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Abstract
Deployment of deep neural networks (DNNs) in
safety-critical systems requires provable guarantees
for their correct behaviours. We compute the maxi-
mal radius of a safe norm ball around a given input,
within which there are no adversarial examples for
a trained DNN. We define global robustness as an
expectation of the maximal safe radius over a test
dataset, and develop an algorithm to approximate
the global robustness measure by iteratively com-
puting its lower and upper bounds. Our algorithm is
the first efficient method for the Hamming (L0) dis-
tance, and we hypothesise that this norm is a good
proxy for a certain class of physical attacks. The
algorithm is anytime, i.e., it returns intermediate
bounds and robustness estimates that are gradually,
but strictly, improved as the computation proceeds;
tensor-based, i.e., the computation is conducted over
a set of inputs simultaneously to enable efficient
GPU computation; and has provable guarantees,
i.e., both the bounds and the robustness estimates
can converge to their optimal values. Finally, we
demonstrate the utility of our approach by applying
the algorithm to a set of challenging problems.

1 Introduction
Safety certification for DNNs is challenging owing to the lack
of symbolic models and formal specifications. An important
requirement specification for DNNs is their robustness to input
perturbations. DNNs have been shown to suffer from poor
robustness because of their susceptibility to adversarial ex-
amples [Szegedy et al., 2014; Biggio et al., 2013]. These
are small modifications to an input, sometimes imperceptible
to humans, that make the neural network unstable. As a re-
sult, significant effort has been directed towards approaches
for crafting adversarial examples [Goodfellow et al., 2015;
Papernot et al., 2016; Carlini and Wagner, 2017]. However,
these provide no formal guarantees, i.e., no conclusion can be
drawn on whether adversarial examples remain.

By contrast, recent efforts in the area of automated verifica-
tion, e.g.,[Huang et al., 2017; Katz et al., 2017; Lomuscio and
Maganti, 2017; Narodytska et al., 2017; Dutta et al., 2017;

Ruan et al., 2018a; Wu et al., 2018; Gehr et al., 2018;
Mirman et al., 2018], have focused on methods that generate
adversarial examples, if they exist, and provide rigorous lo-
cal robustness proofs otherwise. This paper proposes a novel
approach to quantify the robustness of DNNs that offers a
balance between the guaranteed accuracy of the method (thus,
a feature so far exclusive to formal approaches) and the com-
putational efficiency of algorithms that search for adversarial
examples (without providing any guarantees).

We focus on the Hamming distance (i.e., the L0 norm),
which measures the number of different vector components
given two inputs. In the case of images, this is the number of
pixels that are different. On the other hand, L1, L2 and L∞
norms compare how much each pixel has changed. The L0

distance is fast to compute and is an upper bound on the size of
an adversarial perturbation [Papernot et al., 2016; Carlini et al.,
2017]. However, the non-continuity and non-differentiability
of L0 is a challenge for the discovery of adversarial attacks.
Furthermore, the existing safety verification methods that are
designed for other distance metrics are not efficient when
using the Hamming distance. This includes SMT/SAT-based
methods [Katz et al., 2017], MILP-based work [Dutta et al.,
2017], exhaustive search or MCTS-based methods [Huang et
al., 2017; Wu et al., 2018], and methods based on abstract
interpretation [Gehr et al., 2018]. We remark that, while all
Lp norms can be used to identify physical adversarial attacks
and have a role to play, on their own or in combination, we
hypothesise that the Hamming distance is a good proxy for a
particular category of realistic physical attacks in which small
modifications (e.g., a sticker) are applied to objects that the
system is trained to recognise (e.g., a street sign), leaving the
rest of the image unchanged.

In this paper we consider the global robustness problem,
defined as the expected maximum safe radius over a (finite)
test dataset, which is a generalisation of the local, pointwise
robustness problem. The key idea of our approach is to gen-
erate sequences of lower and upper bounds for global robust-
ness simultaneously for a set of inputs by using tensor-based
parallelisation. Thus, global robustness aims to capture the
worst case local robustness (worst case maximal safety radius)
among a set of inputs. The usefulness of global robustness
lies in that it quantifies the size of the perturbation that the
system can withstand for a set of inputs, instead of just a sin-
gle input, since it gives both lower and upper bounds on the
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maximal safe radius. Intuitively, a lower bound x means that
no adversarial example is possible for perturbation of up to x
pixel changes, whereas an upper bound x means that x pixel
changes are sufficient to attack a network. By considering a
distribution over the set of inputs, we can quantify the robust-
ness of a DNN for this input distribution. Our definition is
thus a natural extension of the robustness concept of [Peck et
al., 2017].

Our method is anytime, tensor-based, and offers provable
guarantees. First, the method is anytime in the sense that it can
return intermediate results, including upper and lower bounds
and robustness estimates. We prove that our approach can
gradually, but strictly, improve these bounds and estimates as
the computation proceeds. Second, it is tensor-based. As we
are working with a set of inputs, a straightforward approach
is to perform robustness evaluation for the inputs individually
and to then merge the results. However, this is inefficient, as
the set of inputs is large. To exploit the parallelism offered
by GPUs, our approach uses tensors. A tensor can formulate
a finite set of inputs (e.g., images) into a multi-dimensional
array which can be efficiently processed by GPUs in parallel.
An algorithm that is well-suited for GPUs uses tensor opera-
tions whenever possible. Third, our approach offers provable
guarantees. We show that the intermediate bounds and ro-
bustness estimates converge to optimal values in finite time.
Our experimental results suggest that the algorithm converges
quickly in practice.

We implement our approach in a tool we name DeepTRE1

(“Tensor-based Robustness Evaluation for Deep Neural Net-
works”), and present experiments via five case studies, in-
cluding global robustness evaluation; competitive L0 attacks;
saliency map generation for model interpretability and local
robustness evaluation on ImageNet DNNs including AlexNet,
VGG-16/19 and ResNet-50/101; guidance to the design of
robust DNN architectures; and test case generation. All appli-
cations above require only simple adaptations of our method,
e.g., slight modifications of the constraints or objective func-
tions, or adding further constraints. This demonstrates that our
tool is flexible enough to deliver a wide range of promising
applications.

Owing to space limitations, we focus on describing the core
theoretical concepts, tensor-based parallelization and conver-
gence guarantees, and make an extended companion paper
available as [Ruan et al., 2018b].

2 Problem Formulation
Let f : Rn → Rm be an N -layer neural network such that,
for a given input x ∈ Rn, f(x) = (c1(x), . . . , cm(x)) ∈ Rm

represents the confidence values for m classification labels.
Without loss of generality, we normalise the input to x ∈

[0, 1]n. The output f(x) is usually normalised to be in [0, 1]m

using a softmax layer. We denote the classification label of
input x by cl(f, x) = arg maxj=1,...,m cj(x). Note that both
f and cl can be generalised to apply to a set T0 of inputs, i.e.,
f(T0) and cl(f, T0), in the standard way.
Definition 1 (Maximum Radius of a Safe Norm Ball)
Given a network f : Rn → Rm, a distance metric || · ||D,

1Available on GitHub: https://github.com/TrustAI/L0-TRE.

an input x0 ∈ Rn and a real number d ∈ R, a norm
ball B(f, x0, || · ||D, d) is a subspace of Rn such that
B(f, x0, || · ||D, d) = {x | ||x0 − x||D ≤ d}. The number d
is called the radius of B(f, x0, || · ||D, d). A norm ball B(f,
x0, || · ||D, d) is safe if for all x ∈ B(f, x0, || · ||D, d) we
have cl(f, x) = cl(f, x0). Furthermore, if for all d′ > d we
have that B(f, x0, || · ||D, d′) is not safe, then d is called the
maximum safe radius, and denoted by dm(f, x0, || · ||D).

Intuitively, a norm ball B(f, x0, || · ||D, d) includes all inputs
whose distance to x0, measured by || · ||D, is within d.

We define the (global) robustness evaluation problem over
a test dataset T, which is a set of i.i.d. inputs sampled from
a distribution µ representing the problem f is working on.
We use |T| to denote the number of inputs in T. When |T| = 1,
we call it local robustness.

Definition 2 (Robustness Evaluation) Given a network f ,
a finite set T0 of inputs, and || · ||D, robustness evaluation,
denoted as R(f, T0, || · ||D), is an optimisation problem:

min
T
||T0 − T||D s.t. cl(f, xi) 6= cl(f, x0,i) (1)

for all i ∈ {1, . . . , |T0|} where T = (xi)i=1,...,|T0| and T0 =
(x0,i)i=1,...,|T0|.

Intuitively, we aim to find a minimum distance between the
original set T0 and a new, homogeneous set2 T of inputs such
that all inputs in T0 are mis-classified.
L0 Norm The distance metric || · ||D can be any mapping
|| · ||D : Rn×Rn → [0,∞] that satisfies the metric conditions.
In this paper, we focus on the L0 norm3. For two inputs x0

and x, their L0 distance, denoted as ||x− x0||0, is the number
of their components that are different. When working with a
test dataset T0 (all inputs in T0 are i.i.d.), we define

||T− T0||0 = Ex0∈T0 [||x− x0||0] (our definition)

=
1

|T0|
∑

x0∈T0

||x− x0||0 (2)

where x ∈ T is a homogeneous input to x0 ∈ T0. While
other norms such as L1, L2 and L∞ have been widely applied
for generating adversarial examples [Papernot et al., 2016;
Kurakin et al., 2016], studies of robustness evaluation for
DNNs based on the L0 norm are few and far between [Pa-
pernot et al., 2016; Carlini et al., 2017; Wicker et al., 2018;
Huang et al., 2017; Wu et al., 2018]. In Appendix B of [Ruan
et al., 2018b], we discuss why L0 is an important distance
metric from various perspectives.

3 Anytime Robustness Evaluation
The evaluation of robustness following Definition 2 is hard for
the L0-norm. In Appendix A.1 of [Ruan et al., 2018b], we dis-
cuss its computational complexity and prove that the problem
is NP-hard. We propose to compute lower and upper bounds
on robustness, and then gradually, but strictly, improve the

2Two sets T0 and T are homogeneous if they have the same num-
ber of elements and are of the same type.

3Strictly speaking, L0 is not a norm, but it is commonly referred
to as such.

https://github.com/TrustAI/L0-TRE.


bounds so that the gap between them can eventually be closed.
Although in practice run times can be long, this anytime ap-
proach provides pragmatic means to make progress. Section 5
shows that our approach achieves tight bounds efficiently on
difficult instances.

Definition 3 (Sequences of Bounds) Given a robustness
evaluation problem R(f, T0, || · ||D), a sequence L(T0) =
{l1, l2, . . . , lk} ∈ R is an incremental lower bound sequence if,
for all 1 ≤ i < j ≤ k, we have li ≤ lj ≤ R(f, T0, ||·||D). The
sequence is strict, denoted as Ls(T0), if for all 1 ≤ i < j ≤ k,
we have either li < lj or li = lj = R(f, T0, || · ||D). Similarly,
we can define a decremental upper bound sequence U(T0)
and a strict decremental upper bound sequence Us(T0).

We will, in Section 4, introduce our algorithms for comput-
ing these two sequences of lower and upper bounds. For now,
assume they exist, then at a certain time t > 0,

lt ≤ R(f, T0, || · ||D) ≤ ut (3)

holds.

Definition 4 (Anytime Robustness Evaluation) Based on
two given bounds [lt, ut], we define its centre and radius as
follows.

Uc(lt, ut) =
1

2
(lt +ut) and Ur(lt, ut) =

1

2
(ut− lt) (4)

The anytime evaluation of R(f, T0, || · ||D) at time t, denoted
as Rt(f, T0, || · ||D), is the pair (Uc(lt, ut), Ur(lt, ut)).

The anytime evaluation will be returned whenever the com-
putational procedure is interrupted. Intuitively, we use the
centre Uc(lt, ut) to represent the current estimate, and the ra-
dius Ur(lt, ut) to represent its error bound. Essentially, we
can bound the true robustnessR(f, T0, || · ||D) via the anytime
robustness evaluation.

4 Tensor-based Algorithms for Upper and
Lower Bounds

We present our approach to generate the sequence of bounds.
For both the lower bounds and the upper bounds, we need the
following definition.

Definition 5 (Complete Set of Subspaces for an Input)
Given an input x0 ∈ [0, 1]n and a set of t dimensions
T ⊆ {1, ..., n} such that |T | = t, the subspace for x0,
denoted by Xx0,T , is a set of inputs x ∈ [0, 1]n such that
x(i) ∈ [0, 1] for i ∈ T and x(i) = x0(i) for i ∈ {1, ..., n}\T .
Furthermore, given an input x0 ∈ [0, 1]n and a number t ≤ n,
we define

X (x0, t) = {Xx0,T | T ⊆ {1, ..., n}, |T | = t} (5)

as the complete set of subspaces for input x0.

Intuitively, elements in Xx0,T share the same value with x0

on the dimensions other than T , and may take any legal value
for the dimensions in T . Moreover, X (x0, t) includes all sets
Xx0,T for any possible combination T with t dimensions.

Next, we define the subspace sensitivity for a subspace w.r.t.
a neural network f , an input x0 and a test dataset T0. Recall
that f(x) = (c1(x), . . . , cm(x)).

Definition 6 (Subspace Sensitivity) Given an input sub-
space X ⊆ [0, 1]n, an input x0 ∈ [0, 1]n and a label j, the
subspace sensitivity w.r.t. X , x0, and j is defined as

S(X,x0, j) = cj(x0)− inf
x∈X

cj(x). (6)

Let t be an integer. We define the subspace sensitivity for T0

and t as

S(T0, t) = (S(Xx0
, x0, jx0

))Xx0
∈X (x0,t),x0∈T0 (7)

where jx0 = arg maxi∈{1,...,m} ci(x0) is the classification
label of x0 by network f .

Intuitively, S(X,x0, j) is the maximal decrease of confidence
value of the output label j that can be witnessed from the setX ,
and S(T0, t) is the two-dimensional array of the maximal
decreases of confidence values of the classification labels for
all subspaces in X (x0, t) and all inputs in T0. It is not hard to
see that S(X,x0, j) ≥ 0.

Given a test dataset T0 and an integer t > 0, the number
of elements in S(T0, t) is in O(|T0| · nt), i.e., polynomial in
|T0| and exponential in t. Note that, by Equation (6), every
element in S(T0, t) represents an optimisation problem. That
is, for T0, a set of 20 MNIST images, and t = 1, this would be
28 × 28 × 20 = 15,680 one-dimensional optimisation prob-
lems. In the next section, we give a tensor-based formulation
and an algorithm to solve this challenging problem via GPU
parallelisation.

4.1 Tensor-based Parallelisation for Computing
Subspace Sensitivity

A tensor T ∈ RI1×I2×...×IN in an N -dimensional space is
a mathematical object that has

∏N
m=1 Im components and

obeys certain transformation rules. Intuitively, tensors are gen-
eralisations of vectors (i.e., one index) and matrices (i.e., two
indices) to an arbitrary number of indices. Many state-of-the-
art deep learning libraries, such as Tensorflow and pyTorch,
are utilising tensors to parallelise the computation with GPUs.
However, it is nontrivial to write an algorithm working with
tensors owing to the limited set of operations on tensors.

The basic idea of our algorithm is to transform a set of non-
linear, non-convex optimisation problems as given in Equa-
tion (7) into a tensor formulation, and solve a set of optimisa-
tion problems via a few DNN queries. First, we introduce the
following operations on tensors that are used in our algorithm.

Definition 7 (Mode-n Unfolding and Folding) Given a ten-
sor T ∈ RI1×I2×...×IN , the mode-n unfolding of T is a
matrix U[n](T ) ∈ RIn×IM such that M =

∏N
k=1,k 6=n Ik and

U[n](T ) is defined by the mapping from element (i1, . . . , iN )
to (in, j), with

j =

N∑
k=1,k 6=n

ik × N∏
m=k+1,m 6=n

Im

 . (8)

Similarly, the tensor folding F folds an unfolded tensor back
from a matrix into a full tensor. Tensor unfolding and folding
are dual operations and link tensors and matrices.



Given a neural network f , a number t and a test dataset T0,
each xi ∈ T0 generates a complete set X (xi, t) of subspaces.
Let |T0| = p and |X (xi, t)| = k. Note that, for different
xi and xj , we have |X (xi, t)| = |X (xj , t)|. Given an er-
ror tolerance ε > 0, by applying grid search, we can recur-
sively sample ∆ = 1/ε numbers in each dimension, and turn
each subspace Xxi

∈ X (xi, t) into a two-dimensional grid
G(Xxi) ∈ Rn×∆t

. We thus can formulate the following ten-
sor:
T (T0, t) = Tensor((G(Xxi

))xi∈T0,Xxi
∈X (xi,t)) ∈ Rn×∆t×p×k

(9)
In Appendix A.2 of [Ruan et al., 2018b], we show that grid

search provides the guarantee of reaching the global minimum
by utilising the Lipschitz continuity in DNNs.

Then, we apply the mode-1 tensor unfolding operation to
have T[1](T (T0, t)) ∈ Rn×M such that M = ∆t · p · k. Then
this tensor can be fed into the DNN f to obtain

Y (T0, t) = f(T[1](T (T0, t))) ∈ RM . (10)

After computing Y (T0, t), we apply a tensor folding opera-
tion to obtain

Y(T0, t) = F(Y (T0, t)) ∈ R∆t×p×k. (11)

Here, we should note the difference between R∆t·p·k and
R∆t×p×k, with the former being a one-dimensional array and
the latter a tensor. On Y(T0, t), we search the minimum values
along the first dimension to obtain4

V (T0, t)min = min(Y(T0, t), 1) ∈ Rp×k. (12)
Thus, we have now solved all p × k optimisation problems.
We then construct the tensor

V (T0, t) = (

k︷ ︸︸ ︷
cjxi

(xi), ..., cjxi
(xi))xi∈T0 ∈ Rp×k (13)

from the set T0. Recall that jxi
= arg maxk∈{1,...,m} ck(xi).

Intuitively, V (T0, t) is the tensor that contains the starting
points of the optimisation problems and V (T0, t)min the re-
sulting optimal values. The following theorem shows the cor-
rectness of our computation, where S(T0, t) has been defined
in Definition 6.
Theorem 1 Let T0 be a test dataset and t an integer. We have
S(T0, t) = V (T0, t)− V (T0, t)min.
We remark that we only need a single DNN query in Equa-
tion (10) to perform the computation above.

4.2 Tensor-based Parallelisation for Computing
Lower and Upper Bounds

Let S(T0, t) ∈ Rn×p×k be the tensor obtained by replacing
every element in S(T0, t) by its corresponding input that, ac-
cording to the computation of V (T0, t)min, causes the largest
decreases of the confidence values of the classification la-
bels. We call S(T0, t) the solution tensor of S(T0, t). The
computation of S(T0, t) can be done using very few tensor
operations over T (T0, t) and Y(T0, t), which have been given
in Section 4.1. We omit the details.

4Here we use the Matlab notation min(Y, k), which computes
the minimum values over the k-th dimension for a multi-dimensional
array Y . We use similar notation in the remainder of the paper.

Lower Bounds
We reorder S(T0, t) and S(T0, t) w.r.t. decreasing values in
S(T0, t). Then, we retrieve the first row of the third dimension
in tensor S(T0, t), i.e., S(T0, t)[:, :, 1] ∈ Rn×p, and check
whether cl(f,S(T0, t)[:, :, 1]) = cl(f, T0). The result is an
array of Boolean values, each of which is associated with
an input xi ∈ T0. If any element associated with xi in the
resulting array is false , we conclude that dm(f, xi, || · ||D) =
t − 1, i.e., the maximum safe radius has been obtained and
the computation for xi has converged. On the other hand, if
the element associated with xi is true, we update the lower
bound for xi to t. After computing S(T0, t), no further DNN
query is needed to compute the lower bounds.

Upper Bounds
The upper bounds are computed by iteratively applying pertur-
bations based on the matrix S(T0, t) for every input in T0 until
a misclassification occurs. However, doing this sequentially
for all inputs would be inefficient, since we need to query the
network f after every perturbation on each image.

We present an efficient tensor-based algorithm, which en-
ables GPU parallelisation. The key idea is to construct a new
tensorN ∈ Rn×p×k to maintain all the accumulated perturba-
tions over the original inputs T.

• Initialisation: N [:, :, 1] = S(T0, t)[:, :, 1].

• Iteratively construct the i-th row until i = k:

N [:, :, i] = {N [:, :, i−1]�{N [:, :, i−1]eS(T0, t)[:, :, i]}}

d{S(T0, t)[:, :, i]� {N [:, :, i− 1] e S(T0, t)[:, :, i]}}

where �, e, and d are tensor operations: N1 �N2 removes
the corresponding non-zero elements in N2 from N1; further,
N1 e N2 retains those elements that have the same values
and sets the other elements to 0; finally, N1 d N2 merges
the non-zero elements from two tensors. The two operands
of these operations are required to have the same type. In-
tuitively, N [:, :, i] represents the result of applying the first i
perturbations recorded in S(T0, t)[:, :, 1 : i], which contains
the perturbations up to index i − 1 (i.e., N:,i,:) plus the new
perturbation recorded in X̃:,i,:.

Subsequently, we unfold N and pass the result to the
DNN f , which yields the classification labels Y (U[1](N )) ∈
{1, . . . ,m}p·k. After that, a tensor folding operation is ap-
plied to obtain Y(U[1](N )) ∈ {1, . . . ,m}p×k. Then we do
the tensor folding operation to obtain C = fold(Yc) ∈ RK×P .
Finally, we can compute the minimum column index along
each row such that a misclassification occurs, denoted by
{m1, ...,mp} such that 1 ≤ mi ≤ k. Then we let

T = {N:,i,mi
∈ Rn×p | xi ∈ T0} , (14)

which is the optimal set of inputs as required in Definition 2.
After computing S(T0, t), we only need one further DNN

query to obtain all upper bounds for a given test dataset T0.

Tightening the Upper Bounds
There may be redundancies in T− T0, i.e., not all the changes
in T − T0 are necessary to observe a misclassification. We
therefore remove the redundancies and thereby tighten the



Figure 1: (Left) Convergence of lower bound, upper bound, and estimation of dm for one
image; (Middle) That of global robustness; (Right) Boxplots of the computational time.
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Figure 2: Robustness evaluation of DNN-0 for
t ∈ {1, 2} and box-plots of computation time.

upper bounds. We reduce the tightening problem to an optimi-
sation problem similar to that of Definition 2, which enables
us to reuse the tensor-based algorithms given above. Assume
that x0,i and xi are two corresponding inputs in T and T0,
respectively, for i ∈ {1, . . . , |T0|}. By abuse of notation, we
let z0,i = x0,i − xi be the part of x0,i on which x0,i and xi
are different, and l0,i = xi e x0,i be the part of x0,i on which
x0,1 and xi are the same. Therefore, x0,i = z0,i d l0,i.
Definition 8 (Tightening the Upper Bounds) Given a net-
work f , a finite test dataset T0 with their upper bounds T,
and || · ||D, the tightening problem is an optimisation problem:

min
L1
||L0 − L1||D s.t. cl(f, z0,i d l1,i) 6= cl(f, z0,i d l0,i)

where i ∈ {1, . . . , |L0|}, L0 = (l0,i)i=1...|T0|, L1 =

(l1,i)i=1...|L0|, and l1,i, l0,i ∈ [0, 1]|L0|. To solve this opti-
misation problem, we can re-use the tensor-based algorithm
for computing lower bounds with minor modifications to the
DNN query: before querying the DNN, we apply the d op-
eration to merge with z0,i as in the above equation. Owing
to space limitations, we provide the convergence analysis in
Appendix A.2 of [Ruan et al., 2018b].

5 Experimental Results
We report experimental evidence for the utilit of our algorithm.
Some experiments require simple modifications of the optimi-
sation problem given in Definition 2, e.g., small changes to
the constraints. No significant modification to our algorithm
is needed to process these variants. In this section, we use five
case studies to demonstrate the broad applicability of our tool.

5.1 Convergence Analysis and Global Robustness
Evaluation

We study the convergence and running time of our anytime
global robustness evaluation algorithm on several DNNs in
terms of the L0-norm. To the best of our knowledge, no
baseline method exists for this case study. Adversarial attack
algorithms for the L0 norm, which we compare against in
Section 5.2, cannot perform robustness evaluation based on
both lower and upper bounds with provable guarantees.

We train two DNNs on the MNIST dataset. DNN-0 is
trained on the original images with size 28 × 28 and sDNN

on images resized to 14 × 14. The latter is less robust and
used here for the purpose of discussing the convergence of
our method. The DNN models are given in Appendix D
of [Ruan et al., 2018b], together with training and accuracy
statistics. For DNN-0, we work with a set of 2,400 randomly
sampled images, and for sDNN we use a set of 5,300 images.
We perform the computation on a PC with I7-7700HQ CPU,
16 GB of RAM and NVIDIA GTX-1050Ti GPU.

sDNN: Convergence and Robustness Evaluation

Figure 1 (Left) illustrates the speed of convergence of lower
and upper bounds and the estimate for dm (i.e., the maximum
safe radius) for an image with a large initial upper bound at
L0 distance 27. This image is chosen to demonstrate the worst
case for our approach. Working with a single image (i.e., local
robustness) is the special case of our optimisation problem
where |T| = 1. We choose one of the worst examples among
our dataset since the initial upper bound computed is very
large: The L0 distance to the original image is 27. We observe
that, when transitioning from t = 1 to t = 2, the uncertainty
radius Ur(lt, ut) of dm is reduced significantly from 26 to 1.
Figure 1 (Middle) illustrates the speed of convergence of the
global robustness evaluation on the test dataset: our method
obtains tight lower and upper bounds efficiently and converges
quickly. Notably, we have Uc(lt, ut) = 1.97 at t = 1; the
final global robustness is 2.1, so the relative error of the global
robustness at t = 1 is < 7%. The estimate at t = 1 can be
obtained in polynomial time, and thus the results demonstrate
that our approach is able to provide a good approximation
with reasonable error at very low computational cost. Fig-
ure 1 (Right) gives the box-plots of the computational time
required for individual iterations (i.e., subspace dimension t).
We remark that at t = 1 it takes less than 0.1 s to process
one image, which suggests that the algorithm has potential for
real-time applications.

In Figure 3 (a), we plot the upper and lower bounds as well
as the estimate for dm for all tested images. The images are
ordered using their upper bounds at t = 1. The dashed blue
line indicates that all images to the left of this line have con-
verged. The charts show a clear overall trend: our algorithm
converges for most images after a few iterations.



(a) sDNN

(b) DNN-0

Figure 3: (a) sDNN: Upper bounds, lower bounds, and estimations
of dm for all sampled images for t ∈ {1, 2, 3} ordered from the top
to bottom. (b) DNN-0: Upper bounds, lower bounds, and estimations
of dm for all sampled input images for t ∈ {1, 2}.

DNN-0: Global Robustness Evaluation
Figure 3 (b) illustrates the convergence trends for all 2,400
images for a large DNN. We observe that, even for a DNN with
tens of thousands of hidden neurons, DeepTRE still achieves
tight estimates for dm for most images. Figure 2 gives the
results of anytime global robustness evaluation at t = 1 and
t = 2 for DNN-0, which demonstrates the efficiency of our
approach for anytime global robustness evaluation on DNNs.
Figure 14 in Appendix D of [Ruan et al., 2018b] features some
ground-truth adversarial images5 returned by our upper bound
algorithm.

5.2 Competitive L0 Attacks
While the generation of attacks is not the primary goal of our
method, we observe that our upper bound generation method
is highly competitive with state-of-the-art methods for the
computation of adversarial images in terms of the L0 distance.
We train MNIST and CIFAR-10 DNNs and compare with

5Ground-truth adversarial images are images at the boundary of a
safe norm ball, which was proposed in [Carlini et al., 2017].

JSMA [Papernot et al., 2016], C&W [Carlini and Wagner,
2017], DLV [Huang et al., 2017], SafeCV [Wicker et al.,
2018] and DeepGame [Wu et al., 2018], on 1,000 test images.
Details of the experimental setup are given in Appendix E of
[Ruan et al., 2018b].

Adversarial L0 Distance
Figure 4 depicts the average and standard deviations of L0

distances of the adversarial images produced by the five meth-
ods. A smaller L0 distance indicates an adversarial example
closer to the original image. For MNIST, the performance
of our method is better than JSMA, DLV, and SafeCV, and
comparable to C&W and DeepGame. For CIFAR-10, the bar
chart reveals that our tool DeepTRE achieves the smallest
L0 distance (modifying 2.62 pixels on average) among all
competitors. For this experiment, we stop at t = 1 without
performing further iterations.

Computational Cost
Figure 5 (note in log-scale) gives running times. Our tensor-
based parallelisation method delivers extremely efficient at-
tacks. For example, for MNIST, our method is 18×, 100×,
1050×, and 357× faster than JSMA, C&W, DLV, and SafeCV,
respectively. Figure 6 shows that the tensor-based parallelisa-
tion significantly improves the computational efficiency: 38
times faster on MNIST DNN and 93 times faster on CIFAR-10
DNN6. Appendix E of [Ruan et al., 2018b] compares some
of the adversarial examples found by the five methods. The
examples illustrate that the modification of one to three pixels
suffices to trigger a misclassification even using a well-trained
neural network.

5.3 Local Robustness Evaluation for ImageNet
We apply our method to five state-of-the-art ImageNet DNN
models, including AlexNet (8 layers), VGG-16 (16 layers),
VGG-19 (19 layers), ResNet50 (50 layers), and ResNet101
(101 layers). We set t = 1 and generate the lower/upper
bounds and estimates of local robustness for an input im-
age. Figure 8 gives the local robustness estimates and their
bounds for these networks. The adversarial images on the
upper boundaries are featured in the top row of Figure 7. For
AlexNet, on this specific image, DeepTRE is able to find its
ground-truth adversarial example (local robustness converges
at L0 = 2). We also observe that, for this image, the most
robust model is VGG-16 (local robustness = 15) and the most
vulnerable one is AlexNet (local robustness = 2). Figure 8 also
reveals that, for similar network structures such as VGG-16
and VGG-19, ResNet50 and ResNet101, a model with deeper
layers is less robust to adversarial perturbations.

As a byproduct, our method can also generate a saliency
map for each input image as shown by the bottom row of
Figure 7. Details of the experimental setup are given in Ap-
pendix F of [Ruan et al., 2018b].

6The hardware setups are as follows. CPU-1: Tensorflow on
an i5-4690S CPU; GPU-1: Tensorflow with parallelisation on an
NVIDIA GTX TITAN GPU. CPU-2: Deep Learning Toolbox (Mat-
lab2018b) on an i7-7700HQ CPU; GPU-2: Deep Learning Tool-
box (Matlab2018b) with parallelisation on an NVIDIA GTX-1050Ti
GPU.



Figure 4: Means and standard deviations
of the adversarial L0 distance.
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Figure 5: Means and standard deviations
of computational time of all methods.
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Figure 6: Means and standard deviations of
computational time with CPUs or GPUs.

Figure 7: Adversarial examples on upper boundaries (top) and
saliency maps (bottom).

5.4 Guiding the Design of Robust DNN
Architectures

In this case study, we show how to use our tool DeepTRE for
guiding the design of robust DNN architectures.

We trained seven DNNs, named DNN-i for i ∈ {1, . . . , 7},
on the MNIST dataset using the same hardware and software
platform and identical training parameters. The DNNs differ
in their architecture, i.e., the number of layers and the types of
the layers. The architecture matters: while all DNNs achieve
100% accuracy during training, we observe accuracy down
to 97.75% on the test dataset. Details of the models are in
Appendix G of [Ruan et al., 2018b]. We aim to identify
architectural choices that affect robustness.

Figure 9 gives the estimates for global robustness, and their
upper and lower bounds at t = 1 and t = 2 for all seven
DNNs. Figure 10 illustrates the means and standard deviations
of the dm estimates and the uncertainty radius for all 1,000
sampled testing images. We also find that the local robustness
(i.e., robustness evaluated on a single image) of a network is
coincident with its global robustness, and so is the uncertainty
radius.

We observe the following: i) number of layers: a very deep
DNN (i.e., too many layers relative to the size of the training
dataset) is less robust, such as DNN-7; ii) convolutional layers:
DNNs with large numbers of convolutional layers are less
robust, e.g., compared with DNN-5, DNN-6 has an additional
convolutional layer, but is significantly less robust; iii) batch-
normalisation layers: adding a batch-normalisation layer may
improve robustness, e.g., DNN-3 is more robust than DNN-2.

We remark that accuracy measured on a test dataset is not a

Table 1: Neuron coverage achieved by DeepTRE and other tools

DeepTRE DeepConcolic DeepXplore (%)
(%) (%) light occlusion blackout

MNIST 98.95 97.60 80.77 82.68 81.61
CIFAR-10 98.63 84.98 77.56 81.48 83.25

good proxy for robustness: a DNN with higher accuracy is not
necessarily more robust, e.g., DNN-1 and DNN-3 are more
robust than DNN-6 and DNN-7, which have higher accuracy.
DNNs may require a balance between robustness and their
ability to generalise (proxied by testing accuracy) [Tsipras et
al., 2018]. DNN-4 is a good example, among our limited set.

Therefore, our tool DeepTRE can be used to perform model
selection, given two neural networks with similar accuracy, or
to find a model that offers a good balance between robustness
and performance.

5.5 Test Case Generation for DNNs
A variety of methods to automate testing of DNNs have been
proposed recently [Pei et al., 2017; Sun et al., 2018]. The most
widely used metric for the exhaustiveness of test suites for
DNNs is neuron coverage [Pei et al., 2017]. Neuron coverage
quantifies the percentage of hidden neurons in the network that
are activated at least once. We use ne to range over hidden
neurons, and V (ne, x) to denote the activation value of ne for
test input x. Then V (ne, x) > 0 implies that ne is covered by
the test input x.

The application of our algorithm to coverage-driven test
case generation is straightforward; it only requires a mi-
nor modification to the optimisation problem in Definition 2.
Given any neuron ne that is not activated by the test suite T0,
we find the input with the smallest distance to any input in
T0 that activates ne. We replace the constraint cl(f, xi) 6=
cl(f, x0,i) in Equation 1 by

V (ne, xi) ≤ 0 ∧ V (ne, x0,i) > 0. (15)

The optimisation problem now searches for new inputs that
activate the neuron ne, and the objective is to minimise the
distance from the current set of test inputs T0.

We compare our tool DeepTRE with other state-of-the-art
test case generation methods, including DeepConcolic [Sun et
al., 2018] and DeepXplore [Pei et al., 2017]. All results are



Figure 8: Lower bounds, upper bounds
and estimates of local robustness for 5
ImageNet DNNs on a given image.

Figure 9: Lower bounds, upper bounds, and
global robustness estimates for t ∈ {1, 2} for
seven DNN models.

Figure 10: Means and standard deviations
of uncertainty radius dm for 1,000 test
images at t = 1, 2.

Figure 11: Some adversarial examples found by our tool DeepTRE
while generating test cases for high neuron coverage on MNIST and
CIFAR-10 DNNs.

averaged over 10 runs or more. Table 1 gives the neuron cov-
erage obtained by the three tools. We observe that DeepTRE
yields much higher neuron coverage than both DeepConcolic
and DeepXplore in any of its three modes of operation (‘light’,
‘occlusion’, and ‘blackout’). Figure 11 depicts adversarial
examples generated by our tool DeepTRE. We also observe
that a significant proportion of the adversarial examples can be
found using a relatively small L0 distance. More experimental
results can be found in Appendix H of [Ruan et al., 2018b].
Overall, our tool DeepTRE offers an efficient approach to
coverage-driven testing of DNNs.

6 Related Work
Global robustness evaluation is related to adversarial exam-
ple generation. Most existing algorithms for this problem
first compute a gradient (either a cost gradient or a forward
gradient) and then perturb the input in different ways along
the most promising direction on fooling the neural network.
In view of the space limit, we omit the discussion of related
work on adversarial attacks, and just mention that we have
shown experimentally that our approach can obtain tighter
upper bounds (i.e., smaller adversarial distances) at lower
computational cost. We remark that we focus on the prevail-
ing concept of robustness against small perturbations, called
epsilon-adversarial examples in [Jacobsen et al., 2019]; at
present our method is unable to deal with invariance-based
adversarial examples discussed there.

Robustness evaluation is usually performed w.r.t. a similar-
ity metric on inputs, with Lp norms typically employed for this
purpose. TheL0 metric has been used in [Papernot et al., 2016;
Carlini et al., 2017; Huang et al., 2017; Wicker et al., 2018;
Wu et al., 2018] for adversarial attacks; our method is the
first to provide anytime lower and upper bounds on robustness
guarantees for the L0 metric.

In addition to providing anytime upper/lower bounds
on global robustness, our method also guarantees conver-
gence. Existing approaches that offer guarantees instead
focus on local (pointwise) robustness. These include re-
duction to constraint solving [Pulina and Tacchella, 2010;
Katz et al., 2017], abstract interpretation [Gehr et al., 2018;
Mirman et al., 2018], exhaustive search [Huang et al., 2017] or
Monte Carlo tree search (MCTS) for Lipschitz networks [Wu
et al., 2018]. Another group of papers considers the prob-
lem of whether an output value of a DNN is reachable
from a given input subspace [Lomuscio and Maganti, 2017;
Ruan et al., 2018a; Dutta et al., 2017], by either reducing the
problem to a MILP problem [Lomuscio and Maganti, 2017],
or by considering the range of values [Dutta et al., 2017], or by
employing global optimisation [Ruan et al., 2018a]. We also
mention [Peck et al., 2017], who compute a lower bound of
local robustness for the L2 norm. This is incomparable with
our result because of the different distance metrics. In recent
work [Gopinath et al., 2018] the input vector space is parti-
tioned using clustering and then the method of [Katz et al.,
2017] is used to check the individual partitions. However,
none of the methods and tools above support the L0 distance
and provide anytime and guaranteed convergence to the true
global robustness. Thus, our tool, DeepTRE, is complemen-
tary to existing approaches.

7 Conclusions
To the best of our knowledge, this is the first algorithm that
evaluates global robustness of DNNs based on the Hamming
distance with provable guarantees. We provide a tensor-based
implementation of the technique to exploit the inherent paral-
lelism. Our experimental results demonstrate wide applicabil-
ity and efficiency of the method, with potential for real-time
deployment. We hypothesise that the approach computes a
good proxy for the robustness against physical attacks that rely
on the manipulation of a small part of the objects that are to
be recognised.
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