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Abstract

The threat of small self-propelled semi-submersible vessels cannot be understated;

payloads from drugs to weapons of mass destruction could be housed in these small,

inconspicuous vessels. With a current apprehension rate of approximately 10%, a

method resulting in increased interdiction of this illegal traffic is required for national

security both in the ports along the coastlines of Canada, as well as the rest of North

America. A smart, autonomous payload containing an infrared imaging device, de-

signed for use in small unmanned aircraft systems for the specific mission of detecting

self-propelled semi-submersibles over the vast ocean coastline will address the current

security needs.

Thermal imagery of the disturbed colder water layers, driven to the surface by the

vessel will allow for the detection of this traffic using long wave infrared technology.

Infrared signatures of ship wakes are highly variable in both persistence and temper-

ature contrast as compared to the surrounding surface water, thus infrared imaging

devices with a high resolution, a high responsivity, and a very low minimum resolvable

temperature will be required to provide high quality imagery for airborne detection

of the thermal wake.

A theoretical understanding of the physics associated with the energy collected

by the infrared sensor and the resulting infrared images is provided. Explanation

of the factors affecting the resulting image with respect to the camera properties

are detailed. A variety of examples of airborne thermal images are presented, with

detailed explanations of the imaged scenes based on theory and sensor characteristics

provided in the previous sections.

Infrared images taken over the Atlantic and Pacific oceans from manned and un-

manned aircraft platforms are presented. Temperature measurements taken using

Vemco Minilog II temperature loggers confirmed the thermal stratification of the up-

per 5 meters of the water. Thermal scarring due to upwelled colder water to the
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surface was noted during the day time under normal conditions, with temperature

differences found to be consistent with the measured temperature profile. A cus-

tom gimbal system, with corresponding ground control station for real-time, visual

feedback is presented.

An algorithm for the detection of submerged vessel ship wakes using a LWIR

camera, specifically for a small unmanned aircraft, with limited power, space, and

computing power is developed. A time sequential processing method is presented to

reduce the required computing, while allowing high frame rate, real-time operation.

Moreover, a windowed triple-vote method is continually applied to ensure that the

detection mode is correctly set by the algorithm, while ignoring unexpected targets in

the image. A simple background estimation method is presented to remove any non-

uniformity in the captured images, resulting in a high detection rate with low false

alarms. Finally, a complete, mission-ready payload system is prepared for small UA

platforms, with an accuracy rate greater than 97% for the detection of self-propelled

semi-submersible vessels.
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Chapter 1

Introduction

A reliable method for the detection of small submersibles off the vast North American

coast is a necessary requirement. It has been reported that since June of 2017, seven

low-profile smuggling vessels have been stopped in the southern corridor between

Mexico and the United States [4]. Currently, the estimated rate of detection is slightly

above 10% [5], equivalent to 60 vessels containing upwards of ten tonnes of illegal cargo

undetected. Interdiction is a national security necessity for the safety and security

in the ports along the coastlines of Canada, as well as the rest of North America. A

smart payload, created for an unmanned aircraft platform allowing real-time detection

of illegal traffic, could result in an increase in the number of detained vessels, while

simultaneously reducing the resources required to find these vessels.

1.1 Objectives of Research

The primary objective of this study was to develop a real-time payload system,

containing an infrared (IR) imaging device, specially designed for use in small un-

manned aircraft (UA) systems for the specific mission of detecting self-propelled semi-

submersibles (SPSS) over the vast ocean coastline. To properly create the system,



2

the following objectives must be completed:

• compare different thermal bands of IR imaging operation, in particular, medium

wave infrared (MWIR) and long wave infrared (LWIR), to ensure that the se-

lected technology is best for this application,

• identify the conditions associated with thermal wake development and persis-

tence,

• confirm the temperature stratification of the ocean water during testing and

compare to the expected thermal profiles,

• develop a reliable, real-time algorithm to detect a vessel based on its thermal

wake pattern, and

• fabricate a mission-ready aircraft payload, including a ground control station

(GCS).

1.2 Problem Statement

Detection of partially submerged targets, containing illicit cargo currently engages

air- and ground-based assets and support, while still yielding a nominal detection

and interception rate. The proposed payload system will result in an increase in the

number of interdicted semi-submersible vessels along the North American coastline

through the detection of the thermal wake patterns.

1.3 Technical Challenges

The deployment platform imposes restrictions on the available payload size and power,

while still requiring full frame rate, real-time operation of the system.
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A SPSS can travel at both day and night, up to 100 nautical miles off-shore to

evade detection. In order to interdict the illegal traffic, this 100 nautical mile corridor

must be patrolled 24/7, with the suspicious activity reported in a timely manner for

effective interdiction. This extended range off shore does not allow practical relaying

of real-time high-resolution video back to the on-shore GCS. Also, there is an altitude

restriction on the UA to ensure altitude separation from manned traffic above, and

for it to operate below cloud so that it can see or be seen by other manned traffic.

The above mentioned challenges are met by deploying autonomous sensor payloads

over multiple unmanned aircraft in synchronized flight. Autonomous sensors address

the video bandwidth limitation, and reduce the workload of the human GCS opera-

tors. Multiple synchronized aerial platforms via Automatic Dependent Surveillance-

Broadcast (ADS-B) technology extend distance and increase swath of the surveillance

corridor.

1.4 Contributions

This thesis, and the related publications, are the first known reports of thermal wake-

based detection of SPSS. Several additions to the current literature and knowledge

were developed in this work, including;

• The infrared sensor selection for the application of thermal wake detection is

explored in Chapter 3, comparing data collected for medium-wave and long-wave

infrared imaging devices from a low altitude aircraft platform. Section 3.4.2

provides specific comparisons, and demonstrates the capabilities for thermal

wake detection for each sensor modality. A detailed comparison of MWIR and

LWIR sensors over the ocean with correlated optical data for thermal wake

detection and ship detection is uncommon in literature.
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• Long wave infrared data is captured and presented from two different sensors, the

FLIR Photon640 and FLIR A65. This data is compared as captured (Chapter 4),

as well as after processing for detection of thermal wake patterns (Chapter 5).

• Chapter 4 demonstrates persistent thermal wake patterns, including cold (Sec-

tion 4.3.1) and warm (Section 4.3.2) wake patterns, correlated to the recorded

environmental conditions. The presence of the thermal wakes is supported with

temperature measurements in the upper stratified layers of the ocean waters.

• A diverse set of variables are used for data collection. Thermal wake patterns

are recorded using multiple sensors, over two different oceans, from two different

countries.

• A real-time algorithm for a small unmanned aircraft platform to detect SPSS

by thermal wake detection (Chapter 5). This is the initial publication of this

concept.

• A time sequential processing system is disclosed to preserve real-time operation

with limited processing (Chapter 5).

• A windowed triple-vote system using multiple frames to continually detect the

detection mode of the algorithm is developed to increase the robustness of the

algorithm (Chapter 5).

• Data sets for three different platforms, using two different LWIR imagers, over

two oceans, were used to produce a dependable, real-time algorithm with nom-

inal false and missed detections under the varied scenarios.

• A complete, mission-ready system is achieved, including both hardware and

software packages.



5

1.5 Organization

This thesis is organized as follows: Chapter 2 provides an overview of the literature

with regards to infrared technology and ocean-based sensing systems previously re-

ported. Chapter 3 presents a comparison between medium and long wave infrared

imagery for ocean-based sensing, and provides an overview of the physics related to

infrared imaging devices, based mainly around passive detectors; MWIR and LWIR.

Further, the process for the selection of an infrared sensor for ocean-based imaging is

presented, including a comparison of medium-wave and long-wave images. Chapter 4

introduces the development of a real-time image processing algorithm for deployment

on a small unmanned aircraft system, including thermal wake patterns in long wave

infrared images, captured with a FLIR Photon640 long wave infrared imager. Image

processing techniques are compared to accentuate these wake patterns for the ob-

server. The results from an algorithm, designed to detect the thermal wake patterns

from a small unmanned aerial platform with limited payload capacity are presented

for both warm and cold water wake patterns. Chapter 5 presents the real-time detec-

tion algorithm applied to multiple sets of long wave infrared data. The development

of the algorithm is outlined, comparing the Hough and Radon transform. A real-

time algorithm for a 30 Hz imager is reported, with a low false detection rate, and

few missed detections, as well as a robust system to account for sudden, unexpected

changes in the collected images. The final chapter contains a summary of this thesis,

outlines other potential areas of application of the technology developed, and presents

an overview of future work related to this project.



Chapter 2

Background

There are currently no reports of the development of real-time algorithms for the

detection of self-propelled semi-submersibles (SPSS). In 2006, when authorities re-

ported the first detection of a SPSS in the eastern Pacific ocean, containing nearly

10,000 pounds of cocaine, multi-agency partnerships and assets were deployed as a

countermeasure [6]. These low-profile SPSS vessels are designed to elude detection,

with a sharp bow to cut through the water, an elongated body to transport high-value

cargo, and only the single mast of the conning tower sticking out of the water [4]. An

increased concern is legitimate, with the possibility of these SPSS being a national

and global threat very possible. Small UA platforms equipped with a payload system

to detect the discernible thermal wake trails would correspond to elevated detection

rate.

Thermal imagery of the disturbed colder water layers, driven to the surface by

the vessel will allow for the detection and therefore the interdiction of the illegal

traffic. A completely autonomous system, including on-board processing for the smart

recognition of the radar eluding, low profile vessels is required. This smart system

could potentially be coupled with airborne automatic identification system (AIS) to
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aid in the discrimination of legal and illegal marine traffic. Further, the ability to

have multiple unmanned aircraft systems monitoring adjacent areas would aid in the

follow-up mission to decrease false alarm rates and increase the percentage of detected

illegal vessels.

Infrared imaging devices with a high resolution, a high responsivity, and a very

low minimum resolvable temperature are required to provide high quality imagery

for airborne detection of the thermal wake. IR signatures of ship wakes are highly

variable in both persistence and temperature contrast as compared to the surrounding

surface water, depending on both meteorological and oceanographic parameters [7].

These systems will require retrofitting to both increase durability, and reduce weight

for housing in small UA. Advances and availability of current computer technology

required for the smart on-board processing of the captured data will allow the real-

time analysis of the captured imagery.

An unmanned aircraft with an integrated payload allowing the automatic detection

of illegal traffic will greatly reduce the required resources for the detection of these

SPSS, as well as increase the number of interdicted vessels. The threat of these vessels

cannot be understated; payloads from drugs to weapons of mass destruction could be

housed in these small SPSS. An increased detection of this illegal traffic is required

for national security both in the ports along the coastlines of Canada, as well as the

rest of North America.

There is no reported work on development of smart IR systems for detection of

the thermal wakes of submarines. However, integration of IR cameras into commer-

cially available computer vision technologies are used in applications such as quality

control applications [8], oil slick thickness detection [9], and critical temperature mea-

surements of machinery [10] to name a few. In these applications, IR imagers have
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proven to be very effective, boasting multiple benefits over other technologies, includ-

ing boosting efficiency and reducing costs. In particular, surveillance imaging systems

with detection and tracking capabilities over complex terrain have been developed and

have been demonstrated to be successful [11–13].

2.1 Self-Propelled Semi-Submersibles (SPSS)

The category of self-propelled semi-submersibles includes both semi-submersible ves-

sels, which are capable of ballasting to a depth near the surface to decrease their sur-

face profile, as well as low-profile vessels (LPV), more simply defined as a boat with

a minimum radar cross-section [14]. These SPSS are expendable and cost-effective

in contrast to fully submersible vessels, or submarines, which are more advanced,

requiring significantly increased cost, effort, and skill to create [15].

First generation SPSS were sealed, unmanned platforms towed behind powered

watercraft and readily expendable to avoid interdiction by law enforcement [15]. How-

ever, the performance specifications in more recently apprehended vessels are greatly

improved, capable of speeds up to 13 knots, and travel range of upwards of 4000

kilometers with a cargo capacity up to 20,000 pounds. These self propelled semi-

submersibles measure between 10 - 25 meters in length and 3 - 4 meters in width,

with a protruding freeboard approximately 50 cm above the water line, and a pro-

peller 3 - 4 meters below the surface. The SPSS maintain minimal visual signature and

are equipped with equipment such as external camouflage, and self-cooling exhaust

systems to elude detection [6]. The main benefit to a drug trafficking organization

(DTO) in using semi-submersible vessels is that they are difficult to detect, and allow

numerous smaller payloads which increases the probability of delivery [15]. Figure 2.1

presents a render of the Bigfoot II SPSS, which was captured 550 kilometers off the
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(a)

(b)

Figure 2.1: a) Side and b) top views of a rendered SPSS based on the reported design
of the Bigfoot II which was 18 meters in length, carrying 12,800 pounds of cocaine
when captured 550 kilometers off the coast of Mexico.
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coast of Mexico by the U.S.S McInerney. When the crew boarded the vessel, they

found 4 members plus 12,800 pounds of cocaine, worth $107 million [5].

Continually increased use of SPSS resulted in efforts to increase the interdiction

in the U.S., including the creation of the Drug Trafficking Vessel Interdiction Act in

October of 2008, which gave the Coast Guard the authority to detain operators or

travelers in an unregistered submersible vessel, including if no contraband is seized,

for example if the vessel is scuttled. The legislation allows for a person convicted to

receive up to 15 years in prison and a 1 million dollar fine [16]. During the same

time period, Customs and Border Protection (CBP) equipped its P-3 aircraft with

SeaVue maritime surveillance equipment in an attempt to better detect and track

SPSS platforms [15].

In a document approved for public release in February of 2009 it states [15]:

A key characteristic of a U.S. effort to deter or defeat the SPSS threat is

that it must be multilateral; the U.S. simply does not have the manpower,

the requisite number of detection and monitoring platforms, nor enough

intelligence sources necessary to ensure unilateral success.

Between the months of August and October in 2011 the US Coast Guard ap-

prehended three SPSS in the Caribbean, each carrying approximately seven tons of

cocaine, worth over half a billion dollars total [17–19]. Further, the interdiction of a

SPSS off the coast of Nicaragua by two P-3 Orions as part of the Joint Inter-agency

Task Force-South (JIATF-S) ceased 14,000 pounds of cocaine [20].
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2.2 Airborne Detection Systems

Airborne data collection is a large industry, including satellites, single engine piloted

planes, and balloons. Specific to unmanned aircraft systems (UAS), current exemp-

tions applied by governing bodies is allowing expansion of unmanned aircraft for

near-range coastal monitoring, iceberg tracking, and pipeline management, to name a

few. Although small unmanned aircraft can be used for collecting information, prac-

tical reports on their application are sparse and newly emerging. The registration

of images acquired by sensors of many modalities is necessary for many applications

such as image fusion, surveillance, and target detection and registration, since the

information gained is of a complementary nature [21]. Particular to this work, air-

borne surveillance has proven to be important and applicable to a wide range of

applications. Current common practice for UA platforms is to treat the UA as a

sensor carrying platform, and transmit data to a ground station for analysis, since

the on-board intelligence is lacking for data interpretation [12].

2.2.1 SPSS Detection

No reports of self-propelled semi-submersible detection algorithms are currently avail-

able for direct comparison. Reports of thermal wake patterns, created by larger surface

bound vessels or submarines are summarized in Section 2.2.2. Similarly, thermal wake

patterns created by marine mammals are compiled in Section 2.2.3.
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2.2.2 Thermal Wake Patterns

Data from the NASA MASTER imager has demonstrated thermal wake patterns be-

hind large surface traveling ships in band 44 (9.0970 µm) [22]. Garrett et al. demon-

strated that the thermal signatures of oleyl-alcohol-treated ship wakes, to mimic or-

ganic material from ship effluent, generated under the same conditions were more

intense and persistent than the untreated wake. It was also demonstrated that the

thermal wake temperature was nearly the same as that of the water at the keel [7].

Stewart et al. created a numerical model of the thermal wake caused by the turbulent

water motion behind a ship. It was reported that the modelled wake patterns agreed

with experimental data, including the warm water wake during night due to a lack of

surface heating [23]. Zhang et al. provided a theoretic basis for IR detection of the

submerged vessels, and demonstrated in a wave tank as much as a 3oC temperature

differential of the wake, equivalent to the temperature difference of the stratified wa-

ter [24,25]. Further theoretical support was also reported by Wu et al. [26] and Zhang

et al. [27]. Wu et al. presented IR images of the cold water wake, finding a persistence

of 145 seconds of the cold water wake [26]. Benilov et al. presented theoretical and

experimental results of the detection of moving bodies and divers in IR images. A

comparison of medium wave infrared (MWIR) and long wave infrared (LWIR) images

of a wake created by a ship revealed a dark wake pattern in the MWIR, and a bright

pattern in the LWIR. This was attributed to strong surface reflection in the slick like

wake area [28]. For a ship moving at a steady rate, Voropayev et al. noted a significant

wake contrast for warm surface water with a stratification temperature difference in

the first 10 meters of 1oC [29].
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2.2.3 Marine Mammal Detection

The detection of marine mammals has received increased attention in the last decade.

Observation of whale temperatures 0.5oC - 1.0oC warmer than surrounding sea tem-

peratures, as well as blow temperature 0.3oC - 4.0oC higher than the surrounding

water demonstrated the ability to detect the marine life using land-based IR imagery.

However, no whales were directly detected using IR, and thus Cuyler et al. con-

cluded that thermal detection was unreliable [30]. For the purpose of identification of

whales based on dorsal sightings, Graber calculated the mean pixel value in sections

of approximately 1350 frames, and then removed the mean image from each frame,

revealing the dorsal fins. Averaging the pixel value over a number of frames is done

to correct for drift, but is only useful in the case of a stationary imager. The frames,

after subtraction of the mean image, was then used to create an automatic detection

algorithm which differentiated between dorsal fins and other image features based

on temperature contrast with the surroundings [31]. Perryman et al. used thermal

imagery to track the migration of gray whales for three years, reporting that blows

were visible both day and night, with decreased probability on poor weather days [32].

Baldacci et al. further demonstrated the use of IR imagery to detect blows, as well as

body, noting the ineffectiveness of LWIR (8-12 µm) in high humidity conditions [33].

The first observations of the thermal footprint using IR imagery resulting from the tail

fluke of a whale was reported by Churnside et al. from a twin-engine airplane. They

noted trails up to 300 m behind humpback whales, for which they estimated to have

a velocity of 2.4 m/s, meaning the thermal trail persisted for about 2 minutes [34].
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2.2.4 Other Airborne Measurement Techniques

It has been demonstrated that infrared thermal imaging, coupled with a visible band

camera, allowed stream temperature measurements previously unavailable at the ex-

tent and resolution that were measured [35]. Jensen et al. reported stream tem-

perature measurements for environmental monitoring using a LWIR sensor with a

resolution of 640 x 480 on a UA platform. IR temperature measurements were found

to be lower when compared with instream measured temperature values, explained

as being due to wind blown across the IR imagers lens, as well as potential areas of

high humidity attenuating the IR signal. By correcting the thermal images, Jensen

et al. were able to demonstrate complex temperature profiles, in particular, warmer

temperatures in stagnant areas [36].

Lu et al. reported an auto-tracking algorithm, developed for UA platforms, for

power line inspections, using a combinations of optical, IR, and ultraviolet imaging

technologies. The system begins with GPS coordinates of pole towers provided by the

ground station. It identifies the two pole towers closest to its position, and creates a

vector between the poles for the cameras to follow to ensure that the lines are imaged

during the flight [37].

Infrared imaging in vegetation monitoring has also received a great deal of at-

tention. Suzuki et al. developed a low cost, high resolution vegetation monitoring

system to capture widespread mosaic images [38]. Using infrared and visible cameras

widespread mosaic images were presented, with a vegetation index automatically cal-

culated, demonstrating an effective, low-cost vegetation observation application. A

machine vision system for UAS to acquire and interpret data in real-time, followed

by decision-making is presented in Ref. [12], first reducing the noise in the images

through Gauss filtering. Next, each image is segmented into regions, and the size and

mean intensity of these regions are selected as features, producing a series of feature
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vectors for each image, which are used in a fuzzy classifier to assign a number relating

to a region. If a region continues to return a high possibility of being a target, an

alarm is created. In particular for training, a series of images where a fire is present

were used, reporting approximately 90% of the cases correctly.

Yakimenko et al. reported on the development of a UAS shipboard autoland sys-

tem, leveraging LWIR sensors for ship detection from long range, and feature detection

at closer range [39]. LWIR sensors were shown to reduce the complexity of locating

the ship in sun glare and dark conditions, in particular for detection of the hot smoke

stack or engine. For the landing system, once the hot spots were determined, a run-

ning average of each row of pixels was computed, which was then used to subtract

from each pixel, to aid in selecting the hot spots. Once found, the hot spots were

tracked by computing a bounding box around, and using inertial data to predict the

approximate location and size in consecutive images.

2.2.5 Surface-based Vessel Detection

Detection algorithms for surface vehicles have also benefited from the use of IR im-

agers. Martins et al. segmented the sea and sky at the horizon in LWIR images using

a Hough transform for detecting linear edges. Since a high contrast exists between the

sea water and a human target due to temperature differences, histogram expansion

for contrast improvements, then centroid region calculations are carried out [40].

Diana et al. reported a clutter removal procedure which estimates the background

and striping noise consecutively is implemented. The main feature of the technique

is that the noise sources are estimated in a single step [41]. Moreover, using a local

directional background removal filter, with a modified mean subtraction filter, a small

target detection system to detect targets in the horizontal region is reported. The

method presented by Kim et al. provides filtering and detection performance, with
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high detection rates and low false alarms per image, compared to top-hat filter-based

methods in real scenarios [42].

2.2.6 Synthetic Aperture Radar

The remote detection of ships through the detection of their wakes is directly related

to national security, navigation safety, and fishing and pollution monitoring [43]. The

narrow, V-shaped wake patterns have been reported to extend up to 20 km behind

surface-based vessels, and were first reported on images in 1978 from SEASAT, the

first satellite designed for remote sensing of the Earth’s ocean using synthetic aperture

radar (SAR) [44,45].

The appearance of the ship wake patterns in synthetic aperture radar systems

is similar to that of the cold water wakes recorded for semi-submersibles. Significant

attention and development has occurred on the detection of ships or ship wake patterns

in SAR imagery with an aim of creating an analysts detection support system (ADSS)

to guarantee consistency and predictability in the large amounts of data generated

in modern SAR systems [46]. Synthetic aperture radar images represent the radar

reflectivity of a scene, expressed in terms of the radar cross section (RCS), σ. The

distinguishing feature of SAR images as compared to other radar images is a high

resolution can be achieved in the azimuth and range direction mathematically by the

creation of a synthetic aperture. Moreover, there are different SAR image formation

algorithms, related to different modes of operation [46]. It is notable that the thermal

wake patterns of the SPSS are not visible in the SAR images since the thermal wake

does not create any visible changes in the ocean’s surface.

SAR systems have been deployed on both airborne and spaceborne platforms.

Generally, airborne platforms are multi-frequency, multi-polarization systems, which

result in better image quality. In comparison, a real-aperture radar system on an
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air- or spaceborne system yields poor resolution of ship wakes due to the small ratio

of the radar aperture length to the distance from the radar to sea, compared to the

large effective aperture of a SAR unit [47]. Conversely, spaceborne SAR systems are

simpler, but provide a wider spatial coverage, with increased visit frequency, for use

in wide area surveillance systems. For this reason, the majority of ship detection

systems have been designed for spaceborne satellite systems [46]. Specifically for ship

detection, two targets exist, which requires different algorithms. Detection of the ship

itself can be beneficial since the ship appears bright in SAR images, and exists when

the ship is not moving. Detection of wake patterns is advantageous since the wake

pattern is much larger and more distinct than the ship, and wake detection yields a

better estimate of the ships location and moving parameters as compared to the ship

itself [48].

The recirculating flow behind a moving vessel appears as a single bright or dark

line coincident with the ship track at higher wind speeds, or as one or multiple V-

shapes at lower wind speeds [49]. These ship wake patterns can be divided into two

parts: Kelvin wake patterns and other non-Kelvin wake parts [47, 50]. Kelvin wake

patterns, well known in classical fluid dynamics, are due to diverging and transverse

waves created by flow around the ships hull. Non-Kelvin wake parts include local

waves from the breaking bow, stern waves, a viscous wake from rotational motion flow

from the ship boundary layer, and other far reaching manifestations of these features,

which comprise the narrow trailing region of the wake [23,47]. Ship wakes differ based

on vessel properties and hydrometeorlogical parameters. Therefore, knowledge of the

resulting ship wake allows an estimate of the moving ship parameters such as velocity

and direction [51], as well as estimates of hull characteristics such as length, width,

volume, and other offsets [52]. A detailed analysis of ship wakes and the resulting

radar images is presented in Ref. [47].



18

The detection and registration of ship wakes in SAR has received a great deal

of attention in order to improve the probability of detection and reduce the false

detection of vessels. Transformation algorithms, such as Radon transform, which

accentuate straight line features in an image through integration of image intensity

along all directions in the 2D image space have proven to be most successful in wake

recognition. This integration process also tends to cancel noise in images, resulting in

a greater signal-to-noise ratio in the transform image as compared to the original [53].

It is estimated that the combination of recent advances in SAR technology, an increase

in the number of available SAR platforms, and observable growth in automatic ship

wake detection systems could make real-time detection of ship from space possible

in the next 5 years [43]. Currently, ADSS which automatically detect ship wakes

are being used as an analysts aid due to the large amount of data collected in short

periods of time, the large amount of open ocean in the captured imagery, and the

potential to guarantee consistency [46].

An automatic ship and ship wake detection algorithm, reporting a 7-8 % missed

ship rate, and 15 % missed wake rate, and 0 % false detection rate was reported

in Ref. [54]. The system is specifically designed for coastal regions with eddies, land

front, waves, and swells. Therefore, land regions are first masked using a digital terrain

model (DTM), then an adaptive filter is used to detect ship targets by connecting

pixels if they have much higher values then the background. The detection of the

ship feature is used as a part of the detection algorithm, but also the detected ship

pixel values are replaced with background values, so the ship is homogeneous with

the background. Finally, the Radon transform is used to accentuate straight line

features in the SAR images. Chen et al. presented a method called ellipse normalize

Radon transform to detect the dark lines of the turbulent wake in SAR images [48].

This method combines the key features of the Radon transform with the localization
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abilities of the contourlet transform, which reduces the speckle noise and removes

the large scale change in the background. The detection algorithm first removes

any islands or other land formations using geography information so that individual

dark lines can be detected in a gliding window. The contourlet transform despeckles

the images and then the Radon transform searches for dark lines using the ellipse

normalization scheme. This method was shown to work well for estimation of ship

wakes in SAR images, as well as detection of weak lines in noisy background. However,

the algorithm requires external information to remove the additional noise, and is

limited in field due to processing images window-by-window. Another method using

the gliding-box algorithm, employing a Radon transform-based algorithm, resulting in

a improved linear feature detection method was presented by Du et al. [55]. The box of

dimensions s x s glides on an overlaid lattice in the image plane of size W x W , where

each gliding step is t. In each box, a Radon transform is performed, of which the mean

and standard deviation are calculated, which is used to set the detection threshold.

This method was reported to have a higher detection accuracy than the standard

Radon transform, in particular with a better estimate of line length, which could

not be achieved with the conventional Radon transform. A radon transform-based

method with morphological processing was presented in Ref. [56], reporting a robust

detection algorithm, in particular in a noisy background. Courmontage [57] provides a

detailed report on a new process for ship wake detection in SAR images, combining the

Radon transform and a stochastic matched filtering method to interpolate the image

in a rotating reference system. As opposed to several reports which utilize the Radon

transform to remove speckle noise, the rotating reference system of interpolated images

is instead used for the Radon transform to compute the interpolations of the SAR

image to properly estimate the ship wake. This method is reported to improve the

signal-to-noise ratio after processing since there is no sinusoidal curves corresponding
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the speckle noise in the Radon domain, resulting in an improvement in ship wake

detection [57].

Jiaqiu et al. presented a ship wake detection algorithm based on a normalized

Hough transform, of a particular length, such that it does not require preprocessing

of the image to remove noise, and does not apply the transform across the entire

image as in Radon transform algorithms [51]. The proposed algorithm is based on

a signal-to-clutter ratio (SCR) enhancement to sub-divide the image and normalized

Hough transform (NHT) for wake detection.

Barni et al. presented an algorithm to detect oil spills in SAR images, where a

non-linear filter is applied to reduce the speckle noise, followed by fuzzy clustering

method (FCM) to create a preliminary partition in the image by assigning each pixel

a value within a membership function [58]. The FCM assigns a value between 0 and 1

based on how much of the pixel belongs to a surface cover class, allowing the algorithm

to deal with complex situations very well. After applying the FCM, the clusters are

merged based on clustering in a map using a Sobel operator.

Synthetic Aperture Radar has proven very useful and efficient in identifying and

quantifying oil spills. Oil has a high thermal conductivity and low heat capacitance,

such that oil spills heat quickly, becoming warmer than surrounding sea water in the

day, and losing heat much faster, becoming cooler than water during the night. How-

ever, SAR images suffer from a poor signal-to-noise ratio due to sea moisture, surface

roughness, and difference in surface roughness. Alli et al. presented an adaptive sys-

tem based on a fuzzy logic control algorithm to limit the amount of noise in the SAR

system [59]. The filter first estimated a fuzzy derivative, such that it would be less

sensitive to local variations due to structures such as edges. Next, the membership

functions were adapted to the noise level to perform a smoothing. Barni et al. de-

scribed a three step algorithm to segment oil spills from marine backgrounds in SAR
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data from SEASAT and ERS-1 [58]. Using a non-linear filter, the speckle noise was

reduced. Six different filters were compared, noting that the sigma and Kuan filters

produced the best results. Next, using fuzzy clustering to deal with the complex sit-

uations of cover class mixture and vague boundaries, which are common in remote

sensing data, a preliminary partition is produced. Finally, an edge driven cluster

merging technique is carried out to refine the segmentation from the fuzzy clustering.

In Ref [60], de-noising and enhancement of oil slicks in SAR data by speckle reducing

anisotropic diffusion was reported. This method is shown to be quite beneficial in re-

ducing noise compared other filters. Fjortoft et al. presented a segmentation scheme

for SAR data based on edge detection and region growing [61]. By computing an edge

strength map from the ratio of exponentially weighted averages, the difference in the

weighted averages were computed on each side of the pixel from a normalized ratio.

Watershed thresholding was used to obtain closed boundaries. The false detections

from the watershed were then reduced by merging regions whose mean values are

not significantly different. Chaudhuri et al. took a statistical approach to automatic

detection of general disturbances in the ocean. Local statistical-based enhancement

techniques were used to enhance the disturbance features of the ocean’s surface. Seg-

mentation based on feature occurrence convergence partitions the image into target

and no target localizations [62].



Chapter 3

Comparison of Medium and Long

Wave Infrared Imaging for

Ocean-Based Sensing

3.1 Introduction

The infrared region of the electromagnetic spectrum refers to a wide range of wave-

lengths between 740 nm and 300 µm, much of which is not useful for ground- or

sea-based imaging due to atmospheric absorption. The remaining high-transmission

bands are generally broken into four categories [63]:

• Near Infrared (NIR) 0.75 - 1.4 µm,

• Short-Wave Infrared (SWIR) 1.4 - 3 µm,

• Medium-Wave Infrared (MWIR) 3 - 8 µm, and

• Long-Wave Infrared (LWIR) 8 - 15 µm.
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MWIR and LWIR imaging systems can operate completely passively, with no external

illumination since the imager senses the energy directly radiated from the object.

Medium wave infrared and long wave infrared devices can also be split into two

separate classifications based on the detector. Medium wave infrared imagers use

photon detectors, in which the radiation is absorbed within the material through

interaction with electrons causing a change in the electronic energy distribution in

the output. Long wave infrared imagers employ thermal detectors, where the incident

radiation is absorbed, and results in a change in the temperature of the detector

material [64]. Photon detectors boast many benefits over thermal detectors, including

a lower signal-to-noise ratio, and a very fast response. However, in general, these

detectors are heavier and more expensive, mainly due to cooling requirements of

the semiconductor photodetectors. The slower and less-sensitive thermal detectors,

operate at room temperature and are much lighter and more rugged.

Currently, infrared imaging devices are being used in fields ranging from environ-

mental monitoring, to building and home inspections, as well as medicine, agriculture,

surveillance, and fire detection, to name a few. Airborne data collection is a large in-

dustry, with an increasing number of reports from unmanned and manned platforms of

infrared data collection and applications. Using a long wave infrared camera, stream

temperature measurements were recorded from an unmanned aircraft platform. Com-

plex temperature profiles were reported, including warmer water in stagnant areas

after corrections to the data for wind blown across the imagers lens, and areas of high

humidity [36]. Coupling of infrared thermal imaging with an electro-optical imager

allowed for determination of stream temperature measurements, previously unavail-

able to the extent and resolution that were measured, demonstrating the benefits of

thermal imaging for environmental monitoring [35]. Long wave infrared imaging has
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been demonstrated to solve the challenges associated with oil spill detection in wa-

ter due to the uniform emissions in the long wave infrared band, and contrast of oil

with surrounding water [65]. Finally, use of infrared imagery for the detection and

recognition of large vessels has been demonstrated, reporting an increased detection

compared to optical imaging technology [66,67].

Several works have been published on the detection of large marine mammals;

observation of whales with temperatures 0.5 - 1.0oC warmer than surrounding sea

temperatures, as well as blow temperature 0.3 - 4.0oC warmer than the surrounding

water, demonstrating the ability to detect the marine life using land-based IR im-

agery [30]. Tracking of the migration of grey whales for three years demonstrated

that blows were visible both day and night, with a decreased probability of spotting

blows on poor weather days [32]. Further demonstration of the use of infrared imagery

to detect whales based on spray patterns and body temperature was reported, noting

the ineffectiveness of LWIR in high humidity conditions [33]. The first observations of

a thermal footprint, due to mixing of the stratified water, resulting from the tail fluke

of a whale was noted from a twin-engine airplane using IR imagery. It was reported

that trails up to 300 m behind humpback whales, for which they estimated to have

a velocity of 2.4 m/s, were found. Under these conditions it was calculated that the

thermal trail persisted for about 2 minutes [34]. A comparison of MWIR and LWIR

of a wake created by a ship revealed a dark wake pattern in the MWIR, and a bright

pattern in the LWIR. This was attributed to strong surface reflection in the slick-like

wake area. It was reported that for a ship moving at a steady rate, in the presence

of surface heating which creates a temperature stratification in the top 10 meters of

1oC, the wake contrast will be significant [29]. An image processing algorithm to

detect illegal sub-surface vessels based on the thermal wake scarring in the long wave

infrared region was reported, reporting a low false detection rate, and the potential
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for real-time performance [68].

This Chapter provides an overview of the physics related to infrared imaging de-

vices, based mainly around passive detectors; MWIR and LWIR. Further, the process

for the selection of an infrared sensor for ocean-based imaging is presented, including

a comparison of medium-wave and long-wave images.

3.2 Theory

A thermal imager converts energy in the infrared region of the electromagnetic spec-

trum into a visual representation of the temperature profile of a scene. The total

contributions of radiation of the thermal profile of a scene are a result of an object

emitting radiation, as well as reacting to incident radiation by reflecting or absorbing

some portion of it.

3.2.1 Measurement Process

Conservation of energy requires that the sum of the absorbed, transmitted, and re-

flected energy be equal to the incident energy, described with the coefficients of ab-

sorption, α, reflection, ρ, and transmission, τ , as [63]

α + ρ+ τ = 1. (3.1)

A perfect blackbody is a perfect absorber of energy, such that α = 1, and therefore

ρ = τ = 0.

Planck’s Law describes the radiative properties of a perfect blackbody in terms of

the spectral exitance, Mλ, as a function of temperature, T , and wavelength, λ, such
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that

Mλ(λ, T ) =
2πhc2

λ5
(

1

ehc/λkBT − 1
) (3.2)

where h is Planck’s constant, c is the speed of light, and kB is Boltzmann’s con-

stant [69]. The wavelength of peak exitance, λmax, determined by differentiating

Equation 3.2 with respect to λ, (with Mλ=0) is found to be

λmax =
hc

5kBT
=

2897.885

T
[µm ·K] (3.3)

known as the Wien displacement law [70]. Further, the Stefan-Boltzmann law gives

the total radiant heat energy emitted from a body, found by integrating Equation 3.2

over all wavelengths,

W = σ T 4 (3.4)

where σ is the Stefan-Boltzmann constant [71, 72]. Figure 3.1 presents Planck’s Law

for different temperature values between 273 - 1000 K, along with calculated values

for the wavelength of peak exitance and total radiant exitance corresponding to the

curves. As the temperature increases, the wavelength of peak exitance decreases,

while the total power emitted by the blackbody increases. At 273 K the value of peak

exitance is 10.61 µm, whereas at 800 K the value of peak exitance is found to be

3.62 µm, which fall in the LWIR and MWIR range, respectively. Further, the total

radiated energy at 800 K is found to be approximately 70 times larger than at 273

K.

To satisfy equilibrium conditions, Kirchoff’s Law states that the coefficient of

absorption must equal the emissivity, α = ε, which describes the efficiency with

which a blackbody radiates energy. Radiation from a real source is always less than a

blackbody, however. In general, most materials studied for practical applications are
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assumed to be greybodies, which have a constant scale factor relative to a blackbody

[73]. It follows then that for a real surface the emissivity can be defined as [63]

ε =
Wobj

W
(3.5)

where Wobj is the measured total radiant exitance from a surface, and W is the

calculated total radiant exitance of a blackbody at the same temperature.

The radiation energy received by the sensor of an infrared camera is the sum of

emitted radiation from the target object, the radiation from the surroundings reflected

on the target object, and emitted radiation resulting from absorption of radiation in

the atmosphere. It follows that the total radiation received by the sensor can be

described as

Mtotal = ε · τatm ·Mobj(Tobj) + ρ · τatm ·Msurr(Tsurr) + ε ·Matm(Tatm) (3.6)

where τatm accounts for attenuation in the atmosphere due to absorption and scatter-

ing [74]. If the object is an opaque greybody, then τ = 0, and Equation 3.1 simplifies

to give

ρ = 1− ε. (3.7)

Further, it is reasonable to assume that atmospheric transmittance is dominated by

absorption losses, such that ε = 1− τatm [63]. Therefore, Equation 3.6 becomes

Mtotal = ε·τatm ·Mobj(Tobj)+(1−ε)·τatm ·Msurr(Tsurr)+(1−τatm)·Matm(Tatm). (3.8)
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3.2.2 Atmospheric Effects

Atmospheric window regions are defined by molecular absorption by atmospheric

molecules, primarily CO2 and H2O vapor. From Equation 3.8, it becomes obvious

that thermal imaging is very sensitive to external influences on the radiation that the

camera detects [74]. The absorption of the radiated energy is related to the extinction

coefficient, κ, as [63]

α(λ) =
4πκ(λ)

λ
. (3.9)

Figure 3.2 shows the atmospheric transmission of radiation from 0.9 - 5.6 µm and

7 - 26 µm in the skies above Mauna Kea Observatories in Hawaii (Data from Gemini

Observatory [2]).

The absorption of a material also governs the penetration depth of the electromag-

netic wave into a surface, such that according to the Beer-Lambert law, the intensity,

I, decreases as

I(d) = Ioe
−α·d (3.10)

where Io is the initial intensity, and d is the depth. The penetration depth, δp, is

simply α = δ−1p [75]. The absorption coefficient, α, greatly varies depending on the

wavelength (see Figure 3.3). In the visible region of the electromagnetic spectrum (390

nm - 750 nm) the absorption reaches below 0.001 cm−1 with penetration depths to

almost 1000 m. In this region the transmittance is much larger that zero, as expected

as water is a transparent material. Conversely, in the infrared wavelength range (770

nm - 100 µm) water is essentially opaque, with a transmittance of approximately

zero. Absorption coefficient values are between 0.1 and 104 cm−1, such that infrared

radiation is absorbed between 10 µm and 1 m of the water surface [3].
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3.3 IR Selection parameters

An understanding of the parameters which affect the resulting data collected by the

infrared camera is required to maximize the use for detection, tracking, or other

applications.

3.3.1 Spectral Band

The two wavelength windows of importance for thermal imaging are medium wave

infrared and long wave infrared. The 5 - 8 µm range is unusable due to absorption by

water vapor in the atmosphere, note that τ = 0 in this range in Figure 3.2. Depending

on the application, the wavelength range of the sensor has a significant impact on the

results. Moreover, LWIR and MWIR differ with respect to atmospheric transmission.

MWIR has superior clear weather performance, with a higher transmissivity under

high humidity, whereas LWIR performs better in fog and dust conditions, and has a

higher tolerance to atmospheric turbulence [76]. By comparison, in a category II fog,

in which the visual detection range is 0.61 km, it has been reported that the detection

range was 0.54 km and 2.4 km for MWIR and LWIR, respectively [77].

3.3.2 Thermal Resolution

The thermal resolution of the infrared imager is the smallest temperature difference

that can be measured. This measure is commonly expressed as the NETD, or noise

equivalent temperature difference, determined as the temperature difference which

produces a signal equal to the camera’s temporal noise [78]. NETD is determined by

multiplying the detectors RMS noise by the signal measured over the temperature dif-

ference. Currently available uncooled LWIR sensors report a NETD of approximately

30 mK. Cryogenically cooled detectors have an increased sensitivity, resulting in a
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lower NETD value, with currently available cryogenically cooled MWIR and LWIR

reporting NETD values less than 20 mK and 25 mK, respectively. Cryogenic cool-

ing becomes a requirement when an increased sensitivity is needed in the wavelength

range of the imager [77].

3.3.3 Integration time

The exposure time represents the time required for an infrared camera to capture

a single frame of data, commonly also referred to as the exposure time or thermal

time constant. It is analogous to the shutter speed of a digital camera, where the

opening and closing of the shutter to collect the photons creates a single frame. If an

infrared camera is moving quickly, a shorter exposure time is desired since it is less

likely to result in image blurring. However, the shorter integration time may result in

under-exposure. Longer exposure times allow more collection of the incoming energy

from an object, but will result in blurring for a quickly moving frame. In general,

there is an inverse relationship between exposure time and sensor sensitivity, where

highly sensitive sensors require less time to collect the same image. Moreover, the

integration time also affects the frame rate that the infrared imager can record data.

With frame rates ranging from 9 Hz, up to 380 Hz, a higher frame rate increases the

amount of data collected.

3.3.4 Field of View

The field of view (FOV) is the angular extent of the observable object field, defined

by the lens and detector of the imager [74]. The field of view can calculated as

FOV = 2 · d tan
θ

2
(3.11)
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where d is the distance to the scene, and θ is the angle of view. Figure 3.4 shows

the field of view for a imager, where hFOV is the horizontal field of view, vFOV is

the vertical field of view, and iFOV is the instantaneous field of view. The spatial

resolution of the focal plane array describes the instantaneous field of view. This is the

extent of an individual pixel, determined by dividing the FOV by the pixel dimension

of the given axis.

The iFOV can be increased by decreasing the distance between the imager and

target, or by decreasing the angle of view of the infrared camera. For example, if an

infrared imaging device is fixed to an aircraft flying at an altitude of 150 m above

sea level, where the lens of the imager has a angle of view of 26o x 20o, the FOV is

determined to be 69.3 m x 52.9 m, and the iFOV is calculated to be 10.8 cm/pixel

x 10.3 cm/pixel. If θ remains constant, and d is increased to 600 m above sea level,

the FOV becomes 277.0 m x 211.6 m, and the iFOV is 43.0 cm/pixel x 41.3 cm/pixel.

If instead the angle of view of the IR camera is 14o x 11o, the FOV at 600 m would

be 147.3 m x 115.5 m, and the iFOV would be 22.9 cm/pixel x 22.6 cm/pixel. If the

object of interest is known, selecting a lens such that the object fills the FOV will

result in the best imagery with the most measurement data on the object.

Figure 3.4: Demonstration of the field of view for an infrared camera.
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3.3.5 Bit Depth

The total number of intensity values that can be stored for a given scene is dependent

on the bit-depth of the recorded data. In general, infrared images are recorded as 8-bit

or 14-bit images, and with 2n available bins, this results in 256 and 16384 individual

intensity bins available for the recorded data, respectively. If the NETD of the imager

is 50 mK, the range of temperature values available for a 8-bit imager is 12.8 K,

whereas for a 14-bit imager is 814.2 K.

3.4 Results & Discussion

3.4.1 Experimental Design

The data presented in this section was collected from a float plane in the channel

between Portugal Cove and Bell Island in Newfoundland, Canada. The approximate

average speed of the aircraft was 60 knots, with a height above sea level between 150

m and 300 m. On this day, St. John’s International Airport reported a mean temper-

ature of 12oC, with a maximum temperature of 15.3oC, and a minimum temperature

of 8.6oC. A FLIR Photon640 LWIR camera, a FLIR SC5000 MWIR camera, and a

Panasonic video recorder were mounted on a hand-held platform, with approximately

20 cm between each camera. Table 3.1 presents a comparison of the specifications of

the thermal imaging devices used. It should be noted that the intensity values of the

medium wave infrared images have been adjusted using imadjust in MATLAB [79] so

the 14-bit data could be viewed.
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Table 3.1: Infrared imager comparison for options used during the data collection
presented.

Device FLIR Photon640 FLIR SC5000
IR Range 7.5 - 13.5 µm 2.5 - 5.1 µm
Detector Vanadium Oxide Indium Antimonide
Resolution 644 x 512 640 x 512
NETD 50 mK 20 mK
Integration Time 10 ms 1 µs - 20 ms
Frame Rate 9 Hz 60 Hz

3.4.2 Infrared Image Comparison

Figure 3.5 shows a comparison of an optical, medium wave infrared, and long wave

infrared image taken from an aerial platform of an approximate 52 m x 15 m ship,

travelling with an average speed of 10.2 knots. In both the MWIR and LWIR im-

ages, the ship appears lighter than the surrounding water, indicating that the ship

temperature is higher. Calculating λmax, assuming that the temperature of the water

is approximately 5oC and the temperature of the ship is 12oC, Equation 3.3 gives

10.4 µm and 10.2 µm, respectively. The wavelength of maximum exitance for both

the ship and the surrounding ocean falls within the LWIR region, indicating that the

majority of the radiation in the scene falls in this thermal band as well.

For military and surveillance uses, it has been accepted that MWIR imaging yields

the best results for imaging and detection of vehicles, ships, and aircraft due to the

increased sensitivity to these objects [64]. The emissivity values for water and steel

are 0.96 and 0.16, respectively [80]. By combining Equation 3.4 and Equation 3.5,

an equation for the total radiant exitance for a greybody is found, Wobj = εσT 4.

Therefore, the total peak exitance for the surrounding ocean water and the ship is

found to be 325 W/m2 and 60 W/m2, respectively. Based on this calculation the

surrounding water could easily be assumed to dominate the energy received by the

sensor. However, according to Equation 3.7, an object with a low emissivity value
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(a)

(b)

(c)

Figure 3.5: A comparison of a) an optical image with b) a medium wave, and c) a
long wave infrared image of a ship.
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has a high coefficient of reflectance. Recall from Equation 3.8 that an infrared imager

does not receive the temperature of an object, but instead the energy of the scene. For

example, a steel sheet with a piece of plastic tape (ε = 0.95) fixed to it have the same

measured temperature. If the steel and the plastic are warmed to a higher temperature

than the surroundings, the plastic will appear much brighter in the infrared image than

the steel. Conversely, if the set is cooled below the temperature of the surroundings,

the plastic will appear much darker than the steel. Despite the temperature of both the

plastic and the steel being equal, since the emissivity of the plastic is higher, meaning

it is an efficient emitter, and the emissivity of steel is low, the plastic will more closely

indicate the actual temperature of the steel surface. The radiation received from the

steel is a better indicator of the background temperature since the steel is reflecting

the background radiation. Therefore, since the surrounding water in Figure 3.5 has

a higher emissivity value than the ship, and the surroundings are warmer than the

water, the water represents the target temperature better than the ship. Further, the

steel ship gives a better indication of the background temperature since it has a high

reflectivity value (recall Equation 3.7), and is therefore reflecting the infrared radiation

from surrounding sources such as the land and the sun. This idea is further shown

in Figure 3.6 of a fiberglass kayak in the ocean. It would be expected that the kayak

would be approximately the same temperature as the air/water interface. However,

the kayak, with approximate emissivity of 0.75, is much more prominent than the

background. Emissivity is not a simple material property, however, especially since

factors such as the shape, and viewing angle change the emissivity of an object.

Figure 3.7 presents a set of images of a small boat travelling through the scene.

Comparing the medium wave and long wave infrared images, Figures 3.7b and 3.7c,

respectively, with the corresponding optical image, the wave patterns seen in the

optical image are still found in the medium wave infrared image. Blurring of the
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(a)

(b)

(c)

Figure 3.6: A comparison of an a) optical image with b) a medium wave, and c) a
long wave infrared image of a kayaker.
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(a)

(b)

(c)

Figure 3.7: A comparison of a) an optical image with b) a medium wave, and c) a
long wave infrared image of a small boat.
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image in the long wave infrared image due to a longer integration time is the cause

of the reduced sharpness. If we assume that the aircraft speed is 60 knots, and the

integration time for a single frame for the FLIR Photon640 is approximately 10 ms,

then during the collection of radiation for a single image, the aircraft moves slightly

over 30 cm. For comparison, if the FLIR SC5000 has an integration time of 10 µs,

then the aircraft movement during the imaging process is approximately 3 mm. If

the height above sea level of the infrared imager is 150 m, with a FOV of 26o x 20o,

the iFOV is 10.8 cm/pixel x 10.3 cm/pixel. So for each frame of the recorded infrared

image for the Photon640, each pixel in the image would actually be an average of

a ground area equal to approximately 10 cm x 40 cm. Moreover, if the altitude is

increased to 600 m above sea level, the iFOV becomes, 58.6 cm/pixel x 43.0 cm/pixel,

then the ocean area averaged during a single frame is larger than 0.3 m2.

Reflection of sunlight on the ocean surface creates many problems in image pro-

cessing for detection or tracking in optical and infrared images. Figure 3.8 presents

an image set where a small boat is travelling directly through the reflected sunlight.

In both the optical and medium wave infrared image, Figure 3.8a and 3.8b, the reflec-

tion of the sun saturates approximately half of the imaged scene. In particular, the

target in the MWIR image is much less visible than previously seen. However, in the

LWIR image, Figure 3.8c, reflected sunlight is not apparent in the image, with the

target to background contrast quite good. Solar interference is noted as a problem in

visible band and medium wave infrared cameras [65]. In the long wave infrared band,

solar rays are diffusely reflected from the water surface. In fact, one of the major

advantages of LWIR sensors is the uniform signal in most conditions, both day and

night [77].

Reflections from objects has a significant effect on the appearance of a thermal

profile [76]. It was demonstrated that for a 17oC object, the received radiation in
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(a)

(b)

(c)

Figure 3.8: A comparison of a) an optical image with b) a medium wave, and c) a long
wave infrared image of a small boat travelling in an area of direct sunlight reflection
on the ocean’s surface.
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the MWIR band was 24 W/m2 from reflected solar radiation, and 4.1 W/m2 from

the emission of the blackbody. Conversely, in the LWIR thermal band for the same

object, the reflected solar radiation at ground level was 1.5 W/m2, whereas the emitted

radiation was 127 W/m2. The sunlight is nearly negligible in the LWIR band, whereas

in the MWIR band it dominated the received signal [81]. However, the thermal

contrast of this scene, arising from temperature variations and differences in emissivity,

will be larger for in MWIR [76] (An image demonstrating this concept is shown in

Chapter 6). In the medium wave infrared image the pavement, ε = 0.90 - 0.98, has

a very high contrast when compared to the surrounding trees and grass, whereas in

the long wave infrared image the contrast is not as large.

Figure 3.9 shows an image of a cliff near the edge of the ocean. This is a more com-

plex scene than has been presented in the previous images with respect to the wider

temperature range. With distinct levels in the range of [0, 16,383] for a 14-bit image,

the number of discrete bins can be much larger than an 8-bit image format. Figure

3.10 presents the histograms of the thermal images in Figure 3.9. The histogram in

Figure 3.10a is the original histogram of Figure 3.9b before histogram adjustment.

The intensity values range from 4706 to 7935, with all 3229 bins filled. From Table

3.1, the NETD of the SC5000 is 20 mK, which gives an approximate temperature

range in the scene of 64.6oC. The large temperature range in this image is due to

higher apparent temperatures of objects. It should be noted that for the histograms

here, the range of the x axis is [0 65535], which corresponds to a 16-bit image, due to

image storage standards. The range of intensity values is better seen in Figure 3.10b.

The corresponding histogram for the long wave band image is given in Figure 3.10c.

In this case, each of the 255 bins are filled.
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(a)

(b)

(c)

Figure 3.9: A comparison of a) an optical image with b) a medium wave, and c) a
long wave infrared image of the side of a cliff near the ocean.
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Figure 3.10: A comparison of the histograms of the a) medium wave, b) the adjusted
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3.5 Conclusions

The thermodynamic background of infrared thermal imaging was presented. The

physical relationship between theoretical blackbodies and real surfaces was described,

concluding that the majority of the radiation emitted from the surface of the ocean

will be in the LWIR spectrum. Using a radiometric chain technique, an equation for

the infrared radiation of a real scene was derived. Thermal infrared imaging devices

and the factors which affect the resulting image quality were discussed, relating to the

physics of the detectors, platforms, and scenes. The selection of a long wave infrared

sensor for the application of thermal wake detection was summarized, comparing data

collected for medium-wave and long-wave infrared imaging devices from a low altitude

aircraft platform. Notably, since the thermal wake patterns of the semi-submersible

vessels are expected to differ in temperature from the surrounding water by less than

1oC, an imager with a low NETD value, less than 50 mK, is required. It was also

determined that 8-bit data is sufficient for thermal wake detection.



Chapter 4

Development of an Algorithm to

Detect Sub-Surface Vessels Using

Infrared Imagery

4.1 Introduction

Detection of surface traveling vessels based on wake patterns in synthetic aperture

radar images have been well investigated since these wake patterns were first noted in

images from SEASAT in 1978. It has been demonstrated that the detection of wake

patterns is advantageous since wake patterns are much larger and more distinct, as

compared to the hull of a ship [48]. Further, wake detection yields a better estimate of

the ships location, as well as estimates of moving ship parameters and hull character-

istics [48, 51, 52]. The detection and registration of ship wakes in synthetic aperture

radar has improved the probability of detection and reduced the false detection of

vessels. Transformation-based algorithms, such as Radon transform, have proven to

be most successful in wake recognition. These algorithms accentuate straight line
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features in an image, through integration of the intensity along all directions in the

2D image space. This integration process also tends to cancel noise, resulting in a

greater signal-to-noise ratio in the transform image [53]. Currently, Analysts’ De-

tection Support Systems, to automatically detect ship wakes, are being applied to

guarantee consistency due to the extensive amount of data collected in short periods

of time, and the substantial amount of open ocean in the captured imagery [46].

The density of water is dependent on temperature in a non-linear relation, such

that the density increases as temperature decreases, to a maximum density at ap-

proximately 0oC for seawater. This density-temperature relationship, coupled with

surface heating and the earth’s rotation creates what is known as a permanent ther-

mocline, a water region in which the temperature drastically declines from the surface

to about 1000 m, with net temperature differences of up to 20oC [82]. The disturbance

of the propeller rotation and the vessels’ hulls in the deeper, colder layers manifests to

the surface due to the upward motion of the disturbance, and is further promoted by

the upward travel of bubbles within the turbulent cloud [28]. An agreement between

numerically modelled and experimental thermal wake patterns created by the turbu-

lent water motion behind a ship during both day and night has been reported [23].

Predictions using numerical simulations found that during the night, a warm water

wake, attributed to a lack of surface heating, could exist [23]. Thermal wake temper-

atures were reported to be approximately the same as that of the water at the keel of

the ship [7]. Moreover, a theoretical bases for the infrared detection of a submerged

vessel was reported, experimentally confirmed through measurement of a temperature

differential of 3oC of the wake with the surrounding water in a wave tank, equivalent

to the temperature stratification in the tank [24, 25]. Further theoretical support for

thermal wake detection was also reported [26, 27, 83]. The persistence of the cold

water disturbance was noted to exceed 2 minutes [26]. A comparison of mid wave
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infrared (MWIR) and long wave infrared (LWIR) images of a wake created by a ship

revealed a dark wake pattern in the mid wave infrared image, and a bright pattern

in the long wave infrared image. This was attributed to strong surface reflection in

the slick-like wake area [28]. For a ship moving at a steady rate with a warm ocean

surface layer, and a stratification temperature difference in the first 10 meters of 1oC,

the wake contrast was found to be significant [29]. Finally, the first observations of

the thermal footprint using infrared imagery resulting from the tail fluke of a whale

was reported. It was noted that trails existed up to 300 m behind humpback whales,

with an estimated swimming speed of 2.4 m/s, equaling a thermal trail persistence of

about 2 minutes [34].

In this work, the development of a real-time image processing algorithm for de-

ployment on a small unmanned aircraft system, in the vast ocean corridor of North

America is outlined. The deployment platform imposes restrictions on the available

payload size and power, while still requiring full frame rate, real-time operation of the

system. Prominent thermal wake patterns in long wave infrared images, captured with

a FLIR Photon640 are presented. Cold water scarring of the surface is confirmed dur-

ing normal day-time operations. Warmer water wake patterns were noted, attributed

to a lack of surface heating [68]. Temperature differences were found to be consistent

with the measured temperature profile using Vemco Minilog II temperature loggers

for each data set. Image processing techniques are compared to accentuate these wake

patterns for the observer. Finally, results from a custom algorithm, designed to de-

tect the thermal wake patterns from a small unmanned aerial platform with limited

payload capacity are presented for both warm and cold water wake patterns.
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4.2 Experimental Design

A FLIR Photon640 camera was installed on the inside of a specialized mount on a

Piper Cherokee Six aircraft aimed straight downward. The FLIR Photon640 images

were collected in an 8-bit TIFF format at 9 frames per second. The infrared imager

was fitted with a 25 mm lens (hFOV 26o x vFOV 20o) [84]. Wake patterns were

created by a 7.5 m boat (Everglades 24 243cc) with propeller at approximately 2 m

below the surface. This vessel was chosen based on a hull size and propeller depth

similar to that reported for self-propelled semi-submersible vessels, which travel just

below the surface of the water [15]. Data was collected over two days in San Diego,

California in an area over the Pacific ocean due west of Scripps Pier, in the La Jolla

area. Images were recorded a minimum of 300 m from the shoreline, and any images

of land were removed manually.

Temperature measurements were recorded using five Vemco Minilogger tempera-

ture recorders. The loggers were suspended from a large buoy at depths of 0.08 m,

0.51 m, 1.07 m, 2.03 m, and 3.86 m below the surface. The temperature loggers were

set to record at one second intervals during each deployment, and the temperature

data was averaged over the time in the water after reaching a stable temperature,

determined visually as the ranges with a linear slope of approximately zero. Note

that the time constant of the mini loggers is 150 s.

4.3 Results & Discussion

4.3.1 Data Set 1

Weather data for this set is presented in Table 4.1, with no notable ambient condi-

tions. Infrared images were recorded at a height of 150 m above sea level. Average
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Table 4.1: Ambient weather conditions during data collection periods, from NOAA
station 9410170 off Scripps Pier in San Diego, California.

Measurement Set 1 Set 2

Minimum Temperature 9.4 oC 11.7 oC

Maximum Temperature 21.7 oC 23.9 oC

Mean Temperature 13.5 oC 16.3 oC

Precipitation No No

Visibility 14.8 km 14 km

temperature measurements during two times of deployment are shown in Figure 4.1.

In Figure 4.1a, a temperature difference of approximately 1oC was found between the

surface measurement and the lowest temperature logger at approximately 4 m below

the surface. It is also notable that the top two temperature loggers (at 0.08 m and

0.51 m) were approximately the same temperature, with the remaining temperatures

measured decreasing with increasing depth, as expected. Figure 4.1b presents the

temperature measurements taken with the loggers deployed into the thermal wake

behind the boat. As expected, the measured surface temperature is lower than the

water just below it. Due to the thermal constant of the temperature loggers, an

immediate temperature measurement was not reliable. Instead, these measures were

averaged as the wake developed, which could potentially explain the smaller than

expected temperature differential at the surface. Figure 4.2 presents a stitched im-

age of the thermal wake-based on the GPS position of each sub-image. The total

length of the wake is determined to be over 215 m long, with the width growing from

approximately 2 m, to approximately 6 m towards the end of the wake.

A sample image of a wake pattern is shown in Figure 4.3. The mean pixel intensity

value in the thermal wake region was 57, and the remaining background mean pixel

intensity value was 88. This was determined to be an approximate 1oC temperature
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Figure 4.1: Temperature profile of a) deployment 1 of the Minilog recorders over
the side of the stationary boat near moored targets, and b) deployment 2 of the
Minilog recorders into the boat’s wake during data collection. Trend lines are added
to accentuate the data relationship. Note that there is approximately 90 minutes
between Deployment 1 and 2.
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Figure 4.3: Thermal trail from a 24 foot boat collected from 150 m ASL using a LWIR
camera. Approximate field of view is 69 m x 52 m.
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difference, which is consistent with the measured range in temperature difference in

the top 4 m of water in the testing area, shown in Fig. 4.1. It is also notable that the

total range of pixel intensity value in Figure 4.3 is only 35% of the total available pixel

intensities in the image. This low contrast is due to the small temperature variation

between the thermal wake region and the surrounding water.

4.3.2 Data Set 2

Weather data for this set is presented in Table 4.1. It is notable that a marine

layer was present over the area from Del Mar to Mission Bay from early morning

until early afternoon, at which time the tests began. The two deployments of the

Minilogger recorders are highlighted in Figure 4.4. The logger at the deepest position

malfunctioned, resulting in no usable data. In Figures 4.4a and 4.4b the temperature

differential between the surface and the lowest logger is much different than was

present in Figure 4.1. In particular, Figure 4.4b shows that the surface temperature

is 0.2oC colder than the lowest temperature logger.

Figure 4.5a presents an infrared image collected from 600 m above sea level. The

thermal scar created by the propeller motion is less distinguishable than presented

in the previous section. More importantly, the trail is lighter than the surrounding

water, signifying that it is warmer. This can be attributed to the presence of a marine

layer through the morning which limited the direct sunlight and therefore the source

to heat the surface. Therefore, the differential in temperature in the top 4 meters of

the ocean was not large enough to create a significant thermal scar. The presence of

a thermal scar warmer than the colder surrounding water was previously predicted

through simulation to be possible during the night [23].

In an attempt to further discriminate the warm thermal scar from the surrounding

ocean water, two methods were attempted. Figure 4.5b presents the resulting image
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Figure 4.4: Temperature profile of a) deployment 1 of the Minilog recorders over
the side of the stationary boat near moored targets b) deployment 2 of the Minilog
recorders into the boats wake. Note that there is approximately 30 minutes between
Deployment 1 and 2.
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where a mean image was calculated from a set 101 images captured around the original

image. This mean image was then subtracted from the original image. The resulting

image, presented in Figure 4.5b, is shown after a histogram equalization is performed.

Figure 4.5c presents the same image as Figure 4.5b cropped from a resolution of

644 x 512 pixels to 161 x 128 pixels for comparison with the images captured at 150

m above sea level. This method results in an image with additional noise compared

to the original image. However, the thermal wake pattern in the image is much more

accentuated than the original. Further, it should be noted that the thermal wake trail

is approximately 50 m, shown in Figure 4.5b.

The second technique averaged the pixels corresponding to the same location,

since both the altitude and the speed of the aircraft are known. The original image is

shown in Figure 4.5d. By cropping the input images to 161 x 128 pixels, and shifting

the frame by the approximated vertical pixel change per frame, an average image was

created, presented in Figure 4.5e. Figures 4.5d and 4.5e are then subtracted, to give

Figure 4.5f. It is notable that Figure 4.5f is presented after a histogram equalization

is performed. Averaging the pixels based on location resulted in an image where

the wake is prominent, with little to no noise in the background, shown in Figure

4.5f. The resulting image, however, does not contain a wake pattern as prominent as

Figure 4.5f. This is attributed to the fact that the intensity difference between the

wake pattern and the surrounding water was small enough that the when the original

is subtracted from the averaged image, the further reaching thermal wake was also

removed.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: a) Infrared image of a thermal wake pattern from 600 m ASL (Approximate
field of view is 277 m x 212 m.), b) image after subtracting averaged image, c) resulting
image cropped to a field of view of approximately 69 m x 52 m. d) Cropped infrared
image of a thermal wake pattern, e) resulting image from averaging pixels at the same
location over 36 frames, f) image created by subtracting averaged image from original
image.
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4.4 Real-time Algorithm Development

The current image processing algorithm for implementation on a small unmanned

aerial system for detection of thermal wakes is presented in Figure 4.6. The original

image is shown in Figure 4.7a. Since the image is taken during the daytime, the inverse

of the image is taken, and then a median filter is applied to the entire image to reduce

the noise without blurring the edges. Next, in preparation for the creation of a binary

image, a global normalized intensity value is computed using Otsu’s method. This

value is added to a small constant, currently 0.05, to create a binary image, shown in

Figure 4.7c. Next, morphological operations are applied to remove the small objects,

then to fill any small holes. The result of the morphological processing is presented

in Figure 4.7d. Finally, a Hough transform is applied to calculate the longest line in

the image, where the Hough parameter space plot is shown in Figure 4.7e, and the

longest line segment is represented in Figure 4.7f. Overall, for a single image, this

process requires approximately 0.17 seconds to process.

This algorithm has been tested on the data sets described above, which totals

15,223 images, with a false detection rate lower than 10%. The data set with the wake

appearing warmer than the surrounding water also performed well. The wake patterns

are detected under most cases, using night mode, but not for as many sequential

frames. This occurs since the thermal scar is not as prominent in the image, partly

due to the smaller temperature differential, but also due to a much higher altitude

(600 - 900 m ASL vs 150 m). The wake pattern could also become more distinct with

newer infrared technology. A current limitation of this algorithm occurs when other

long, straight objects, such as shoreline or piers are present. Further, if more than

a single thermal trail occurred within the imagers FOV, the algorithm would only

detect the longest thermal trail.
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Figure 4.7: A demonstration of images at different stages of the algorithm, where a)
presents the original image, b) is the histogram of the original image, c) is the created
binary image, d) is the binary image after morphological transforms, e) shows the
results of the Hough transform and f) shows the resulting detection. g) Presents the
binary image of Figure 4.5a, and h) shows the detected wake pattern of (g).



62

4.5 Conclusions

The presence of submerged vehicles in the waters of North America poses a major

threat. It was demonstrated that temperature measurements in the top 4 m of the

ocean water under normal solar heating gave a stratification with a differential of

approximately 1oC. Moreover, when deployed into the wake pattern, the surface tem-

perature was found to be lower than the water just below it. Without the availability

of solar heating due to ambient conditions, a warm wake pattern was noted, consistent

with previously reported predictions from numerical models [23]. Finally, an image

processing algorithm using a Hough transform to highlight the longest line segments

in the images was presented. It was shown that this algorithm can distinguish the

wake patterns from the surrounding water in the long wave infrared images.



Chapter 5

Autonomous real-time infrared

detection of sub surface vessels for

unmanned aircraft systems

5.1 Introduction

Thermal imagery of the disturbed colder water layers, driven to the surface by the

vessel will allow for the detection and interdiction of the semi-submerged illegal traf-

fic. A completely autonomous system, including on-board processing for the smart

recognition of a radar eluding, low profile vessels is presented. This smart system

could potentially be coupled with airborne automatic identification system to aid in

the discrimination of legal and illegal marine traffic. Further, the ability to have mul-

tiple UAs monitoring adjacent areas would aid in the follow-up mission to decrease

false alarm rates and increase the percentage of detected illegal vessels.

Infrared imaging devices with a high resolution, a high responsivity, and a very

low minimum resolvable temperature will be required to provide high quality imagery
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for airborne detection of the thermal wake. IR signatures of ship wakes are highly

variable in both persistence and temperature contrast as compared to the surrounding

surface water, depending on both meteorological and oceanographic parameters [7].

These systems will require further development to both increase durability, and reduce

weight for housing in small UA.

An unmanned aircraft with an integrated payload allowing the automatic detection

of illegal traffic will greatly reduce the required resources for the detection of these

self-propelled semi-submersibles (SPSS), as well as increase the number of interdicted

vessels. The threat of these vessels cannot be understated; payloads from drugs to

weapons of mass destruction could be housed in these small SPSS. An increased

detection of this illegal traffic is required for national security both in the ports along

the coastlines of Canada, as well as the rest of North America.

There is no reported work on development of smart IR systems for detection of the

thermal wakes of submarines. However, integration of IR devices into commercially

available computer vision technologies are used in applications such as quality control

applications [8], oil slick thickness detection [9], and critical temperature measure-

ments of machinery [10]. In these applications, IR imagers have proven to be very

effective, boasting multiple benefits over other technologies, including boosting effi-

ciency and reducing costs. In particular, surveillance imaging systems with detection

and tracking capabilities over complex terrain have been developed and have been

demonstrated to be successful [11–13].

5.2 UAS Payload

A payload system to mount a FLIR A65 long wave infrared camera and GoPro Hero2

optical camera for autonomous data collection was developed. An overview of the
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Table 5.1: Operating specifications for the FLIR long wave infrared imagers used for
data collection in this study.

Device FLIR A65 FLIR Photon640
IR Range 7.5 - 13.0 µm 7.5 - 13.0 µm
Detector Vanadium Oxide Indium Antimonide
Resolution 640 x 512 644 x 512
NETD 50 mK 50 mK
Integration Time 12 ms (typical) 10 ms
Frame Rate 30 Hz 9 Hz

operating specifications for the FLIR A65 are given in Table 5.1. The camera is

mounted on an Arris Zhaoyun 3-Axis brushless gimbal with a custom carbon fiber

mount for both imagers (see Figure A.1). This customized gimbal was designed to

mount to the base of a Mugins 3M H-Tail TBM unmanned aircraft platform in the

payload bay using a custom mounting system containing 16 vibration damping balls

to reduce the vibration of the gimbal. The gimbal contains a Basecam SimpleBGC

controller with an on-board inertial measurement unit (IMU), and allows full control

over the tuning and program of the gimbal, as well as stabilization. It is noted that

a 113 gram counter-weight was added to the outside edge of the gimbal frame (near

the GoPro) to balance the gimbal.

To monitor and control the system during flight, a ground control station was

fabricated containing 2.4 and 5.0 GHz links to the aircraft, and a display for real-

time feedback. The architecture of the system is presented in Figure 5.1. A Zotac

Nano computer was used to store the images collected by the FLIR A65, and the

GoPro images were recorded on an SD card on-board the GoPro. Both the GoPro

and the FLIR A65 were connected to 5.8 GHz transmitters for monitoring from the

ground station. On the ground, two 5.8 GHz receivers received the signals from the

air. The first was a dipole antenna attached within the ground station which works

in the general flight area, in a spherical radius of 2 - 3 km. The second was a large
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dish antenna with a 5 degree beam width attached to a telescopic mast, and raised

approximately 5 m above the ground pointing in the general flight direction. Both

antennas were attached to a diversity system which continually monitors the signal

strength, and passed the strongest signal to the ground control station LCD screen.

The 2.4 GHz transmitter in the ground station allowed for full control over the 3-axis

gimbal during flight, with joystick control over each axis, or simple mode control.

The gimbal was generally set to follow mode, in which the on-board IMU maintained

a straight down view by compensating for aircraft motion. Finally, the Basecam

IMU was connected to the Ardupilot autopilot system and was set up to record the

approximate swath and projection of the infrared camera for syncing of flight data,

including speed and GPS.

In order to test the system, and reduce the required resources for data collection

and system tuning, a custom bracket was created to mount the stabilized gimbal

system on a Manfroto tripod. This allows the system to be raised approximately

2 m above the ground. This system allowed for easy transport in a backpack, in

particular for data collection in the strait between Bell Island and Portugal Cove,

NL. Additional information and images of the systems described in this section are

provided in Appendix A.

5.3 Transform Comparison

The extraction of image elements such as lines, edges, and curves is often a key step

in image processing algorithms. Of particular interest for line detection is the Hough

transform [85], previously reported for wake detection of SPSS [68]. In comparison, the

majority of the reports of surface-based ship wake detection in SAR images leverages

the Radon transform [86], reporting beneficial results [46]. In the following sections,
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Table 5.2: Comparison of the false detection rate of minimally processed thermal wake
videos for straight line detection using the Hough and Radon transforms.

Number Wake False Detections Missed Detections
of frames Type LWIR Imager Radon Hough Radon Hough

243 Cold Photon640 21 14 4 4
602 Cold Photon640 88 79 3 3
186 Warm Photon640 33 26 12 6
417 Cold Photon640 20 14 2 2
823 Cold Photon640 43 41 7 6
1436 Cold A65 46 32 2 1
1224 Warm A65 98 112 18 15

a brief introduction to the Radon and Hough transform are given. A comparison

of the detection of thermal wake patterns is then summarized. Further theoretical

comparison can be found in Appendix B.1.

To compare the Hough and Radon transform for thermal wake patterns, a script

in Matlab [87] was created for each transform which subjected each transform to the

same image by minimally processing the input data.

A set of seven videos containing thermal wake patterns was created as an input for

the transform comparison. The set of test data contained three videos captured from

an air-based platform in San Diego, CA as described in Chapter 4 and in Ref. [68],

two videos for an air-based platform in Portugal Cove-St. Philips, NL as described

in Chapter 3 and Ref. [84], and two videos were captured for a land-based, tripod

mounted gimbal in Portugal Cove-St. Philips, NL. Each thermal wake video contained

a minimum of 180 frames before and after the wake pattern. A summary of the test

data is presented in Table 5.2. Figure 5.2 shows the Hough and Radon parameter

space representation of the thermal wake image, as well as the corresponding processed

images showing the detected feature.

Before applying the transform to detect the thermal wake pattern, a background

estimation was done to remove any system-based noise and thermal non-uniformity
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(a) (b)

(c) (d)

Figure 5.2: a) Hough parameter space representation of the thermal wake image. The
boxes in the center correspond to points associated with the long lines. These lines
are superimposed onto the original thermal wake image in b). c) Radon parameter
space representation of the thermal wake image. d) Superimposed line corresponding
to the detected straight line segment in the original image.
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across the imaging system. This is done by averaging the first 30 images of each

data set and subtracting the input image from the background estimation image. A

median filter with a 5 x 5 neighborhood was applied to each image to remove salt and

pepper noise in the image, before creating a binary image. Finally, a morphological

open, to smooth contours and remove any small areas of noise, followed by a close

was applied, to eliminate any openings.

The number of false detections and missed detections for the Radon and Hough

transform for the data set is shown in Table 5.2, showing the Hough transform per-

formed equal to or better than the Radon transform on the minimally pre-processed

image in every trial except one. This data was determined manually by recording the

output image and reviewing them.

A false detection was defined as a straight line segment being found in an image

where no thermal wake pattern exists. The majority of the frames causing false

detections were due to changes in the scene, such as a temperature non-uniformity in

the ocean surface which would not be removed in the background removal step. The

Radon transform showed a higher number of false detections, in particular in images

where the amount of noise, in particular around the edges increased. It is expected

that this could be removed with additional pre-processing, but was more susceptible

to false detections due to noise than the Hough transform. For the warm water wake

patterns the rate of false detections was also much higher. Using the Radon transform

this false detection rate was 12.9% for warm wakes, compared to 7.7% for cold water

wakes. Similarly, applying the Hough transform, this rate was 11.6% versus 6.4%

for cold water wakes. This is attributed to additional noise in the image due to the

smaller temperature difference between the surrounding ocean water and the wake

pattern as compared to the warm water wake patterns. Finally, the percentage of

false detections decreased for long wave infrared (LWIR) images recorded with the
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FLIR A65, 5.6%, as compared to the percentage recorded with the FLIR Photon640,

9.2%. In general, less salt and pepper type noise was observed in the data for the A65

as compared to the Photon640.

A missed detection is a frame which does contain a thermal wake pattern that is

not detected. Table 5.2 reveals that the number of missed detections is much lower

than the number of false detections. Moreover, the majority of the missed detections

were observed when the body of the vessel creating the wake pattern entered the

frame. This caused a drastic shift in the thresholding value to create the binary

image, as well as reduced the contrast in the image between the surrounding ocean

water and the thermal wake pattern.

5.4 Real-time Algorithm Overview

The current image processing algorithm for detection of thermal wakes is presented

in Figure 5.3. The input frame is initially subject to a time-sequential processing

step, which routes the image to one of the pre-processing stages of the algorithm,

or the detection procedure, to ensure that the algorithm can perform in real-time.

More than 95% of the frames are used in the detection algorithm, while the remaining

frames ensure the detection is robust and accurate.

5.4.1 Windowed Triple-Vote

The first pre-processing step of the algorithm sets the detection mode of the algorithm

based on the expectation of a warm wake pattern or cold wake pattern, potentially

inverting the grayscale image, adopting a mutli-frame windowed triple-vote process.

This process is represented schematically in Figure 5.4, and in sequence with the real-

time processing algorithm in Figure 5.3 (block p1). For each frame, the mean pixel
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Figure 5.3: Schematic overview of the real-time infrared detection algorithm.
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Figure 5.4: Schematic of the pre-processing step of the algorithm which determines
the detection mode using a windowed triple-vote method in three frames spaced by
time tp1.
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value, or average intensity, is determined in three window locations in the image as

µA =
1

M ·N

M−1∑
x=0

N−1∑
y=0

WA(x, y) (5.1)

where M is the number of pixels in the x-direction, N is the number of pixels in the

y-direction, A represents the window number, and WA is the intensity value of the

(x, y) pixel. The calculated values for µ1, µ2, and µ3 are then used in the following

equality

p1A =


0, if µA + µA+1 + µA+2 ≤ Iµi

1, if µA + µA+1 + µA+2 > Iµi ,

(5.2)

where the resulting value, 0 or 1, is stored in a pre-allocated array. A value of Iµi = 500

was determined by comparing the average intensity of the full set of images for warm

wake and cold wake patterns (summarized in Table 5.2). The values for warm wake

and cold wake trails were averaged, defining an upper and lower bound for the Iµi

constant. A value within the range was determined, weighted closer to the cold wake

average from the range intermediate value due to the confidence based on the grouping

of the cold wake intensity values.

In order to increase the robustness of the pre-processing step to varying sea condi-

tions, the appearance of a ship body, or other unexpected targets, a voting procedure

is implemented over a set of non-consecutive frames, where the result of Equation 5.2

must be equal for all frames, p1A = p1A+1 = p1A+2, for the detection algorithm mode

to change. If any value is not equal to the other values, the detection mode remains

at the previous detection mode. This pre-processing repeats every tp1 seconds.

For the FLIR A65 infrared imager, a window size of 100 x 100 pixels is used

for each window to reduce the number of pixels to less than 10% of the full image
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pixels. The pre-processing is completed for frames 1, 11, and 21 for every 900 frames

(equivalent to tp1 = 30 seconds).

5.4.2 Background Estimation

The next step of the pre-processing phase of the thermal wake detection algorithm

is generating a background model for subtraction from each frame, to correct for

gradients in the infrared image due to heating on the lens or sensor of the imaging

device (see Figure 5.3). Moreover, the generated background model must also take

care to not include the target, which would subsequently be subtracted from the

current frame. It is also notable that infrared imaging devices do generally correct for

gradients across the sensor by performing a non-uniformity correction (NUC) which

was found to work well for the FLIR A65 imager. However, for the FLIR Photon640

LWIR device, the gradients towards the corners of the sensor caused numerous false

detections, and required correction.

To generate a background image, a set of frames are used, where each frame is

spaced by the number of frames in time tbg−elapse, or p2j = tbg−elapse · fps. This

process is represented schematically in Figure 5.3, block p2. Typically a value of

tbg−elapse = 1 seconds has been found to yield a good background estimate. A conse-

quence to this method, however, is that the intensity of the background image may

differ from the frame that it is subtracted from due to the movement of the aircraft,

changes in the reflected sunlight, or other environmental conditions. This change in

intensity causes additional errors and false detections. To solve this problem, the

background estimate is continually updated at a rate of tbg−update. To create the back-

ground estimate, the temporal mean of the frames is calculated after application of a

median filter with a small square structuring element to remove noise. Moreover, to

ensure the estimated background image does not remove the target, a minimum of 3
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frames is used with tbg−update >10 seconds.

5.4.3 Transform Preparation

The formerly described pre-processing steps are used to setup the frames for the

majority of the processing, thermal wake detection. Global thresholding is applied to

the input frame, with the background removal applied, to remove the remaining image

background and isolate regions of interest (ROI). The global thresholding selects pixels

in the image if the intensity is above a threshold computed as

Ti = µ+ kσ (5.3)

where µ is the mean of the pixel intensities, σ is the standard deviation of the pixel

intensities, and k is a heuristic constant. The global thresholding step is used to create

a binary image. The final step in the transform preparation stage of the algorithm,

shown in Figure 5.3, block m1, is a set of morphological operations to remove any

additional noise, smooth the final contours, and close any open spaces in the ROI.

The initial morphological processing steps leverage the length of the wake pattern

in the frame, applying a linear structuring element seventy percent of the vertical

pixel dimension, merging any break and eliminating small holes. However, the length

of this morphological close may fuse additional, shorter lines due to additional noise

causing false detections. Therefore, the angles at which the morphological close are

registered, and used to define a range for a morphological opening with a linear

structuring element with a length of twenty-five percent of the vertical pixel dimension

of the frame. This handling of additional noise also allows the heuristic constant,

k, of the global thresholding to be smaller, allowing the algorithm the ability to

detect wake patterns of lower contrast to the surrounding water. Next, a smaller
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two-dimensional morphological opening is applied to smooth contours, and break or

eliminate thin connections, followed by a morphological close to fill any holes and gaps

in any contours. At this point in the algorithm, a frame containing a thermal wake

pattern contains a channel of white pixels, surrounded by all black. Now that the

pre-processing and frame preparation are complete, the Hough transform is applied

to find the longest straight line segment, corresponding to the thermal wake pattern

of a vessel.

5.5 Results and Discussion

In development of the thermal wake algorithm, the requirement of real-time operation

in a small unmanned aircraft, with restricted power and space, bounded an upper limit

to the processing time for each frame. As discussed in the previous section, detection

on frames during the pre-processing steps is sacrificed. This time-sequential processing

ensures that the most available processing is available for each pre-processing step.

The algorithm was developed for a mini PC containing 4 GB of RAM, and an Intel

i3 processor, using infrared images for the FLIR A65 camera with a resolution of 640

x 512, as reported in Table 5.1. The maximum processing time was determined as

tmax = 1/fps, where fps = 30 Hz for the FLIR A65, and therefore tmax = 0.033 s.

5.5.1 Windowed Triple-Vote

The pre-processing step to determine the detection mode used 3 individual sectors of

the image to improve the robustness of the algorithm by using a windowed triple-vote

process, where two votes are conducted, the first within the image and the second

for multiple images spaced in time. Using 3 sectors within the image ensures that

the presence of a thermal wake pattern, or other thermal discontinuities, such as land
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masses that do not span the entire image do not change the detection mode of the

image. Overall, calculating the mean pixel value in three 100 x 100 pixel sectors in

an image takes a longer time than processing the entire image, 0.01329 seconds and

0.015756 seconds respectively, but still falls below tmax. Moreover, comparing 3 image

votes continuously ensures that the detection mode is correct. Figure 5.5a represents a

LWIR image containing additional noise caused by temperature discontinuities, found

in a set of 32 consecutive frames in the same data set containing a cold wake pattern.

Applying the windowed vote process, the average intensity for the three windows is

64, 75, and 101, where the third value corresponds to the window region containing

the majority of the higher pixel values. Using the multi-frame windowed vote process,

the discontinuity in temperature did not affect the mode of operation. As a second

example, Figure 5.5b presents a frame where an image of a ship is captured. The

average intensity values for the three windows here are calculated to be 38, 40, and

40, comparable to the values in the previous frames where no ship was present.

5.5.2 Background Estimation

The resulting image generated from a set of 5 frames from the background estimate

block of the real-time processing algorithm is presented in Figure 5.6, comparing the

background image created where a median filter with a 3 x 3 structuring element

is applied to each image before the temporal mean (Figure 5.6a) to the background

estimate created by applying the median filter to the the temporal mean image (Figure

5.6b). To compare the resulting background estimates Figure 5.6b is subtracted from

Figure 5.6a, shown in Figure 5.6c, showing the resulting noise remaining in the image.

It is notable that all images required a histogram equalization to redistribute the

intensity values in the image for better viewing. Block p2 take 0.020308 seconds to

complete each run, having the frames saved to the memory so they do not have to be
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(a)

(b)

Figure 5.5: Examples of noise captured in the LWIR data requiring a method such
as the multi-frame windowed vote process to ensure that the detection mode of the
algorithm is correct. a) Scattered thermal discontinuity of an unknown source, and
b) the hull of a ship.
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(a)

(b)

(c)

Figure 5.6: Comparison of background estimation model results. a) Resulting back-
ground estimate when a median filter with a 3x3 structuring element is applied to
each image, b) resulting background estimate when a median filter is applied after
the temporal mean image is created. c) Subtraction of the image in b) from the im-
age in a). A histogram equalization is performed on all images to visually show the
background estimates.
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written each time.

A background estimation technique for thermal images was reported in Refer-

ence [88], applying a median filter to 3 x 3 pixels before determining the temporal

average. Jeon et al. report false background estimations when human targets are

present in the image sequence, but otherwise robust background estimation to changes

through multiple environmental conditions. In this method, however, the camera is

stationary, such that the temporal average is of the same location for each pixel, as

opposed to the moving platform of the UA that the thermal imager is mounted on

for the reported thermal wake detection algorithm. However, assuming the surface

temperature of the ocean is approximately constant within a region, and the imager

noise is at the same location for each pixel, the methods become analogous if the num-

ber of frames used for the background estimation have a decreased amount of elapsed

time between them to account for more abrupt changes in the background temper-

atures. Wang et al. reported a background estimation method for dim and small

targets in infrared images for diverse and unique background scenes based on a total

variation regularization and principal component pursuit method, reporting superior

detection under various background conditions, including detection of a small ship in

the sea [89]. For detection of ship bodies which exist in a small number of the thermal

imager pixels, a method like the formerly mentioned could be beneficial. However, for

the long thermal wake patterns observed here, a memory intensive process does not

benefit the detection of the thermal wake patterns.

5.5.3 Transform Preparation

The final preparation stage before applying the Hough transform requires generating

a binary image and removing any additional noise. A global threshold is applied to

the frame once the background is removed as described in Equation 5.2, followed by
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morphological processing to create a binary image with only large connected regions.

Figure 5.7 shows a series of frames from different data sets of successful detections of

cold and warm thermal wake patterns. Similarly, Figure 5.8 shows a set of images of

missed or false detections. Figure 5.8a shows an example of a LWIR image in which

the metallic body of the ship enters the frame, and the temperature range in the

scene changes from a few degrees, to approximately 15oC, resulting in less contrast

between the thermal wake pattern and the surrounding water. Noting that the sensor

is capable of recording 8-bit data, each gray level would be roughly equivalent to the

NETD of the sensor, 50 mK (see Table 5.1). Moreover, for SPSS detection, the body

of the vessel is expected to be below the surface. Figure 5.8b demonstrates the second

type of missed detection, due to a wake that is near the end of its persistence time,

and barely detectable above the surrounding noise.

5.5.4 Hough Transform

The presence of false detections in the real-time thermal wake detection algorithm

decreased when changing from the older FLIR Photon640 imager, to the FLIR A65

LWIR imaging device. In general, the algorithm is well tuned to discern low contrast

wake patterns from the surrounding ocean water from the global thresholding and

morphological processing steps in the algorithm. However, quick changes in back-

ground noise, notably due to heating of the imager lens or sensor were a notable

source of false detections. An example of this error is shown in Figure 5.8c, where the

quickly changing edge thermal discontinuity caused a series of false detection ahead

of the background estimate updating. However, changing sensors to a newer model

with updated uniformity correction algorithms significantly decreased these false de-

tections. Table 5.3 presents an overview of the number of frames that thermal wakes

were detected, the number of false detections among those detections, and the number
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(a) (b)

(c) (d)

Figure 5.7: Examples of successful detections of a) cold wake pattern using FLIR
Photon640, b) cold wake pattern using FLIR Photon640, c) cold wake pattern using
FLIR A65, and d) warm wake pattern using FLIR Photon640.
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(a) (b)

(c) (d)

Figure 5.8: Missed detections when a) the surface bound vessel enters the frame,
changing the contrast of the scene due to the increase in temperature range, and
b) near the end of the wake persistence as the wake begins the normalize to the
surrounding water temperature. False detections due to c) improper background
estimate based on thermal heating of the imaging device, and d) wake like patterns
in the ocean surface.



85

Table 5.3: Comparison of the number of frames where thermal wakes were detected,
as well as missed and false detections for the real-time processing algorithm.

Number Wake Frame with False Missed %
of frames Type LWIR Imager Detections Detections Detections Error

243 Cold Photon640 38 6 7 5.3%
602 Cold Photon640 43 3 8 1.8%
186 Warm Photon640 14 4 7 5.9%
417 Cold Photon640 22 3 11 3.4%
823 Cold Photon640 28 3 12 1.8%
1436 Cold A65 88 6 18 1.7%
1224 Warm A65 96 9 21 2.5%

of missed detections in that data. For the FLIR Photon640 LWIR imager, the average

rate of false detections was 15.1%, compared to 8.1% for the FLIR A65. However, it

should be noted that the data collected with the FLIR Photon640 was from a moving

air-based platform, whereas the data collected with the FLIR A65 was on a stationary

gimbal platform. Similarly, the rate of missed detections is lower for the FLIR A65

compared to the FLIR Photon640. A continuous set of LWIR frames are shown in

Appendix C.1 around the cold wake pattern.

Over 97% of the frames in the data presented here were processed correctly, noting

less than 3% contained missed or falsely detected frames. As a final step to improve

the system precision, a condition was created to require sequential detections in order

to trigger a detection, since the thermal wake patterns were noted to occupy multiple

consecutive frames. There was only a single case where a false detection occurred

in 3 consecutive frames. Moreover, there was no case where no thermal wake was

detected in conjunction with missed detection frames, concluding that there would be

no missed detections.

No direct comparison to a LWIR algorithm for thermal wake detection of sub-

merged vessels can be made based on current literature. Jiaqiu et al. reported an

algorithm for wake detection using the Hough transform in grayscale SAR images [51].
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The algorithm adds a signal-to-clutter ratio enhancement based on image subdivision,

shown to improve the contrast of the wake to the clutter. However, the smaller the

contrast is between the wake pattern and the surrounding pixels, the higher the prob-

ability is of false alarms, placing a limit on the detection of the wake pattern [51].

5.6 Conclusions

A real-time algorithm for the detection of thermal wake patterns of SPSS was de-

scribed. A time sequential processing method was implemented to ensure real-time

performance, while allowing maximum time for each pre-processing and detection

preparation procedure. The robustness of the real-time detection algorithm of ther-

mal wakes was increased by implementation of a windowed triple-vote system continu-

ously using multiple frames. A transform preparation procedure is detailed, leveraging

the assumption that the wake pattern will extend across a significant portion of the

frame. This allows the algorithm to operate in a noisier environment, with a higher

sensitivity, reducing the number of missed detections and low-contrast wake patterns.

The real-time detection algorithm was developed using significantly varied data sets,

including LWIR images collected from two different LWIR imaging devices, in the

Atlantic and Pacific Ocean, from Canada and the United States, from air-based and

land-based platforms. The real-time detection algorithm was demonstrated to yield

an accuracy rate over 97%, higher than any algorithm reported for small UAS. A

complete, mission-ready system is achieved, including both hardware and software

packages.
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Conclusions

This work, and the related publications, are the initial reports of thermal wake-based

detection of self-propelled semi-submersibles (SPSS), including for small UA plat-

forms. Self-propelled semi-submersible vessels are designed to elude visual and radar

detection, to transport illegal or dangerous cargo in an expendable, cost-effective

method. This design consequently reduces the cargo capacity, deriving a requirement

for more SPSS vessels to transport the equivalent quantity of cargo. Currently re-

ported detection of these targets requires air and ground based assets and support,

a relentlessly expensive and time-consuming endeavour. Using small UA platforms,

the real-time detection algorithm presented could be incorporated in a autonomous

or operator-limited procedure to monitor larger areas of the North American coast-

line. Moreover, this procedure would significantly decrease the required assets, both

human and machine, required, while increasing the detection and interception rate of

the SPSS.

The selection of a long wave infrared (LWIR) sensor for the application of thermal

wake detection was summarized in Chapter 3, comparing data collected for medium-

wave and long-wave infrared imaging devices from a low altitude aircraft platform.
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The thermodynamics of infrared thermal imaging was presented, including the rela-

tionship between blackbodies and real surfaces. A radiometric chain technique was

presented, resulting in a derivation of the infrared radiation of a real scene. Sec-

tion 3.4.2 provides specific comparisons, and demonstrates the capabilities for ther-

mal wake detection, demonstrating the factors which affect the resulting image quality,

relating the physics of the detectors, platforms, and scenes.

Chapter 4 provided images of persistent thermal wake patterns, including cold

(Section 4.3.1) and warm (Section 4.3.2) wake patterns, correlated to the recorded

environmental conditions for SPSS. The wakes are supported with temperature mea-

surements in the upper stratified layers of the ocean waters. It was demonstrated

that temperature measurements in the top 4 m of the ocean water under normal

solar heating gave a stratification with a differential of approximately 1oC. Without

the availability of solar heating due to ambient conditions, a warm wake pattern was

noted, consistent with previously reported predictions from numerical models [23]. An

initial image processing algorithm using a Hough transform to highlight the longest

line segments in the images was investigated and presented to determine the validity

of real-time detection of the thermal wake patterns. It was shown that this algo-

rithm can distinguish the wake patterns from the surrounding water in the long wave

infrared images.

An algorithm for the detection of submerged vessel wake patterns using a LWIR

camera was presented in Chapter 5, specifically for a small unmanned aircraft, with

limited power, space, and computing power. A time-sequential processing method was

presented to reduce the required computing, while allowing a high frame rate, and a

robust system to noise and other environmental factors. Moreover, a windowed triple-

vote system was developed, which is continually applied to ensure that the detection

mode is correctly set by the algorithm, while ignoring unexpected targets in the image.
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A simple background estimation method is presented to remove any non-uniformity

in the captured images. A transform preparation procedure is detailed, specifically for

thermal wake detection, allowing the algorithm to operate in a noisier environment,

with a higher sensitivity, reducing the number of missed detections and low-contrast

wake patterns. A payload system was prepared for a small UA platform, allowing

real-time processing and monitoring. Using data sets for three different platforms,

captured with two different LWIR imagers, in two oceans, a real-time algorithm is

developed with a greater than 97% reliability rate.

Considering the high detection rate in low contrast, noisy environments with slowly

changing backgrounds, SAR imaging for ship wake tracking is an obvious extension.

Section 2.2.6 summarizes the current work in the user assisted and automatic detection

of ship wake detection in radar images, noting a current detection equivalent or higher

to that recorded here. This application would require minimal modification based on

the application.

The requirement for a real-time hazard identification system for water bomber

aircraft, in particular for obstacle detection such as logs and power lines, is a notable

potential adoption for this technology. It is expected that with alteration, the detec-

tion of multiple target types would be achieved, in particular if the time sequential

processing steps were used to allocate the frames to multiple morphological processing

sections depending on the intended target. The algorithm could be further improved

by employing a imager with a 60-120 Hz frame rate, or increasing the available pro-

cessing power.

The concepts presented in this thesis are also directly applicable to marine mam-

mal tracking. Previous reports, as described in Section 2.2.3, determined that while

thermal wake patterns were present, thermal imaging of the mammals body or blows

were more useful for tracking. However, the real-time detection algorithm could be
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adapted to work in the cold and warm wake detection method in parallel, to detect

both thermal wake patterns, as well as mammal bodies and blows to increase the

detection in a noisy ocean environment. Moreover, land-based tracking of large mam-

mals is another conceivable application of this work. The main addition would be

a more robust background estimation algorithm, a topic which has been extensively

studied in EO and IR in literature. Moreover, similar alterations could be completed

to the algorithms to finesse detection for environmental monitoring of oil slick, tem-

perature measurements, and power line detection. A comparison of MWIR, LWIR,

and EO images are shown in Figure 6.1, revealing an increase in contrast between the

power lines and the background in the LWIR as compared to the MWIR and EO.

The real-time detection algorithm presented in this work was specifically developed

for a small UAs platform, with restricted payload, power, and processing. Despite

the demonstrated ability to surpass expectations based on previous literature results

for noisy, low contrast environments, a pair of recommendations are provided, based

on significance; utilize sensor cooling for the LWIR sensor, and increase the sensor

resolution.

Cooling for LWIR sensors is generally not used. In fact, the lack of a cooling

requirement is generally a significant benefit for LWIR sensors as compared to MWIR

sensors that require cooling to reduce noise. It is important to note, however, that the

suggested cooling for LWIR sensors is not equivalent to the refrigerant-type cooling of

MWIR sensors, but instead temperature stability from non-uniform changes to reduce

noise on the sensor and heating on the optics of the imaging device, which would in

turn result in improved performance of the real-time algorithm. However, it should

be noted that in this work the comparison of the FLIR Photon640 and FLIR A65

noted a reduction in sensor noise in the FLIR A65, the newer sensor. The trend in

sensor technology may not require active cooling of the LWIR sensor with improved



91

(a)

(b)

(c)

Figure 6.1: A comparison of a) an optical image with b) a medium wave, and c) a
long wave infrared image of a highway.
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sensor uniformity corrections.

Long wave infrared sensors are currently available in higher resolutions than 640

x 512, but require increased processing to achieve real-time performance. However,

at a set the swath of a single pixel is decreases with increasing sensor resolution,

equivalent to a higher sampling of the scene which would result in an increased system

performance. Moreover, if the field of view is increased proportional to the sensor

resolution, then less area must be covered by a surveillance UA to cover the same

acreage. This could also enable the ability to use a fixed, downward facing LWIR

imaging device for SPSS detection.

In the future, this system could be directly deployed for detection of SPSS ves-

sels encroaching on the North American coastline. Current development of auto pilot

integration and communication for swarms of UAs could allow simultaneous moni-

toring of limitless coast line ranges. The algorithm could also be implemented with

a LWIR platform typically used for remote sensing on a UA platform. Moreover,

if the platform size is increased or more processing power is available, due to tech-

nology advances or payload space, then a more robust background model should be

implemented that accounts for much faster changing, less constant background.
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Appendix A

UAS Payload Images

A.1 UAS Payload

A payload system to mount a FLIR A65 long wave infrared camera and GoPro Hero2

optical camera for autonomous data collection was developed. The camera is mounted

on an Arris Zhaoyun 3-Axis Brushless Gimbal, presented in Figure A.1a, with a cus-

tom carbon fiber mount for both imagers. Figure A.1b shows the customized gimbal,

with the FLIR A65 and GoPro Hero2. An overview of the operating specifications

for the FLIR A65 are given in Table 5.1. This customized gimbal was designed to

mount to the base of a Mugins 3M H-Tail TBM unmanned aircraft platform in the

payload bay using a custom mounting system containing 16 vibration damping balls

to reduce the vibration of the gimbal. The gimbal contains a Basecam SimpleBGC

controller with an on board inertial measurement unit (IMU), and allows full control

over the tuning and program of the gimbal, as well as stabilization. It is noted that

a 113 gram counter-weight was added to the outside edge of the gimbal frame (near

the GoPro) to balance the gimbal. Figure A.4 shows an image of the gimbal mounted

below the TBM aircraft.
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(a) (b)

Figure A.1: a) Arris Zhaoyun 3-Axis brushless gimbal, b) Arris Zhaoyun 3-Axis brush-
less gimbal with custom carbon fiber mounting ring for installation of FLIR A65 and
GoPro Hero 2.

Figure A.2: Image of the ground control station used to monitor, record, and control
the gimbal.
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Figure A.3: Tripod with gimbal mounted and data monitoring system for remote data
collection.

Figure A.4: Image of the customized gimbal containing the FLIR A65 LWIR camera
and GoPro Hero2 EO imager mounted on the Mugins 3M H-Tail TBM.



Appendix B

Comparison of Hough and Radon

Transform

B.1 Transform Comparison

The extraction of image elements such as lines, edges, and curves is often a key

step in image processing algorithms. Of particular interest for line detection is the

Hough transform [85], previously reported for wake detection of SPSS in Ref [68]. In

comparison, the majority of the reports of surface-based ship wake detection in SAR

images leverages the Radon transform [86], reporting beneficial results [46]. In the

following sections, a brief introduction to the Radon and Hough transform are given.

A comparison of the detection of thermal wake patterns is then summarized.

B.1.1 Hough Transform

The Hough transform was originally used to detect straight lines in black and white

images, but this feature extraction technique has been extended for arbitrary shapes.

Considering a point (xi, yi) which has an infinite number of lines passing through it,
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(𝑥𝑖 , 𝑦𝑖) (𝑥𝑗, 𝑦𝑗) 

𝑥 

 𝑦 

(a)

 

𝑏 =  −𝑥𝑖𝑎 + 𝑦𝑖  

𝑎 

 𝑏 

𝑏′ 

𝑎′ 

𝑏 =  −𝑥𝑗𝑎 + 𝑦𝑗  

(b)

Figure B.1: a) Represents the points (xi, yi) and (xj, yj) on a line with equation
yi = a′xi + b′ in the xy-plane. b) The parameter space representation of points
(xi, yi) and (xj, yj), which intersect at point (a′, b′) .
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Figure B.2: a) A geometrical representation of the relationship to ρ and θ in the
xy-plane, b) the intersection point (ρi, θi) in parameter space, corresponding to the
line which passes through (xi, yi) and (xj, yj) in a.
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described in slope-intercept as yi = axi + b. Re-written as b = −xi a+yi, where the

(a, b) plane, or parameter space, gives the equation for a specific line for a fixed pair of

(xi, yi). For a second point (xj, yj), the associated line in parameter space intersects

the parameter space representation of (xi, yi) at a point (a′, b′), where in the xy-plane

the equation yi = a′xi + b′ contains both points (xi, yi) and (xj, yj), as well as any

other points of which the parameter space representation intersects point (a′, b′) [90].

The relationship is illustrated in Figure B.1. However, the previous description fails

as the line becomes vertical or a → ∞. Therefore, similar to what is described in

Section B.1.2 the normal representation is used for a line,

x cos θ + y sin θ = ρ (B.1)

where ρ is the distance from the origin to the line at an angle θ from the x-axis. A

geometrical representation of the relationship to ρ and θ in the xy-plane is shown in

Figure B.2a. Figure B.2b shows the intersection point (ρ′, θ′) in parameter space,

corresponding to the line which passes through (xi, yi) and (xj, yj) (shown in Figure

B.2a). In a computational sense, the parameter space is divided into accumulator cells,

where an accumulator square, A(i, j), corresponds to a parameter space coordinate,

(ρi, θj) [90].

B.1.2 Radon Transform

The Radon transform is useful in pattern recognition since the projection of a pattern

is done without loss of information. Only non-zero pixels are projected in the Radon

matrix, retaining only necessary information. In Cartesian coordinates, a straight line

can be described as
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𝜃 
𝑥 

 𝑦 

Figure B.3: Normal representation of a straight line in the Radon transform.

x cos θ + y sin θ = ρ (B.2)

where ρ is the distance from the origin to the line at an angle θ from the x-axis. The

Radon transform has the form

<{f(x, y)} =

∫ ∞
−∞

∫ ∞
−∞

f(x, y) δ(x cos θ + y sin θ − ρ)dx dy (B.3)

which gives the projection of a function f(x, y) in Euclidean space along an arbitrary

line in the xy-plane [90]. The Kronecker delta function, δ, in Equation B.3 converts

the two-dimensional integral into a line integral along the axis x cos θ+y sin θ = ρ. For

a shape in an image with parameter set a, for each vector in parameter space which

does not contain parameters of the curve, p 6= a, the Radon transform evaluates to

an infinite number, proportional to the number of intersections between the shapes
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c(a) and c(p). When p = a however, the Radon transform yields a large response,

corresponding to a peak in the parameter space.

The Radon transform and Hough transform are equivalent, essentially being a form

of template matching. However, the Radon transform is a mapping, where a data point

in the destination space is obtained from the data in source space. In contrast, the

Hough transform considers how a data point in the source space maps onto the data

points in the destination space [91]. Figure B.4 demonstrates this comparison. For the

Hough transform, consider the entire function is initialized to zero, such that for each

point x in the input image determines its contributions, weighted to each of the points

P , represented in Figure B.4a. Figure B.4b demonstrates for each collected point p,

the values of I(x) are collected, to which the templates are applied and summed.
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Figure B.4: a) Explanation of the Hough transform. The point where the four dashed
curves intersect. b) An explanation of the Radon transform. Integrating the intensity
values along each dashed curve results in small values, unless the curve coincides with
a curve in the image whereby the integral results in a large value.



Appendix C

Sequential Frame Detection

C.1 Sequential Processed Frames
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(a)

(b)

Figure C.1: Frame 248 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.2: Frame 251 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.3: Frame 254 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.4: Frame 257 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.5: Frame 260 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.6: Frame 263 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.7: Frame 266 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.8: Frame 269 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.9: Frame 272 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.10: Frame 275 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.11: Frame 278 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.12: Frame 281 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.13: Frame 284 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.14: Frame 287 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.15: Frame 290 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.16: Frame 293 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.17: Frame 296 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.18: Frame 299 a) optical and b) long wave infrared image.
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(a)

(b)

Figure C.19: Frame 302 a) optical and b) long wave infrared image.


