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1. Executive Summary 

There is global recognition that ship strike represents a significant risk to some populations of 

whales around the world. Analysis of ship strike records worldwide demonstrates that humpback 

whales are the second most frequently reported whale species to be struck by a ship. In Australia, 

both the east and west coast populations of humpback whales are strongly recovering from 

commercial whaling during the mid-20th century which resulted in populations nearing extinction. 

On the east coast of Australia the main breeding ground for humpback whales is within the Great 

Barrier Reef World Heritage Area (GBRWHA). Both the east and west coast of Australia have also in 

the past decade experienced considerable coastal and port development associated with an increase 

in natural resource projects. It is due to substantial coastal development and port expansions related 

to the mining industry that UNESCO were considering listing the GBRWHA on the ‘List of World 

Heritage in Danger’ and are currently monitoring  Australia’s commitment to its sustainability. Along 

with considerable port expansion along the GBRWHA coastline to meet increasing global demands 

for coal and liquefied natural gas (LNG), there is projected to be substantial increases in shipping 

traffic. Conservative estimates are predicting a doubling of shipping traffic by 2025, albeit not for all 

Queensland ports. Considering the rapid rate of increase of the east Australian population of 

humpback whales (approximately 10.9% increase per annum), there is potential for increased 

interaction between humpback whales and shipping traffic and increased risk of ship strikes to the 

whales on their breeding ground. 

To understand the risk of ship strike to humpbacks in the GBRWHA, it is necessary to understand the 

distribution and densities for both whales and shipping. This report uses current knowledge on the 

distribution of humpback whales within the GBRWHA from aerial survey data from 2012 and 2014 

and contemporary (2012-2014) shipping traffic data of ships travelling within the GBR to provide 

estimates of relative risk of ship strike to humpback whales within the GBR. Using the aerial survey 

data, density surface models were developed to identify whale distribution and density, and then 

extrapolated to unsurveyed areas for a whale density prediction throughout the whole GBR. The 

most influential covariates were bathymetry, sea surface temperature and sea surface height 

anomaly. The models predicted that higher densities of humpbacks were more likely to be found in 

shallow water (e.g., 20-60 m deep), in waters of a sea surface temperature of 21-23°C and with a sea 

surface height anomaly of approximately 0.05 m. These models were shown to be consistent with 

previous spatial habitat models developed (using incidental sighting data) in predicting the 

distribution of whales. Nevertheless, there were some limitations in the density surface models 

which resulted in it not being possible to reliably predict for the southern GBR area offshore of 

Gladstone.  

Through a collaboration with the Australian Maritime Safety Authority (AMSA), high quality 

Automatic Identification system (AIS) vessel tracking data from the Craft Tracking System (CTS) 

dataset was acquired for the months of July, August and September and the years 2012-2014. 

Overall, we included over 2.3 million data points post-filtering in the analysis from vessels ≥ 80 m in 

length1. To quantify relative risk, as opposed to absolute risk, we implemented two different metrics 

comprising an existing risk metric based on the idea of co-occurrence of whales and vessels, and a 

more complex, probabilistic framework providing a relative index of the expected number of ship 

strike mortalities. The measure of co-occurrence assumes that when other variables are constant 

spatially, the degree of overlap between ship and whales should be proportional to risk. Hence, we 

are considering relative risk rather than absolute. This was undertaken by multiplying the total 

                                                           
1 Typically, larger vessels pose the highest risk of causing death to humpbacks from ship strike which is 

consistent with overseas experience. By removing smaller vessels, estimates of risk potentially may be an 

underestimated; however, if vessel movements for these smaller vessels follow the same general distribution 

and density of the larger vessels, then this assumption is unlikely to cause a bias in relative risk 
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distance traversed in a 1km x 1km grid cell by shipping by the number of whales in the cell. The 

analysis shows that the areas of highest relative risk coincide with offshore areas around the two 

major ports on the Queensland coast spanning the offshore area between the Whitsundays to south 

of Mackay, offshore of Shoalwater Bay. One limitation of this risk assessment is that there are no 

results for the offshore areas to the south of Gladstone due to a lack of whale data. When 

considering relative risk for groups with calves versus groups without calves, there were no major 

differences in the spatial distribution between the two groups. As such, once the risk is standardised 

for the number of total animals of each group type, groups with calves are no more susceptible to 

ship strike risk than non-calf groups. However, this assumes that our whale density models are 

correct, and also that both group type are equally likely to be struck (as it does not consider differing 

risk of ship strike due to differences in whale behaviour). 

When considering overall relative risk of ship strike, it was evident that cargo vessels provided the 

single largest contribution. However, this is not to say individual cargo vessels pose a greater risk 

than other vessel types, since the co-occurrence measure does not take vessel characteristics into 

account (i.e., speed, beam, etc.), the difference is a consequence of the large number of cargo 

vessels relative to tanker and passenger. When we look at risk per km travelled there did not seem 

to be any discernible difference between individual cargo vessels and tankers based on co-

occurrence alone. There was some indication of a higher per km co-occurrence risk for passenger 

vessels and this would need to be analysed further. In terms of risk it is the overall cumulative risk 

that is important and so cargo and tanker vessels are of the most concern. 

Based on the co-occurrence maps it appears the area of greatest relative risk is two areas located 

approximately 120km to the North and 120km South of Mackay. After examining the whale habitat 

models it is clear these correspond to where shipping traverses two higher predicted whale density 

areas. 

As a proof of concept, we also developed and tested a more advanced approach that uses a 

probabilistic framework to provide a relative index of the number of expected whale fatalities. 

Overall this approach provides similar results to the broad scale maps using the co-occurrence index, 

although notably there are some fine scale differences. The advantage of this approach is that this 

measure considers vessel speed so is a better metric to compare risk from different vessel types and 

can easily accommodate difference in strike and fatality heterogeneity (e.g., differences between 

vessel types and/or whale group types). At this point, the index is simply a relative metric across the 

study area useful to comparing relative risk and cannot and should not be inferred as an estimation 

of actual mortality. While this step is potentially possible, it would require that considerable data 

specific to this issue to be collected before the leap between relative and actual mortality rates 

could be made. 

The final relative risk values are the combination of whale and shipping density, and both of these 

components contain a degree of uncertainty. Quantifying uncertainty is important not only to 

indicate how much trust should be given to the overall results, but also when it comes to using the 

application in informing spatial decisions to manage risk. Our approach will capture vessel temporal 

variability in space much better than variability in whale distribution (as we only had two whale 

seasons to assess variability). The largest source of uncertainty is likely to be related to inter-annual 

variation in the spatial distribution of whales as there is little data for which to estimate uncertainty; 

without additional surveys replicating the coverage of previous ones, this will be difficult to quantify. 
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2. Introduction 

The Great Barrier Reef (GBR) supports significant biodiversity at a global level and is recognised by 

UNESCO as a World Heritage Area. The marine wildlife values of the Great Barrier Reef World 

Heritage Area (GBRWHA) are a major reason for the region’s World Heritage Listing, which includes 

internationally significant populations of migrating humpback whales (Megaptera novaeangliae) 

that also breed within this region. In Australian waters, humpback whales are protected within 

Commonwealth waters under the EPBC Act. Humpback whales on the east Coast of Australia are 

increasing at a rate of around 11% per annum with numbers predicted to double in approximately 7 

years if this increase continues at its present level (Noad et al. 2011). While this is positive news for 

the whales, it is likely to lead to increased interactions with human activities in the GBRWHA 

including port development, shipping, and tourism. 

In parallel with increasing whales, there has also been a substantial increase in coastal and port 

development and an associated increase in recreational and commercial shipping along the coastline 

of the GBRWHA. These projected increases represent a major management issue faced by both the 

Federal and State governments. A recent analysis of data for 2012/13 showed over 11,000 vessel 

movements through likely humpback whale habitat within the GBRWHA; an average of 30 

movements per day (NESMG 2014). While this represents a significant number of vessel movements, 

the picture for the future is even more concerning with estimates that vessel movements through 

the region will almost double by 2020 (GBRMPA 2013).  

There is global recognition that ship strike represents a significant risk to some populations of 

whales around the world with the most well documented example being the North Atlantic right 

whale with the major cause of population decline directly linked to ship strike (Laist et al. 2001). 

Analysis of ship strike records worldwide demonstrates that humpback whales are the second most 

frequently reported whale species to be struck by a ship (Vanderlaan & Taggart 2007). Williams and 

O’Hara (2009) note that collisions with vessels cause serious injury and mortality in many cetacean 

species. Quantifying the population level extent of ship strike mortality, however, is notoriously 

difficult; collisions are frequently unnoticed, and consequently go unreported (Laist et al. 2001; 

Panigada et al. 2007; Vanderlaan & Taggart 2007). Ship strikes can jeopardise the viability of small 

populations (Fujiwara & Caswell 2001), and the importance of the topic is reflected in its appearance 

in the terms of reference of both the Scientific and Conservation Committees of the International 

Whaling Commission (IWC). The Australian Commonwealth has also recently commissioned the 

development of National Ship Strike Strategy for large cetaceans to develop options for addressing 

this issue. 

To understand the risk of ship strike to humpbacks in the GBRWHA, it is necessary to understand 

both distribution and densities for both whales and shipping. Limited data from land and aerial 

surveys indicate that later in the breeding season (Sept/Oct) whales are closer to the coast than the 

reef and females with calves are common, exhibiting resting and milling behaviour (Noad et al. 

2009). The distribution of humpback whales, specifically mothers with calves, in the southern 

GBRWHA later in the breeding season remains undetermined and therefore extending distributional 

information on an increased spatial scale and including temporal coverage of key cow-calf habitat 

was a priority for this project. However, there have been recent improvements in our understanding 

of the distribution of humpback whales on their breeding ground in the GBRWHA through the use of 

spatial habitat models and validation of this from satellite tagged whales and dedicated aerial 

surveys (Smith et al. 2012). The aim of this research is to determine the distribution of humpback 

whales at the peak of the breeding season in late July to early August. The main wintering 

aggregation and high density area of humpback whales in the GBRWHA has been identified in 

offshore waters in close proximity to coastal areas that are undergoing significant development, 

including port expansions for coal and liquefied natural gas export. 
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There are predicted to be increasing levels of shipping associated with the export of natural 

resources as well as increasing levels of recreational vessel registrations in areas adjacent to the 

GBRWHA. It is due to substantial coastal development and port expansions related to the mining 

industry that UNESCO is closely monitoring Australia’s commitment to the sustainability of the Great 

Barrier Reef as a World Heritage Area. 

It is uncertain whether these increases in vessel movements may have long-term implications for the 

eastern Australian humpback whale stock, presently recovering at high rate of increase. With an 

increase in both shipping and the humpback whale population, there is potential for this to lead to 

an increase in ship strikes and contribute to cumulative impacts associated with underwater noise 

and disturbance/displacement from critical habitat. These issues have been identified as important 

issues for management agencies such as the Great Barrier Reef Marine Park Authority (GBRMPA). 

Ship strikes involving large vessels and cetaceans may result in death or serious injury to individuals 

with the level of risk depending on whale density, behaviour, the time of year, vessel density and 

vessel speed.  

While the focus of this project is on assessing the risk of ship strike for humpback whales in the GBR, 

the major outcome is a flexible modelling framework that can be used to quantitatively assess the 

risk of ship strike across a range of species and areas, including tools to estimate risk projected into 

the future to account for increasing vessel traffic and population recovery. Fundamentally, this 

research builds on and extends two pieces of existing published research on the quantitative 

assessment of ship strike risk to baleen whales (Redfern et al. 2013 in Conservation Biology) and on 

the quantitative assessment of humpback whale habitat in the GBR (Smith et al. 2012 in Marine 

Ecology Progress Series). We have specifically chosen this approach to build on existing data and 

proven techniques while extending the application of this research to the entire GBR and increasing 

the scope to investigate elements such as the incorporation of uncertainty, vessel speed and 

projected increases in both humpbacks and vessel movements. 

2.1 Objectives and outputs 

The primary objectives of the project (as stated in the original proposal) are: 

• Develop and implement a modelling framework to conduct a quantitative assessment of 

the relative risk of ship strikes to humpback whales in the GBRWHA using current 

distribution data from the peak times of the breeding season; and 

• To determine the coastal distribution of humpback whales around major coastal and 

port areas in the GBRWHA to assess temporal changes in whale distribution and assess 

the relative risk of ship strike in inshore areas. 

The outputs of the project (as stated in the original proposal) are: 

• Software code for modelling framework for the assessment of relative risk of ship strike 

for humpback whales in the GBR; 

• Technical workshop with NOAA spatial modellers and developers of risk assessment 

models; 

• Report on the estimates of relative risk derived from the modelling framework 

incorporating projected increases in shipping and whale abundance; 

• Report and updated software code documenting extensions to modelling framework to 

include uncertainty and ship speed; 

• Report on density estimates of humpback whales in inshore areas from spatial modelling 

and comparison with existing distribution data; 

• Report on the estimates of relative risk derived from the modelling framework 

incorporating new data, projected increases in shipping and whale abundance; and 

• Report describing recommendations for potentially mitigating ship strike risk for 

humpback whales in the GBR. 
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3. Methodology 

3.1 Humpback aerial surveys 

The Great Barrier Reef World Heritage Area is a large area which has made systematic surveys of the 

entire area prohibitively costly. Consequently, much of our knowledge of the distribution of 

humpback whales in the GBRWHA has, until recently, been based on incidental aerial and vessel 

sightings. A predictive spatial habitat model was developed using opportunistic presence-only whale 

sighting data from the Coastwatch BPC aerial surveillance program, which through validation by 

humpback whale satellite tagging data appeared to reliably reflect the whales’ distribution (Smith et 

al. 2012). However, it was difficult to determine whether there was adequate and unbiased sampling 

of the entire GBRWHA and further validation of the model was required with dedicated, systematic 

surveys. The aerial survey data presented in this report consists of two separate years of survey data 

(2012 and 2014) from surveys with different objectives. The survey did not cover the entire area of 

the GBRWHA but rather sub-sampled within specific regions. The main objective of the 2012 aerial 

survey was to validate the accuracy of the predictive spatial habitat model. This was undertaken by 

surveying three main areas that represented areas predicted to have low (Port Douglas), medium 

(Townsville) and high (Mackay) habitat suitability, which would reflect the density of whales within 

each area if the habitat model is reliable (Figure 1). The objective of the 2014 aerial survey (which 

was directly funded as part of this project) was to determine the coastal distribution of humpback 

whales around major coastal and port areas within a region in the GBRWHA of high whale density to 

assess temporal changes in whale distribution and allow for the assessment of ship strike risk in 

inshore areas (Figure 1). 

3.1.1 Survey methodology 

The aerial survey was performed using a Partenavia Observer P-68B six-seater, twin engine, high-

wing aircraft which had bubble windows fitted in the mid seats and flat windows at the rear seats. 

Surveys were flown in passing mode at a ground speed of 100 knots and a height of 1000 feet in an 

attempt to improve the ability to identify calves. Transects were spaced 20 km apart and orientated 

between approximately 22 and 48 degrees from the coastline to survey across the depth gradient, 

extending offshore from the coastline to the outer reef (Figure 1). Transects within each survey area 

were undertaken starting with the southernmost transect first, flying north to minimise the 

probability of double counting animals migrating south through the study area. Humpback whales 

were the main focus of this survey and consequently the surveys were designed to maximise 

detection of this species. However, other species of marine megafauna were also counted, including 

other whales, dolphins, dugongs and sharks. 

The survey team consisted of four dedicated observers and a survey leader, constituting a double 

platform observer configuration. This arrangement allowed the sightings of the two observers on 

each side of the aircraft to be independent and perception bias to be calculated, whereby observers 

fail to detect animals even though they are available for detection (Pollock et al. 2006). The two 

primary observers were seated in the middle seats and the two secondary observers in the rear 

seats. The survey leader was situated in the front seat next to the pilot and entered all sightings 

called by the primary observers into a pocket computer using a specialised program developed for 

humpback whale aerial surveys. The observers and the survey leader communicated via aviation 

headsets connected to two portable intercoms. Each intercom was connected to a separate track of 

a two-track digital voice recorder to record the flight audio. During survey mode when ‘on effort’, 

the flight leader is in audio contact only with the two primary observers, whereas the secondary 

observers are acoustically and visually (a black curtain) isolated from the primary observers. 
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Figure 1: Map of the survey area and transects that were flown during 2012 and 2014 aerial 

surveys 

3.1.2 Analysis of aerial survey data - Habitat suitability/density estimation 

The distribution and variations in densities of humpback whales in the GBR were modelled using the 

‘count method’, as described in Hedley & Buckland (2004). The count method is based on two 

separate statistical models: 

• the fitting of a detection function (via distance sampling on perpendicular sighting 

distances, and other covariates that may influence detectability) to estimate the 

‘effective strip width’ (Marques & Buckland 2003, 2004); and 

• the fitting of a ‘spatial’ model, or density surface model, which involves describing 

numbers of sightings within small segments of tracklines estimates using generalised 

additive models (e.g., Wood 2006). These use a smooth over geographical space and/or 

other potentially informative environmental covariates, and an offset term provided by 

the effective strip area of each segments2, informed by the estimate of effective strip 

widths from the detection function. 

Detection probabilities, and corrections for perception bias, were estimated using MRDS models 

(Mark-Recapture Distance Sampling, as described in Laake & Borchers (2004) and Burt et al. (2014)) 

using the MRDS package (Laake et al. 2015) in R (R Core Team 2015). As mark-capture (MR) and 

distance sampling (DS) methods were used during the survey, we were able to assume that the 

probability of detecting a group that was located on the trackline was less than 1 (i.e., g(0) ≤ 1). 

Observers in the front and back positions, on both sides of the aircraft, were isolated from each 

other for both audio and visual cues, and, as such, are considered independent. The observers in the 

front positions, on both sides of the aircraft, were treated as the primary observers, and the 

                                                           
2 Each segment was 10km long 
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observers in the back positions the secondary observers. Under the assumption there was no 

responsive movement of animals owing to the noise and movement of the aircraft, point-

independence (i.e., between what the primary and secondary observers would see) at the trackline 

was assumed a priori (but this was subject to testing). Several covariates were available to 

potentially improve precision and reduce bias in estimate detection probabilities along track: 

Beaufort sea state, cloud cover (in octas) and whale group size (i.e., multiple-covariate distance 

sampling, or MCDS, as described in Marques & Buckland (2004)). Furthermore, perpendicular 

distance to sightings was also tested for the MR component. Improvements in detection function fit 

with binning of Beaufort sea state and group size values was also tested for. Both half-normal and 

hazard rate forms of the detection function were tested. Permutations of combinations of all 

variables, in both of the DS and MR components were tested, and a final (best) detection function, 

was selected by minimising the Akaike Information Criterion (AIC), and by examining various model 

diagnostics. To improve detection function fit, perpendicular sighting distances were left-truncated 

at 0.2 km and right-truncated at 4 km. Sightings with uncertain species information were excluded 

from the analyses.  

For the ‘spatial’ model, track lines were segmented into lengths of approximately 10 km, and the 

numbers of groups and total animals (including the presence and number of calves) were summed 

for each segment. For each segment, the total effective strip area was estimated, via the detection 

function described above.  

A GAM describing abundance over geographical/environmental covariates, with a log-link function, 

can be generalised as:  

�(���) = exp	[� +� ��� (���)] 
where E(Ni) is the expected number of whales (not sightings in these analyses) in the ith segment; θ0 

is the intercept term, fk are smoothed functions over the explanatory/predictor variables (whether 

geographical or environmental), Xik is the value of the kth explanatory/predictor covariate in the ith 

segment. A log of the effective strip area for each segment was used as offset in the GAM. All 

sightings that were included in the distance analyses were available to be used in fitting the spatial 

models.  

These counts per segment displayed some evidence of overdispersion under the assumption of a 

Poisson distribution in the GAM (i.e., there were more zeroes combined with higher values in the 

counts per segment than might be expected under a Poisson distribution). A Tweedie distribution 

was assumed to account for the overdispersion (Jørgensen 1987), and owing to the length of the 

along-track segments, we assumed spatial autocorrelation to be negligible. In assuming a Tweedie 

distribution, a power parameter must be supplied to the model fitting process; this was inferred 

from inspection of residual plots during exploratory data analysis. Error from fitting the detection 

function was propagated through to the spatial model using a method described in Williams et al. 

(2011) and Miller et al. (2013).  

Physiographic variables, such as bathymetry, bathymetric slope, and great-circle (geodesic) distances 

to both the nearest coastline and reef features were estimated for the midpoints of each along-track 

segment. Monthly mean values of dynamic environmental/habitat predictor variables (remotely 

sensed) were interpolated to the midpoint of each along-track segment. Daily sea surface 

temperature (IMOS, 2015a; in °C, gridded at 0.02°), sea surface height anomaly (IMOS, 2015b; in 

metres, gridded at 0.58°×0.51°), and sea surface chlorophyll a (IMOS, 2015c; mg m-3, gridded at 

0.01°) values for the GBR region were averaged at each grid point, across each day of August 2012 

and September 2014, to yield month-wise estimates of these environmental covariates. Values of 

each environmental covariate were converted into rasters in ArcMap 10.1 (ESRI), and matched to 

the midpoints of each along-track segments.  
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Because the aim was to extrapolate whale densities throughout GBR, and well beyond the survey 

regions, inclusion of geographic coordinates as predictor variables was deemed inappropriate. 

However, fitting purely spatial models (i.e., only based on geographic coordinates, either 

latitude/longitude or some projected coordinate space) is useful to explore how densities might vary 

within the survey area at the time of survey. The shapes of any subsequent density surfaces based 

on environmental covariates should broadly mirror the purely spatial model. Therefore, purely 

spatial models, based on a projected coordinate space (Albers equal area) were produced for this 

purpose.  

Collinearity in the explanatory variables can lead to spurious parameter estimates, which is 

problematic if there is a desire to use such estimates for explaining ecological or biological 

processes. Collinearity in the various spatial/environmental covariates were assessed using multi-

panel scatterplots and Pearson correlation coefficients.  

Physiographic and environmental variable selection for the GAMs was based on changes in deviance 

explained with addition/removal of covariates (as fitting method was REML, use of AIC for model 

selection is not appropriate). This process commenced by fitting a GAM that included all covariates 

as individual thin-plate regression splines, with null space penalties; any resultant effective degrees 

of freedom which tend to zero can be dropped from the model (i.e., they are not useful). 

Combinations of remaining covariates, in individual thin-plate regression splines, and/or 

interactions, via either thin-plate (when covariates are isotropic) or tensor product smooths, can be 

tested. Standard model diagnostics were performed on the GAMs, and further model robustness 

was assessed by predicting for along-track abundance, and comparing to observed whale counts.  

As an aim of this project is to estimate the relative risk of ship strike upon a population of animals on 

their breeding groups, analyses of distribution of inferred densities was also extended to groups that 

contained at least one calf.  

For predictions of whale densities across the GBR, a 1×1 km grid was produced, with each grid point 

populated with environmental covariate values - as above, for track segments, values of each 

environmental covariate was matched to grid point in ArcMap.  

3.2 Shipping data 

3.2.1 GBR shipping routes 

Within the north-east region there are three major shipping routes; the Torres Strait Route, Inner 

Route and Outer Route. The Torres Strait route is the most direct route from south Asia and India to 

eastern Australia and links into the northern portion of the GBR. The Inner Route runs parallel to the 

Queensland coast and lies between Cape York in the north and Gladstone in the south. The Outer 

Route begins at the eastern limit of the Torres Strait (the Great North East Channel), continues 

southwards through the Coral Sea and re-joins the Queensland coast near Sandy Cape (south of 

Gladstone). A two-way shipping route in Queensland’s Great Barrier Reef (GBR) and Torres Strait has 

recently been formalised by the International Maritime Organization (IMO) and in effect as of 

December 2014. The IMO-adopted two-way route extends from the western end of Torres Strait, 

through the Prince of Wales Channel, the Great Barrier Reef Inner Route and terminates at the 

southern boundary of the Great Barrier Reef Marine Park. The two-way route is unchanged from 

that previously chartered in the Torres Strait and northern GBR. A new section of the two-way route 

has been introduced in the southern portion of the Great Barrier Reef that follows existing traffic 

patterns. The two-way route formalises the routes that have been in existence since the 1980s, 

although now provides well defined lanes. 

The majority of ships enter and leave the Torres Strait and GBR ports via six main passages: 

• Great North East Channel (Torres Strait); 
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• Grafton Passage (near Cairns); 

• Palm Passage (near Townsville); 

• Hydrographers Passage (near Mackay); 

• Capricorn Channel (near Gladstone); and 

• Curtis Channels (near Gladstone). 

3.2.2 AMSA AIS data  

AIS data was obtained from AMSA in the form of their craft tracking system (CTS) product (See the 

metadata in Appendix 6). The CTS provides cleaned, processed data3 sampled to a 5 minute polling 

frequency. This sample rate seems a good compromise between data set size and spatial uncertainty 

due to unknown path/locations between polling4. 

A higher quality data series began in June 2012 and so it was decided to start analysis at this point, 

providing 3 years of data covering 2012, 2013 and 2014. This period also corresponds to the 

systematic aerial surveys for humpbacks undertaken in the GBRWHA in 2012 and 2014. We 

restricted shipping data to the 3 winter months corresponding to the Australian humpback whale 

breeding season (i.e., July, August, and September) although it is known that whales are also present 

in lower numbers outside of these times.  

AMSA provided the data in compressed CSV text files. 

Spatially, we acquired the data for the bounding box of the GBR and then clipped it to the GBRWHA 

management area (Figure 2). 

Distance-sampled vs Time-sampled 

The AIS data is time based, that is the data sampling is time-based, whereas the metrics of concern 

in ship strike risk are distance-traversed based. So, to use the AIS data for our application, we need 

to convert or weight the data to distance rather than time. This is further discussed in section 3.2.6. 

                                                           
3 In the raw data the AIS system can produce multiple entries for a single location from various satellites etc. 
4 Given a typical average/mean vessel speed could travel at 12 knots, the distance traversed in 5 mins would 

equate to 1.852 km 
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Figure 2: Map of the data bounding box (blue) and GBR management area 

3.2.3 Data validation 

Summary tables were compiled listing each unique vessel (based on MMSI) and summarising the 

values it had in the data for various information (e.g., length, beam, draught, type, class, name, IMO, 

etc.). By doing this we could easily discern vessels with missing or multiple values. For example 

vessel length was missing in a number of cases. Similarly, we found some issues with shipping type. 

Therefore, for Class A vessels in the summary table with incomplete data, we manually looked up 

the vessels on websites to confirm details (e.g., www.marinetraffic.com/en/ais/index/ships/all , 

www.fleetmon.com/en/vessels ). There were also a few instances of vessels having the same MMSI 

number, so generally we found it better to search on the IMO number. 

3.2.4 Data filtering/Cleaning 

The AIS data was supplied by AMSA in a csv file and we then imported, cleaned and filtered it by a 

number of criteria based on the previous experience of NOAA in analysing shipping data for ship 

strike risk (see Table 1 and Table 2). This was done in PYTHON/ArcGIS 10.1 libraries using 

modifications of scripts provided by NOAA (TJ Moore and J Redfern). 

Table 1: AIS data filtering criteria used 

Filtering Criteria Comment 

Class Class A vessels only Class A are required to use the AIS 

system and covers the vessels that 

can potentially be of concern for 

ship strike and large whales 
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Vessel Type Keep cargo, tanker or passenger only These are the commercial vessels 

using defined shipping routes 

travelling ‘fast’ and most likely to 

be a ship strike risk to large whales 

Vessel Length  ≥ 80 m Vessels of smaller size will be less 

of a concern for large whales 

Speed  > 0.4 knots The AIS data we have does not 

have navigational status which can 

be used to filter out vessels which 

are not underway (e.g., anchored). 

Since obviously stationary vessels 

are of no concern we attempted to 

remove these with this criteria5 

Valid MMSI only 201,000,000 ≤ MMSI ≤ 775,999,999 MMSI outside this range are 

invalid and produced by corrupt 

data. 

 

Table 2: AIS data error codes identified and set to null. 

UnknownCOG Flag >= 360 To  flag  unavailable (360) or 

erroneous (> 360) data for the 

course over ground field 

UnknownSOG flag 1022 or 1023 To flag excessive (>= 102.2 knots) 

or unavailable speeds in the speed 

over ground field6.  

 

3.2.5 Data processing 

The processing overview is shown in Figure 3, the points are joined to form lines, and then these are 

divided over a grid and information summarised. The first step of joining the points is done using 

python/ArcGIS script (provided by TJ Moore, NOAA). Several criteria are used to remove lines that 

will be too uncertain, or have data issues (see Table 3).  

                                                           
5 0.4 was used to remove stationary vessels that drift. This was not completely successful, but since our ship 

strike risk metrics all involve distance traversed and/or speed this should not cause any bias. We will discuss 

this in the results. 
6 Note: This is in the raw AIS data where SOG is recorded as knots (reported to the tenth of a knot)*10. In the 

data we received, the SOG had been converted to actual knots. So the unknown code was 102.2 and 102.3 
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Figure 3: Demonstration of the AIS data processing 

3.2.6 Estimating shipping traffic density 

To estimate shipping traffic density we formed a 1 km2 grid over the entire GBR region. This size was 

chosen based on typical width of shipping lanes, so as to provide enough spatial resolution to 

distinguish specific lanes. Then we summarise the line data based on how much of each line segment 

is in each grid cell. Doing this converts, or weights, the data in each cell by distance traversed rather 

than time (see section 3.2.2) 

ArcGIS provides tools to calculate the intersection of lines and polygons, and we have custom 

written python scripts from NOAA (Moore) to undertake this task. In this application, we typically 

have around 900,000 line segments and around 360,000 grid polygons for each season and due to 

only having 32 bit drivers installed, python/ArcGIS had memory issues. Instead we developed some R 

code to process the shapefiles and produce grid cell summaries and save as a shapefile. 

The R code used a numerical approach rather than analytic, by dividing each line segment into points 

evenly spaced (10 metres) apart, and then simply estimating statistics for all the points contained in 

each grid cell. For speed and simplicity, all calculations were done in equal-area projected space. 

This does introduce some bias since distance properties are not maintained in the equal area 

projection. Estimating the distance distortion across all line segments we found the typical error to 

be ~0.02% with 99.9% of the data having an error of <0.01%, which we found acceptable given the 

spatial scale the final risk maps will be queried. 
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Table 3: AIS line creation validity criteria 

Filtering Criteria Comment 

Max polling 

interval time (∆t) 

If ∆t ≤ 30 mins then keep Although the data is sampled at a 

poll every 5 mins, due to technical 

issues on some occasions polling is 

less frequent. We added this limit 

as beyond that the path/track of 

the vessel between the poll 

locations is highly uncertain 

Longer polling time 

(∆t) but straight 

travel 

∆COG 

If 30 mins ≤ ∆t ≤ 60 mins 

and 

∆COG ≤ 5° 

Then keep 

If the polling interval ∆t is longer 

but the vessel seems to be 

travelling reasonably straight 

(based on the change in course 

over ground ∆COG), we are still 

reasonably confident we can 

interpolate where the vessel was 

between polls 

Longer polling time 

(∆t) but not 

straight travel 

∆COG 

If 30 mins ≤ ∆t ≤ 60 mins 

and 

∆COG > 5° 

Then remove 

Long polling time If ∆t > 60 remove If the polling interval ∆t is too 

great, we cannot be certain the 

path the vessel took and so we 

delete the transect (the code has 

the option to leave the start and 

end points, in the data as they are 

certain locations, we did not use 

this option for our analysis) 

Backwards 

timetravel and zero 

length lines 

Remove any ∆t≤0 or line length = 0 This should not occur but if there 

is a negative change in time 

obviously something is wrong and 

this data is ignored  

Ship tracks with 

apparent positional 

errors 

Distance traversed equates to travel 

that equates to ≥ 60 knots 

Occasionally due to corrupt data, 

bad GPS fix, or a mix up in 

reported MMSI from another 

vessel, vessels can jump at 

impossible speeds. These are 

removed. 

Land Leave in the data Due to GPS errors or corrupt data 

a very small number of locations 

correspond to land. Since our grid 

data used later is for 1 km2 cells 

containing ocean, any obvious land 

points will be filtered out 

automatically at that stage. 
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3.2.7 Other potential information/outputs 

With further analysis, other information could be extracted that may be of use in a general ship 

strike context including: 

• Time of day;  

• Changes in density over time (both intra and inter season); and 

• Vessel speed. 

3.2.8 Projected increases in shipping traffic 

Predicting future shipping traffic requires an understanding and consideration of historical and 

contemporary market, economic and industry factors and uncertain global economic influences is 

often what creates uncertainty in predicted shipping volumes. Consequently, the most prudent 

approach when forecasting shipping traffic is to undertake periodic re-evaluations. 

In the north-east region around the GBR, there is a predicted growth trend in shipping activity 

predominantly as a consequence of increased export trade, with traffic growth highly correlated to 

commodity growth (Braemar Seascope 2013, PGM 2012). Most projected forecasts have shipping 

traffic doubling by 2020, although this is not for all ports with varying increases dependent on the 

port (PGM 2012). Specifically, Abbott Point, Hay Point, Port Alma and Gladstone ports demonstrate 

the most substantial increases. In relation to the types of commodities that ships are servicing within 

the GBR, the Queensland commodity market is and will be dominated by coal. In 2015, coal 

represents 82% of total trade and is predicted to still remain substantial in 2025 at 81% (Braemar 

Seascope 2013). Consequently, projected shipping traffic volumes predominantly focus on current 

and future port capability for export and global demand for coal. There is predicted to be an 83% 

increase in coal exports between 2011- 2025, corresponding with a 58% increase in projected 

shipping levels (AMSA 2014). While the coal exports contribute to the majority of shipping traffic, a 

significant increase in shipping is also predicted to occur related to Liquefied Natural Gas (LNG) 

exports. This is due to significant increases in production capacity, such that by 2020 Australia is 

likely to be the world’s second largest exporter of LNG after Qatar. Consequently, Australian LNG 

exports are likely to triple over the next five years with LNG processing plants for exports coming 

online in Gladstone and Curtis Island in 2014-15 (AMSA 2014). Historically, the Port of Gladstone has 

had no experience with LNG shipping, although the first LNG carriers were introduced in 2014 for 

Queensland Curtis LNG projects. It is predicted actual output will grow by around 250 per cent up 

until 2018 with growth in LNG traffic peaking at 500 ships per year in 2020 (Braemar Seascope 2013). 

3.3 Other data 

A description of environmental data used in the analysis is described in section 3.1.2. 

3.4 Statistical analysis 

3.4.1 Risk modelling framework 

To quantify relative risk we need a suitable metric. We implemented two different metrics as 

defined in the following sections. 

3.4.1.1 Metric 1 – Index of co-occurrence 

The first metric implemented was a simple measure of co-occurrence, which assuming other 

variables are constant spatially, should be proportional to risk. The measure of co-occurrence in a 

particular grid cell (i,j), was simply taken to be the distance traversed in a cell by ships Dij, multiplied 

by the number of whales in the cell Wij, 

Risk�,� = ��,� ×��,� 
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It has been found that in some applications there can be issues with scaling between the shipping 

and whale components which can lead to the co-occurrence measure being dominated by the 

shipping data. Similarly, there may be some repercussions from the often skewed nature of the 

distribution of the shipping term, Dij. There are several approaches that can be used to address this, 

for example, transforming the data (Di,j and Wi,j) or categorising them and multiplying the categories. 

Hence, there are a number of ways to characterise of co-occurrence risk and these alternatives 

should be investigated to aid in generating a general picture of risk. 

3.4.1.2 Metric 2 – Relative index of the expected number of fatalities 

Due to unknown parameters and mechanisms (i.e., potential whale avoidance of vessels, dive 

behaviour, etc.) achieving an absolute probability of fatal ship strike is difficult in this application. 

Therefore, we propose formulating a relative probability of a fatal strike occurring and from this a 

measure proportional to the expected number of fatalities (i.e., a relative index). That is, we aim to 

estimate a probability that is proportional to the true expected probability of fatal ship strike. This 

allows us to ignore terms/aspects that are unknown but reasonably constant across cells, while still 

allowing a relative comparison of risk between spatial locations and other comparisons. 

Let us consider a single grid cell, in general terms we can think for a given whale, w, the probability 

of a fatal strike from a single vessel, v, as the probability of a fatality given there was a strike 

multiplied by the probability there was a strike, using a conditional probability rule 

Pr !"#"$%#&',() = *+ !"#"$%#&',(,-#+%./',() × *+ -#+%./',() 

For the first term, there is some information available in the literature of the probability of fatality 

from a strike given vessel speed. Both Conn & Silber (2013) and Vanderlaan & Taggart (2007) provide 

models for *+ !"#"$%#&',(,-0//1(, -#+%./',() for large whales. 

Looking at the second term, for a strike to occur a whale must be in the same approximate 

horizontal position (xy) as the vessel some time during the period of time the vessel is in the grid 

cell. In addition, it must be within vertical proximity to the vessel within the water column, which 

makes it susceptible to a strike based on co-location and the hydrodynamic effects present during 

such an interaction. Finally, the whale must not avoid the vessel. So we can express the probability 

of a collision or strike as, 

Pr(-#+%./)= Pr(Depth' ≤ Draft() × Pr(8&' = 8&() × (1 − Pr	(;<=%1">?/'|-0//1()) 

Since little is known about many these factors (e.g., Dive rate and hence when the animals are near 

enough to the surface to be struck, whale behaviour/reaction to vessels etc.) this probability will be 

difficult to quantify. However, we can obtain an approximation that is in theory proportional to the 

real probability and therefore we can derive a relative overall probability that will be useful for the 

comparison of relative risk between spatial areas. 

Probability of surface availability AB(CDEFGH ≤ CBIJFK) 
For the probability that the whale is at a depth where a collision could occur, we propose to use a 

simple multiplier Pr wMNOPQ ≤ vMSTUP)	in a similar fashion to in the literature (e.g., van der Hoop et 

al. 2012). However, what "surface" means in the context of ship strike risk assessment is unclear, 

considering recent work on the hydrodynamics of ship strike (Silber et al. 2010). 

With dive depth profile data from tagging, we could actually derive a function relating Pr wMNOPQ ≤vMSTUP)	to vMSTUP of individual vessels. Values in the literature for time near ‘surface’ range between 

0.66-0.71 for humpback whales on non-feeding grounds (e.g., Andriolo et al. 2006; Baird et al. 2000). 

However, based on the hydrodynamics work of Silber et al. 2010 the vertical zone could be 3.3 * 

draft which would increase the probability, based on rough calculations, to approximately 0.85. 
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However, in our application, the aerial survey itself adjusts for surface availability. That is the whale 

model we have provides relative abundance as it does not correct for animals that were not at the 

surface to be observed. Based on some very rough approximations (see Appendix 5.1 for further 

discussion), the adjustment will be of the order 0.90-0.95. However, more work is needed to better 

quantify this adjustment. 

Probability of whale avoidance AB	(VKWXYIZ[DH|\EDDYK) 

Since little is known about potential humpback whale vessel avoidance, we shall assume whales do 

not avoid vessels, and therefore	Pr ]T(^�_T`aN,<bONN_) = 0. There is some evidence in the 

literature suggesting that both southern right whales (Nowacek et al. 2004, Vanderlaan and Taggart 

2007) and blue whales (McKenna et al. 2015) show very little avoidance. Even if humpbacks do have 

avoidance behaviour and if it is similar spatially, and there is no large spatial difference in vessel 

speeds of the grid cells being compared, then this assumption will not cause bias. However, it is 

likely that there is spatial differences in whale behaviour but the magnitude is unknown (i.e., 

mothers and calves in shallow water could show different avoidance than males in deeper waters). 

However, any possible bias may be mitigated in the final probability of fatality as the *+ !"#"$%#&',(,-#+%./',() is small for slow vessels where potentially whale avoidance may come 

into play but will be irrelevant for faster vessels where fatality is assumed to be 100%. 

Probability of whale and vessel being in the same place AB(deH = deK) 

We now look at the probability that a vessel and a whale will occur in the same place at the same 

time,	*+(8&' = 8&(), disregarding depth. One approach to estimate collision probability is to use a 

simulation based approach (Van der Hoop 2012). We feel for our purposes any simulation would 

only provide an approximate relative probability due to the simplification and the complexity of the 

real whale-vessel interaction. Therefore, since we are aiming for a relative probability anyway, we 

see no loss at this stage from using an abstract analytic approximation rather than a simulation.  

So let us assume random distribution of animals within the grid cell, given the size of the grid cells (1 

km2) this seems a reasonable assumption. Furthermore, we assume that the whale is stationary. 

Based on typical humpback (i.e., Noad & Cato 2007 found Queensland migratory humpback swim 

speeds of 1.35 knots for non-singers, 2.16 knots for singing animals) this simplification seems 

reasonable. Furthermore if whale movement is random, the stationary assumption should not 

introduce bias in the expected number of collisions. Given these assumptions/simplifications the 

probability the whale and vessel come to occupy the same place can be expressed in terms of swept 

area relative to the area of the grid cell, Areag, 

Pr(8&' = 8&() ∝ 	 -]/0#_;+/"(;+/"h  

= i/"j( ×�%k#">?/(;+/"h  

This measure could be further refined (e.g., van der Hoop (2012) and others incorporate whale 

dimensions and given the work by Silber et al. (2010), some measure of vessel volume would seem 

appropriate). While our initial approximation represents a large simplification, as long as the 

quantity is approximately proportional to strike probability and any bias is consistent across grid 

cells, we can still obtain a relative probability. 

So in summary, for a single whale w and vessel v in a single grid cell 

Pr !"#"$%#&',() ∝ i/"j( × �%k#">?/(;+/"h × Pr(�/0#ℎ' ≤ �+"�#() × *+ !"#"$%#&',(,-#+%./',() 

If we now consider T vessels in the grid cell then we want to estimate, 
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Pr(!"#"$%#&') = Pr !"#"$%#&',(mn) 	=+	 Pr !"#"$%#&',() 	=+ …=+	 Pr !"#"$%#&',(mp) 

By the probability rule for ‘or’ (see Appendix 5.2) 

Pr(!"#"$%#&') = 1 −qr1 − *+ !"#"$%#&',()s
p

(mn
 

Now this gives the relative probability of a single whale in the grid cell being fatally struck. So to 

estimate the expected number of fatalities for the grid cell for w whales, we consider this a Binomial 

with probability=Pr(!"#"$%#&') and size = w and the expected value is given by 

t(�=. !"#"$%#%/k) = ] × Pr(!"#"$%#&') 

We could also work out, given w whales in the grid, what the relative probability of a strike occurring 

is. See Appendix 5.3 for further details.  

3.4.2 Relationship between metrics 

To compare the co-occurrence metric to the expected number of fatalities, looking at the 

formulation of the Expected number of fatalities we can see that 

t(�=. !"#"$%#%/k) = ]v1 −qr1− *+ !"#"$%#&',()s
p

(mn
w 

= ] x�*+ !"#"$%#&',()
p

(mn
−Φ(. )z 

where Φ(.) is simply all the terms that adjust for the intersection of events (e.g., the Pr	(; ∩ i) 

terms in Appendix 5.2). Now if we assume all the terms that go into Pr !"#"$%#&',() are constant 

(i.e., all vessels same beam and speed, etc.) then Pr !"#"$%#&',() will be the same for all w and v, 

lets denote this by λ and that means Φ will only depend on λ and T.  

= ] x�|p

(mn
−Φ(|, })z 

= ][}| − Φ(|, })] 
= ]}| − ]Φ(|, }) 

And so a relative measure is given by (dividing by λ ) 

t(�=. !"#"$%#%/k) ∝ ]} − ]Φ(|, })|  

The co-occurrence metric is simply ]	 × } so we can see that the repercussion of using a co-

occurrence metric has some potential bias, due to the term −'~(�,p)
�  being ignored. This 

corresponds to the assumption that the risk is linearly proportional to the density of ship traffic and 

the number of whales, which as can be seen here that is not strictly true since as w and T increase 

the risk will start to asymptote. Based on calculations for a given Pr !"#"$%#&',() and T it would 

appear for small Pr !"#"$%#&',() the bias only becomes an issue for very large T and therefore in 

this application co-occurrence should be a reasonable proxy for risk.  

3.4.2.1 Overall relative risk calculation 

To calculate co-occurrence risk index or relative index of the expected number of fatalities we match 

the whale and shipping densities for each 1 km2 grid cell for a specific year (season). Since our aim is 

to estimate general ship strike risk, not necessarily historical risk for specific years, there is no need 
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to match whale survey years with vessel data years. Instead it is possible to get a general indication 

of risk for every combination of ship data year (winter 2012, 2013, and 2014) and whale year (winter 

2012 and 2014) which we evaluated. These fine-scale results were then also summarised at both 

50x50 km grid cells and 150x150 km square bins and also cumulative overall totals of risk were 

calculated for subsets of the data (e.g., vessel types and whale group types). 

3.4.2.2 Mapping and assessing relative risk 

We can map the risk measures in sections 3.4.1.1 and 3.4.1.2 using a fine spatial resolution (e.g., 

across the GBR using a 1 km2 grid cell). However, these maps do not suit broad scale comparisons 

and were better for comparing/investigating small spatial areas. This is because the fine-scale maps 

show a comparison between each small grid cells rather than give an indication of the total relative 

risk for an area or a lane. In a statistical sense the maps are good at indicating the peaks and troughs 

of the spatial risk distribution but to make general comparisons the risk needs to be integrated over 

the area or subset of the data being compared. 

To better explain this, consider crossing a road, you have a choice to cross where it is a single lane 

and there is a 20% chance of being run-over or cross in another place where there are 8 lanes each 

with a 5% probability of being run-over. If we were to look at a risk map with a resolution of a lane 

width, the single lane part of the road would stand out as high risk whereas the eight lane road 

would appear lower risk. However, in fact the cumulative risk is much higher for the 8 lane road 

since you have 8 chances of being run-over so the total is 34%7. 

So the procedure for investigating risk followed these steps: 

1. Calculate relative risk totals and look at general comparisons between years and various 

subsets of the data; 

2. Examine broad scale maps to identify on a broad-scale where the cumulative co-occurrence 

risk was higher; and 

3. Examine fine-scale maps to identify parts of the lanes/locations within the higher risk 

locations identified in step 2 that are causing the higher risk. 

3.4.3 Projected future relative risk 

Predicting future relative risk based on projected growth rates can be difficult, given we do not know 

exactly how either of these increases will play out spatially. For example, will whales spread out and 

use more areas as their numbers increase or simply increase in density within the areas currently 

being utilised. There is some information on predicted increases per port (e.g., Braemar Seascope 

2013) and this could be used in calculating future risk by simply breaking our risk calculation into 

regions and increasing each region based on predicted increases and show changes in fine scale 

relative risk maps and calculate total GBR-wide changes in risk. 

For this report we chose to make the broad assumption that there are no changes to spatial 

distribution with increases in whale numbers and ship traffic. Similarly, for this initial calculation we 

assume increases are spread across all vessel types and lengths or calf/non-calf proportions. 

Given this assumption and using the relative co-occurrence measure the calculations are simple as 

we can ignore spatial aspects and simply look at the total co-occurrence risk. As per section 

3.4.1.1the measure of co-occurrence in a particular grid cell (i,j), is given by the distance traversed in 

a cell by ships Dij, multiplied by the number of whales in the cell Wij, 

Risk�,� = ��,� ×��,� 

So now if we add a year component t, 

                                                           
7 Based on pr(hit at some point)=1-probability(not being hit), the probability of not being hit = (1-0.05)^8 
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Risk�,�,P = ��,�,P ×��,�,P 

Now given an annual proportional increase of rD and rW for ship traffic and whale abundance 

respectively, then assuming the present is year t=0, 

 	 ��,�,P = ��,�,� × (1 + +M)P 

and similarly  

��,�,P = ��,�,� × (1 + +�)P 

So  

Risk�,�,P = ��,�,� × (1 + +M)P ×��,�,� × (1 + +�)P 

															= ��,�,���,�,� × (1 + +M)P(1 + +�)P 

This is the increase in each grid cell, if we consider the GBR as being made up of G equal sized grid 

cells, then total co-occurrence risk is given by 

RiskP = �Risk�,�,P∀�.�
 

= �r��,�,���,�,� × (1 + +M)P(1 + +�)Ps
∀�.�

 

= (1 + +M)P(1 + +�)P �r��,�,���,�,�s∀�.�
 

= (1 + +M)P(1 + +�)P�%k.� 

Therefore, the multiplicative increase in the co-occurrence risk at any given year t compared to the 

present is  

(1 + +M)P(1 + +�)P 

3.4.4 Uncertainty 

To provide an indication of the uncertainty, we looked at the relative risk evaluated for each 

combination of shipping data year (winter 2012, 2013, and 2014) and whale model year (winter 

2012 and 2014)8. Then for each 1 km2 cell we report the mean, minimum, and maximum risk 

observed. Also we calculate the range of the estimates standardised by their mean. 

3.4.5 Assumptions 

Assumptions are discussed in detail in the Results, section 4.5.6. 

4. Results 

4.1 Technical Workshop 

A 4 day Technical Workshop was held in Hobart 18-21 November 2014 to discuss the project, work 

together in the development of analytical approaches and to explore potential extensions to the 

work. Three of the four primary researchers were present with the fourth joining by teleconference. 

                                                           
8 We could also add whale model uncertainty at this stage by either adding noise to the whale densities based 

on the model prediction standard errors. Due to time constraints this was not completed at this stage. 
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In addition, our two USA based collaborators Jessica Redfern and TJ Moore also joined the 

workshop. Overall, it was an excellent success and was a very productive time. A further Technical 

Workshop was held in June 15-19 2015 to discuss the results with Stakeholders and interested 

researchers with a view to exploring future extensions to the project. 

4.2 Humpback aerial surveys 

4.2.1 General survey results 

The 2012 aerial survey was undertaken in the GBRWHA offshore of Mackay, Townsville and Port 

Douglas over 8 days during 3 to 10 August. The total areal coverage for each survey area was: 

Mackay (34,626 km2), Townsville (17,126 km2) and Port Douglas (11,971 km2). In total, there were 

575 sightings of whale groups by front and rear observers (includes resight data). 

The 2014 aerial survey was undertaken offshore of Gladstone and Mackay over 11 days from 26 

August to 5 September. The survey was undertaken later in the breeding season in an attempt to 

determine any coastal dependence by whales as the season progressed. The total areal coverage for 

this survey area was 72,752 km2. In total, there were 417 sightings of whale groups by front and rear 

observers (includes resight data). The amount of flying time and percentage of ‘on effort’ time spent 

surveying within different sea states is presented in Table 4. 

Table 4: Summary data for humpback aerial surveys in 2012 and 2014 

Survey 

year 

Flight 

time (hrs) 

On effort 

flight time 

(hrs) 

Beaufort sea state 

(percentage of on effort time) 

0 1 2 3 4 5 

2012 27.5 15.75 0.0 68.5 22.6 6.0 2.8 0.1 

2014 32 18.3 1.4 77.2 9.5 10.7 1.1 0.0 

 

From the combined aerial surveys there were a total of 637 sightings of humpback whale groups, 

365 sightings (589 individuals) in 2012 and 272 sightings (461 individuals) in 2014. The distribution of 

sightings are given in Figure 8. There were a total of 159 sightings of humpback whale groups with at 

least one calf present, 100 sightings (121 individuals) in 2012 and 59 sightings (218 individuals) in 

2014. The corresponding encounter rates are given in Table 5. The encounter rates for all sightings 

were slightly lower in 2014, as compared to 2012. Under the assumption that encounter rate scales 

reasonably linearly with group densities across survey years, there is no significant difference (at the 

0.05 level) in the overall density of groups between 2012 and 2014, nor for densities of groups 

containing calves (using a two-sample Z test). 

Table 5: Encounter rates for all sightings, and for sightings with a calf present, for both surveys. 

Standard errors estimated at the transect level 

Survey Total survey 

length (km) 

Mean encounter rate (SE): 

all sightings 

Mean encounter rate (SE): 

sightings with calves 

2012 3037.4 0.1429 (0.0031) 0.0329 (0.0009) 

2014 3612.3 0.1224 (0.0037) 0.0163 (0.0007) 

4.2.1.1 MRDS and the fitting of detection functions 

Mark Recapture Distance Sampling (MRDS) approaches were used to estimate humpback density. 

Both half-normal and hazard rate key functions were tested. Group size was considered in two 

different ways: (1) as both a raw count and (2) as a re-classified value based on ground sizes of 1, 2 

and 3+ animals (NB. for both size classifications, number of animals includes the presence of any 
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calves). Other covariates considered included Beaufort sea state (both as a raw level and as a 

reclassified value of 0-1 (good-excellent sighting conditions), 2+ (fair to progressively worse)), cloud 

cover and survey. Survey was also included as a categorical variable to test for whether the observer 

team (which varied between surveys) had an influence on the scale properties of the detection 

function. The best fitting MRDS model was selected using the AIC (i.e., the lowest).  

The MRDS modelling process was repeated for both point and full independence assumption (well, 

repeated in the context that it used the same R code – however, the ‘DS’ component is not used 

under the assumption of full independence and the full independence assumption was found to be 

routinely violated. Therefore, the point independence assumption was subsequently used in all runs. 

The fitting of a detection function was based on sighting data pooled across both survey years. Of 

the 637 sightings summarised in Table 6, 561 observations remained after the perpendicular 

distances were left-truncated 0.2 km and right-truncated 4.0 km, of which 488 were seen by the 

front observers and 396 by the rear observers; thus 323 were duplicate sightings. The MRDS model 

assumed point independence because the full independence model showed a lack-of-fit, such that it 

is assumed that detections made by the front and rear observers are independent except for at 

distance zero (in effect this is at 0.2 km because of the left truncation). The best detection function 

was a hazard rate, with no covariates for the DS component, but with perpendicular distance, raw 

Beaufort Sea state and raw group size (raw because these have not been binned) in the MR 

component (see Appendix 1 for details on best detection function fit). 

Table 6: Sighting seen by primary (front) and secondary (back) observers, and the number of 

sightings seen by both 

Survey Group 

size 

Primary 

observer 

Secondary 

observer 

Seen by 

both 

Total 

2012 1 79 25 77 181 

 2 39 8 105 152 

 3 2 1 23 26 

 4 1 0 4 5 

 5 0 0 0 0 

 6 0 0 1 1 

 7 0 0 0 0 

 8 0 0 0 0 

2012 total  121 34 210 365 

2014 1 46 30 67 143 

 2 25 16 57 98 

 3 6 2 8 16 

 4 1 1 6 8 

 5 0 0 3 3 

 6 0 1 1 1 

 7 0 0 1 1 

 8 0 0 1 1 

2014 total  78 50 144 272 

Total (2012+2014)  199 87 354 637 

 

Figure 4 shows the frequency histograms and fitted detection probability as a function of 

perpendicular distances for the front and rear observers; Figure 5 for the detections pooled across 

both front and back observers. Figure 6 shows the conditional detection function plots, which is the 

probability that one of the observers will see a whale, given that the other observer has seen it. The 

open circles in Figure 4, Figure 5, and Figure 6 represent the actual sightings – these appear 
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segregated because of variation in Beaufort sea state and group size (i.e., where this is a higher 

probability of sighting a whale in calmer seas and with higher group sizes).  

For reference, the estimated mean group size was 1.62 with a standard error of 0.03 and the 

average probability of detection within the surveyed strip was 0.55 with a standard error of 0.024, 

hence the estimated average effective strip half width (uncorrected for g(0)) was 2.4 km. Estimated 

g(0), which is the average probability of at least one platform detecting a group at “zero” distance 

from the trackline (a level of perception bias only), was 0.96 (SE = 0.01). 

4.2.2 Spatial modelling 

Distributions and correlations between the range of spatial and environmental covariates is given in 

Figure 7. In terms of selecting environmental covariates to include in a habitat-base spatial model, 

the correlations were small enough to ignore. 

 

 

Figure 4: Fitted detection probabilities for the front (primary; left panel) and back (secondary; right 

panel), with frequency histograms of perpendicular distances to sightings. 
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Figure 5: Fitted detection probabilities for pooled sightings (i.e., if either front or back observer saw 

a sighting), with frequency histograms of perpendicular distances to sightings 

 

Figure 6: Condition detection plots showing the probability of the (left panel) back observer seeing 

a sighting given it was seen by the front observer, and (right panel) front observer seeing 

a sighting given it was seen by the back observer 

Spatial models, based on a projected ‘easting’ and ‘northing’ value (transformed from longitude and 

latitude using the Albers equal area projection), for animal-wise densities derived from all sightings, 

for 2012 and 2014 are given in Figure 8. Spatial models predicting the distribution of densities of 

animals in groups accompanying calves, for both survey years, respectively, are in Figure 9. The 

distribution of sightings, and estimated group size, are provided as a form of model validation. 

Separate spatial models were fitted for each survey year, and for all animals, or for animals in groups 

with calves. Details of the tensor-product smoothes in these plots are given in Appendix 2.  

The best GAM, or density surface model, describing the distribution of humpback whale densities (all 

animals) with various physiographic and environmental covariates is displayed in Figure 10. This 

model is summarised in Appendix 3. This GAM based on a tensor product smooth between 

bathymetry and sea surface temperature, and individual thin-plate smoothes of sea surface 

temperature and sea surface height anomaly. The addition of a ‘survey’ factor did not significantly 

improve the GAM fit, so it was not retained in the model. Owing to only a small amount of survey 

effort in bathymetric values of 90 m and deeper (only 122 km of a total of 6650 km across both 

survey years), no density predictions were made for waters deeper than 90 m. The surface density 

model based on bathymetry, sea surface temperature and height anomalies tallies well across space, 

as predicted by the space only GAMs described above. The predicted distribution of densities of 

animals accompanying calves is given in Figure 11; this GAM is summarised in Appendix 3. 

Additional analysis of other covariates is presented in Appendix 4. 
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Figure 7: Matrix of scatterplots of spatial and environmental covariates, as inferred at the middle of 

each 10 km along-track segment. The spatial covariates are represented by an ‘Easting’ 

and ‘Northing’ value, which arose from an Albers equal area projection to the latitude and 

longitude data. Pearson correlation coefficients given in the upper-right of the matrix 
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Figure 8: Predicted densities of humpback whales (all animals) within the surveyed areas for the 

2012 and 2014 surveys, based on a ‘spatial’ density surface model. Animal density scale 

given in the legend. Distribution of sightings given as a form of model validation 

 

Figure 9: Predicted densities of humpback whales in groups accompanying calves within the 

surveyed areas for the 2012 and 2014 surveys, based on a ‘spatial’ density surface model. 

Animal density scale given in the legend. Distribution of sightings given as a form of model 

validation 
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Figure 10: Distribution of densities of humpback whales (all animals), extrapolated throughout the 

GBR, using a density surface model based on selecting potentially influential 

physiographic and environmental covariates, as they were recorded in August 2012 and 

September 2014 

 

Figure 11: Distribution of densities of humpback whales in groups accompanying calves, 

extrapolated throughout the GBR, using a density surface model based on selecting 

potentially influential physiographic and environmental covariates, as they were recorded 

in August 2012 and September 2014 
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4.3 Shipping data 

4.3.1 AMSA AIS data  

The AMSA CTS data of vessel movements was successfully imported and processed. The total counts 

of data sizes at each stage of the processing/analysis are given in Table 7. To estimate future 

computational requirements we summarise storage (Table 8). The total storage for the data and 

processing was around 12GB and to process a typical year start to finish took about a day. 

Table 7: Summary of data quantities at each stage of the processing 

Year Mth 
Raw data 

Filtered 

data 

points 

Transects 

Number Number Number Dist. (km) 

2012 Jul 390,274 245,226   

Aug 392,737 229,077   

Sep 400,626 203,991   

Total 1,183,637 678,294 655,324 1,342,556 

2013 Jul 377,435 248,591   

Aug 362,147 213,004   

Sep 565,719 268,624   

Total 1,305,301 730,219 715,409 1,358,744 

2014 Jul 456,035 264,179   

Aug 498,120 313,910   

Sep 494,108 313,910   

Total 1,448,263 891,999 844,589 1,602,881 

TOTAL 3,939,201 2,301,512 2,215,322 4,304,181 

 

Looking at basic summary statistics of the raw data, we saw a slight increase in amount of shipping 

data in later years9 (Figure 12) and no discernible difference within season. However, there was a 

large peak of data in September 2013 the reason for which is not clear. It should be noted however 

that these changes could be due to refinement in the AIS system reporting (e.g., more frequent 

polling, more reporting vessels) than a reflection of actual vessel traffic changes. 

The majority of class A vessels (>= 80 m in length) were cargo vessels, followed distantly by Tankers 

and a small number of passenger vessels (Figure 13). 

In terms of the size of the vessels, the length ranged from 80 m (our minimum cut-off) and 300 m 

(Figure 14) with a mean of 205m and a median of 222m. Vessel beam ranged between 10 and 50m 

(Figure 15) with a mean and median of 32m. These histograms/statistics are weighted by time in the 

GBR, hence there will be a bias toward vessels with lower speeds. These plots can be redone, if 

required, weighted by distance traversed to remove this bias.  

                                                           
9 This calculation was based on a raw count of data assuming all vessels were polled at 5min intervals so is an 

approximation only.  
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The modes in the data may represent a combination of a certain size vessel making a number of 

voyages within the season and also that there are certain types of sized ships based on international 

canal requirements. The draught information (Figure 16) was a bit patchy and seemed to include 

unrealistic draughts. If in future it is decided to use vessel draught in the risk calculations, some 

further data cleaning will be required. 

Vessel speed was nicely distributed (Figure 17) with a median at around 12 knots. Again this is just a 

preliminary data exploration and will be biased toward slower vessels. 

Table 8: Summary of data file sizes at each stage of the processing 

Year Month 
Raw 

(MB) 

Filtered 

(MB) 

Transects 

(MB) 

2012 Jul 931 123  

Aug 977 125  

Sep 851 127  

Total 2759 375 255 

2013 Jul 1000 128  

Aug 1010 112  

Sep 1297 196  

Total 3307 436 278 

2014 Jul 1115 141  

Aug 1171 155  

Sep 1137 154  

Total 3423 450 343 

TOTAL 9489 1261 876 

 

Figure 12: Totals per month counts (left axis) of cargo, tanker and passenger vessels of length >= 80 

metres in the GBR and total vessel hours (right axis). 



FINAL REPORT 

Page 35 of 89 

 

Figure 13: Total count data points (left axis) of cargo, tanker and passenger vessels of length >= 

80metres in the GBR for winter 2012-2014 and total vessel hours (right axis). 

 

Figure 14: Distribution of vessel lengths of cargo, tanker and passenger vessels of length >= 

80metres in the GBR in winter in terms of number of data points (left axis) and total 

vessel hours (right axis). 

 

Figure 15: Distribution of vessel beam of cargo, tanker and passenger vessels of length >= 80metres 

in the GBR in winter in terms of number of data points (left axis) and total vessel hours 

(right axis). 

 

Figure 16: Distribution of vessel draught of cargo, tanker and passenger vessels of length >= 

80metres in the GBR in winter in terms of number of data points (left axis) and total 

vessel hours (right axis). 
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Figure 17: Distribution of vessel speed of cargo, tanker and passenger vessels of length >= 80metres 

in the GBR in winter in terms of number of data points (left axis) and total vessel hours 

(right axis). Note: This will be biased toward lower speeds. 

4.3.2 Shipping traffic density  

Once the data was filtered and processed, the result is a summary of vessel activity at 1 km2 grid 

cells across the GBR. The main measure used in ship strike analysis is total distance traversed by 

vessels within the grid cell (Figure 19, Figure 20 and Figure 21). 

4.3.3 Other information/outputs 

4.3.3.1 Vessel Type 

We can also split the results by vessel type (i.e., cargo, passenger or tanker) and look at spatial 

differences in distribution (Figure 18) and therefore potentially assess relative risk of each vessel 

type. 

 

Figure 18: Example of the spatial separation between cargo, passenger and tanker vessels 
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4.3.3.2 Vessels effected 

One useful statistic we summarise for each 1 km2 grid cell is the number of unique vessels that have 

passed through each grid cell (Figure 22). This can be informative of the impact of any management 

restrictions. We can count vessels based on MMSI (as per Figure 22) or it may make more sense to 

count based on IMO number or transits. 
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Figure 19: Winter 2012 distance traversed in the Northern, Central and Southern extent of the GBR  
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Figure 20: Winter 2013 distance traversed in the Northern, Central and Southern extent of the GBR  
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Figure 21: Winter 2014 distance traversed in the Northern, Central and Southern extent of the GBR 
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Figure 22: Example of distinguishing the number of unique vessels (based on MMSI) that passed thru each grid cell 
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4.4 Other data 

While we didn’t specifically set out to explicitly investigate environmental correlates with whale 

distribution, as part of the spatial modelling exercise, we found that the most significant parameters 

in describing humpback whale distribution and density were depth and SST. These were by far and 

away the biggest contributors to describing the distribution of humpbacks within the GBRWHA. 

There is further details of these analysis provided in Appendix 6. 

4.5 Statistical analysis 

4.5.1 Relative risk maps 

The co-occurrence risk was calculated as per section 3.4.2.1. So for each combination of whale year 

(winter 2012 and 2014) and vessel data (winter 2012, 2013 and 2014) we matched the whale and 

shipping density data for each 1 km2 grid cells (Figure 25, Figure 26) and then estimated co-

occurrence. This approach does give some indication of temporal uncertainty which we report as the 

range of the resulting 6 replicate grid cell values (arising from the 3x2 combinations) divided by their 

mean (herein called ‘standardised range’). In addition, as a proof of concept we provided the index 

of expected number of fatalities (section 3.4.1.2).  

4.5.2 Co-occurrence Comparisons 

We compared the total sum of co-occurrence for various subsets of the data10 with a summary of 

results shown in Figure 23 and Figure 24. As would be expected given their higher number of vessel 

movements, cargo vessels represent by far the largest proportion of relative risk. This result does 

not provide evidence to say individual single cargo vessels pose more of a risk as if we look at the 

average risk per vessel km travelled in each type, then individual cargo and tanker vessels give 

similar results per km and passenger vessels show a slightly higher per vessel km risk. However, with 

only 15 passenger vessels (> 80 m) in our analysis this result may be a result of the small sample size. 

If the difference in relative risk per individual vessel km is real then since we do not include vessel 

speed or size in the co-occurrence index, this difference would be driven by simply more spatial co-

occurrence. 

There were inter-annual differences in the number of vessel movements and also humpback density 

which meant that the relative risk for 2012 was considerably higher than for 2014.  

While we did not include vessel speed in this component of the modelling, it is possible that if 

different vessel types have different speed characteristics, therefore this simplistic model wouldn’t 

be accurately capturing the true relative risk. The probabilistic model outlined in section 3.4.1.2 

would allow the inclusion of vessel speed. Preliminary results using the relative index of the 

expected number of fatalities, that incorporate vessel speed show a slightly increased per km risk for 

tankers compared to cargo vessels and a larger increase again for passenger vessels. However, it 

should be noted that even if after further investigation it does prove to be true there is a vessel type 

difference per km, the total cumulative exposure is what is important, and in this case cargo vessel 

contribute predominantly to the overall risk due to the number of vessels. 

With respect to the relative risk for groups with and without calves, the modelling indicates that the 

non-calf groups have a higher relative overall cumulative risk. However, this is primarily driven by 

there being significantly more non-calf groups than calf-groups. If we look at the standardised risk 

per whale in each group, then the risk is similar and possibly slightly higher for groups with calves. 

Again, since our model doesn’t consider the difference in the risk of being struck between the two 

                                                           
10 The co-occurrence metric is summed to calculate a total for an area. This can be shown to be correct but due 

to time/space we shall not include in the report. 
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groups11 then if this slight apparent difference is real, it would correspond to slightly higher 

proportion of the calf groups having co-occurrence with vessels. Preliminary results using the 

relative index of the expected number of fatalities show no differences between whale groups 

 

Figure 23: Comparison of total co-occurrence risk for each vessel type (left) and standardised by 

total number of vessels km travelled to give average risk per vessel km for each vessel 

type (right). (Note: within class A >=80 m length) 

 

Figure 24: Comparison of total co-occurrence for different whale group types (left) and standardised 

by total number of whales in each group type to give average risk per whale for each 

whale group type (right). 

4.5.2.1 Broad scale Comparisons 

The results of the large-scale comparisons are shown in Figure 27 and Figure 28 with the GBRWHA 

divided into 150x150km grid cells. The model found that the central band between Rockhampton 

and Mackay to have the largest relative risk. However, it is important to note that the Southern area 

outside Gladstone contains deep water, for which it was not possible to reliably predict whale 

density and so the results for those grid cells will underestimate risk. 

Figure 27 shows the plot but broken down by vessel type. The same general wide scale pattern is 

present. Also included are broad scale plots based on 50 x 50km2 grid cells to give further detail but 

still remain at the broad scale (See Figure 29). 

                                                           
11 for example, there potentially could be differences in dive behaviour and vessel avoidance between calf and 

non-calf groups 
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Figure 25: Simple overlay of 2012 whale data and all shipping distance traversed data  
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Figure 26: Simple overlay of 2014 whale data and all shipping distance traversed data 
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Figure 27: Large-scale plot (150x150km grid cells) of the co-occurrence index (standardised by area) for various whale group types with all vessels. Note: 

The uncertain areas where no estimation is done denoted by the hatching. 
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Figure 28: Large-scale plot (150x150km grid cells) of the co-occurrence index (standardised by area) for various vessel types with all whales. Note: The 

uncertain areas where no estimation is done denoted by the hatching. 
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Figure 29: Medium-scale 50 x 50km grid cell plot of the co-occurrence index for various vessel types and all whales. Note: The uncertainty (hatched area) so 

the total in those grid cells corresponds to the shallower unhatched area only 
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4.5.2.2 Fine-scale Co-occurrence risk maps 

Finally we plotted the various data and its subsets on a 1x1 km grid for the GBR, for example as 

shown in Figure 31: and Figure 34:. These figures show the co-occurrence index for all whales and 

calf groups against all vessels, for various extents in the GBR. We also include a map of the 

standardised range to give an indication of the variation across all year combinations that was seen. 

4.5.2.3 Other Co-occurrence measures 

As discussed in Section 3.4.1.1 there are more than one way to characterise co-occurrence, in 

particular the data can be transformed to alleviate some of the issues with the disparate scales of 

shipping intensity and whale density. Some preliminary results of two approaches are given in 

Appendix 6.  In the first option, we classified the shipping data into seven categories and the whale 

data into eight categories using the standard deviation (the difference in the number of categories 

for each data set was driven by their distributions.  We then multiplied the categories, resulting in a 

map that shows the overlap throughout areas with shipping and whale data.  In the second option 

(high co-occurence), we have simply highlighted where the highest categories of shipping traffic 

overlap with the highest categories of whale densities (5 or above on both whales and ships). 

 

4.5.3 Index of expected fatality maps 

As a proof of concept we developed the relative index of the expected number of fatalities (section 

3.4.1.2) and produced maps (Figure 35:). While this is useful, further development is required to 

refine some of the approximations/assumptions.  

Overall this approach provides similar results to the broad scale maps using the co-occurrence index 

notably there are some fine scale differences. The advantage of this approach is that this measure 

considers vessel speed so is a better metric to compare relative risk from different vessel types and 

can easily accommodate difference in strike and fatality heterogeneity (e.g., differences between 

vessel types and/or whale group types). 

4.5.4 Projected future risk increase 

Based on the calculations in section 3.4.1.2, we calculated the increase in risk based on a 10.5% 

annual increase in whale numbers (Noad et al. 2011), assuming the South-East Queensland 

migratory population growth translates to a similar growth in the GBR. This was done for various 

shipping traffic growth rates and projected forward to 2024, see Figure 30. 
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Figure 30: Projected increase in relative co-occurrence risk based on an annual 10.5% whale increase 

and various projected annual shipping traffic increases (coloured lines) 
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Figure 31: Co-occurrence risk all whale groups (left) and its standardised range (middle) and co-occurrence for calf groups (right), for all vessel type over the 

Northern extent 

 



FINAL REPORT 

Page 52 of 89 

 

Figure 32: Co-occurrence risk all whale groups (left) and its standardised range (middle) and co-occurrence for calf groups (right), for all vessel type over the 

central extent  
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Figure 33: Co-occurrence risk all whale groups (left) and its standardised range (middle) and co-occurrence for calf groups (right), for all vessel type over the 

Southern extent 

 



FINAL REPORT 

Page 54 of 89 

 

Figure 34: The IMO adopted shipping routes overlayed on the Co-occurrence risk all whale groups (left) and the 2012 whale density predictions (middle) 

and co-occurrence for calf groups (right), for all vessel type over the Southern extent  
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Figure 35: Relative probability of fatality for the 2014 year analysis 
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4.5.5 Uncertainty 

The final risk values are the combination of whale abundance and shipping density, and both of 

these components contain a degree of uncertainty. Quantifying uncertainty is important not only to 

indicate how much trust should be given to the overall results, but also when it comes to using the 

application in informing spatial decisions to manage risk. For example, if considering two route 

locations and one has a slightly lower relative risk, it would seem preferable to recommend that 

route. However, if we consider uncertainty and the lower risk route has very large uncertainty and 

the slightly higher relative risk route has very little uncertainty it then may be preferable to choose 

the slightly higher risk route.  

The main sources of uncertainty include: 

• Inter-annual variation in spatial distribution 

o There is little large scale information available about inter-annual variation in 

distribution within the GBRWHA but there are some small scale projects that could 

be used to potentially assess this including long term data sets in places such as the 

WhitSunday Islands. How any fine scale variation in distribution from year to year 

could be translated into a large scale would be challenging. Based on limited satellite 

tagging of humpbacks (Gales et al. 2010) it does appear that most of the northward 

migrating whales from South East Queensland progress into the GBRWHA. 

o The best data set for exploring this issue would be the 2012 and 2014 aerial surveys 

data and specifically the area that was surveyed during both periods where this 

could be assessed to provide an indication of inter-year spatial variation. 

o Another source of related uncertainty is that as the population is recovering well, 

are we going to see increasing whale densities in the same areas or are we going to 

see whale densities remain constant but with an increased spatial coverage. It is 

possible that the West coast population (IWC Stock D) could be capable of informing 

this question due to the greater population size and anecdotal reports of humpback 

whales sighted in areas further north than the main identified breeding area (pers. 

comm. R. Groom). The populations in Hawaii may also be another potential source 

of information. 

o Uncertainty of spatial distribution is likely to have a larger impact than uncertainty 

around numbers as we have considerably better data for the latter. For example if 

humpback location is more of a random process than driven by habitat or other 

covariates, then it won’t be easy to measure and model it. 

• Inter-annual variation in total numbers 

o The population of humpbacks on the East coast of Australia is growing at an 

extraordinarily rate of 11% per annum (Noad et al. 2011). While the rate of increase 

in the population is well documented, with land-based population surveys 

undertaken every few years, there is a degree of uncertainty regarding the 

proportion of the population that undertakes the migration every year from the 

Antarctic waters and whether there is inter-annual variation in migration whale 

numbers. Nevertheless, if the rate of population increase continues then inter-

annual variation in migration numbers may not necessarily have a large impact on 

the risk assessment due to the main factor being increasing numbers of whales on 

the breeding ground in the GBRWHA. 

• Intra-season variation in numbers and spatial distribution 

o It is well known that there is variability within seasons in terms of both the number 

and distribution of humpback whales. This is primarily a function of the GBRWHA 

being a breeding and mating area with only temporary residency times and whales 

move into the area, mate and calve and move out again over an approximately 3-4 
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month period. This means that relative risk will vary through the season as densities 

and distribution varies. However, while this issue is well known is poorly described 

as there have been no large scale intra season surveys from which to assess this. 

o The aerial survey data that we have used in developing spatial models was aimed to 

coincide with the peak of numbers within the GBRWHA and so our model is likely to 

represent that period of highest risk with periods before and after the survey likely 

to have lower whale densities. 

o Ideally, it would be desirable to undertaken multiple surveys of the same region/s 

within a season to investigate variability in both numbers and distribution. 

• Whale model uncertainty 

o All indications from overseas applications of this type of modelling approach are that 

the model standard errors will be swamped by the natural annual temporal 

variability. Notwithstanding this, it is important to include model uncertainty as it 

can be a significant contributor to overall uncertainty. 

o We have standard errors and confidence intervals on the model-based whale 

density predictions. These can also be incorporated into the risk calculations, at the 

most simplest by producing results using the confidence intervals and reporting the 

corresponding risk maps. 

• Inter-annual variation in vessel movements 

o Given the availability of shipping data this should be easy to quantify and given the 

shipping routes are pre-defined this is unlikely to be a large issue. 

o One approach would be to run the various years of shipping data against the two 

whale years and look at variation in the final risk estimates. 

Overall, our approach was to uncertainty was to include some indicative estimates to explore model 

sensitivity. We ran each combination of shipping data year (2012, 2013, and 2014) against each 

whale model year (2012, 2014) at each confidence limit. Then in each cell we report the minimum 

and maximum risk. 

4.5.6 Assumptions 

A number of assumptions were made in the risk calculations. Table 9 provides a summary of the 

main assumptions. 

 

Table 9: Main assumptions 

 Assumption Comment 

A
IS

 D
a

ta
 

Only vessels >80 m in length in the analysis This decision was based on 

experience overseas with large 

whales. The analysis can easily be re-

run at a lower cut-off and the results 

compared. 

Invalid or uncertain data removed This will reduce the calculated ship 

strike risk values. However, since at 

this stage we are dealing with relative 

risk as long as the missing, invalid or 

corrupt data is randomly distributed 

with respect to our variables of 

interest (i.e., spatially, vessel speed 

and vessel type) no bias will be 
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introduced 
W

h
a

le
 M

o
d

e
l 

There is no inter-season variation We know this not to be true and is 

one of the aspects of uncertainty that 

needs further work. 

Various model and distributional assumptions See section 3.2. Many of these are 

standard statistical assumptions 

when (1) doing distance analysis and 

(2) fitting GAMs  

C
o

-o
cc

u
rr

e
n

ce
 R

is
k

 

That risk is proportional to the number of ships 

(actually the distance covered) and whales in an 

area and that they equally contribute to risk 

This seems a fairly reasonable 

assumption to make. 

That the relationship between risk and whale 

numbers in the grid cell is linear 

Again this assumption seems 

reasonable. One reason it may not 

hold is if there was heterogeneity in 

the whale population with regard to 

strike risk that is not considered. For 

example, mother-calves have a much 

higher risk than non-calf groups. Then 

adding whales to a cell to double the 

number of whales would not 

necessarily double the ship strike risk 

as it would depend on the makeup of 

the existing whales and the added 

whales. 

That the relationship between risk and vessel 

numbers in the grid cell is linear 

Again this seems reasonable, but 

again if there are vessel differences 

that are not considered this may not 

be true. 

That whale distribution is independent of vessel 

traffic 

An example where this would not be 

the case is if in general due to noise 

levels whales avoided certain areas. 

5. Discussion 

5.1 Humpback habitat suitability mapping & density estimation 

The aerial surveys were very successful in describing the distribution and density of whales within 

the survey areas. Although encounter rates were higher in 2012 than in 2014, the overall densities of 

all groups and groups with calves were not significantly different. Surveys were undertaken from July 

through to September which coincides with the highest densities of whales in the region. Owing to 

the relatively large number of humpback whale sightings, the MRDS approach was successful in 

allowing us to maximise the efficient use of the data and to develop statistically robust models of 

humpback distribution and density. One of the limitations of the approach was that while relatively 

large areas of the GBRWHA were covered during the aerial surveys, it was impossible to cover the 

entire GBRWHA and so it was therefore necessary to use model-based approaches to investigate 

and quantify whale distribution outside the surveys areas. 
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The best GAM, or density surface model, describing the distribution of humpback whale densities 

included the physiographic and environmental covariates bathymetry, sea surface temperature and 

sea surface height anomalies. While a wide range of potential covariates were explored, only these 

three were influential. The MAXent modelling approach by Smith et al. (2012) identified the three 

most informative environmental predictors for humpback habitat suitability as sea surface 

temperature, depth and distance from the coast. The two approaches utilised different data sets and 

methods but provided similar results providing further confidence in the results. We are unable to 

explain why sea surface anomaly is likely to be a significant variable. There was no evidence of any 

significant correlations between the range of spatial and environmental covariates as any 

correlations were small enough to ignore. 

The general results predicted that higher densities of humpbacks were more likely to be found in 

shallow water (e.g., ~20-60 m deep), in waters of a sea surface temperature of ~21-23°C and with a 

sea surface height anomaly of ~0.05 m. These are consistent with our general understanding of 

habitat requirements for breeding and mating humpback whales in Australia. 

Owing to only a small amount of survey effort in bathymetric values of 90 m and deeper, no density 

predictions were made for waters deeper than 90 m. This is a potential limitation of this analysis and 

would require addition aerial surveys to rectify. For the purposes of this application, we excluded 

any waters deeper than 90 m which lead to limited data being available for the Bunker/Capricorn 

reef systems in the southern part of the GBRWHA. It will be important to address this limitation 

considering this area has previously been identified as an important area for humpback whales, most 

likely as a concentrated migration route (Smith et al. 2012). An additional issue is that there has 

been no survey effort to the far north of the GBR and while it is expected that whale density will be 

low based on anecdotal reports, the model would be improved by aerial survey data from that 

region, although this is likely less of an issue than the limited data from the southern GBR. 

Overall, there was good consistency between the aerial survey and spatial modelling predictions. In 

addition, there was relatively good agreement between the previous habitat suitability modelling by 

Smith et al. (2012) and the distribution of densities of humpback whales extrapolated throughout 

the GBR using our density surface model. Based on these assessments, we have good confidence 

that the model outputs have been successful in describing relative whale densities and in identifying 

areas of high whale density. This provided us with an excellent understanding of whale distribution 

and density for comparison to vessel traffic. 

5.2 AIS shipping data 

We were able to access high quality AIS vessel tracking data from AMSA available through the CTS 

data series starting in June 2012. AMSA were extremely helpful in making the data available for this 

research project and aiding with interpretation and advice. This provided us with a three year data 

set for the months of July, August and September which overlapped with the aerial survey data from 

2012 and 2014. While we have only utilised the most relevant parts of the available data, there is 

scope to undertake additional analysis and investigate other aspects of the shipping data that would 

provide an improved insight into vessel behaviour and could be used to further refine aspects of the 

modelling. In addition, although not an issue for this specific study due to the size of humpback 

whales, it should be noted that while the AIS data set is suitable for describing the behaviour of large 

vessels which have mandatory reporting requirements, smaller vessels only have voluntary reporting 

and therefore it is unlikely to be comprehensive for these types of vessels. 

There was a considerable amount of work involved in validating, filtering and processing the data 

before it was in a form suitable for the calculation of relative risk. The overarching feature was that 

AIS data is time based and it was necessary to convert it to distance based data so it could be 

compared to humpback whale spatial data to allow for risk-based assessments to be undertaken. 
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Overall, we included over 2.3 million data points post-filtering in analysis from three months of 

interest. 

During data filtering it was necessary to make some decisions about data criteria. Most were straight 

forward but perhaps potentially the most influential one was filtering on vessels ≥ 80 m. The main 

reason for this was that, as a general rule, larger vessels pose the highest risk of causing death to 

humpbacks from ship strike. This assumption was based on overseas experience and follows 

previous risk-assessment approaches for ship strike (e.g., Redfern et al. 2013 analysed vessels > 

100m). By excluding smaller vessels, we are potentially negatively biasing our estimates of risk and 

therefore estimates should be considered as minimums. However, if vessel movements for these 

smaller vessels follow the same general distribution and density of the larger vessels, then this 

assumption will not cause a bias in relative risk.  

There was a slight increase in the amount of shipping traffic over the three years period but no 

discernible difference by month. The vast majority of vessels in the filtered data set were cargo 

vessels, followed distantly by tankers and a small number of passenger vessels. This partly reflects 

our assumption of only using vessels over 80 m in length as the bulk of passenger vessels will be 

shorter than this. Overall, the final data set can be summarised as being comprised of vessels with a 

length ≥ 80 m representing cargo, tanker and passenger types within the GBR during the winter 

humpback breeding season. 

In future it would be beneficial to get NAV_STATUS from the AIS data to aid in the filtering of vessels 

at anchor. 

5.3 Ship strike risk 

The aim of this research was to quantify relative, rather than absolute risk, and therefore, it is 

necessary to have a suitable metric. We implemented two different metrics comprising of an existing 

risk metric based on the idea of co-occurrence of whales and vessels, and a more complex metric 

using a probabilistic framework to provide a relative index of the expected number of ship strike 

mortalities.  

The first metric implemented was the simple measure of co-occurrence, which assuming other 

variables are constant spatially, should be proportional to risk. The measure of co-occurrence in a 

particular grid cell was simply taken to be the total distance traversed in a cell by ships multiplied by 

the number of whales in the cell. 

We also developed and tested the more advanced relative index of the number of expected whale 

fatalities. This framework can incorporate the effect of different vessel characteristics (e.g., speed, 

beam, and draught) and conceptually includes terms related to time at surface and avoidance. As 

new data becomes available (e.g., dive data), the approach can easily be extended to incorporate 

other aspects such as whale sub-groups with differing risk profiles (e.g., mother with calves versus 

adult differences in diving and vessel avoidance). 

When considering overall risk of ship strike, it was evident that cargo vessels provided the single 

largest contribution (Figure 33). This is not to say individual cargo vessels are intrinsically pose more 

of a risk, as the co-occurrence measure does not take vessel characteristics into account (i.e., speed, 

beam, etc.), the difference reflects the large number of cargo vessels relative to tanker and 

passenger (Figure 21). This is demonstrated when risk is standardised by km traversed by vessels of 

each type to give risk per vessel km (Figure 33), the relative risk of a typical single cargo vessel is 

comparable with a single tanker. The passenger vessels risk per vessel km (Figure 33) is higher 

relative to cargo and tanker. Since no speed or other vessel characteristic is incorporated in the co-

occurrence measure, this could only be due to a different spatial distribution of where passenger 

vessels travel. However, in this case, we believe it could just reflect the small number of passenger 



FINAL REPORT 

Page 61 of 89 

vessels (n=15) in the analysis giving a variable result. In terms of overall risk, which is what is 

important, cargo and tanker vessels are of the most concern. 

When considering relative risk for each whale group type (i.e., groups with or without calves), once 

the risk is standardised for the number of total animals of each group type to give risk per whale, 

then there was a slightly higher co-occurrence observed for groups with calves. Given that the co-

occurrence model just reflects the number of whales and vessels that are spatially co-existing, the 

absolute number of each type will directly influence relative risk. Further, data and analysis would be 

needed to discern if in general groups with calves are  any more susceptible to ship strike risk than 

non-calf groups, as the current co-occurrence index assumes group types are equally likely to be 

struck (as it does not consider differing risk of ship strike due to differences in whale behaviour). 

Based on the co-occurrence maps it appears the area of greatest relative risk is two areas located 

approximately 120km to the North and 120km South of Mackay. After examining the whale habitat 

models it is clear these correspond to where shipping traverses two higher predicted whale density 

areas. 

Our approach provides an indication of variability in the modelling. Perhaps unsurprisingly, overall, 

the modelling indicates that the major shipping lanes appear to be less variable with relatively fixed 

and discrete edges. By comparison, outside the main lanes, the edges of routes are more variable 

but in general these also have fewer vessels transiting through them. This makes sense as our 

approach will capture vessel temporal variability in space much better than it will variability in whale 

distribution (as we only had two whale seasons to assess variability). 

We developed a relative index of the expected number of fatalities as a proof of concept and to 

investigate if this is a feasible approach. It is a useful way of exploring the modelling framework by 

producing a metric that may be useful in reviewing possible impacts and informing possible 

management. The outcomes from this modelling was similar to that of the co-occurrence modelling. 

At this point, the index it is simply a relative metric across the study area useful to comparing 

relative risk and cannot and should not be inferred as an estimation of actual mortality. While this 

step is potentially possible, it would require the considerable data specific to this issue to be 

collected before the leap between relative and actual mortality rates could be made. 

Notwithstanding this major caveat, it is a powerful tool that can be useful in: 

• easily incorporating vessel characteristics (e.g., speed, length, width) and can aid with 

making improved comparisons; 

• investigating expected risk reduction outcomes from management decision such as speed 

restrictions; 

• incorporating different whale strike risks (e.g., mother calf vs adult groups); and 

• potentially having less bias at higher ship densities than co-occurrence (See section 3.4.2) 

Overall, the quantification of relative risk over this large spatial scale has been successful and is 

useful in identifying areas of high co-occurrence. The analysis shows that the areas of highest 

relative risk coincide with offshore areas around the two major ports on the Queensland coast 

spanning the offshore area between the Whitsundays to south of Mackay near Shoalwater Bay. One 

limitation of this risk assessment is that there are no results for the offshore areas to the south of 

Gladstone due to a lack of whale survey data in deeper waters. 

5.4 Modelling uncertainty of ship strike 

The final relative risk values are the combination of whale and shipping density, and both of these 

components contain a degree of uncertainty. Quantifying uncertainty is important not only to 

indicate how much trust should be given to the overall results, but also when it comes to using the 

application in informing spatial decisions to manage risk. The largest source of uncertainty is likely to 

be related to inter-annual variation in the spatial distribution of whales as there is little information 
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data to inform this but without additional surveys replicating the coverage of previous ones, this will 

be difficult to quantify. Other sources of uncertainty include inter-annual variability in whale 

abundance and vessel behaviour, intra-season variation in numbers and spatial distribution of 

whales, and inherent uncertainty of the model itself although with respect to this latter issue, all 

indications from overseas applications of this type of modelling approach is that the model standard 

errors will be swamped by the natural annual temporal variability. 

5.5 Future extensions 

We have identified a range of possible extensions to the various modelling approaches throughout 

the document. Specifically, there were some recommendations about potential ways to increase the 

data that underpins the model including: 

• Dedicated studies of whale behaviour within the areas of high co-occurrence. This could be 

undertaken using DTAGs and/or ZTAGs to understand dive and movement behaviour in the 

presence and absence of vessels. The DTag dive depth data could be used to determine an 

estimate of absolute probability of a fatal ship strike;  

• Investigation of the use of AIS data for the monitoring of vessels < 80 m in length and 

whether it is possible to use this data for reliable analysis of passenger vessel movements 

which was poorly covered in this project due to a lack of data. A greater sample size of 

vessels < 80m will improve relative risk estimates when comparing among different vessel 

types; and 

• Aerial surveys expanding the range into (1) waters > 90 m deep for which we think may be 

important whale habitat; (2) exploration of the northern range of the GBR which has had 

very little survey effort; and (3) resurveying areas that have previously been surveyed to 

provide estimates of inter-annual variability which will all improve model predictions and 

estimates of uncertainty  

5.6 Mitigating ship strike risk 

The major output of this approach is that it has highlighted areas were relative ship strike risk and/or 

the expected number of fatalities are high. While the true relationship between relative and actual 

risk remains unknown, these data provide the best source of information to aid in the identification 

of potential hotspots of high interactions. These are the areas that will require further consideration 

both with respect to targeted research and also the exploration of whether management action has 

the potential to improve relative risk. 

There is no silver bullet for the mitigation of ship strike risk, as whenever whales and vessels occupy 

the same space there is always risk of a negative interaction. However, now that we have identified 

areas that we believe represent higher risk, we can seek to better understand the actual nature of 

the interaction in those areas with a view to proposing any number of a suite of potential 

management actions. These could range from ‘no action required’ through to active management, 

including options such as zones that could require speed reductions, requirements for increased 

observation of marine mammals in the path of vessels by bridge crew and modification of vessel 

routes to avoid areas of higher whale density. 
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Appendix 1 Documentation of model-selection results for MRDS 

detection function fitting 

Table A1.1 Hazard rate MRDS models fitted to the sighting data, with a left truncation distance of 

around 200 m, and a right truncation of 4 km. BBS = Raw Beaufort Sea State, size = raw 

group size estimate, bbs.0.1 = categorise Beaufort Sea State, Cloud.cover = cloud cover in 

octas. ΔAIC values are relative to the lowest model AIC, given in the first row.  

DS Model MR Model AIC ΔAIC 

1 BSS+distance+size 2016.659 0 

1 distance+size 2017.326 0.667128 

1 distance+size 2017.326 0.667128 

size BSS+distance+size 2017.903 1.243559 

1 bss.0.1+distance+size 2017.928 1.268494 

BSS BSS+distance+size 2018.204 1.544638 

Cloud.cover BSS+distance+size 2018.469 1.809469 

size distance+size 2018.57 1.910686 

size distance+size 2018.57 1.910686 

1 BSS+Cloud.cover+distance+size 2018.648 1.988769 

BSS distance+size 2018.871 2.211766 

BSS distance+size 2018.871 2.211766 

1 Cloud.cover+distance+size 2019.075 2.415673 

1 Cloud.cover+distance+size 2019.075 2.415673 

Cloud.cover distance+size 2019.136 2.476596 

Cloud.cover distance+size 2019.136 2.476596 

size bss.0.1+distance+size 2019.171 2.512053 

BSS bss.0.1+distance+size 2019.472 2.813132 

BSS+size BSS+distance+size 2019.707 3.047436 

Cloud.cover+size BSS+distance+size 2019.726 3.066899 
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Table A1.2 Half-Normal MRDS models fitted to the sighting data, with a left truncation distance of 

around 200 m, and a right truncation of 4 km. BBS = Raw Beaufort Sea State, size = raw 

group size estimate, bbs.0.1 = categorise Beaufort Sea State, Cloud.cover = cloud cover in 

octas. ΔAIC values are relative to the lowest model AIC, given in the first row. 

DS Model MR Model AIC ΔAIC 

1 BSS+distance+size 2020.729 0 

1 distance+size 2021.396 0.667128 

1 distance+size 2021.396 0.667128 

size BSS+distance+size 2021.716 0.986575 

1 bss.0.1+distance+size 2021.998 1.268494 

BSS BSS+distance+size 2022.073 1.343992 

size distance+size 2022.383 1.653703 

size distance+size 2022.383 1.653703 

1 BSS+Cloud.cover+distance+size 2022.718 1.988769 

Cloud.cover BSS+distance+size 2022.724 1.995098 

BSS distance+size 2022.74 2.01112 

BSS distance+size 2022.74 2.01112 

size bss.0.1+distance+size 2022.984 2.255069 

1 Cloud.cover+distance+size 2023.145 2.415673 

1 Cloud.cover+distance+size 2023.145 2.415673 

BSS+size BSS+distance+size 2023.162 2.432424 

BSS bss.0.1+distance+size 2023.342 2.612486 

Cloud.cover distance+size 2023.392 2.662225 

Cloud.cover distance+size 2023.392 2.662225 

size BSS+Cloud.cover+distance+size 2023.705 2.975344 
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Details of best detection function fit as outlined in Table A1.1 above:  

Distance sampling analysis object 

 

Summary for io.fi object  

Number of observations: 561  

Number seen by primary: 488  

Number seen by secondary: 396  

Number seen by both:  323  

AIC:    1028.964  

 

Conditional detection function parameters: 

Estimate SE 

(Intercept) 1.3165169 0.3173286 

BSS  -0.4994220 0.1305199 

Distance -0.5100542 0.1038039 

Size  0.7222984 0.1347244 

 

   Estimate SE  CV 

Average primary p(0) 0.8396466 0.024371004 0.02902531 

Average secondary p(0) 0.8396874 0.024364279 0.02901589 

Average combined p(0)  0.9678823 0.009840597 0.01016714 

 

 

Summary for ds object  

Number of observations: 561  

Distance range:   0.2  -  4  

AIC:    1297.803  

 

Detection function:  Hazard-rate key function  

 

Detection function parameters  

Scale Coefficients: 

Estimate SE 

(Intercept) 0.7114042 0.05885498 

 

Shape parameters: 

Estimate SE 

(Intercept) 1.147507 0.1293917 

 

Estimate SE  CV 

Average p 0.5713126 0.02361902 0.04134167 

 

 

Summary for io object 

Total AIC value : 2326.767  

 

Estimate SE  CV 

Average p  0.5529633 0.0235416 0.04257352 

N in covered region 1014.5338364 51.8356906 0.05109311 
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Appendix 2 Results for ‘space’ only GAMs for describing the 

distributions of densities of humpback whales, and 

humpback whales in groups accompanying calves, for 

both surveys 

Note: Space only GAMs indicates those which only contained spatial coordinates (in this example, 

latitude and longitude transformed by an Albers Equal Area projection). 

 

 ‘Space’ only GAMs describing the distribution of densities of humpback whales during the 2012 survey. 
 
Family: Tweedie(1.4)  
Link function: log  
 
Formula: 
total.total.n ~ s(Easting, Northing, k = 30) + offs et(log.offset) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -3.8319     0.1027  -37.31   <2e-16 ** * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                      edf Ref.df     F  p-value     
s(Easting,Northing) 14.32  18.72 5.198 1.25e-10 ***  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.405   Deviance explained = 32.9% 
-REML = 419.42  Scale est. = 2.5968    n = 256 

 
‘Space’ only GAMs describing the distribution of densities of humpback whales during the 2014 survey. 
 
Family: Tweedie(1.4)  
Link function: log  
 
Formula: 
total.total.n ~ s(Easting, Northing, k = 30) + offs et(log.offset) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -4.3021     0.1047  -41.08   <2e-16 ** * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                      edf Ref.df     F  p-value     
s(Easting,Northing) 11.72  15.81 7.339 6.87e-15 ***  
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.278   Deviance explained = 31.9% 
-REML = 433.85  Scale est. = 2.217     n = 323 
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‘Space’ only GAMs describing the distribution of densities of humpback whales in groups containing calves 
during the 2012 survey. 
 
Family: Tweedie(1.1)  
Link function: log  
 
Formula: 
total.n.with.calves ~ s(Easting, Northing, k = 30) + offset(log.offset) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -4.8402     0.1533  -31.57   <2e-16 ** * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                      edf Ref.df     F p-value   
s(Easting,Northing) 9.836  13.26 2.095  0.0143 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.255   Deviance explained = 19.4% 
-REML = 186.38  Scale est. = 2.5852    n = 256 

 
‘Space’ only GAMs describing the distribution of densities of humpback whales in groups containing calves 
during the 2014 survey. 
 
Family: Tweedie(1.1)  
Link function: log  
 
Formula: 
total.n.with.calves ~ s(Easting, Northing, k = 30) + offset(log.offset) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -5.9039     0.2135  -27.65   <2e-16 ** * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                      edf Ref.df    F p-value   
s(Easting,Northing) 5.371  7.372 2.42  0.0181 * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.0998   Deviance explained = 15.8% 
-REML = 112.19  Scale est. = 2.0699    n = 323 
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Appendix 3 Results for best GAMs for describing the distributions of 

densities of humpback whales, and humpback whales in 

groups accompanying calves, for both surveys, with 

physiographic and environmental covariates. 

 

Best GAM describing the distribution of densities of humpback whales (all animals) across both seasons. 
 
Family: Tweedie(1.2)  
Link function: log  
 
Formula: 
total.total.n ~ +te(bathy, SST) + s(SST) + s(SSH) +  offset(log.offset) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept) -4.02528    0.08203  -49.07   <2e-16 ** * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                edf Ref.df     F  p-value     
te(bathy,SST) 9.058     23 4.183  < 2e-16 *** 
s(SST)        2.192      9 0.451  0.00765 **  
s(SSH)        2.838      9 3.448 5.96e-08 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.405   Deviance explained = 33.4% 
-REML = 821.48  Scale est. = 2.8079    n = 579 
 
 
 

Best GAM describing the distribution of densities of humpback whales in groups containing calves. 
 
Family: Tweedie(1.4)  
Link function: log  
 
Formula: 
total.n.with.calves ~ te(SSH, bathy) + te(SST, bath y) + offset(log.offset) 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  -5.4473     0.1651     -33   <2e-16 ** * 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                edf Ref.df     F p-value    
te(SSH,bathy) 4.521  5.322 3.723 0.00209 ** 
te(SST,bathy) 2.916 20.000 0.510 0.00624 ** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. ’ 0.1 ‘ ’ 1 
 
R-sq.(adj) =  0.233   Deviance explained = 16.4% 
-REML = 343.07  Scale est. = 5.67      n = 579 

 

  



FINAL REPORT 

Page 72 of 89 

Appendix 4 Additional exploratory analyses of covariate data for 

spatial modelling of humpback whale aerial survey data 

from 2012 and 2014 

The following provides details of analysis undertaken as part of checking and preparation of aerial 

survey data to use in spatial modelling. 

A4.1 Variations in flight (on-effort) altitude 

The recorded flight altitude whilst on effort varied between 900 and 1300 ft for the 2012 survey, and 

880 and 1560 ft (267 to 475 m) during the 2014 aerial survey. This could be viewed as substantial 

variation in effort altitude, which may introduce bias into the detection function and, ultimately, 

density and abundance estimates (Laake 2008). However, both the mean altitude height (mean 

weighted by the along-track distance at each altitude) was 999 ft in 2012 and 1003 ft for the 2014 

aerial survey were almost exactly the nominated survey altitude of 1000 ft. Therefore there does not 

seem to be any spatial correlation (viz, along the GBR) in changes to altitude (Figure A4.1); and that 

it can be assumed that g(0) will not vary from 1 at these ranges of altitudes, then by assuming 

pooling robustness over the periods of different altitudes, the detection function will still provide an 

unbiased estimate of densities along the transects. 

 

Figure A4.1 Spatial distribution of ‘on effort’ altitude during the 2012 aerial survey (left) and during 

the 2014 aerial survey (right) for humpbacks along the GBR. Coastline not shown. 

A4.2 Distributions of declination angles 

To check if there is substantial differences in the way front and back observers were seeing (i.e., 

searching) and recording humpback whale sightings, we plotted the distribution of declination 

angles for both the 2012 and 2014 aerial surveys (Figure A4.2, A4.3). 
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Figure A4.2 Angle of declination (i.e., from the horizontal) for humpback whale sightings for front 

and back observers during the 2012 aerial survey. Duplicate sightings included in both front and back 

plots. 

 

Figure A4.3 Angle of declination (i.e., from the horizontal) for humpback whale sightings for front 

and back observers during the 2014 aerial survey. Duplicate sightings included in both front and back 

plots. 

A4.3 Distributions of sightings angles 
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We also investigated the distribution of angle of sightings relative to the heading of the plane (A4.4, 

A4.5). There was no evidence of any bias in the data. 

 

Figure A4.4 Angle of sightings relative to the planes head for humpback whale sightings for front and 

back observers during the 2012 aerial survey. Duplicate sightings included in both front and back 

plots. 

 

Figure A4.5 Angle of sightings relative to the planes head for humpback whale sightings for front and 

back observers during the 2014 aerial survey. Duplicate sightings included in both front and back 

plots. 
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A4.4 Detection functions 

Based on observations in the aircraft, the maximum angle of declination that the rear observers 

could comfortably observe at is 55-60° from the horizon however the front observer could ostensibly 

see all the way to the track line owing to the use of bubble windows. These visual limitations need to 

be considered when setting a left-truncation distance. At an on-effort altitude of around 1000 ft 

(with some variation during flights of the altitude; see section 0), this corresponds to a strip of about 

175 m underneath the aircraft that the back observer can’t really see. Considering that, and the 

actual histogram of perpendicular distances (Figure A4.6, Figure A4.7), a left-truncation distance of 

0.2 km was set and a right truncation distance of 4 km. All further analyses used these truncation 

distances. 

 

Figure A4.6 Perpendicular distances of humpback whale sightings pooled for front and back 

observers during the 2012 and 2014 aerial surveys. Duplicate sightings included in both front and 

back plots. 

 

Figure A4.7 Perpendicular distances of humpback whale sightings within 4 km, binned to 100 m. The 

dotted line is at 200 m, which is the approximate distance at which the rear observers cannot see 

(based on an estimated upper-declination angle limit of 60°). Data pooled across both survey years. 
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A4.5 General outputs from sensitivity and other analyses 

The following plots are of generalised additive models (GAMs), with single thin-plate spline 

smoothes of inferred humpback whale densities (estimated via distance analyses) versus the various 

spatial, physiographic and environmental covariates considered in the whale density modelling for 

this project. The purpose of these single-variable GAM fits, and resultant plots, were to identify 

potential function forms and strengths of relationships between whale density and the various 

covariates. Points around the smoothes are partial residuals. 

 

Figure A4.8 Bathymetry and 2012 aerial survey data 
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Figure A4.9 Bathymetry and 2014 aerial survey data 
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Figure A4.10 Sea floor slope and 2012 aerial survey data 

 

Figure A4.11 Sea floor slope and 2014 aerial survey data 
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Figure A4.12 SST (°C) and 2012 aerial survey data 

 

Figure A4.13 SST (°C) and 2014 aerial survey data 



FINAL REPORT 

Page 80 of 89 

 

Figure A4.14 SSH anomaly (m) and 2012 aerial survey data 

 

Figure A4.15 SSH anomaly (m) and 2014 aerial survey data 
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Figure A4.16 Chlorophyll a and 2012 aerial survey data 

 

Figure A4.16 Chlorophyll a and 2014 aerial survey data 
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Figure A4.18 10 km line segments and distance to the coast for the 2012 survey (left panel) and the 

2014 survey (right panel). 

 

Figure A4.19 10 km line segments and distance to the nearest reef for the 2012 survey (left panel) 

and the 2014 survey (right panel). 
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Figure A4.20 Density predictions (individuals per 1 km2) for all humpback whales from 2012 and 

2014 aerial surveys 

 

Figure A4.21 Density predictions (individuals per 1 km2) for individuals in groups with calves from 

2012 and 2014 aerial surveys   
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Appendix 5 Additional details relating to the estimation of the 

relative probability of a fatality 

 

5.1: Aerial survey and vessel availability 

In a typical aerial survey analysis the formula provided by Barlow et al. (1988) is used,	
Pr	(Visible) = k + #k + 1 

Where s is average time near the surface, d is the average time at depth and t is the time the whale 

is within the field of view of aerial observers (e.g., taking into account aircraft speed and altitude). 

Hence the absolute abundance A, is given by 

A = ;^��NS(N_Pr	(Visible) 

So in our case if we were to adjust for the aerial survey availability bias and then multiply by Pr wMNOPQ � vMSTUP) we would have. 

;^��NS(N_Pr	(Visible) × 	Pr wMNOPQ � vMSTUP) 

= ;^��NS(N_ k + 1k + # ×	 kk + 1 

= ;^��NS(N_ kk + # 

There is not much information in the literature for surface duration of humpback whales. Dolphin 

(1987) found for Alaskan humpback whales in the feeding grounds typical non-feeding surface 

duration was 2.6 minutes and since aerial survey availability is typically of the order 7-14 seconds, 

you can see the adjustment will be approximately 90-95%. 

5.2: Probability Rule  

If we are considering two independent events A and B, each with probabilities given by Pr(A) and 

Pr(B), the Pr(A and B) is the intersection on our Venn diagram Pr	(; ∩ i).  

The probability of (A or B) is given by 

*+(;	=+	i) = Pr(;) + Pr(i) − Pr	(; ∩ i) 

A B 

A∩B 
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Since if we do not take away the Pr	(; ∩ i) we will double count it. Pr(; ∩ i) since A and B are 

independent Pr(; ∩ i) = Pr	(;) × Pr	(i). So  

*+(;	=+	i) = Pr(;) + Pr(i) − Pr	(;)Pr	(i) 

For more than two events this generalises to, 

Pr(;n	=+	;�	=+ … 	=+	;`) = 1 −q[1 − *+(;�)]
`

�mn
 

5.3: Probability of a fatality given w whales in a cell 

If we wish instead of looking at the expected number of fatalities we can look at the probability of 

fatality, which may be useful.  So that gives the probability proportional to the probability of a fatal 

strike for a single whale in the grid cell, to estimate for any/all whales in the grid cell we use the 

same ‘or’ probability rule again 

Pr(!"#"$%#&) = 1 − q[1 − *+(!"#"$%#&')]�

'mn
			for	] � 0, 0	otherwise 

= 1 − [1 − *+(!"#"$%#&')]� 

Now this causes an issue as although in reality W corresponds to the number of animals in the grid 

cell, and hence is discrete whole numbers, in practice the whale model provides us with a 

continuous numbers. The repercussion of this is that the concept of OR breaks down (e.g., if the 

abundance for a cell is 1.5, then how does this correspond to an OR of events). To conceptually work 

around this difficultly we propose to consider partial whales as simply whales that were not in the 

cell for the whole season (e.g., 0.5 would equate to a whale (not necessarily the same whale) in the 

cell for only half the season12). So, taking this interpretation, partial whales will just have the effect 

of including a multiplier to the *+(!"#"$%#&') in one of the OR events. To demonstrate why this is 

so, consider our 0.5 example, since the animal is only available to be struck for 50% of the available 

time it would be expected to be half as likely to be struck.  

Now we have calculated the *+(!"#"$%#&')	for each cell, as per our equations, the key point is we 

defined this as the probability given a single whale was present in the grid cell of one of the vessels 

present having a collision with the animal. So now we have to adjust this for the probability that the 

whale is actually in the cell so  

*+(!"#"$%#&') × Pr	(]ℎ"$/	%>	#ℎ/	?/$$) 

which corresponds to the fractional abundance, so in this example would be 0.25. 

To handle partial whale number >1. If we take the probability equation for the whole number of 

whales is given as before by 

  	 Pr !"#"$%#&n,..���) ∝ [1 − *+(!"#"$%#&')]���			for	] � 0, 0	otherwise 

where ���	denotes the floor of the number W. Then the probability of the partial remainder is given 

by 

Pr !"#"$%#&�����) ∝ (� − ���) × *+(!"#"$%#&') 

So the total probability is simply an OR between these two probabilities 

                                                           
12 This touches on another point that we do not assume a whole whale value corresponds to a whale being in a 

cell for all of the season, but rather that whales come and go but there is on average of that many whales in 

the grid cell 
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Pr(!"#"$%#&) ∝ Pr !"#"$%#&n,..���) + Pr !"#"$%#&�����)− Pr !"#"$%#&n,..���) × Pr !"#"$%#&�����) 
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Appendix 6 AMSA Craft Tracking System (CTS) metadata 

 

Table A6.1 AMSA Craft Tracking System AIS Metadata 

CSV Table Field name  Type  Description  

OBJECTID  Object ID  ArcGIS primary key  

POSITION_ID  Double  CTS.POSITION table primary key  

CRAFT_ID  Double  CTS unique identifier for each vessel  

CRAFT_REPORTING_AGENT_ID  Double  Data source code: 20 = AIS  

CRAFT_TYPE_ID  Double  Craft type code: 1 = vessel  

FIX_ID  Double  Join field to other CTS tables  

LON  Double  Longitude in decimal degrees  

LAT  Double  Latitude in decimal degrees  

POSITION_TIME  Date  UTC timestamp of vessel position report  

CREATED_TIME  Date  UTC timestamp when vessel position report 

was written to CTS database  

ALTITUDE_METRES  Double  Aircraft altitude. Not populated  

COURSE_DEGREES  Double  Course over ground in decimal degrees  

HEADING_DEGREES  Double  Heading in decimal degrees. Not available  

SPEED_KNOTS  Double  Speed over ground in knots  

CRAFT_TYPE  Text  Vessel type  

CRAFT_SUBTYPE  Text  Vessel sub-type  

LENGTH_METRES  Double  Vessel length in metres  

BEAM_METRES  Double  Vessel beam in metres  

MID_CODE  Long Integer  MMSI country identification digit  

ORIGIN  Text  Craft origin. Not available for AIS records  

DESTINATION  Text  Vessel destination  

CLS  Text  AIS Class A or B  

MMSI  Long Integer  Maritime Mobile Service Identity (MMSI) 

number  

IMO  Long Integer  International Maritime Organization (IMO) 

number  

REGISTRATION  Text  Vessel call sign  

NAME  Text  Vessel name  

SOURCE_DETAIL  Text  AIS satellite identifier  

POOL  Text  For aircraft use only  

DRAUGHT_METRES  Double  Vessel draught in metres.  

Please note, vessel draught data is only 

available for vessel position records from 21 

June 2013 onwards  
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Appendix 7 Alternate co-occurrence results 

  

Figure A6.1 Co-occurrence using data categories based on standard-deviation. 
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Figure A6.2 High co-occurrence based on highlighting areas where the highest categories in whale 

and shipping occur. 


