perfectly clear. Concern existed that this boundary condition may be insufficient 

to limit movement of the plates in such a way that bending occurs instead of axial 

tension. With this uncertainty, an attempt was made to obtain a bounded solution by 

conducting a second analysis with modified boundary conditions (as shown on right of 

Fig. 3-16). This subsequent analysis included out-of-plane boundary conditions on the 

outside of each plate to restrict plate bending (DOFZ within LS-DYNA (2013)). An 

illustration of each of these analyses on plates in single shear under Configuration 1 is 

shown in Fig. 3-16. After observing negligible differences in the results, subsequent 

analyses were conducted with boundary conditions only on a plate end (DOFX, DOFY, 

DOFZ on end of one plate as shown on left of Fig. 3-16).  

 

 

Fig. 3-16: Boundary Condition Considerations for Axial Tension in Plates 

 

Initial Analysis 
Subsequent Analysis with 

Additional Boundary Conditions 

to Prevent Plate Bending 
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Similar evaluations were conducted when modeling double-shear configurations. 

It was initially unclear whether results would differ within LS-DYNA (2013) if different 

ends were fixed and pulled. Recall that in the double-shear tests, one end would have two 

0.5-in. plates supported or displaced while the other end would have one 1-in. plate 

supported or displaced. An illustration of these tests is shown in Fig 3-17. Again, 

negligible differences in the results eliminated the need for further consideration of this 

concern. 

 

 

Fig. 3-17: Boundary Condition Considerations in Double Shear 

 

 For initial model validation under quasi-static loading, several analyses were 

conducted to get the rivet to fail in a manner that accurately represented the experimental 

tests (Rabalais, 2015). This was a challenge because the experimental loading rates were 

not recorded and differed for each configuration. Experimentally, failure for each rivet 

under quasi-static loading occurred between 500 to 4000 milliseconds (Rabalais, 2015). 

Fixed End 

Moving End Fixed End 

Moving End 
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Table 3-1 shows the displacement-controlled prescribed motion applied to each quasi-

static test conducted for each configuration in single- and double-shear. This 

displacement was applied at one end of one plate along one axis (x-translational DOF in 

LS-DYNA (2013) for each model). In some of the more complex cases involving double 

shear and/or multiple rivets, a slower prescribed motion was used after the initial run 

indicted a response that reached peak strength faster than what was observed in testing. 

As shown in Appendix A, the displacement-controlled prescribed motion applied within 

LS-DYNA (2013) produced a shear failure within the tested time frame observed in 

experimental testing. 

 

Table 3-1: Prescribed Motion Curve Input for Quasi-Static Analyses by Configuration 

Configuration # and Description 
Point 1 

(Time in seconds, 

Displacement in inches) 

Point 2 
(Time in seconds, 

Displacement in inches) 

1: One rivet, single shear (0, 0) (2, 0.1) 

1: One rivet, double shear (0, 0) (2, 0.1) 

2: Two rivets horizontal, single shear (0, 0) (2, 0.1) 

2: Two rivets horizontal, double shear (0, 0) (4, 0.1) 

3: Two rivets vertical, single shear (0, 0) (3, 0.1) 

3: Two rivets vertical, single shear (0, 0) (3, 0.15) 

4: Four rivets square, single shear (0, 0) (6, 0.2) 

4. Four rivets square, double shear (0,0) (7, 0.2) 

5. Four rivets staggered, single shear (0,0) (5, 0.15) 

5. Four rivets staggered, doubled shear (0,0) (5, 0.15) 
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Contact within a finite element program allows unmerged elements to interact 

with each other via impact, sliding, and bearing. In analyses dealing with high strain rates 

and blast, deformations can be significant. How and where this contact takes place can be 

extremely difficult to determine. As a result, analyses dealing with high strain rates and 

blast typically use an automatic contact option. The automatic contact options within LS-

DYNA (2013) are non-oriented and detect penetration from all directions. Described as 

the most efficient and reliable contact option within LS-DYNA (2013), 

*CONTACT_AUTOMATIC_SINGLE_SURFACE was used for all analyses (LS-DYNA 

Support, 2014). Though LS-DYNA (2013) allows the user to define any number of 

contacts in an analyses, just one was suitable for this research. Contact was defined by 

identifying part sets that included the plates and the rivets. During each time step, a 

search was made to check for potential penetration. A soft constraint-based approach was 

used (SOFT=1) with the automatic single surface contact option. This was not only 

recommended for most explicit impact analyses, but it was also recommended in 

situations when dissimilar materials (in this case the A502 Grade 2 rivets with A36 steel) 

come into contact (LS-DYNA Support, 2014).  

In constructing each model, care was taken to place each rivet symmetrically 

within each plate hole. However, this manual procedure was not without the possibility of 

human error. LS-DYNA (2013) offers an option within their automatic contacts to offset 

initial penetration issues by selecting IGNORE=1 via *CONTACT. Another option 

within LS-DYNA (2013) is for the user to input values for static (FS) and dynamic (FD) 

friction parameters. These parameters impact sliding behavior. Omitting these values tells 
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the software to assume friction-less behavior. Defining both values tells LS-DYNA 

(2013) to consider the relative velocity with which the parts are sliding. There are a wide 

range of values recommended within different reference manuals, papers, and 

engineering forums for steel, often dependent on the surface conditions. The Civil 

Engineering Reference Manual (Lindeburg, 2003) recommends values between 0.08 and 

0.42 for steel-on-steel contact for FD and between 0.10 and 0.78 for FS. Several 

combinations of coefficients were used in preliminary analyses and done so with FD less 

than FS because it takes more force to accelerate a mass from rest than to keep it moving. 

However, after no noticeable differences in the Load versus Time output and in an 

attempt to avoid the creation of additional noise (unwanted, random response 

excitations), FS and FD were set to equal at 0.4 for all analyses (dynasupport.com, 2016). 

Another noise related decision within contact was made with the viscous contact damping 

(VDC) parameter. Because contact oscillations between the plates and the rivet(s) can 

lead to unwanted noise in the response, the VDC parameter within *CONTACT 

improves model stability and reduces noise. Based on the LS-DYNA (2013) guidelines 

for metals in contact, a value of 20 percent (input as 20, not 0.2 within LS-DYNA) was 

used throughout all analyses in order to smooth out response (LS-DYNA Support, 2014).   
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3.7 MATERIAL MODEL DEVELOPMENT 

 

As finite element modeling software has directed significant effort at 

computations for high-velocity loading problems, the limitations to achieving similar 

results to experimental testing and replication of real-world incidents often lies in the 

ability of the user to adequately define material characteristics (Johnson and Cook, 1983). 

LS-DYNA (2013) has over 130 material models available to simulate a wide range of 

engineering materials. With a large variety of models to choose from, the decision was 

made to start off with MAT24, a piecewise-linear plasticity model, because it is widely 

considered the most popular material model for modelling rate-dependent phenomena 

(Lobo, 2016). MAT24 consists of an elastic-plastic curve that is defined by the user. 

Failure occurs when the material reaches a maximum strain from the elastic-plastic curve. 

A great deal of effort was used to accurately capture the material model. First, a 

thorough search was made to see if any literature existed that captured modeling A502 

Grade 2 rivets within finite element software. This search did not identify any available 

information. However, Dr. Paul Allison, professor from the University of Alabama, 

conducted three ASTM E8 (2015) milled rivet tension tests on behalf of Chris Rabalais 

(2015). These tests presented a challenge due to the extremely small size of the 

specimens. The diameter of the coupons were 0.113385-in.; thus, the testing was 

conducted in accordance with Specimen 5 from the “For Test Specimens with Gauge 

Length Four Times the Diameter”, as shown in Table 3-2 (ASTM E8, 2015). All three 

rivets tested by Dr. Allison produced virtually identical stress-versus-strain curves. 
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Furthermore, as shown in Fig. 3-18, the average undriven ultimate rivet tensile strength 

was 77 ksi. This value was consistent with the Guide to Design Criteria for Bolted and 

Riveted Joints, which estimated the ultimate tensile strength of an undriven A502 Grade 2 

rivet to be approximately 80 ksi (Kulak et al., 1987). As mentioned in Chapter 2, the 

riveting process has shown to increase the ultimate tensile strength and subsequently the 

shear strength of the rivets by 10 to 20 percent. Thus, the probable tensile strength of the 

rivets used in Chris Rabalais’ research (2015) ranged from 85 to 92 ksi.   

 

Table 3-2: ASTM E8 Dimension Requirements (from ASTM E8, 2015) 

Gage Length (in.) 0.450 +/- 0.005 

Diameter (in.) 0.113 +/- 0.002 

Radius of fillet, min (in.) 0.094 

Length of reduced section min (in.) 0.625 
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Fig. 3-18: Stress vs. Strain Data for Undriven A502 Grade 2 Rivet Material (data 

provided by Allison, 2015) 

 

Attempts were made to mimic this tension test as closely as possible under the 

anticipation that matching the stress-strain results from laboratory testing would provide 

the details required for the rivet material model. The rivet coupon was created using 

AutoCAD Civil 3D (2013), saved as an igs file, and imported into LS-PrePost 4.1 (2014). 

A comparison of the meshed rivet tested in LS-DYNA (2013) with the experimentally 

tested rivet is shown in Fig. 3-19. 
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Fig. 3-19: Tested Rivet Comparison with LS-DYNA (2013) Analysis (rivet photo 

provided by Allison, 2015) 

 

 

The MAT24 model within LS-DYNA (2013) offers the user a total of 8 stress and 

strain values to define the behavior of the material being modeled. When entering data 

into LS-DYNA (2013), the stress and strain values must represent true stress and true 

strain values. The data provided from the ASTM E8 (2015) test presented back in Fig. 3-

22, however, was in terms of engineering stress and engineering strain. Engineering 

stress and engineering strain are determined from the measured load and deflection, 

typically from load cells and an extensometer. The values are calculated using the 

original coupon’s cross-sectional area, oA , and length, oL , as shown in Eq. (3-1). 
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E

o

P
σ

A
      (3-1) (a) 

 

where: Eσ  = engineering stress, 

 P = measured load in tension,   

oA  = original coupon cross-sectional area, and 

 

E

oL


      (3-1) (b) 

E  = engineering strain, 

  = measured change in length, and 

oL  = original coupon (extensometer) length. 

  

True stress versus true strain curves do not use original area and length values. Instead, 

true stress and true strain curves give a more direct measure of the specimen’s response 

by taking an increment of strain to be the incremental increase of displacement divided 

by the length prior to the incremental change. As this length increases, the cross-sectional 

area of the coupon decreases. This incremental change in area is used in lieu of the 

original area. Equations to derive the true stress and true strain values from the 

engineering stress and strain values are shown in Eq. (3-2). 
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where: 
T

σ  = true stress, and 

 

d
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L
   (3-2) (b) 

 

where:  T  = true strain. 

 

As is the case with steel, the early portion of the engineering stress strain curve for A502 

Grade 2 rivets exhibits linear behavior. This behavior, known as Hooke’s Law, is 

measured by taking the engineering stress divided by the engineering strain up to the 

proportional limit to compute Young’s Modulus, which is typically estimated to be 

29,000 ksi for steel. This value was used extensively throughout this research for both the 

A502 Grade 2 rivets and the A36 plates. The relationship between true and engineering 

stress and strain works well within this region. In fact, this relationship is valid up to the 

point where a specimen begins to neck. However, once necking begins, strain is no 

longer linear and uniform along the length of the specimen as essentially all deformation 

takes place within the necked region. For the eight stress and strain points within LS-

DYNA’s (2013) MAT24, the first strain value must be defined as zero to use the input for 

Young’s Modulus (29,000 ksi). 
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 At the onset of necking, a trial-and-error process was used to create the post-

necking portion of the true stress versus true strain curve. After making educated guesses 

on the true stress and true strain values after necking, an LS-DYNA (2013) analysis 

simulation was executed. Following the completion of an analysis, the d3plot file was 

opened within LS-DYNA (2013), and engineering stress versus engineering strain data 

were plotted. This simulated engineering stress versus engineering strain curve was 

compared with the experimental engineering stress versus engineering strain curves 

provided from Dr. Allison (2015). The input post-necking stress versus strain values that 

provided an engineering stress versus engineering strain curve closest to the experimental 

values was considered the best approximation of the material’s actual stress versus strain 

relationship. The input values for effective plastic strain, EPS, in units of in./in. and 

corresponding yield stress, ES, in units of ksi that most closely matched the experimental 

behavior is shown in Table 3-3. A comparison of the true stress versus true strain and the 

engineering stress versus engineering strain curves is shown in Fig. 3-20. As opposed to 

the engineering stress versus engineering strain curve, the stress magnitude for the true 

stress versus true strain curve continues to rise until failure, when the necking region 

becomes unstable, reaches an ultimate strain, and fractures. 

 

Table 3-3: A502 Grade 2 Stress versus Strain Input for MAT24 in LS-DYNA (2013) 

EPS1 EPS2 EPS3 EPS4 EPS5 EPS6 EPS7 EPS8 

0.0 0.01 0.02 0.04 0.06 0.3 0.55 0.85 

ES1 ES2 ES3 ES4 ES5 ES6 ES7 ES8 

68.0 72.0 76.0 79.5 81.0 86.0 86.25 86.5 
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Fig. 3-20: True Stress-Strain versus Engineering Stress-Strain 

 

At this point in the simulation, and as shown in Fig. 3-20, the simulated 

engineering stress versus engineering strain curve was not acceptably accurate. Thus, an 

attempt was made to refine the mesh to a smaller size in order to increase accuracy. Mesh 

convergence was conducted by plotting simulated engineering stress versus engineering 

strain plots using the input from Table 3-3 for each mesh size and comparing it against 

the experimental engineering stress versus engineering strain plots. Several simulations 

were run to achieve convergence. Local mesh refinement in the middle third of the rivet 

coupon was considered; however, with the desire to use the same mesh density range for 
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the rivet models, the decision was made to maintain a consistent mesh density throughout 

the entire coupon. This decision also prevented potential issues with misrepresented 

geometry and unsuitable mesh transitions which could adversely affect accuracy. Fig. 3-

21 shows the engineering stress versus engineering strain results for four of the mesh 

sizes analyzed. As a point of reference, the coarsest mesh, with 0.096-in. between nodes, 

was the same mesh size used to develop Fig. 3-24 (LS-DYNA Engineering Stress Strain 

Output). As shown in Fig. 3-21, as the mesh size decreased, the accuracy of the simulated 

engineering stress versus engineering strain curve improved. At a mesh size of 0.0037-in. 

between nodes, the simulated engineering stress versus engineering strain curve 

approximated the experimental tension test results.   
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Fig. 3-21: Results of Mesh Sensitivity Analysis for Tension Testing 

 

 With confidence in an accurate material model for tension, research efforts shifted 

into creating the quasi-static rivet shear test. To replicate the A36 steel plates with 

0.5625-in. holes for the various configurations, the plate was created within AutoCAD 

Civil 3D (2013). To get the imported igs file to mesh within LS-PrePost (2014), the plate 

was first quartered within AutoCAD Civil 3D (2013). The decision was made to 

automesh the quartered plate. A mesh sensitivity study was not done on the A36 plate 

because the plate was experimentally designed to allow the rivets to fail and was not a 

focal point of this research. Once the quartered plate was automeshed, the quartered plate 

was duplicated three times and moved into place until nodes with shared surfaces were 
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close enough to merge. An illustration of this process is shown in Fig. 3-22. The created 

plate was assigned ELFORM 1 (under-integrated constant stress) and HOURGLASS 6 

formulation (Belytschko-Bindeman, 1993) as described in Section 3.5. The material 

model used for the plates was the MAT24 piecewise-linear plasticity model. Instead of 

assigning eight true stress versus true strain points as was done for the rivet, a simple 

input using expected material strengths (modulus of elasticity, yield stress, tangent 

modulus, and failure strain) was used as shown in Table 3-4. Again, with the rivets and 

not the plates serving as the focus of the research, extensive effort for precise plate 

material properties was unessential.  

 

Table 3-4: A36 Plate Material Properties for LS-DYNA (2013) Analysis 

E (ksi) SIGY (ksi) ETAN (ksi) FAIL 

29000 47.2 75.0 0.3 
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Fig. 3-22: Illustration of Plate Creation for LS-DYNA (2013) Analysis 

 

  Because the tension coupon model of the rivet material was already subjected to 

the convergence study, it was considered logical that the corresponding shear rivet model 

would have a nearly identical level of accuracy given that the models were not 

significantly different. As a result, the initial models for shear consisted of an analysis of 

Configuration 1 (one single rivet) in single shear using a rivet model with a mesh size of 

0.0037-in. This mesh size corresponded with the mesh size that best approximated the 
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engineering stress versus engineering strain curve obtained from experimental testing. 

This initial analysis did not work, however, as the mesh size in combination with the size 

of the rivet required too much computer memory. As a result, coarser meshes that were 

considered relatively accurate in the tension coupon analyses were considered, leading to 

a subsequent mesh sensitivity study for rivets in shear. A sample of this study is shown in 

Fig. 3-23. In each case, a successive level of mesh refinement involved splitting the 

elements of the previous model in all directions. In comparing the meshes from Fig. 3-23 

with the mesh size samples from the coupon tension tests from Fig. 3-21, Mesh A 

corresponds with the Coarsest Mesh results, Mesh B corresponds with an analysis 

between the Coarsest Mesh and the Coarse Mesh, Mesh C corresponds with the Coarse 

Mesh results, and Mesh D corresponds with the Fine Mesh results.  

 

 

Fig. 3-23: Sample of Mesh Sensitivity of Rivets in Shear 
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Unlike the plates and the coupon of rivet material created in AutoCAD Civil 3D 

(2013) and imported into LS-Prepost (2014), the rivets were created using the block 

mesher provided within LS-Prepost (2014). The rivets were generated by way of butterfly 

blocks, a three-dimensional automatic solid block mesh in LS-Prepost (2014) illustrated 

in Fig. 3-24. For rivets in single shear, a radius of 0.28125-in. was input to represent the 

rivet completely filling the hole. For subsequent testing involving double shear, a reduced 

radius of 0.2725-in. was used to replicate the rivet material not completely filling the 

hole. The radius used for these analyses were consistent with the findings of Chris 

Rabalais (2015). Single-shear rivets had a length of 1.6-in., and the double-shear rivets 

had a length of 2.6-in. The center 1-in. or 2-in. of the rivet shaft corresponded to the two 

0.5-in. thick plates used in single-shear testing and the two 0.5-in. thick and one 1-in. 

thick plate used in double-shear testing, respectively. The remaining 0.6-in. was used to 

simulate a head on each end of the rivet. The additional input used to create the rivets in 

single shear using the block mesher butterfly block method is shown in Table 3-5. The 

terms Num Elem R and Num Elem L within the table represent the number of elements in 

the R and L directions of the cylinder as shown in Fig. 3-24. 

Table 3-5: Butterfly Block Input for Rivet Creation within LS-DYNA (2013) 

 

Mesh 
A  

(0.073–0.110 in.) 
B  

(0.023–0.044 in.) 
C  

(0.016 – 0.032 in.) 
D  

(0.016 – 0.008 in.) 

Density 4 10 14 

 
28 

Num Elem R: 3 10 14 28 

Num Elem L: 16 48 80 160 



 135 

 

Fig. 3-24: Butterfly Block Creation Template (from LSTC, 2011) 

 

Results from this mesh sensitivity study, as summarized in Table 3-6, provided 

valuable information with respect to research going forward. First, the peak load results 

for each test were reasonable. For an average experimental tensile strength of 77 ksi, the 

expected shear strength is 0.75 times the tensile strength times the rivet area of 0.2485 

in2, or 14.35 kips. As shown in Fig. 3-25 and Table 3-6, the peak load for each mesh 

simulation was within 1 kip of the anticipated value and was well within the range of the 

experimental data, represented by curves RS1S1, RS1S2, RS1S3, and RS1S4. In fact, 

regardless of the mesh size, there was very little scatter in the simulated results with 

respect to shear strength, as the data varied by only 1.4 kips. As a point of comparison, 
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this difference in peak load between mesh sizes is a mere one-third of the range of the 

experimental data (16.7 kips maximum value and 12.6 kips minimum value).  

The significant difference in response based on mesh size was in the computed 

ductility. Recall in Fig. 3-21 during the rivet material coupon testing that mesh size 

played an insignificant role with respect to accuracy in ultimate tensile strength. 

Capturing the ultimate tensile strength was solely a function of accurate material model 

input. However, as the rivet material coupon’s mesh size decreased, the accuracy with 

respect to ductility improved significantly. This same pattern is demonstrated in Fig 3-25. 

With the coarser mesh sizes from Mesh A (0.073 in. – 0.110 in.) and Mesh B (0.023 in. – 

0.044 in.), the rivets demonstrated unrealistic ductility. In fact, for the duration of the 

quasi-static testing, the rivets never failed. With the finer mesh sizes of Mesh C (0.016 in. 

– 0.032 in.) and Mesh D (0.008 in. – 0.016 in.), however, the rivets demonstrated 

reasonable ductility consistent with the experimental results. 

Table 3-6: Mesh Sensitivity Results for Single Rivet in Single Shear 

 

 

Mesh A  
(0.073–0.110 in.) 

B  
(0.023–0.044 in.) 

C  
(0.016 – 0.032 in.) 

D  
(0.016 – 0.008 in.) 

Peak Load (kips) 15.3 14.3 14.1 13.9 

Fail Time (msec) No Fail No Fail 1700 1400 

Cost (min) 143 151 200 653 
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 The mesh sensitivity study not only showed important revelations with respect to 

ultimate shear strength and ductility, it also revealed critical information with respect to 

computational cost. As expected, the amount of time it took LS-DYNA (2013) to process 

each model was dependent on the mesh size of the rivet. The finest mesh size tested, 

Mesh D, took more than three times as long as the other mesh sizes; whereas, there was a 

relatively insignificant difference in cost for the other mesh sizes. With Mesh C and 

Mesh D providing similar results with respect to maximum shear stress and ductility, 

subsequent analyses were conducted with the finest mesh, Mesh D, for simple cases and 

with Mesh C for more complex scenarios. Worthy of note is that despite the fact that the 

mesh size considered suitable for material model validation via tension testing (0.0037-

in.) was smaller than the mesh size considered suitable for rivet shear simulations (0.016-

in.), the mesh-size-to-specimen-diameter ratios were similar (0.0037-in. mesh size / 

0.113-in. diameter, or 30.54 for the tension tests, and 0.016-in. mesh size / 0.5625-in 

diameter, or 35.2 for the shear tests). Thus, a minimum mesh-size-to-specimen-diameter 

ratio of 30 could be a potential valuable modeling recommendation or starting point for 

future researchers investigating rivets of different diameters. 

As mentioned in Section 2.4, the riveting process involves heating and cooling of 

the rivets and results in the development of residual forces which clamp plates together. 

Previous research by Wallaert and Fisher (1962), Higgins and Ruble (1955), Munse et al. 

(1955), Kaplan (1959), and Bendigo et al. (1963) concluded that the amount of pre-

tension in fasteners had no effect on their ultimate shear strength. The predominant 

conclusion of these researchers was that regardless of the number of fasteners, how they 
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were configured, the number of shear planes, or the strength of the fastener, the amount 

of tension developed during installation had an insignificant effect on the fastener’s 

ultimate shear strength. Thus, with all analyses focused on the behavior of rivets under 

shear loading, the decision was made to ignore the effects of thermally induced residual 

forces in the rivet. 

 

 

Fig. 3-25: Illustration of Mesh Sensitivity Study for One Rivet in Single Shear 
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3.8 QUASI-STATIC MODEL VALIDATION 

 

Preliminary analyses to investigate model development strategies, including mesh 

size sensitivity, led to the creation of a model capable of capturing all essential features of 

a rivet loaded in shear through plate bearing. To ensure this modeling approach would 

work under a variety of scenarios, models were developed to represent all of the quasi-

static testing results reported by Rabalais (2015). Thus, three-dimensional solid 

hexagonal elements were used to model rivets and plates for the five configurations 

described previously in this chapter (see Sections 3.4 – 3.7). Elements in the finite 

element mesh were assigned their respective piecewise-linear plasticity models and 

analyzed using an under-integrated constant stress formulation with the Belytschko-

Bindeman (1993) hourglassing control algorithm. The primary focus of the validation 

effort was on replicating the peak load (max shear stress) for each configuration. The 

secondary focus was to qualitatively compare the Load versus Time data from LS-DYNA 

(2013) simulations with the results from Rabalais (2015). Because the ductility of rivets 

during experimental testing was not explicitly measured with data limited to Load versus 

Time, qualitative comparison of the shape of the simulated Load versus Time curve with 

the experimentally produced curves for each configuration was the chosen methodology.  

The initial goal to replicate the results from LS-DYNA (2013) simulations with 

the results from the experimental testing was slightly modified. This modification was 

due to the observed scatter in the quasi-static test results. As shown in Table 3-7, the 
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range of observed maximum load relative to the measured capacity for each configuration 

varied from 10 percent to 28 percent.  

 

Table 3-7: Range of Experimental Results for Quasi-Static Testing (data extracted from 

Rabalais, 2015) 

Experimental Test Configuration 

Experimental 

Quasi-Static 

Load (kips) 

Minimum 

Experimental 

Quasi-Static 

Load (kips) 

Maximum 

% 

Difference 

Configuration 1: One Rivet,      

Single Shear 
12.6 16.7 24.8 

Configuration 1: One Rivet,     

Double Shear 
20.5 24.0 14.7 

Configuration 2: Two Rivets, 

Horizontal, Single Shear 
29.2 34.0 14.3 

Configuration 2: Two Rivets, 

Horizontal, Double Shear 
41.7 47.8 12.8 

Configuration 3: Two Rivets, 

Vertical, Single Shear 
23.8 33.0 28.1 

Configuration 3: Two Rivets, 

Vertical, Double Shear 
42.0 56.4 25.5 

Configuration 4: Four Rivets Square, 

Single Shear 
44.8 54.6 17.9 

Configuration 4: Four Rivets Square, 

Double Shear 
85.4 98.2 13.0 

Configuration 5: Four Rivets 

Staggered, Single Shear 
45.4 53.6 15.3 

Configuration 5: Four Rivets 

Staggered, Double Shear 
86.5 96.5 10.3 

 

 

Because of the scatter observed between the measured and predicted values, the 

goal of this research was slightly modified to provide a reasonable model for subsequent 
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analyses. Of particular importance was the fact that the material model used for analysis 

within LS-DYNA (2013) was based on a conservative estimate of the tensile strength of 

the rivet material. As indicated in in Section 3.7, this material model was developed 

based on the tension testing conducted by Dr. Paul Allison (2015) which consisted of 

A502 Grade 2 material before the riveting process occurred. Recall from Sections 2.4 and 

2.5 that the tensile strength and subsequent shear strength of rivet material typically 

increased by 10 to 20 percent after going through the riveting process. This variance was 

likely the largest contributor to the scatter observed in the experimental quasi-static 

testing results. Simulations were run with 10 percent and 20 percent enhancements to the 

LS-DYNA (2013) input and provided shear strengths that were up to 20 percent higher 

than simulations run with the material model developed in Section 3.7. While each 

simulation run still fell within the range of experimental results, the decision was made to 

utilize the developed material model from Section 3.7 in lieu of an arbitrarily enhanced 

model. This decision will provide the engineering community with an adequate model 

that provides a reasonable depiction of rivet behavior without artificially changing the 

verified material model. 

The results of each of the 10 quasi-static LS-DYNA (2013) simulations are shown 

in Appendix A and Table 3-8. In nine of the 10 quasi-static rivet model simulations, the 

LS-DYNA (2013) prediction for maximum shear strength fell within the range of the 

experimentally measured shear strength values. In the one simulation that fell outside the 

range of the experimentally measured shear strength values (two horizontal rivets in 

single shear), the model provided a reasonable representation of the rivet behavior by 
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underestimating capacity by only 12%. While already reasonable, a 10 to 20 percent 

increase in the material model input to account for the riveting process would have likely 

adjusted the simulation result to fall within the experimental range. In addition, as 

demonstrated in the load versus time curves from Appendix A, the results of each 

simulation revealed a reasonable comparison to the experimental results with respect to 

time to failure.   
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Table 3-8: Model Data versus Experimental Data for Quasi-Static Loading 

 

 

Test 

Configuration

Rivet Mesh Size:

C: (0.016 in. - 0.032 in.)

D: (0.008 in. - 0.016 in.)

Experimental 

Quasi-Static 

Load (kips) 

Minimum

LS-DYNA 

Quasi-Static 

Load (kips)

Experimental 

Quasi-Static 

Load (kips) 

Maximum

% Difference 

Outside of 

Range

1: One Rivet, 

Single Shear
D 12.6 12.8 16.7 In range

1: One Rivet, 

Double Shear
D 20.5 23.6 24.0 In range

2: Two Rivets 

Horizontal, 

Single Shear

D 29.2 25.7 34.0 12.0

2: Two Rivets 

Horizontal, 

Double Shear

D 41.7 47.0 47.8 In range

3: Two Rivets 

Vertical, 

Single Shear

D 23.8 27.9 33.0 In range

3: Two Rivets 

Vertical, 

Double Shear

D 42.0 53.8 56.4 In range

4: Four Rivets 

Square,

Single Shear

C 44.8 50.5 54.6 In range

4: Four Rivets 

Square, 

Double Shear

C 85.4 94.7 98.2 In range

5: Four Rivets 

Staggered, 

Single Shear

C 45.4 50.3 53.6 In range

5: Four Rivets 

Staggered, 

Double Shear

C 86.5 94.4 96.5 In range
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 A further look at the LS-DYNA (2013) analysis results revealed that both the 

ultimate shear strength and the ratio of ultimate-shear-strength-to-ultimate-tensile-

strength for each configuration were reasonable. Based on historical data collected and 

reported in the Guide to Design Criteria for Bolted and Riveted Connections (Kulak et 

al., 1987) and the ultimate tensile strength of the rivet coupon for this research, 

expectations were that the ultimate shear strength of the rivets would range between 53 

ksi to 66 ksi.  The shear load per plane demonstrated by the rivet and material model 

created from this research ranged from 50.4 ksi to 57.7 ksi. Any increase to the material 

model input to account for the riveting process would have likely fit the expected data 

even better. Furthermore, as mentioned in Section 2.5, the Guide to Design Criteria for 

Bolted and Riveted Connections (Kulak et al., 1987) revealed the average shear-to-tensile 

strength ratio for rivets varied from 0.67 to 0.83, with an average of 0.75. Table 3-9 

reveals that the ultimate-shear-strength-to-ultimate-tensile-strength ratio, ranging from 

0.65 to 0.75 from this LS-DYNA (2013) research, provided a reasonable response that 

was consistent with historical data. This percentage was calculated by comparing the 

shear load per plane from the LS-DYNA (2013) analysis results to the ultimate tensile 

strength obtained from the LS-DYNA (2013) coupon tests described in Section 3.7 (77 

ksi).  
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Table 3-9: Ultimate Shear Stress to Ultimate Tensile Stress LS-DYNA (2013) Results 

 

Test 

Configuration

Modeled Rivet 

Stress Area (in
2
)

LS-DYNA 

Quasi-Static 

Load (lbf)

Shear Load 

per Plane 

(ksi)

Percentage of 

Ultimate Shear 

Stress to 

Ultimate 

Tensile Stress

1: One Rivet, 

Single Shear
0.2485 12806 51.5 67%

1: One Rivet, 

Double Shear
0.2333 23615 50.6 66%

2: Two Rivets 

Horizontal, 

Single Shear

0.2485 25720 51.7 67%

2: Two Rivets 

Horizontal, 

Double Shear

0.2333 46997 50.4 65%

3: Two Rivets 

Vertical, 

Single Shear

0.2485 27875 56.1 73%

3: Two Rivets 

Vertical, 

Double Shear

0.2333 53848 57.7 75%

4: Four Rivets 

Square,

Single Shear

0.2485 50549 50.9 66%

4: Four Rivets 

Square, 

Double Shear

0.2333 94680 50.7 66%

5: Four Rivets 

Staggered, 

Single Shear

0.2485 50317 50.6 66%

5: Four Rivets 

Staggered, 

Double Shear

0.2333 94371 50.6 66%
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As a final but important aspect of validity, a close investigation of the three-

dimensional rivet models following the quasi-static simulations was conducted. As 

mentioned in Section 2.6, the fracture type and deformation changes significantly based 

on the loading type (shear, tension, or combination of both). Under pure shear 

deformation, as was the intent of the models for this research, necking should not occur. 

As illustrated in Fig. 3-26 (and similarly for each of the 10 quasi-static LS-DYNA (2013) 

simulations) no necking was evident in the fracture of the rivets, providing further 

confidence in the computational models developed for this research.  

 

 

Fig. 3-26: Illustration of Shear Fracture of LS-DYNA (2013) Model 

 

Rivet prior to loading. Rivet under high shear loading. Rivet shear fracture. 
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3.9 MODELING SUMMARY 

 

This chapter opened with a thorough justification of the need to understand the 

behavior of rivets in shear under high strain rates and the results of recent experimental 

testing done as initial phases towards that goal. The remainder of the chapter provided a 

thorough description of the computational modeling performed to simulate the response 

of experimental quasi-static testing of rivets in shear. The goal of the computational 

studies of quasi-static testing was to gain confidence in modeling procedures so that they 

can be further expanded and used to predict the response of rivets under high loading 

rates. High-rate analyses are discussed in Chapter 4. Prior to conducting this 

computational modeling, the three-dimensional testing of A502 Grade 2 rivets using 

finite element modeling was not readily available in literature. 

After conducting sensitivity studies of the rivet finite element model, the material 

model, mesh size, and other parameters noted throughout Chapter 3 were refined to 

provide a solution for future finite element model analyses. Appendix A includes the load 

versus time curves for all 5 configurations in single- and double-shear. The comparisons 

between the computational studies conducted for this dissertation with both the recent 

experimental testing by ERDC (Rabalais, 2015) and historical testing discussed 

throughout Chapter 2 is also included. Validation of the behavior of simple riveted 

connections under quasi-static shear loading was achieved, providing a contribution and 

baseline for additional studies considering other parameters. 
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Chapter 4:  Modeling Riveted Connections at High Strain Rates 

 

"Do not go where the path may lead, go instead where there is no path and leave a trail.” 

-Ralph Waldo Emerson, (1803-1882) 

 

4.1 AN INTRODUCTION 

 

As detailed in Chapter 3, numerous finite element analyses were performed to 

simulate the quasi-static response of simple riveted connections under shear loadings. 

Numerical models explicitly captured rivet response until failure, providing load versus 

time response data that was consistent with results from Rabalais (2015). With validation 

achieved in Chapter 3, the purpose of Chapter 4 is to detail the development and 

validation of a model to capture rivet behavior under high loading rates and the utilization 

of this model to investigate an untested problem. 

Background research conducted for this dissertation and discussed in Section 2.9 

narrowed focus for model selection to two constitutive models: Johnson-Cook (1985) and 

Cowper Symonds (1957). The Johnson-Cook (1985) model is available as a viable option 

within LS-DYNA (2013) as *MAT_TABULATED_JOHNSON_COOK (MAT 224) to 

capture rivet behavior under high loading rates. The model uses a table of curves that 

defines plastic failure strain as a function of triaxiality, strain rate, temperature, and 

element size. The development of plastic strain input curves required the execution of a 
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series of tension tests under various strain rates and temperatures. Despite a thorough 

search for this A502 Grade 2 steel information, the search did not identify any available 

information.  

When compared to the Johnson-Cook (1985) model, the Cowper Symonds (1957) 

constitutive model is simple in that it only involves scaling the flow of stress as described 

in Section 2.9. Furthermore, the use of the Cowper Symonds (1957) constitutive model 

provided a great advantage to this research effort in that it was easily incorporated into 

the piecewise-linear plasticity material model (MAT24) described in detail in Section 3.7 

and validated in Section 3.8 with rivet configurations under quasi-static loading. With 

these as clear advantages, the Cowper Symonds (1957) constitutive model was used 

throughout this research to capture the response of rivets under high loading rates. 

 Chapter 4 closes with the results of the investigation of an untested problem using 

validated material and constitutive models from this dissertation. While both quasi-static 

and dynamic experimental data existed with respect to simple riveted connections, there 

were no data with respect to the dynamic testing of long riveted connections. Thus, 

validated models developed as part of this dissertation were utilized to predict the 

behavior of long riveted connections, providing further valuable contributions to the 

engineering community. 
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4.2 COWPER SYMONDS AND LS-DYNA (2013) 

 

The second objective of this dissertation was to recommend a constitutive model 

that accurately predicted the behavior of rivets under high strain rates while using the 

laboratory testing by Rabalais (2015) as validation. To achieve this objective, the Cowper 

Symonds (1957) constitutive model was used within LS-DYNA (2013) to capture rivet 

behavior. As explained in Section 2.9, this constitutive model captured the differences 

between dynamic and static load effects through the strain rate (𝜀̇) and two empirical 

coefficients (C, q) that traditionally have been determined through experimental testing. 

The piecewise-linear plasticity material model (MAT24) within LS-DYNA (2013) allows 

a user to input a single quasi-static stress-strain curve as the basis for the empirical Cowper 

Symonds (1957) coefficients. With no need to input a separate true stress and true strain 

curve for each individual strain rate, the true stress and true strain values input into the 

piecewise-linear plasticity material model values for A502 Grade 2 rivet steel validated in 

Section 3.7 were suitable for use with this constitutive model. In the literature review 

performed for this research, there were no Cowper Symonds (1957) empirical coefficients 

for A502 Grade 2 rivets or any other steel rivet type reported. 

The primary focus for validating rivet behavior in shear under high loading rates 

was to replicate the peak load (ultimate shear strength) for each configuration. The 

secondary focus was to ensure each simulated load versus time curve was comparable to 

that from experimental testing (Rabalais, 2015). Because the ductility of the rivets during 

experimental testing was not explicitly measured, qualitative comparison of the shape of 
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the simulated load versus time curves with the experimentally produced curves for each 

configuration was required. For the dynamic loading validation, all simulated tests 

resulted in rivets failing in shear in under 7 milliseconds, consistent with the experimental 

testing (Rabalais, 2015).  

After conducting a detailed review of the measured test data, the initial goal to 

replicate the experimental results using LS-DYNA (2013) was slightly modified. This 

modification was due to the observed scatter in the experimental dynamic test results. As 

shown in Table 4-1, the range of observed maximum load for each of the five 

configurations in single- and double- shear varied from 10 percent to 54 percent. Given 

this scatter, the goal of this research was adjusted to provide a reasonable constitutive 

model for subsequent research.  
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Table 4-1: Range of Experimental Results for Dynamic Testing (data extracted from 

Rabalais, 2015) 

Experimental Test 

Configuration 

Experimental 

Dynamic Load 

(kips) Minimum 

Experimental 

Dynamic Load 

(kips) Maximum 

% 

Difference 

1: One Rivet, Single Shear 13.7 16.1 15.1 

1: One Rivet, Double Shear 31.0 44.7 30.7 

2: Two Rivets Horizontal,         

Single Shear 
39.4 79.6 50.4 

2: Two Rivets Horizontal,        

Double Shear 
55.9 85.5 34.7 

3: Two Rivets Vertical,    

Single Shear 
54.2 60.3 10.1 

3: Two Rivets Vertical, 

Double Shear 
79.8 132.6 39.9 

4: Four Rivets Square,     

Single Shear 
54.4 117.4 53.7 

4: Four Rivets Square,    

Double Shear 
102.9 147.8 30.4 

5: Four Rivets Staggered, 

Single Shear 
66.4 94.5 29.7 

5: Four Rivets Staggered, 

Double Shear 
147.6 213.2 30.8 

 

 

The starting point to determine the appropriate Cowper Symonds (1957) 

coefficients for A502 Grade 2 rivets involved a literature review of testing that generated 

empirical values of C and q for mild steel. In analyzing these values, shown in Table 2-12, 

it was evident that the empirical value q was relatively consistent for all mild steel dynamic 

testing, ranging from 2.2 to 5. Conversely, the empirical value C demonstrated a large 

variability, with values ranging from 40.4 to 6884. The large difference in Cowper 
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Symonds (1957) parameter values and the considerable scatter in published experimental 

data suggested there were several factors contributing to the behavior of mild steel under 

high strain rates. These factors included the amount of dynamic strain (elastic behavior 

versus plastic behavior), loading differences (tension versus compression versus shear), 

testing techniques, and material composition. With such a large number of contributing 

variables, a decision was made to compare results using extreme values for C and q within 

LS-DYNA (2013) with the experimental test results (Rabalais, 2015). Thus, LS-DYNA 

(2013) simulations were conducted for every experimentally tested rivet configuration 

using the published bounding empirical values of the original Cowper Symonds (1957) 

parameters (C = 40.4 s-1 and q = 5) and the Abramowicz and Jones (1986) parameters (C 

= 6884 s-1 and q = 3.91). The original Cowper Symonds (1957) parameters were derived 

from experimental testing involving mild steel loaded axially in tension, while the 

Abramowicz and Jones (1986) parameters were obtained from experiments involving the 

dynamic axial crushing of mild steel tubes.  

Of all the LS-DYNA (2013) parameters and settings validated and described in 

Chapter 3 of this dissertation, only the prescribed motion curve input required 

modification to impose dynamic loading. Similar to the quasi-static loading analysis, 

several simulations were required to get the rivet to fail in a dynamic nature similarly to 

the experimental work. This challenge was a function of undetermined experimental 

loading rates that were specimen dependent for the 200 kip loader and difficult to control 

(Rabalais, 2015). Experimentally, failure for each rivet under dynamic loading occurred 

in under 7 milliseconds. This time benchmark, in conjunction with the general shape of 
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the load versus time curves, served as the basis for qualitative acceptance. Table 4-2 

shows the displacement-controlled prescribed motion applied within LS-DYNA (2013). 

A trial-and-error approach was used to impose displacement. There was a requirement to 

assume a displacement history because there were no experimental values to compare 

against. As demonstrated throughout Appendix B, the displacement-controlled prescribed 

motion applied within LS-DYNA (2013) for all 10 simulations produced rivet shear 

failure that was similar to the tested time frame observed in experimental testing 

(Rabalais, 2015). 

 

Table 4-2: Prescribed Motion Curve Input for Dynamic Simulations 

Configuration # and Description 
Time          

(seconds) 

Imposed 

Displacement (in.) 

Applicable to all configurations in single- 

and double-shear. 

0 0 

0.0025 0.025 

0.005 0.1 

0.0075 0.225 

0.01 0.4 

 

4.3 LS-DYNA (2013) MODEL VALIDATION 

 

Despite serving as bounding values for published recommended Cowper 

Symonds (1957)  parameters, both the original Cowper Symonds (1957) parameters (C = 
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40.4 s-1 and q = 5) and the Abramowicz and Jones (1986) parameters (C = 6884 s-1 and q 

= 3.91) predicted reasonable rivet behavior under dynamic loads in LS-DYNA (2013). 

The results of the 10 dynamic LS-DYNA (2013) simulations for each set of Cowper 

Symonds (1957) parameters (C = 40.4 s-1 and q = 5 versus C = 6884 s-1 and q = 3.91) are 

shown in Appendix B and Table 4-3. Within Appendix B, dashed lines represent 

predicted rivet behavior from LS-DYNA (2013) using the original Cowper Symonds 

(1957) parameters (C = 40.4 s-1 and q = 5). Bold solid lines represent predicted rivet 

behavior from LS-DYNA (2013) using Abramowicz and Jones (1986) parameters (C = 

6884 s-1 and q = 3.91). Light (unbold) lines represent experimental test data (Rabalais, 

2015). Positive percentages from Table 4-3 indicate LS-DYNA (2013) models that 

provided an ultimate shear strength greater than the experimental test results (Rabalais, 

2015). Likewise, any negative percentages from Table 4-3 indicate the LS-DYNA (2013) 

model provided an ultimate shear strength less than the experimental test results 

(Rabalais, 2015).  

In comparing the LS-DYNA (2013) results with the experimental results, it is first 

important to point out two anomalies in the experimental output. While reporting a 

dynamic increase factor of approximately 1.72 for the rivets (Rabalais 2015), two of the 

configurations tested experimentally produced dynamic increase factors different than 

predicted. Likely contributors to these outlier experimental tests were internal flaws and 

the variable nature of dynamic loading (Rabalais e-mail, 2015). The redistribution of 

loads within materials can result in a premature failure when flaws exist because the 

loads will find the weakest point (Rabalais e-mail, 2015). For Configuration 1 (one rivet 
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in single shear), the anticipated ultimate shear strength based on a 1.72 dynamic increase 

factor ranged from 21.7 kips to 28.8 kips; however, the measured experimental values 

were much lower, ranging from 13.7 kips to 16.1 kips. When comparing the LS-DYNA 

(2013) results with the experimental and predicted results, as shown in Fig. 4-1, the 

originally published recommended parameters C = 40.4 s-1 and q = 5 demonstrated an 

ultimate shear strength that was within range of the predicted values. The parameters of C 

= 6884 s-1 and q = 3.91, however, provided an ultimate shear strength within LS-DYNA 

(2013) that was approximately 14 percent below the predicted ultimate shear strength.   

Similarly, for Configuration 3 (two rivets vertical, single shear) the anticipated 

ultimate shear strength ranged from 40.8 kips to 56.8 kips. Meanwhile, the actual 

experimental test values were higher, ranging from 54.2 kips to 60.3 kips. The LS-DYNA 

(2013) results for this configuration exhibited a similar trend. As shown in Fig. 4-2, the 

original Cowper Symonds (1957) recommended parameters input within LS-DYNA 

(2013) produced an ultimate shear stress within the projected range, while the 

Abramowicz and Jones (1986) parameters input within LS-DYNA (2013) produced an 

ultimate shear stress approximately 20 percent below the projected range. 
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Fig. 4-1: Configuration 1 Anomaly 
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Fig. 4-2: Configuration 3 Anomaly 

 

Regarding the remaining eight simulated dynamic rivet models, the original 

parameters (C = 40.4 s-1 and q = 5) for Cowper Symonds (1957) input within LS-DYNA 

(2013) predicted an ultimate shear strength within the range of the experimental ultimate 

shear strength 50 percent of the time. For the other four configurations, the original 

parameters input within LS-DYNA (2013) predicted an ultimate shear strength that was 

greater than the experimental results by as much as 23.5 percent. When using the 

parameters (C = 6884 s-1 and q = 3.91) recommended by Abramowicz and Jones (1986) 

within LS-DYNA (2013), the rivet configurations demonstrated an ultimate shear 

strength within the range of the experimental ultimate shear strength 37.5 percent of the 
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time. For the other five configurations, the Abramowicz and Jones (1986) parameters 

input within LS-DYNA (2013) predicted an ultimate shear strength that was less than the 

experimental results by as much as 16.3 percent. A summary of all the testing results are 

shown in Table 4-3 and Table 4-4, with the previously mentioned outlier experimental 

test results highlighted in yellow. 

For both sets of parameters, the Cowper Symonds (1957) constitutive model 

provided reasonable representations of rivet behavior. However, the parameters 

recommended by Cowper Symonds (C = 40.4 s-1 and q = 5) overestimated the strength of 

the rivets in several cases, which was unconservative given the already variable nature 

and behavior of rivets. Meanwhile, the Abramowicz and Jones (1986) parameters (C = 

6884 s-1 and q = 3.91) input within LS-DYNA (2013) provided a conservative estimate of 

the ultimate shear strength in cases where it was not within the range of the experimental 

values. Recall, also, that the material model for this research, described in Section 3.7, 

was based on the stress and strain relationship of the rivet steel prior to the riveting 

process. It is reasonable to expect a 10 to 20 percent increase in the material model input 

to account for the riveting process would adjust the Abramowicz and Jones (1986) 

simulation results to increase within the range of the experimental values. Nonetheless, 

an increase in the material model input would likely result in an even greater 

unconservative analyses in the case of the Cowper Symonds (1957) parameters. The load 

versus time curves from all of the LS-DYNA (2013) simulations demonstrated 

comparable shapes and end times to their experimental counterparts. The different 

Cowper Symonds (1957) parameters had little impact on the overall shape of the curves.   
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A subsequent analysis of the simulations examined the dynamic increase factor 

exhibited for each set of Cowper Symonds (1957) parameters. This analysis was done by 

comparing the LS-DYNA (2013) output from quasi-static simulations and comparing it 

to the LS-DYNA (2013) output from dynamic simulations. In doing so, it was determined 

that the original Cowper Symonds (1957) parameters (C = 40.4 s-1 and q = 5) 

overestimated the dynamic increase factor of the rivets. As demonstrated in Table 4-5, 

the average dynamic increase factor within LS-DYNA (2013) was 2.0. Meanwhile, the 

average dynamic increase factor using the Abramowicz and Jones (1986) parameters (C = 

6884 s-1 and q = 3.91) within LS-DYNA (2013) was 1.3. As a point of comparison, the 

dynamic increase factor from the experimental testing, calculated by dividing the mean of 

the dynamic tests by the mean of the static tests, was 1.7 (Rabalais, 2015). Thus, the 

extreme Cowper Symonds (1957) parameters (C = 40.4 s-1 and q = 5) and Abramowicz 

and Jones (1986) parameters (C = 6884 s-1 and q = 3.91) provided reasonable upper and 

lower bounds, respectively, of rivet response under high loading rates. 
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Table 4-3: Dynamic Loading Simulation Results using Cowper Symonds (1956) Original 

Parameters (C = 40.4 s-1 and q = 5) versus Experimental Results 

Test 

Configuration 

Rivet 

Mesh Size: 
C: (0.016 in. - 

0.032 in.) 
D: (0.008 in. - 

0.016 in.) 

Experimental 

Dynamic 

Load (kips) 

Minimum 

Experimental 

Dynamic 

Load (kips) 

Maximum 

LS-DYNA  

Dynamic 

Load (kips) 

C = 40.4 s-1, 

q = 5 

% 

Difference 

Outside of 

Range 

1: One Rivet, 

Single Shear 
D 13.7 16.1 27.3 40.8 

1: One Rivet, 

Double Shear 
D 31.0 44.7 47.4 5.6 

2: Two Rivets 

Horizontal, 

Single Shear 

D 39.4 79.6 50.2 In range 

2: Two Rivets 

Horizontal, 

Double Shear 

D 55.9 85.5 105.2 18.7 

3: Two Rivets 

Vertical,  

Single Shear 

D 54.2 60.3 49.7 -8.3 

3: Two Rivets 

Vertical, 

Double Shear 

D 79.8 132.6 103.0 In range 

4: Four Rivets 

Square, 

Single Shear 

C 54.4 117.4 106.9 In range 

4: Four Rivets 

Square, 

Double Shear 

C 102.9 147.8 193.1 23.4 

5: Four Rivets 

Staggered, 

Single Shear 

C 66.4 94.5 101.0 6.5 

5: Four Rivets 

Staggered, 

Double Shear 

C 147.6 213.2 176.6 In range 



 162 

Table 4-4: Dynamic Loading Simulation Results using Abramowicz and Jones (1986) 

Parameters (C = 6884 s-1 and q = 3.91) versus Experimental Results 

Test 

Configuration 

Rivet 

Mesh Size: 
C: (0.016 in. - 

0.032 in.) 

D: (0.008 in. - 

0.016 in.) 

Experimental 

Dynamic 

Load (kips) 

Minimum 

Experimental 

Dynamic 

Load (kips) 

Maximum 

LS-DYNA  

Dynamic 

Load (kips) 

C = 6884 s-1, 

q = 3.91 

% 

Difference 

Outside of 

Range 

1: One Rivet, 

Single Shear 
D 13.7 16.1 18.5 12.9 

1: One Rivet, 

Double Shear 
D 31.0 44.7 30.9 -0.2 

2: Two Rivets 

Horizontal, 

Single Shear 

D 39.4 79.6 33.8 -14.2 

2: Two Rivets 

Horizontal, 

Double Shear 

D 55.9 85.5 64.0 In range 

3: Two Rivets 

Vertical,  

Single Shear 

D 54.2 60.3 31.9 -41.1 

3: Two Rivets 

Vertical, 

Double Shear 

D 79.8 132.6 70.1 -12.1 

4: Four Rivets 

Square, 

Single Shear 

C 54.4 117.4 71.3 In range 

4: Four Rivets 

Square, 

Double Shear 

C 102.9 147.8 116.3 In range 

5: Four Rivets 

Staggered, 

Single Shear 

C 66.4 94.5 65.1 -1.9 

5: Four Rivets 

Staggered, 

Double Shear 

C 147.6 213.2 123.5 -16.3 
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Table 4-5: Dynamic Increase Factor (DIF) of LS-DYNA (2013) Bounding Simulations 

Test 

Configuration 

LS-DYNA 

Quasi-

Static 

Load (lbf) 

LS-DYNA  

Dynamic 

Load (lbf) 

C = 40.4 s-1, 

q = 5 

Calculated 

DIF  

C = 40.4 s-1, 

q = 5 

LS-DYNA  

Dynamic 

Load (lbf) 

C = 6884 s-1, 

q = 3.91 

Calculated 

DIF  

C = 6884 s-1, 

q = 3.91 

1: One Rivet, 

Single Shear 
12806 27264 2.1 18535 1.4 

1: One Rivet, 

Double Shear 
23615 47376 2.0 30934 1.3 

2: Two Rivets 

Horizontal, 

Single Shear 

25720 50222 2.0 33847 1.3 

2: Two Rivets 

Horizontal, 

Double Shear 

46997 105218 2.2 63999 1.4 

3: Two Rivets 

Vertical,  

Single Shear 

27875 49730 1.8 31932 1.1 

3: Two Rivets 

Vertical, 

Double Shear 

53848 102987 1.9 70131 1.3 

4: Four Rivets 

Square, 

Single Shear 

50549 106880 2.1 71327 1.4 

4: Four Rivets 

Square, 

Double Shear 

94680 193066 2.0 116330 1.2 

5: Four Rivets 

Staggered, 

Single Shear 

50317 100979 2.0 65107 1.3 

5: Four Rivets 

Staggered, 

Double Shear 

94371 176588 1.9 123524 1.3 

  

Average 

DIF: 2.0 

Average 

DIF: 1.3 

 



 164 

Despite the fact that the investigated LS-DYNA (2013) parameters adequately 

bounded the ultimate shear strength, a goal of this research was to recommend one set of 

Cowper Symonds (1956) parameters for future research. In taking a closer look at 

previous testing published in literature, greater consideration was given to Cowper 

Symonds (1956) parameters derived from experimental studies most closely aligned with 

the research presented in this dissertation. Thus, because a correlative relationship exists 

between the behavior of rivets under tensile loading and rivets under shear loading, 

historical testing, such as original uniaxial dynamic tensile testing of mild steel from 

Cowper Symonds (1956), is a priority for consideration (C = 40.4 s-1 and q = 5). Of note, 

however, is the fact that subsequent uniaxial dynamic tensile testing of mild steel by the 

University of Liverpool (Abramowicz and Jones, 1986) provided drastically different 

results (C = 802 s-1 and q = 3.585). The marked difference between the two cases with 

respect to testing is that the Cowper Symonds (1956) experiments involved subjecting 

mild steel specimens to relatively small strains in the neighborhood of their yield value, 

while the University of Liverpool tests involved subjecting mild steel specimens to 

relatively large strains and plastic behavior. This observation, in conjunction with 

noticing the University of Liverpool parameters would likely provide ultimate shear 

strengths between the bounded values, led to running LS-DYNA (2013) simulations of 

the five configurations in single- and double-shear with the published University of 

Liverpool parameters (C = 802 s-1 and q = 3.585).  

After again setting aside the anomalies from the experimental testing, the Cowper 

Symonds (1956) constitutive model with the University of Liverpool parameters (C = 
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802 s-1 and q = 3.585) clearly provided the best representation of rivet behavior in shear 

under high loading rates. In five of the eight analyses, the LS-DYNA (2013) output 

demonstrated ultimate shear strengths within the range of the experimental values. For 

the other three analyses, the LS-DYNA (2013) output predicted ultimate shear strengths 

within 4.5 percent of the low end of the experimental range. This was significantly more 

accurate than the simulation results when using the bounding Abramowicz and Jones 

(1986) parameters (C = 6884 s-1 and q = 3.91) and Cowper Symonds (1956) parameters 

(C = 40.4 s-1 and q = 5), which under-predicted response by as much as 16.3 percent and 

over-predicted response by as much as 23.4 percent, respectively. A summary of the 

testing results using the University of Liverpool parameters is shown in Table 4-6, with 

the previously mentioned outlier experimental test results highlighted in yellow. In 

addition, as demonstrated in Fig. 4-3, load versus time curves simulated within LS-

DYNA (2013) demonstrated a qualitatively similar shape and time to failure when 

compared to the experimental data (Rabalais, 2015). Thus, the material and constitutive 

models exhibited comparable behavior and were considered adequate given the 

experimentally produced test results. All 10 curves using the University of Liverpool 

parameters (C = 802 s-1 and q = 3.585) are shown in Appendix C. 
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Fig. 4-3: Sample Load versus Time Plot using C=802, q=3.585 
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Table 4-6: Dynamic Loading Simulation Results using University of Liverpool 

Parameters (C = 802 s-1 and q = 3.585) versus Experimental Results 

Test 

Configuration 

Rivet Mesh: 
C: (0.016 in. - 

0.032 in.) 

D: (0.008 in. - 

0.016 in.) 

Experimental 

Dynamic 

Load (lbf) 

Min 

Experimental 

Dynamic 

Load (lbf) 

Max 

LS-DYNA  

Dynamic 

Load (lbf) 

C = 802 s-1 , 

q = 3.585 

% 

Difference 

Outside of 

Range 

1: One Rivet, 

Single Shear 
D 13.7 16.1 20.5 21.3 

1: One Rivet, 

Double Shear 
D 31.0 44.7 35.2 In range 

2: Two Rivets 

Horizontal, 

Single Shear 

D 39.4 79.6 37.7 -4.5 

2: Two Rivets 

Horizontal, 

Double Shear 

D 55.9 85.5 68.0 In range 

3: Two Rivets 

Vertical,  

Single Shear 

D 54.2 60.3 36.6 -32.5 

3: Two Rivets 

Vertical, 

Double Shear 

D 79.8 132.6 78.3 -1.8 

4: Four Rivets 

Square, 

Single Shear 

C 54.4 117.4 81.2 In range 

4: Four Rivets 

Square, 

Double Shear 

C 102.9 147.8 142.7 In range 

5: Four Rivets 

Staggered, 

Single Shear 

C 66.4 94.5 73.1 In range 

5: Four Rivets 

Staggered, 

Double Shear 

C 147.6 213.2 147.0 -0.3 
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 A further look at the LS-DYNA (2013) analysis results from the University of 

Liverpool parameters revealed the calculated dynamic increase factor more closely 

matches the dynamic increase factor for A502 Grade 2 rivets calculated through the 

ERDC experimental testing (Rabalais, 2015). As demonstrated in Table 4-7, the average 

dynamic increase factor using the University of Liverpool parameters was 1.5, compared 

to 1.7 from experimental testing (Rabalais, 2015).  

 

Table 4-7: Dynamic Increase Factor of LS-DYNA (2013) Simulations using University 

of Liverpool Parameters (C = 802 s-1 and q = 3.585) 

Test Configuration 

LS-DYNA 

Quasi-Static 

Load (lbf) 

LS-DYNA  

Dynamic Load (lbf) 

C = 802 s-1, q = 3.585 

Calculated 

DIF  

One Rivet, Single Shear 12806 20528 1.6 

One Rivet, Double Shear 23615 35270 1.5 

Two Rivets Horizontal, 

Single Shear 
25720 37667 1.5 

Two Rivets Horizontal, 

Double Shear 
46997 68026 1.4 

Two Rivets Vertical,  

Single Shear 
27875 36598 1.3 

Two Rivets Vertical, 

Double Shear 
53848 78299 1.5 

Four Rivets Square, 

Single Shear 
50549 81218 1.6 

Four Rivets Square, 

Double Shear 
94680 142735 1.5 

Four Rivets Staggered, 

Single Shear 
50317 73096 1.5 

Four Rivets Staggered, 

Double Shear 
94371 147066 1.6 

  Average DIF: 1.5 
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As a final, but important aspect of validity, a close investigation of the three-

dimensional rivet models following the dynamic simulations was conducted. As 

mentioned in Section 2.6, the fracture type and deformation changes significantly based 

on the loading type (shear, tension, or combination of both). Under pure shear 

deformation, as was the intent of the models for this research, necking should not occur. 

An illustration of the dynamic loading and eventual failure of the rivets in pure shear is 

shown in Fig. 4-4 and Fig. 4-5. These illustrations demonstrate Configuration 4 (four 

rivets square) in double shear. As was consistent in each of the 10 dynamic LS-DYNA 

(2013) simulations, no necking was evident in the fracture of the rivets, providing further 

confidence in the models. 

 

 

Fig. 4-4: Rivets Loaded under High Loading Rate 
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Fig. 4-5: Rivet Failure in Pure Shear under High Loading Rate 
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4.4 LONG RIVETED CONNECTIONS 

 

Steel rivets were considered the critical connector for both the world’s most well-

known suspension bridges and other pre-1960 bridges and buildings. When used as a 

connector for bridges, the length of the connections was not limited to a few inches, as 

demonstrated thus far in this research presented in this dissertation. Several riveted 

connections were 10-in. and longer. Examples of such connections include connections 

for the Champlain Bridge over the Saint Lawrence River shown in Fig 4-6 and the 

Whirlpool Rapids Bridge shown in Fig. 4-7. As emphasized in Chapter 1, the human 

casualties, economic losses, environmental damage, and fear attributed to attacks against 

bridges make them attractive terrorist targets. In fact, the Royal Canadian Mounted 

Police, in conjunction with assistance from the FBI, stopped a planned attack against a 

passenger train in Toronto (Manzarpour, 2013). The Whirlpool Rapids Bridge, largely 

considered the target of this plot, is a riveted bridge between Canada and the United 

States that carries railway traffic on the upper deck and passenger vehicle traffic on the 

lower deck (Zennie, 2013).  
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Fig. 4-6: Champlain Bridge (photos provided by Dr. Charles Crane)  

 

 

Fig. 4-7: Whirlpool Rapids Bridge with Top Chord Zoom (from Nathan Holth at 

http://historicbridges.org/) 
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As detailed in Section 2.5 of this dissertation, long riveted and bolted connections 

have been the focus of several research studies. As illustrated in Fig. 4-8, testing 

conducted by Sterling and Fisher (1966) consisted of determining and comparing the 

quasi-static shear strength of A490 bolts and A502 Grade 2 rivets in connections of 

various lengths. Once joint lengths surpassed approximately 10-in., the ultimate shear 

strength of fasteners decreased as the fasteners within the connection no longer shared an 

equal percentage of the load.  

 

 

Fig. 4-8: Joint Length Historical Testing (by Sterling and Fisher, 1966) 
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To date, long riveted connections have only been tested quasi-statically. Recall 

the high loading rate testing by Rabalais (2015) was limited to short length connections 

(3-in. long) with no more than two rows. Thus, the final objective for this dissertation 

was to apply the newly developed material and constitutive models from the numerical 

modeling of riveted connections under high loading rates to predict the response of long 

riveted connections under rapidly applied loads applied parallel to the long axis of the 

connection.  

The starting point of this investigation was to modify the existing LS-DYNA 

(2013) models from the quasi-static testing described and validated in Section 3.8. The 

models were modified to create longer riveted connections with lengths of 12-in., 21-in., 

and 30-in., as demonstrated in Fig. 4-9, Fig. 4-10, and Fig. 4-11, respectively. All 

simulations of long riveted connections involved single-shear configurations only. 
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Fig. 4-9: Finite Element Model of 12-in. Long Connection 

 

Fig. 4-10: Finite Element Model of 21-in. Long Connection 
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Fig. 4-11: Finite Element Model of 30-in. Long Connection 

 

Outside of the change in lengths, two other modifications were required for the 

models. One change was to the material model of the plate. After attempting to run the 

models with the A36 plates used with the short connections in Chapter 3, it was clear that 

rivet shear failure was not going to control. In fact, the only plate configurations in which 

the rivets failed in shear were the 12-in. quasi-static and the 12-in. dynamic tests, as 

shown in Fig. 4-12 and Fig. 4-13.  
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Fig. 4-12: Quasi-Static Load versus Time Plot of Long Connections with A36 Plates 
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Fig. 4-13: Dynamic Load versus Time Plot of Long Riveted Connections with A36 Plates 

 

For the longer length connections, the plates succumbed to the limit state of 

connecting member yielding. In addition, the yielding of the material around the exterior 

holes led to plastic behavior and excessive deformations in their respective rivets, as 

demonstrated in Fig 4-14, Fig. 4-15, and Fig. 4-16. This behavior set up the premature 

unbuttoning failure due to the weak plate condition (Wang, 2013), in which the sum of 

the rivet shear strength is greater than the yield capacity of the plate.  
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Fig. 4-14: A36 Plates Demonstrate Excessive Yielding in Outer Holes 

 

 

Fig. 4-15: Uneven Distribution of Load in Long Connection 

 

Stresses over 66 ksi  

at outer rivet holes 

(Plastic Behavior) 

Elastic Behavior 
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Fig. 4-16: Close-up of Difference in Stress between End Rivets and Interior Rivets 

 

In comparing the static results with the dynamic results, it is interesting to note 

that for the 12-in. connection, the rate of loading had no effect on the failure mode 

because unbuttoning occurred for both cases. The loading rate did, however, play a role 

in the maximum ultimate shear strength of the 12-in. connection. Under quasi-static 

loading, the max ultimate shear strength was 34.8 ksi. Under dynamic loading, the max 

Significant stress and deformation 

in end rivets. 

Relatively small stress and deformation 

in middle rivets. 
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ultimate shear strength was 56.5 ksi, resulting in a dynamic increase factor of 1.31. For 

the longer 21-in. and 30-in. connections under the weak plate condition, the dynamic 

increase factor was 1.27 and 1.26, respectively. Thus, long riveted connections under the 

weak plate condition exhibit lower dynamic increase factors than short connections; 

furthermore, the dynamic increase factor decreases with increasing length.  

With the focus of the research on rivet behavior, subsequent analyses were 

completed with a stronger A514 Carbon Steel Plate material to ensure rivet shear would 

control the mode of failure. With no experimental data to derive a true stress-strain curve 

for the A514 Steel Carbon Plate material model, values from Varmint Al’s Engineering 

material properties database were used as input as shown in Table 4-8 

(http://www.varmintal.com/aengr.htm).  

 

Table 4-8: Material Model for A514 Steel Carbon Plate (from Varmint Al’s Engineering) 

Mass Density 

(kip-s2/in) 
E (ksi) Poison’s Ratio 

Yield Stress 

(ksi) 
Fail 

7.332 e -7 30,000 0.29 112.5 1.365 

EPS1 EPS2 EPS3 EPS4 EPS5 

0.0 0.0098 0.0956 0.53 1.365 

ES1 ES2 ES3 ES4 ES5 

112.5 119 130 140 145.9 
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The second change for analysis was to the loading rates. In order to get the rivets 

to fail in a quasi-static and/or dynamic manner, several simulations were run using the 

previous iterations described in Section 3.6 as a guide. The points used to describe each 

curve for loading are shown in Table 4-9. 

 

Table 4-9: Displacement Controlled Loading for Long Riveted Connections 

Test (Time (sec), Displacement (in.)) 

12-in. Quasi-Static (0,0), (3,0.3) 

21-in. Quasi-Static (0,0), (3,0.3) 

30-in. Quasi-Static (0,0), (3,0.3) 

12-in. Dynamic (0,0), (0.0025, 0.05), (0.005, 0.2), (0.075, 0.45), (0.01, 1) 

21-in. Dynamic (0,0), (0.0025, 0.05), (0.005, 0.2), (0.075, 0.45), (0.01, 2) 

30-in. Dynamic (0,0), (0.0025, 0.05), (0.005, 0.2), (0.075, 0.45), (0.01, 2) 

 

 

The load versus time responses for the quasi-static test and the high loading rate 

tests are shown in Fig. 4-17 and Fig 4-18, respectively. For each of the respective types 

of tests, the qualitative shapes of the 12-in., 21-in., and 30-in. curves are similar. Using 

the stronger A514 steel for the plates allowed the ultimate shear strengths of the rivets to 

dominate the failure mode. As a result, in both the quasi-static and dynamic loading 

cases, the longer connections carried a greater load than exhibited during the weak plate 

connection simulations.  
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Fig. 4-17: Quasi-Static Load versus Time Results for Long Riveted Connections 
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Fig. 4-18: Dynamic Load versus Time Results for Long Riveted Connections 

 

When taking a qualitative look at the 12-in. long riveted connection, it appears 

that the rivets sheared approximately simultaneously, as shown in Fig. 4-19. As opposed 

to the longer 21-in. and 30-in. riveted connections, the rivets appeared to share the 

distribution of stresses nearly equally. 
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Fig. 4-19: Simultaneous Rivet Shear in 12-in. Length Riveted Connection 

 

When investigating the behavior of the 21-in. and 30-in. connections, as shown in 

Fig. 4-20, it appears as though the unbuttoning phenomena started to influence the 

ultimate shear strength of the riveted connections. Larger deformations at the end (first 

row) of the connected plates generated unbalanced and significant deformations around 

the end rivets. This unequal distribution of stresses caused the end row to fail prematurely 

in comparison to the rivets in the middle of the joint. 
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Fig. 4-20: Unbuttoning of Long Riveted Connections under High Loading Rates 

 

When comparing the quasi-static ultimate shear strength to the dynamic ultimate 

shear strength for each of the long connections, the 12-in. long connection failed 

similarly to the short connections analyzed in Section 4.3. As was observed with the short 

one-row and two-row connections where the dynamic increase factor for the LS-DYNA 

(2013) simulated models was approximately 1.5, the dynamic increase factor for the 12-

in. length riveted connection was also approximately 1.5. However, the calculated 

dynamic increase factor decreased as the length of the connection increased. In a strong 

plate condition, tests showed that fastener capacity under quasi-static loads changed very 

little in long connections (Wang, 2013). However, it is possible this correlation is more 

prevalent for long connections tested under quasi-static loading because the connection 

has more time to distribute the load equally along the length of the connection. Under a 
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high rate of loading, high stress concentrations at the end holes in a matter of 

milliseconds may result in a relatively premature failure of the end rivets before the load 

is equally distributed to the interior rivets. Results and dynamic increase factor 

calculations are shown in Table 4-10. 

 

Table 4-10: Dynamic Increase Factor for Long Connections 

Test 12-in. QS 21-in. QS 30-in. QS 

Load (kips) 132.8 210.2 286.7 

Test 12-in. DYN 21-in. DYN 30-in. DYN 

Load (kips) 200.0 304.8 391.0 

DIF 1.51 1.45 1.36 

 

 

 While the data captured from this investigation provide some insight into the 

behavior of long riveted connections under high loading rates, further investigation and at 

least some limited experimental validation is warranted. Nevertheless, given the validated 

models developed from simple riveted connections under both quasi-static and dynamic 

loads, it is reasonable to consider this information useful. From the data collected, initial 

recommended guides to predict the ultimate shear strength and dynamic increase factor 

for A502 Grade 2 rivets at different lengths are shown in Fig. 4-21 and Fig. 4-22. These 

simplified guides provide protective design engineers with useful information concerning 
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the anticipated ultimate shear strengths and dynamic increase factors for riveted 

connections of different lengths. 

 

 

Fig 4-21: Ultimate Shear Strength Guide for Riveted Connections for Quasi-Static and 

Dynamic Loads (portions regenerated from Sterling and Fisher, 1966) 
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Fig. 4-22: Dynamic Increase Factor Guide for A502 Grade 2 Rivets 

 

4.5 SUMMARY 

 

With a validated model of rivet behavior under quasi-static loads developed in 

Chapter 3, the goals of Chapter 4 were to expand on the model to develop a validated 

constitutive model that captured simple riveted connections and then utilize it to 

investigate an untested problem. To capture the behavior of simple riveted connections 

under high loading rates, a validated constitutive model was developed using the Cowper 

Symonds (1956) model. Several sets of Cowper Symonds (1956) coefficients were 

utilized to determine appropriate parameters for material model input. After bounding a 
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solution, input values were selected that adequately captured the experimental rivet 

behavior and approached the experimentally calculated dynamic increase factor. 

Based on the constitutive model developed for A502 Grade 2 rivets, this chapter 

closed with a look into the behavior of long riveted connections under high rates of 

loading. After a brief explanation of its relevance to the engineering community, a 

snapshot of previous research was provided to set the stage for the untested research. 

Three different lengths of long riveted connections in single shear were tested under 

quasi-static and dynamic loads to investigate the dynamic increase factors for long 

riveted connections. The results of these tests, in conjunction with the constitutive models 

developed in Chapters 3 and 4, serve as focal points for the conclusions and 

recommendations for future research discussed in Chapter 5. 
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Chapter 5: Summary, Conclusions, and Future Work 

 

"This is not your grandfather’s al-Qaida. There’s a device, almost a devil on their 

shoulder all day long saying, ‘Kill, kill, kill, kill.’”             

–James Comey, 2015 

 

5.1 SUMMARY 

 

 With the U.S. and coalition forces in a seemingly never-ending operation to 

eliminate the Islamic State of Iraq and the Levant terrorists and the threat they pose 

around the world, prominent and high value infrastructure continues to be a target for 

terrorists. FBI Director James Comey shared the quote that opens this chapter at a Senate 

FBI oversight hearing in December 2015 by confirming there were more terrorist 

organizations with personnel, equipment, and safe havens than at anytime since the 9/11 

attacks (Scott, 2015). With suspension bridges and other riveted bridges considered likely 

targets, the engineering community’s need to understand the behavior of rivets and 

riveted connections under high loading rates is invaluable. 

 This dissertation presented an investigation into modeling riveted connections 

under both quasi-static and dynamic loadings. The study included the development of a 

material model, a detailed finite element analysis, and the application of the 

aforementioned to the behavior of long riveted connections. The detailed finite element 
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analyses provided validated predictions of simple riveted connection behavior under 

quasi-static and dynamic loadings, and practical predictions of long riveted connection 

behavior under high loading rates. 

 With a clear need to understand the behavior of rivets under high loading rates, 

justification to focus research on rivet behavior under shear loads specifically was due to 

the experimental field testing of riveted panels under blast loads discussed in Section 3.2. 

The relatively ductile failure of the panels when connected with rivets proved to be 

different than the brittle failure of the panels when connected with bolts. Challenges in 

setting up and executing tests of this nature, in addition to the exhaustive time associated 

with approval and execution, demand the need to develop and utilize sophisticated 

models to evaluate behavior. This research was designed to make valuable contributions 

to the engineering community in this regard. 

 

5.2 CONCLUSIONS 

 

 This section of this dissertation is divided into three subsections corresponding to 

the three major objectives of this research. This information will be beneficial to those 

focused on the protective design of steel structures with riveted connections. 
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5.2.1 Validated Material Model for A502 Grade 2 Rivets 

 

The first objective of this dissertation was to provide guidance on modeling rivets 

using a nonlinear transient dynamic finite element analysis software package. The purpose 

of this work was to reveal modeling issues that could lead to inaccuracies and shortcomings 

of the numerical modeling tools. Observations from the model development and 

simulations give rise to the following conclusions:  

 

1. A502 Grade 2 rivets can be efficiently and accurately modeled in LS-DYNA 

(2013) and LS-Prepost (2014) using three-dimensional, 8-node hexahedra solid 

elements that utilize the under-integrated constant stress implementation 

(ELFORM 1) with the Belytschko-Bindeman (1993) formulation (HG6) for 

hourglass control.  

 

2. The mesh density of a finite element model is critical for both accuracy and 

computational efficiency (i.e., computing time). In modeling A502 Grade 2 

rivets, very fine mesh sizes yielded both accurate ultimate shear strengths and 

failure results; however, they resulted in significantly longer computational 

times. Coarser meshes provided accurate ultimate shear stress results with faster 

computational times, but failed to provide accurate failure results. Mesh sizes 

in the range of 0.073-in. to 0.110-in. provided the most accurate results with 

respect to rivet ultimate shear strengths and failure results. Given the large 
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computational demand of those simulations, however, this research 

recommends the use of mesh sizes in the range of 0.016-in. to 0.032-in. to 

model rivets for the best combination of accuracy and efficiency. 

 

3. The piecewise-linear plasticity model (MAT24) within LS-DYNA (2013) 

provides users with the option of defining a true stress and true strain curve, 

consisting of up to eight linear segments, to approximate experimental non-

linear engineering stress and engineering strain behavior. The input shown in 

Table 3-3 for effective plastic strain (in./in.) and corresponding yield stress (ksi) 

approximates the engineering stress and engineering strain behavior for A502 

Grade 2 rivets. 

 

5.2.2 Validated Constitutive Model for Strain Rate Effects 

 

The second objective of this dissertation was to provide recommendations with 

respect to modeling strain rate effects for steel rivets. Observations from the model 

development and simulations lead to the following conclusions:  

 

1. The Cowper and Symonds (1957) constitutive model within the piecewise-

linear plasticity model (MAT24) of LS-DYNA (2013) provided a simple, 
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efficient, and accurate means of predicting the behavior of A502 Grade 2 rivet 

connections under high loading rates. 

 

2. The Cowper and Symonds (1957) parameters (C = 40.4 s-1 and q = 5) derived 

from subjecting mild steel specimens to relatively small strains in the 

neighborhood of their yield value provided an upper bound to the behavior of 

rivets under high loading rates. The Abramowicz and Jones (1986) parameters 

(C = 6884 s-1 and q = 3.91) derived from the dynamic axial crushing of mild 

steel square tubes provided a lower bound to the behavior of rivets under high 

loading rates. Given the large scatter observed in experimental rivet response, 

both the upper-bound and the lower-bound parameters are recommended for 

examination when analyzing riveted suspension panels under blast loads as the 

difference in the two may affect the failure modes of the steel suspension 

panels.  

 

3. With respect to the simulations conducted for this research, the University of 

Liverpool parameters (C = 802 s-1 and q = 3.585) derived from subjecting mild 

steel specimens to large strains beyond their yield value provided the most 

accurate prediction of rivet connection behavior under high loading rates. These 

parameters are recommended as the sole parameters used in situations where 

time is limited or in the event where multiple simulations cannot be run. 
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5.2.3 A Prediction into the Behavior of Long Riveted Connections 

 

The third objective of this dissertation was to apply the recommended material 

model to a practical, untested problem and predict the response of long riveted connections 

to high loading rates. Observations from the model development and simulations lead to 

the following conclusions:  

 

1. In situations where the sum of the rivet strength is greater than the yield capacity 

of the plate, excessive yielding of the plate in and around the exterior holes 

results in premature failure by yielding of the connecting member and/or 

premature unbuttoning failure of the rivets. This behavior was also observed in 

quasi-static testing conducted by Wang (2013). 

 

2. When the sum of the rivet strength is less than the yield capacity of the 

connecting plates, loading rate affects the ultimate strength of riveted 

connections. Using the recommended University of Liverpool parameters (C = 

802 s-1 and q = 3.585), simulations of riveted connections of varying lengths 

provided the following conclusions: 
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(a) For lengths up to 12-in., the ultimate shear strength of a rivet under 

dynamic loading rates similar to those considered by Rabalais (2015) is 

1.5 times the quasi-static ultimate strength (i.e., DIF = 1.5).  

 

(b) The dynamic increase factor associated with riveted connections 

decreases as the length increases beyond 12-in. (DIF = 1.45 at 21-in., 

DIF = 1.36 at 30-in., and DIF = 1.0 at 65 in. (projected)). 

 

5.3 RECOMMENDATIONS FOR FUTURE WORK 

  

Based on the results from this research, there are several different possibilities for 

future research, including both experimental testing and numerical simulations. While 

thorough and in-depth testing was conducted by Rabalais (2015), additional testing could 

potentially reduce some of the scatter in the results. Furthermore, investigation into 

different rivet types and rivet sizes may reveal insight into changes in dynamic increase 

factor recommendations for rivets. Riveted bridges, often susceptible to different levels of 

corrosion and degradation, may be of interest for investigation to determine if the dynamic 

increase factor is affected by its level of deterioration. Importantly, it is recommended that 

all future rivet testing include additional instrumentation and data gathering with respect 

to material ductility and strain rate. While the 224 tests by Rabalais (2015) were extremely 
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valuable, more comprehensive data acquisition would likely help improve the LS-DYNA 

(2013) modeling and analysis/comparison of results.   

Immediate numerical testing opportunities exist by modeling and analyzing the 

simple suspension bridge panels. Valid model development would demonstrate rivets 

failing in shear and panels failing in a ductile, tensile manner. If interested in possibly 

improving the model of the rivet, simulations involving quasi-static combined loading 

(shear and tension) could serve as an additional verification of realistic rivet behavior. 

Comparison of these combined loading simulations with historical experimental tests and 

results from Munse and Cox (1956) could serve as a validation tool. 

As terrorists appear to be on a never-ending desire to attack soft targets, this 

research provides valuable information with respect to modeling and understanding the 

behavior of riveted connections under quasi-static and dynamic loading rates. Results from 

these simulations and details from the developed numerical modeling approach can assist 

other engineers with future testing and in predicting the strength of a variety of different 

riveted connections under high loading rates. Understanding the capacity and behavior of 

these connections will assist in the development of mitigation strategies against terrorism. 
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Appendix A:  Quasi-Static Simulation versus Experimentation Results 

 

 Appendix A provides the load versus time output from five riveted connection 

configurations in single- and double-shear (10 total figures) under quasi-static loading. 

Each figure includes test data from Rabalais (2015) via light, black lines and LS-DYNA 

simulation output via a bold, black curve. In addition, there are red, yellow, and green 

lines on each plot that indicate the experimental maximum load, mean load, and 

minimum load, respectively. Above each load versus time plot is a LS-DYNA (2013) 

illustration of the applicable figure. Details regarding the development of these plots and 

an analysis of their significance are found throughout Chapter 3. 
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Fig. A-1: Configuration 1, Single Shear, Quasi-Static 
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Fig. A-2: Configuration 1, Double Shear, Quasi-Static 
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Fig. A-3: Configuration 2, Single Shear, Quasi-Static 
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Fig. A-4: Configuration 2, Double Shear, Quasi-Static 
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Fig. A-5: Configuration 3, Single Shear, Quasi-Static 
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Fig. A-6: Configuration 3, Double Shear, Quasi-Static 
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Fig. A-7: Configuration 4, Single Shear, Quasi-Static 
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Fig. A-8: Configuration 4, Double Shear, Quasi-Static 
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Fig. A-9: Configuration 5, Single Shear, Quasi-Static 
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Fig. A-10: Configuration 5, Double Shear, Quasi-Static 
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Appendix B: Bounding Dynamic Simulations versus Experimental 

Results 

 

Appendix B provides the load versus time output from five riveted connection 

configurations in single- and double-shear (10 total figures) under dynamic loading. 

Dashed lines represent predicted rivet behavior from LS-DYNA (2013) using the original 

Cowper Symonds (1957) parameters (C = 40.4 s-1 and q = 5). Bold solid lines represent 

predicted rivet behavior from LS-DYNA (2013) using Abramowicz and Jones (1986) 

parameters (C = 6884 s-1 and q = 3.91). Light (unbold) lines represent experimental test 

data (Rabalais, 2015).  In addition, there are red, yellow, and green lines on each plot that 

indicate the experimental maximum load, mean load, and minimum load, respectively. 

Above each load versus time plot is a LS-DYNA (2013) illustration of the applicable 

figure. Details regarding the development of these plots and an analysis of their 

significance are found in Sections 4.2 and 4.3. 
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Fig. B-1: Bounding Results, Configuration 1, Single Shear, Dynamic 
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Fig. B-2: Bounding Results, Configuration 1, Double Shear, Dynamic 
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Fig. B-3: Bounding Results, Configuration 2, Single Shear, Dynamic 
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Fig. B-4: Bounding Results, Configuration 2, Double Shear, Dynamic 
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Fig. B-5: Bounding Results, Configuration 3, Single Shear, Dynamic 
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Fig. B-6: Bounding Results, Configuration 3, Double Shear, Dynamic 
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Fig. B-7: Bounding Results, Configuration 4, Single Shear, Dynamic 
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Fig. B-8: Bounding Results, Configuration 4, Double Shear, Dynamic 
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Fig. B-9: Bounding Results, Configuration 5, Single Shear, Dynamic 
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Fig. B-10: Bounding Results, Configuration 5, Double Shear, Dynamic  
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Appendix C: Dynamic Simulations with Recommended Cowper 

Symonds Coefficients versus Experimental Results 

 

Appendix C provides the load versus time output from five riveted connection 

configurations in single- and double-shear (10 total figures) under dynamic loading. Solid, 

bolt lines represent predicted rivet behavior from LS-DYNA (2013) using the University 

of Liverpool recommended parameters (C = 802 s-1 and q = 3.585). Light (unbold) lines 

represent experimental test data (Rabalais, 2015).  In addition, there are red, yellow, and 

green lines on each plot that indicate the experimental maximum load, mean load, and 

minimum load, respectively. Above each load versus time plot is a LS-DYNA (2013) 

illustration of the applicable figure. Details regarding the development of these plots and 

an analysis of their significance are found in Section 4.3. 
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Fig. C-1: Configuration 1, Single Shear, Dynamic with Recommended CS Parameters 
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Fig. C-2: Configuration 1, Double Shear, Dynamic with Recommended CS Parameters 
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Fig. C-3: Configuration 2, Single Shear, Dynamic with Recommended CS Parameters 
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Fig. C-4: Configuration 2, Double Shear, Dynamic with Recommended CS Parameters 
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Fig. C-5: Configuration 3, Single Shear, Dynamic with Recommended CS Parameters 
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Fig. C-6: Configuration 3, Double Shear, Dynamic with Recommended CS Parameters 
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Fig. C-7: Configuration 4, Single Shear, Dynamic with Recommended CS Parameters 
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Fig. C-8: Configuration 4, Double Shear, Dynamic with Recommended CS Parameters 
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Fig. C-9: Configuration 5, Single Shear, Dynamic with Recommended CS Parameters 
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Fig. C-10: Configuration 5, Double Shear, Dynamic with Recommended CS Parameters  
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