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In this article we address a missing data problem that occurs in transplant survival studies.
Recipients of organ transplants are followed up from transplantation and their survival times
recorded, together with various explanatory variables. Due to differences in data collection pro-
cedures in different centres or over time, a particular explanatory variable (or set of variables)
may only be recorded for certain recipients, which results in this variable being missing for a
substantial number of records in the data. The variable may also turn out to be an important
predictor of survival and so it is important to handle this missing-by-design problem appropri-
ately. Consensus in the literature is to handle this problem with complete case analysis, as the
missing data are assumed to arise under an appropriate missing at random mechanism that gives
consistent estimates here. Specifically the missing values can reasonably be assumed not to be
related to the survival time. In this article, we investigate the potential for multiple imputation
to handle this problem in a relevant study on survival after kidney transplantation, and show
that it comprehensively outperforms complete case analysis on a range of measures. This is a
particularly important finding in the medical context as imputing large amounts of missing data
is often viewed with scepticism.

1 Introduction

The presence of missing data is a common problem in many fields and can complicate important
statistical analyses. Common ad-hoc strategies to handle this problem, while easy to apply, can
often result in biased estimates and incorrect conclusions being made.

The focus of this article is on missing values in transplant survival data, where these can occur
for many different reasons. In the motivating example for this paper, transplant survival times
following kidney transplantation depend on covariates associated with the donor (such as age,
cause of death), the transplant procedure (such as cold ischaemic time) and the recipient (such as
primary disease, diabetes status). Models for the survival time are then used in the development of
organ allocation schemes (Johnson et al., 2010), to advance clinical practice and to inform patients
of their likely prognosis (Watson et al., 2012). In data of this kind, missing values are frequently
encountered and can often occur by design. For example, changes in the transplant procedure,
clinical practice, and post-transplant immunosuppression, may mean that a variable, previously
not routinely measured, is subsequently found to be an important determinant of outcome. For
example, the body mass index (weight in kg/height2 in m2) of a recipient was not recorded until
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2003, when evidence from elsewhere suggested that it could be relevant to graft and patient
survival. When this occurs, certain individuals, whose transplant takes place after this discovery
was made, will have information recorded on this variable, while all other individuals will not have
this information reported. Any such variable will then have a significant proportion of missing
values which arise by design rather than through some random (unknown) mechanism. Similarly,
there may be differences between transplant centres in factors that are recorded. For example,
a measure of disease severity in potential liver transplant recipients, known as the UKELD (UK
End stage Liver Disease) score (Barber et al., 2011), is relevant to post-transplant survival, but
one centre did not record this variable between 2001 and 2006. This has important consequences
for an analysis of national data to model the dependence of survival on the UKELD score.

In each of these situations, there are systematically missing data across subsets of individuals
in distinct periods of time. This is different from traditional missing data patterns present in
data where missing values may be spread in a more random way throughout the data set or in a
monotonely increasing pattern through time if missing data are due to drop out. Missing values
essentially arise by design here, as a result of differences in data collection procedures across
different time periods or locations, so that a distinct part of the data is unobserved. It is evident
that a complete case analysis on such data could have a severe impact on inferences as a large
proportion of the data would be discarded.

To handle this missing by design problem, we propose to multiply impute the missing values and
evaluate the performance of this method. This approach fills in missing values from the predictive
distribution arising from a statistical model fit to the complete data. This is done multiple times
to generate multiple completed data sets. This will allow analysts to apply their usual complete
data methods to the completed data sets and make appropriate inferences through some simple
combining rules; see Schafer (1999) for a review of the approach. We assume analysts are interested
in fitting a Cox model to their data and obtaining maximum (partial) likelihood estimators for
the regression coefficients. For a complete data set these estimators would be consistent.

In particular, we explore the advantages of using multiple imputation (MI) over a complete case
analysis (CC). In the medical community, while MI is becoming increasingly popular (Bartlett
et al., 2015b; Kenward and Carpenter, 2007) multiply imputing a large proportion of values for a
variable is typically viewed with scepticism, and caution is recommended in the literature (White
et al., 2011). Furthermore, CC may often be viewed as an appropriate method with this type of
missing data problem as the missing data mechanism may be assumed to be missing completely at
random, and so estimates would be consistent. Typically this is a very strong assumption to make,
and a missing at random assumption is more appropriate here as the missing data mechanism
would depend on other variables in the study, perhaps deterministically, e.g. on transplant year
or transplant centre. Nevertheless, this does not change the conclusion that CC would result
in consistent regression coefficient estimates. Provided the probability of being a complete case
depends on the covariates only (not the response) and these are conditioned on in the regression
model, regression coefficients will be consistent, see Little and Rubin (2002, p. 43) and Bartlett
et al. (2015a) for more details. However, we also consider the missing completely at random
scenario later in this article and illustrate the benefits of using MI here as well.

It is often quite challenging to determine a plausible model to fit to the data due to the large
number of variables present, typically measured on different scales; for example some may be
measured on a binary scale while others may be measured on a continuous scale. For this reason
we use an imputation approach based on chained equations (Van Buuren et al., 1999) which can
handle missing values arising in a variety of situations. This is a commonly used imputation
method in the literature.

The article is organised as follows. Section 2 reviews the framework for multiple imputation of
missing data and briefly describes how an imputation method based on chained equations works.
Section 3 describes the motivating application and compares the performance of MI and CC to
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handle the problem of missing data. Section 4 presents further comparisons between MI and CC
based on simulations constructed from the complete case subsample taken from the data used in
Section 3. Finally Section 5 presents some concluding remarks.

2 Multiple imputation inference

We assume we have n observations in our data set, each measured on p covariates. Denote the
n×p covariate data set by X = (x1, . . . ,xp), with xij corresponding to the jth covariate value for
the ith individual, i = 1, . . . , n, j = 1, . . . , p. For each covariate value xij we also define a missing
data indicator mij , where mij = 1 implies xij is missing and mij = 0 implies xij is observed.
The covariate data set X can then be decomposed into its observed and missing parts denoted by
Xobs = {xij : mij = 0} and Xmis = {xij : mij = 1} respectively. Let M denote the corresponding
matrix of missing data indicators.

The literature on missing data typically makes some assumptions about the missing data mech-
anism, i.e. the process that produces the missing values. This is often expressed with a conditional
distribution of the form:

p(M |X,φ)

where φ are parameters that govern the missing data mechanism. If the above expression reduces
to the following,

p(M |Xobs, φ)

then the data are said to be missing at random (MAR). This is the most commonly used missing
data assumption. If missing data are MAR and the parameters φ are distinct from the parameters
characterising the model for the data, e.g. coefficients from a regression model fit to the data,
then the missing data mechanism is said to be ignorable and is a necessary condition for MI to be
a valid method to consider here. In this article we assume that the data are MAR and parameters
for the missing data mechanism are distinct from parameters characterising the data model. A
special case of MAR occurs if the missing mechanism can be expressed as,

p(M |φ)

in which case the data are said to be missing completely at random (MCAR). See Rubin (1976)
for more information.

To illustrate the different types of missing data mechanisms consider a scenario where we only
have two variables measured for each unit i, xi1 and xi2 with xi1 fully observed and xi2 containing
some missing values. Also suppose γ0, γ1 and γ2 are some unknown (constant) parameter values.
If the missing data mechanism can be expressed as:

p(mi2 = 1|xi2, xi2) =
exp(γ0)

1 + exp(γ0)

then the missing data are MCAR, each unit has the same probability to be missing. If instead
the mechanism is expressed as:

p(mi2 = 1|xi2, xi2) =
exp(γ0 + γ1xi1)

1 + exp(γ0 + γ1xi1)

then the missing data are MAR, where units have potentially different probabilities to be missing
but this only depends on xi1 which is fully observed and it is possible to estimate values of γ0 and
γ1 for example through a logistic regression. Finally if the mechanism is expressed as:

p(mi2 = 1|xi2, xi2) =
exp(γ0 + γ1xi1 + γ2xi2)

1 + exp(γ0 + γ1xi1 + γ2xi2)
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then the missing data are missing not at random (MNAR), the missing probability depends on
xi2 which is not fully observed and so estimating the model parameters is not possible.

MI works by completing the missing values in the data set with draws from the posterior
predictive distribution p(Xmis|Xobs). This is done repeatedly, r times, to create r completed data

sets. We denote these data sets by X
(k)
com, k = 1, . . . , r. We assume that analysts of the data are

interested in making inferences about some estimand in the population, Q. This could be for
example the mean of a variable, or the coefficient from a regression model. The analyst performs
the same complete data inference that would have been performed in each of the completed data
sets; specifically, point and variance estimates, qk and uk respectively, are obtained for Q in each

of the imputed data sets X
(k)
com. These estimates are then combined by the analyst to obtain the

following quantities:

q̄r =

∑r
k=1 qk
r

(1)

ūr =

∑r
k=1 uk
r

(2)

br =

∑r
k=1(qk − q̄r)2

r − 1
(3)

The analyst can then use q̄r as a point estimate for Q and estimate the variance by Tr = ūr +(1+
1/r)br. The estimate Tr incorporates the additional uncertainty due to the presence of imputed
values in the completed data sets. Analysts can obtain confidence intervals using a t-distribution
with degree of freedom ν, where

ν = (r − 1)

(
1 +

r

r + 1

ūr
br

)2

.

See Rubin (1987) for more details.

2.1 Imputation using chained equations

It is often quite challenging to determine an expression for the posterior predictive distribution,
p(Xmis|Xobs), in closed form. Typically the missing data pattern will be non-monotone, and
the variables in the data set will often be recorded on different measurement scales. A popular
imputation method in such situations is that based on chained equations (Van Buuren et al.,
1999). We give a brief description of how the approach works here.

The approach essentially imputes missing values in a sequential iterative process. Suppose all
the variables in the data set, x1, . . . , xp contain some missing values. The chained equations
scheme first fills in missing values in xj by sampling from the marginal observed distribution of
this incomplete variable. Once this initial stage has taken place, imputations are generated from
a sequence of full conditional distributions p(xj |x1, . . . , xj−1, xj+1, . . . , xp, ψj), j = 1, . . . , p. Each
predictive distribution is obtained from an appropriate regression model depending on the mea-
surement scale of xj . For example if xj is binary then a logistic regression could be used, while if xj
is continuous then a normal regression model may be considered. Flat priors are used for the regres-
sion model parameters ψj . This is done in an iterative process, so at iteration t draw imputations

for missing values in xj to create an imputed x
(t)
j from p(xj |x(t)1 , . . . , x

(t)
j−1, x

(t−1)
j+1 , . . . , x

(t−1)
p , ψj)

so we condition on the most recent imputed values for missing covariate values in this regression
model. This is done T times until it is assumed that the imputations have stabilised. Often
T is not very large with T = 10 or 20 typically being deemed to be sufficient (Buuren and
Groothuis-Oudshoorn, 2010). The imputed data set resulting from this last iteration yields one
of the imputed data sets. This is then done r times to create r different imputed data sets.

4



We note that this imputation method does not guarantee that imputations are drawn from a
proper posterior predictive distribution, essentially this is because the parameters ψj are updated
from their conditional posterior distributions rather than updating the parameters from their
posterior distribution based on a model for the joint distribution of the variables, and a set
of full conditional distributions does not guarantee that there is a corresponding proper joint
density. This is what distinguishes this approach from the more formal Gibbs sampling approach
to generate imputations from a joint model. Nevertheless, this approach has been widely used
and performs well; see the thorough empirical evaluation of Van Buuren (2007). We note that a
theoretical justification of the chained equations approach has been developed (Liu et al., 2013;
Hughes et al., 2014). In particular, Hughes et al. (2014) propose a non-informative margins
condition that, if satisfied, guarantee draws from the chained equations approach correspond to
draws from a joint model for the data. However, if the potential lack of a relevant joint density is
of concern, the approach of Lee and Mitra (2016) may be used to guarantee that imputations are
drawn from a proper posterior predictive distribution.

In the next section the chained equations approach is used to handle missing values arising in
a study of survival times after kidney transplantation.

3 Imputation in data on kidney transplant survival

To investigate factors associated with transplant survival time, defined to be the earlier of graft
failure or patient death, data were obtained from the UK Transplant Registry, held by NHS
Blood and Transplant, on adult, first kidney only transplants between 1 January 2001 and 31
December 2008. During this period there were 7732 transplanted patients. A Cox regression
model for the hazard of transplant failure is adopted. The donor factors considered for inclusion
in the model are the recipient unit, age, gender, ethnicity, body mass index, type (whether live
donor, deceased donor following circulatory death, or deceased donor following brain stem death),
cytomegalovirus (CMV) status and cause of death. Transplant factors were year of transplant,
waiting time, cold ischaemic time (the time from retrieval of organ to transplant in the recipient),
HLA match grade and whether or not kidney is transplanted locally. Recipient factors were
recipient transplant unit, age, gender, ethnicity, body mass index, CMV status, primary disease
(diabetes, glomerulonephritis, HU-syndrome, polycystic kidneys, nephritis, other), the degree of
sensitisation, serum creatinine and the ACORN index of deprivation.

Recipient body mass index was missing in 4937 patients (64%). This quantity was not recorded
at all until 2003, and in subsequent years it was missing for at least 35% of transplant recipients.
Missing values in this variable are thus strongly related to transplant year and transplant unit.
The data also contained missing values in 10 of the remaining variables. In particular, CMV was
missing for 15% of recipients, serum creatinine in 11%, donor body mass index in 5%, while the
ACORN index, donor CMV status, HSP status, cold ischaemic time, recipient and donor ethnicity
were missing in less than 3% of patients. Unlike recipient BMI, missing values in other variables
are not strongly related to the year of transplant or transplant unit. All missing values were
assumed to be MAR.

MI using 30 replicates was performed using chained equations, with some restrictions placed on
the values of imputed variables to ensure that imputed values of cold ischaemic time and serum
creatine were positive, while values of BMI were greater than 8.0. We also considered results based
on imputations without these restrictions but results were not qualitatively different and are not
presented here. Default choices in the MICE package in R were used to impute the categorical
variables. For binary variables (or equivalently variables with only two categories) logistic regres-
sion imputation models were used, and for categorical variables with more than two categories
multinomial logistic regression models were used. For continuous variables, missing values were
imputed using normal linear regression models to be consistent with the other fully parametric
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models used for imputing missing categorical values. In each imputation model, all other variables
were included as covariates as main effects only, including the outcome variable, transplant sur-
vival time, and the corresponding censoring indicator. We note that other approaches could have
been used to impute missing values in the continuous variables such as predictive mean matching.
In results not presented here, we also imputed missing continuous variables using predictive mean
matching instead and found inferences were similar to those obtained here.

We note that there are alternative approaches that instead include a function of the survival
time as a covariate in the imputation model. White and Royston (2009) suggest instead including
the Nelson Aalen estimator of the cumulative hazard and Bartlett et al. (2015b) propose an
alternative approach based on rejection sampling whereby each imputed value is sampled from a
proposal distribution with a rejection rule used to determine whether this value would be accepted
or not. Advantages of the Bartlett et al. (2015b) approach have been noted by Keogh et al. (2018),
in particular robustness to model mis-specification. The way we have included survival times in
the imputation model was deemed to be the simplest option to consider and would be easily
compatible with the MICE package in R. This was a key factor in our decision when the objective
is to compare performance with complete case analysis, which is argued for its simplicity. Thus,
we did not want to greatly complicate the procedure for producing imputations, but we note that
there is the potential to further optimise the performance of the multiple imputation approach
using approaches suggested in the above literature.

Standard methods of variable selection are impractical with 30 separate data sets, and so the
method of Wood et al. (2008) is used. Here, all 30 imputed data sets are stacked and variable
selection performed on the 7732 × 30 observations. To determine the significance of a covariate
adjusted for the inflated number of observations, each observation is weighted by 1/30. This
leads to a model with 11 covariates. A Cox regression model with these variables was fitted
to each imputed dataset and the estimates combined to give the values shown in Table 1. For
comparison, this table also shows the estimates obtained from CC using these variables, although
this is based on just 28% of the data. Note that certain point and interval estimates could not
be obtained using CC due to the greatly reduced sample size and the impact of censoring. Some
additional metadata is presented in Table 2 in the appendix; this includes sample sizes for each
continuous variable and levels of each categorical variable in the original data, complete case data
and multiply imputed data (presented as a range across imputations where appropriate). Table 2
also includes the proportion of missing values present in each variable in the original data.

covariate number of complete cases multiple imputation
patients estimate 95% CI estimate 95% CI

Primary renal disease
2 564 0.064 (-0.476, 0.604) 0.471 (0.238, 0.704 )
3 1026 -0.936 ( -1.501, -0.371) -0.575 (-0.809, -0.340 )
4 640 0.060 ( -0.480, 0.600) 0.134 (-0.106, 0.374 )
5 1326 0.118 ( -0.371, 0.607) 0.073 (-0.140, 0.286 )
6 930 0.072 ( -0.446, 0.591) 0.161 (-0.063, 0.384 )
7 2866 0.011 ( -0.470, 0.491) 0.048 (-0.156, 0.253 )

Recipient unit
2 505 -0.429 ( -1.502, 0.644) 0.074 (-0.231, 0.379 )
3 633 -0.332 ( -0.830, 0.165) -0.127 (-0.426, 0.172 )
4 173 0.110 ( -0.565, 0.784) 0.221 (-0.141, 0.584 )
5 153 0.142 ( -0.478, 0.762) -0.096 (-0.501, 0.309 )
6 224 -0.271 ( -0.859, 0.317) -0.389 (-0.765, -0.014 )

Continued on next page
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Table 1 – Continued from previous page
covariate number of complete cases multiple imputation

patients estimate 95% CI estimate 95% CI
7 425 -0.083 ( -0.617, 0.450) -0.328 (-0.659, 0.004 )
8 282 1.516 ( -0.546, 3.577) -0.335 (-0.745, 0.074 )
9 319 -0.342 ( -1.011, 0.328) -0.001 (-0.338, 0.335 )
10 408 -14.987 ( -∞, ∞) -0.349 (-0.729, 0.031 )
11 348 -0.423 ( -1.027, 0.182) -0.466 (-0.816, -0.116 )
12 241 0.050 ( -0.539, 0.640) 0.090 (-0.244, 0.424 )
13 361 -0.271 ( -1.012, 0.470) -0.434 (-0.769, -0.099 )
14 396 0.058 ( -0.456, 0.572) 0.065 (-0.249, 0.378 )
15 236 -0.025 ( -0.577, 0.526) 0.030 (-0.324, 0.385 )
16 491 -0.308 ( -0.963, 0.346) -0.134 (-0.450, 0.182 )
17 104 -0.066 ( -0.722, 0.590) -0.232 (-0.692, 0.227 )
18 295 0.010 ( -0.719, 0.739) -0.170 (-0.510, 0.170 )
19 603 -0.396 ( -1.205, 0.413) -0.192 (-0.496, 0.112 )
20 293 -0.390 ( -0.940, 0.160) -0.023 (-0.356, 0.310 )
21 270 -0.376 ( -0.990, 0.237) -0.138 (-0.480, 0.205 )
22 376 0.409 ( -0.241, 1.058) -0.113 (-0.440, 0.214 )
23 370 -0.455 ( -0.997, 0.086) -0.178 (-0.509, 0.153 )

ACORN index
Urban prosperity 727 0.139 ( -0.264, 0.541) 0.141 (-0.038, 0.320 )
Comfortably off 1952 0.085 ( -0.187, 0.357) 0.118 (-0.008, 0.245 )
Moderate means 1277 0.369 ( 0.078, 0.661) 0.318 (0.178, 0.458 )

Hard pressed 1844 0.358 ( 0.085, 0.630) 0.344 (0.216, 0.471)
Transplant year

2002 952 NA NA 0.039 (-0.103, 0.181 )
2003 931 NA NA -0.175 (-0.337, -0.013 )
2004 1038 -0.023 (-0.571, 0.526) -0.021 (-0.177, 0.135 )
2005 915 -0.237 (-0.806, 0.332) -0.235 (-0.411, -0.059 )
2006 939 -0.064 (-0.638, 0.509) -0.259 (-0.444, -0.074 )
2007 914 0.149 (-0.425, 0.723) -0.018 (-0.202, 0.166 )
2008 1073 -0.048 (-0.637, 0.540) -0.150 (-0.344, 0.043 )

Recipient sex - female 2940 0.203 (0.002, 0.403) 0.159 (0.068, 0.249 )
Serum creatinine 6866 0.006 (0.005, 0.007) 0.006 (0.006, 0.006 )

Donor age 7732 0.005 (-0.002, 0.013)) 0.004 (0.000, 0.007 )
Recipient age 7732 0.026 (0.018, 0.034) 0.027 (0.024, 0.031 )
Recipient BMI 2795 -0.017 (-0.037, 0.003) -0.024 (-0.042, -0.007 )

Donor BMI 7315 0.014 (-0.004, 0.031) 0.010 (0.000, 0.019)
Donor CMV

Status positive 3721 0.314 (0.118, 0.509) 0.135 (0.047, 0.224)

Continued on next page
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Table 1 – Continued from previous page
covariate number of complete cases multiple imputation

patients estimate 95% CI estimate 95% CI
Table 1: Coefficient estimates and 95% confidence intervals from a
Cox proportional hazards regression using multiple imputation and
complete case analysis respectively. For each coefficient the inter-
val in bold is the shorter one. Primary renal disease categories: 1 -
Glomerulonephritis (absorbed into the intercept), 2 - Pyelonephri-
tis/Interstitial Nephritis, 3 - Miscellaneous, 4 - Polycystic kidneys,
5 - Hypertension/Renovascular Disease, 6 - Diabetes, 7 - Not Re-
ported

We see that in general the point estimates from the multiply imputed data and the complete
case analysis are similar, but the 95% confidence intervals tend to be narrower when using MI.
There is thus some indication that using MI has some advantages over using CC. In particular
the 95% confidence interval for the coefficient of recipient BMI (rbmi), which contains a large
proportion of values missing by design, includes zero under CC but does not include zero in the
multiply imputed data. Similarly, confidence intervals for coefficients on donor age and donor
BMI include zero in the complete case data but not in the multiply imputed data. Note also that
variables with no missing data, such as donor age and recipient age, tend to have estimates with
much higher precision under MI. We investigated sensitivity of the results to different numbers
of imputations, ranging from 10 to 50 in increments of 10. We found that results were robust to
the number of imputations with the subset selected from the stepwise regression always remaining
the same. For the remainder of the article we focus on inferences obtained for the mid value of
30 imputations as that allows a decent number of imputations to be considered while also not
placing undue computational burden on the simulations in the next section.

Despite this, we do not know the true coefficient values in the above model, and as such it is
not possible to determine which approach (MI or CC) performs better. To gain further insight
into the performance of both methods, in the next section we design a simulation involving the
complete cases that can better compare both approaches.

4 Simulation involving the complete cases

4.1 Comparison of multiple imputation and complete cases based on the
analysis model in Section 3

We first remove the incomplete cases from the observed data to obtain the complete case sub-
sample. This results in a data set comprising 2131 transplanted patients. As this sample size
is much smaller than in the original data, we resample the rows of this data set with replace-
ment (i.e. bootstrap rows of the data) to increase the sample size to 4000. Henceforth, in this
section we refer to this data set as the complete data set. We then re-introduce the patterns of
missing data present in the original data back into the fully observed complete data set. This
corresponds to a non-parametric model-free approach for introducing missing values. To illustrate
this consider a simple example, suppose a data set has three variables, x1, x2 and x3. In the data
set, 60% of units are fully observed, 15% of units are missing in x2 only, 15% are missing in x3
only and 10% are missing in both x2 and x3. The approach would introduce missing values by
randomly assigning each unit to be fully observed with probability 0.6, missing in x2 only with

8



probability 0.15, missing in x3 only with probability 0.15 and missing in both x2 and x3 only with
probability 0.1. Doing so allows us to avoid specifying a parametric model for the missing data
mechanism and is thus more robust to this type of mis-specification. We note that this approach
of simulating missing values only preserves the missing data patterns, and we cannot make any
statements about the missing data mechanism. The approach has been used previously to good
effect to design simulation studies, e.g. by Mitra and Reiter (2011). We can then perform similar
analyses to those performed in the previous section, handling the missing values using either MI
or CC. We repeat this process 250 times and summarise the results in various ways to compare
the performance between using MI and CC.

Treating the coefficient estimates from the fully observed complete data set as the true param-
eter values, we can obtain a measure of mean squared error (MSE) for the estimates found using
MI and complete case analysis respectively. Figure 1 plots the MSEs for each regression coefficient
obtained using MI against the corresponding MSE obtained from a complete case analysis. Note
that the plot of MSEs is on the log scale to aid clarity. There were two covariates for which it was
not possible to obtain estimates of the regression coefficients when using CC, and so these were
not included in the plots. Specifically, the coefficient of the effect of the level of recipient unit 10
could not be estimated in the original data due to censoring, and the coefficient of the effect of
recipient unit 8 could not be estimated because there were only two observations in this group, one
of which was censored, so inevitably there would have been some simulated data sets containing
no observable survival times in this group. Out of the remaining 42 coefficient estimates, when
using MI all 42 estimates had a smaller MSE than when using CC. This can be seen from Figure
1 where all points in both plots are below the line. We also see that gains for MI are slightly
more pronounced for coefficients corresponding to categorical variables. This could be due to the
reduced sample sizes in each level of a category resulting from a complete case analysis (as seen
from Table 2) which inflate variances.
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Figure 1 Plots of log(MSE) in coefficient estimates for categorical covariates (left) and con-
tinuous covariates (right) obtained from using MI against CC in the simulation involving the
complete case subsample. Points below the log y = log x line (included) indicate a larger MSE for
a complete case analysis. Note that the plot is on the log scale.

As expected most of the contribution to the MSE, in both MI and CC, is due to variance with
bias being relatively small. This is to be expected as we assume missingness is primarily MAR
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and so bias should be small. To illustrate this Figure 2 presents the ratio of variance to MSE
for each coefficient arising from MI plotted against the corresponding ratio from CC. We see that
almost all points are greater than 0.8 and points with lower ratios tend to be similar for both
analysis methods indicating that there is little difference, as expected.

0.85 0.90 0.95 1.00

0.
80

0.
85

0.
90

0.
95

1.
00

Complete case analysis

M
ul

tip
le

 im
pu

ta
tio

n

Figure 2 Plot of the ratio of variance to MSE for MI against CC. The y = x line is included

We also compare performance of interval estimates between MI and CC. Specifically we compare
the average 95% confidence interval width of each regression coefficient obtained from MI and a
CC, where the averaging is over the 250 replications. As before, the two average confidence
interval lengths, corresponding to recipient unit levels 8 and 10 could not be computed when
performing CC and are not considered in the comparison. Of the remaining 42 average lengths,
41 were smaller when using MI. This indicates that MI has the ability to obtain more precise
estimates with shorter confidence interval lengths in general than using CC. Figure 3 plots the
average lengths for each coefficient from using MI against the average length from CC, with the y
= x line included. Points below the line indicate improved performance for MI over CC. All but
one point are below the line, confirming that all the average lengths are smaller when using MI.
There were several average lengths for CC that were infinite and as such cannot be included on
the plot. These also corresponded to various levels of recipient unit where most of the survival
times were censored. The simulation results in this section indicate that MI has the potential to
improve performance in making point and interval estimates of regression coefficients compared
with CC.

4.2 Simulation involving stepwise model selection

We also compare performance between MI and CC when performing stepwise regression. We again
use the method of Wood et al. (2008) to perform stepwise regression with the multiply imputed
data sets. Specifically we fit a Cox proportional hazards regression to the (fully observed) complete
data, and perform backwards elimination stepwise regression to the full model, where the final
model is selected with the smallest AIC. There are 14 variables retained which include donor age,
BMI and CMV; recipient age, sex, ethnicity, serum creatinine, and primary disease; as well as the
transplant factor whether or not the kidney was transplanted locally.
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Figure 3 Plots of average 95% confidence interval lengths of coefficient estimates obtained from
using MI and CC in the simulation involving the complete cases. Points below the y = x line
indicate a larger average length for CC.

We then run the same simulation as performed above, repeatedly introducing missing values
into the complete case data and dealing with the missing values using MI or CC, but now we
apply stepwise backwards elimination after fitting a Cox proportional hazards regression to the
full data. We then compare performance between MI and CC as follows:

• The proportion of covariates in the final model from the original complete data, selected in
the final model obtained from the incomplete data.

• The proportion of covariates selected in the final model obtained from the incomplete data
that are not present in the final model from the complete data.

Figure 4 presents boxplots of these two measures. In the left plot, higher plots indicate better
performance and in the right plot lower plots indicate better performance. We see that MI
outperforms CC in both.

4.3 Sensitivity analysis

In this section we consider how sensitive the results from the previous section are to specifica-
tion of the missing data mechanism and imputation model. To address these we consider firstly
introducing missing values using a known MAR mechanism, and secondly mis-specifying the im-
putation model used to impute missing recipient BMI values. Results similar to those presented
in the previous section are also presented for each of these scenarios.

4.3.1 MAR mechanism

The results from Sections 4.1 and 4.2 are not obtained from simulated data generated using
an explicit missing data mechanism, rather the simulated data was generated to preserve the
distribution of the missing data patterns present in the original data. To complement this, we
also perform a simulation study where we know the exact mechanism that creates the missing
data. Specifically, after subsetting on the complete cases, we introduce missing values into the

11



MI CC

0.
2

0.
4

0.
6

0.
8

1.
0

MI CC

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Figure 4 Proportion of correct covariates included (left) and proportion of covariates selected
that should not be included (right) across the 250 replications

recipient BMI variable using an MAR mechanism. We do this by fitting a main effects logistic
regression model to the missing data indicators corresponding to whether each recipient BMI
value was observed or not, using all other variables in the data as covariates. Having created the
complete data set of 4000 units as detailed above, we then use the coefficient estimates to estimate
missing probabilities for each unit and introduce missing values repeatedly, taking draws each time
from this distribution. We find that solely doing this with the completed data results in a smaller
proportion of missing values in the recipient BMI variable than what occurred in the original data,
with only approximately 24% of values missing approximately. This is because certain features
of the data would have inevitably changed after subsetting on the complete cases, e.g. early
transplant years would have been omitted as they all contained missing BMI values. To allow a
more meaningful comparison to be made we introduce extra missing data into this variable using a
MCAR mechanism where each unit has the same probability of 0.4 to be missing. This allows the
proportion of missing values in this variable to be approximately equal to the proportion missing in
the real data (0.6385). No other missing values are introduced into the complete case subsample, so
all other variables remain fully observed. This section thus investigates the performance of MI in a
scenario where the missing values arise from a known MAR mechanism constructed to incorporate
features estimated from the original data. We note that this is a specific MAR mechanism which
depends only on covariate values obtained from the complete case subsample and other MAR
mechanisms could be considered. Under this mechanism the estimators of interest obtained from
CC and MI should be consistent.

We perform similar analysis to that performed in Sections 4.1 and 4.2. Specifically, using the
complete case subsample, we fit a Cox regression of survival time on the same 11 covariates that
were included in the regression model from Section 3. We then introduce missing values into the
recipient BMI variable using the MAR mechanism above and obtain coefficient estimates from
fitting the Cox regression (including the same 11 covariates) to the incomplete data, where we
use both MI and CC to handle the problem of missing data. We repeat this process 250 times,
creating 250 incomplete data sets, and compare the results from both MI and CC to the estimates
obtained from the regression model fit prior to introducing missing values. For similar reasons
described in the previous section, it was not possible to obtain estimates for one coefficient.
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Figures 5 and 6 summarise the results and show similar gains for MI over CC as seen in
Section 4.1. Namely we see that MI results in estimates with a smaller (proxy) measure of mean
squared error for all coefficients, with again more pronounced gains in the estimation of coefficients
corresponding to categorical variables. In addition MI results in smaller average confidence interval
lengths for all but two coefficients.
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Figure 5 Plots of log(MSE) in coefficient estimates for categorical covariates (left) and continu-
ous covariates (right) obtained from using MI against CC in the simulation involving the complete
case subsample. Points below the log y = log x line indicate a larger MSE for CC. Note that the
plot is on the log scale.
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Figure 6 Plots of average 95% confidence interval lengths in coefficient estimates obtained from
using MI and CC in the simulation involving the complete cases. Points below the y = x line
indicate a larger average length for CC.
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Similar to Section 4.2, we also perform a stepwise backwards elimination model selection pro-
cedure when fitting the Cox model to the complete data. For each incomplete data set, we also
perform the same stepwise procedure, using both MI and CC to deal with the missing data. An
equivalent figure to that of Figure 4 is presented here (Figure 7) that summarises the results.
We see similar results to those observed in Section 4.2. On average MI results in inclusion of a
higher proportion of covariates that were originally included in the complete data model obtained
through stepwise selection, as compared to CC. MI also results in inclusion of fewer covariates
that were not originally included in the complete data model, again as compared to CC.
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Figure 7 Proportion of correct covariates included (left) and proportion of covariates selected
that should not be included (right) across the 250 replications

4.3.2 Imputation model mis-specification

We now consider the effect of mis-specifying the imputation model. Clearly there are many ways
that the model could be mis-specified. We decide to consider the effect of leaving out a potentially
highly predictive variable from the imputation of recipient BMI. We fit a main effects linear model
to recipient BMI with all other variables in the data as covariates, and examine the most significant
covariates. We find that recipient age is one of the most highly significant predictors with a p-value
of 1.37× 10−12. Also intuition suggests that this should be an important predictor of BMI. Thus
we choose to omit this variable when imputing missing recipient BMI. A complete data set and
missing patterns are generated using the method described in Section 4.1. As before results are
obtained over 250 replications. Similar comparisons and plots are produced as in Section 4.3.1.

Figures 8 and 9 summarise the results and still show gains for MI over CC as seen in Section 4.1.
Namely we see that MI results in estimates with a smaller (proxy) measure of mean squared error
for all coefficients, with more pronounced gains in the estimation of coefficients corresponding to
categorical variables. In addition MI results in smaller average confidence interval lengths for all
but one coefficient. It is encouraging still to see these gains even when the imputation model has
been partly mis-specified by omitting an important predictor.

Similar to Section 4.2, we also perform a stepwise backwards elimination model selection pro-
cedure when fitting the Cox model to the complete data set. For each incomplete data set, we
also perform the same stepwise procedure, using both MI and CC to deal with the missing data.
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Figure 8 Plots of log(MSE) in coefficient estimates for categorical covariates (left) and continu-
ous covariates (right) obtained from using MI against CC in the simulation involving the complete
case subsample. Points below the log y = log x line indicate a larger MSE for CC. Note that the
plot is on the log scale.
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Figure 9 Plots of average 95% confidence interval lengths in coefficient estimates obtained from
using MI and CC in the simulation involving the complete cases. Points below the y = x line
indicate a larger average length for CC.

An equivalent figure to that of Figure 4 is presented here (Figure 10) that summarises the re-
sults. We see the same general trend that was observed in Section 4.2. On average MI results in
inclusion of a higher proportion of covariates that were originally included in the complete data
model obtained through stepwise selection, as compared to CC. MI also results in inclusion of
fewer covariates that were not originally included in the complete data model, again as compared
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to CC. The gains here are not as pronounced as with the equivalent plots in previous sections,
but this is to be expected as the imputation model has been partly mis-specified.
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Figure 10 Proportion of correct covariates included (left) and proportion of covariates selected
that should not be included (right) across the 250 replications

To summarise, the simulation results indicate that MI has the potential to offer significant gains
over CC when the missing data arise by design or are MAR. In this paper we have only considered
missing data mechanisms that are relevant to our application, and not other mechanisms such as
informative mechanisms. Nevertheless, this finding does highlight an important, and perhaps less
well known, issue that imputing missing values that arise through a systematic process, or a MAR
mechanism, offers significant advantages over complete case analysis, even when the proportion
of missing values is quite substantial and when the imputation model is partly mis-specified.

5 Conclusions

Missing data arise naturally in a variety of practical settings in medical studies. In particular, for
routinely collected health data, such as the transplant survival data used to motivate this paper,
lack of awareness that a specific covariate is important until part-way through the prospective
data collection process can lead to a missing by design issue amongst the covariates (though
not for the response variable). It is fair to say that such missingness by design is likely to fall
under the heading of MAR so that CC might yield consistent estimates of regression coefficients.
However, the difficulty here is that typically the incomplete observations still contain considerable
information despite, say, one covariate out of several being missing. Thus CC is likely to be highly
inefficient, even if it is consistent. In such circumstances MI gives an attractive solution that is
relatively easy to apply.

In the analysis of the transplant survival data it is clear that the regression coefficient estimates
are broadly similar whether one uses CC or MI. However, the variability of these estimates is con-
siderably less when using MI. The simulation study indicates that, in a setting like the motivating
data example, MI yields estimates with smaller MSE and also has benefits in terms of variable
selection.

We note that our simulation studies have been constrained by the size of the complete case
subsample. An alternative approach might be to consider generating a synthetic simulated data set
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as an alternative to what has been proposed. Using parametric modelling assumptions would result
in sensitivity to model mis-specification, so the challenge would be to determine an appropriate
model that would be robust to this and produce a faithful representation of the original data. We
note that there is a substantial body of literature in generating synthetic data to protect data
confidentiality with strong ties to multiple imputation that could be considered here. An example
would be to use classification and regression trees to generate a synthetic version of the data
(Reiter, 2005). Careful thought would need to be given to how to deal with the missing values
present in the original data. This would be an interesting area of future investigation.

We have not considered the problem of MNAR in this article. Given the primary reasons
behind why missing values occur here we do not think this would be an issue here. However, in
other situations MI may not necessarily outperform CC. In these situations it may be of interest
additionally to consider approaches that use inverse probability weighting and doubly robust
strategies (Carpenter et al., 2006).

We are also aware of the causal implications of including the survival time (outcome) variable
in imputation models for missing covariate values. This is something that can divide opinion.
On the one hand omitting the outcome variable avoids the risk of distorting the causal path and
has been a strategy employed in some situations (Mitra and Reiter, 2011; D’Agostino and Rubin,
2000). However, the important information included in the outcome variable could lead to a much
better predictive distribution for missing covariate values, and it is typical practice in survival
studies to include the survival time in imputation models (White and Royston, 2009), hence our
choice to include survival times in imputation models.

As the variable subject to missing by design in the application was BMI, which is a variable
derived from a person’s height and weight, there is more than one way the imputation process could
have been implemented, which leads to an interesting avenue for future work. For example, rather
than imputing the derived variable, BMI here, directly, we could instead impute the variables used
to construct the derived variable, here height and weight, and then construct the derived variable
based on the imputed data. Evidence in the literature suggests the two approaches might lead
to different results (Morris et al., 2014) and it would be interesting to explore this further in the
context of missingness by design.
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Appendix - Additional metadata

Table 2 below presents some additional metadata of interest. This includes sample sizes for each
continuous variable and level of a categorical variable in the original data, complete case data and
multiply imputed data (presented as a range across imputations where appropriate). Table 2 also
includes the proportion of missing values present in each variable in the original data.

covariate number of patients proportion of missing data
original CC MI

Primary renal disease
1 380 94 380 0
2 564 177 564 0
3 1026 301 1026 0
4 640 204 640 0
5 1326 398 1326 0
6 930 260 930 0
7 2866 697 2866 0

Recipient unit
1 226 112 226 0
2 505 23 505 0
3 633 257 633 0
4 173 50 173 0
5 153 72 153 0
6 224 105 224 0
7 425 148 425 0
8 282 2 282 0
9 319 82 319 0
10 408 7 408 0
11 348 123 348 0
12 241 80 241 0
13 361 66 361 0
14 396 164 396 0
15 236 117 236 0
16 491 92 491 0
17 104 60 104 0
18 295 34 295 0
19 603 45 603 0
20 293 153 293 0
21 270 109 270 0
22 376 40 376 0
23 370 190 370 0

ACORN index
Wealthy achievers 1724 545 1753 –1771 0.0269
Urban prosperity 727 167 751 – 764 0.0269
Comfortably off 1952 524 1985 – 2017 0.0269
Moderate means 1277 374 1299 – 1322 0.0269

Hard pressed 1844 521 1883 – 1903 0.0269

Continued on next page
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Table 2 – Continued from previous page
covariate number of patients proportion of missing data

original CC MI
Transplant year

2001 970 0 970 0
2002 952 0 952 0
2003 931 47 931 0
2004 1038 403 1038 0
2005 915 359 915 0
2006 939 379 939 0
2007 914 414 914 0
2008 1073 529 1073 0

Recipient sex
male 4792 1336 4792 0

female 2940 795 2940 0
Serum creatinine 6866 2131 7732 0.112

Donor age 7732 2131 7732 0
Recipient age 7732 2131 7732 0
Recipient BMI 2795 2131 7732 0.6385

Donor BMI 7315 2131 7732 0.0539
Donor CMV Status

Negative 3855 1106 3923 – 3947 0.02018
Positive 3721 1025 3785 – 3809 0.02018

Table 2: Numbers of patients corresponding to each covariate in-
cluded in the model based on the full data, complete case data and
after multiple imputation respectively. For categorical variables,
numbers relate to each level of the variable. The final column
present the proportion of values missing in each variable. Primary
renal disease categories: 1 - Glomerulonephritis, 2 - Pyelonephri-
tis/Interstitial Nephritis, 3 - Miscellaneous, 4 - Polycystic kidneys,
5 - Hypertension/Renovascular Disease, 6 - Diabetes, 7 - Not Re-
ported
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