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Abstract 

Several attention-based models of associative learning are built upon the learned 

predictiveness principle, whereby learning is optimised by attending to the most 

predictive features and ignoring the least predictive features. Despite their functional 

similarity, these models differ in their formal mechanisms, and thus may produce very 

different predictions in some circumstances. As we demonstrate, this is particularly 

evident in the inverse base-rate effect. Using simulations with a modified Mackintosh 

model and the EXIT model, we found that models based on the learned predictiveness 

principle can account for rare-outcome choice biases associated with the inverse base-

rate effect, despite making opposite predictions for relative attention to rare versus 

common predictors. The models also make different predictions regarding changes in 

attention across training, and effects of context associations on attention to cues. 

Using a human causal learning task, we replicated the inverse base-rate effect and a 

recently reported reduction in this effect when the context is not predictive of the 

common outcome, and used eye-tracking to test model predictions about changes in 

attention both prior to making a decision, and during feedback. The results support the 

predictions made by EXIT, where the rare predictor commands greater attention than 

the common predictor throughout training. In addition, patterns of attention prior to 

making a decision differed to those during feedback, where effects of using a partially 

predictive context were evident only prior to making a prediction. 

 

Keywords: attention; inverse base-rate effect; eye tracking; Mackintosh; EXIT; 

context learning  
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There is a popular assumption among theorists of associative learning that processes 

of attention in learning operate based on the learned predictiveness principle (e.g., 

Kruschke, 1996; 2001b; Mackintosh, 1975; Lovejoy, 1968; Sutherland & Mackintosh, 

1971). This principle assumes that cues in our environment that reliably signal the 

occurrence of important or task-relevant outcomes increasingly capture attention as 

we learn about their predictive properties, and in turn become easier to learn about in 

the future because of the attention they command. Converging evidence from a range 

of psychological phenomena have confirmed this reciprocal relationship and 

highlighted its significance for cognitive psychology (see Le Pelley, Mitchell, 

Beesley, George, & Wills, 2016, for a review). This principle forms the basis for a 

class of attention-based models of associative learning. The most prominent of these 

models is the Mackintosh model (Mackintosh, 1975; hereafter simply referred to as 

Mackintosh).  

 Mackintosh offered a clear and persuasive explanation of the learned 

predictiveness principle as well as a formal description of the general operations by 

which learning processes may govern attention. These operations assume that 

attention increases to a cue that is a good predictor of the outcome relative to others 

presented at the same time, and attention decreases to poorer predictors. Both the 

general principle and specific operations outlined by Mackintosh have been critical in 

providing an explanation of related biases in learning, such as the learned 

predictiveness effect (e.g., Le Pelley & McLaren, 2003; Lochman & Wills, 2003), 

many of which are broadly consistent with the model.  However, a recent review by 

Le Pelley et al. (2016) has brought into focus the fact that despite the considerable 

evidence consistent with the learned predictiveness principle, it is still not clear how 

learned changes in attention operate and, for instance, whether the processes 
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formalised by Mackintosh are indeed the most appropriate for capturing the effect. 

There is a need to assess the specific mechanisms offered by Mackintosh and other 

similar theories, especially in situations where they make diverging predictions. To 

this end, one phenomenon that may be particularly important for examining learned 

attention is the inverse base-rate effect (Medin & Edelson, 1988), a phenomenon that 

has conventionally been explained by learning models in which attentional biases are 

determined by associative prediction error, and yet has not been extensively used by 

associative learning theorists. Le Pelley et al. (2016) highlight the effect as potentially 

problematic for some attention models based on predictiveness principles, based on 

discrepancies in responses on single and compound cue trials. We will first introduce 

the inverse-base rate effect, and the predominant model of the effect, before returning 

to this issue in further detail.  

The inverse base-rate effect 

The inverse base-rate effect is a choice bias in human contingency learning. In 

the inverse base-rate effect, one frequently presented cue compound consistently 

predicts one outcome (e.g. AB-O1), while a less frequently presented cue compound 

predicts another outcome (e.g. AC-O2). Typically, AB-O1 and AC-O2 trials are 

presented in a 3:1 ratio such that cue B is relatively common compared to the rarer 

cue C and, likewise, the base-rate of O1 is high relative to O2. Cue A is therefore an 

imperfect predictor, as it is paired with both outcomes. Cue B (hereafter the common 

predictor) is a perfect predictor of the common outcome, O1 and cue C (hereafter the 

rare predictor) is a perfect predictor of the rare outcome, O2.1 After learning these 

contingencies, participants are given a test phase in which they are presented with the 

                                                        
1 Note that where there are multiple instantiations of the design, letters A–C will refer to all cues of the 

same type. That is, A refers to imperfect predictors, B to perfect predictors of common outcomes, and 

C to perfect predictors of rare outcomes.  
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individual cues, as well as several new combinations of cues, and asked to predict 

which outcome is most likely. When participants are shown the imperfect predictor 

(A) alone, participants tend to predict the common outcome, and to a lesser extent 

they show this same tendency on combined (ABC) trials. Although symptom A is 

associated with both outcomes, this response is consistent with the base-rates of the 

two outcomes. However when presented with the conflicting cue combination, BC, 

participants tend to predict the rare outcome, predicted by cue C.  In this case, both 

cues are equally predictive of their respective outcomes, such that the specific cues do 

not provide evidence in favour of one outcome over the other. However, O1 occurs 

much more frequently than O2, and thus an arguably rational response, considering 

the differing base-rates, would be to predict O1 (Shanks, 1992). The inverse base-rate 

effect therefore refers to this seemingly irrational choice of the rare outcome on 

conflicting trials, and appears to be robust under a variety of task scenarios and 

stimuli (Dennis & Kruschke, 1998; Johansen, Fouquet & Shanks, 2010; Kalish, 2001; 

Kalish & Kruschke, 2000; Kruschke, Kappenman & Hetrick, 2005; Lamberts & Kent, 

2007; Sherman et al., 2009).  

The inverse base-rate effect is typically explained by prioritised attention to 

cue C during training (Kruschke, 1996; 2001a). This account suggests that AB-O1 

trials are learned well and learned early, because they occur relatively frequently. As a 

result, both A and B become moderately associated with the common outcome, O1. 

The presence of A on the less frequent AC trials thus elicits an erroneous prediction 

of O1. To reduce subsequent error, and to preserve learning about AB trials, attention 

shifts away from the ambiguous cue A towards the more predictive cue, C. This 

attentional bias to C results in a stronger association between C and O2 than the 

association between B and O1. The change in attentional processing may also transfer 
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to BC trials, such that C is attended more than B and so cue C tends to control 

responding on BC trials at test. The idea that attention shifts away from A on AC 

trials is supported by the finding that a stronger association between A and the 

common outcome is necessary for rare outcome biases on BC trials (Shanks, 1992). 

The attention account of the inverse base-rate effect has been formalised in the 

EXIT model (Kruschke, 2001a; 2001b), which is a connectionist model of error-

driven attention and falls under the larger class of models based on the learned 

predictiveness principle. The EXIT model assumes that attention capacity is limited, 

and that attention is rapidly shifted towards cues that will reduce subsequent error. 

These attention distributions are then learned, and applied on subsequent trials 

according to their similarity to past exemplars. EXIT readily predicts the inverse base-

rate effect and related highlighting effects (Kruschke, 1996; 2005), and as such, 

explanations of the effect have typically relied on the specific mechanisms proposed 

in the EXIT model. Kruschke (2001b) described the EXIT model as a connectionist 

implementation of the theoretical principles proposed by Mackintosh, and noted that 

the models make the same predictions for changes in attention. It is thus often 

assumed that the EXIT model operates similarly to Mackintosh, despite there being 

important differences (discussed below) in how attention changes in the two models. 

To date, this assumption remains largely untested. As such, the primary aim of this 

study was to formally compare the predictions that the models make about attention 

change using our recent data on the inverse base-rate effect as a test bed (Don & 

Livesey, 2017), and to test those predictions using measures of overt attention during 

learning and at test. We will briefly discuss three related issues that motivated choices 

about experimental design and simulations in the current study before discussing the 

models and simulations in further detail.  
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Discrepancies between single-cue and compound trials. 

One previous study has raised questions about the ability of Mackintosh to 

account for some characteristics of the inverse base-rate effect.  In an EEG study, 

Wills, Lavric, Hemmings & Surrey (2014) measured ERP correlates of selective 

attention when cues were presented individually at test. They found that, despite 

greater correlates of selective attention on C alone trials than B alone trials, common 

outcome responses to cue B alone were greater than rare outcome responses to cue C 

alone. To the best of our knowledge, this is the only time this difference in responding 

to B and C test trials has been tested statistically, yet this trend is also seen in several 

other cases (e.g. Bohil, Markman, & Maddox, 2005; Kruschke, 1996; Medin & 

Edelson, 1988; Medin & Bettger, 1991; Shanks, 1992; Winman, Wennerholm, Juslin, 

& Shanks, 2005; see Winman, Wennerholm & Juslin, 2003, for further discussion of 

this issue).  

According to the Mackintosh model, this difference in accuracy for predictive 

cues implies greater associative strength for cue B than cue C, which should result in 

greater common outcome responses on conflicting BC trials. Yet, there were greater 

rare outcome responses on BC trials despite greater common responses on B trials 

than rare responses on C trials (Wills et al., 2014). This result is also problematic for a 

simple model of attention, in which the attention paid to a cue is directly related to its 

associative strength (Le Pelley et al., 2016). Nevertheless, Wills et al. (2014) suggest 

that some features of EXIT allow the model to account for the discrepancy between 

attention and responding to predictive cues. First, attention is normalised before 

influencing responding. That is, when cues are placed in direct competition (as in a 

compound trial), attention will influence the relative control of those cues over 

responding. However when a cue is presented individually, it has complete control 
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over responding, and attention will have little influence on responding. Thus 

responding on trials where B and C are presented individually may not be a good 

indication of the attention they receive when they are presented in compound. 

Attention in EXIT is also exemplar-mediated, such that the model can learn to direct 

attention away from A on AC trials, but maintain attention to A on AB trials. The 

similarity between AC and BC trials means that C should also receive prioritised 

attention on BC trials, which can account for an effect when associative strength for B 

may be higher than that for C (Kruschke, 2003; Wills et al., 2014).   

The role of context learning 

A potential way to reconcile the dissociation between attention and choice 

accuracy (e.g. Wills et al., 2014) with predictiveness principles is to assume a role of 

context learning. That is, the context may act as a cue that becomes associated with 

the outcomes, and subsequently influences responding on test trials. In an associative 

model, learning about the context is the primary mechanism for tracking overall base-

rates irrespective of the predictive cues that are presented. As a result of the 

differences in base-rates for the two outcomes, the context will come to be more 

strongly associated with the common outcome. Therefore on B alone trials, both the 

cue and the context would predict the occurrence of the common outcome, whereas 

on C alone trials, context associations will act to weaken rare outcome predictions, 

even if C-O2 associations are stronger than B-O1 associations.2 The effect of context 

                                                        
2 Models of associative learning like Mackintosh often make the simple assumption that outcome 

predictions are based on a simple linear summation of the associative strengths of cues present on a 

given trial. Given this assumption, it may be difficult for these models to simultaneously predict that a) 

B + context could result in a stronger prediction of O1 than C + context of O2, and b) that B + C + 

context could lead to stronger prediction of O2 than O1. However, these circumstances could be 

possible if an assumption of nonlinearity in the summation process at test is made, for example, 

assuming that the context contributes more when only a single cue is present (e.g. B alone) than when 

two cues are present (e.g. BC). Mackintosh does not have a built-in capacity for this type of 

nonlinearity, which means that it may be limited in what it can predict, but also means its predictions 

are less parameter specific. 
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associations on attention to cues in the inverse base-rate effect has yet to be 

investigated.  

In the EXIT model, context learning is captured by associations with a bias 

node, which may vary in salience. Initially EXIT was shown to predict higher 

accuracy for C alone trials than B alone trials in an overall fit of the data (Kruschke, 

2001a). Yet, when EXIT was refit to the data with heavy weighting of the difference 

in B and C trial responses, it was able to predict a rare bias on BC trials when 

accuracy for B exceeded that for C (Kruschke, 2003). Notably, the salience of the bias 

node in this reweighted fit was high (.938) in comparison to the initial fit, which 

suggests that EXIT can account for the dissociation between responses on single and 

compound cue trials when the context is salient.3  However, the inverse base-rate 

effect in this reweighted fit was reduced in magnitude compared to human choice, and 

the overall fit (indexed by root-mean-square error, RMSE) was poorer than in the 

initial, unweighted fit. We do not yet know whether the Mackintosh model can predict 

the inverse base-rate effect, or the dissociation in responding on single and compound 

cue trials.  

Global outcome frequency effects 

Assessing the influence of context associations in the inverse base-rate effect 

is difficult using the standard design alone, as the context will always be strongly 

associated with the frequently occurring outcome. However, we can assess the role of 

context by comparing the standard design to a “balanced” outcome design used in 

Don and Livesey (2017). This study compared the strength of the inverse base-rate 

effect with and without global outcome frequency differences. The design of the study 

                                                        
3 The value of .938 is based on a fit to the data from Experiment 1 in Kruschke (1996). Kruschke 

(2003) states the bias salience in the initial, unweighted fit was .010, yet the bias salience reported in 

Kruschke (2001a) for the data from Experiment 1 of Kruschke (1996) is actually .401. A bias salience 

value of .00 is instead reported for a fit to the data from Experiment 2 in Kruschke (2001a).  
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is shown in Table 1. In the standard condition, O1 was always paired with the 

common compounds AB and DE, and O2 was always paired with the rare compounds 

AC and DF. Similarly, O3 was always paired with the common compounds GH and 

JK, while O4 was always paired with the rare compounds GI and JL. Thus, O1 and 

O3 were experienced three times as often as O2 and O4. In the balanced condition, 

each outcome was paired with both a common compound and a rare compound, such 

that all outcomes were experienced with equal frequency over the course of the 

experiment. For example, O1 was paired with the common compound AB and the 

rare compound DF, while O2 was paired with the rare AC and the common DE. 

Similarly, O3 was paired with the common compound GH and the rare compound JL, 

while O4 was paired with the rare GI and common JK. In this way, the local base-rate 

difference within each overlapping set is maintained (e.g. O1 was the common 

outcome within overlapping AB and AC trials, and O2 was the common outcome 

within DE and DF trials), but there is no global difference in the frequency of each 

outcome.  

 

Table 1 

Experimental Design Used in Experiment 2 of Don and Livesey (2017) 

Phase Group Trial type Base-

rate 

Trials 

Training Standard Common 3 AB – O1 DE – O1 GH – O3 JK – O3 

  Rare 1 AC – O2 DF – O2 GI – O4 JL – O4 

 Balanced Common 3 AB – O1 DE – O2 GH – O3 JK – O4 

  Rare 1 AC – O2 DF – O1 GI – O4 JL – O3 

Test  Imperfect 1 A D G J 

  Conflicting 1 BC EF HI KL 

  Combined 1 ABC DEF GHI JKL 

  Common predictor 1 B E H K 

  Rare predictor 1 C F I L 

  Trained common 1 AB DE GH JK 

  Trained rare 1 AC DF GI JL 

Note: The critical conflicting test trials are indicated in bold.  
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Using this design, Don and Livesey (2017) found that the inverse base-rate effect (i.e. 

preference for the rare outcome on BC trials at test) was substantially reduced when 

each outcome had been experienced at an equal rate across the experiment. It is 

important, in the first instance, to demonstrate that attention-based associative 

learning models can actually account for this difference, as it may indicate that other 

non-associative decision processes play a critical role in producing the inverse base-

rate effect. However, in principle, it should be possible for these models to do so by 

assuming that the associations between the context and the common outcome play a 

key role in enhancing the bias for the standard condition, where the outcome is 

globally common, but not in the balanced condition, where the outcome is only 

common for a given set of compounds. To test this idea, we first compare the 

predictions made by EXIT and Mackintosh in these designs, followed by an eye-

tracking study to examine potential differences in attention to cues in the standard and 

balanced conditions.  

 

Model simulations 

To examine the predictions made by the EXIT and Mackintosh models, we fit 

both models to the choice data from the outcome frequency design of Experiment 2 in 

Don & Livesey (2017), and extracted the relevant attention weights across training.  

EXIT and Mackintosh models 

EXIT. The EXIT model used in this simulation is described in detail in 

Kruschke (2001a). In brief, when a stimulus is presented, corresponding cue nodes are 

activated. Cue nodes become associated with outcome nodes as a consequence of 

learning guided by prediction error, and cue node activation activates outcome nodes 

in order to generate predictions based on this learning. As part of this process, the cue 
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node activation also goes through a process of attentional reweighting. First, cue node 

activation spreads to exemplar nodes, which are activated to the extent that the 

presented cue combination is similar to the cue combination represented by the 

exemplar node. Exemplar node activation then spreads to attention gain nodes that 

competitively normalise attention. If the exemplar has been encountered previously, 

the attention gain nodes are activated based on prior learned attention distributions for 

that particular exemplar. Once attention gain is normalised, the resulting distribution 

of attention is combined multiplicatively with the original cue activations. This 

modified activation then spreads to the outcome nodes, where the model makes an 

outcome prediction based on the relative activation of outcome nodes. The model then 

provides corrective feedback. Attention is rapidly shifted towards cues that will 

reduce subsequent prediction error, and this change in attention is applied before the 

associations between cues and outcomes are updated. This is an important feature of 

the model, since the associative weight between a cue and an outcome is adjusted 

proportionally to the attention that is paid to that cue. Therefore, by adjusting 

attention prior to any changes in associative strength, there is an immediate effect of 

error-driven attention shifting on learning. Associative weights between exemplar and 

gain nodes are also updated, so that the new distribution of attention is used when the 

stimulus is encountered in the future. Full details of the free parameters used in the 

EXIT model can be found in the Appendix.  

Mackintosh. The original version of the Mackintosh model—and the version 

that Wills et al. (2014) discuss critically in relation to the prediction it makes for 

single cues in the inverse base-rate effect—includes a separable error term for each 

cue. A separable error term limits the ability of the model to account for several 

learning phenomena, such as conditioned inhibition. Subsequent variations of 
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Mackintosh (e.g. Le Pelley, 2004; Suret & McLaren, 2005; Pearce & Mackintosh, 

2010) instead use a summed error term, which can better capture cue competition or 

interactions between the predictions of cues (as in the case of conditioned inhibition). 

A version of Mackintosh with a summed error term may better account for the 

apparent discrepancy between attention and associative strength, and was therefore 

used in the following model fits.4 Further details about this model can be found in the 

Appendix. In both the modified Mackintosh model and the EXIT model, attention to 

predictive cues should increase, and attention to non-predictive cues should decrease. 

Although both models operate on these similar theoretical principles, there are some 

important differences in the way each model operates. In Mackintosh, attention is 

synonymous with cue associability, such that the primary function of learned attention 

to a cue is to influence the rate of future learning about that cue. EXIT similarly 

assumes that more will be learned about attended cues. However in EXIT, attention 

influences output activation, such that cues with greater attention will have greater 

control over responding. Thus one clear difference is that in EXIT, the associative 

activation of the outputs can be influenced by the amount of attention cues receive. 

For instance, if cue A is associated with O1, the prediction of O1 can be enhanced 

when there is more attention to A and can be reduced when there is less attention to 

A. Mackintosh (1975) remained agnostic about the possibility of performance effects 

of this nature, but left these effects out of the model for the sake of simplicity. A 

second difference is that the learning of attention biases in EXIT is exemplar specific, 

such that attention to a particular cue may differ depending on the other cues with 

                                                        
4 Using the same methods for assessing the EXIT and modified Mackintosh model in the current study, 

we found that the original Mackintosh model with a separable error term provided a poor fit of the 

choice data (RMSE = 13.50), and did not predict an inverse base-rate effect. Rather, it predicted a 

strong bias in choice for the common outcome on conflicting trials in the standard group, and no bias in 

the balanced group.  Importantly, the original Mackintosh model made the same predictions for relative 

attention to cues as the modified Mackintosh model, described later in the paper. 
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which it is presented. For example, cue A may receive a different amount of attention 

when it is present on AB trials than when it is present on AC trials. In Mackintosh, 

alpha is stimulus-specific, rather than exemplar specific.  Further, EXIT makes 

specific predictions about the timing of attention shifting. Specifically, attention shifts 

immediately to the most predictive cue, as a response to error, and associative weights 

are updated after this shift has occurred, while Mackintosh assumes that changes in 

attention are applied on subsequent trials.  

Model fits were compared using two penalised-likelihood criteria; the Akaike 

Information Criterion (AIC; Akaike, 1974) and the Bayesian Information Criterion 

(BIC; Schwarz, 1978). While RMSE indicates the degree to which the model fits the 

data, AIC and BIC deal with the trade-off between goodness of fit and model 

complexity (the number of parameters) by penalising models for additional free 

parameters. For the purposes of model comparison, the model with the lowest AIC or 

BIC is regarded as the best fitting model, and the difference (ΔAIC, ΔBIC) indicates 

how well the best model performs in comparison to the other model. AIC and BIC 

were calculated from the residual sum squares (RSS) with the following equations, 

where k is the number of free parameters, and n is the number of data points: 

 AIC =  2𝑘 + 𝑛ln(𝑅𝑆𝑆) (6) 

 BIC = 𝑛ln(𝑅𝑆𝑆/𝑛) + 𝑘ln(𝑛) (7) 
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Table 2 

Outcome choice percentages from the test phase of Experiment 2 of Don & Livesey 

(2017), with predictions from EXIT and Mackintosh. 

 Human  EXIT  Mackintosh 

Trial 

Standard Balanced  Standard Balanced  Standard Balanced 

C R C R  C R C R C R C R 

A 78.8 15.4 72.5 22.5  63.2 25.3 61.4 28.5  73.3 19.5 61.1 31.2 

BC 28.8 69.2 40.0 53.8  25.4 74.1 37.3 61.9  29.0 69.3 45.8 52.0 

ABC 42.3 57.1 64.4 33.8  40.2 59.4 57.5 42.2  43.5 56.3 63.1 36.7 

Novel 65.4 26.9 58.1 30.0  62.1 25.3 60.4 28.4  73.3 19.5 61.1 31.2 

B 94.2 1.3 96.3 1.3  87.2 4.4 91.8 2.7  99.6 0.0 99.5 0.0 

C 3.8 93.6 6.3 83.8  1.1 96.7 2.0 93.7  0.0 99.5 0.0 99.5 

AB 100 0.0 98.8 1.3  97.8 0.8 98.9 0.4  100 0.0 100 0.0 

AC 5.1 92.9 8.1 90.0  0.4 99.1 1.1 97.6  0.0 99.9 0.0 99.9 

Note: these data are presented in the percentage of outcome choice out of all possible 

outcome choices. C refers to common outcome responses, R refers to rare outcome 

responses. Trials of primary interest are presented in bold. Choice proportions do not 

necessarily sum to 100, as participants had a choice of four outcomes during the test 

phase, of which only two were the relevant common or relevant rare outcome.  

 

Typically, ΔAIC of 0-2 indicates little difference between models, 4-7 indicates 

considerably less support for the model with larger AIC, and >10 indicates a great 

deal of support for the model with lower AIC (Burnham & Anderson, 2002).  

 

Choice fits 

Table 2 shows the choice data from Don & Livesey (2017, Experiment 2), and 

the predictions from EXIT and Mackintosh for each trial type. Both models provided 

a reasonable fit of the group differences, although overall, Mackintosh provided a 

considerably better fit of the data than EXIT (ΔAIC = 5.47; ΔBIC = 7.01). Both 

models were able to predict a reduction in the rare bias on conflicting trials in the 

balanced group compared to the standard group, as well as the accompanying 

decrease in the common bias on imperfect trials in the balanced group. However, the 

models differ in their predictions for individual predictive cue trials. The experimental 

data shows numerically greater accuracy for cue B alone than cue C alone. Although 

there were no significant group effects, this appears to be primarily driven by the 

balanced group. This might indicate that the reduced inverse base-rate effect in the 
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balanced group is due to better learning about the common predictor. Neither model 

predicts this result when using the parameters that provide the best overall fit. EXIT 

predicts greater rare choices for cue C alone than common choices for cue B alone in 

both groups, although this is somewhat weaker in the balanced group. In comparison, 

Mackintosh predicts that rare choices for C are equal to common choices for B in both 

groups.  

Attention weights 

After fitting the choice data, attention weights (α) for predictive cues, 

imperfect cues, and the context across training were extracted from the models. 

Figure 1 shows attention weights predicted by EXIT at two different stages, pre-shift 

attention (panel A and B; see equation 5 in Kruschke, 2001a) and post-shift attention 

(panel C and D), as well as the difference in post- and pre-shift attention (panel E and 

F).  

In EXIT, post-shift attention indicates the amount of attention to cues after 

making an outcome prediction, at the point just prior to updating learning weights. 

These attention weights following feedback indicate which cues the model finds to be 

most useful in reducing error. It is worth noting that in this fit, the post-shift attention 

weights reach their asymptote very quickly, with little or no change after the second 

block of training. However, only some of this post-shift attention distribution is 

learned by the model and carried forward into the next trial, represented by pre-shift 

attention weights in panels A and B. This learned attention indicates the attention paid 

to cues prior to making a decision, and changes more gradually across training as it 

increments closer to the post-shift weights. This learned attention is represented by 

the pre-shift attention is panels A and B, which changes more gradually across 

training as it increments closer to the post-shift weights.     
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In both groups, post-shift attention (panel C and D) to predictive cues (B or C) 

is higher than the imperfect cue (A) on both common and rare trials. This difference 

in attention is much larger on rare trials than common trials, and this pattern did not 

differ substantially between the standard and balanced groups. Post-shift attention to 

the context did differ between groups, however. In the standard group, there was 

greater attention to the context on common trials than rare trials, consistent with the 

notion that the context was a more predictive cue on these trials. In contrast, the 

balanced group showed weaker post-shift attention to the context on common trials 

and stronger attention on rare trials. 

Pre-shift attention (panel A and B) to predictive cues remained high 

throughout training in both groups, but there were differences in pre-shift attention to 

the imperfect cues between groups. In the standard group, there was a greater 

decrease in attention to the imperfect predictor on rare trials than common trials. In 

the balanced group, this difference in attention to the imperfect predictor on common 

and rare trials was comparatively reduced. Consequently, this might result in 

relatively stronger associative strength for the common predictor and weaker 

associative strength for the rare predictor in the balanced group compared to the 

standard group. Interestingly, the post-shift attention to the context does not appear to 

be learned, which may be due to the low bias salience in the best-fitting parameters.  

Because not all post-shift attention is learned and carried forward to pre-shift 

attention on the next trial, we also plotted the difference between post-shift attention 

and pre-shift attention at each point in training (Panels E and F). This indicates the 

amount of change in attention to cues within a trial. Positive scores indicate a shift 

towards the cue, while negative scores indicate a shift away from the cue. The 

difference scores indicate that early in training, there are large shifts in attention away 
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from the imperfect predictor on rare trials, which then decrease across training as this 

attention distribution is learned. 

 

 

Figure 1. Pre-shift and post-shift attention for predictive cues, imperfect cues and 

context in Experiment 2 as predicted by EXIT. 
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Figure 2. Alphas for predictive and imperfect cues in Experiment 2 as predicted by 

Mackintosh   
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Overall, the Mackintosh model provided a better fit of the choice data than 

EXIT, although the pattern of choice results was similar between models. Most 

interestingly, the predicted pattern of attention to cues during training varied 

substantially between the two models. The clearest and most critical difference is the 

predictions for relative attention paid to the predictive cues. The EXIT model 

predicted greater attention to cue C on rare AC trials than to cue B on common AB 

trials, whereas Mackintosh predicted greater attention to B on AB trials than to C on 

AC trials, at all points during training. These predictions are based on the optimal fit 

of parameters. However, it is important to consider whether these are general 

predictions from these models. This is particularly important because EXIT’s 

operations are complex and nonlinear and other quite different combinations of 

parameters can satisfactorily predict an inverse base-rate effect (e.g. Kruschke, 

2001a). We therefore ran 1000 simulations of each model with random parameters 

(within the constraints specified in the Appendix). For the EXIT model, 93.3% of 

simulations predicted a greater bias in attention to C on AC trials than B on AB trials 

in pre-shift attention, and 95.1% of parameters predicted this pattern in post-shift 

attention. For Mackintosh, 99.4% of random parameters predicted greater attention 

biases to B on AB trials than to C on AC trials. These differing ordinal predictions of 

attention to cues therefore appear to be parameter general. Mackintosh was also far 

less likely to predict an inverse base-rate effect on conflicting trials, producing the 

effect on only 9% of simulations, while EXIT produced the effect on 77% of 

simulations.5   

                                                        
5 The original Mackintosh model with a separable error term predicted the same bias in relative 

attention as the modified Mackintosh model. Of 1000 simulations with random parameters, 86% 

predicted a greater bias to B on AB trials than to C on AC trials. None of these combinations of 

random parameters predicted an inverse base-rate effect.  
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The second difference is in changes in attention across training. Both models 

predict an increasing attention bias between predictive and non-predictive cues, 

however the influence of exemplar versus stimulus specific attention is clear. In 

EXIT, attention allocation to a specific cue is allowed to vary depending on the 

exemplar in which it is present. The trial base-rates affect attention biases because 

encountering a greater number of common AB trials results in a stronger prediction 

error on rare AC trials, thus leading to a stronger shift in attention towards the 

predictive cue on AC trials specifically. The attention bias developing across trials 

therefore manifests in EXIT as a compound-specific reduction in attention to A, 

which is stronger on AC trials than on AB trials. In Mackintosh, attention is stimulus 

specific, such that attention allocation to the imperfect cue on AC trials will be 

influenced by the attention it receives on AB trials, and vice versa. On both trial 

types, A is a poorer predictor, and therefore attention shifts towards the perfect 

predictor. Because there are three times as many AB trials than AC trials, this 

increase in attention to the perfect predictor will occur more frequently for AB trials 

than AC trials. The bias predicted by Mackintosh therefore manifests as a faster 

increase in attention for B than for C.   

Finally, the two models also account for differences between standard and 

balanced groups in different ways. In EXIT, the bias for C over B was greater in the 

standard group than in the balanced group, while in Mackintosh, there was weaker 

attention to C in the balanced group than the standard group, although this difference 

is only subtle. EXIT also predicted differences in attention to the context between the 

standard and balanced groups. In the standard group, there was greater attention to the 

context on common trials than rare trials, which is a consequence of the context being 

a more useful predictor on common trials. This bias to context on common trials was 
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much weaker in the balanced group than the standard group, suggesting a less critical 

role of context when outcomes are experienced in equal frequency.  

 

Testing model predictions with overt measures of attention 

EXIT and Mackintosh make different ordinal predictions about relative 

attention to cues, how those attention biases change across training, and how attention 

biases differ based on global outcome frequency. We used eye-tracking to test these 

differing predictions. Eye gaze is often used as a measure of overt attention in 

learning (Beesley, Hanafi, Vadillo, Shanks, & Livesey, 2018; Beesley, Nguyen, 

Pearson & Le Pelley, 2015; Easdale, Le Pelley & Beesley, 2018; Le Pelley, Beesley 

& Griffiths, 2014; Rehder & Hoffman, 2005; Thorwart, Livesey, Wilhelm, Liu & 

Lachnit, 2017, Wills, Lavric, Croft & Hodgson, 2007). While it is possible to make 

covert shifts of attention without accompanying eye movements, attention and gaze 

are generally closely related (Posner, 1980). Although neither model specifies the way 

in which attention will translate to overall eye gaze, the models at least make different 

ordinal predictions in terms of which cues should experience greater attention. We 

assume that measures of fixation time will provide an indication of how attention is 

allocated to cues and how that allocation changes throughout training.  

To the best of our knowledge, this is the first study reporting measures of 

overt attention in the inverse base-rate effect, although researchers have used eye-

tracking to study the related highlighting effect, where AB trials are trained prior to 

the introduction of AC trials (Kruschke, Kappenman & Hetrick, 2005). They found 

greater fixation time for cue C on BC test trials, and a greater bias in fixation time to 

the predictive cue on AC trials than AB trials at test. It might be tempting to assume 

that this provides clear evidence in favour of EXIT’s predictions for attention. Yet, 
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differences in attention to cues across training were not reported, and again, it is 

unknown whether base-rate differences when all trials are experienced at each stage 

of training will result in the same differences in attention as when cues are trained in a 

staged manner as in highlighting. It is also unclear whether choice on BC trials is a 

result of prioritised attention to C, leading to greater control by cue C, or whether it is 

due to greater learning about the C-O2 association during training. This could be 

important for isolating the locus of the inverse base-rate effect and the cause of 

accuracy differences for individual (B and C) cue trials.  

There are currently inconsistent results regarding which cue is processed to a 

greater extent on BC trials at test. Wills et al. (2014) found greater ERP correlates of 

selective attention for C than for B when they were presented individually at test. In a 

recent fMRI study O'Bryan, Worthy, Livesey, & Davis (2018) used multivoxel 

pattern analysis to determine the extent to which participants were activating 

information involved in the representation of common and rare predictors. Faces, 

objects and scenes were used as cues, as these categories have well-defined regions of 

representation in the cortex. For example, imperfect predictors were always faces, but 

common and rare predictors were either objects or scenes, balanced within subjects. 

Prior to training, regions of sensitivity to these categories were determined for each 

participant, which were then compared to patterns of activation on conflicting test 

trials. This technique provides an index of neural similarity, which reflects the 

strength of representation of specific features, and is assumed to index a combination 

of feature-based attention and memory retrieval for what has been learned about those 

features. O'Bryan et al. found neural activity indicative of greater representation of 

cue B than cue C on conflicting trials when participants chose the rare outcome. 

These neural measures of stimulus processing are quite different from one another in 
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their time course and founding assumptions, and also distinctly different from 

measures of overt attention typically used in learning. Nevertheless they are certainly 

sufficient to warrant examining fixation time to cues at test, broken down according 

to outcome choice.  

The EXIT model in particular makes clear predictions about attention shifts 

after an outcome choice, when the correct outcome is revealed. That is, attention is 

driven towards the cue that is most likely to reduce future error before the end of the 

trial. Part of this attention shift is learned, such that a proportion of the new attention 

distribution is applied when a similar stimulus is encountered. Due to this distinction, 

measures of fixation time were divided into two time periods; fixation time from the 

onset of cues until a response is made, which should reflect the learned pre-shift 

attention to cues in Figure 1 (panels A and B), and fixation time after making a 

response, during corrective feedback, which should reflect post-shift attention 

illustrated in Figure 1. It is possible that overt gaze at this stage of the trial will reflect 

the end-state of attention (as in panels C and D), or the amount of updating of 

attention biases required between pre-shift attention and end-state attention, indicated 

by the change in attention from pre-shift to post-shift attention (as in panels E & F).  

In this experiment, participants completed either the standard or balanced 

version of base-rate training, followed by the typical inverse base-rate effect transfer 

test trials (see Table 3). Note that in this experiment, we used only two outcomes, 

rather than the four outcomes that were used in Don & Livesey (2017). The 

contingencies were presented using an allergist task, which has been used frequently 

in human contingency learning studies (e.g., Larkin, Aitken & Dickinson, 1998; Le 

Pelley & McLaren, 2001; Van Hamme & Wasserman, 1994; Waldmann & Holyoak, 

1992) and has proven useful for studying attention transfer in the learned 
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predictiveness effect (Don & Livesey, 2015; Le Pelley & McLaren, 2003; Shone, 

Harris & Livesey, 2015). EXIT predicts greater pre-decision attention to cue C on AC 

trials than to cue B on AB trials. This bias should be greater in the standard group 

than in the balanced group, and should increase over training. During feedback, there 

should also be a stronger bias in gaze towards the predictive cue on rare trials than 

common trials, which does not differ between groups. If attention during feedback 

reflects end-state attention, this gaze bias should be acquired early and remain 

consistent throughout training, but if it reflects the change from pre- to post-shift 

attention, the gaze bias should decrease across training. Mackintosh instead predicts 

greater attention to cue B on AB trials than to cue C on AC trials, and that this 

difference between the two predictors decreases across training. Mackintosh does not 

make specific predictions about attention biases during the feedback period of the 

trial, though one might assume that post-feedback eye gaze could reflect the updating 

of attention that occurs post-learning. If this were the case then one would expect 

stronger attention biases towards B early in training, and stronger attention towards C 

later in training, as alpha for B reaches ceiling faster than alpha for C, and prediction 

error on AB trials reaches floor much faster than on AC trials.  

 

Method 

Participants 

Ethical approval for this study was obtained from the Human Research Ethics 

Committee at the University of Sydney. Sixty-four undergraduate students from the 

University of Sydney participated in return for partial course credit (51 female, mean 

age = 19.6 years, SD = 4.21). Participants were randomly allocated to standard and 

balanced conditions (n = 32). Because there was no precedent for the expected effect 
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size in attention, we chose a sample size that was greater than that used in other 

studies examining eye-gaze in learning (e.g., Easdale, Le Pelley & Beesley, 2018; Le 

Pelley, Beesley & Griffiths, 2011). We continued collecting data until we reached 32 

participants per group.  

Apparatus and stimuli 

The experiment was programmed using PsychToolbox for Matlab (Kleiner, 

Brainard & Pelli, 2007). Participants were tested individually, and eye gaze was 

measured using a 23-inch Tobii TX300 Eye Tracker, which has a sample rate of 300 

Hz. Participants were seated approximately 55cm from the monitor, with a chin rest to 

maintain a fixed position. The eye tracker was calibrated using a five-point procedure 

at the beginning of the experiment. Cue stimuli were 300 x 300 pixel images of 

Coffee, Fish, Lemon, Cheese, Eggs, Garlic, Bread, Peanuts, Avocado, Banana, 

Bacon, Peas, Apple, Mushrooms, Strawberries, Broccoli, Cherries, Butter, Olive Oil, 

Chocolate, Carrots, Peach, Milk, and Prawns, randomly allocated to cues A-L. These 

were presented horizontally aligned on the upper half of the screen. The two outcome 

stimuli were randomly allocated from the allergic reactions Headache, Nausea, Rash 

and Fever, presented in text boxes on the lower half of the screen, vertically aligned 

with the center of the two cues. Stimuli were presented following a 500ms 

presentation of a fixation cross at the horizontal centre of the screen. The distance 

between the centre of the cross and the centre of each cue was 15cm. Outcome 

options appeared 500ms after the presentation of the cues. Responses were made 

using a standard mouse and keyboard. Feedback was provided for two seconds in the 

centre of the screen. 
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Table 3 

Experimental Design for the Current Study 

Phase Group Trial type Base-

rate 

Trials 

Training Standard Common 3 AB – O1 DE – O1 GH – O1 JK – O1 

  Rare 1 AC – O2 DF – O2 GI – O2 JL – O2 

 Balanced Common 3 AB – O1 DE – O2 GH – O1 JK – O2 

  Rare 1 AC – O2 DF – O1 GI – O2 JL – O1 

Test  Imperfect 1 A D G J 

  Conflicting 1 BC EF HI KL 

  Combined 1 ABC DEF GHI JKL 

  Common predictor 1 B E H K 

  Rare predictor 1 C F I L 

  Trained common 1 AB DE GH JK 

  Trained rare 1 AC DF GI JL 

Note: The critical conflicting test trials are indicated in bold.  

 

Procedure 

Participants assumed the role of a doctor whose task was to determine which 

foods were causing which allergic reaction in their patient, Mr X. On each trial during 

training, two food cues appeared, and participants were asked to predict which 

allergic reaction would occur after Mr X had eaten that meal by clicking on one of 

two outcome options on the lower half of the screen. Once an outcome was selected, 

the options disappeared and corrective feedback was provided. Participants were told 

that at first they would have to guess, but using the feedback provided, their accuracy 

should improve over time. The arrangement of the two cues on the screen was 

counterbalanced within each block and the positions of the two outcomes were 

randomised for each participant but held constant throughout the session. There were 

seven blocks of training including the contingencies presented in Table 3, in a 3:1 

base-rate. Each block contained six presentations of the frequent trial types and two 

presentations of the infrequent trial types, such that there were 224 training trials.  

The test phase began immediately following training. Participants were 

instructed to use the knowledge that they had gained so far to predict the allergic 
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reaction that was most likely to occur after Mr X ate meals containing one, two, or 

three foods. In this phase, food cues appeared on the upper half of the screen and 

participants made their prediction by clicking on an outcome, which then turned blue. 

Once a choice was made, a continuous rating scale ranging from “not at all confident” 

to “very confident” appeared beneath the options, and participants were asked to rate 

their confidence that they had made the correct choice. Responding was self-paced, 

and participants were able to modify their response before moving to the next trial. 

The test phase included one repetition of each of the transfer trials in Table 3, 

presented in random order. The arrangement of the two cues on the screen was 

randomised for each trial, and outcome options were presented in the same 

arrangement as in training.  

Eye gaze analysis 

Fixation time on each trial was separated into two time periods – a “pre-

decision” period which spanned stimulus onset to a response, and a “feedback” 

period, which began once a prediction had been made, and continued while the 

feedback was presented on screen until the end of the trial. On each trial, the 

percentage of missing samples was calculated, and the data from the eye with the least 

missing samples were used. Gaps of missing data less than 75 milliseconds were 

interpolated between the data preceding and following the gap. Fixations were 

determined by a displacement method (Salvucci & Goldberg, 2000). The horizontal 

and vertical coordinates of gaze data were analysed in 150ms windows, and a fixation 

was determined if the coordinates did not deviate beyond a range of 75 pixels. This 

window was then extended until a deviation of greater than 75 pixels was recorded, to 

determine fixation length. Fixation position was taken as the mean horizontal and 

vertical pixel coordinates across the fixation sample. Any fixation recorded within a 
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500 x 500 pixel region of interest (ROI) centered on the cue image (providing a 100 

pixel ROI surrounding the cue image) was taken as a fixation on that cue.. 

Trials without any recorded fixations were removed from the analyses, and 

participants with more than 30% missing trials in either the decision or feedback 

period in the training, or during the test phase, were excluded from the respective eye 

gaze analysis (their data were used in the behavioural analyses). This resulted in the 

exclusion of one participant from the training phase gaze analysis, and two 

participants from the test phase analysis. For the remaining participants, mean 

excluded trials were 3.7%, (SE = 0.8) during training, and 0.8% (SE = 0.4) during the 

test phase. To control for potential differences in response time between trial types, 

fixation time was analysed as a proportion of response time in the pre-decision period 

in training, and as a proportion of the time taken to first select an outcome during the 

test phase. Fixations while rating confidence, or altering outcome choice during the 

test phase were not included in the analysis.  

 

Results 

 

Choice responses 

 

Training accuracy. To analyse the training accuracy data shown in Figure 

3A, a 2 x (2) x (7) mixed measures ANOVA was run with group (standard vs. 

balanced) as a between subjects factor, and trial type (common vs. rare) and block (1 

– 7) as within subjects factors. There was a significant linear effect of block, F(1,62) 

= 303.76, p < .001, 𝜂𝑝
2  = .83, and quadratic effect of block, F(1,62) = 166.82, p < .001,  

𝜂𝑝
2  = .729. There was a significant main effect of trial type, with greater accuracy for 

common trials overall, F(1,62) = 134.57, p < .001, 𝜂𝑝
2  = .685, and group, with greater 

accuracy in the standard group overall, F(1,62) = 7.33, p = .009, 𝜂𝑝
2  = .106. There was 
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a significant interaction between group and trial type, such that there was a greater 

difference in accuracy for common and rare trials for the balanced group, F(1,62) = 

10.59, p = .002, 𝜂𝑝
2  = .146. There were also significant interactions between the linear 

effect of block and trial type, F(1,62) = 73.29, p < .001, 𝜂𝑝
2  = .542, and between the 

quadratic effect of block and trial type, F(1,62) = 24.74, p < .001, 𝜂𝑝
2  = .285, 

indicating common trials were learned about faster than rare trials. There were also 

interactions between the linear effect of block and group, F(1,62) = 10.25, p = .002, 

𝜂𝑝
2  = .142, and a significant three-way interaction between the linear effect of block, 

group, and trial type, where there was a greater difference in the speed of learning for 

common and rare trials for the balanced group than the standard group, F(1,62) = 

7.07, p = .01, 𝜂𝑝
2  = .102.  

Test. Responses for all trial types are shown in Table 4, and the proportion of 

relevant rare outcome choices for the three critical transfer trials is shown in Figure 

3B. Although the combined trials are included here for consistency with previous 

research, we do not place too much weight on them, as response biases on combined 

trials are generally much less reliable than those seen on imperfect and conflicting 

trials (see Shanks, 1992). Where a null effect is of potential theoretical importance, 

we include Bayes Factor (BF) to assess the evidence in favour of the null, based on 

Rouder, Speckman, Sun, Morey & Iverson’s (2009) JZS prior with scaling factor r = 

.707. 
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Figure 3. Choice data including A) Response accuracy during training for common 

and rare trial types in each group, and B) Proportion rare choice on imperfect, 

conflicting and combined transfer trials during the test phase. Error bars indicate 

standard error of the mean. 
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Table 4. 

Choice responses and confidence ratings for all test trials  

  Choice  

Transfer Trial Group Common Rare Confidence 

Imperfect Standard .836 .164 52.89 

A, D, G, J Balanced .648 .352 57.41 

 

Conflicting Standard .281 .719 60.20 

BC, EF, HI, KL Balanced .445 .555 51.75 

 

Combined Standard .227 .773 68.48 

ABC, DEF, GHI, JKL Balanced .703 .297 65.12 

 

Common predictor Standard .953 .047 76.76 

B, E, H, K Balanced .961 .039 79.22 

 

Rare predictor Standard .039 .961 78.36 

C, F, I, L Balanced .094 .906 75.23 

 

Trained Common Standard .984 .016 94.61 

AB, DE, GH, JK Balanced .984 .016 94.87 

 

Trained Rare Standard .023 .977 94.28 

 AC, DF, GI, JL Balanced .070 .930 88.03 

Note: as there are only two outcomes in this experiment, choice proportions sum to 1. 

 

The proportion of rare choice on these trials replicates the pattern of results reported 

in Don and Livesey (2017; Experiment 2) fairly closely. There was a significant 

inverse base-rate effect in the standard group with a greater proportion of rare 

outcome choices on conflicting (BC) trials, t(31) = 4.39, p < .001, d  = 0.78. While 

there was a small numerical bias for choosing the rare outcome on conflicting trials in 

the balanced group, this did not reach significance, t(31) = 1.27, p = .214, d = 0.22 

The rare-bias was significantly weaker on conflicting trials in the balanced than the 

standard group, t(62) = 2.49, p = .016, d = 0.62. On imperfect (A) trials, responding 

was significantly common-biased in both groups, lowest t(31) = 4.01, p < .001, d = 

0.71, but this was significantly weaker in the balanced than standard group, t(62) = 

3.31, p = .002, d = 0.83. On combined (ABC) trials, choice was significantly rare-
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biased in the standard group, t(31) = 7.96, p < .001, d = 1.41, and significantly 

common-biased in the balanced group, t(31) = 4.94, p < .001, d = 0.87, and there was 

a significant difference in choices between the two groups, t(62) = 8.89, p < .001, d = 

2.22. Overall, there was no significant difference in accuracy for common (mean = 

.96, SD = .12) and rare predictors (mean correct responses = .93, SD = .16), F(1,62) = 

1.32, p = .255, 𝜂𝑝
2  =.021, BF01 = 3.95. There was also no main effect or interaction 

with group, highest F(1,62) = 2.35, p = .131, 𝜂𝑝
2  = .036. 

Eye gaze 

Pre-decision. Pre-decision fixation time on each cue, as a proportion of total 

decision time is shown in Figure 4. We ran a 2 x (2) x (2) x (7) repeated measures 

ANOVA with group as a between-subjects factor, and cue predictiveness (imperfect 

vs. perfect), trial type (common vs. rare) and block (1-7) as within-subjects factors. 

There were significantly longer fixations on predictive cues than imperfect cues 

overall, F(1,61) = 21.97, p < .001, 𝜂𝑝
2  = .265. Fixation time was also generally higher 

on rare trials than on common trials, F(1,61) = 12.18, p = .001, 𝜂𝑝
2  = .166, but a 

significant interaction with linear trend in block revealed that this difference 

decreased over training, F(1,61) = 14.94, p = .001, 𝜂𝑝
2  = .197. Critically, there was a 

significant predictiveness x trial type interaction F(1,61) = 12.50, p = .001, 𝜂𝑝
2  = .17, 

with a greater bias for perfect predictors on rare trials than on common trials. This 

result is clearly consistent with the predictions of EXIT and not Mackintosh. There 

was also a significant three-way interaction between predictiveness, trial type and 

group, F(1,61) = 8.02, p = .006, 𝜂𝑝
2  = .12. Further analysis for each group separately 

showed that in the standard group, there was a significant interaction between 

predictiveness and trial type, F(1,30) = 22.09, p < .001, 𝜂𝑝
2  = .424, where there was a 

significant bias towards the predictive cue on rare trials, F(1,30) = 21.93, p < .001, 𝜂𝑝
2  
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= .422, but not on common trials, F < 1, BF01 = 5.21. In contrast, in the balanced 

group, the bias towards the predictive cue did not differ between common and rare 

trials, F < 1, BF01 = 4.67, and the predictive cue bias was significant for both trial 

types, lowest F(1,30) = 5.88, p = .021, 𝜂𝑝
2  =.159. The bias for rare predictors on rare 

trials did not differ between standard and balanced groups F(1,59) = 1.71, p = .196, 

𝜂𝑝
2  = .027, BF01 = 1.90. 

 

 
 Figure 4. Fixation time as a proportion of response time (RT) during the pre-decision 

period for A) common trials in the standard group, B) rare trials in the standard group, 

C) common trials in the balanced group, and D) rare trials in the balanced group. 

Error bars indicate standard error of the mean.   
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To determine whether biases in attention changed over the course of training, 

we examined linear effects of block. This revealed a significant interaction between 

block, predictiveness and trial type, F(1,61) = 5.98, p = .017, 𝜂𝑝
2  = .089. To further 

investigate this interaction, common and rare trials were analysed separately. The bias 

for predictive cues relative to imperfect predictors significantly increased across 

training on rare trials, F(1,61) = 11.20, p = .001, 𝜂𝑝
2  = .155, but there was no 

significant change on common trials, F(1,61) = 3.49, p = .067, 𝜂𝑝
2  = .054. These 

effects did not interact with group, Fs < 1.  

 

 
Figure 5. Fixation time as a proportion of feedback time for a) common trials in the 

standard group, b) rare trials in the standard group, c) common trials in the balanced 

group, and d) rare trials in the balanced group. Error bars indicate standard error of 

the mean 
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Feedback. Fixation time during feedback, shown in Figure 5, was analysed as 

a proportion of the fixed feedback time of two seconds. There were again 

significantly longer fixations on predictive cues than imperfect cues, F(1,61) = 28.32, 

p < .001, 𝜂𝑝
2  = .317. There was also greater fixation time on rare trials than common 

trials overall, F(1,61) = 44.65, p < .001, 𝜂𝑝
2  = .423, which decreased over training, 

F(1,61) = 8.15, p = .006, 𝜂𝑝
2  =  .118. There was a significant interaction between trial 

type and cue type, F(1,61) = 20.30, p < .001, 𝜂𝑝
2  = .250, such that there was a greater 

difference in fixation time to predictive and imperfect cues on rare trials than on 

common trials. This effect of cue predictiveness was only significant on rare trials, 

F(1,61) = 31.02, p < .001, 𝜂𝑝
2  = .337, and not on common trials, F(1,61) = 3.29, p = 

.075, 𝜂𝑝
2  = .051, BF01 = 1.52.  

Unlike fixations during the decision period, the interaction between cue 

predictiveness and trial type did not further interact with group, F < 1. There was a 

significant three-way interaction between the linear trend of block, predictiveness and 

trial type, F(1,61) = 4.56, p = .037, 𝜂𝑝
2  = .07. This indicates that the bias towards the 

predictive cue decreased across training for rare trials, F(1,61) = 4.22, p = .044, 𝜂𝑝
2  = 

.065, but not for common trials, F < 1. There was no significant interaction with 

group for either trial type, highest F(1,61) = 2.31, p = .134, 𝜂𝑝
2  = .037.  
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Figure 6. Gaze to common and rare predictors according to outcome choice on 

conflicting trials during the test phase.  

 

Test. On conflicting test trials, there was no difference in fixation time to 

common or rare predictors, F < 1, BF01 = 4.74, and no effects of group, Fs < 1, lowest 

BF01 = 3.50. There was also no difference in attention to common and rare cues when 

considering only the trials on which a rare outcome was chosen, F < 1, BF01 = 7.09 

(see Figure 6; cf. O'Bryan et al., 2017), and no main effect or interaction with group, 

highest F(1,43) = 1.94, p = .171, 𝜂𝑝
2  =  0.043, BF01 = 1.72. 
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in the balanced group where the outcome occurred at an equal rate across the entire 

experiment, suggesting an influence of context associations on choice biases.  

Overall, there was a greater fixation bias to cue C on rare trials than to cue B 

on common trials, and this effect differed between the two training procedures. In the 

standard group, both cues were attended equally on AB trials, but there was greater 

attention to C on AC trials. In the balanced group, more time was spent attending to 

predictive cues B or C than to A regardless of the trial type. During the test phase, 

there were no differences in fixation time to common and rare cues on conflicting 

trials, even when only considering trials where the rare outcome was chosen. This 

pattern also did not differ between groups.  

Previous studies have shown that choice accuracy for B is greater than choice 

accuracy for C at test, in the presence of an inverse base-rate effect (e.g. Wills et al., 

2014). In this experiment, there was no benefit in accuracy for B over C when tested 

individually, and this did not differ between standard and balanced groups. However, 

responding on these trials was close to ceiling and therefore a reliable difference in 

performance on these trials may be difficult to detect. The following discussion will 

compare the results with model predictions.  

Relative attention to cues 

  The EXIT model predicted a greater bias in attention to C on AC trials than to 

B on AB trials, whereas Mackintosh predicted the opposite pattern, with higher 

attention to B on AB trials than to C on AC trials. Measures of fixation time indicated 

a greater bias for C over A than for B over A, both prior to making an outcome choice 

(in the standard group only), and during feedback (in both groups). These results 

indicate a clear attention advantage for C over B, and are more consistent with the 

predictions from EXIT.  
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Changes in attention over training 

There were differences in the change in attention biases throughout training 

between the decision period and the feedback period. During the decision period, eye-

gaze biases towards C on rare AC trials became more pronounced over training, and 

there was no significant change in biases on common trials. This pattern of attention 

is mostly consistent with the pattern of pre-shift attention biases predicted by EXIT, 

and likely reflects the current state of learning about cues. That is, attention prior to 

choice is an exploitative process, in which attention is directed towards cues that will 

be most useful in producing a correct outcome prediction.   

During feedback, preferential attention to C on AC trials was stronger earlier 

in training than later in training. This change in attention appears to follow the 

reduction in prediction error, which was higher early in training, and lower later in 

training. Thus, attention during feedback appears to be a response to error, directed 

towards the cues most likely to reduce future prediction error.  

Interestingly, the reduction in this bias for the rare predictor during feedback is 

also broadly consistent with a metric we derived from EXIT; the amount of attention 

change from pre-shift attention to post-shift attention, which also declines over 

training (Figure 1, Panels E and F). Thus attention during feedback may reflect an 

updating process, where attention biases are corrected between what was attended 

prior to making a choice, and an optimal distribution of attention. For example, if C is 

not well attended during the decision period, then a greater amount of attention may 

be allocated to that cue in feedback, compared to when C is well attended during the 

decision period.   

Currently, gaze fixation during feedback is not widely used or reported in 

studies of attention in learning. Future research should further test whether attention 
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during this time period is indeed reflective of prediction error. If this is the case, gaze 

fixation during feedback will provide a useful measure of updating processes in future 

work.  

The role of context learning  

The comparison of standard and balanced conditions in these experiments 

allows us to determine the influence of context associations on the inverse base-rate 

effect, and on attention to predictive cues. The difference in frequency of overlapping 

compounds in both groups means that the imperfect predictor (e.g. A in AB and AC) 

should be associated with the relevant common outcome within each compound pair. 

However, in the standard condition, one outcome is consistently paired with common 

compounds, such that the context is also more strongly associated with that outcome. 

In the balanced condition, each outcome is paired with both common and rare 

compounds, such that the context would be equally associated with both outcomes. 

Consistent with this idea, the EXIT model predicted greater attention to the context on 

common trials than on rare trials in the standard group, but not in the balanced group, 

which suggests a greater influence of context learning in the standard group. The 

Mackintosh model instead predicted that the context loses attention rapidly in both 

groups. 

The influence of context associations can provide a reasonable explanation for 

the differences in choice and pre-decision attention biases between groups. In the 

standard condition, participants can rely on the base-rate to help make accurate 

predictions on common AB trials. Although B is more predictive than A, it may be 

less necessary to focus on either cue in particular, relative to the balanced group in 

which the overall base-rate is not helpful. In the balanced group, the context does not 

provide a good prediction of either outcome, and therefore more attention would need 
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to be paid to the most predictive cues on every trial (cue B on common trials, and cue 

C on rare trials), in order to make an accurate response. Consistent with this idea, the 

common-bias to A was weaker in the balanced group, suggesting that they were 

paying less attention to this cue than in the standard group. Several authors have noted 

an association between the strength of common responses to imperfect cues and the 

strength of the inverse base-rate effect (e.g. Shanks, 1992; Kruschke et al., 2005), 

which has been taken as support for attention accounts. That is, the more A is 

associated with O1, the more attention should be shifted away from A to C on AC 

trials. Although we observed an equal pre-decision gaze bias to rare predictors on AC 

trials in both groups, increased attention to B on AB trials in the balanced group 

would result in a weaker association between A and the common outcome.6 As such, 

the reduced rare outcome bias on conflicting trials in the balanced group may well be 

a result of differences in attention due to context associations. That is, an equivalent 

predictive cue bias on AB and AC trials might result in cue C having less relative 

control over responding compared to cue B on BC trials.  

Again consistent with the predictions of EXIT, the pattern of post-feedback 

attention was no different between groups. Choice differences between groups 

therefore appear to be more strongly reflected in the pre-decision attention to cues, 

rather than error-driven attention shifts during feedback.  

Attention at test 

Our fixation time data from the test phase does not support either of the 

previous results regarding the strength of cue processing at test (Kruschke et al., 2005; 

O’Bryan et al., 2018). The absence of fixation time differences suggests that the effect 

                                                        
6 It is worth noting however that the inverse base-rate effect likely cannot be explained by appealing to 

context learning alone. In Experiment 3 of Don & Livesey (2017), AB-O1 and AC-O2 were trained in 

equal frequency, while pairings of high-frequency filler trials with O1 provided a strong overall base-

rate difference, and therefore strong context-O1 associations. These conditions were insufficient to 

produce the inverse base-rate effect on BC trials. 
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is not driven by continued overt attention biases to the rare predictor into the test 

phase. Rather, the contribution of attention to choice appears to be constrained to 

initial learning of the contingencies. Although researchers have emphasised the 

importance of attention biases at test for the inverse base-rate effect (e.g. Wills et al., 

2014; O’Bryan et al., 2018), the EXIT model does not necessarily require continued 

attention biases at test to predict an inverse base-rate effect. Indeed the predecessor to 

EXIT, the ADIT model (Kruschke, 1996), was able to predict the inverse base-rate 

effect in the absence of learned attention to cues simply by relying on rapid attention 

shifts driven by prediction error on a given trial but not retained across trials.  

Rule based-processes in the inverse base-rate effect 

 The purpose of this paper was to explore how well attention-based learning 

models can account for the inverse base-rate effect, and indeed it is clear that we have 

found changes in attention that are likely to contribute to choice biases. While we 

have focused primarily on attentional explanations of the inverse base-rate effect, the 

effect is not universally explained in these terms. There is a broad literature on the 

role of rules and reasoning in human learning (e.g., Mitchell, De Houwer & 

Lovibond, 2009), and the inverse base-rate effect specifically (Juslin, Wennerholm & 

Winman, 2001; Winman, Wennerholm, Juslin & Shanks, 2005). As we have 

previously discussed (Don & Livesey, 2017), non-attentional inferential processes 

may play a role in the choice of the rare outcome on conflicting trials, as well as 

differences in choice between standard and balanced groups. The most comprehensive 

inferential explanation for the inverse base-rate effect describes the rare bias as a 

consequence of eliminating the common outcome because of the noticeable 

dissimilarity between AB-O1 training trials and BC test trials (Juslin et al., 2001). 

There is now evidence from a range of studies that this eliminative inferential account 
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fails to capture many of the properties of the effect and makes corollary predictions 

that are demonstrably incorrect (see Don & Livesey, 2017 for a discussion). Although 

inferential hypotheses cannot provide a full account of the effect, we have found here 

that attention models are also limited in accounting for all eye-gaze and choice 

effects. There is good reason to assume that learned attentional biases are not fully 

controlled by deliberate inferential cognitive processes (e.g. Cobos, Vadillo, Luque & 

Le Pelley, 2018; Don & Livesey, 2015; Shone, Harris & Livesey, 2015), and applying 

associative learning algorithms to model attentional change remains a viable and 

justifiable approach, especially given the wealth of new empirical evidence 

supporting a link between associative learning and biases in visual attention (e.g., 

Failing & Theeuwes, 2018; Feldmann-Wüstefeld, Uengoer & Schubö, 2015; Livesey, 

Harris, & Harris, 2009; Luque, Vadillo, Gutiérrez-Cobo & Le Pelley, 2018).  

Nevertheless, by the same token, it seems likely that participants' choices at test are a 

result of a combination of processes including not only associative memory retrieval, 

but also inferential reasoning of some kind. There is certainly evidence of this in 

similar learning tasks that are designed to tease apart such influences when 

participants are faced with a novel test trial that requires generalization from trained 

instances (e.g. Don, Goldwater, Otto, & Livesey, 2016; Shanks & Darby, 1998; Wills, 

Graham, Koh, McLaren & Rolland, 2011). This may be the reason why both learning 

models do a less than impressive job of capturing the pattern of choice data in its 

entirety. 

Associability versus attention 

Attention is a notoriously vague term in psychology, and while it is 

consistently used in learning theoretic circles to refer to stimulus selectivity, there are 

many forms of stimulus selection to which it can be applied. The processes governing 
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each selection mechanism may not be the same. Classic attentional models of 

conditioning such as Mackintosh (1975) sought to characterise changes in stimulus 

associability specifically, that is the rate at which a cue enters into new learning, 

determined by how processing of that cue is prioritised over others. Mackintosh was 

explicitly agnostic about the possibility that these changes may also affect 

performance, for instance enhancing or diminishing the impact of previously learned 

associations on behaviour or indeed manifesting in overt attentive behaviours such as 

gaze fixation.  

 This is a key difference between Mackintosh's theory and Kruschke’s EXIT 

model, in which attention explicitly affects both associability and performance, and it 

gives us cause to be cautious about ruling out the Mackintosh model’s account 

entirely. Although several studies have found that predictive cues possess higher 

associability and attract longer dwell times than non-predictive cues (e.g. Le Pelley et 

al., 2011; Thorwart et al., 2017), beyond this correlation between two biases, it is not 

necessarily clear how associability is related to eye-gaze. While our eye-gaze results 

are clearly inconsistent with predictions derived from Mackintosh, it is possible that 

cue associability follows a different pattern, possibly one that is more consistent with 

Mackintosh than EXIT. It will be important for future research to determine whether 

cue associability changes in the same way as the eye-gaze measures reported here. 

For instance, in the tradition of the learned predictiveness effect, future research 

should test whether differences in the base-rates of the cue-outcome pairings affects 

the rate of future learning about those cues. 

Predictiveness principles 

The aim of this study was to compare and test the predictions of two attention-

based models of associative learning in the inverse base-rate effect when global 
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outcome frequency was manipulated between groups. Both EXIT and Mackintosh 

could predict a reduction in the rare choices for conflicting trials when global 

outcome frequency was matched in the balanced group. However, only EXIT could 

predict differences in attention to the context between groups. Although EXIT does 

not provide a perfect account of all the results presented here, on the whole, the 

results are far more consistent with EXIT than with Mackintosh. Across several 

conditions using eye-gaze measures at two critical time points within a trial, there was 

considerable evidence that attention to C over A is stronger than attention to B over A  

We therefore showed that two models derived from the same basic principle 

make opposite predictions about the relative attention paid to a rare predictor versus a 

common predictor of an outcome. The results demonstrate that the specific 

formalisation of these models is important, such that very different predictions can be 

derived based on how their learning algorithms operate.  

There is a small but growing list of attention-based learning phenomena that 

are not consistent with the traditional view of learned predictiveness, as it was 

originally characterised by Mackintosh (1975). For instance, under some 

circumstances, associability changes appear to be controlled by absolute 

predictiveness rather than relative predictivenesss (Kattner, 2015; Le Pelley et al., 

2010; Livesey et al., 2011). In other tasks, participants appear to invest more attention 

after they have encountered strong prediction error (Griffiths, Johnson & Mitchell, 

2011; Beesley et al., 2015). There are also questions remaining about whether 

predictiveness-driven changes operate exclusively on predictive cues or whether 

similar processes affect outcomes as well (see Griffiths and Thorwart, 2017; Thorwart 

et al., 2017; Quigley et al., 2018). Our data are also largely inconsistent with the 

traditional Mackintosh formalisation of the learned predictiveness principle, in that 
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they demonstrate that learning in the inverse base-rate effect generates stronger 

attention biases for rare predictive cues than for common predictive cues, and that the 

predictiveness of the context may be partly instrumental in generating this effect. 

There are, of course, several attention-based models that may be relevant for 

understanding attention biases in the inverse base-rate effect; for example, models 

that reconcile the influence of predictiveness and uncertainty on attention to cues (Le 

Pelley, 2004; Esber & Haselgrove, 2011). Future theoretical advances will require a 

variety of new test beds to determine the limits of attentional change as a consequence 

of predictive learning and the experimental parameters that control it.  
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Appendix 

Mackintosh Model 

The original version of the Mackintosh model includes a separable error term 

for each cue: 

 ∆VA =  𝑆α𝐴(λ − VA) (A1) 

where VA is the change in associative strength of cue A, and S and α are learning 

rate parameters. The error term, ( – VA), represents the discrepancy between the 

magnitude of the outcome on that trial () and the extent to which cue A predicts the 

outcome, or the individual associative strength of cue A (VA). A small error term 

indicates that the cue is a good predictor of the outcome, while a large error term 

indicates that the cue is a poorer predictor. Mackintosh (1975) allows stimulus 

specific α to change on each trial according to experience of a cue’s predictiveness, 

such that: 

 ∆αA > 0  𝑖𝑓 | λ − VA |  <   | λ − Vx | 

∆αA < 0  𝑖𝑓 | λ − VA |  ≥  | λ − Vx | 
(A2) 

where Vx is the associative strength of all other stimuli present on that trial.  If | – 

VA| is less than | – Vx|, αA will increase as cue A is a better predictor of the outcome 

than all other stimuli. If | – VA| is greater than or equal to | – Vx|, αA will decrease as 

cue A is an equal or poorer predictor of the outcome than the other stimuli present.  

A separable error term limits the ability of the model to account for several 

learning phenomena, such as conditioned inhibition.  Subsequent variations of 

Mackintosh (e.g. Le Pelley, 2004; Suret & McLaren, 2005; Pearce & Mackintosh, 

2010) instead use a summed error term, which can better capture cue competition or 

interactions between the predictions of cues (as in the case of conditioned inhibition). 
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It is possible that a version of Mackintosh with a summed error term may better 

account for the apparent discrepancy between attention and associative strength. We 

therefore used a modified version of the Mackintosh model, in which a summed error 

term is used for the associative strength connecting cue A to outcome k:   

 ∆VAk =  𝑆α𝐴(λ − ΣV) (A3) 

The following equation was used to implement Equation A2 computationally, after 

the associative strengths have been updated via Equation A3:  

 ∆αA =  θ(E̅  −  E𝐴 )  ×  αA(1 −  αA) (A4) 

where θ is a parameter that controls the rate of change of α, and E𝐴 represents the total 

prediction error of cue A summed across all outcomes k: 

 

E𝐴 = ∑ |λj − VAj|

𝑘

𝑗=1

  (A5) 

E̅ represents the total prediction error of each cue present on the current trial, summed 

across all outcomes k, then averaged across all cues C, which provides an estimate of 

mean predictiveness for the cues present: 

 

E̅ =
1

𝐶
∑ ∑ |λj − Vij|

𝑘

𝑗=1

 

𝐶

𝑖=1

 (A6) 

Thus a strongly predictive cue should predict the presence of one outcome but also 

the absence of others. The term (E̅  −  E𝐴) reflects how predictive a given cue is 

relative to all cues present in a way that is analogous to Equation A2. If only two cues 

are present with no context or common element then (E̅  −  E𝐴) will be positive for 

one and negative for the other unless they are exactly equally predictive, but once 

context is also considered as an additional cue, this will not necessarily be the case. In 
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equation 4, αA(1 −  αA) ensures that α approaches asymptote (0 < α < 1), rather than 

becoming too large or becoming negative.  

A cue that strongly inhibits an outcome might end up with a large summed 

prediction error even when that outcome does not occur, because |λ − V| will be 

positive. Therefore all negative Vs are converted to 0 for the purpose of calculating 

each of the two error terms E̅ and E𝐴. To determine choice probabilities, we used the 

same derivative of the Luce (1959) choice rule used in EXIT to map associative 

strengths to response probabilities: 

 𝑝(𝑐) =  𝑒𝜙Σ𝑉𝑐 / ∑ 𝑒𝜙𝛴𝑉𝑘

𝑘

 
(A7) 

 

Parameter description 

The EXIT model has seven free parameters:  

1. Exemplar specificity: the specificity of the exemplar nodes (c in equation 3 in 

Kruschke (2001a); range: 0.01 – 20.0) 

2. Attention capacity: or the attention normalisation power (P in equation 5 in 

Kruschke (2001a); range: 0.1 – 20.0) 

3. Attention shift rate: A positive constant of proportionality (λg in equation 7 in 

Kruschke (2001a); range: 0.1 – 20.0) 

4. Choice decisiveness: a response probability scaling constant that converts 

output activation to response probability (ϕ in equation 2 in Kruschke (2001a); 

range: 0.1 – 20.0) 

5. Output weight learning rate: the associative weight learning rate (λw in 

equation 8 in Kruschke (2001a); range: 0.01 – 1.0)  

6. Gain weight learning rate: the learning rate for the associative weights from 

exemplar nodes to gain nodes (λx in equation 9 in Kruschke (2001a); range: 
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0.01 – 1.0)  

7. Bias salience: The salience of the bias (context) cue, (𝜎 in equations 3 and 4 in 

Kruschke (2001a); range: 0.01 – 2.0. All other cue saliences were fixed at 1.0) 

The parameter values were constrained to values between the upper and lower 

limits shown in brackets. To the best of our knowledge, Kruschke (2001a) did not 

include limits on the parameters in his model simulations. As such, where these 

parameters typically vary between 0 and 1, e.g. learning rate, these limits were 

imposed, and where they do not, an arbitrary limit of 20 was imposed.  

The implementation of Mackintosh used here has five free parameters: 

1. Learning rate: (S in Equation A3; range: 0.01 – 1.0) 

2. Initial alpha for cues: The initial associability of stimuli (range: 0.1 – 1.0). 

3. Initial alpha for context: The initial associability of the context (range: 0.1 – 

1.0). 

4. Theta:  A parameter that controls the rate of change of α (range: 0.1 – 1.0). 

5. Choice decisiveness:  A response probability scaling constant that converts 

output activation to response probability (ϕ in equation A7; range: 0.1 – 20.0). 

 

Parameter search 

Simulated annealing was used to find the best fitting parameters for each model 

(Kirkpatrick, Gelatt & Vecchi, 1983; Vanderbilt & Louie, 1984), which was run using 

the simulannealbnd function in the Global Optimisation Toolbox for Matlab. 

Simulated annealing is a preferred parameter estimation technique for complex 

models, as it allows upward movements on the error surface, which is useful for 

avoiding local minima (Lewandowsky & Farrell, 2011). That is, it allows the 

parameter search to jump out of local minima in order to better find the global 

minimum. Because the trial randomisation leads to differences in the model 
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predictions from one run to the next, each simulation was run with 30 simulated 

participants per group, and the parameter search was repeated five times. The set of 

parameters with the lowest root-mean-square error (RMSE; the average difference 

between the predicted and observed values) at the group level were selected.  The best 

fitting parameters for EXIT were: exemplar specificity = 15.26; attention capacity = 

14.78; choice decisiveness = 6.17; attention shift rate = 17.29; output weight learning 

rate = 0.37; gain weight learning rate = 0.09; bias salience = 0.02; RMSE = 5.81. The 

best fitting parameters for Mackintosh were: S = 0.32; initial alpha for cues = 0.14; 

initial alpha for context = 0.1; theta = 0.99; choice decisiveness = 8.88; RMSE = 5.72. 

These parameters were then used to estimate the model predictions for the test trials. 

This was again run five times, and the simulated data with the lowest RMSE are 

reported. 

 

 

 


