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Abstract 19 

Repeated bouts of coral bleaching threaten the long-term persistence of coral reefs and 20 

associated communities. Here we document the short- and long-term impacts of heatwave 21 

events on coral and fish assemblages, based on regular surveys of 18 reefs of the granitic 22 

islands of Seychelles over 23 years. Extreme heat events in 1998 and 2016 led to bleaching 23 

associated declines in coral cover, whilst between these years there was an interim period of 24 

coral recovery on some reefs. Coral decline and recovery were primarily due to changes in 25 

the cover of branching coral, particularly those from the families Acroporidae and 26 

Pocilloporidae. Surveys during the 2016 bleaching, found that 95% of the 484 Acropora and 27 

Pocillopora colonies observed were either bleached or recently dead. The extent of bleaching 28 

and subsequent mortality were best explained by a priori assessments of community 29 

susceptibility to heat stress. One year later (2017) coral cover had fallen by 70% and average 30 

coverage across the 18 reefs was at 6%, similar to levels recorded in 2005, seven years after 31 

the 1998 bleaching. Decline in coral following the 2016 bleaching coincided with reduced 32 

abundance of fish <11cm TL, particularly corallivores, invertivores and mixed diet feeders. 33 

These changes are likely to foreshadow more widespread loss once the habitat structure 34 

erodes. Accordingly, seven years after the 1998 bleaching, when coral skeletons and reef 35 

structure had collapsed on some reefs, abundance of both large and small bodied fish had 36 

declined. We show that fluctuation in the cover of branching coral is positively associated 37 

with changes in the abundance of small-bodied fish which contribute to ecological processes 38 

and high diversity, suggesting branching corals are a keystone structure. Increased frequency 39 

of bleaching threatens the capacity of branching corals to fully recover after disturbances, 40 

reducing the amplitude of boom bust cycles of these corals and the keystone habitat structure 41 

they provide reef fish. 42 

43 
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Introduction 44 

Like many high diversity ecosystems in the tropics, coral reefs are threatened by a range of 45 

anthropogenic disturbances (Barlow et al. 2018). Of particular concern is the increasing 46 

frequency of marine heat waves that cause extensive mass bleaching and mortality of corals 47 

(Hughes et al. 2018a). These corals create the reef framework, underpinning ecological 48 

processes and services. For example, corals provide food and habitat for many of the reef 49 

associated species including highly diverse assemblages of fish (Wilson et al. 2006). These 50 

fish have crucial functional roles in terms of herbivory and bioerosion, and multispecies 51 

fisheries provide food and livelihoods for coastal communities around the world (Moberg and 52 

Folke 1999; Bellwood et al. 2004).  53 

The physical structure, occurrence and life history traits of corals are variable, which may 54 

make some components of the coral assemblage of greater importance to reef associated 55 

fauna than others. For example, the types of corals with which fish associate varies among 56 

fish species and life history stages. Some fish feed or dwell with specific coral taxa, whilst 57 

others may associate with a broader group of corals (Cole et al. 2008; Coker et al. 2014). 58 

Branching corals appear especially important for fish as the structural complexity provided 59 

by this diverse group of corals provides refuges of numerous dimensions (Komyakova et al. 60 

2018).  61 

When a group of habitat forming taxa have a disproportionate contribution to ecological 62 

diversity and processes relative to their abundance, they may be considered keystone 63 

structures (Tews et al. 2004). This terminology has been used to highlight the ecological 64 

importance of large trees in terrestrial landscapes (Manning et al. 2006), and has recently 65 

been used to describe corals with specific growth forms (Kerry and Bellwood 2015). It is 66 

however difficult to definitively identify keystones as their influence may vary in different 67 

ecological settings (Menge et al. 1994). Large scale perturbations that remove candidate 68 
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keystones, combined with temporal assessments of changes in the community, provide an 69 

opportunity to identify keystone structures. Coral reefs regularly experience disturbances, and 70 

fast-growing coral taxa may represent a ‘boom’ growth form that can recover habitat 71 

structure relatively quickly. 72 

Since the 1980s there have been several global scale marine heatwaves that have caused 73 

widespread bleaching and mortality of corals. The granitic islands of Seychelles, in the Indian 74 

Ocean, have a history of exposure to severe bleaching over this time. Previous research has 75 

described the impact of mass bleaching on coral and fish assemblages on reefs in Seychelles 76 

following the 1998 heatwave (Graham et al. 2006). Subsequent surveys of the same reefs 77 

identified environmental and ecological factors that promote coral recovery and prevent reefs 78 

undergoing regime shifts (Graham et al. 2015). Here we provide detailed assessments of how 79 

the 2016 El Niño associated heatwave affected corals and associated fish on reefs in 80 

Seychelles. Based on long-term assessments of reef communities that span the major 81 

bleaching events in 1998 and 2016, and an intervening period of recovery, we identify the 82 

change in abundance of branching corals as the major cause of temporal change in coral 83 

cover and habitat structure. We then assess how periods of decline and increase in branching 84 

coral cover have influenced fish assemblages to investigate whether these corals are keystone 85 

structures on coral reefs.  86 

 87 

Methods 88 

Benthic and fish surveys of 18 Seychelles reefs were initially undertaken in 1994, with 89 

subsequent surveys in 2005, 2008, 2011, 2014 and 2017. The 18 reefs were founded on 90 

habitats of either granitic, contiguous carbonate or patches surrounded by sand or rubble. Six 91 
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of the reefs were within no-take marine reserves, that have been in place since the 1970s and 92 

are managed by the government in Seychelles (Jennings et al. 1996). 93 

At each of the 18 reefs the abundance and size (total length, TL) of fish >7cm was recorded 94 

from 134 non-cryptic, diurnally active species observed within 154m2 replicate areas (7m 95 

radius). The diver conducting fish surveys calibrated size estimates of fish by estimating and 96 

confirming the size of plastic pipes at the start of each survey day, with mean error within 97 

~3% (Graham et al. 2007). All large mobile fish were recorded first, before a systematic 98 

search of smaller site attached species. Count areas were located at the base of reef slopes at 99 

2-9m depth. In 1994, 2005 and 2008 there were 16 replicate areas surveyed at each of the 18 100 

reefs and in 2011, 2014 and 2017 eight replicate areas per reef. Average values were 101 

calculated from the number of areas surveyed at each reef to account for differences in 102 

sampling intensity over time.  103 

The structural complexity of each replicate area was scored on a scale between 0 and 5, 104 

where areas with 0 structure were sandy or rubble substrate with no vertical relief and areas 105 

that scored 5 were exceptionally complex, with numerous caves and overhangs (Polunin and 106 

Roberts 1993). The percent cover of coral and coral growth forms (branching, massive, 107 

encrusting, tabular) within each replicate area was estimated from a plan view of the area, the 108 

coral forms being based on broad growth forms described by Veron (1986). In addition to 109 

plan view surveys, 10m line intercept transects were carried out in each area from 2008. Line 110 

intercept transects recorded percent cover of coral to the genera level and comparisons 111 

between this technique with plan view surveys found estimates of coral cover from the two 112 

techniques were very similar (Wilson et al. 2007, 2012). 113 

Reefs were also categorised as either recovering or regime shifted based on temporal trends 114 

in coral and macroalgal cover (Graham et al. 2015). Recovering reefs had higher coral than 115 
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macroalgal cover in 2011, and an increase in coral cover between 2005 and 2011. Conversely 116 

regime shifted reefs had higher macroalgal than coral cover in 2011, with increasingly 117 

dissimilar benthic communities from 1994, characterised by rising coverage of macroalgae.  118 

Heat stress around Seychelles reefs reached 4 degree heat weeks (DHW) in January 2016, 119 

rapidly increased in April and peaked at 11.4 DHW in May 120 

(http://coralreefwatch.noaa.gov/vs/index.php). The extent of coral bleaching was assessed at 121 

16 of the 18 regularly surveyed reefs between May 19th and 1st June 2016, at the height of 122 

thermal stress in the region. At each reef the plan view technique was used to estimate the 123 

percent cover of healthy, bleached and recently dead corals within eight areas of the same 124 

dimensions used to regularly monitor benthic cover (7m radius, 154m2). Within each 125 

replicate area all coral colonies along a 10m line intercept transect were also identified to 126 

genus and status recorded as either healthy, bleached or recently dead. For both plan view 127 

and transect assessments recently dead colonies were those where the structure of corallites 128 

and growth form had not visibly eroded, there were no polyps or coral tissue visible and there 129 

was a thin film of cyanobacateria or turf algae growing over the colony. 130 

Statistical analyses 131 

We assessed spatial variation in coral bleaching and temporal variation in coral community 132 

composition using generalized linear models (GLMs). Using site-level estimates of 133 

bleaching, mortality, and healthy coral cover from surveys conducted in 2016, we fitted 134 

separate GLMs for coral bleaching, coral mortality and healthy coral cover, each with site as 135 

a covariate and quasibinomial distributed errors. We assessed evidence for spatial variation in 136 

bleaching impacts using likelihood ratio tests which weighed model support for the site-137 

covariate model relative to a null, intercept-only model. For all three bleaching models, fits 138 

were considerably improved by inclusion of the site covariate (p < 0.001). Next, we 139 

http://coralreefwatch.noaa.gov/vs/index.php
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examined temporal trends in coral cover from 2005-2017 for each regime state (regime-140 

shifted or recovering). GLMs were fit separately to total hard coral cover, massive cover, 141 

branching cover, and structural complexity estimates (4 total models), and we assessed 142 

support for linear or non-linear relationships by comparing GLMs with generalised additive 143 

models (GAMs) with similar model structures. Temporal trends were modelled with survey 144 

year and regime state (recovering or regime shifted) as interacting fixed effects, and random 145 

effect structures which accounted for covariance with sites. Models were fitted with Poisson 146 

error distributions, except structural complexity which was fitted with Gamma error 147 

distributions. For GAMs, we also evaluated support for the degree of smoothness in temporal 148 

trends by fitting different knot values and selecting the model with lowest AIC value to 149 

interpret temporal relationships (Table S1) (Burnham and Anderson 2003; Wood 2017). Our 150 

approach ensured that smoothers adequately represented non-linear temporal trends but 151 

minimized potential overfitting of relationships. For each benthic variable, we visualized 152 

predicted coral cover and structural complexity from 2005-2017 in each regime state, 153 

excluding random effects. All model fits were inspected for normality using residual plots. 154 

Temporal and spatial changes in the abundance of coral genera were examined using 155 

PERMANOVA, where survey year (2008, 2011, 2014, 2017) and regime state (shifted or 156 

recovering) were considered fixed factors and habitat (granitic, carbonate or patch) a random 157 

factor. The analysis was based on a resemblance matrix constructed from Euclidean distances 158 

and 9999 permutations. Non-metric multidimensional scaling (nMDS) was used to visualise 159 

and interpret differences in coral communities with respect to survey years, habitat and 160 

regime state. nMDS fitted with four dimensions produced a high goodness-of-fit according to 161 

the Shepard plot and stress value (0.09). 162 

GAMs were used to identify which environmental variables best predicted the extent of coral 163 

bleaching and mortality following the 2016 event. Percent bleaching was based on surveys in 164 
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2016 and mortality calculated as ((Cover 2014 – Cover 2017)/Cover 2014). Reef level variables 165 

included in analyses were: susceptibility of the coral community to heat stress, water quality, 166 

depth, wave exposure, percent coral cover in 2014, if the reef was in a no-take marine reserve 167 

and habitat type (patch, carbonate or granite). Analyses where mortality was the dependant 168 

variable also included the extent of bleaching in May 2016. Coral susceptibility for each reef 169 

was based on the coral community composition in 2014 and genera-specific bleaching 170 

response data from the western Indian Ocean (McClanahan et al. 2007). Coral communities 171 

with a high susceptibility to bleaching had values close to 1 whilst those with low bleaching 172 

susceptibilities had values approaching 0. Water quality was measured as the mean 173 

percentage of nitrogen in 10 Sargassum fonds collected from each reef in 2014 (Graham et al. 174 

2015), higher values being indicative of poorer water quality and greater propensity of corals 175 

to bleaching (Wooldridge 2016). The extent of coral bleaching is linked to water depth 176 

(McClanahan et al. 2007; Moore et al. 2012), which we measured as the mean depth across 177 

replicate reef areas within a reef. Wave exposure was considered in analyses as it may 178 

increase flushing of reefs, ameliorating the effects of heat stress (Shedrawi et al. 2017). 179 

Exposure at each reef (measured in Joules) was calculated from fetch, wind speed and 180 

direction between 1998 and 2011 (Graham et al. 2015). Finally, we considered the effect of 181 

no-take areas, which reduce other anthropogenic pressures and thereby potentially increase 182 

reef resilience (Mellin et al. 2016). All combinations of three or fewer explanatory variables 183 

were considered in analyses and the best models selected based on lowest AIC scores and 184 

fewest variables (Fisher et al. 2018). The relative importance of variables was also calculated 185 

by summing AIC weights (Burnham and Anderson 2003). The analysis was restricted to the 186 

15 reefs where information on all variables was available.  187 

To assess the effect of coral loss on fish assemblages we examined the relationship between 188 

percent cover of branching coral and abundance of fish of different size and diet. Fish were 189 
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placed into 5cm size classes and broad diet categories (Corallivores, Herbivores, Invertivores 190 

Piscivores, Planktivores and Mixed) based on information in Fishbase (Froese and Pauly 191 

2012). Changes in abundance of different sized fish from each dietary category were also 192 

assessed with respect to periods of coral decline (1994 to 2005 and 2014 to 2017) and coral 193 

increase (2005 to 2014). For these assessments, the average density of fish per 154m2 count 194 

area was calculated for each dietary size class at each reef over each time period. Temporal 195 

changes in fish abundance were then calculated using reefs as replicates and significant 196 

declines or increases of each fish group were determined by 95% confidence intervals.  197 

 198 

Results 199 

Long-term trends in coral 200 

A year after the 2016 bleaching event the average coral cover across 18 reefs, that had been 201 

consistently monitored since 1994, was 6 ± 1 (SE) % (Fig 1a). This represented a decline of 202 

70% in total coral cover from 2014 (20 ± 3%), which was similar on both recovering (70%) 203 

and regime-shifted (74%) reefs. The decline in coral cover between 2014 and 2017 is also 204 

similar to the 68% change in coral cover between 1994 and 2005 following the 1998 205 

bleaching. In both instances the loss of coral following bleaching was primarily due to 206 

mortality of corals with a branching growth form. Temporal trends of branching and total 207 

coral cover were very similar, particularly on recovering reefs where cover gradually 208 

increased between 2005 and 2014, before the rapid fall in 2017 (Fig 1b). Indeed, major 209 

fluctuations in coral cover between 2005 and 2017 can be directly attributed to changes in the 210 

percent cover of branching corals. The gain in cover of branching cover between 2005 and 211 

2014 was effectively nullified by decline of these corals after bleaching in 2016 (Fig 2).  212 

Percent cover of massive corals has also declined since surveys began in 1994 (Fig 1c), 213 
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though changes are not as dramatic as for branching corals, and average cover of massive 214 

corals remained at 5 ± 1 (SE)% on recovering reefs, even after the 2016 bleaching event.  215 

Temporal changes in the cover of different coral growth forms were associated with changes 216 

in coral genera between 2011 and 2017 (F 3,62 = 3.66, P=0.005) and among reef types (F 1,62 = 217 

15.33, P<0.001). Recovery on granitic reefs was associated with an increase in the abundance 218 

of branching Pocillopora and encrusting Favia, Acanthastrea and Montipora between 2008 219 

and 2014. However, the recovery on carbonate and patch reefs was characterised by 220 

Acropora, Echinopora, massive Lobophylia /Goniopora, and encrusting Galaxea (Fig. 3). 221 

Coral cover on regime-shifted reefs was low and characterised by Fungia and branching 222 

Porites, especially on carbonate reefs.  223 

Like coral cover, the structural complexity of Seychelles reefs has declined since 1994, 224 

though temporal trajectories differed between reef states (Fig 1d). On regime-shifted reefs 225 

structure gradually declined between 2005 and 2011, whilst on recovering reefs it has 226 

remained relatively stable. On both recovering and regime-shifted reefs structural complexity 227 

did not change greatly between 2014 and 2017. 228 

2016 bleaching event  229 

Plan view assessments of bleaching at 16 reefs around Seychelles’ granitic islands in May-230 

June 2016 found that 80% of coral had bleached or recently died, and on 15 of these reefs 231 

>50% of the estimated coral cover had bleached (Fig 4a). Coverage of branching corals was 232 

high compared to other growth forms (28%), however 63% of these corals where bleached 233 

and 30% had recently died (Fig 4b). Similarly, almost all tabular corals had bleached or died 234 

and only 2% of these corals appeared healthy. Conversely, although 68% of the massive coral 235 

coverage (10%) had bleached few of these corals had recently died and the majority of 236 

encrusting corals were healthy. Assessments of bleaching at the colony level were similar to 237 
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those from plan views with 82% of the 1194 colonies being bleached or recently dead (Fig 238 

4c). Of the  Acropora (369) and Pocillopora (99) colonies surveyed more than 94% were 239 

bleached or recently dead, whilst 26% of Porites colonies (255), which were among the most 240 

common massive genera, were considered healthy. 241 

Spatial variation in the extent of coral bleaching in 2016 was best explained by a model that 242 

included susceptibility of the coral community to heat stress, water quality and wave 243 

exposure (Table 1). Sites with low to medium wave exposure, a high proportion of genera 244 

susceptible to bleaching, and higher nitrogen content in macroalgal samples tended to have a 245 

higher percentage of bleached corals (Fig 5a). The extent of coral loss between 2014 and 246 

2017 was also related to bleaching susceptibility, changes in coral cover being less 247 

pronounced on reefs with high abundance of thermally resistant taxa (Fig 5b).  248 

Branching coral and fish assemblages 249 

Changes in branching coral cover affected fish from all dietary categories, particularly those 250 

that are small-bodied. Indeed abundance of fish with estimated total lengths 8 to 11cm was 251 

positively correlated with branching coral cover for all dietary categories, although this 252 

relationship was weaker among larger fish (Fig 6). The relationship was especially strong 253 

among small-bodied corallivores, changes in percent cover of branching corals accounting for 254 

50% of the variation in coral feeding fish 8 to 11cm. Accordingly abundance of small-bodied 255 

corallivores declined during periods when coral bleaching had caused loss of branching 256 

corals (1994 to 2005 and 2014 to 2017), but increased during the intermediate period (2005 to 257 

2014), when branching coral cover increased on some reefs.  258 

Decline in small corallivore abundance was greatest between 2014 and 2017, following the 259 

2016 bleaching event, However, declines in abundance of small planktivores and herbivores 260 

(8 to 11 cm) was greatest between 1994 and 2005, seven years after the 1998 bleaching event, 261 
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whilst changes in small piscivores were negligible following both bleaching events. There 262 

were however significant changes in medium sized (26 to 30 cm) piscivores, their numbers 263 

increasing a year after the 2016 bleaching, but this same size category declined seven years 264 

after the 1998 bleaching. Similarly, many medium sized herbivores declined in abundance 265 

between 1994 and 2005, yet the abundance of these medium sized herbivores increased 266 

following the bleaching in 2016.    267 

 268 

Discussion 269 

Over the past 20 years the granitic islands of Seychelles have experienced two major heat 270 

stress events that have caused widespread coral bleaching and mortality. The decline in 271 

percent coral cover following these two events, and recovery during the intervening years, 272 

has been predominantly driven by fluctuations in the cover of branching corals. Many of the 273 

taxa that have branching morphology have life history traits that favour wide dispersal and 274 

rapid growth (Pratchett et al. 2015), characteristics that allow rapid recovery following 275 

disturbance (Darling et al. 2012). However, these taxa are also highly susceptible to a range 276 

of environmental pressures including heat stress (Hoey et al. 2016). As a consequence, 277 

coverage of branching corals on reefs can undergo dramatic and rapid changes (Goreau et al 278 

2000), reflecting periods of boom and bust, that have concomitant impacts on reef associated 279 

fish assemblages. This affords some level of stability in cover over longer time frames and 280 

branching corals have dominated reef assemblages over the past 1.8 million years (Renema et 281 

al. 2016). The onset of the Anthropocene has however coincided with the decline of these 282 

corals over large parts of the Caribbean (Greenstein et al. 1998; Cramer et al. 2012) and an 283 

inshore reef on the GBR (Roff et al. 2013). Recent bleaching at global scales has extended 284 

this effect to many of the world’s reefs (Hughes et al. 2018a, 2018b) 285 
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Ecological significance of branching corals 286 

Long-term data from the Seychelles, through two major disturbances and an extended period 287 

of recovery, highlight the potential role of branching coral as a keystone structure on coral 288 

reefs. Declines in coral and the flow-on impacts to associated communities affect the 289 

ecosystems services provided by reefs (Pratchett et al. 2014; Robinson et al. 2018). For 290 

example, branching corals are especially important for maintaining high rates of reef growth 291 

and protecting coastlines from rising sea levels (Perry et al. 2015, 2018). Percent cover of 292 

branching corals is also positively correlated with structural complexity; an important 293 

determinant of reef fish diversity (Graham and Nash 2013). Here we clearly demonstrate that 294 

these corals are especially important habitat for a trophically diverse group of small bodied 295 

fish, whose abundance closely tracks changes in branching coral cover. Accordingly loss of 296 

coral following the 1998 bleaching was associated with a decline in both small-bodied taxa 297 

and species richness of fish in the Seychelles (Graham et al. 2006). Moreover, loss of 298 

branching corals is associated with changes in prey availability and predator diets that alter 299 

how energy is transferred within coral reef food webs (Hempson et al. 2018). Many larger 300 

bodied predators are also closely associated with the reef during the early stages of their 301 

benthic lives, often sheltering among the branches of coral colonies (Wen et al. 2013). These 302 

species are often important to reef fisheries, and changes in branching coral cover is likely to 303 

have flow-on implications for future stocks of these taxa (Graham et al. 2007).  304 

The timing of our post-bleaching surveys allowed assessments of both long and short-term 305 

changes to branching coral cover to fish assemblages. In 2005, seven years after declines of 306 

live branching coral, the reef structure had started to collapse on many reefs (Graham et al. 307 

2006). Accordingly, we documented declines in both small and medium sized fish from 308 

piscivorous and herbivorous feeding guilds. Many fish in these guilds have no obvious 309 

reliance on live coral but may take shelter or feed among the branching skeletons (Pratchett et 310 
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al. 2008). Fish that increased in abundance between 1998 and 2005 were those of medium 311 

body size with a mixed diet, which is consistent with theories that generalists benefit from 312 

disturbance (Bellwood et al. 2006).  Conversely, a year after the 2016 bleaching, coral cover 313 

had declined by 70% yet only the smaller bodied fish were negatively affected. Indeed, 314 

abundance of medium-sized predators had increased during this short time frame, suggesting 315 

these meso-predators have contributed to the demise of smaller bodied prey. The apparent 316 

short-term increase in predators is unlikely to be sustainable, especially if reef structure 317 

collapses and there is a shift to macroalgal dominated states (Hempson et al. 2018). 318 

Conclusion 319 

Increased frequency of heat stress events may have dire consequences for the persistence of 320 

branching corals. In Seychelles, coral cover fell by 90% soon after the 1998 event (Goreau et 321 

al. 2000) and although some of these reefs recovered, others underwent a regime shift and are 322 

now dominated by fleshy macroalgae (Graham et al. 2015). It took more than 10 years for 323 

those reefs that recovered to attain levels of coral cover similar to that recorded pre-324 

bleaching. Severe bleaching events are now expected every 6 years (Hughes et al. 2018a), 325 

seriously compromising the capacity of corals to recover and leading to a gradual ratchetting 326 

down of coral cover (Birkeland 2004). This will gradually diminish the amplitude of boom 327 

bust cycles in branching coral cover and the influence they have on reef ecosystems. 328 

The sensitivity of branching taxa to bleaching has led to suggestions that coral assemblages 329 

will be increasingly characterised by thermally tolerant taxa (van Woesik et al. 2011). Indeed, 330 

we found both coral bleaching and mortality were directly related to the susceptibility of the 331 

coral community to heat stress. The prominence of massive coral colonies on Seychelles reefs 332 

in surveys after bleaching indicates that some corals have persisted through the 1998 and 333 

2016 events. Although relatively slow growing compared to branching growth forms 334 
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(Pratchett et al. 2015) these massive corals are important for maintaining positive reef 335 

accretion post-bleaching (Januchowski-Hartley et al. 2017) and are an important component 336 

of reef structure at seascape scales (Darling et al. 2017). The gradual decline of massive 337 

corals is of concern, as these corals are expected to take much longer to recover than 338 

branching morphologies (Pratchett et al. 2015). Massive coral colonies are however unlikely 339 

to shelter the same abundance and diversity of fish as branching colonies of similar size 340 

(Holbrook et al. 2002a), emphasizing the importance of branching corals to fish assemblages. 341 

Branching corals are clearly important habitat for many fish on reefs within the Seychelles, 342 

and other parts of the world (Holbrook et al. 2002b; Wilson et al. 2008; Coker et al. 2014; 343 

Komyakova et al. 2018). Moreover, diversity of coral associated invertebrates is highest in 344 

colonies with complex branching morphology, with many species inhabiting branching 345 

pocilloporids and acroporids (Stella et al. 2011).  As a consequence, spatial and temporal 346 

variation in the cover of branching corals is a key determinant of diversity, size structure and 347 

trophodynamics on coral reefs. That branching corals are also major contributors to reef 348 

growth and accretion emphasises their ecological and geomorphological roles across multiple 349 

processes and suggests these corals are keystone structures. Boom and bust fluctuations in the 350 

amount of branching corals are therefore expected to alter ecological and physical processes, 351 

their long-term demise having flow-on effects for the ecosystem services provide by coral 352 

reefs.  353 
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Table 1. Best models for predicting bleaching and mortality of corals following heat stress in 505 

2016. Variables considered in models were: Susceptibility of the coral community to 506 

bleaching in 2014 based on bleaching response of different genera (McClanahan et al. 2007); 507 

Water Quality measured as %N of macroalgae collected in 2014; Depth; Exposure based on 508 

fetch, wind speed and direction (Graham et al. 2015); Cover of coral in 2014; if reefs were 509 

Fished or no-take reserves; and Habitat type. Bleaching of corals in 2016 was also 510 

considered in analyses to predict coral mortality. 511 

 Predictors ΔAIC AIC wt edf R2 
Bleaching Susceptibility + %N+ Exposure 0.00 0..65 6.9 0.63 
 %N + Exposure + Habitat 1.20 0.35 7.0 0.46 
      
Mortality %N + Exposure + Habitat 0.00 0.23 5.0 0.71 
 Susceptibility + Fished 0.57 0.18 3.0 0.37 
 Susceptibility 0.89 0.15 2.0 0.34 
 Susceptibility + Exposure 2.10 0.08 3.1 0.35 

 512 
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 514 

Fig 1. Temporal change in coral cover and structural complexity from 1994-2017. Lines are 515 

predictions from GAMs of total coral cover (A), branching cover (B), massive cover (C), and 516 

structural complexity (D), shaded with 2 standard errors (SE). Points are mean cover 517 

estimates (± 2 SE), jittered to separate regime shifted (red) from recovering (blue) reefs. 518 

Models were fitted with interacting survey year and regime state covariates, and random 519 

effect terms for reef site.  520 
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 521 

Fig 2. Extent of change in branching coral cover during periods of recovery (2005-2014) and 522 
decline (2014-2017). Correlation co-efficient calculated from six regime shifted (orange) and 523 
twelve recovering (blue) reefs. 524 

 525 
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526 

Fig 3. Spatial and temporal variation in coral communities. Non-metric MDS analysis of 18 527 

Seychelles reefs surveyed between 2008 and 2017 displayed. Red reefs have undergone a 528 

regime shift and blue reefs are recovering (Graham et al. 2015). Shading indicates survey 529 

year (lightest = 2008, darkest = 2017) and symbol shape indicates habitat type (carbonate = 530 

circles,  granite = squares, patch = diamonds). 531 
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 533 

Fig 4. Extent of coral bleaching on 16 Seychelles reefs in May-June 2016. Means and 534 

standard errors calculated from 8 replicate counts at each reef. Likelihood ratio tests indicated 535 

significant spatial variation in bleaching (P < 0.001), dead coral (P < 0.001), and healthy 536 

coral (P < 0.001). Bleaching also varied among corals of different morphology and genera. 537 

The number of colonies surveyed within each genera is in parentheses. 538 
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 540 

Fig 5. Relative importance of environmental variables in predicting the extent of coral A. 541 

bleaching and B. mortality at 15 Seychelles reefs following 2016 heat stress. The 542 

relationships for the best models, with 95% confidence intervals (dotted lines), are plotted.  543 
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 546 

Fig 6. Shifts in fish abundance during periods of branching coral cover decline (1994 to 2005 547 

and 2014 to 2017) and recovery (2005 to 2014). Each bar represents the average change in 548 

fish density (left axis) per count area (154m2) from 18 reefs consistently surveyed over the 549 

three time periods. Bars with a black outline denote significant changes in density based on 550 

95% confidence intervals. Dots are correlation coefficients for the relationship between 551 

abundance of fish within each dietary size category and percent cover of branching coral 552 

(right axis). 553 
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