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Abstract:  

Wheat Avenin-like proteins (TaALP) are atypical storage proteins belonging to the Prolamin 

superfamily. Previous studies on ALPs have focused on the proteins’ positive effects on 

dough strength, whilst no correlation has been made between TaALPs and the plant immune 

system. Here, we performed genome-wide characterization of ALP encoding genes in bread 

wheat. In silico analyses indicated the presence of critical peptides in TaALPs that are active 

in the plant immune system. Pathogenesis-related nucleotide motifs were also identified in the 

putative promoter regions of TaALP encoding genes. RT-PCR was performed on TaALP and 

previously characterised pathogenesis resistance genes in developing wheat caryopses under 

control and Fusarium graminearum infection conditions. The results showed that TaALP and 
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NMT genes were upregulated upon F. graminearum inoculation. mRNA insitu hybridization 

showed that TaALP genes were expressed in the embryo, aleurone and sub-aleurone layer 

cells. Seven TaALP genes were cloned for the expression of recombinant proteins in 

Escherichia coli, which displayed significant inhibitory function on F. graminearum under 

anti-fungal tests. In addition, FHB index association analyses showed that allelic variations of 

two ALP genes on chromosome 7A were significantly correlated with FHB symptoms. Over-

expression of an ALP gene on chromosome 7A showed an enhanced resistance to FHB. Yeast 

two Hybridization results revealed that ALPs have potential proteases inhibiting effect on 

metacaspases and beta-glucosidases. A vital infection process related pathogen protein, F. 

graminearum Beta-glucosidase was found to interact with ALPs. Our study is the first to 

report a class of wheat storage protein or gluten protein with biochemical functions. Due to its 

abundance in the grain and the important multi-functions, the results obtained in the current 

study are expected to have a significant impact on wheat research and industry. 

Keywords: Avenin-like proteins, Pathogenesis related DNA motifs, N-myristoylation sites, 

Protein cleavage, PTM, Triticum aestivum, FHB, antifungal function, HPLC, MALDI-TOF. 

Introduction 

Plants have evolved an immune system to recognize and respond to pathogen attack (1). 

Initially, transmembrane receptors on the cell surface detect and recognize the pathogen via 

pathogen-associated molecular patterns (PAMPs). Adapted pathogens can suppress the 

PAMP-triggered immunity (PTI) by releasing effector molecules into host plant cells. Plants, 

in turn, activate a second line of defence, the effector-triggered immunity (ETI) that represses 

action of the effector molecules (1). Pathogen-infected tissues generate a mobile immune 

signal consisting of multiple proteins as well as lipid-derived and hormone-like molecules, 

which are transported to systemic tissues, where they induce systemic acquired resistance 

(SAR) (2). SAR is associated with the systemic reprogramming of thousands of genes to 

prioritize immune responses over routine cellular requirements (3). Diverse hormones, such 

as salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA) as well as 

other small phytohormones, play pivotal roles in regulation of this defence network (4-7). The 

signalling pathways cross-communicate in an antagonistic or synergistic manner, providing 

the plant with a powerful capacity to finely regulate its immune response (5, 6). Resistance in 

plants against pathogen attack can be acquired by resistance genes that biosynthesize 
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metabolites and proteins that directly suppress and/or contain the pathogen to initial infection 

through their antimicrobial and/or cell wall reinforcement properties. Resistance is achieved 

specifically by the recognition of pathogen elicitors with plant host receptors, resulting in the 

induction of signalling events that include changes in ion fluxes, phosphorylation and 

production of proteins and reactive oxygen species (8, 9).  

Bread wheat (Triticum aestivum) is the third most cultivated crop worldwide, and a major 

source of daily calories for the human population (10). Fusarium graminearum is a 

“hemibiotrophic” pathogen capable of causing wheat head and seedling blight, resulting in 

yield loss and trichothecene mycotoxin contamination, which is toxic to humans and animals 

(11, 12). In many Asia countries including China, the FHB is referred as wheat cancer in 

recent years. Several historical wheat growing zones have ceased wheat production due to 

severe FHB disease. The disease is now fast expanding to wheat growing zones that no FHB 

disease was occurred in the past. Breeding wheat varieties resistant to FHB has become one of 

the most important tasks. Better knowledge of the defence mechanisms and genetic 

engineering provides an effective approach to improve wheat resistance to the disease during 

breeding. Proteomics approaches have revealed that F. graminearum produces extracellular 

enzymes, such as lipases, xylanases, pectinases, cellulases and proteases (13-15), and other 

proteins, such as hydrophobins, small cysteine rich proteins. These proteins or enzymes may 

act as pathogenicity factors in plant–microbe interactions (13). Proteome studies on F. 

graminearum infected wheat spikes revealed that proteins could be involved in antioxidant, 

JA, and ethylene (C2H2-type) signalling pathways, phenylpropanoid biosynthesis, 

antimicrobial compound synthesis, detoxification, cell wall fortification, defence-related 

responses, amino acid synthesis, and nitrogen metabolism (16, 17). While various 

transcriptome studies have identified differentially expressed genes of resistant and 

susceptible wheat spikes infected with F. graminearum, suggesting that FHB resistance is 

conferred by multiple genes (18-21). Further, the defence related genes were functionally 

catalogued to different classes based on previous patho-transcriptomic studies, such as 

transcription and signalling related genes and hormone (auxins, gibberellins, ABA and SA) 

metabolism related genes (20, 22-25); cysteine-rich antimicrobial peptides (AMPs) (26-28); 

GDSL-lipases (29); proteolysis including serine proteases (30); peroxidases (POD) (31); 

genes related to cell wall defence (32-35), secondary metabolism and detoxification involved 
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genes; Toll-IL-IR homology region (36), and miscellaneous defence-related genes, ie., disease 

resistance-responsive family protein (37), NBSLRR disease resistance protein (38).  

Protein classification according to their conserved domains give insights into sequence and 

structural and functional correlations. According to the Pfam analysis, many wheat grain 

specific proteins belong to the prolamin superfamily (http://pfam.xfam.org/). Among them, 

proteins with LTP-2 (39, 40), Tryp-alpha-amyl domain (41, 42) and Hydrophobic-seed 

domain (43) were reported to be involved in the plant immunity system and have protease 

inhibition and antifungal activities. Proteins with a gliadin domain, including the gamma 

gliadin, LMW glutenin, alpha gliadin, puroindoline, and avenin-like protein (ALP), have been 

considered as typical storage proteins and have not previously identified with biochemical 

functions. Their known biological role is as nutrient reservoirs for seed germination. As most 

storage proteins, the ALPs also have positive effects on wheat flour and dough quality (44-47). 

The current study reports for the first time the molecular characterisation and functional study 

of TaALP in the aspects of anti-fungal activities. Results clearly demonstrated that the ALPs 

belong to a pathogen-induced prolamin superfamily member gene family. It possesses 

significant function in resistant to the infection of the FHB pathogen F. graminearum. It is 

expected that the ALPs’ FHB resistant function can be efficiently utilised in controlling FHB. 

Identifying the potential linkage between ALPs and the underlying mechanisms of a range of 

the newly identified FHB resistant gene and QTLs may further enable successful control of 

FHB.  

Materials and methods 

Plant Materials 

A natural population comprised of 240 wheat cv. s or accessions was used to evaluate the 

allelic effects on FHB resistance. Eleven lines were sourced from CIMMYT (Centro 

Internacional de Mejoramiento de Maíz y Trigo). The other 229 lines were from different 

provinces of China. A double haploid (DH) population Yangmai-16 x Zhongmai-895 

consisting of 198 lines were also used for field inoculation assays. Australia premium bread 

wheat cultivar Mace and Spitfire, and Mace×Spitfire DH line 241 were used for a glasshouse 

inoculation study in Murdoch University. 

Instruments and Reagents 
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A HPLC analysis was conducted with an Agilent Series 1200 liquid chromatograph equipped 

with a quaternary gradient pump system and a diode array UV-Vis detector system connected 

to a reversed-phase (RP) SB-C 18 column (5 μm, 4.6 × 250 mm, Agilent, USA). Data 

collection was performed using ChemStation software (Agilent, USA). Chromatograph-grade 

acetonitrile were purchased from Sigma-Aldrich Co. Ltd (St. Louis, Missouri, USA). 

Dithiothreitol (DTT), trifluoracetic acid, Sinapinic acid (SA), NaI, ammonium acetate 

(NH4Ac), methanol (MeOH), 4-vinylpyridine (4VP), guanidine HCl, TRIS were purchased 

from Sigma-Aldrich Co. Ltd. Reagents were of analytical grade and dissolved in deionized 

water (18 MΩ cm).  acrylamide stock solution (30% acrylamide: 0.8% bis acrylamide; Cat 

#161-0154, Bio-Rad Laboratories, Hercules, CA, USA) with 4.2 mL of water, 3 mL of 3 M 

Tris-HCl (pH 8.8), 120 μL of 10% SDS, 120 μL of 10% ammonium persulfate (APS) and 6 

μL of tetramethylethylenediamine (TEMED). 

Preparation of Albumin and Globulin Protein extracts 

Australia spring bread wheat varieties Mace and Spitfire were used for albumin and globulin 

protein extraction. The albumin/globulin proteins were extracted from 100 mg of flour 

according to the procedure of Dupont et al. (48). Briefly, 100 mg of flour was extracted with 

1 mL of 0.3 M NaI, 7.5% 1-propanol (NaI-propanol), and centrifuged at 4500 g for 10 min, 

After two extractions, the supernatant fractions were pooled in 15 ml tubes, precipitated with 

four volumes of ice-cold (-20°C) NH4Ac-MeOH (0.1 M ammonium acetate in 100% 

methanol), stored at -20 °C for at least 48 h, and centrifuged as above. The supernatant fluid 

was transferred into 50 ml tubes and precipitated with four volumes of ice-cold acetone and 

incubated at -20 °C overnight. Following incubation, the fluid was centrifuged as above to 

yield albumin/globulin fraction pellets. 

Determination of Individual ALPs of wheat cv.  Mace and Spitfire via RP-HPLC 

Analysis coupled with SDS-PAGE, MALDI-TOF, and LC/MS 

RP-HPLC 

Freeze-dried protein pellets were dissolved in 500 µL 6 M guanidine HCl (with a 

concentration of 1 mg mL-1) adjusted to pH 8.0 with TRIS, plus 50 mM DTT, and then 

alkylated with 4-vinylpyridine (4VP), prior to HPLC analysis (49). Albumin and globulin 

proteins extracted from Spitfire and Mace seeds were analyzed by RP-HPLC. A linear elution 

gradient was performed using two mobile solvents: the polar solvent A consisting of 0.1% 
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trifluoroacetic acid (TFA), (v/v) in type I ultrapure water (18 MΩ·cm specific resistance) and 

the non-polar solvent B consisting of 0.1% TFA (v/v) in acetonitrile (ACN). Absorbance was 

monitored at a detection wavelength of 210 nm, and the flow rate was kept at 0.6 mL min−1. 

The elution gradient conditions were set as follows: from 0 to 51 min, eluent B was increased 

from 20% to 60%; from 51 to 53 min, eluent B was increased from 60% to 80% and then 

maintained at 80% for 5 min for washing the column, then decreased to the starting B 

concentration in 1 min and maintained for 10 min for the next run. The injection volume was 

100 µL. The proteins eluted from individual peaks were collected with reference to the 

chromatographic profile captured in real time and pooled from three runs. RP-HPLC 

chromatographic finger print profiles showed no variation between runs, thus the elution of 

each run could be combined to increase the amount of protein in the final sample for later 

analysis. Samples were immediately frozen at −80 °C for 24 h and lyophilized. Lyophilized 

samples were stored at room temperature before MALDI-TOF and SDS-PAGE analyses. 

SDS-PAGE 

To identify the ALPs from RP-HPLC eluates, SDS-PAGE was used to separate the protein 

mixtures of each RP-HPLC eluate, and SDS-PAGE bands of interest were cut for protein 

peptides sequencing. Then, 12% SDS-PAGE was prepared following Fling and Gregerson’s 

method (50). Briefly, the gel comprises two layers: the separating layer and the stacking layer. 

The separating gel was prepared by mixed 4.2 mL of acrylamide stock solution (30% 

acrylamide: 0.8% bis acrylamide; Cat #161-0154, Bio-Rad Laboratories, Hercules, CA, USA) 

with 4.2 mL of water, 3 mL of 3 M Tris-HCl (pH 8.8), 120 μL of 10% SDS, 120 μL of 10% 

ammonium persulfate (APS) and 6 μL of tetramethylethylenediamine (TEMED). After 

polymerization, the separating gel was layered with the stacking gel prepared using 1 mL of 

acrylamide solution, 750 μL 1 M Tris-HCl (pH 6.8), 4.25 mL of water, 60 μL of 10% SDS, 

60 μL 10% APS, and 4 μL of TEMED. Pelleted samples of HPLC eluates described above 

were mixed with 10 μL 2×laemmli sample buffer SDS loading buffer (Bio Rad). 

Electrophoresis was carried out in a modified Laemmli system (51). Runs were performed 

with running buffer of 25 mM Tris-HCL, 192 mM glycine and 0.1% SDS at 120 volts for 2 h. 

The gels were stained in Coomassie Brilliant Blue (CBB) solution (R-250). Protein standards 

(Bio-Rad) were used to estimate the molecular size of the proteins. The gels were scanned by 

a gel Proteomic Imaging System, “Image lab 5.0” (Bio-Rad). 
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MALDI-TOF 

MALDI-TOF-MS was used to obtain the mass spectra profile of albumin/globulin fractions 

obtained from individual HPLC peaks (fractions) with and without 4VP alkylation. The 

albumin/globulin fraction protein extracts were prepared for MALDI-TOF-MS test, whereas 

the pelleted RP-HPLC eluted protein samples were diluted 20 times for MALDI-TOF-MS test. 

Each individual RP-HPLC eluates were lyophilized, the freeze-dried eluates were dissolved 

with 10 µL ultrapure water, 1 µL was used for MALDI-TOF-MS, and the residues were saved 

for SDS-PAGE running. Sample preparation was carried out according to the dried droplet 

method (52), using sinapinic acid (SA) as matrix. The matrix solution was prepared by 

dissolving SA in ACN/H2O/MeOH (60:8:32 v/v) at a concentration of 20 mg mL-1. All 

samples, including the RP-HPLC eluates, the raw albumin/globulin extracts and the alkylated 

albumin/globulins extracts were mixed with SA at the ratio of 1:9 (v/v) individually, and 

firstly, 1 µL of this protein-SA mixture was deposited onto a 100-sample MALDI probe tip. 

After drying, another 1 µL of this protein-SA mixture was added, then dried at room 

temperature. The mass spectra for each sample was recorded on a Voyager DE-PRO TOF 

mass spectrometer (Applied Biosystems, Foster City, CA, USA) using a positive linear ion 

mode at an accelerating voltage of 25 kV and a delay time of 700 ns by capturing 1000 

spectra of a single laser shot with a mass range of 15000-45000 m/z. 

Protein identification by MS/MS 

Protein bands of interest were manually excised from gels and analysed further by mass 

spectrometric peptide sequencing. The spots were analysed by Proteomics International Ltd. 

Pty, Perth, Australia. Protein samples were trypsin digested and the resulting peptides were 

extracted according to standard techniques (53). Tryptic peptides were loaded onto a C18 

PepMap100, 3 μl (LC Packings) and separated with a linear gradient of water/acetonitrile/0.1% 

formic acid (v/v), using an Ultimate 3000 nano HPLC system. The HPLC system was 

coupled to a 4000Q TRAP mass spectrometer (Applied Biosystems). Spectra were analysed 

to identify the proteins of interest using Mascot sequence matching software (Matrix Science) 

with taxonomy set to Viridiplantae (Green Plants). All searches used the Ludwig NR. The 

software was set to allow 1 missed cleavage, a mass tolerance of ± 0.2 Da for peptides and ± 

0.2 for fragment ions. The peptide charges were set at 2+, 3+ and 4+, and the significance 

threshold at P < 0.05. Generally, a match was accepted where two or more peptides from the 

same protein were present in a protein entry in the Viridiplantae database. 
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Derivation of Coding Sequences Obtained from T. aestivum.  

Cleavages of signal peptides were predicted using the SignalP 3.0 Server 

(http://www.cbs.dtu.dk/ services/SignalP/). MW’s and pI’s of deduced proteins were 

calculated using the Protein Parameter tool (http://web.expasy.org/protparam/) found on the 

ExPASy Proteomics Server. Sequence alignments were performed using ClustalW2 

(http://www.ebi.ac.uk/Tools/msa/ clustalw2/) with default settings. 

Disease screening 

A combination of Type I and Type II FHB resistances was assessed in field nurseries at the 

Nanhu Experiment Station, Food Crops Institute, Hubei Academy of Agricultural Sciences, 

(Wuhan, Hubei Province, China) during 2013-2014, 2015-2016, and 2016-2017 crop seasons. 

The materials used for the 2013-2014 and 2015-2016 crop seasons were 240 wheat lines 

collected nation-wide in China, while the materials used for the 2016-2017 crop season were 

the 198 DH lines of Zhongmai 985 x Yangmai 16. The experiments were carried out in 

randomized complete block designs with two replications. Each plot comprised double 1 m 

rows with 25 cm between rows. An overhead misting system was applied to favour Fusarium 

infection and development. Plots were spray-inoculated at a concentration of 50,000 

spores/ml at anthesis, when 50% of the spikes in the plot were flowering. Conidial inoculum 

comprised a mix of two highly aggressive isolates of F. graminearum isolated from 

Huanggang and Wuhan, Hubei Province. Ten spikes from different plants in each plot were 

labeled with blue tape to facilitate scoring. These spikes were assessed 21 DAP for incidence 

(percentage of diseased spikes) and severity (percentage of diseased spikelet on infected 

spikes). The FHB index was calculated using the formula FHB index (%) = (Severity × 

Incidence)/100 (54).  Naturally occurring FHB was assessed during the 2016-2017 crop 

season, and the plots were assessed 20, 24, and 28 DAP based on evaluation of FHB index of 

the plots. 

Promoter analysis 

Biotic defense related transcription factor binding sites (ATCAT, TGACG, TTGAC, 

CANNTG) and TF specific binding sites related to biotic defense were collected from public 

promoter motif and TF databases (Plant TFDB - http://planttfdb.cbi.pku.edu.cn; plantCARE - 

(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/) and PLACE -  

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/406694doi: bioRxiv preprint first posted online Sep. 3, 2018; 

http://dx.doi.org/10.1101/406694


9 

 

https://sogo.dna.affrc.go.jp) and used for transcription factor binding site prediction on 1100 

bp nucleotide sequences including 1000 bp promoter region upstream from the start codon of 

the avenin-like protein coding genes. Promoter sequences were retrieved from the Triticum 

aestivum cv. Chinese Spring (CS42) whole genome assembly 

(Triticum_aestivum_CS42_TGAC_v1, Earlham Institute, UK). The TF binding motifs were 

annotated according to their hormone and TF family specificity. Promoter motifs were 

mapped using the CLC Genomics Workbench v. 11 (CLCBIO Aarhus, Denmark) both onto 

sense and anti-sense strands with 100% sequence identity. TFBSs belonging to the same 

annotation group were marked with the same colour. 

Point inoculation on wheat spikelets 

Glasshouse based experiments were carried out at Murdoch University, glasshouse 2. The F. 

graminearum strain was sourced from Curtin University. The F. graminearum isolates were 

grown on mung bean agar plates (MBA) for four weeks to produce spores. Spores were 

collected via flooding of the cultures with sterile water, and the spore concentration in the 

suspension was adjusted to 5×105 conidia/mL before point inoculation. Point inoculation of 

wheat spikelets was performed as follows: inoculation of 10 μL spore suspension/deionized 

water into the two-central opposite wheat flowering spikelets, which were then covered in a 

polythene bag for 48-72h to maintain a high humidity. Infected spikelets were counted after 

two weeks. Mock inoculation was done by replacing spore solutions with sterile deionised 

water and treating spikelets in the same way. Inoculation experiments were repeated three 

times independently. Infected and mock spike samples were collected 7, 13, and 42 DAP. 

After sampling, plant material was immediately frozen in liquid nitrogen and stored at -80°C 

until use. For each biological replicate, two inoculated spikes per time point were collected 

and for each biological replicate, three technical replicates were conducted.  

Overexpression of TaALP-bx-7AS gene in transgenic wheat lines  

An agrobacterium mediated gene transformation procedure was followed to overexpress a 

TaALP gene on chromosome 7A (TaALP-bx-7AS) in cv. Fielder. The T2 plants were screened 

for FHB symptoms under combined Type I and Type II FHB inoculation in glasshouse. The 

symptom scoring procedure was the same as that used in the field nursery.   

Characterization of genes in Spitfire and Mace and marker design 
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Genomic DNA of wheat cv. s was extracted from 1-week-old seedlings using the 

cethyltrimethyl ammonium bromide (CTAB) method as reported (55). Based on the TaALP 

gene sequence from Juhasz et al (2018), specific primers were designed for different loci. 

These amplified the full gene from the 5’ and 3’ ends. The PCR products were separated on 

1.5% (w/v) agarose gels, and e bands of the expected size purified using a Gel Extraction Kit 

(Promega). Subsequently, the purified PCR products were amplified using BigDye@version 

3.1 terminator mix (Applied Biosystems) and sequenced. RefSeq v1.0 gene models in 

Chinese Spring were used to analyse sequences. Further specific primers were designed for 

each hit chromosome using Primer V5.0 software (http://www.premierbiosoft.com) (Chapter 

2). 

RNA isolation 

Total RNA was extracted using TRIzol reagent (Invitrogen Canada, Inc., Burlington, Ont., 

Canada, catalogue No. 15596026) according to the manufacturer’s protocols. cDNA was 

synthesized using an RNA reverse transcription kit (Bioline, London, UK, Catalogue No. 

BIO-65053). qRT-PCR was performed on a Rotor-Gene RG3000A detection system (Corbett 

Research) using SensiFAST SYBR No-ROX Kit (Bioline, London, UK, Catalogue No. BIO-

98005) as follows: hold at 95°C for 2 min, followed by 45 cycles of 95°C for 10s, 60°C for 

15s, 72°C for 30s. A melting curve was performed to determine the specificity of each PCR 

primer by incubating the reaction at 95°C for 20 s, cooling at 55°C for 10 s, and increasing to 

95°C at a rate of 0.5°C/10 s. The reference gene β-actin was used for the normalization of all 

qRT-PCR data. The 2-ΔΔCt method (56) was used to calculate the relative expression levels 

with three technical repeats (Chapter 2). 

In situ hybridization 

To generate gene-specific anti-sense probes, a 750-bp and a 500-bp TaALP cDNA clone, 

pspt19 (RGRC-NIAS; http://www.rgrc.dna.affrc.go.jp/stock.html), was digested with BamHI 

and SacI, respectively, and transcribed in vitro under the T7 and SP6 promoters with RNA 

polymerase using the DIG RNA labeling kit (Sigma Aldrich). In situ hybridization was 

performed according to the protocol of Kouchi and Hata (57) (Appendix Table 3). 

Recombinant TaALP production 
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Full-length TaALP cDNA was inserted into the bacterial expression vector pET28a (+) 

(Novagen), and the constructs were then introduced into Escherichia coli BL21(DE3) codon 

plus. Bacteria contain the plasmids were grown in Luria-Bertani (LB) medium containing 

50μg/ml kanamycin at 37°C to OD600=0.6. Expression of the fusion protein His-ALP was 

induced by addition of 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG) and incubation 

at 25°C for 16 hr. Bound proteins were eluted with sodium phosphate buffer containing 

increasing concentrations of imidazole and detected by 12% SDS-PAGE. Nonspecific 

proteins purified from the bacteria with the pET28a (+) vector were used as control 

(Appendix Table 3). 

In vitro antifungal activity of recombinant ALPs 

An agar-gel diffusion inhibition assay was carried out in order to determine the in vitro anti-

fungal activity for inhibition of mycelial growth of F. graminearum. Three 5-mm diameter 

mycelial disks (3-day-old culture) of the strain was placed in the PDA plate with 100 μl of the 

recombinant protein sample and incubated at 23 °C for 3 days. Inhibitory zones from different 

recombinant samples were visually compared with those from the control bacterial extracts. 

Antifungal activity of ALPs proteins against fungi was assayed by micro spectrophotometry 

of liquid cultures grown in microtitre plates as described previously (58, 59). Briefly, in a 

well of a 96-well microplate, 10 µl of the protein sample (purification buffer as control) was 

mixed with 90 µl minimal medium (MM) containing fungal spores at a concentration of 

1×105 conidia ml−1. Growth was recorded after 24 h incubation at 22°C daily. EC50 values 

(the concentration of the antifungal protein required to inhibit 50% of the fungal growth) were 

calculated from dose–response curves with two-fold dilution steps (59). The absorbance was 

recorded at 595 nm in a 96-well plate reader (Biorad).     

GAL4-based yeast two-hybrid assay  

TaALP protein interactions were studied using GAL4-based yeast two-hybrid assay, 

including protein to protein interactions within the wheat host and these between host and 

pathogen. A F. graminearum cDNA library was screened for potential interactions. The 

TaALP gene were amplified using the forward primer TaALP-NdeI-F and the reverse primer 

TaALP-BamHI-R (Appendix Table 3). The PCR product and plasmid pGBKT7 

(CLONTECH Co., United States) were treated with NdeI and BamHI enzymes (Neb, 

England), respectively, followed by ligation to construct the recombinant vector 
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pGBKT7:TaALP-4. The recombinant vector and the negative control pGBKT7 were 

transformed into the wild yeast cells Y187 (CLONTECH Co., United States), respectively, 

and cultured in Trp lacking media. While prey proteins are expressed as fusions to the Gal4 

activation domain (AD) (60, 61). The Ta-MCA gene and Ta-NMT gene were amplified using 

primers listed in Appendix Table 3. The PCR products and plasmid pGADT7 (CLONTECH 

Co., United States) were treated with NdeI and BamHI enzymes (Neb, England), respectively, 

followed by ligation to construct the recombinant vector pGADT7:TaMCA and 

pGADT7:TaNMT. The recombinant vectors were transformed into the wild yeast cells 

Y2HGold (CLONTECH Co., United States), respectively, and cultured in Leu lacking 

medium. The clones grown in the Leu lacking medium were mated with the previous Trp 

lacking medium colonies with overnight shaking and then transferred to the Trp and Leu 

lacking medium with X-α-gal, to allow bait and prey fusion proteins to interact.  The DNA-

BD and AD are brought into proximity to activate transcription of MEL1 to test the 

transcriptional activation activity. Sequences coding for one anti-fungal proteins, ALP gene 

(encoded by 7dyb, Appendix >YJ7dyb), were chemically synthesized according to their 

amino acid sequences. A metacaspase gene and NMT gene were cloned from a common 

Australia wheat cv.  Lincoln.  

Statistical analysis for the allelic effect 

For the allelic effect study, marginal F tests were used to determine the significance of allelic 

effects on FHB indexes of the 240 wheat varieties (62). Markers were nested within the 

population. The statistical significance of the FHB index was assessed performing T-tests 

using the SAS/STAT System software, Version 8.0 (SAS Institute Inc. Cary, NG) for the DH 

population of Yangmai16 x Zhongmai 985.  All measurements were carried out in triplicate, 

and the results presented as mean values ± SD (standard deviation). Statistical analysis was 

performed via one-way analysis of variance (ANOVA) followed by Duncan’s test. P < 0.05 

were considered significant. Data were analyzed using SPSS 19.0 (SPSS Inc., Chicago, IL, 

USA) for Windows and figures generated using SigmaPlot 12.0 and Photoshop 8.0 for 

Windows. 

Results 

In silico analyses revealed pathogenesis-related features on ALP encoding genes 
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To investigate the potential relationship of ALP genes with pathogenesis, the previously 

characterised pathogenesis-related motifs were retrieved from public database (Table S1). A 

total of 11 motifs, related to different hormones and transcription factor families, were 

identified. The putative promoter binding regions (1000 bp region upstream the translation 

starting sites) of 15 ALP encoding genes (63) in bread wheat were surveyed for the presence 

of those motifs (Figure 1A). Overall, multiple pathogenesis-related motifs, ranging from 11 

to 28, were identified in the promoter binding regions of all ALP genes. The 15 wheat ALP 

genes could be divided into 5 orthologous groups: 2 groups of type a (ax, ay), 2 groups of 

type b (bx, by), and 1 group of type c (c). Interestingly, the highest number (26-28) of 

pathogenesis-related motifs was observed for bx genes, while the lowest was found for ay 

genes, ranging from 11 to 17. When different types of ALPs were compared, the highest 

number of pathogenesis-related motif was observed for type b (146) followed by type a (103), 

with type c being the lowest (55). In addition, when different chromosomes were compared, 

the ALP genes on 7D have the highest number (108) of pathogenesis related motif, which is 

higher than these of 7A and 4A (both at 98).  

In addition to pathogenesis-related motif analyses in the promoter regions, the predicted 

amino acid sequences for the 15 ALP encoding genes were analysed for the presence of N-

myristoylation sites, which have been shown to be related to pathogenesis. In particular, 

candidate proteins could be cleaved at the myristoylation sites, followed by myristoylation 

reaction catalysed by N-myristoyltransferse. This process leads to programmed cell death, 

which confers systemic acquired resistance (SAR). Results showed that 13 out of the 15 ALP 

proteins contained one or two myristoylation sites (Figure 1B), suggesting a potential 

biological role in pathogenesis resistance.  

Table S1. The list of the retrieved motif related to pathogenesis. 

 Stress Hormone TF family 

CANNTG pathogen JA bHLH MYC 

TGACG pathogen SA TGA bZIP 

TTGAC pathogen SA WRKY 

AAAGATA pathogen  GATA zinc finger 

AACGTG pathogen JA MYC 

ACGT Light, elicitor, ethylene bZIP 
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pathogen 

ATCAT pathogen JA ATB bZIP 

AGCCGCC pathogen Ethylene, JA AP2/ERF 

CTCTT pathogen   

GCCGCC pathogen Ethylene, JA AP2/ERF 

GTAC Biotic, abiotic 

stress 

ethylene SBP 

Motifs were collected from PLACE and PlantCARE databases. Hormone and TF family 

specific information was retrieved from the annotation. 
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Figure 1. In silico analyses on ALP genes. A. Prediction of pathogenesis-related motif in the promoter regions of ALP genes. B. Prediction of the presence of 
signal peptides, phosphorylation sites, myristoylation sites, polyQ groups in ALP proteins.
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Peptide sequencing showed ALPs were cleaved in mature wheat grain 

To investigate the content of ALPs in mature wheat grain, total albumin and globulin proteins 

were extracted from two wheat cultivars, Mace and Spitfire. The presence of ALPs was 

identified by reverse-phase HPLC (RP-HPLC), SDS-PAGE and Maldi-tof methods. Firstly, 

the extracted protein samples were separated by RP-HPLC. A total of 36 and 33 elution peaks 

were identified for Mace and Spitfire, respectively (Figure S1). Then, the protein fractions for 

each HPLC peaks were collected and loaded on SDS-PAGE gel for further separation. As 

shown in Figure 2, most of the collected HPLC fraction contains a mixture of proteins with 

different molecular weights. The major bands in each fraction were cut out and sent for 

peptide sequencing. Only those target proteins with molecular size close to or lower than the 

maximum predicted molecular weight of ALPs (~ 33 kDa) were analysed. A total of 55 SDS-

PAGE bands were sequenced (Figure 2; File S1). Results (Figure 2) showed that 20 and 15 

fractions from Mace and Spitfire, respectively, were found to contain ALPs.  

For Mace, 5 (ay-7DS/4AL, ax-4AL/7AS/7DS) out of the 15 ALPs, belonging to type a, could 

be identified in fractions 8-11, 17-18, 20, 24-30. These type a ALPs displayed molecular 

weight similar to the full length ALPs, suggesting an intact form of type a ALPs. In addition, 

12 protein bands (2, 4, 8-13, 15, 17, 20-21) were identified as type b ALPs (bx and by) which, 

however, could not be assigned to specific ALP orthologues. Notably, some identified type 

“by” ALPs, corresponding to bands 1, 3 and 5, displayed molecular weight at around 18.34 

kDa (Figure S2A), suggesting an inter-domain cleavage for these ALPs. Other type “by” 

ALPs, corresponding to bands 2, 4, 8 and 9, contained multiple proteins at ~ 32.32 kDa and ~ 

28.19 kDa, which were validated by Malti-tof analyses (Figure S2A, C). These results 

suggest the presence of both full length and another kind of partial type “by” ALPs, which 

may be resulted from the cleavage at the predicted myristoylation sites. This hypothesis is 

consistent with the predicted molecular weight for myristoylation cleavage and is supported 

by the peptide sequencing results, which revealed no peptide covering the myristoylation sites. 

In contrast to the type “by” ALPs, the identified type “bx” ALPs, corresponding to bands 10-

13, 15, 17, 20-21, were all characterised as full length ALPs, suggesting that the type “bx” 

ALPs that do not contain myristoylation sites had no cleavage occurred.  
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Similar observations were made with Spitfire. Five type a ALPs (ay-7DS/4AL, ax-

4AL/7AS/7DS) could be identified in the predicted full length form with molecular weights 

ranging from 17.90 kDa to 19.20 kDa. Bands 31, 35, 37-42 were identified as type b ALPs, 

containing both types “by” and “bx”. No type b ALP orthologue could be assigned. For type 

“by”, molecular weights of 32.43 kDa, 28.28 kDa and 18.41 kDa were observed, suggesting 

the presence of the intact form and two differently cleaved forms. For type “bx”, molecular 

weight at 33.01 kDa, 32.92 kDa, 32.67 kDa, 27.61 kDa were identified, indicating the 

occurrence in the intact and the predicted myristoylation cleaved forms but not in the inter-

domain cleavage form. Notable, for both Mace and Spitfire, no type c ALP could be identified 

in the present study.  
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Figure S1. RP-HPLC analyses of albumin and globulin proteins in wheat. A: Mace; B: Spitfire. 
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Figure 2. SDS-PAGE gel separation of albumin and globulin proteins. 
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Figure S2A-F. Maldi-tof analyses of ALP proteins present in wheat grain of Mace 

 

Figure S3A-F. Maldi-tof analyses of ALP proteins present in wheat grain of Spitfire. 

 

File S1. Peptide sequencing results of wheat ALPs.  

SDS-PAGE bands HPLC Peak Retention Time Sequencing Results MW of MAILDI-TOF 

1 Mace-8 17.035 C-terminal by-7DS/4AL 18335.99 

2 Mace-8 17.035 by-7DS/4AL/7AS 28185.92 

3 Mace-9 18.325 C-terminal by-7DS/4AL 18337.51 

4 Mace-9 18.325 by-7DS/4AL/7AS 28185.92 

5 Mace-10 19.445 C-terminal by-7DS/4AL 18451.18 

6 Mace-10 19.445 ay-7DS 18451.18 

7 Mace-11 20.247 ay-7DS 18456.80 

8 Mace-11 20.247 by-7DS/4AL/7AS 
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9 Mace-12 21.017 by-7DS/4AL/7AS 
 

10 Mace-13 21.612 bx-7DS/4AL 28736.77 

11 Mace-14 21.967 bx-7DS/4AL 28776.56 

12 Mace-15 22.414 bx-7DS/4AL 28617.72 

13 Mace-16 22.659 bx-7DS/4AL 28774.42 

14 Mace-17 22.941 ay-4AL 18416.56 

15 Mace-17 22.941 bx-7DS/4AL 28619.52 

16 Mace-18 23.375 ay-4AL 18428.36 

17 Mace-18 23.375 bx-7DS/4AL 28586.6 

18 Mace-19 24.414 ax-4AL 19515.57 

19 Mace-20 24.725 ax-4AL 19512.37 

20 Mace-20 24.725 bx-7DS/4AL 
 

21 Mace-21 25.529 bx-7DS/4AL 
 

22 Mace-24 27.387 ax-7AS 18845.22 

23 Mace-25 27.798 ax-7AS 18681.39 

24 Mace-26 28.754 ax-7AS 18773.17 

25 Mace-27 29.614 ax-7AS 18789.94 

26 Mace-28 30.178 ax-7DS 17990 

27 Mace-28 30.178 ax-7AS 18805.21 

28 Mace-29 30.914 ax-7DS 17925.30 

29 Mace-30 31.864 ax-7DS 18058.39 

30 Spitfire-8 17.467 C-terminal by-7DS/4AL 18408.36 

31 Spitfire-8 17.467 by-7DS/4AL/7AS 28236.77 

32 Spitfire-11 20.266 ay-7DS 18423.39 

33 Spitfire-12 21.406 ay-7DS 18447.6 

34 Spitfire-14 22.796 ay-4AL 18472.54 

35 Spitfire-14 22.796 bx-7DS/4AL/7AS 28759.24 
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36 Spitfire-15 23.147 ay-4AL 18418.48 

37 Spitfire-15 23.147 bx-7DS/4AL/7AS 
 

38 Spitfire-15 23.147 bx-7DS/4AL/7AS 
 

39 Spitfire-16 25.004 bx-7DS/4AL/7AS 
 

40 Spitfire-18 26.15 bx-7DS/4AL/7AS 
 

41 Spitfire-18 26.15 - 
 

42 Spitfire-19 26.601 bx-7DS/4AL/7AS 
 

43 Spitfire-20 27.305 ax-4AL 18812.35 

44 Spitfire-21 27.676 ax-7AS peptide 1 
 

45 Spitfire-21 27.676 ?? 
 

46 Spitfire-21 27.676 ax-4AL 19269.88 

47 Spitfire-22 28.743 ax-7AS 18787.16 

48 Spitfire-22 28.743 ax-4AL 19249.09 

49 Spitfire-23 29.378 ax-7AS 18780.63 

50 Spitfire-24 30.058 ax-7AS peptide 2 
 

51 Spitfire-24 30.058 ax-7DS 
 

52 Spitfire-24 30.058 ax-7AS 18786.6 

53 Spitfire-25 31.115 ax-7DS 17959.72 

54 Spitfire-25 31.115 ax-7DS 18036.36 

55 Spitfire-26 32.004 ax-7DS 18188.99 
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Table S2. Sumary of the detected ALPs of with HPLC and MALDI-TOF. 

ALPs AAs  
Cysteine 

residues 

Main Peak of 

HPLC 

Retention 

time (Min) 
MW1 a (kDa) MW2 b (kDa) MW3 c (Da) MW3 d (Da) ΔMW1 e (Da) ΔMW2 f (Da) 

-terminal by-

7DS/4AL 
152 11 Mace-8 17.03 17.39/17.44 18.54/18.60 17291.16 18335.99 1145.54 1044.83 

-7DS 154 14 Mace-11 20.24 16.96 18.42 16961.22 18456.8 1457.96 1495.58 

-4AL 153 14 Mace-17 22.94 17.01 18.47 16961.22 18416.56 1457.96 1455.34 

ax-4AL 162 14 Mace-20 24.72 17.747 19.20 17626.66 19474.94 1457.96 1848.28 

ax-7AS 156 14 Mace-26 28.75 17.29 18.75 17291.16 18773.17 1457.96 1482.01 

ax-7DS 149 14 Mace-29 30.94 16.44 17.90 16446.66 17925.3 1457.96 1478.64 

by-7DS/4AL/7AS 261 19 Mace-8-12 17.03-21.01 29.98/29.87/29.69 31.95/31.84/31.67 
  

1978.66 
 

bx-4AL/7DS 266/267 18/19 Mace-13-23 21.61-26.33 30.59/30.88 32.46/32.86  
 

1874.52/1978.66 
 

-terminal by-

7DS/4AL 
152 11 Spitfire-8 17.46 17.39/17.44 18.54/18.60 17269.85 18408.36 1145.54 1138.51 

-7DS 154 14 Spitfire-11 20.26 16.96 18.42 16951.81 18423.39 1457.96 1471.58 

-4AL 153 14 Spitfire-15 23.14 17.01 18.47 16951.81 18418.48 1457.96 1466.67 

ax-4AL 162 14 Spitfire-21 27.67 17.74 19.20 17757.01 19269.88 1457.96 1512.87 

ax-7AS 156 14 Spitfire-23 29.37 17.29 18.75 17269.85 18780.63 1457.96 1510.78 

ax-7DS 149 14 Spitfire-25 31.11 16.44 17.90 16431.19 17959.72 1457.96 1528.53 
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by-7DS/4AL/7AS 261 19 Spitfire-8 17.46 29.97/29.87/29.69 31.95/31.84/31.67   1978.66 
 

bx-7DS/4AL/7AS 266/267/265 18/19/18 Spitfire-13-19 21.97-26.60 30.59/30.88/30.40 32.46/32.86/32.27 
  

1874.52/1978.66/1874.52 
 

a Calculated molecular weight of ALPs; b Calculated molecular weight of ALPs after molecule alkylation; c The molecular weight as deduced by 

MALDI TOF MS for ALPs without molecule alkylation; d Molecular weight as deduced by MALDI TOF MS for ALPs after molecule alkylation; 
e Calculated delta molecular weight of ALPs after molecule alkylation; f Delta molecular weight between the molecular weight as deduced by 

MALDI TOF MS for ALPs with molecule alkylation and without molecule alkylation. Note: The theory was that each cysteine residue would 

combine with one 4-vp molecule and the molecular mass would increase 104.14 Da (the 4-vp molecular mass minus the mass of one hydrogen 

ion).
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 (RT-PCR/ transcription analyses) 

ALP genes were upregulated upon F. graminearum inoculation in developing wheat 

caryopses  

To investigate the potential interactions between ALP genes and pathogen resistance, the 

transcriptional profiles of 7 ALP genes (ax-7AS/7DS, ay-7DS, by-7AS/7DS, bx-7AS/7DS), 2 

previously characterised anti-virulence gene candidates (Taxi III, PR.1.1), and 2 Programmed 

cell death (PCD) related genes including wheat meta-caspase gene (TaMCA4) and N-

myristoly Transferase gene (TaNMT) were studied by RT-PCR under control and F. 

graminearum inoculation conditions in developing wheat caryopses. A total of 3 wheat lines 

(Mace, Spitfire, DH line 241) at 3 developmental stages (7 DPA, 13 DPA, 42 DPA) were 

investigated (Table 1). Overall, for the 7 ALP genes, the highest expression was observed at 

13 DPA with the exception of 7axb, which was barely expressed at all stages under the 

control conditions. At 13 DPA, a clear upregulation of ax-7AS, ax-7DS, ay-7DS, by-7AS, bx-

7DS and by-7DS upon F. graminearum inoculation could be detected in all or some of the 

three wheat lines. Similar observations could also be made at 42 DPA, when the transcription 

of ax-7AS, 7axb and 7ayb were significantly upregulated in some wheat lines. Noteworthy, 

although 7axb is barely expressed in all wheat lines throughout seed development under 

control condition, significant upregulation of the transcription of this gene was detected at 7 

DPA and 42 DPA in DH line 241. In contrast to the ALP genes, transcription of RP.1 and 

Taxi III genes were mainly found at 7 DPA and 42 DPA but not at 13 DPA. At 7 DPA and 42 

DPA, clear up-regulation of RP.1 and taxi was observed after F. graminearum inoculation, 

suggesting a positive role for these genes in pathogenesis activities. For MCA and NMT 

genes, the highest expression occurred at 13 DPA, with very low or no expression at 7 DPA 

and 42 DPA. At 13 DPA, in contrast to MCA, which displayed variable transcriptional 

changes among different wheat lines upon F. graminearum inoculation, significant up-

regulation of NMT was detected in all wheat lines studied.   

Table 1. RT-PCR of ALP genes in developing wheat seeds under control and pathogen infection 
conditions. 

Cultivars 
Relative expression (%) at 13 DPA 

ay-7DS ax-7AS ax-7DS by-7AS by-7DS bx-7AS bx-7DS TaMCA4 TaNMT Taxi III PR.1  
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(mRNA insitu hybridization experiments) 

ALP genes were expressed in the embryo, aleurone, sub-aleurone and transfer cells 

To determine the transcriptional domain of ALP genes, mRNA insitu hybridization was 

performed for two ALP genes: ay-7DS and by-7AS, representing type a and b, respectively. 

The developing wheat caryopses of Mace at 15 DPA was used. As shown in Figure 4, clear 

signals of type a ALP gene ay-7DS expression were detected in the embryo (Figure 4A), 

aleurone cells (Figure 4A), sub-aleurone and transfer cells (Figure 4A). The highest intensity 

was observed in the aleurone and subaleurone cells, followed by embryo, whilst the signal in 

the transfer cells is relatively weaker. No signal or very weak signal could be detected in other 

part of the endosperm, pericarp and husk tissues. Similar results were obtained for type b ALP 

gene by-7AS. The transcription of by-7AS was observed in embryo (Figure 4B), aleurone 

(Figure 4B), sub-aleurone (Figure 4B) and transfer cells (Figure 4B), with the highest 

expression in embryo, aleurone and sub-aleruone cells, whilst relative weaker in transfer cells.  

 

control 1a 1a 1a 1a 1b 1a 1a 1c 1a 1a 1a 
Mace 1.10b 1.58b 1.28b 1.54a 1.34c - 1.26b 0.77a 1.22a 2.07a 3.67d 
Spitfire 1.69b 1.48c 1.58c 2.79b 0.44a 1.65b 0.96a 1.28d 2.86b 3.55b 2.06c 
241 2.78c 2.53d 3.03d 5.60c 2.10d 3.59c 2.85c 0.96b 2.68b 1.80a 1.79b 

Relative expression (%) at 7 DPA 
control 1a 1a 1a 1b 1a 1a 1a 1b 1b 1a 1a 
Mace 0.50a 0.58a 0.63a 0.26a 0.23a - 0.30a 0.58a 0.50a 0.67a 1.44a 
Spitfire 13.82b 10.73b 9.24b 3.37c 2.59b 2.59a 6.10b 0.88b 0.51a 1.35a 3.12b 
241 18.50c 19.09c 11.68c 3.81c 10.10c 30.24b 20.75c 1.08c 0.99b 4.07b 2.99b 

Relative expression (%) at 42 DPA 
  

control 1a 1a 1a 1a 1a 1a 1a - 1a 1a 1a 
Mace 4.59b 24.23b 48.28b 12.25a 544.24b - 71.47a - 2.02a 22.88b 6.87a 
241 0.03a 0.05a 22.57a 33.09b 0.05a 32.94b 0.07a - 32.70b 5.45a 161.89b 
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Figure 4. mRNA insitu hybridization on ALP genes in developing wheat caryopses. A. type a ALP; 
B. type b ALP. 

ALPs displayed significant in-vitro anti-fungal function on F. graminearum 
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To determine whether ALP proteins have anti-fungal function, 7 ALP genes (ay-4AL, ay-7AS, 

C-terminal by-7DS, c-7AS, by-7AS, bx-4AL and by-7DS) were cloned into pET28a(+) vector 

and induced for recombinant protein production in E. coli system. After protein induction, E. 

coli cells were harvested and lysised, followed by centrifugation. The expression of the target 

ALP proteins in the supernatant solution were confirmed by SDS-PAGE gel (Figure S3). 

Preliminary anti-fungal tests were performed by studying the inhibitory effects of F. 

graminearum on PDA plates. As shown in Figure S4, compared to the control tests, the 

growth of F. graminearum colonies were clearly inhibited by the recombinant ALP protein 

solutions, indicating all selected ALPs have anti-F. graminearum function. Noteworthy, 

variable degrees of anti-fungal activity were observed, with ay-4AL, ay-7AS, C-terminal by-

7DS displayed the highest and comparable anti-fungal activities, followed by by-7AS. The 

lowest anti-fungal activities was observed for c-7AS, bx-4AL and by-7DS. Further anti-

fungal tests were performed by studying the inhibition effects on F. graminearum in minimal 

medium (MM) media. The E. coli strain harbouring the pET28a(+) vector with no gene insert 

was used as control. The growth rate of F. graminearum was plotted in Figure 5A for the 7 

selected ALP proteins. The inhibitory activity of each candidate protein was assessed by 

calculating the EC50 value. Overall, the results are consistent with that obtained from the PDA 

plate tests. As shown in Figure 5B, ALP, ay-4AL, ay-7AS, and C-terminal by-7DS displayed 

the lowest EC50 values (0.11 – 0.15), suggesting the highest anti-fungal activities for these 

proteins. This is followed by ALP by-7AS, which has an EC50 of 0.42 and demonstrated a 

moderate anti-fungal activities. The lowest EC50 values were observed for ALPs c-7AS, bx-

4AL and by-7DS, suggesting these ALPs have relative lower anti-fungal activities toward F. 

graminearum. 
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Figure 5A-C The production of recombinant ALP protein validated by SDS-PAGE gel; D Anti-fungal 
tests of ALPs on F. graminearum on PDA plates; E. Anti-fungal tests of recombinant ALPs on F. 
graminearum. growth rate plot and EC50 value calculation.  

ALPs have potential proteases inhibiting effect on metacaspases and beta-glucosidases 

In silico, peptide sequencing and gene transcriptional analyses in the present study suggested 

a positive interaction between ALP genes and pathogenesis-related genes MCA and NMT. To 

validate the predicted interactions between these proteins, yeast two hybridization 

experiments were performed. Three ALP proteins (ay-4AL, ay-7AS, C-terminal by-7DS) 

were selected to study their potential interactions with TaMCA4 and TaNMT proteins. Each 

gene fragment encoding these corresponding proteins were cloned into both PGADT7 and 

PGDBKT7 vectors to allow forward and reverse double validations. For each experiment, 

both vectors, containing one ALP insert and one target pathogenesis-related gene insert, were 

transformed into yeast strainsY187 and Y2HGold, respectively. The potential protein 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/406694doi: bioRxiv preprint first posted online Sep. 3, 2018; 

http://dx.doi.org/10.1101/406694


31 

 

interactions were assessed by colour reaction on X-alpha-Gal media plate. As shown in Figure 

6, all of the three selected ALPs were found to interact with TaMCA4 in both forward and 

reverse tests. However, those ALPs displayed weaker interactions with TaNMT, which was 

also confirmed by both forward and reverse interaction tests.  

To further identify the other fungal proteins which may interact with ALP proteins, the above 

three ALP gene constructs were used to screen the cDNA library constructed from F. 

graminearum strain. Beta-glucosidase which is encoded by a candidate gene (id FG05_01351) 

was found to interact with all of the three target ALPs. Beta-glucosidase has been shown to be 

able to hydrolyse the chitin in wheat seed pericarp, which plays an important role during the 

pathogen infection process. This may explain the molecular basis underlying the anti-fungal 

function of ALP toward F. graminearum.  

 
Figure 6. Yeast two hybridization tests of ALPs and pathogenesis-related proteins TaMCA4 and 
TaNMT. 

Functional ALPs alleles are significantly associated with lower FHB index 

To further characterise the potential anti-fungal role of ALPs in wheat, FHB index association 

analyses were performed to study the ALP allelic effects on 240 wheat cvs. (collected across 

different regions in China) using one SNP marker (marker ID bx-7AS). SNP1 were identified 

in ALP gene bx-7AS, while the other allele resulting in a dysfunctional per-mature termination. 

The FHB index data were collected from two continuous years for the 240 wheat cvs. grown 

in two different locations. Results showed that, for the SNP marker, the functional alleles 

were significantly (P < 0.05) associated with a lower FHB index, indicating a positive effects 

on F. graminearum resistance (Table 2).  
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The effects of bx-7AS (functional allele) on FHB resistance was further investigated using a 

double haploid (DH) population (198 lines) derived from Yangmai-16 (dysfunctional allele) 

and Zhongmai-895 (Table 2). FHB index was calculated in both field and glasshouse 

conditions. Under the field growing condition, three developmental stages (20 DPA, 24 DPA, 

28 DPA) were analysed. Similar to the above association analyses, results on the DH 

population also revealed a significant association (P < 0.009) of the functional bx-7AS allele 

with a lower FHB index, which decreased by 23.15%, 21.32% and 19.35 % for 20 DPA, 24 

DPA and 28 DPA, respectively. For the glasshouse growing condition at 21 DPA, significant 

association (P = 0.043) of the functional bx-7AS allele with a lower FHB index was also 

observed, although leading to a relatively milder decrease (12.57%) on the FHB index.  Taken 

together, association analyses showed that the functional alleles of ALP genes bx-7AS were 

significantly associated with FHB resistance.  

Table 2. Statistical analysis of bx-7AS gene on FHB index 

Average 
FHB index 

2013-2014  2015-2016  2016-2017 

21DPA 21DPA 21DPA 21DPA 21DAP 20DAP 24DAP 28DAP 
Allele 0 77.59 80.29 73.12 75.5 57.3 29.8 44.1 55.8 
Allele 1 71.77 74.75 63.89 65.82 50.1 22.9 34.7 45 
Increased 
Rate (%) -7.5 -6.91 -12.62 -12.83 -12.57 -23.15 -21.32 -19.35 

P value 0.038 0.046 0.015 0.01 0.043 0.009 0.006 0.004 

Overexpression of TaALP-bx-7AS gene in transgenic wheat lines revealed decreases in 

FHB symptoms 

Table 3. Relative increasing rate of infected spikelet number in transgenic and control wheat  

Wheat Lines Relative increasing rate of infected spikelet (%) 
7~14 DPA 14~21 DPA 

Control 62.02 a 44.50 a 
7A1-1 21.11 bc 36.61 ab 
7A1-2 49.49 ab 28.06 abc 
7A2-2 16.67 c 21.18 bc 
7A2-4 21.42 bc 7.87 c 

In order to further assess the involvement of the ALPs gene in wheat resistance to FHB, we 

generated transgenic wheat plants that had bx-7AS gene overexpressed. Two ALPs 

overexpression (ALPsox) lines in the wheat cv. Fielder background were produced. ALPsox 

#1 and #2 lines were inoculated together with wheat cv. Fielder and found elevated resistance 

to FHB. As shown in the Table 3, from 7 to 14 DPA, the rate of infected spikelet number was 

significantly decreased in the ALPsox lines compared with the control, suggesting slower 
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FHB symptoms development. Similar patterns were found from 14 to 21 DPA in the ALPsox 

Lines. These two ALPsox lines FHB spreading are reduced when compared with the control. 

Thus, results of the overexpression experiments strongly suggest that the bx-7AS ALP gene 

functions as a disease resistant components to FHB resistance. 

Discussion  

Promoter significance of TaALP genes  

FHB-responsive JA signalling regulated gene expression is immediate and conform in the 

resistance of wheat cvs. (20, 63). Many cysteine-rich antimicrobial peptides (AMPs) were 

found to be up-regulated by JA signalling, and were reported to be synthesized in healthy 

plants to maintain normal plant development (64) as well as functioning as a primary 

protection against diseases and pests(65). Meanwhile, an increased ethylene production 

contributes to wheat FHB resistance (18). Indeed, indications for an active ET signalling were 

found in the FHB-attacked resistant wheat transcriptome (20). In addition to the presence of 

JA- and ET-mediated general antifungal defences, a second line of defence was found to be 

based on a FHB-responsive and targeted suppression of relevant Fusarium virulence factors, 

such as proteases and mycotoxins (20). Fusarium subtilisin-like and trypsin-like proteases are 

released in infected wheat kernels mainly to disrupt host cell membranes during necrotrophic 

intracellular nutrition, both the plant protease inhibitor proteins and subtilisin-like and 

trypsin-like proteases of F. graminearum and F. culmorum have already been proven in the 

cereal grains (20, 66).  

Previous studies showed that downstream PR genes are usually regulated by different 

signalling hormones, ChiI and GluD was located downstream of the ET pathway, PR.10 was 

allocated downstream of the JA pathway, and PR.1 was allocated downstream of the SA 

pathway (67, 68). Moreover, in vitro antifungal assays confirmed that the purified wheat ChiI 

and GluD proteins could inhibit the hyphal growth of F. graminearum (69). Base on promoter 

analysis, promoter regions of TaALP genes, were pathogen inducible, can be induced by 

disease related transcriptional factors (TFs), such as TGAC-bZIP/ATB-bZIP (Figure 1A). For 

example, at ALP gene loci on chromosome 7A, 31 and 4 motifs were identified for 

ATB_bZIP and TGA1_bZIP, respectively (Figure 1A). Further, promoter region motif 

annotation illustrated that TaALP genes have motifs related to SA and JA, ET signalling 

regulation (Figure 1A). A few ET/JA related motifs were compounded by pathogen 
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responsive motifs, indicating that TaALP genes are likely to be regulated by ET/JA and 

located downstream of ET/JA signal pathway (Figure 1A). For example, at ALP gene loci on 

chromosome 7A, 137 pathogen related motifs were identified, 75 and 100 motifs were 

identified for ET and JA, respectively, yet with only 23 motifs identified for SA signal 

(Figure 1A). This results suggest that TaALP genes are likely to be induced by a JA or ET 

signal, and ET/JA signal pathway might act in a synergistic or opposite manner with SA 

signal pathway to confer FHB resistance. Transcript profile analysis by q-RT-PCR indicated 

that the transcripts of TaALP genes in wheat are induced by pathogen infection. Further, we 

have seen that the expression pattern of TaALP genes is similar to some PR genes (Taxi III 

and PR.1) under F. graminearum infection conditions. As shown in RT-PCR analysis above, 

the expression of TaALP was induced rapidly and dramatically by exogenous F. graminearum 

at 7 DAP for wheat cv. Spitfire and DH line 241, declined later on, whereas the expression of 

TaALP genes was dramatically induced at 13 DPA and the maturity stage for wheat cv. Mace. 

The transcriptional differences might be a direct results of differences in the ET/JA signalling. 

The dual peak, indicated by 13 DPA and maturity upregulation, might be caused by 

regulation of the expression of TaALP genes by other TFs regulated by ET/JA, or 

interactively regulated by other hormones, such as SA. Cross-talking between different 

signalling pathways might either activate or suppress the PR genes transcription (70-72). 

Taking these results together, TaALP is potentially involved in wheat defense response to F. 

graminearum through the ET/JA pathways.  

In summary, the results of q-RT-PCR analyses showed that under F. graminearum infection, 

wheat grain dramatically increased the transcript levels of TaALP genes. And in addition, in 

the protein level, in vitro antifungal assays of recombinant protein products of TaALP genes 

gave evidence to their toxicity against hyphae growth of F. graminearum (Figure 5D, E). 

Most importantly, our results demonstrate that ALPs are directly involved in resistance to F. 

graminearum in wheat. ALPs, as a so far unknown family of antifungal proteins, can be used 

to breed wheat lines with increased disease resistance. Other researches were done on 

transformation of bread wheat by the transfer of cDNAs encoding differently acting 

antifungal proteins (67, 73-76). According to Ferreira et al. (64), overexpression of defense 

protein genes in the living host cells form a zone surrounding the most advancing hyphae as 

they allow a continuous supply with antifungals onto the intercellular hyphal tips. TaALP 

could be used as a candidate to improve crop resistance to F. graminearum. To our 
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knowledge, this is the first time that ALPs, belonging to the seed prolamin superfamily with a 

gliadin domain, are reported to act as defense proteins against pathogens.  

Gliadin domain components display antifungal effects 

ALPs contain either one or two gliadins domains (PF13016). Such a domain was also found 

to be characteristic of puroindolines, gamma and alpha gliadins and LMW glutenins. Similar 

to the pFam classification, ALPs has bifunctional inhibitor/plant lipid transfer protein/seed 

storage helical domain (Bifun_inhib/LTP/seed_sf), based on the InterPro classification. This 

represents a homologous superfamily of structural domains consisting of 4 helices with a 

folded leaf topology and forming a right-handed superhelix. Prolamin superfamily protein’s 

function may relate to protease inhibition or involvement in plant defence. As discussed in 

Juhasz, et al. 2018 (77), the hydrophobic-seed domain containing proteins include, cortical 

cell delineating (78), hydropho-seed domain containing protein (79-83), glycine-rich protein 

(84-86) and proline-rich protein (87, 88), which are found to be included in the plant defence 

system and have antifungal properties. Lipid transfer protein (39, 40, 89-91) and non-specific 

lipid transfer protein (92) have a LTP-2 domain, and have antifungal properties. Alpha-

amylase/trypsin inhibitor (93, 94), Grain softness protein (95), Puroindoline (96, 97), Alpha 

gliadin (98) all contain a Tryp-alpha-amyl domain, and are known antifungal proteins. 

Meanwhile, Puroindoline, Alpha gliadin, LMW glutenin, Gamma gliadin, ALPs have a 

Gliadin domain, yet till now, the exact function is unclear. 19KDa Globulin (99, 100), Small 

cysteine-rich protein (101-103) belongs to the Domainless Cys-rich proteins, are involved in 

plant defence. While Omega gliadin and HMW-GS are Domainless Cys-poor proteins, were 

not reported to have disease resistance properties. Our study is the first-time proteins with 

gliadin domains that are also characteristic in gamma and alpha gliadins and LMW glutenins 

are described with a defense related function and this highlights the possible involvement of 

the gliadin domain in plant immunity and biotic stress mechanisms. 

Physio-chemical properties of ALPs protein identified in wheat cvs. Mace and Spitfire 

Procedures for sequentially extracting and recovering protein fractions from small flour 

samples were described as reported previously (48). The NaI-propanol solution solubilized 

almost all the gliadins, albumins, and globulins, along with traces of glutenin (48). The 

present investigation has identified water and salt soluble proteins using three different 

approaches (RP-HPLC, SDS-PAGE, and MALFI-TOF) (Figure S1, Figure 2, FigureS2A-F, 
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Figure S3A-F, File S1, Table S2). Analysis of the protein fractions by a combination of RP-

HPLC followed by SDS-PAGE analysis along with protein reference maps developed by use 

of protein peptide sequencing or mass spectrometry, makes it possible to separate and identify 

most of the abundant proteins. These proteins include alpha-amylase and protease inhibitors 

(104), high molecular weight albumins (105) and other non-storage groups and enzymes 

which have specific synthetic, metabolic, regulatory, or protective roles in the plant (106, 

107). Apart from this, some high molecular weight albumins and certain globulins (triticins) 

are considered to have a storage function (108).  

RP-HPLC followed by SDS-PAGE of the albumin/globulin fraction demonstrated that it was 

highly enriched in ALPs. Identification of the ALPs was done by molecular mass based on 

MALDI-TOF analysis. In our analysis, when taken into all the obtained fragmentation 

patterns and aligned with the respective ALP amino acids sequences, most of the bands can be 

resolved. On the contrary, identification of α-/β- and γ-gliadins and LMW-GS by mass 

spectrometry tends to give low expectation score, due to the repetitive motifs in the N-

terminal regions and proline-rich pattern, which are hard to digest with trypsin (48). In the 

case of ALPs identification, the only problem is the accurate determination of the 

homeologous proteins from 7A, 4A, and 7D, due to their highly similar amino acid sequences 

(> 93%). We did not attempt to resolve completely the individual subunits of this highly 

complex mixture. Likely, the many individual proteins in the region with apparent molecular 

masses from 33000 to 48000 Da (mainly gliadins and LMW-GSs) were not resolved by SDS-

PAGE, may be due to overlapping of fractions because baseline separations were not 

achieved by RP-HPLC (Figure S1). Some of the individual ALPs are clearly resolved at 

apparent molecular masses of 17000 to 32000 Da, and consist of chromosomes 7A/4A/7D 

(Figure 2, File S1, Table S2). Protein bands below 16000 Da included LMW-albumins, such 

as members of the complex α-amylase inhibitor and α-amylase-trypsin inhibitor families that 

range in mass from 13000 to18000 Da. Protein bands of the molecular mass range of 30000 to 

32000 Da include the homologous chromosome 7A/7D/4A-encoded type b ALPs. Protein 

bands in this size range also include the α-/β- and γ-gliadins, grain softness proteins, and the 

LMW-GS. It is unclear whether the homeologous chromosome 4A-encoded by-4AL and C-

terminal by-4AL resolved in the same bands as by-7DS and C-terminal by-7DS. A distinct 

band of chromosome 7D-encoded ay-7DS and chromosome 4A-encoded ay-4AL, both with a 

molecular mass of approximately 18000 Da, were identified, respectively. The protein 
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identification indicated that our method gave considerable overlap of protein types.  For 

example, the ay-7AS proteins were eluted in peaks 5-7. The ay-4AL proteins were eluted in 

peaks 8-10 of wheat cv. Mace. The type b ALPs (bx-4AL/7DS) were detected in peaks 8, 9, 

10, 11, 12, 13, 15, 17, 20, 21 of wheat cv. Mace.  This was typical of most fractions in our 

study, which consisted of analysis of overlapping fractions corresponding to almost the entire 

area of the chromatogram (ALPs region). The different ALPs subunits have variant physio-

chemical properties, ALPs ay, by, and bx subunits are similar to protease inhibitors like α-, β-

amylase/subtilisin-inhibitors and serpins, triticins, while ALPs ax subunits are more similar 

physio-chemical properties as avenin-3, gliadins and LMW-GSs. 

The identities of individual proteins separated by RP-HPLC here were also correlated with 

those of proteins resolved by others work. Shewry et al. (109) characterized certain seed 

albumins from different wheat species by N-terminal sequencing and found that several 

belonged to the trypsin/alpha-amylase inhibitor family. By using wheat null genetic lines, 

Singh and Skerritt (110) has established the location of several of their genes on individual 

chromosomes for albumin and globulin proteins. SDS-PAGE analysis of water-soluble 

proteins indicated the chromosomal location of polypeptides and proteins of different 

molecular weight were assigned on and 1D, 2A, 2B, 2D, 3AL, 3BS, 3DS, 4AL, 4BS, 4DS, 

4DL, 5DL, 6DS, 7BS or 7DL (110). In our study, besides the identification of ALPs on 7DS, 

4AL, and 7AS, it is also displayed in our analysis that other water- and salt-soluble proteins 

were located to chromosomes 1A/1B/1D (Avenin-3, Gamma-gliadin B, γ-gliadins and LMW-

GS), 2A/2B/2D (alpha-amylase/subtilisin inhibitor), 3A/3B/3D (Alpha-amylase inhibitor), 

4A/4B/4D (Alpha-amylase/trypsin inhibitor CM3), 5A/5B/5D (Grain softness protein), 

6A/6B/6D (α-/β- gliadins), 7A/7B/7D (60S acidic ribosomal protein, Alpha-amylase/trypsin 

inhibitor CM2). Immunological and N-terminal sequencing characterisation identified most of 

the water-soluble proteins belonged to a family of alpha -amylase inhibitors, serine 

carboxypeptidase III homologous protein (106). Salt-soluble proteins matched with barley 

embryo globulins, other proteins include, lipid transfer protein (LTP), peroxidase BP-1 

precursor and histone H4 proteins (106). The protein sequences could also potentially be used 

for making antibody or DNA probes for use in selection in breeding programmes. Information 

on the genetics and regulation of this fraction of proteins is necessary to understand their role 

and function in the grain. It is likely that proteins with similar physio-chemical properties are 
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accumulated in the same fraction. The ALPs identified together with other antifungal proteins 

in albumin and globulin fraction might indicate similar antifungal functions.  

Temporal and spatial expression of TaALP gene under fungal infection 

Plants induce defense responses against pathogen invasion which include activation of the 

SA-, JA- , ET- mediated defense pathways, which in turn increase reactive oxygen species 

(ROS) production, phytoalexin accumulation, Hypersensitive Response (HR), and/or 

upregulation of pathogenesis-related (PR) protein expression (111).  Phyto-oxylipins 

comprising antimicrobial peptides and defence-signalling molecules such as JA, together with 

cysteine-rich PR genes indicate an induced antifungal defence mechanism (20). There is 

increasing evidence that members of the prolamin superfamily may play important roles in 

responding to biotic and abiotic stresses (112-114).  

To understand the defense mechanisms of wheat grain ALPs, it is necessary to identify wheat 

TaALP genes and study their functions in the defense response to pathogens. In this study, we 

isolated and characterized pathogen induced TaALP genes in wheat, TaALP, whose transcript 

peak showed more rapid and stronger response to challenge with F. graminearum in the 

wheat cv. Spitfire and DH line 241 than in that of the wheat cv. Mace (Table 1). Our 

observation showed that disease symptoms in wheat cv. Mace were more severe than wheat 

cv. Spitfire and DH line 241 under F. graminearum infection. Meanwhile, TaALP genes 

induction, as well as the two PR genes (Taxi III and PR.1) showed earlier induction in Spitfire 

wheat and DH line 241 than in wheat cv. Mace. However, even the lower induction ratio at 7 

DAP for wheat cv. Mace was considered relevant due to the strictly suppressed expression in 

the susceptible genotype. The significant >80-fold inductions at maturity stages for Mace 

wheat in the infected spike tissues was observed and may be an indication of delayed 

hormone regulation of the susceptible wheat cv. No gene expression was verifiable in spike 

samples of wheat cv. Spitfire and Line 241 for some TaALP genes at maturity stages. In the 

first instance, the relative induction peak at 7 DAP for wheat cv. Spitfire and Line 241 are an 

indication of earlier response of fungal infection and was consistent with less infected 

spikelets observations for wheat cv. Spitfire and Line 241 (20-30% infected spikelets) than 

wheat cv. Mace (50% infected spikelets). Given that TaALP with distinct transcript kinetics 

following pathogen challenge play unique roles in the defense response, it is necessary to 

identify wheat TaALP genes with stronger and faster induction by the pathogen. Wheat cvs. 
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Spitfire and Mace may have developed a strategy to increase induction of TaALP expression, 

as well as other PR genes to counter infection by F. graminearum.  

TaALP genes were specifically highly expressed in developing wheat caryopsis with a peak 

around 10-18 DAP. And in our study, we found enriched transcripts in fungal infected grains. 

TaALP genes transcripts can be localized in transfer cells as well as aleurone cells in the 

infected caryopses (Figure 4). It is likely that expression of TaALP are greatly induced in the 

wheat endosperm, sub aleurone cells and embryos, transfer cells, as well as the pericarps 

(Figure 4), which confirms that it acts directly on reduction of pathogen spread, and most 

likely has a role in plant immunity. The transcripts, however, were not restricted to the basal 

transfer cells; they were transcribed in the upper halves of immature kernels like aleurone 

cells, as well as the seed endosperm itself, and embryo, as was evidenced by mRNA in situ 

hybridization of TaALP genes (Figure 4). These up-regulated transcripts are most likely to 

represent defences, such as trigger mechanisms or direct antimicrobial activities (74).  

Developing seeds are strong sinks for nutrients produced in the maternal plant (115). In wheat 

and barley, transfer cells are a vascular bundle running along the length of the grain, through 

modified maternal cells in the nucellar projection, to the endosperm cavity that extends along 

the seed, in parallel to the vascular bundle (116). The expression of TaALP in the transfer 

cells as well as aleurone cells under pathogen infection is consistent with the evidence that 

endosperm transfer cells maintain a delicate balance between nutrients transportation and the 

need to impede the ingress of pathogens into the developing seed (117). Transfer cells are 

involved in delivery of nutrients between generations and in the development of reproductive 

organs and also facilitate the exchange of nutrients that characterize symbiotic associations 

(116). Since transfer cells play important roles in plant development and productivity, the 

latter being relevant to crop yield, understanding the molecular and cellular events leading to 

wall ingrowth deposition holds exciting promise to develop new strategies to improve plant 

performance (116).  

Enriched TaALP genes transcripts can also be localized in developing embryo around 15-18 

DAP, which also indicate another category that might be of great interests. Proteomic study 

have indicated that proteins induced in response to infection are proteins involved in protein 

synthesis, folding and stabilization, as well as proteins involved in oxidative stress tolerance, 

and  PR proteins in tissues of the fungal-infected germinating embryo (118). Lectin are 
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known to have antifungal properties and are actively involved in plant defense, are expressed 

at low levels in the developing embryo together with the more abundant seed storage proteins 

(119).   

In vitro antifungal function of ALPs and allelic effect of ALPs on field FHB index 

Further heterologous bacterial expression confirmed that TaALP could significantly reduce 

fungal hyphae growth in vitro (Figure 5D). As was illustrated in our in vitro antifungal 

activity test against F. graminearum fungal growth, EC50 values suggested that different 

paralogs of ALPs might differ in their toxicity (Figure 5E). In the transcriptional study under 

F. graminearum infection, TaALP encoded proteins belonging to the type a subgroup (ax-

7AS/7DS and ay-7AS/7DS) can be induced at earlier stages, while most of the type b 

subgroup (bx-7AS/7DS and by-7AS/7DS) of the TaALP family can be induced at late grain 

filling stages under pathogen infection. These findings support the hypothesis that ALPs, 

might reduce certain protease activity of virulent pathogens as shown in the inhibited 

pathogen growth and spreading with much earlier induction in wheat cv. Spitfire and DH line 

241. Therefore, as new members of the PR families and one of the many antifungal 

components, ALPs, are likely to play an important role in SAR and defense responses to F. 

graminearum infection initially, and some ALPs members induced at late grain filling stage 

could protect seed against this pathogen during germination.  

TaALP genes encode prolamin superfamily member proteins that bear both antifungal 

properties while still maintaining the potential nutrient reservoir activity underpinned by 

typical storage proteins. Both in qualitative and quantitative aspect, ALPs might be of minor 

contribution to the total nutrient reservoir activity compared with glutenins, gliadins, and 

some HMW albumins and globulins (120). The induction of TaALP under pathogen infection, 

illustrated that they could act as pathogen resistant proteins that combat pathogen attack and 

assist plant survival under biotic stress. In our study, we hypothesized that ALPs are 

composed of a few gene members that work synergistically during grain filling, which is 

similar to the peptidase inhibitors of the defensin family (PR-12), which make up the third 

class of continual up-regulated AMPs (121). In particular, these constitutively expressed 

genes are supposed to contribute to non-host resistance (122). As was evident that most of the 

up-regulated cysteine-rich AMPs in resistant wheat cvs. have shown expression values that 

were independent of the treatment (121), but were lower or absent in the susceptible wheat 
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cvs., which helps explains the differential transcripts indicated by the FHB induced 

expression of TaALP genes in wheat cv. Mace and Spitfire (Table 1). It is likely that ALPs, 

together with other AMPs, act synergistically in a generalized non-specific defence providing 

a basal protection (20). AMPs transcribed at a constant level are known key components of an 

immediate defence against invading pathogens, and many proteins are pathogen-inducible, for 

example, in leaves were found to be constitutively present in storage tissues, such as seed (20). 

This explains why wheat cv. Spitfire and the DH Line 241, which displayed high level 

expression of TaALP at 7 DAP, can suppress infection much more quickly than wheat cv. 

Mace, which were induced later (Table 1). Liu and others (73) described that genetically 

modified plants overexpressing certain antifungal peptides, would provide a promising 

alternative to improve overall resistance to Fusarium pathogen in wheat. Moreover, over-

expressions of pathogen-inducible promoters directly targeting the infection sites or the most 

vulnerable tissues provides an approach to reducing the pathogenesis of the biotrophic F. 

graminearum fungi in colonized tissues (123). These possibilities illustrate that the promoters 

of TaALP genes can be of research interest and that ALPs can be used as novel antifungal 

peptides.  

Variation in the amino acid sequences of the b-type proteins between the species suggest that 

they could provide a source of variation for wheat improvement (124). Whether all the TaALP 

genes function individually or collectively in conferring the observed broad-spectrum 

resistance is unknown. Nevertheless, TaALP are discussed as candidates for an improved 

resistance strategy against grain-infecting fungal pathogens and our results from RT-PCR 

analyses do not contradict these considerations. Large scale Fusarium phenotyping (FHB 

index) indicated that resistance was associated with allelic variation (bx-7AS allele) (Table 2). 

We propose that TaALP genes and their alleles are important in Fusarium resistance and can 

be utilized in breeding programs. We think that breeding for the presence of highly expressed 

TaALP genes can increase Fusarium resistance. Ov 

ALPs inhibition hypothesis 

ALPs has peptides possibly involved in myristylation, phosphorylation, or glycosylation, or 

act as ligands of IG-MHC (Immunoglobulin major histocompatibility complex) (Figure 1B).  

The synthesis of antimicrobial proteins is not restricted to plant species but seems to be 

ubiquitous in nature (125). The mould Aspergillus giganteus secretes the antifungal protein 
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Ag-AFP, which displays inhibitory effects on the growth of phytopathogenic fungi (125). It is 

suggested that toxicity comes from an interaction of positively charged sites of the small 

protein with negatively charged phospholipids of susceptible fungal membranes (126). The 

outcomes of previous research indicated that pectin mythel esterase (PME) genes code for 

enzymes that are involved in structural modifications of the plant cell wall during plant 

growth and development (127). Some F. graminearum extracellular proteins, including 

pectin-degrading oligogalacturonases, can act as elicitors of defence reactions (14). A 

transgenic wheat line carrying a combination of a wheat β-1,3-glucanase and chitinase genes 

enhanced resistance against F. graminearum (128). Recently published approaches such as, 

expression of a pectin methyl-esterase inhibiting proteins (129) and polygalacturonase 

inhibiting proteins (PGIPs) (34), an antifungal radish defensin (130), a truncated form of yeast 

ribosomal protein L3 (131) and a phytoalexin Zealexin (132) have all shown to provide 

quantitative resistance against FHB. Defensins are a class of PR proteins with structurally 

related small, highly basic, and cysteine-rich peptides, which display broad-spectrum in vitro 

antifungal activities (133, 134). Maldonado et al. (89) demonstrated that LTPs, members of 

the prolamin superfamily, could either be a co-signal or act as a translocator for release of the 

mobile signal into the vascular system and/or chaperon the signal through the plant. Increased 

studies suggest that LTPs may be active defense proteins as biological receptors of elicitins, 

and play a significant role in activation of SAR mediated signalling pathways (90, 135, 136). 

Wheat contains three different classes of proteinaceous xylanase inhibitors (XIs), i.e. Triticum 

aestivum xylanase inhibitors (TAXIs) xylanase-inhibiting proteins (XIPs), and thaumatin-like 

xylanase inhibitors (TLXIs) which are believed to act as a defensive barrier against 

phytopathogenic attack (33). The up-regulation of thaumatin-like protein (TLP) is also 

observed, which can inhibit hyphal growth and/or spore germination of various pathogenic 

fungi through a membrane permeability mechanism or through degradation of fungal cell 

walls by β-1, 3 glucan binding and endo- β-1,3-glucanase activity (32).  

Plant seeds, including cereal grains, contain numerous small protein inhibitors of proteinases 

(104).  Some are efficient inhibitors of subtilisin-/chymotrypsin-like proteinases from 

microbes of insects, and it is more convincing now that they participate in an integrated broad 

spectrum defense system against invading fungal or insect pests (137). In the yeast two hybrid 

study, we found that ALPs are mostly like to interact with metacaspase (TaMCA4), which is a 

cysteine proteinase (Figure 6). In wheat and barley, homologous cysteine proteinases with 

All rights reserved. No reuse allowed without permission. 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/406694doi: bioRxiv preprint first posted online Sep. 3, 2018; 

http://dx.doi.org/10.1101/406694


43 

 

optimal activity slightly below pH 5 play a central role in degradation of the prolamin storage 

proteins during germination (138). A highly possible hypothesis is that, ALPs, with the 

special cysteine rich structure of gliadin domains, are similar to the function of certain alpha-

amylase inhibitors or serpins, and are likely to be toxic to fungal membranes. Amylase 

inhibitors/serpins act as suicide substrate inhibitors against certain proteinases, and the 

reactive centres of major serpins resemble the glutamine-rich repetitive sequences in prolamin 

storage proteins (α-, γ-, and ω-gliadins and the LMW and HMW subunits of polymeric 

glutenin) of wheat grain (139, 140). ALPs, like the well-known serpins, as baits, are likely to 

attract the amylase/trypsin/serine protease/cysteine aspartic protease by the glutamine-rich 

loops (mainly polyQs) between any of the four alpha-helices, and by inhibiting the peptide 

hydrolysis process, that of the protease function can be inhibited. Meanwhile. ALPs are also 

likely to have a weak interaction with N-myristoyltransferase (TaNMT) (Figure 6), this 

results indicate that the myristolation events for ALPs are highly possible, which lead to the 

PTM of certain ALPs. And most importantly, ALPs are able to interact with beta-glucosidase 

of F. graminearum. As is known, pathogen beta-glucosidase are able to hydrolyse cell wall 

components of host plants, the antifungal function of ALPs might suggest that they are able to 

inhibit the beta-glucosidase activity.   

The storage tissues of plant seeds are attractive host for many pathogens. Evolutionary 

adaptation of the proteolytic system of some pathogen to efficient degradation of the abundant 

glutamine- and proline-rich repetitive structures of the cereal grain prolamins seems likely to 

have occurred. Here we have shown that the reactive centres of wheat grain ALPs contain 

unique glutamine-rich sequences resembling repetitive sequences of other wheat prolamins. A 

working hypothesis for further studies to elucidate the functions of the grain ALPs might be 

that the reactive centre loop sequences have evolved into a complement of baits for 

irreversible inactivation of cysteine proteinases, etc. from infection fungal, resulting in 

reduction of damage to seeds and thus in their increased survival.  

Conclusions 

For the first time, we report that a prolamin superfamily member gene that encodes a protein 

with gliadin domains is involved in defense against F. graminearum. In silico analyses 

indicated the presence of critical peptides in TaALPs that are active in the plant immune 

system. The promoter motif contains abundant PR responsive motifs and hormone motifs. 
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Expression levels of TaALP genes were significantly up-regulated when induced by infection 

of the fungus F. graminearum. And bacterially expressed ALPs displayed significant 

antifungal activity against wheat fungus F. graminearum in vitro. Genome wide association 

study indicated that there were significant allelic effects of TaALP genes on FHB indexes. For 

the first time, we have performed an in situ hybridization of TaALP genes in the developing 

caryopses, and we found enriched transcripts in the transfer cells, aleurone, sub-aleurone cells, 

and embryo of wheat caryopsis with significant FHB symptoms. In conclusion, we propose 

that these TaALP genes fulfil a PR protein function and are involved in SAR. 
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