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R. Hahnel30, D. Plettemeier31 

Technische Universitaet Dresden Helmholtzstraße 10 D-01069 Dresden, Germany 

In the scope of European Space Agency's Rosetta mission, the COmet Nucleus Sounding 

Experiment by Radio wave Transmission (CONSERT) has sounded the deep interior of the 

nucleus of comet 67P/Churyumov-Gerasimenko. The CONSERT experiment main objective 

was to image the interior of the comet nucleus.  

 This bi-static radar experiment with instrument units on-board both, the Rosetta main 

spacecraft and its lander Philae, requires a specific geometric configuration to operate and 

produce fruitful science data. Thus, these geometric constraints involve mainly the position 

and orientation of Rosetta and Philae. From the operations planning point of view, the 

mission constraints imposed observation slots to be defined far before their execution, while 

the comet shape, spacecraft trajectories and landing site were still unknown. The CONSERT 

instrument operations scheduling had to be designed jointly for Rosetta and Philae platforms, 

based on different time scales and planning concepts.  

 We present the methods and tools we developed to cope with the complexity of this 

planning process. These operations planning concepts allowed handling the complexity of 

multiple platform operations and the lack of prior knowledge of the observed target.  

Nomenclature 

67P/C-G = Comet 67P/Churyumov-Gerasimenko 

CPU = Central Processing Unit 

f = Clock frequency 

ESA = European Space Agency 

FSS = First Science Sequence (Philae’s mission phase) 

HPC = High Performance Computer 

LCC = Lander Control Center, DLR (Köln) 

LCN = CONSERT Lander unit 

LTS = Long Term Science (Philae’s mission phase) 

LDP = Landing Delivery Preparation (Philae’s mission phase) 

LSSP = Landing Site Selection Process (Philae’s mission phase) 

NAIF =  NASA's Navigation and Ancillary Information Facility 

NASA =  National Aeronautics and Space Administration 

OCN = CONSERT Orbiter unit 

RLGS = Rosetta Lander Ground Segment, composed of SONC and LCC 

RMOC = Rosetta Mission Operation Center, ESOC (Darmstadt) 

RSGS = Rosetta Science Ground Segment, ESAC (Madrid) 

SDL = Separation Descent and Landing (Philae’s mission phase) 

SONC = Philae Science Operation and Navigation Centre, CNES (Toulouse) 

SPICE =  NAIF observation geometry system for space science missions 

WoO =  CONSERT Window of Opportunity 

ZLDR = Philae local +Z axis, pointing towards its top panel 

ZORB = Roestta spacecraft local +Z axis, pointing towards the target 

  

                                                           
30 CONSERT Antenna System Engineer, Institut für Nachrichtentechnik 
31 CONSERT Co-Inverstigator, Institut für Nachrichtentechnik 
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I. Introduction 

From July 2014 until September 2016, the European Space Agency’s mission Rosetta observed in-situ the nucleus 

and the environment of comet 67P/Churyumov-Gerasimenko (67P/C-G). It is a Jupiter-family comet with a diameter 

of about 3.8 km and a rotation period of about 12.4 hours.  

This mission led to the most detailed study of a comet ever. The Rosetta orbiter monitored the comet activity, 

measured the composition of its environment and characterized the nucleus surface structure and composition. The 

Rosetta lander, Philae, landed on the nucleus on the 12th of November 2014, acquired images and obtained information 

on the composition and the physical properties of the surface material at the landing site location 1, 2. These close 

observations of this primitive building block of the Solar System help to understand its formation and evolution. 

The Rosetta spacecraft was launched on the 2nd of March 2004 with a scientific payload composed of eleven 

instruments including Philae, also embedding ten other instruments. After several gravity assist manoeuvres around 

the Earth and Mars, the fly-by observations of asteroids 2867/Šteins and 21/Lutetia, Rosetta entered a two-year deep 

space hibernation period in June 2011 then woke up in January 2014 for its rendezvous with the comet. Scientific 

investigations, orbiting around the nucleus and coma, were performed continuously until the 30th of September 2016, 

when the spacecraft accomplished a controlled impact on the surface 3. 

 

The COmet Nucleus Sounding Experiment by Radiowave 

Transmission (CONSERT) was one of these payload 

instruments. It was a bi-static low frequency radar composed 

of two units: one on-board the Rosetta orbiter and the other 

on-board Philae (Figure 1).  It was the only instrument which 

performed a systematic synchronous operation of both orbiter 

and lander platforms.  

The science objective of the CONSERT instrument was 

to provide information about the nucleus deep interior. It 

allowed to deduce the physical characteristics of the comet 

nucleus 4 and to constrain its internal composition 5. 

CONSERT could have discriminated between different 

hypotheses on comet nucleus structural models by imaging its 

interior, although this has not been possible due to the 

unexpected landing conditions of Philae. 

The CONSERT instrument has also been used to support 

Rosetta orbiter and lander operations. Indeed, the bi-static radar ranging allowed a first localization of the final lander’s 

touchdown position 6. It also performed measurements between the orbiter and the lander to help the reconstruction 

of the trajectory and attitude of Philae 7 during the descent to the comet surface. 

 

This paper describes the very specific methods and tools developed by the CONSERT team in collaboration with 

all platform teams needed to manage a particularly complex operations scheme. It presents the instrument specific 

operational constraints, the Rosetta planning process logic and the selected operational solution and implemented 

tools. Finally, the paper depicts the CONSERT team’s perspectives and current work based on this experience.   

  

 
Figure 1. CONSERT antennas 
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II. CONSERT functioning and operation 

The CONSERT instrument measures a 90 MHz 

wave propagation delay, the signal amplitude and 

polarization in transmission through the comet nucleus. 

For each acquisition point, also called a “sounding”, the 

phase-modulated coded signal is transmitted by the 

CONSERT lander unit (LCN) from Philae, landed on 

the surface and received by the CONSERT orbiter unit 

(OCN) on Rosetta spacecraft, orbiting around the 

comet body (Figure 2).  

The travel time of the radio wave through the comet 

nucleus medium is delayed as compared to the travel 

time in vacuum. This delay is directly related to the 

mean dielectric permittivity of the internal medium 

along the propagation path. The absorption and signal 

shape provide additional information on the material 

physical properties. This measurement is performed 

regularly along the Rosetta orbiter trajectory. The 

repetition of these acquisitions for several and various 

trajectories of Rosetta spacecraft allows a three-

dimensional radar imaging of the interior of the nucleus 

(Figure 3). 

The CONSERT propagation delay accuracy is 

directly linked to the synchronized functioning of the 

instrument internal clocks on OCN and LCN. The time 

measurement shall be better than 0.1 µs, which leads to 

a high constraint on the clock’s frequency stability over 

a whole acquisition sequence (Δf/f = 10-12 over typically 

10 hours) and a precise synchronization between them. 

To achieve this technically unreachable constraint in a 

relatively small instrument, the system made use of the 

time-transponder technique. At each sounding, OCN 

transmits the signal to LCN for synchronization: the 

“ping”. Then LCN mirrors it to OCN: the “pong”. The 

“pong” follows exactly the same path as the “ping” 

because we can consider that the relative position of 

Rosetta is fixed at this timescale. In that way, the OCN 

unit is able to measure twice the propagation delay plus 

the mirror processing system delay on LCN (Figure 4).  

Using this method, the instrument still needs a 

tuning phase prior to the acquisition but with a 

frequency stability constraint of only Δf/f = 10-7 over 

the sequence 8. 

The CONSERT signal amplitude and polarization 

is mainly driven by the properties of its antennae. LCN 

antenna consists of two orthogonal monopoles in front 

of Philae’s body. It can generate a left-handed elliptic 

polarized wave. OCN is made of two pairs of two cross 

dipoles, also providing a left-handed elliptic polarized 

wave 9. When nominally landed, which was, 

unfortunately, definitely not the case for the 2014 

landing 10, the main part of the LCN transmitted signal 

power is directed to the ground, due to coupling with 

the ground and the platform structure 11. This ensures 

the best link budget during the science operations when 

 
Figure 2. CONSERT instrument concept. The radio wave 

propagates through the comet nucleus between the lander and 

the orbiter units. 

 

 
Figure 3. CONSERT experiment 9 is made of several 

slices generated from different orbits of the Rosetta 

spacecraft. 

 

 
Figure 4. CONSERT transponder 8 allows an accurate 

travel time measurement by performing an active mirroring of 

the signal on-board the lander unit. 
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penetrating through the comet nucleus, but makes this link more difficult when OCN and LCN are operated in 

visibility. 

The CONSERT complete science acquisition sequence is composed of five phases 12, taking place along the 

Rosetta spacecraft trajectory. They are described in Table 1. 

In order to perform this science operation sequence in proper conditions for various trajectories of the Rosetta 

spacecraft, one had to make sure that a set of technical constraints were fulfilled 9. Most of these radar constraints 

could be derived in the end into geometrical ones, involving Rosetta, Philae and 67P/C-G relative positions and 

orientations. To perform good science acquisitions, both CONSERT units clocks must be synchronized, which implies 

the tuning phase to be successfully completed. As Philae is fixed on the nucleus surface, this mainly induces 

geometrical constraints on the Rosetta orbiter platform. To 

maintain a sufficient signal to noise ratio, and thus a good 

link budget, the distance between Philae and Rosetta is also 

constrained, as well as their relative position and attitude, to 

ensure a good configuration of the two antenna lobes. The 

motion of the Rosetta spacecraft relative to the comet 

nucleus surface is dominated by the comet revolution. Thus, 

a measurement sequence naturally covers all the longitudes. 

It is mainly parameterized by the orbiter latitude. To ensure 

that the orbiter is static over a whole “ping-pong”, the 

footprint velocity must be limited, which also implies a 

certain constraint on the spacecraft distance to lander. 

In addition, the required geometry configuration 

between Rosetta, Philae and 67P/C-G is constrained by the 

necessity of OCN to receive the LCN signal throughout the 

nucleus. Because of its global shape, the comet nucleus 

focuses the quasi-omnidirectional wave transmitted by 

LCN. Therefore, OCN must be located such that it is inside 

the CONSERT signal wave front (Figure 5), which 

corresponds to a restrained portion of the sky at the opposite 

side of the comet with regard to Philae’s landing location. 

Furthermore, the CONSERT operations team must verify that its instrument can be fed with telecommands and 

sufficient power on lander side. Philae was powered mainly by its batteries, which could be recharged by its solar 

panels. Thus, we must check that the lander platform was illuminated by the Sun for a sufficient period prior to 

Table 1. CONSERT operation sequence phases. 

CONSERT 

operation phase 

Purpose and Description Configuration Typical 

duration 

Warm-up To put the instrument in the right 

functioning temperature and clock 

stabilization. 

Any. 1 min 

Tuning To match the frequency of the clocks on 

both CONSERT units. 

Direct visibility between OCN 

and LCN. 

6 min 

Waiting To wait for the beginning of the nucleus 

sounding. Signal transmission is interrupted 

to optimize the overall power consumption. 

Direct visibility to comet 

nucleus occultation. 

2 hrs 

Sounding To perform the CONSERT science 

measurements. 

OCN and LCN units are 

occulted by the comet nucleus. 

8 hrs 

Calibration Optionally, to perform a background noise 

measurement in the same environmental 

conditions as the soundings. 

Direct visibility. 20 min 

 

 
Figure 5. the CONSERT signal wavefront 9 is focused 

by the comet nucleus and then received on the orbiter 

unit. 
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beginning any payload operation. In addition, the pre-requisite to receive operational commands and to allow time 

updates from the orbiter had to be considered. 

Finally, the radar signal could be perturbed by other sub-systems and payloads of Rosetta or Philae. To maintain 

a good quality of the CONSERT signal, we had to ensure that these sub-systems were not operated at the same time 

as our instrument. 

All these operational constraints had to be checked and fulfilled for a successful performance of the CONSERT 

experiment during the Rosetta mission. The resolution of this whole set of requirements for each science sequence 

was particularly challenging and required the definition of specific planning processes and tools. 

III. Operations planning process 

 

The CONSERT operations were limited by Philae’s end of mission date, initially foreseen in March 2015. 

Therefore, the CONSERT operations planning nominally covered a period of 6 months. The Philae mission was split 

into five phases, inside which CONSERT team defined its observation strategy, described in Table 2. Apart from this 

foreseen strategy, the CONSERT instrument was also been operated following the unexpected landing and during the 

LTS. By performing ranging measurements, Philae’s final touchdown location zone could be determined and finally 

imaged by the OSIRIS camera 10. 

This observation strategy had to be implemented before any landing site selection was possible and without 

knowledge of the actual comet shape. The situation was even more demanding; due to the complexity of the Rosetta 

mission itself, involving a lot of instruments, observation requirements and the challenges of unprecedented navigation 

manoeuvres around a cometary nucleus. The planning of CONSERT operational activities had to be performed in 

collaboration with the four Rosetta operations centres, since CONSERT was both a lander and an orbiter payload. 

Each centre (Table 3) had specific requirements and different planning logic and priorities. 

Table 2. CONSERT science observations strategy 

Lander mission 

phase 

CONSERT activities 

LSSP 

Landing Site 

Selection Process 

CONSERT team was deeply involved in the analysis, the ranking and the final selection 

of the Philae landing site. Indeed, the position of Philae on the nucleus surface, which 

was fixed all over the mission, was of crucial importance for CONSERT operations. 

Unfortunately, Philae did not land nominally and the actual science operations had to be 

shortened leading to a more difficult analysis of the data, obtained from the CONSERT 

instrument. In any case, at the time of the planning of operations, we had to consider the 

optimal trade-off for the landing site. 

LDP 

Landing Delivery 

Preparation 

We performed calibration operations with Philae still attached to Rosetta. We took the 

opportunity to be close to the comet surface to attempt sounding with CONSERT 

operating as a mono-static low frequency radar. 

SDL 

Separation, Descent 

and Landing 

CONSERT was operated to monitor the relative position and attitude all along the 

descent. This also was an opportunity to sound the surface when Philae was close enough 

to the surface. 

FSS 

First Science 

Sequence 

On the 12th of November 2014,shortly following the assumed (final) landing, CONSERT 

was operated successfully for 10.5 hours of science acquisition. This was the main 

operations in the CONSERT observation strategy to ensure a first slice nucleus deep 

sounding. 

LTS 

Long Term Science 

This phase was planned with an unknown end date, depending on many unpredictable 

cometary environment conditions. Considering the unexpected landing, it finally did not 

happened in practice. At the time of the mission planning process, this could not be 

considered. So, for CONSERT operational planning, this phase was dedicated to sound 

more slices of the nucleus, by performing as many of the science sequences as possible. 

This paper describes specifically the operations scheduling activities for this period. 
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The orbiter planning process, 

defined by the RSGS, consisted of a 

series of planning periods, each of 

which progressively refined the 

definition of operations. The global 

planning loop started approximately 6 

months prior to the operations, with a 

quasi-final definition of the 

telecommands two weeks before their 

execution 13. This planning process 

involved many actors: all orbiter 

platform and payloads teams. It 

allowed a smooth definition of the 

dense and complex sequence of 

operations for Rosetta. These planning 

activities started very early and lasted a 

long time before the execution of actual 

operations on-board. They had to be 

initiated without any knowledge of the 67P/C-G shape model and Philae landing site. 

On the Philae side, operations planning was naturally designed around the critical landing event. As for CONSERT 

on the orbiter side, a RSGS liaison scientist relayed the operation requests to the orbiter planning, in order to coordinate 

the Philae and Rosetta operations 14. Most of the lander payload operations did not depend on Rosetta trajectories, 

apart from CONSERT. Thus, the Philae planning process was conducted over a significantly shorter timeframe. For 

this reason, it was particularly difficult for the CONSERT team to cope with both planning concepts. 

 

The cornerstone of the CONSERT operations planning was the landing of Philae. For operations directly following 

this event, we had to furnish to RSGS our observation requests even before the completion of the landing site selection 
15, 16. To do so, we decided to proceed by overbooking the CONSERT operations schedule, including a lot of margin, 

then de-scoping and progressively refining these margins. This needed a significant amount of extra-work in trajectory 

analysis because we had to take into account all candidate landing sites and environmental conditions for Philae. Then 

we defined CONSERT windows of opportunities (WoO), and ranked them with scientific and technical criteria. At 

the very last moment, when the Philae landing site has been defined and Rosetta trajectory fixed, we de-scoped from 

the orbiter schedule all CONSERT WoOs that became irrelevant.  

With this method, we could have prepared all the LTS period, taking into account all CONSERT instrument 

constraints and furthermore, iteratively negotiated and scheduled in collaboration with all other platform and 

instruments teams.  

  

Table 3. Rosetta mission control centers 

Operation 

centre 

Description 

RMOC It was in charge of the navigation, commanding and 

safety of the Rosetta spacecraft 

RSGS It took care of fulfilling the Rosetta mission scientific 

objectives and coordinating orbiter instruments teams. 

LCC It was in charge of the Philae’s platform commanding 

and safety. 

SONC It took care of fulfilling the Philae scientific objectives 

and coordinating lander instruments teams. It also 

defined the Philae descent trajectories and landing site. 
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IV. Operational tools 

Considering all the CONSERT operational constraints and the organizational complexity of the Rosetta mission, 

we strongly needed a set of automated tools to support the planning activities (Figure 6).  

 
The main inputs of this CONSERT planning tools workflow were in constant evolution and refinement through 

the Rosetta and Philae planning period. They consisted of the comet shape models provided by OSIRIS and RMOC, 

the Rosetta trajectory Spice kernels provided by RSGS and RMOC and the Philae potential landing sites provided by 

SONC. The combination of all these inputs defined a single CONSERT observation context, for which a set of 

opportunities could be identified. One can imagine that the total number of covered cases and computations performed 

by the geometry analysis and wave propagation tools was very large and required a significant amount of CPU time. 

Obviously, this had to be done by a fairly automated workflow.  

 

The CONSERT operations are strongly driven by the geometrical configuration of the observation. A specific tool 

was in charge of the systematic computation of the geometrical parameters of interest. It was based on the NAIF Spice 

library, in accordance with RSGS processes. Taking as input the Spice kernels of the Rosetta trajectory, the Spice 

shape model kernels and the Philae landing site position, it computed and output in dedicated files up to 24 geometric 

values as a function of the UTC time. The most important variables were the distance between the lander and the 

orbiter, the angle between the lander and orbiter boresight directions (the emission angle), the visibility status between 

the two units, and the illumination of the lander by the Sun. RSGS supported CONSERT by producing a partial set of 

the orbiter-based parameters, which allowed a cross-validation of results. Similarly, SONC computed “event files” 

which included UTC timestamps for critical operational events (for example the switch from Sun illuminated to not-

illuminated state for the lander). This also allowed an additional validation of the results. 

These parameters were directly linked to the resolution of the CONSERT operational constraints. To get a first 

rough approximation of the CONSERT science efficiency, we also computed the distance travelled inside the nucleus 

by a straight line between Rosetta and Philae. To refine this information, we flagged this “section” indicator to specify 

which region of the nucleus is sounded: the small lobe of the nucleus, the big lobe or both.  

 

In parallel, the same input data were processed by a CONSERT experiment simulator, called SimSERT. This 

computationally intensive software, run on a HPC system, was able to simulate the physics of the CONSERT 

experiment and to give a sufficiently accurate estimation of the signal output. This numerical simulation is based on 

 
Figure 6. CONSERT operations planning tools workflow 
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a ray-tracing algorithm, assuming a homogeneous interior model, with a given relative permittivity. Its output was 

post-processed to derive the time during which Rosetta crossed the simulated CONSERT signal along its trajectory. 

This is directly linked to the efficiency of an observation in terms of science return, so it provided a good global 

indicator for the quality of an acquisition sequence. The SimSERT software also exported special quick and 

comprehensive views of a combination of the computation results, called “skymaps” (Figure 7), which included also 

the SONC event files information. These views were of significant importance to support the CONSERT team in the 

evaluation of a high number of possibilities, keeping all useful details for proper decision-making. 

 

All the parameters computed by the Spice tool and SimSERT were passed to the “WoO” (Window of Opportunity) 

tool, as data files. The WoO generator had the responsibility of the identification and characterization of the temporal 

slots in which CONSERT observations were possible.  

All the CONSERT constraints as discussed above were implemented in this program, using customizable values. 

The geometrical parameters were then used to determine whether the technical constraints could be fulfilled or not. 

As an example, the Sun illumination angle was derived into beginning and ending UTC times between which the 

lander batteries are operational, the emission angle was derived into beginning and ending UTC times between which 

the CONSERT tuning is possible, etc… So, for each CONSERT possible operations opportunity, we could  have 

generated detailed chronograms including comprehensive science indicators like the nucleus section crossed by the 

signal, the duration of the simulated useful signal duration, the latitude of the spacecraft, etc…  

All the observation sequences opportunities, for all the possible combinations of Philae location and Rosetta 

trajectories, were then evaluated automatically to eliminate the unambiguously impossible ones. The ones that seem 

promising to the system were green-lighted. The remaining intermediate WoOs were also flagged, for further analysis 

by the researchers. For those cases, the tool also offered detailed plots and full data table views of the parameters 

evolutions. This allowed a first selection of the WoOs. The CONSERT team researchers then put a rank number for 

each, according to the science return. This enhanced list of WoOs was then sent to the LCC team for a lander 

operational evaluation of the selected WoOs. The LCC engineers then also ranked, validated or invalidated the WoOs 

on an operational complexity point of view. This operational complexity evaluation was also helped by the system, 

being able to identify six operational configurations. These configurations classify the quality and difficulty for 

operating Philae for CONSERT.  

The final output of the WoO tools were summarized views (Figure 8) of all the WoOs in a single chronogram. 

This allowed the scientists and engineers to get a global view on a long period of operation, in one sight.  

 

Once the ranking of the WoOs has been made by CONSERT and LCC teams, the remaining ones were 

implemented into RSGS planning files. The consecutive selected WoOs were merged into single corresponding 

operation requests (“FOT2”, “FOT3” indicated as yellow boxes in Figure 8). Then, they were ingested into the  

MAPPS 17 tool to allow interactions with all other orbiter payloads. MAPPS also provided very useful verification 

routines on constraints, especially with regard to the instruments conflicts detection on pointing requests and 

interferences.  

During the last weeks of the Rosetta planning process, the merged CONSERT operations requests were iteratively 

reduced to single WoOs (corresponding to one of the green box on Figure 8, for each yellow slot). The final 

telecommands were finally implemented and verified by RMOC, one week before their in-flight execution. 
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Figure 8. CONSERT WoO summary spreadsheet sample 9. Each row corresponds to a specific configuration for Philae, 

the comet and Rosetta. The columns are the time calendar for one month of operations. Green boxes shows the time span 

where CONSERT operations are possible with a good science return. Other colors highlight different constraints inadequacy, 

showing the complexity value of the Philae operation. Black boxes, red and yellow outlines show periods during which 

operations are not possible because of Rosetta maneuvers. The yellow boxes then show, for a sweep of acquisition conditions, 

the window of opportunity for CONSERT observation, which will be refined progressively until the actual operations, finally 

corresponding to one or two specific green boxes. 

 

 

 
Figure 7 . a CONSERT “skymap” sample 9 in longitude and latitude in the comet nucleus fixed frame. The colored dots 

composing the background show the CONSERT signal, as transmitted by the lander unit. Their color map the internal region 

inside the nucleus that the signal traverses. The most saturated dots correspond to the most powerful signal. The colored line 

represents the track of Rosetta. Consequently, the more the line passes through the signal, the more efficient the CONSERT 

acquisition is. The colored triangles and circles along the Rosetta trajectory depict the constraints events,  

e.g. when Philae batteries could be loaded or when the CONSERT tuning phase is possible.   
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V. Conclusion 

The Rosetta planning concept could only be finalized just approximately two years before the Philae landing. That 

meant a relatively short time for the implementation of our tools. Most of them were designed as ad-hoc prototypes. 

However, they met the requirements and proved their efficiency. They have also provided a valuable experience for 

the design and implementation of ground segment equipment for the next generation of radars for small bodies’ 

observations in the Solar System. 

 

It is recommended that the analysis of operational constraints and the first prototypes of operations planning tools, 

in terms of trajectory and science return, shall be assessed in the first payload development phases. This should be 

facilitated by the usage of programming and data standards as NAIF Spice kernels or shape model files. The very 

early predictions on operational scenarios can be far from reality, but the general planning process and tools most 

probably would remain valid. These tools might be able to handle their tasks with a great margin. For instance, in our 

case, the unexpectedly complex shape of the 67P/C-G’s nucleus discounted some analyses that were based on the 

assumption of a quasi-ellipsoidal body. 

The planning and operational processes should also be defined early in the project development, to allow the 

payload teams to design and implement robust and automated systems. With the Rosetta mission, and more 

specifically with the CONSERT lander-orbiter combined instrument, new tools and processes have been used for 

human and machine interactions. In this regard, timeliness is of major importance when defining a project’s wide 

procedures and file format standards. In this regard, ESA is offering today opportunities to payload collaborators for 

training in use of the Spice Toolkit libraries. It also continues the development of the MAPPS tool 17, generalizing its 

usage on current and future planetary missions. 

Indeed, this would allow the implementation of more automated interaction pipelines, reducing the potential for 

mistakes and hopefully the iteration loop duration. Automatized traceability of computations, operations requests and 

acquired data would have been of great interest if CONSERT could have operated on multiple observations. 

 

Currently, the CONSERT team is involved in the development of two new radars for the observation of Solar 

System small bodies. A Low Frequency Radar 18, 19, 20 (LFR) is a direct heritage from CONSERT. Its new design will 

relax significantly the operational constraints due to clock synchronization between the lander and orbiter units. A 

High Frequency Radar 21, 19, 20 (HFR), inherited from ExoMars/WISDOM concept, is a mono-static step-frequency 

synthetic aperture radar specifically designed for small bodies’ sub-surface tomography.  

These radars developments have been initiated in the frame of the Asteroid Impact Mission 21 (AIM) and are 

proposed on several future missions to support a better understanding of the asteroids and comets internal structure 

and compositions. Thanks to these current developments, we are now building analysis and traceability tools to 

manage our future payload operations. 
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