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ABSTRACT

Recent advances in non-equilibrium thermodynamics have begun to reveal the funda-

mental physical costs, benefits, and limits to the use of information. As the processing of

information is a central feature of biology and human civilization, this opens the door to a

physical understanding of a wide range of complex phenomena. I discuss two areas where

connections between non-equilibrium physics and information theory lead to new results:

inferring the distribution of biologically important molecules on the abiotic early Earth, and

the conversion of correlated bits into work. I show that a non-equilibrium model for the

chemistry of the early Earth, which incorporates our uncertainty about the available con-

ditions, predicts average abundances of life’s building blocks that are radically larger than

their equilibrium estimates and may explain how these molecules were present in appreciable

quantities on the early Earth. I also demonstrate fundamental limits on the conversion of

correlated bits into work, which arise from physical constraints on the transition matrices

that govern the process of conversion.
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CHAPTER 1

INTRODUCTION

Although developed largely independently, information theory and physics are becoming

increasingly intertwined. On the one hand, this is consonant with the history in physics of

incorporating previously unconnected developments in mathematics, as well as the unifica-

tion over time of physical laws. On the other hand, it points to the apparent universality of

information theory in its own right. Among the ways it might shed light on our world, it

is the centrality of information processing in biological processes–including evolution, sensa-

tion, and cognition–that is most salient to me. There lies a wide gap between the abstract

beauty and technical precision of physics, and the comparatively complex, idiosyncratic, and

variegated realm of biology. The motivation behind this work has therefore been to explore

links between information theory and physics, with an eye toward the potential for such links

to bring a deeper understanding to biology.

My first projet, discussed in Sec. 1.1, Ch. 3, and Sec. 5.1, uses1 information theory to

make inferences about the non-equilibrium distributions of molecules that might have been

present on the early Earth, and helps to explain how appreciable quantities of biologically

important molecules could be found. The second project, discussed in Sec. 1.2, Ch. 4, and

Sec. 5.2, explores2 the limits of converting information to energy, and was originally conceived

as a way to abstract our conception of life to include hypothetical organisms that evolve to

metabolize information itself.

Neither of these projects would have been possible without the remarkable developments

in non-equilibrium statistical mechanics over the last 30 years. Perhaps the most important

of these is the generalization of free energy for non-equilibrium systems [103, 115], which I

review in Sec. 2.3. This result is essential for bounding the average work cost of information

processing tasks (see, e.g., Eq. 2.55). Another stunning achievement, although of less

direct relevance to the work presented here, is a generalization of the of the Second Law

due to Jarzynski [58] which takes the form of an equality: 〈e−W/kT 〉 = e−∆F/kT , where the

average is taken over trajectories through state space, given that the system is subject to a

1The text of these sections is taken from the manuscript “Non-equilibrium abundances for the building
blocks of life”, which was coauthored with Susanne Still and is currently under review at Physical Review
E.

2The text of these sections is taken from the paper “Physical limitations of work extraction from temporal
correlations”, which was coauthored with Susanne Still, Thomas E. Ouldridge, and Lee Altenberg. It is in
press at Physical Review E.
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fixed non-equilibrium driving protocol (for example, compressing a piston according to some

predefined schedule). Application of Jensen’s inequality reduces the Jarzynski expression

to the traditional statement that 〈W 〉 ≥ ∆F . The Jarzynski equality was later shown by

Crooks [30] to follow from the even more powerful statement that p(A→B)
p(B→A)

= eβ(W−∆F ), where

p(A→ B) is the probability of observing a particular trajectory through state space due to

a given driving protocol λ(t), and p(B → A) is the probability of getting the time-reversed

trajectory given that the protocol is time-reversed. That is, this relationship quantifies the

probability of observing the reversal of a process as a function of the amount of work that

is dissipated in the forward realization of the process, W − ∆F . In this way, the Crooks

theorem links precisely the emergence of an arrow of time with dissipation. It has been

experimentally verified [99, 28].

These developments and others have opened the door to understanding a wide range of

problems that were previously outside the purview of thermodynamics, two of which are

explored in this thesis. In the next two sections, I introduce these two projects in more

detail.

1.1 Non-equilibrium physics and the origin of life

Biology requires the coordination of many complex molecules to store and copy genetic infor-

mation, harness energy from the environment, and maintain homeostasis. The spontaneous

emergence of life thus hinges upon the abundances of such molecules in an abiotic environ-

ment. At first glance, statistical mechanics seems to pose a serious barrier: the high molecular

mass and structural specificity of many biomolecules severely limit their abundances in ther-

modynamic equilibrium and thus make the emergence of life implausible [36, 122, 72, 27, 21].

Many biomolecules require considerable free energy to form, and this leads to an exponential

suppression of their equilibrium concentrations.

The apparent severity of this problem, which appears under rather general considerations,

has motivated researchers to search for special environments, either extant or belonging to the

early Earth, which would be ideally suited for producing the necessary molecules in significant

quantities. Due to the free energy requirement, an essential feature of these environments is

that they include non-equilibrium driving of some kind [36, 72, 27, 21, 88, 7]. Some proposed

sources of this driving on prebiotic Earth are radiation [7, 88], temperature and ion gradients

[81, 7, 88, 70], concentration fluxes [4, 104], and electrical discharge [85]. Examples of such

environments include hydrothermal vent systems [105, 80, 50, 2], and the surfaces of minerals

[72]. Yet it remains an open question to what extent environmental conditions must be fine-
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tuned in order to give rise to life, and there is considerable uncertainty about the chemistry

of the early Earth [5, 24, 21].

In Ch. 3, we use a relatively new approach proposed by Crooks [31] which allows us

to explore how the abundances of life’s building blocks change away from thermodynamic

equilibrium on average, where the average is taken over all the possible ways the system

could be driven from equilibrium and depends only on a simple parametric measure of the

distance from equilibrium.

Our calculation does not hinge upon specific assumptions about the conditions that might

have created life, and therefore does not require significant knowledge about the early Earth.

The question we answer is more general: can we quantify how much non-equilibrium con-

ditions typically change the abundances of the complex molecules that life relies on? We

study this dependence for two simple models describing, respectively, the concentrations of

heavy amino acids, and their polymerization into peptides. The result is that away from

equilibrium, the abundance of rare molecules become, on average, increasingly favorable,

potentially boosted by many orders of magnitude. The specific forms of non-equilibrium

driving previously considered can thus be recognized as part of a much more general phe-

nomenon, whereby driving is expected on average to increase the probabilities of rare states

as one moves further from equilibrium. By dramatically augmenting the concentrations of

biologically important molecules without fine-tuning conditions, this effect makes the ap-

pearance of life on Earth a much more plausible event from the standpoint of statistical

mechanics.

1.2 Conversion of bits into work

Leo Szilard proposed a simple Gedankenexperiment almost 90 years ago to resolve the para-

dox of Maxwell’s demon, arguing that information about a system could be converted to

work by an automated mechanism, in place of a sentient being [113]. Szilard’s proposed

information engine cyclically repeats two distinct phases: that of acquiring information and

recording it into a stable memory, and that of using this information to extract work with

a given mechanism. This allowed him to compute a bound on the costs associated with

acquiring and recording information, necessary to prevent a violation of the Second Law

[113]. Various concerns, for example that a single particle could not be consistently treated

as an ideal gas and that the insertion of the barrier might cost work [59], have been allevi-

ated by doing a careful quantum mechanical treatment of the problem that arrives at the

3



same bounds [127]. More recently, an experimental verification of the Szilard engine was

performed using a charge excess to represent the “particle” on a pair of conducting plates

[69]. Many extensions to Szilard’s engine have also been explored in the literature, e.g.

[127, 62, 78, 66, 118, 97].

Independently, it was shown by Landauer that there are thermodynamic consequences to

logical irreversibility in computers [73], with kT ln(2) of dissipated heat for every erased or

discarded bit of information. Criticisms of Landauer’s results were extensively investigated

by Bennett [9, 11] and convincingly shown to be unwarranted. Landauer’s principle has since

been experimentally verified [13]. Please see Eq. 2.55 and the accompanying discussion for

a generalized form of Landauer’s bound that is set by the change in Shannon entropy of a

memory.

One type of information engine recently proposed by Mandal and Jarzynski exploits

a data-carrying tape to extract work from a single heat bath [76], by advancing along a

sequence of 0s and 1s that contains an overall bias towards either 0 or 1. In this case, a data-

carrying tape refers to any sequence of two-state systems with a degenerate Hamiltonian

and an energy barrier between the two states high enough to prevent thermally activated

transitions from one state to the other. A sequence of Szilard boxes is a convenient model

for such a tape. The device couples to one input bit at a time, and, whilst in contact with

the bit, undergoes free-running dynamics that can alter the bit. This interaction increases

the entropy of the tape upon output of the changed bit, and it is this entropy increase that

is used to compensate for the entropy decrease of the heat bath.

The device is qualitatively different from a traditional Szilard engine, where the ability

to do work arises from the correlation between the state of the gas and the state of the

memory, the latter being what informs the direction to move the partition. By contrast, the

ability to do work in the Mandal/Jarzynski device arises solely from the presence of having

a low-entropy medium (the tape) that is out of equilibrium with its environment, and whose

transformation toward an equilibrium distribution can therefore be used to do work. In this

sense, the interpretation of the information in the two types of device is somewhat different.

Another important difference is that while the Szilard engine can draw the full kT ln(2) per

bit that is available to it, the Mandal/Jarzynski device cannot. Rather, the more work it

draws the worse its efficiency, with perfect efficiency coinciding with the same limit in which

the drawn work goes to zero (see Fig. 2.3). Due to the fact that the Mandal/Jarzynski

device was originally presented in a rather abstract manner, and it is a predecessor to the

device described in Ch. 4, we present an explicit construction for such a device and analyze
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its behavior in Sec. 2.5.

Modern formulations of non-equilibrium thermodynamics naturally incorporate correla-

tions as a potential source of work (see e.g. [39]). The connection between correlations

and the ability to do work holds for quantum systems as well, with special difficulties and

advantages associated with quantum correlations [55, 93, 92, 23]. Extensions of the Man-

dal/Jarzynski device exploit statistical information within the tape in the form of temporal

correlations [19], or spatial correlations between tapes [83], rather than an overall bias in

the input bits. The resulting simple dynamical models of all these proposals help develop a

concrete physical understanding of the role information plays in thermodynamics. To serve

this purpose, it is important that these devices are physically realizable.

Real physical systems have underlying time-continuous dynamics. Moreover, whenever

the work extraction device is designed to operate without a time-dependent, externally-

applied driving protocol during the periods of interaction with an individual bit, then the

time-continuous dynamics must also be time-homogeneous and obey detailed balance to be

physical.

We explore in Ch. 4 how this fact constrains possible designs of the class of temporal

correlation powered devices proposed in [19], and some references therein. We find that

demanding underlying time-continuous, time-homogeneous dynamics drastically limits the

set of allowable transition matrices, thereby dramatically reducing the resulting efficiency

(Section 4.2).

We demonstrate this effect using two methods: first, by assessing the performance of

randomly generated transition matrices, and secondly via an evolutionary algorithm. In both

cases we assume that the dynamics are time-homogeneous, and examine how the performance

changes when we additionally enforce time-continuous dynamics. In Section 4.3 of Ch. 4, we

show that the drastic efficiency limitations arising from enforcing time-continuous dynamics

disappear when transition rates are modulated by external manipulation, which is allowable

when the restriction to time-homogeneous dynamics is lifted.

5



CHAPTER 2

BACKGROUND

2.1 Information theory

Claude Shannon introduced in 1948 his “Mathematical theory of communication”, now

known as information theory [102]. Shannon was concerned primarily with the reliabil-

ity with which information could be transmitted from a source to a receiver. This requires a

suitable measure of information. Suppose that the source consists of a set of symbols labeled

by integers {1, ..., N}, and that the ith symbol is emitted with probability pi. How much

information is conveyed upon receipt of symbol i? Shannon reasoned that any meaningful

information measure must satisfy the following properties:

• It must be a continuous function of the probability pi

• It must be a monotonically decreasing function of pi . This captures the intuition that

we learn more from a surprising, i.e. improbable outcome than an unsurprising one.

• The information gained by two symbols given independently and in succession is equal

to the sum of the information gained by each symbol individually.

Shannon proved [102] that the only function satisfying all three of these properties is the so

called surprisal −k log pi, for some constant k. The information conveyed by the source as a

whole is then given by the expectation value of the surprisal

S = −k
N∑
i=1

pi log pi. (2.1)

This is the famed Shannon entropy or Shannon information. Two connections with the use

of entropy in physics become immediately clear. For one, if the ergodicity assumption is

invoked, i.e. pi = 1/N for all i, and k is set equal to the Boltzmann constant, then S reduces

to the definition of entropy introduced by Boltzmann, S = k logN . Second, von Neumann

argued [121] that the entropy of a mixed quantum system with density operator ρ is given

by S = −Tr(ρ log ρ), where the logarithm of an operator is defined in terms of the Taylor

expansion of the logarithm. It is straightforward to show that the von Neumann entropy

6



of ρ is equal to the Shannon entropy of its eigenvalues. A major theme of this thesis is the

exploration of further, often surprising and profound links between information theory and

physics.

2.1.1 The source coding theorem

To further motivate the use of Shannon information in the context of information theory,

I prove here one of the most important results of information theory, the source coding

theorem. The source coding theorem is concerned with the minimal number of symbols

needed to encode a source with negligible probability of misidentification. For a source of k

input symbols, we might naively think that we require k output symbols to encode the source.

However, if we allow small probabilities for errors, then depending on the probabilities pi

with which the symbols occur, it might in fact be possible to encode the source with a

significantly reduced alphabet. The source coding theorem quantifies the limits to this task

and in doing so, gives an operational meaning to the Shannon information.

To proceed, suppose we encode whole strings of symbols, N at a time, rather than in-

dividual symbols. This will ultimately lead to an evaluation of the bit cost per individual

symbol. Our aim is to compress the set of length-N strings coming from the source by ne-

glecting to encode some of the more improbable strings we might see from the source. Let

AN denote the set of length-N strings generated by a single-symbol alphabet A, and let δ

represent the probability that there is no encoding for outcome x ∈ AN . Let Tδ denote the

smallest subset (there are potentially multiple choices) such that p(x ∈ Tδ) ≥ 1− δ, and let

S denote the Shannon entropy of the source.

Source coding theorem. Given ε > 0 and 0 < δ < 1, there exists a positive integer N0

such that for N > N0

| 1

N
Sδ(X

N)− S |< ε, (2.2)

where XN is the ensemble of length-N strings, and Sδ(X
N) is the entropy of the ensemble

of strings belonging to Tδ. For long enough strings the approximation Sδ(X
N) ≈ NS can be

made arbitrarily accurate, so long as any error probability δ is tolerated. In other words, we

can compress length-N strings from the source down to NS bits, or equivalently, length-N

strings can be encoded using 2NS symbols with negligible error, but no further.
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I now prove the source coding theorem. The proof is outlined in [75], but takes several

important theorems from statistics as given. I follow the proof in [75] and fill in the missing

details where they are needed.

Lemma 1. Let t be a non-negative real random variable and let α be a positive real number.

Then p(t ≥ α) ≤ t̄
α

.

Proof: p(t ≥ α) =
∑

t≥α p(t) ≤
∑

t≥α p(t)
t
α
≤ t̄

α
.

Lemma 2: Chebyshev’s inequality. Let x be a random variable and α a positive real

number. Then

p
[
(x− x̄)2 ≥ α

]
≤ σ2

x/α. (2.3)

Proof: Follows directly from Lemma 1 with t = (x− x̄)2.

Lemma 3: Weak law of large numbers. Let x be the sample average of n independent

random variables h1, h2, ..., hn. Let each variable have the same mean h̄ and variance σ2
h.

Then x̄ = h̄, σ2
x = σ2

h/n, and

p
[
(x̄− h̄)2 ≥ α

]
≤ σ2

h

nα
. (2.4)

Proof: We begin with the result that x̄ = h̄. We first prove the slightly more general state-

ment that a1h1 + a2h2 + ...anhn = (a1+a2+...an)h̄ for any real numbers {ai}, from which the

statement follows by setting ai = 1/n for all i. This result will be be useful later on. It follows

directly from the linearity of the expectation value: ax =
∑

i p(axi)(axi) = a
∑

i p(xi)xi = ax̄

and x1 + x2 =
∑

s=x1+x2
p(x1 + x2)(x1 + x2) =

∑
s,x1

p(x1)p(x2 = s − x1)(x1 + x2) =∑
x1,x2

p(x1)p(x2)(x1 + x2) = x̄1 + x̄2.

The proof that σ2
x = σ2

h/n is a bit more involved. First, we prove that for independent

variables h1 and h2 with common mean h̄

V ar(a1h1 + a2h2) = a2
1V ar(h1) + a2

2V ar(h2). (2.5)
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Let s = a1h1 + a2h2. Then by the same argument as before,
∑

s p(s) =
∑

h1,h2
p(h1)p(h2).

With this fact, and invoking the previous result that a1h1 + a2h2 = (a1 + a2)h̄, we have

V ar(s) =
∑

h1,h2
p(h1)p(h2)

[
a1h1 + a2h2 − (a1 + a2)h̄

]2
. We focus for now on the argument

in the sum:
[
a1h1 + a2h2− (a1 + a2)h̄

]2
= (a1h1 + a2h2)2− 2(a1h1 + a2h2)h̄+ (a1 + a2)2h̄2 =

a2
1(h1 − h̄)2 + a2

2(h2 − h̄)2 + 2a1a2(h1 − h̄)(h2 − h̄). Substituting each of these back into the

sum gives V ar(s) = a2
1V ar(h1) + a2

2V ar(h2) + 2a1a2

∑
h1,h2

p(h1)p(h2)(h1 − h̄)(h2 − h̄). The

last sum is the covariance of two independent variables and can easily be evaluated to zero.

We now consider the case that ai = 1/n for all i, and prove that σ2
x = σ2

h/n with induction.

The base case follows trivially from Eq. 2.5. Define sn to be the sum of h1 through hn. For

the inductive hypothesis, we invoke Eq. 2.5 to get V ar( sn+hn+1

n+1
) = V ar( n

n+1
sn
n

+ hn+1

n+1
) =

( n
n+1

)2V ar( sn
n

) + ( 1
n+1

)2V ar(hn+1) = ( n
n+1

)2 σ
2
h

n
+ ( 1

n+1
)2σ2

h =
[
( n
n+1

)2 1
n

+ ( 1
n+1

)2
]
σ2
h = σh

n+1

as desired. This completes the proof that σ2
x = σ2

h/n. Finally, substituting x̄ = h̄ and

σ2
x = σ2

h/n into the Chebyshev inequality Eq. 2.3, we have the weak law of large numbers

Eq. 2.4. It states that by choosing n large enough, the probability of obtaining a difference

between the sample mean x̄ and the true mean h̄ greater than some tolerance
√
α can be

made arbitrarily small.

Returning now to the proof of the source coding theorem, we define a “typical” subset

of the strings x ∈ AN , given parameters β and N , as

TNβ = {x | (− log p(x)

N
− S)2 < β2}. (2.6)

By applying the law of large numbers Eq. 2.4 to the average − log p(x)
N

= −1
N

log(
∏N

i=1 xi) =
−1
N

∑N
i=1 log(xi) we get

p(x ∈ TNβ) ≥ 1− σ2

Nβ2
, (2.7)

where xi is the ith symbol in the string and σ2 is the variance of the variable − log x (recall

that the symbols in the string are assumed to be independent and identically distributed).

Note that from the definition of the typical set Eq. 2.6, and assuming that we are measuring

entropy using a logarithm of base 2, we have that the probability of any string belonging to

the set is bounded by
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2−N(S+β) < p(x) < 2−N(S−β). (2.8)

Source coding theorem part 1: 1
N
Sδ(X

N) < S + ε. Since the total probability of

belonging to TNβ is at most 1 and by Eq. 2.8 each element has probability at least 2−N(S+β),

we have | TNβ | 2−N(S+β) < 1. Therefore

| TNβ |< 2N(S+β) (2.9)

and so log | TNβ |< N(S+β). log | TNβ | is an upper bound for the entropy STNβ(XN) of the

ensemble of strings belonging to TNβ, because the entropy is maximal and equal to logW

when a set of W possible outcomes each have equal probability. Combining these facts gives

STNβ(XN) ≤ log | TNβ |< N(S + β). (2.10)

Setting β = ε and σ2

ε2N0
≤ δ, we have from Eq. 2.7 that p(x ∈ TNβ) ≥ 1 − δ. We thus

recognize TNβ = TNε as an example of one of the “smallest sufficient subsets” Tδ that we

sought. Combining this fact with Eq. 2.10 completes this half of the source coding theorem;

by ignoring strings that do not belong to TNε we can encode all the strings in TNε at bit cost

less than N(S + ε) while incurring a probability of failure (that is, of seeing a string that

doesn’t belong to TNε and for which we don’t have an encoding) less than δ.

Source coding theorem part 2: 1
N
Sδ(X

N) > S − ε. We prove this by contradiction.

Assume that for any N there exists a subset T ′ which is smaller than TNβ and for which the

probability of error remains less than δ. The probability of belonging to this alternate set is

p(x ∈ T ′) = p(x ∈ T ′ ∩ TNβ) + p(x ∈ T ′ ∩ T cNβ) (2.11)

where T cNβ is the complement of TNβ. Since T ′ is assumed to be smaller than TNβ, we

assume its cardinality has an upper bound | T ′ |≤ 2N(S−2β) (recall Eq. 2.9). By Eq. 2.8,

p(x ∈ T ′ ∩ TNβ) is upper bounded by

p(x ∈ T ′ ∩ TNβ) < 2N(S−2β) · 2−N(S−β) = 2−Nβ. (2.12)
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The maximum value of the second term in Eq. 2.11 is given by

p(x ∈ T ′ ∩ T cNβ) ≤ p(x /∈ TNβ) =
σ2

β2N
. (2.13)

Combining Eqs. 2.11,2.12, and 2.13 we have

p(x ∈ T ′) ≤ 2−Nβ +
σ2

β2N
. (2.14)

Thus, p(x ∈ T ′) is a decreasing function of N , and by choosing N0 large enough we can

ensure that for N > N0, p(x ∈ T ′) < 1− δ, invalidating the assumption that T ′ could serve

as a sufficient subset Tδ. This completes the proof of the source coding theorem.

2.1.2 The Kullback-Leibler divergence and mutual information

We now introduce an important quantity from information theory known as the Kullback-

Leibler divergence or relative entropy:

D(ρ || φ) ≡
∑
i

ρi ln
ρi
φi

(2.15)

where ρ and φ are distributions. We define D(ρ || φ) in terms of the natural logarithm rather

than a logarithm of base 2 due to the fact that it will be more convenient for our uses, but

this only changes D(ρ || φ) by a constant factor. The non-negativity of the Kullback-Leibler

divergence is essential to its use in Sec. 2.3 and Ch. 3. We now take a minor detour to prove

this fact.

Non-negativity of the Kullback-Leibler divergence: D(p || q) ≥ 0 with equality if and

only if p = q.

Proof: We first establish a special case of Jensen’s inequality, 〈lnx〉 ≤ ln〈x〉 (angled brackets

denote expected value):
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〈lnx〉 − ln〈x〉 = 〈ln x

〈x〉
〉 (2.16)

≤ 〈 x
〈x〉
− 1〉 (2.17)

=
〈x〉
〈x〉
− 1 = 0 (2.18)

where we used in the second line that ln y ≤ y− 1 for all y, with equality when when y = 1.

This establishes the result. From here the non-negativity of the Kullback-Leibler divergence

follows easily:

−D(p || q) =
∑
i

pi ln
qi
pi

(2.19)

≤ ln
∑
i

pi
qi
pi

(2.20)

= ln
∑
i

qi = 0. (2.21)

Another important quantity in information theory is the mutual information between two

variables,

I[X;Y ] = D(PXY || PXPY ) (2.22)

=
∑
x,y

p(x, y) ln
p(x, y)

p(x)p(y)
(2.23)

= S(X) + S(Y )− S(X, Y ) (2.24)

where PXY denotes the joint distribution of variables X and Y , and PX ,PY are the associated

marginal distributions. The joint entropy S(X, Y ) is defined by S(X, Y ) = −
∑

x,y p(x, y) ln p(x, y).

The mutual information measures the reduction in uncertainty about one variable when one

has access to the other, and is symmetric with respect to the two variables:

12



I[X;Y ] = H[X]−H[X|Y ] (2.25)

= H[Y ]−H[Y |X] (2.26)

where H[X|Y ] ≡ −
∑

x,y p(x, y) ln p(x|y). These equivalent expressions for the mutual infor-

mation can easily be established through application of Bayes’ Rule. By Eq. 2.22 the mutual

information inherits non-negativity from the Kullback-Leibler divergence. This will prove

useful in Sec. 2.3.

2.2 MaxEnt and statistical physics

E.T. Jaynes showed in his seminal work [61] that the Boltzmann distribution of equilibrium

statistical mechanics could be derived using information theory. This approach naturally

connects Shannon entropy S = −
∑

i pi ln pi with the thermodynamic entropy. Jaynes con-

sidered the distribution of states in an equilibrium system as an inference problem. That

is, given that we cannot possibly hope to provide a complete microscopic description of a

macroscopic system, the best we can do is to give probabilities for the various states of the

system. How should these probabilities be assigned? Clearly, they must be chosen in such

a way that the macroscopic properties of the system under observation are recovered. More

concretely, suppose that we have measured the average energy of the system to be 〈E〉.
Then, whatever distribution we assign, a necessary requirement is that

〈E〉 =
∑
i

Eipi. (2.27)

Yet this is just one constraint; for macroscopic systems our description would still be woefully

under-constrained. Jaynes’ insight was that the distribution we assign to the system should

not contain any information we do not actually have access to. In other words, we want to

assign probabilities that reflect maximum possible ignorance of the system (i.e. a distribution

as uniform as possible), while enforcing constraints based on the knowledge we do have, which

take the form of ensemble averages. Maximizing our ignorance is equivalent to maximizing

the Shannon entropy of the system. This procedure suggests the following objective function

to be maximized:
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L = −
∑
i

(pi ln pi − λ0pi − λ1Eipi) (2.28)

where λ0 is associated with the normalization constraint
∑

i pi = 1 and λ1 with the constraint

that 〈E〉 =
∑

iEipi. Setting the derivative with respect to pi of the argument to zero gives

− ln pi − 1− λ0 − λEi = 0. (2.29)

Solving for pi gives

pi ∝ e−λEi (2.30)

with the proportionality constant set by normalization. Finally, we recognize λ as corre-

sponding with the inverse temperature of the system.

The idea that we should maximize Shannon entropy–subject to appropriate constraints–

when modeling systems for which our knowledge is incomplete is now known as MaxEnt, and

has been used with remarkable success to describe a wide variety of disparate systems [106,

64], including for example the distributions of species in an ecosystem [49], the distribution

of spiking patterns in a neural population [116], and the distribution of antibody sequences

in the immune system [86].

2.3 Non-equilibrium free energy

For transitions between equilibrium states, the Second Law says that the work required to

effect the change is bounded by the change in free energy of the system: W ≥ ∆F . How must

this expression be modified when the initial and final states are not in thermal equilibrium?

It turns out that there is a state function Fneq, such that W ≥ ∆Fneq for transitions between

non-equilibrium states. Thus, there is a natural generalization of the free energy for non-

equilibrium systems. We prove the statement W ≥ ∆Fneq for an appropriately defined Fneq

in this section, following the derivation given in [115].

Consider an isolated system consisting of two subsystems A and B in contact with one

another. Let X = (x, y) denote the state of the joint system. The total Hamiltonian for the

system is given by
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Ht(X) = H(X, θt) = H(A)(x, at) +H(B)(y, bt) +H(I)(x, y) (2.31)

where θt = (at, bt) are time-dependent parameters that describe external manipulations

applied to the system. We assume that at the beginning (t = 0) and end (t = T ) of the

protocol that the interaction term H(I)(x, y) is turned off. At each moment in time, the

system has an associated equilibrium distribution

ρeq,t(X,α) = eα(Ft(α)−Ht(X)) (2.32)

where as usual Ft(α) ≡ −α−1 lnZ and Z =
∑

X e
−αHt(X). α plays the role of an inverse

temperature, and we have absorbed the Boltzmann constant into it for convenience. We de-

fine the entropy of any distribution ρt to be the Shannon entropy S = −
∑

X ρt(X) ln ρt(X).

Note that in equilibrium we recover the usual relationship between entropy, energy, and free

energy:

S(ρeq,t) = −
∑
X

ρt(X) ln ρt(X) (2.33)

= −
∑
X

ρt(X)α
[
Ft(α)−Ht(X)

]
(2.34)

= 〈Et〉 − αFt(α) (2.35)

where 〈Et〉 ≡
∑

X ρt(X)Ht(X). Since the system as a whole is isolated, any changes to its

total energy over the duration of the external protocol running from t = 0 to t = T are due

to work. We therefore have

W = 〈ET 〉 − 〈E0〉. (2.36)

Due to the fact that free energy is at a minimum in equilibrium, we have at the end of the

protocol the inequality

〈E(B)
T 〉 ≥ F

(B)
T (α) + α−1S

(B)
T . (2.37)
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From the non-negativity of the mutual information we have S
(A)
T +S

(B)
T −ST = S

(A)
T +S

(B)
T −

S0 ≥ 0, where ST denotes the entropy of the total system at time T , and we have used

the fact that the total entropy is conserved under Hamiltonian dynamics. This means that

S
(B)
T ≥ S0 − S(A)

T . We use this result to extend the inequality in Eq. 2.37 to

〈E(B)
T 〉 ≥ F

(B)
T (α) + α−1S0 − α−1S

(A)
T . (2.38)

Before bounding the work cost of the protocol, one more observation is needed. That is,

D(ρt || ρcan,t) =
∑
i

ρt(i) ln
ρt(i)

ρcan,t(i)
(2.39)

= −St −
∑
i

ρt(i)α
[
Ft(α)−Ht(i)

]
(2.40)

= −St − αFt(α) + α〈Et〉. (2.41)

Altogether, we have for the work cost

W = 〈ET 〉 − 〈E0〉 (2.42)

= 〈E(A)
T 〉+ 〈E(B)

T 〉 − 〈E0〉 (2.43)

≥ 〈E(A)
T 〉+ F

(B)
T (α)− 〈E0〉+ α−1S0 − α−1S

(A)
T (2.44)

where we have used the fact that at the beginning and end of the protocol there is assumed

to be no interaction Hamiltonian. We used Eq. 2.38 in line 3. Now, by applying Eq. 2.41,

we replace the 〈E(A)
T 〉−α−1S

(A)
T term with α−1D(ρ

(A)
T || ρ(A)

can,T ) +F
(A)
T (α). The same is done

to replace −〈E0〉 + α−1S0 with −α−1D(ρ0 || ρcan,0)− F0(α). Substituting these expressions

into Eq. 2.44 we get
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W ≥ F
(A)
T (α) + F

(B)
T (α)− F0(α) + α−1D(ρ

(A)
T || ρ(A)

can,T )− α−1D(ρ0 || ρcan,0) (2.45)

= FT (α)− F0(α) + α−1D(ρ
(A)
T || ρ(A)

can,T )− α−1D(ρ0 || ρcan,0) (2.46)

= ∆F (α) + α−1D(ρ
(A)
T || ρ(A)

can,T )− α−1D(ρ0 || ρcan,0) (2.47)

where we used once again that when the interaction Hamiltonian is turned off energies and

entropies factor. We are interested in the special case where system B is effectively infinite

and serves as a thermal reservoir at temperature T that stays in equilibrium throughout the

duration of the protocol. In this case we have

D(ρ0 || ρcan,0) = D(ρ
(A)
0 ρ

(B)
can,0 || ρ

(A)
can,0ρ

(B)
can,0) (2.48)

=
∑
i,j

ρ
(A)
0 (i)ρ

(B)
can,0(j) ln

ρ
(A)
0 (i)ρ

(B)
can,0(j)

ρ
(A)
can,0(i)ρ

(B)
can,0(j)

(2.49)

=
∑
i,j

ρ
(A)
0 (i)ρ

(B)
can,0(j) ln

ρ
(A)
0 (i)

ρ
(A)
can,0(i)

(2.50)

= D(ρ
(A)
0 || ρ(A)

can,0) (2.51)

and so Eq. 2.47 reduces to

W ≥ ∆F (A) + T
[
D(ρ

(A)
T || ρ(A)

can,T )−D(ρ
(A)
0 || ρ(A)

can,0)
]
. (2.52)

This equation motivates the introduction of a new state function

Fneq ≡ Feq + TD(ρ || ρcan) (2.53)

which bounds the work cost of transitions between non-equilibrium states and naturally

generalizes the equilibrium free energy. A protocol capable of saturating the bound is given
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in [115], which establishes that the bound is tight. The second term TD(ρ || ρcan) can

be understood as the amount of work potential that would be dissipated if the system

were to relax to equilibrium (see the discussion at the end of the next section), where

D(ρcan || ρcan) = 0. Eq. 2.53 can also be written

Fneq(ρ) = 〈E〉ρ − TS(ρ) (2.54)

where ρ is any distribution and S(ρ) is its Shannon entropy. Thus, by replacing the Boltz-

mann entropy with the Shannon entropy, we obtain a version of the free energy that remains

valid for non-equilibrium systems and that reduces to the standard free energy when ρ is an

equilibrium distribution. We make use of the non-equilibrium free energy in Ch. 3,2.5, and

4.

An important consequence of Eq. 2.52 is that it allows us to bound the cost of general in-

formation processing tasks. That is, processing information generally involves transforming

one distribution ρ into another distribution ρ′. For example, erasure involves the trans-

formation of some distribution ρ into a predefined state whose probability is thereafter 1.

Logic gates also effect transformations on distributions of input bits. Assuming a degenerate

Hamiltonian, the cost of any such transformation is bounded as

W ≥ T
[
S(ρ)− S(ρ′)

]
. (2.55)

Eq. 2.55 was recently used to estimate a lower bound on the cost of synthesizing proteins in

cells [65], given that it involves a random soup of amino acids getting converted to a bound

polymer with a definite sequence. It was found that cells perform this task at an efficiency

within a factor of about 20 of the Landauer limit. Remarkably, this is roughly 5 orders of

magnitude more efficient than our best supercomputers [65].

It is worth noting that Eq. 2.52 and by extension Eq. 2.55, hold for quantum systems as

well [40, 38, 57, 23]. Generalizations in the quantum regime have also been provided for the

case in which one cares about single-shot bounds rather than average behavior [41, 42].
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2.4 Some relevant results from stochastic thermody-

namics

Stochastic thermodynamics is a powerful framework for describing systems out of equilib-

rium. In this framework, the distribution of states is allowed to evolve in time under the

action of a transition matrix, which may itself be time-dependent. With the right definitions,

the usual laws of thermodynamics can naturally be extended to this framework. This section

is based on the review given in [119].

Let pm denote the probability of occupying state m, and Wm,m′ denote the rate at which

transitions are made from m′ to m. The time evolution of pm is given by a master equation

ṗm =
∑
m′

Wm,m′pm′ −Wm′,mpm (2.56)

=
∑
m′

Jm,m′ (2.57)

where the flux Jm,m′ ≡ Wm,m′pm′ −Wm′,mpm. We can simplify Eq. 2.58 by defining Wm,m =

−
∑

m′ 6=mWm′,m. Then Eq. 2.58 becomes

ṗm =
∑
m′

Wm,m′pm′ . (2.58)

This is the convention used in Ch.4. The new matrix W comprised of the rates Wm,m′

has the property that the sum of each column is equal to zero; this ensures conservation

of probability. This property also guarantees the existence of a steady state distribution

ṗstm = 0, to which the system will eventually relax. Let εm denote the energy of state m.

Then the energy of the system is given by

E =
∑
m

pmεm (2.59)

and its time derivative splits into two separate contributions to the change in energy:

Ė =
∑
m

ṗmεm + pmε̇m, (2.60)
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which are identified with the work and heat fluxes

Q̇ ≡
∑
m

ṗmεm (2.61)

Ẇ ≡
∑
m

pmε̇m. (2.62)

That is, heat is associated with changes to the occupancies of the states, and work is associ-

ated with the external manipulation of energy levels. With these definitions, the First Law

takes the form

Ė = Q̇+ Ẇ . (2.63)

Physical consistency also demands that the rate matrix W satisfies the condition of detailed

balance (we will demonstrate why shortly) at each moment:

Wm,m′(t)p
eq
m′(t) = Wm′,m(t)peqm(t) (2.64)

where peqm = eβ(F−εm) refers to the equilibrium, steady state distribution to which the system

must eventually relax if the rate matrix is held fixed. A matrix that satisfies detailed balance

is known as a reversible matrix. The condition means that in equilibrium, there cannot be

any net flux from one state to another. This is closely related to the notion that in equilibrium

there is no arrow of time, whose existence requires dissipation (see [30] for precise details).

Eq. 2.64 also implies that changing energy levels must alter the transition rates.

As before, we use the Shannon entropy

S = −kB
∑
m

pm ln pm (2.65)

where pm is a solution to the master equation Eq. 2.58 and kB is Boltzmann’s constant.

From Eq. 2.65 the rate of change of the entropy is
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Ṡ = −kB
∑
m

ṗm ln pm + ṗm (2.66)

= −kB
∑
m

ṗm ln pm (2.67)

where we have used that
∑

m ṗm must be 0 by conservation of probability. Substituting Eq.

2.58 into Eq. 2.66 gives

Ṡ = −kB
∑
m,m′

Wm,m′pm′ ln pm (2.68)

=
1

2
kB
∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
pm′

pm
(2.69)

where the terms with factors of ln pm′ and − ln pm each sum to the same thing because

swapping indices introduces a minus sign; this is the reason for the factor of 1/2 out front.

Multiplying
pm′
pm

by
Wmm′Wm′m
Wm′mWmm′

= 1 and substituting into the log in Eq. 2.69 gives (we will

drop the factor of kB for simplicity from now on)

Ṡ =
1

2

∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
Wmm′pm′Wm′m

Wm′mpmWmm′
(2.70)

=
1

2

∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
Wmm′pm′

Wm′mpm
(2.71)

+
1

2

∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
Wm′m

Wmm′
(2.72)

= Ṡi + Ṡe (2.73)

where we have defined the entropy production Ṡi as

Ṡi =
1

2

∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
Wmm′pm′

Wm′mpm
(2.74)
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and the entropy flow Ṡe as

Ṡe =
1

2

∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
Wm′m

Wmm′
. (2.75)

The entropy production Ṡi is the irreversible contribution to the change in entropy and

satisfies Ṡi ≥ 0 because (x− y) ln x
y
≥ 0. It is positive whenever detailed balance is broken,

i.e. when the system is out of equilibrium. We can recognize the entropy flow Ṡe as the

reversible contribution coming from the flow of heat using Eq. 2.64:

ln
Wm′m
Wmm′

= ln
peqm′

peqm
(2.76)

= β
[
F − εm′

]
− β

[
F − εm

]
(2.77)

= β(εm − εm′) (2.78)

= βqm,m′ (2.79)

where qm,m′ is the heat associated with a jump from state m′ to m (recall the definition of

the heat coming from Eq. 2.61).

We can gain further insight by decomposing the entropy production Ṡi as follows:

Ṡi = Ṡa + Ṡna (2.80)

where the adiabatic entropy production Ṡa and non-adiabatic entropy production Ṡna are

defined by

Ṡa =
1

2

∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
Wmm′p

st
m′

Wm′mpstm
(2.81)

and
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Ṡna =
1

2

∑
m,m′

[
Wm,m′pm′ −Wm′,mpm

]
ln
pm′p

st
m

pmpstm′
. (2.82)

We see from Eq. 2.82 that the non-adiabatic entropy production vanishes when the system

is in steady state (which is not necessarily equilibrium), and is therefore associated with

the relaxation to steady state. On the other hand, from Eq. 2.81 we see that the adiabatic

entropy production persists in steady state if the steady state is not the equilibrium distri-

bution (recall the detailed balance condition Eq. 2.64), and vanishes only if the system is in

equilibrium. Ṡna can also be written (recall the definition of the Kullback-Leibler divergence

given in Eq. 2.15)

Ṡna = −Ḋ(pm || pstm) (2.83)

= − d

dt

∑
m

pm ln
pm
pstm

(2.84)

= −
∑
m

ṗm ln
pm
pstm
. (2.85)

We now show that Ḋ(pm || pstm) ≤ 0 and by extension Ṡna ≥ 0:
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Ḋ(pm || pstm) =
∑
m

ṗm ln
pm
pstm

(2.86)

=
∑
m,m′

Wm,m′pm′ ln
pm
pstm

(2.87)

=
1

2

∑
m,m′

Wm,m′pm′ ln
pmp

st
m′

pm′pstm
(2.88)

=
1

2

∑
m,m′;m6=m′

Wm,m′pm′ ln
pmp

st
m′

pm′pstm
(2.89)

≤ 1

2

∑
m,m′;m 6=m′

Wm,m′pm′
[pmpstm′
pm′pstm

− 1
]

(2.90)

=
1

2

∑
m,m′

Wm,m′pm′
[pmpstm′
pm′pstm

− 1
]

(2.91)

= 0 (2.92)

where we used once again that lnx ≤ x−1 with equality when x = 1 (we show the restricted

sum in the fourth and fifth lines so that taking a log of 0 is avoided). The bound is thus

saturated if and only if the distribution is in steady state. That is, D(pm || pstm) decreases

in value until steady state is reached, and its rate of change is the negative of the non-

adiabatic entropy production. This validates our earlier claim at the end of section 2.3 that

D(pm || peqm) is an additional contribution to the equilibrium free energy that corresponds

with the amount of energy that would be dissipated to the environment if the system were

allowed to relax to equilibrium.

2.5 An explicit design for a device that can extract

work from an information tape

In this section, we provide an explicit example of a device that can use an excess of 1s or 0s

in an input tape to extract work from a heat bath. The idea is that during the operation

of the device the frequencies of 1s and 0s is shifted towards being more even, and so the
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increase in entropy of the tape is analogous to the transfer of heat from a hot to a cold

reservoir in a traditional heat engine. Note that the type of information used by such a

device is different from the information utilized by a Szilard engine [114]. In the former, it

is a statistical excess of 1s or 0s that serves as a source of “fuel”, whereas in a Szilard engine

the ability to extract work arises from correlation between bits (specifically, between the bit

stored by the memory and the bit reflecting the position of the particle).

A more abstract description of such a device is given in [76], and we show that it can be

implemented with a Gedenkenexperiment that extends the Szilard engine. Let each site on

the input “tape” be a rectangular box with an impermeable barrier down the middle that

separates the box into two equally sizes cubes. A single particle of gas resides in one or the

other cube, with the other cube empty. Let the initial distribution describing which of the

two sides of the box the particle resides in be denoted by p. The boxes sit in a sequence,

with the particle locations independent and identically distributed. The axis along which we

define left and right is perpendicular to the length of the tape. The operation of the work

extraction device is as follows:

• Step 1: A step of height h is raised quasi-statically on the right side of the box, com-

pressing its volume from l3 to l2(l−h), where l is the side length of the cubic half-box.

If we let the symbol 1 denote the right side of the box, then from the ideal gas law

we have Win = p1kT ln l3

l2(l−h)
= p1kT ln l

l−h per input site must be drawn from a work

reservoir to raise the step, where p1 is the initial probability of finding the particle on

the right side of the partition1.

• Step 2: The partition running down the middle of the box is removed, and the particle

is given time to relax to its equilibrium distribution, which we denote by peq.

• Step 3: The partition is reinserted.

• Step 4: The step is quasi-statically lowered, and in the process Wout = peq1 kT ln l
l−h per

site is added to the work reservoir.

1We write all work expressions as positive quantities, and state explicitly whether they correspond to
energy added to or taken from the work reservoir.
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• Step 5: The device advances to the next site on the tape and the process is repeated.

Figure 2.1: The sequence of events leading to positive work extraction. Initially, the input
box has a particle on the left side of the partition, indicating a “0” bit. A step is then raised
on the right side of the partition at no work cost. The partition is removed and the particle
relaxes to equilibrium, filling the available volume with uniform probability. The partition
is then reinserted, trapping the particle on the right hand side with probability equal to the
volume fraction of the right side. Finally, the step is lowered, extracting work in the process.
In contrast, if the particle begins and ends on the same side the total cost/gain in work is
zero, while if it begins on the right and ends on the left there is net loss.

These steps are displayed schematically in Fig. 2.1. Altogether, the average change in energy

of the work reservoir during a single cycle of operation on an input site (steps 1-4) is

Wtotal = Wout −Win = (peq1 − p1)kT ln
l

l − h
(2.93)

= (peq1 − p1)kT ln
1

1− y
(2.94)

= (peq1 − p1)E. (2.95)
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In the second line we set l to be 1 and dimensionless, and introduced y to denote h expressed

in these units. In the third line we defined E ≡ kT ln 1
1−y to be the work that is extracted

when a bit is flipped from 0 to 1, i.e. when a particle initially found on the left side of the box

is trapped on the right at the end of the protocol. Note that the equilibrium distribution peq

is the distribution of bits on the output tape. Eq. 2.95 then reflects the same work extraction

capability as the Mandal/Jarzynski demon [76].

The equilibrium probability of finding the particle on the right side of the box, peq1 , is

simply the fraction of the box’s volume that is taken up by the right side while the step is

raised:

peq1 = l2(l−h)
l2(l−h)+l3

=
l − h
2l − h

(2.96)

=
1− y
2− y

(2.97)

=
e−E/kT

1 + e−E/kT
. (2.98)

Our choice of E thus re-expresses peq as a Boltzmann distribution for an effectively two-state

system with energy 0 on the left side of the box and energy E on the right hand side of the

box. Substituting Eq. 2.98 into Eq. 2.95, we can re-express the net work entirely in terms of

the initial probability of residing on the right side p1, the temperature of the environment

T , and E:

W (E) = E
[ e−E/kT

1 + e−E/kT
− p1

]
. (2.99)

We show a plot of this function for various values of p1 in Fig. 2.2. In Fig. 2.3 we show the

maximum work that can be extracted as a function of p1, as well as the associated change in

entropy of the particle over the cycle. The maximum work must be calculated numerically,

because setting the derivative of Eq. 2.99 equal to 0 results in a transcendental equation.

Additionally, we may consider the cost of resetting the tape, so that it may be fed back into
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Figure 2.2: Plots of the net gained work W as a function of E (equation 2.99) for various
values of p1, starting at the top with p1 = 0 and increasing in equally sized steps to p1 = 1/2.
Note that when p1 ≥ 1/2 net work extraction becomes impossible, as is demanded by the
Second Law. kT has been set here to 1. Note that having a finite step size means that the
distribution at the end of the process can never reach peq0 = peq1 = 1/2, and thus the machine
described here cannot extract all the available fuel in the tape.

the device. That is, we want to spend some work to convert the distribution of bits on the

output tape from peq back to p. To accomplish this, we must raise a step of the appropriate

size so that p becomes the equilibrium distribution. The procedure involves the following

steps:

• Step 1: A step of height yreset is raised on the right side. In this process Win,reset per

input site is drawn from the work reservoir. yreset is chosen so that p is the equilibrium

distribution of the associated Hamiltonian.

• Step 2: The partition is removed, and the particle is given time to relax to its equilib-

rium distribution, which is p by design.

• Step 3: The partition is reinserted. The step is lowered, with associated addition to
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Figure 2.3: The maximum amount of work that can be extracted as a function of p1 is shown
in blue. The associated change in entropy ∆H = H(peq)−H(p) of the particle is shown in
orange.

the work reservoir Wout,reset.

• Step 4: The reset box is returned to the input queue, and a newly outputted box is

given to the reset device.

The total cost is given by the sum of the contributions from Step 1 and Step 3. Since yreset

is chosen so that p is the equilibrium distribution, we have p1 = 1−yreset
2−yreset (recall Eq. 2.97).

Solving for yreset, we have yreset = 1−2p1
1−p1 . The total average work cost per site of this step is

then

Win,reset = peq1 kT ln
1

1− yreset
(2.100)

= peq1 kT ln
1− p1

p1

. (2.101)
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Note that if p1 > 1 − p1, i.e. p1 > 1/2 then this would involve lowering the step and work

extraction. However, as was discussed previously, only values of p1 less than 1/2 lead to

positive work extraction by the device, so this reset scenario can be ignored. Wout,reset is

simply Wout,reset = p1kT ln 1
1−yreset . The total cost of resetting is then

Wtotal,reset = Win,reset −Wout,reset (2.102)

= (peq1 − p1)kT ln
1

1− yreset
(2.103)

= (peq1 − p1)kT ln
1− p1

p1

. (2.104)

If we imagine cyclic operation of the device, in which bits are continually reset and fed back

in for work extraction, the total energy change of the work reservoir per input site is on

average given by the difference of Eqs. 2.95 and 2.104:

Wcycle = Wtotal −Wtotal,reset (2.105)

= (peq1 − p1)kT
[

ln
1

1− y
− ln

1− p1

p1

]
(2.106)

= kT
[1− y
2− y

− p1

]
ln

p1

(1− y)(1− p1)
. (2.107)

The Second Law demands that this quantity must be negative for the regime peq1 = 1−y
2−y > p1

that leads to positive work extraction when the reset step is ignored. In this regime we have

p1 <
1−y
2−y and from this relation also that 1

1−p1 < 2−y. Substituting each of these inequalities

into the argument of the log in Eq. 2.107 establishes that it is less than 1 and therefore that

the log is negative.

It is worth noting that given the same sequence of input boxes, what we have described is

not the optimal way to extract work. One could instead simply expand the partition to the

right each time, by some fixed distance less than the full length of the box (to prevent the
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pressure from diverging when the particle is on the wrong side). A simple calculation reveals

that the optimal fraction of the right-side box to expand to is 1−2p1, and that this yields on

average an extracted amount of work equal to kT
[

ln(2)−H(p)
]
, where H(p) is the Shannon

entropy of the input distribution [98]. Fig. 2.3 reveals that this limit is not achievable for the

earlier device we have described. The reason for the difference is that the work extraction

method we have described relies on harnessing thermal fluctuations (transitioning from one

side of the partition to the other), whereas a traditional Szilard engine does not. Thus, the

mechanism of operation is fundamentally different, and it is this harnessing of fluctuations

that serves as the basis for the operation of the device described in Ch. 4.
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CHAPTER 3

NON-EQUILIBRIUM ABUNDANCES FOR THE

BUILDING BLOCKS OF LIFE

The difficulty of obtaining appreciable quantities of biologically important molecules in

thermodynamic equilibrium has long been identified as an obstacle to life’s emergence, and

determining the specific non-equilibrium conditions that might have given rise to life is

challenging. To address these issues, we investigate1 how the concentrations of life’s building

blocks change as a function of the distance from equilibrium on average, in two example

settings: (i) the synthesis of heavy amino acids, and (ii) their polymerization into peptides.

We find that relative concentrations of the heaviest amino acids can be boosted by four

orders of magnitude, and concentrations of the longest peptide chains can be increased by

hundreds of orders of magnitude. The average non-equilibrium distribution does not depend

on the details of how the system was driven from equilibrium, indicating that environments

might not have to be fine-tuned to support life.

3.1 The non-equilibrium model

Statistical mechanics tells us that we do not need to describe the full microscopic state of

a system in order to predict macroscopic characteristics, as those are understood as expec-

tation values, or ensemble averages. Therefore, all we need to infer is the probability, ρi,

of every state, i = 1, . . . N . This is a hard problem, as we have only a handful of con-

straints, namely measured average quantities, together with normalization of probability.

Say we have M constraints. Then we are still lacking N −M equations to determine the

ρi. These probabilities can be assigned by choosing the probability distribution with the

largest entropy, S[ρ] ≡ −
∑N

i=1 ρi ln(ρi), subject to the constraints imposed by the system’s

bulk properties [60]. This maximization of entropy can be interpreted as choosing a model

that makes use of only the information provided by the measured quantities [60, 61, 46],

ensuring that information that we do not actually have is not falsely being ascribed to the

system. This powerful inference tool has been applied successfully to many other problems

in a diverse range of fields from ecology to neuroscience, and is commonly known under the

name of MaxEnt [106, 64]. In statistical physics, we find that under the constraint that

1The contents of this chapter are currently in review at Physical Review E. The manuscript was coauthored
with Susanne Still
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only the average energy is known, the Boltzmann distribution, describing thermodynamic

equilibrium states, ρ = 1
Z
e−E/kT , is recovered by this MaxEnt inference method [60]. Here,

the temperature is denoted by T , Bolzmann’s constant by k, and normalization is ensured by

the partition function, Z, which is related to the equilibrium free energy, F , by Z = e−F/kT .

On the early Earth, conditions governing the processes preceding life were not consistently

in thermodynamic equilibrium. It is much harder to infer the distribution, θ, of a system that

is away from thermodynamic equilibrium without detailed information. The distribution can

no longer be inferred straight from a MaxEnt argument, and information is lacking to make

up for the missing equations. Without specific knowledge about some particular process

generating biomolecules on early Earth, little can be done.

Here, we propose to calculate instead the average non-equilibrium distribution. The idea

is that there are many diverse environments on Earth and a large variety of energy sources

that act as non-equilibrium drives. If all we are interested in are the expected abundances

we would get somewhere on Earth, then we can average out details of the non-equilibrium

driving. We do so, following [31], by giving probability distributions a weight, i.e. we

will assume that there is a distribution over distributions, P (θ), and compute the average:

〈θ〉 =
∫
θP (θ)dθ.

For our purposes, we need only consider distributions on a discrete state space. We

will compare the probability of finding the building blocks of life as computed from this

average non-equilibrium distribution to that computed from the equilibrium distribution for

two biologically relevant model systems in the following sections. Clearly, the answer will

depend on the probabilities assigned to different non-equilibrium probability distributions,

P (θ). Crooks suggested [31] to find P (θ) by maximizing the entropy of the distribution

over distributions subject to physical constraints, in analogy to what is done in equilibrium

[60]. In the absence of additional information, this maximum entropy approach ought to

best describe the ensemble of non-equilibrium distributions, as it ensures that only available

information is included in the description.

We elaborate on the details of Crooks’ approach in the Appendix, and mention here only

the resulting formula:

〈θ〉 =
1

Z(β, λ)

∫
θe−λD(θ‖ρ)dθ. (3.1)

The normalization constant, Z(β, λ) depends on the inverse temperature, β = 1/kT , where

k denotes the Boltzmann constant. The factor e−λD(θ‖ρ) determines the weight given to each

distribution θ. It is controlled by the product of the distribution-independent parameter

λ ≥ 0, and the relative entropy D(θ||ρ) between the non-equilibrium distribution, θ, in
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question, and the corresponding equilibrium distribution ρ:

D(θ||ρ) =
∑
i

θi ln

[
θi
ρi

]
. (3.2)

A system away from thermodynamic equilibrium can contain free energy in excess of the

corresponding equilibrium system. This additional free energy is given by kTD(θ||ρ) [103,

115, 111].

The second law of thermodynamics implies that the work input to a system is always

greater than or equal to the corresponding change in free energy, and so this formalism assigns

higher probabilities to distributions that require a lower minimum amount of work to create.

At a fixed value of the parameter λ, a non-equilibrium distribution is thus more likely to

occur, if less work is needed to produce it. Relative entropy also measures the coding cost

encountered when the canonical distribution ρ is used as a model for θ [71, 29]. Relative

entropy is thus both a physically and an information-theoretically meaningful measure for

deviation from equilibrium. In equilibrium, it is the free energy difference between reactants

and products alone that sets their relative abundances. Thus, a natural measure for the

difficulty of creating a molecule is its free energy of formation. The hyperensemble extends

this notion, in a sense, to the situation away from equilibrium.

We stress that using this approach does not imply that possible path-dependences of

the non-equilibrium states are being neglected; they may very well retain some memory of

their history. Each system in the ensemble is driven to a non-equilibrium distribution in a

path-dependent way, as the arrival at a distribution, in general, depends on the trajectory

generated by the drive.

In the limit λ→∞, all non-equilibrium distributions will have negligible probability, and

the average non-equilibrium distribution converges to the equilibrium distribution: 〈θ〉 = ρ.

For finite values of λ, the distribution 〈θ〉 is in general flatter than its equilibrium counterpart,

thereby augmenting the probabilities of states that would otherwise be rare [31]. This is

most apparent in the limit λ → 0. In that case, all distributions become equally likely In

that sense, λ encodes the extend to which driving conditions can push the system out of

equilibrium. In the most extreme out of equilibrium limit (λ→ 0), the average distribution

over a finite state-space has, by symmetry, equal probabilities for every state. The overall

flattening effect would persist if we were to replace the measure D(θ||ρ) with any other

function (see the appendix for details). Conclusions we draw for the extreme nonequilibrium

limit (λ → 0) in Section 3.2, are therefore invariant with respect to how distance from
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equilibrium is measured.

The extreme non-equilibrium limit is different from the high temperature limit of an

equilibrium distribution, because the free energies of the molecules are themselves tempera-

ture dependent, and so the high temperature limit would not assign equal weight to every

possible distribution of molecules. For example, polymerization of amino acids into long

chains would generally be disfavored in the high temperature limit (compare Section 3.2.2).

Probabilities of rare states are only augmented on average. There are individual non-

equilibrium systems that give rise to worse-than-equilibrium odds for forming the desired

molecules. The non-equilibrium distributions describing those systems are included in the

average. Individual distributions that exhibit large numbers of rare molecules are less prob-

able at all finite values of λ, due to the exponential dependence on D(θ||ρ) (see Eq. (A.1).

In what follows, it is the average non-equilibrium distribution 〈θ〉, and not any particular

non-equilibrium distribution θ, that we use for our analysis.

We interpret the average non-equilibrium distribution as describing the result that would

be obtained if one took samples from a diverse collection of non-equilibrium environments,

and averaged the concentrations of the various molecules found. The average non-equilibrium

distribution provides the expected value, or best guess, for what we would find in a single

sample, taken anywhere on the planet. In the context of molecules relevant for forming

living structures, using the average non-equilibrium distribution to make an inference about

relative abundances should be more appropriate than using the equilibrium distribution,

because we know that conditions on early earth were not consistently in thermodynamic

equilibrium.

The average non-equilibrium distribution does not depend on the details of any particular

driving protocol, but rather on the set of driving protocols that generate the non-equilibrium

systems in question. The set of local processes that could drive a system out of equilibrium

on the Earth is extremely large and diverse, to the degree that the entropy over the set

of possible distributions might be, to a good approximation, maximal. This would not

necessarily be the case if, for example, the only process driving various systems on early

Earth out of equilibrium was the rising and setting of the sun. That restriction would then

impose additional constraints on our ensemble that would need to be taken into consideration,

and we could not expect the maximization of entropy to sidestep those details. However,

environments on the Earth permit a diversity of local processes. This inhomogeneity of

conditions on early Earth supports the use of the maximum entropy hyperensemble, which

allows us to compute averages without requiring any information beyond that captured by
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the temperature T and the non-equilibrium parameter λ.

Let us now explore how the concentrations of large and complex molecules change as a

function of the distance from equilibrium.

3.2 Results

3.2.1 Amino acid abundances and functional proteins

The possibility of prebiotic synthesis of amino acids was established in the landmark experi-

ment by Miller and Urey [85]. They have since been detected in meteors [94], and produced

in other experiments seeking to model the conditions of the early Earth [5, 82]. However,

the abundances with which the amino acids appear in abiotic settings do not match their

biotic abundances [37]. In particular, functional proteins tend to employ the various amino

acids in roughly equal proportions [37, 1], whereas in abiotic sources there is an exponential

suppression in the abundances of the larger amino acids, and none heavier than threonine

have yet been found [51]. The apparent inability of the environment to produce heavier

amino acids in sufficient quantities has been identified by several authors as a barrier to the

emergence of life [1, 51, 21].

The difficulty of synthesizing the heavier amino acids in a prebiotic setting is usually

ascribed to them having a larger Gibbs free energy of formation, ∆G [51]. The free energies

of formation of the amino acids were calculated in [2], assuming synthesis from CO2, NH+
4 ,

and H2 in surface seawater at a temperature of 18◦C. The concentrations of amino acids

relative to glycine, taken from 9 different data sets, were fit using an exponential function

[51]:

Crel = 15.8 ∗ exp [−∆G/31.3] . (3.3)

We rescale these values so that they may be interpreted as probabilities (i.e. fraction of the

total amino acid concentration occupied by amino acid x):

P (x) =
Crel(x)∑N
i=1Crel(i)

, (3.4)

where Crel(x) is the relative concentration of amino acid x, and the index i = 1, . . . , N runs

over all measured amino acids. The exponential dependence of the probabilities on the free

energy of formation ∆G is consistent with an equilibrium distribution [51], although we

36



caution that there are difficulties with this interpretation [94]. Nevertheless, we take Eq.

(3.4) as our best approximation to the equilibrium distribution. We furthermore assume

that this function correctly predicts the equilibrium abundances of the heavier amino acids

which have not yet been found in abiotic sources, consistent with the fact that it predicts

abundances too low to observe for these heavy amino acids [51].

We compare the distribution calculated from Eqs. (3.3) and (3.4) to the average non-

equilibrium distribution, calculated numerically from Eq. (3.1). We assume that amino acids

are the most thermodynamically costly molecules that can be formed in the system. This

ought to be the case if the system is physically confined to a small volume (e.g. a mineral

pore), or the reactants are very diluted. Such a restriction on the available state space is

needed because in the extreme non-equilibrium limit, all states become equally probable.

This means that if more costly molecules can be formed than amino acids, then the prob-

abilities of forming any amino acids could go down relative to these more costly molecules.

Yet, even without this restriction, the distribution of amino acids would become more uni-

form out of equilibrium. In the last section we will relax this assumption on the maximum

cost of molecules, as we look at the asymptotic behavior of amino acids polymerizing into

arbitrarily long chains.

Fig. 3.1 shows the probability of obtaining the rarest amino acid, tryptophan, as a func-

tion of λ. In the extreme non-equilibrium limit, the hyperensemble becomes a symmetric

Dirichlet distribution, which, in a state space of dimension d, has an expectation value for

each outcome of 1/d and a variance of 1
d2

(d−1)
(d+1)

[6], meaning that the standard deviation is of

the same order as the mean. For a state space of dimension d = 20, the relative concentra-

tion of tryptophan in the extreme non-equilibrium limit is then 5 ∗ 10−2 ± 4.8 ∗ 10−2, while

its equilibrium relative concentration is ∼ 6 ∗ 10−6. On average, the relative concentrations

of the rarest amino acid can be boosted by four orders of magnitude in the non-equilibrium

regime. Fig. 4.1 shows a normalized histogram of samples of any amino acid, e.g. tryptophan,

in the extreme non-equilibrium limit. While a significant fraction of samples end up close to

their equilibrium values, the distribution as a whole gives radically more favorable odds of

drawing a high concentration.

In Fig. 3.3, the average non-equilibrium distribution of amino acids is plotted as a func-

tion of the free energy of formation ∆G and compared to the equilibrium distribution, for

various values of the non-equilibrium parameter λ, showing how the distribution becomes

flatter as λ decreases. Importantly, the roughly uniform distribution of amino acids em-

ployed in functional proteins is exactly what the average non-equilibrium distribution gives
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Figure 3.1: Tryptophan requires the largest free energy to form of the protein amino acids,
and has not yet been found in an abiotic setting. Here we show how the relative concen-
tration of tryptophan changes as one moves away from equilibrium, with the distance from
equilibrium controlled by the parameter λ. The equilibrium probability is plotted with an
orange solid line. The average non-equilibrium probability is plotted with a blue dotted line.
Values are computed numerically from Eq. (3.1). We see that in the extreme non-equilibrium
limit λ → 0, the relative concentration of tryptophan can be increased up to four orders of
magnitude.

in the extreme non-equilibrium regime (for values of λ close to zero). Thus, far away from

equilibrium, the distribution of amino acids moves closer to its biotic distribution, thereby

greatly enhancing the chances of spontaneously assembling functional proteins [122, 1].

3.2.2 Polymerization of amino acids

Amino acids may be linked with one another via the peptide bond to form long chains. These

chains then fold into proteins, with a typical protein containing ∼ 500 amino acids. However,

the free energy, ∆G, for the peptide bond is on the order of several thousand kJ/mole [79],

making the formation of long chains extremely improbable in thermodynamic equilibrium.

It has been estimated that a solution containing 1 molar concentrations of each of the amino

acids would require a volume 1050 times the size of the Earth to produce a single molecule
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Figure 3.2: A normalized histogram of 107 samples of the relative concentration of any
amino acid (e.g. tryptophan) from the hyperensemble in the extreme non-equilibrium limit.
The red line indicates the mean value. We have confirmed numerically that there are an
equal number of samples above and below the mean. On this scale, the equilibrium relative
concentration of tryptophan, at ∼ 6 ∗ 10−6, would not be distinguishable from the y-axis.

of protein in equilibrium [36].

The thermodynamics of polymerization of amino acids were explored in [79], where,

for simplicity, the chains were assumed to consist entirely of glycine. It was found that

dimerization of two glycine molecules requires the greatest amount of free energy per bond

(∆G = 3.6 kcal/mole), being about eight times more difficult to form than subsequent

additions to the chain. The relative concentration [GG]/[G] is predicted to be about 1/400

in equilibrium, and each subsequent addition of a glycine to the peptide results in a decrease

by a factor of 1/50 [79]. The probability of getting a chain of length l ≥ 2 then follows a

power-law

Peq(l) ∝
(

1

50

)l−2

(3.5)

with the proportionality constant set by normalization of the probability. We examine
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Figure 3.3: Probability distribution of amino acids, arranged on the x-axis in order of in-
creasing Gibbs free energy, ∆G. The relative probability of formation in thermodynamic
equilibrium is given by Eq. (3.4) and plotted in red. The other curves are the average non-
equilibrium distribution, computed numerically from Eq. (3.1), at different distances from
equilibrium (i.e. different values of λ). Note that as the distance from equilibrium increases,
i.e. λ gets smaller, the distribution becomes flatter, and the probabilities of forming the
rarest amino acids increase by several orders of magnitude. The flatter distribution observed
out of equilibrium is consistent with the fact that roughly equal numbers of amino acids are
found in functional proteins, and thus boosts the odds of forming them.

the change in this distribution for non-equilibrium systems. To proceed, we identify each

macrostate of a solution containing N glycine molecules with a partition of the number

N into a sum of positive integers. For example, in a solution containing N = 3 glycine

molecules there are three possibilities: the solution could either contain three monomers

(corresponding to 1+1+1), or could contain one monomer and one dimer (1+2), or one

trimer. In number theory, the partition function, which we denote here by Q(N), counts

the number of distinct ways that a positive integer N can be decomposed into a sum of

positive integers. For example, Q(N = 3) = 3. For tractability, we consider in this section

only the extreme non-equilibrium limit λ → 0, where all partitions of N become equally

likely. First, we examine the probability of the rarest state, in which all N glycine molecules

become bound into one chain of length l = N . The probability of observing this state is

40



P (l = N) = 1/Q(N). For large N , we can estimate P (l = N) using the Hardy-Ramanujan

asymptotic expression for Q(N) [3], giving us

Pneq(l = N) ≈ 4N
√

3 ∗ e−π
√

2N
3 . (3.6)

Far away from equilibrium, the maximum probability of the rarest state is a decreasing

function of N . Yet the odds of finding all N particles bound into a single chain decrease

much more rapidly in equilibrium (refer to Eq. (3.5)), meaning that as the system gets larger,

the factor by which non-equilibrium driving enhances probabilities of the rarest states grows

without bound. This effect radically augments the chances of forming proteins in an abiotic

setting. We display the ratio Pneq(l)/Peq(l) in Fig. 3.4, computed from Eqs. (3.5) and (3.6)

using an exact expression for Pneq(l) obtained from SageMath’s built-in Partitions function.

With only 100 glycine molecules, the chances of finding them all bound into a single chain is

found to be more than 100 orders of magnitude greater out of equilibrium than in equilibrium,

and this effect will continue to become more dramatic as the number of molecules in the

system increases.

Of interest is also the number of chains of each possible length l, which we denote by ml.

When every partition is equally likely, the average number of chains of length l is given by

[25, 56]

〈ml〉 =
1

Q(N)

floor(N/l)∑
n=1

Q(N − nl). (3.7)

This distribution was previously studied in the context of a fragmentation process, e.g.

where a nucleus is broken apart and each partition is equally likely [56, 87, 84, 74, 25, 17].

We calculate the expected number of chains of length l, 〈ml〉, numerically for a system of

size N = 100 and compare to that computed from the equilibrium distribution, Eq. (3.5).

The results are displayed in Fig. 3.5. The numbers of chains of all lengths are increased

dramatically, whereas in equilibrium most molecules would remain unbound to one another.

When N is large and the chains are not too long relative to N , Eq. (3.7) is well approx-

imated by [25]

〈ml〉 ≈
1

exp

[√
π2

6N
l

]
− 1

(3.8)
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Figure 3.4: Glycine molecules can be linked together via a peptide bond to form chains. Due
to the large amount of free energy required per bond, the concentrations of longer chains
drop precipitously in thermodynamic equilibrium (Eq. (3.5)). Here we consider a system
of N glycine molecules, and compare the probability of finding all of them bound into a
single long chain, in thermodynamic equilibrium (Peq) to that far away from thermodynamic
equilibrium (Pneq), in the extreme non-equilibrium limit (given approximately by Eq. (3.6)
but using exact values here). We plot the ratio Pneq/Peq as a function of N , and see an
exponential increase. This effect helps to explain how amino acids can be spontaneously
linked together to form proteins in an abiotic setting.

which again will drop off much more slowly than the equilibrium distribution. Overall, this

means that in the extreme non-equilibrium limit, the abundances of long peptide chains, and

therefore proteins, can be increased by hundreds of orders of magnitude. This shows that

obtaining appreciable quantities of proteins on the early Earth, which is all but excluded in

equilibrium statistical mechanics, is a viable possibility considering the average odds out of

equilibrium.
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Figure 3.5: The expected number of chains of length l in the extreme non-equilibrium limit
is given by Eq. (3.7) and plotted in orange for a system of size N = 100. We compare it to
the values computed from the equilibrium distribution, given by Eq. (3.5) (plotted in blue).
In equilibrium, long chains are suppressed exponentially. This is not the case far away of
equilibrium, where concentrations of the longest chains are increased by hundreds of orders
of magnitude.
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CHAPTER 4

PHYSICAL LIMITATIONS OF WORK

EXTRACTION FROM TEMPORAL

CORRELATIONS

Recently proposed information-exploiting systems extract work from a single heat bath

using temporal correlations on an input tape. We study how enforcing time-continuous dy-

namics, which is necessary to ensure the device is physically realizable, constrains possible

designs and drastically diminishes efficiency. We show that these problems can be circum-

vented by means of applying an external, time-varying protocol, which turns the device from

a “passive”, free-running machine into an “actively” driven one1. We begin by introducing

the model.

4.1 Model of a temporal correlation powered work ex-

traction device.

This model largely follows [19]. Imagine a work extraction system with two internal states,

s ∈ {A,B}, which can be coupled to and decoupled from a work reservoir (such as a

weight), an input tape with bits bin ∈ {0, 1}, an output tape with bout ∈ {0, 1}, and a heat

bath. The joint state-input value of the coupled system is then (s, b) ∈ {A,B} × {0, 1} =

{A0, A1, B0, B1}, where b denotes a coupled bit. Each of these four joint states possesses a

potential energy, Ei, i ∈ {A0, A1, B0, B1}. The dynamics are described by a time-dependent

vector containing the probabilities that the system is in one of the joint states at a given

time, psb ≡ [pA0, pA1, pB0, pB1]> (> denotes the transpose).

The engine alternates between an “interaction step”, during which the internal state

interacts with a bit, and a “switching step”, during which the bit is changed. Any changes

in energy during an interaction step are due to the exchange of heat with the heat bath,

and changes in energy during a switching step are due to exchange of work with the work

reservoir. We therefore talk about “heat” steps and “work” steps, and will use these words

to label transformations, as a reminder.

An interaction step is represented by the transformation psb
heat−−→Mpsb, where the joint

state evolves under the action of a reversible, column stochastic matrix, M , for a duration

1The contents of this chapter are in press with Physical Review E. The paper is coauthored with Susanne
Still, Thomas E. Ouldridge, and Lee Altenberg.
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of time, τ . During interaction steps, the system undergoes a free-running relaxation towards

equilibrium. Thus, M must be reversible, and the stationary distribution, ρ(M) = Mρ(M),

satisfies detailed balance

Mijρ
(M)
j = Mjiρ

(M)
i (4.1)

for all i, j in {A0, A1, B0, B1}. The coupled device and bit relax towards thermodynamic

equilibrium, described by the Boltzmann distribution ρ
(M)
i = e−Ei/kT/Z. For simplicity, we

choose units such that kT=1 and set the energy scale so that Z=1. We can then write the

energy of each joint state as Ei = − ln ρ
(M)
i , with i ∈ {A0, A1, B0, B1}.

In a switching step, the internal state is held fixed, and a new bit is coupled to the device.

Whichever bit comprised the joint state prior to the switching step is printed to the output

tape. That is, switching from the machine’s n-th cycle to cycle n+1 changes the state of the

bit that is interacting with the machine from b = boutn to b = binn+1. Depending on whether

the input is 0 or 1, switching corresponds to the following transformation of the joint state

probability vector:

psb = [pA0, pA1, pB0, pB1]>
input 0−−−−→ p̄sb = [pA0+pA1, 0, pB0+pB1, 0]>≡F0psb, (4.2)

psb = [pA0, pA1, pB0, pB1]>
input 1−−−−→ p̄sb = [0, pA0+pA1, 0, pB0+pB1]>≡F1psb, (4.3)

where the matrices F0 and F1 represent the switching:

F0 =


1 1 0 0

0 0 0 0

0 0 1 1

0 0 0 0

 , and F1 =


0 0 0 0

1 1 0 0

0 0 0 0

0 0 1 1

 .

To extract work, the machine must on average raise the energy of the joint (s, b)-state during

interaction steps (i.e. absorb heat), and lower the energy during switching steps (i.e. deposit

energy into the work reservoir).

In the following, we limit our analysis for simplicity to an input tape consisting of alter-

nating 1s and 0s. This is an interesting special case, because the per-symbol entropy of the

input tape is maximal, as Prob(bin = 0) = Prob(bin = 1) = 1
2
, and hence cannot be leveraged

for work extraction. Any net gain is thus due to exploiting temporal correlations.
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A single complete cycle of operation is defined by the product of transition matrices

C = MF0MF1 (reflecting the alternating switching and interaction steps), taking the

probability distribution of the four states from p
(n)
sb to p

(n+2)
sb = Cp

(n)
sb . We require that

repeated application of the matrix C to any starting distribution p
(0)
sb converges to a steady

state distribution π0(s, b), defined by Cπ0(s, b) = π0(s, b). Thus C must be a primitive

matrix (irreducible and aperiodic), which is assured if Mij > 0 for all i, j ∈ {A0, A1, B0, B1}.
We can define a steady state distribution if we census the system at each step of the cycle (π1

to π3 in the equation array below). Starting with feeding in a 1, a cycle is then characterized

by the following changes (we use b′ to denote a bit that is about to be transferred to the

output tape):

π0(sn−1, b
′
n−1)

work−−→ π1(sn−1, bn) = F1π0(sn−1, b
′
n−1) (4.4)

π1(sn−1, bn)
heat−−→ π2(sn, b

′
n) = Mπ1(sn−1, bn) (4.5)

π2(sn, b
′
n)

work−−→ π3(sn, bn+1) = F0π2(sn, b
′
n) (4.6)

π3(sn, bn+1)
heat−−→ π0(sn+1, b

′
n+1) = Mπ3(sn, bn+1) (4.7)

The average work supplied to the work reservoir per input symbol is given by the sum

of the average energy changes in the two switching steps: 〈W 〉 = −1
2

[
〈E〉π0(sn−1,b′n−1) −

〈E〉π1(sn−1,bn) + 〈E〉π2(sn,b′n) − 〈E〉π3(sn,bn+1)

]
. The factor of 1/2 is due to two bits being

encountered per cycle 2.

4.2 Work extraction by time-continuous, free-running

devices

We now depart from the approach of [19]. To be physically realizable in the absence of

externally applied driving during the interaction period, the matrix M should correspond

with a continuous-time equilibration process for some time τ . In other words, we require

there be a generator, G, such that M = eτG, where G is a reversible rate matrix with non-

negative off-diagonal elements, in which every column sums to 0. If M can be constructed

in this way, then M is said to be “reversibly embeddable” [63]. The following results from

[63] are crucial: 1) If M is reversible, then M is diagonalizable and the eigenvalues of M

2Note that this is work extracted from the joint (s, b) system. By convention, work done on the system is
positive, as is heat flowing into the system.
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are real. 2) If M is also embeddable, then the eigenvalues of M are all positive, and the

generator, G, of M is unique.

Due to these properties, processes governed by reversible and embeddable transition ma-

trices generally extract much less work than those governed by reversible but not embeddable

ones, as we will see shortly. In the rest of this paper, we will only be considering matrices

that are reversible. For brevity, we henceforth use the terms embeddable and non-embeddable

to refer to the two different classes of matrices. In Fig. 4.1, we display histograms showing

the number of randomly generated matrices that achieve various values of positive work, for

the two categories. The procedure used to make these matrices is detailed in Appendix B.

The best randomly found embeddable matrices extract roughly a factor 20 less work than

the best randomly found non-embeddable ones. In comparison, the construction given in

Figure 6 of [19], which is non-embeddable, extracts kT
e
≈ 0.368 kT of work per input symbol.

We see from the histogram that finding a machine with a comparable efficiency by chance

is rather unlikely.

47



0.0 0.01 0.02 0.03 0.04
Average work per input symbol (units of kT)

0.0

8.0

16.0×103

Co
un
ts

Non-embeddable

0.0 0.4 0.8 1.2 1.6×10−3
Average work per inp t symbol ( nits of kT)

0.0

1.25

2.5×103

Co
 n
ts

Embeddable

Figure 4.1: Histogram of work, Wout, extracted by randomly generated reversible transition
matrices. Only positive work values are shown. With 106 randomly generated matrices of
each type, 11% of non-embeddable matrices and 0.3% of embeddable ones achieved positive
work production.
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To improve upon random sampling, we constructed an evolutionary algorithm to explore

the search space. The algorithm applied mutations to individual machine dynamics and fixed

those mutations whenever they led to improved performance. Due to the high dimension of

the space of transition matrices, this algorithm performed better than a grid search. When

ignoring the embeddability constraint, the evolutionary algorithm readily returned the best

design of [19], and never found one better. However, enforcing embeddability lowered the

efficiency drastically. The best embeddable design which the evolutionary algorithm found

is shown in Fig. 4.2. It achieved only ≈ 0.0146 kT per input symbol. That is less than 4%

of the yield of the non-embeddable best design of [19].

Figure 4.2: Design of the best embeddable transition matrix found by the evolutionary
algorithm, with Wout ≈ 0.0146 kT . Dotted arrows denote transition probabilities close to
zero. The transition matrix for this graph has a rank-1 submatrix, a second eigenvalue very
close to 1, and the two smallest eigenvalues very close to zero.

We now discuss why the performance of embeddable designs is so poor. Optimal per-

formance requires that the internal state of the device, sn, contain predictive information 3,

I(sn; bn+1), about the next incoming bit, bn+1. To see why, note that the non-equilibrium free

energy of system coupled to bit, F [π] = 〈E〉π − kTH[π], cannot increase spontaneously dur-

ing an interaction step. Thereby, the heat absorbed in one interaction step is upper bounded

by the entropy change, which can be written as 〈Qn〉 ≤ kT
[
I(sn; bn+1) − I(sn+1; b′n+1) +

H(sn+1)−H(sn) +H(b′n+1)−H(bn+1)
]
. Adding two of these heat contributions to account

3We detail in Appendix A how to calculate information.
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for the full cycle of Eqs. (4.4-4.7), we get a cancelation, because H(sn+1)−H(sn−1) = 0, due

to the fact that we are in the same stationary distribution π0 at the beginning and end of

the cycle.

Taking the average then sets an upper bound on the extractable work per input sym-

bol, Wout. The bound depends on how the average predictive information about the in-

put, Ipred = (I(sn−1; bn) + I(sn; bn+1))/2 compares to the average memory about the out-

put, Imem = (I(sn; b′n) + I(sn+1; b′n+1))/2, and on how the average output entropy, Hout
B =

(H(b′n) +H(b′n+1))/2 compares to the average input entropy, H in
B = (H(bn) +H(bn+1))/2:

Wout ≤ kT
[
Ipred − Imem + ∆HB

]
, (4.8)

where ∆HB ≡ Hout
B − H in

B . We display Wout as a function of Ipred in Fig. 4.3, for each of

the two classes of transition matrices. It is clear from the plot that predictive information

between device and next incoming bit is severely limited for embeddable systems, and that

there is a consequent reduction in extractable work.

Figure 4.3: Average work per input symbol, Wout , vs. average predictive information per
symbol. The triangle denotes the best embeddable design found by the evolutionary algo-
rithm. The circle denotes the design of [19]. The inset shows only the subset of embeddable
designs. See Appendix B for further details.
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Perfect prediction of the next incoming bit requires synchronization with the input. For

a period-2 input, the internal state must change in each interaction step from A to B or

vice versa, necessitating a bipartite graph structure, whose associated transition matrix

has negative eigenvalues [44], and therefore is non-embeddable. More generally, tracking a

periodic signal with period n requires n eigenvalues of magnitude 1 equally spaced around

the unit circle in the complex plane [44]. For n > 2 some of these eigenvalues must therefore

be complex, which is impossible for any reversible matrix, embeddable or otherwise.

Synchronization is hampered by the tendency of embeddable systems to undergo “self-

transitions”, in which the system starts and ends in the same state during an interaction

interval. These self-transitions are also undesirable because they are associated with no net

exchange of energy with the bath, thus wasting the input. Self-transitions arise from the

diagonal entries in M , which can be set to zero for non-embeddable M [19], but not if M

is embeddable. To see why, note that M being a stochastic matrix implies that it has an

eigenvalue of 1, and M being embeddable implies that all other eigenvalues are positive.

Thus, the trace of M must be greater than 1 and self-transitions cannot be neglected. The

average fraction of such self-transitions in interaction steps can be written as

1

2
d(M )>[π1(sn−1, bn) + π3(sn, bn+1)], (4.9)

where d(M) is a vector of the diagonal elements of M . We have found numerically that

self-transitions occur on average at a minimum of 1/4 of interaction steps. We provide in

Appendix C an example of a matrix satisfying this property. Note that this feature implies

that there do not exist any embeddable matrices “close” to the non-embeddable design of

[19]. The relationship between self-transition rate and average work extracted for randomly

chosen embeddable and non-embeddable designs is shown in Fig. 4.4.
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Figure 4.4: The relationship between Wout and the fraction of self-transitions

We display only those designs that lead to positive work extraction. There are fewer

points in the bottom panel because a smaller fraction of embeddable matrices lead to positive

average work. Since the non-embeddable matrices can be made to have a trace of zero, their

rate of self-transitions can also be made 0, while for the embeddable matrices a minimum
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trace of 1 forces the rate of self-transitions to be at least 1/4, leading to inefficiency. Moreover,

approaching the minimal trace of 1 and the corresponding minimal self-transition rate of 1/4

is not a viable strategy for maximizing efficiency, because it would mean that all the smaller

eigenvalues would have to approach zero. This requirement is in tension with the fact that

the modulus of the second largest eigenvalue, λ2 < 1, bounds the distance from equilibrium

at the end of an interaction step through Mp = ρ(M) + λ2c2v2 + λ3c3v3 + λ4c4v4, where

p = ρ(M) + c2v2 + c3v3 + c4v4 is an arbitrary starting distribution expanded in the basis

of M ’s eigenvectors, ρ(M),v2,v3,v4. Thus, taking the limit as the trace approaches 1 would

cause instantaneous relaxation to equilibrium in every interaction step, which prevents work

from being extracted.
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Figure 4.5: The relationship between the magnitude of the second largest eigenvalue, which
bounds the distance from equilibrium after an interaction step, and the rate of self transitions.
Only matrices leading to positive work extraction are shown.
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Intuitively, the device cannot extract work if it relaxes fully to equilibrium in each in-

teraction step because in that case it cannot retain memory. More formally, let Eeq de-

note the energy of the equilibrium distribution. With complete relaxation to equilibrium in

each interaction step, the sum of the energy changes over the two switching steps is then
1
Z

[EA1e
−EA0 + EA0e

−EA1 + EB0e
−EB1 + EB1e

−EB0 ] − Eeq ≥ 0. This quantity is non-negative

because the equilibrium distribution pairs the highest energies with the smallest Boltzmann

factors, so any reordering of the factors cannot decrease the average energy.

Altogether, there exists a tradeoff between inefficiency coming from staying in the same

state too often, and inefficiency coming from relaxing too close to equilibrium. We display

the relationship between the self-transition rate and the magnitude of the second largest

eigenvalue in Fig. 4.5. This tradeoff would be less severe if more internal states were included,

because with a transition matrix of higher dimension, the trace could be kept relatively

small even with a large second eigenvalue. However, adding additional internal states would

not necessarily guarantee a substantial improvement of the overall performance, because

the prohibition on bipartite graphs prevents synchronization with the input, an issue that

persists.

Much of the inefficiency of embeddable designs arises from an inability to reliably track

the input by switching the device state at each step. But embeddable designs also suffer from

a second drawback that would limit work extraction even if the input were a pure string of 1s.

To extract work, it is vital that the energy tends to increase during the interaction window.

The work extracted is equal to the average number of transitions during these windows,

multiplied by the increase in energy per transition. But if we increase the energy of the

high energy states to which we hope the system will transition, then we decrease the net

number of transitions, since we decrease their occupancy in equilibrium – and embeddable

designs can only relax towards equilibrium during the interaction window. Thus there is

an unavoidable trade-off for embeddable designs between facilitating many transitions that

each contribute only a little to the work extracted, and allowing only a few that contribute

a large amount. The overall power is maximised at intermediate values (see, for example,

[76]).

4.3 Time-Inhomogeneous Protocols

We have shown that devices that are free-running during the interaction period, which are

restricted to reversibly embeddable, time-homogeneous dynamics, can extract only a small
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fraction of the work available from an alternating input of 0s and 1s. One might ask whether

devices connected to a time-dependent, externally-applied protocol during the interaction

period, resulting in time-inhomogeneous dynamics that need not satisfy detailed balance,

could perform better. In this setting, for example, it can be ensured that the device’s state

must change during a cycle, allowing a better match to the input’s periodicity. Previously

considered devices [19] have transition matrices that would require such external control, and

possibly additional auxiliary states [125]. However, the thermodynamic analyses performed

to date have neglected this fact.

Here we show4 that it is relatively straightforward to construct a device of this type that

extracts, in the quasistatic limit, all the work stored in an input tape of alternating 1s and

0s. External manipulations correspond to changing the energy levels of the system over time

[33], and allow the input and/or extraction of work during the interaction period of duration

τ . For our purposes, it is sufficient to consider only devices in which the energies of the joint

states (s, b) vary during τ , but are restricted to all being identical at the beginning and end

of each window. In this case, the work of switching to the next input bit on the tape is zero,

and only the window τ need be considered to compute the extracted work.

To demonstrate an optimal device, let us compose it of two standard operations: erasure

and relaxation. Let a given pair of states within a larger state space each have an occupation

probability of p/2. Erasure shifts all of this probability to just one state, leaving it occupied

with probability p, and the other with a probability 0. Famously, erasure can in principle

be performed at a work cost of pkBT ln 2 [73, 125]. Relaxation is the inverse of erasure,

and therefore work of pkBT ln 2 can be extracted. In both cases, these optimal limits on

the work are reached by thermodynamically reversible processes, in which manipulations

must be applied quasistatically and the reversal of the protocol would restore the initial

probability distribution. We also consider switching, or the transfer of probability from

one state to another that has zero initial probability. Switching can be decomposed as a

relaxation followed by an erase, and therefore has no total work requirement if performed in

a thermodynamically reversible manner.

4The protocol described in this section was created by Thomas E. Ouldridge.
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Let us consider the following transition matrix for the interaction step

T =


0 1/2 0 1/2

0 1/2 0 1/2

1/2 0 1/2 0

1/2 0 1/2 0

 , (4.10)

where Tpsb gives the evolution of psb during a single interaction window. This transition

matrix ensures that the machine transitions to the A state if the input bit was in state 1, and

to the B state if the input bit was in state 0. This oscillation is the central switching motif

that allows the device to track the input. T is produced by composition of the following

sequential operations: a switch from (A, 0) to (B, 0); a switch from (B, 1) to (A, 1); a

relaxation from (B, 0) to (B, 0) or (B, 1); and finally a relaxation from (A, 1) to (A, 0) or

(A, 1). The states (A, 1) and (B, 0) are effectively used as ancillary states [125] to facilitate

the necessary reversing of the machine’s state at each step, prior to relaxation.

Regardless of the initial condition, a single application of F1TF0T will bring the system

to

p̂sb =
[
pA0, pA1, pB0, pB1

]>
=
[
0, 0, 0, 1

]>
, (4.11)

in which the state of the device and tape are perfectly coordinated. Since p̂sb is an eigenvector

of F1TF0T with eigenvalue 1, subsequent applications of F1TF0T will also return p̂sb.

Given the initial condition of p̂sb, the switch and relaxation procedures underlying T can

be implemented in a thermodynamically reversible manner, yielding kBT ln 2 of work per T

operation (or 2kBT ln 2 per full cycle) due to the relaxation steps. Thus the device extracts

all of the available work after an initial alignment cycle.
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CHAPTER 5

DISCUSSION

In the following two sections, we discuss implications and future directions for the two

projects that constitute this thesis. Together, these results add to an extensive and growing

literature linking information theory with thermodynamics. The approach we have taken to

understanding the origin of life is, to our knowledge, a significant departure from all previous

work on the subject. We hope that this approach may serve as a fruitful new paradigm with

which to think about the problem. Our work on the physical limits of information engines is

more of a refinement and partial correction of earlier work, and is in this sense less radical,

ambitious, and speculative than the other project. The analysis we have performed will

undoubtedly advance the scientific understanding of information engines by revealing limits

to their functionality, and may help to realize practical implementations of information

engines in the future.

5.1 Non-equilibrium abundances for the building blocks

of life

Using two examples for which equilibrium thermodynamics seems to prohibit the sponta-

neous emergence of biologically important molecules, we demonstrated in Ch. 3 that, under

very modest assumptions, the concentrations of these molecules might be significantly larger

(by many orders of magnitude) when odds are calculated from an average non-equilibrium

distribution instead of the equilibrium distribution. It is well known that non-equilibrium

conditions of some kind are necessary for life. The degree by which the abundances are

improved depends, of course, on how far from equilibrium the system has been driven. Since

this is not known, we can not determine the parameter λ in our model, and hence can not

provide a definitive number for the concentrations of life’s building blocks. But what this

study reveals is that, on average, non-equilibrium systems exhibit significantly more favor-

able conditions, provided that the distance from equilibrium is large enough. Importantly,

this approach does not rely on specific knowledge about the conditions on the early Earth.

Another model-independent approach to assessing the odds of life’s formation was pre-

sented in [101]. The chance of life’s emergence on other worlds was calculated from estimating

parameters in a Drake-type equation. One of the parameters appearing in this equation is

the abiogenesis probability, which estimates the chances of life forming per unit time within
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a set of building blocks. An implication of our conclusions is that this parameter ought to

be increased on planets where conditions are far from equilibrium, as for example on planets

with rich weather phenomena, tectonic activity, or tidal interactions [7]. The necessity for

chemical disequilibrium on a planetary scale for the emergence of life has been identified

by several authors [88, 7, 96]. The average non-equilibrium distribution (Eq. (3.1)) pro-

vides a concrete way of quantifying this effect as a function of how far conditions are from

equilibrium.

Explaining the presence of heavy amino acids and peptides is, of course, far from a

complete account of life’s origins. But we wish to emphasize that the average non-equilibrium

distribution’s increased odds for attaining otherwise rare states should be independent of

the details of any particular reaction. Thus, the same effect is likely to play an important

role in other situations where equilibrium thermodynamics appear to create barriers to the

emergence of life, e.g. the polymerization of nucleotides in RNA and DNA [4]. It is also

possible that the effect might be compounded. This could happen, for example, if a more

favorable distribution of amino acids, resulting from a non-equilibrium process is input to

another non-equilibrium system that assembles the amino acids into peptides.

Moreover, the biological relevance of this effect need not be limited to the origin of life.

Indeed, it is possible that early metabolic processes drove intracellular molecular distribu-

tions even further from equilibrium, creating a feedback process whereby the state-space

of useful molecules could be more effectively sampled. A similar effect can be observed in

kinetic proofreading, where energy is expended to drive reactions out of equilibrium and

reduce the rate at which disadvantageous molecules are formed [52].

Altogether, the approach we presented here raises the possibility that the formation of

life does not require a particular environment that has been fine-tuned for life. Rather, it

may be sufficient to have a set of environments that have been driven far enough away from

thermodynamic equilibrium. Not only is non-equilibrium driving a prerequisite for life, but

non-equilibrium driving may thus, in this very general way, be a catalyst for life’s emergence.

One topic for future investigation is the realizability of various values of λ. That is, what

timescales and work inputs are needed to achieve a particular value? The validity of the

approach as a whole must also be tested. Specifically, Crooks’ model predicts that averaging

over a set of non-equilibrium systems that have been driven in different ways should yield

a distribution approximated by Eq. 3.1 for some value of λ. This approximation should

become better as the set of non-equilibrium systems grows larger, and if it doesn’t, that

would be an indication that the constraints must be modified or new constraints must be
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introduced. Finally, it would be interesting to measure how many systems must be included

in the average before the approximation yields an accurate prediction. Taken together, the

answers to these questions would help to establish how strongly it should be believed that

the mechanism we have discussed is able to explain the origin of life.

5.2 Physical limitations of work extraction from tem-

poral correlations

In Ch. 4 we learned that building physically realistic devices that exploit temporal correla-

tions with a well-defined period to extract work from a heat bath at high efficiency can be

challenging. Specifically, devices with time-continuous dynamics cannot extract much work

from an alternating input of 0s and 1s, if they operate in a free-running fashion during in-

teraction with the input bit. External manipulation by a time dependent protocol alleviates

this issue.

For highly efficient work-extraction systems to emerge (for example due to an evolutionary

process), they would then have to develop the ability to operate in an actively driven fashion,

rather than passively, in order to reach maximum efficiency. An interesting implication

that arises from this is the need for a higher order control structure for active driving.

Hierarchical organizations are ubiquitous in biology, and it would be interesting to modify

our evolutionary algorithm to explore the emergence of hierarchical structures for greater

work extraction.

For such systems, there will be a trade-off between the speed at which they operate and

the amount of energy they can extract. In our simple example, we can extract all the work

we put in, plus extract net gain from the heat bath, because external manipulations are

applied reversibly. But, if we were to put constraints on the execution time, then we should

see a trade-off between power and efficiency, similar to effects discussed for example in [95],

and references therein. Throughout this work we have considered a particular type of strong

correlation in the input string, which is a perfect alternating sequence of 0s and 1s. More

complex inputs with weaker correlations may be more challenging to exploit. This question

is the topic of recently submitted work [22].

Another question raised by this work is how performance might change if more internal

states are allowed. For example, as we argued in Ch. 4, this may help to alleviate the issue

of self-transitions. Finally, we do not yet know if the design presented in Fig. 4.2, which

was found by our evolutionary algorithm, is truly optimal. Furthermore, we do not have a

60



good conceptual understanding of why it is even a strong design. As such, we cannot yet

predict how the optimal design should change as the structure of the input is altered or more

internal states are permitted. Altogether, this leaves a rich set of problems to be explored

in the future.
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APPENDIX A

APPENDIX

A.1 Crooks’ model

Crooks’ approach [31] finds the P (θ) that maximizes the entropy S[P (θ)] = −
∫
P (θ) lnP (θ)dθ,

subject to:

1. Normalization of probability:
∫
P (θ)dθ = 1.

2. 〈Ē[θ]〉 =
∫
P (θ)Ē(θ)dθ, a constraint on the average energy. Here, Ē[θ] =

∑
iEiθi

denotes the average energy, averaged over an individual non-equilibrium distribution,

θ.

3. 〈S〉 =
∫
P (θ)S[θ]dθ, a constraint on the average entropy. The entropy of a non-

equilibrium distribution is given by S[θ] = −
∑

i θi ln(θi). The Lagrange multiplier , λ,

used to enforce this constraint then parameterizes the deviation from the equilibrium

distribution. While this constraint is necessary to distinguish equilibrium systems

from non-equilibrium ones, it also implicitly introduces the quantitative measure of

deviation from equilibrium.

Solving the above constrained optimization problem results in the distribution [31]

P (θ) =
1

Z(β, λ)
exp [−λD(θ ‖ ρ)] , (A.1)

where Z(β, λ) is a normalization constant, and D(θ||ρ) is the relative entropy between the

non-equilibrium distribution, θ, and the corresponding equilibrium distribution ρ. The av-

erage non-equilibrium distribution is then found by integrating:

〈θ〉 =

∫
θP (θ)dθ =

1

Z(β, λ)

∫
θe−λD(θ‖ρ)dθ. (A.2)

The flattening effect on the average distribution, which is observed as λ→ 0, is invariant with

respect to the choice of distance measure used in constraint number 3. If this constraint was

replaced by a generic constraint on the average distance from equilibrium,
∫
P (θ)d(θ, ρ)dθ,
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for any distance measure d(θ, ρ), then P (θ) ∝ e−λd(θ,ρ). This would change the exact form

of 〈θ〉, but the limit λ→ 0 would nonetheless give a flat average distribution.

Numerical calculations were performed in SageMath. To calculate 〈θ〉 in Fig. 3.1 and Fig.

3.3, we generated 20, 000 random distributions, calculated the relative entropy of each one

(Eq. 3.2) using the corresponding equilibrium distribution, then weighted them using Eq. A.1

and took the average using Eq. A.2. We also added a sample of the equilibrium distribution

to the set of random distributions, in order to correct for the possibility that no samples

would be generated close enough to the equilibrium distribution to obtain appreciable weight,

when λ was high. For Fig. 4.1, each possible non-equilibrium distribution was generated from

a list of 20 random numbers. Each entry in the list was sampled uniformly from the interval

[0, 1]. The list was then normalized. We generated 107 such distributions, and examined the

distribution of a single element in the list, which corresponds with the relative concentration

of an amino acid. Due to symmetry, the distribution is the same for each amino acid in the

limit λ → 0. For Figs. 3.4 and 3.5 we were only interested in the extreme non-equilibrium

limit λ→ 0 where all states become equally likely, in which case the probability of each state

is just the inverse of the number of states, and the number of states is given by the partition

function. The partition function was calculated exactly, using Sage’s built in Partitions

function.

A.2 Predictive information in steady state

In steady state, the distribution of internal states prior to receiving a 1 is π0,s = [π0,A, π0,B] =

[π0,A0 + π0,A1, π0,B0 + π0,B1] (see Eq. 4.4). The distribution prior to receiving a 0 is π2,s =

[π2,A, π2,B] = [π2,A0 + π2,A1, π2,B0 + π2,B1] (see Eq. 4.6). The overall probability of being in

state A at the end of an interaction step is then π(A) = 1
2
[π0,A0 + π0,A1 + π2,A0 + π2,A1],

and π(B) = 1 − π(A). With these expressions, and noting that the overall probability

of receiving each bit is 1/2, the mutual information between the internal state at the end

of an interaction interval and the next incoming bit simplifies to: Ipred = 1
2
[π0,A ln

π0,A
π(A)

+

π0,B ln
π0,B
π(B)

+ π2,A ln
π2,A
π(A)

+ π2,B ln
π2,B
π(B)

].

A.3 Making reversible random matrices

The following procedure for making reversible matrices at random is taken from [16]. Let

{Kij| j ≤ i ≤ 4} be a set of 10 real, random variables created by sampling uniformly from
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an interval (0, Nmax]. This set forms the lower triangle of a symmetric 4 by 4 matrix with

Kij = Kji. Define πj ≡
∑

iKij. Then the matrix M given by Mij =
Kij
πj

is a reversible

stochastic matrix, with stationary distribution π. We can also make generators G via

G = M − I, where I is the identity matrix. We generated 106 M by this procedure with

Nmax = 100, as well as the corresponding generators given by G = M − I. Note that this

procedure gives transition rates in the range (0, 1]. From this set of generators, we made

3× 106 embeddable transition matrices, with 106 each for τ = 1,τ = 0.01,and τ = 100. The

interaction intervals with τ other than 1 led to poor performance, because the other values

led to very high self-transition rates (τ = .01) and full equilibration during the interaction

interval (τ = 100).

A.4 Lower bound on self-transitions

The overall chance of making a self-transition under the action of M on distribution p is

d(M)>p, where d(M ) is the vector of the diagonal entries of M . We can construct a

matrix achieving the smallest numerically found self-transition rate by assuming that this is

achieved when the trace is minimal. For embeddable stochastic matrices, the lower bound

on the trace is 1 (see argument in Section 4.2). In this case, M has a single eigenvalue

of 1 and all other eigenvalues 0. Thus, M is rank-1 with 4 repeats of the same column

m = [m0,m1,m2,m3]>. The matrix C = MF0MF1 is then equal to M , and the steady

state of the complete cycle is nothing more than the repeated column, i.e., π0(sn, b
′
n−1) = m.

Eq. (4.9) says that the average number of self-transitions over the cycle is L = 1
2

[
(m0+m1)2+

(m2 +m3)2
]
. Minimizing this number is a simple optimization problem with the constraint

m0 +m1 +m2 +m3 = 1. The solution is (m0 +m1) = (m2 +m3) = 1
2
. Substituting these in

gives L = 1
4
. This condition can be satisfied for approximately embeddable M , which can

be constructed, for example, by perturbing the matrix with all entries equal to 1/4 so that

the smaller eigenvalues are just slightly positive and not exactly zero.

A.5 Constraints on the eigenvalues of reversible and

embeddable matrices

The following results may be found in [63].
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1. If M is reversible then M is diagonalizable and the eigenvalues of M are real.

Proof: Let R = diag(
√
π1,
√
π2, ...,

√
πn), where π is the steady state vector of M . We first

show that S = R−1MR is symmetric:

Sij = R−1
ik MklRlj (A.3)

= R−1
ii MijRjj (A.4)

=
1
√
πi
Mij
√
πj (A.5)

=

√
Mji

πjMij

Mij
√
πj (A.6)

=
√
MjiMij (A.7)

where we use the convention that repeated indices are summed over. In the second line

we used the fact that R and R−1 are diagonal. In the fourth line we used the relation

Mjiπi = Mijπj that defines a reversible matrix to replace πi with
Mijπj
Mji

. The last line reveals

that S is symmetric. Since S is symmetric, and symmetric matrices are a subset of Hermitian

matrices, we have the well known result from quantum mechanics that S is diagonalizable

and the eigenvalues of S are real. Then M = R−1SR is similar to S and is also diagonaliz-

able, with real eigenvalues.

1. If M is reversibly embeddable, then M is reversible and the eigenvalues of M

are all positive.

Proof: M being reversibly embeddable means there exists a reversible generator Q such

that M = eQ. Defining R and S in the analogous way for Q, we can run through the

same argument to show that S is symmetric. A linear combination of symmetric matrices is

obviously symmetric. Any power of a symmetric matrix is also symmetric, which can easily

be shown by induction: A2
ij = AikAkj = AkiAjk = AjkAki = A2

ij, and for the inductive
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hypothesis we have An+1
ij = AnikAkj = AnkiAjk = AjkA

n
ki = An+1

ji . Combining these two facts

means that eS is symmetric if S is. eS = eR
−1QR = R−1eQR = R−1MR. Symmetry of

R−1MR then implies M is reversible:

(R−1MR)ij = R−1
ik MklRlj (A.8)

= R−1
ii MijRjj (A.9)

=
1
√
πi
Mij
√
πj (A.10)

=
1
√
πj
Mji

√
πi (A.11)

where π now refers to the steady state distribution of Q which was used in the construction

of R. Combination of the last two lines implies Mjiπi = Mijπj, and therefore M is reversible

with the same reversible distribution as Q. As Q is assumed to be reversible, it has real

eigenvalues and is diagonalizable. Writing Q in the basis in which it’s diagonal, we have

M = eQ (A.12)

=
∞∑
n=0

diag(q1, q2, ..., qm)n

n!
(A.13)

=
∞∑
n=0

diag(
qn1
n!
,
qn2
n!
, ...,

qnm
n!

) (A.14)

= diag(eq1 , eq2 , ..., eqm) (A.15)

where {q1, q2, ..., qm} are the eigenvalues of Q. We see from Eq. A.15 that the eigenvalues

of M are the exponentials of the eigenvalues of Q. As the eigenvalues of Q are real, this

means that the eigenvalues of M are positive.
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[34] Lidia Del Rio, Johan Åberg, Renato Renner, Oscar Dahlsten, and Vlatko Vedral. The

thermodynamic meaning of negative entropy. Nature, 474(7349):61, 2011.

[35] John P DeLong, Jordan G Okie, Melanie E Moses, Richard M Sibly, and James H

Brown. Shifts in metabolic scaling, production, and efficiency across major evolution-

ary transitions of life. Proceedings of the National Academy of Sciences, 107(29):12941–

12945, 2010.

69



[36] M Dixon and EC Webb. Enzymes. Academic Press, Cambridge, 1964.

[37] Evan D. Dorn, Kenneth H. Nealson, and Christoph Adami. Monomer abundance

distribution patterns as a universal biosignature: Examples from terrestrial and digital

life. J. Mol. Evol., 72(3):283–295, 2011.

[38] M. Esposito and C. Van den Broeck. Second law and landauer principle far from

equilibrium. EPL (Europhysics Letters), 95(4):40004, 2011.

[39] M. Esposito and C. Van den Broeck. Second law and landauer principle far from

equilibrium. EPL (Europhys. Lett.), 95(4):40004, 2011.

[40] Massimiliano Esposito, Katja Lindenberg, and Christian Van den Broeck. Entropy

production as correlation between system and reservoir. New Journal of Physics,

12(1):013013, 2010.

[41] Philippe Faist, Frédéric Dupuis, Jonathan Oppenheim, and Renato Renner. The min-

imal work cost of information processing. Nature communications, 6:7669, 2015.

[42] Philippe Faist and Renato Renner. Fundamental work cost of quantum processes.

Physical Review X, 8(2):021011, 2018.

[43] Paul J. Flory. Thermodynamics of heterogeneous polymers and their solutions. The

J. Chem. Phys., 12(11):425–438, 1944.

[44] Robert G Gallager. Discrete stochastic processes, volume 321. Springer Science &

Business Media, Berlin, 2012.

[45] Andrew JP Garner, Jayne Thompson, Vlatko Vedral, and Mile Gu. Thermodynamics

of complexity and pattern manipulation. Phys. Rev. E, 95(4):042140, 2017.

[46] J Willard Gibbs. Elementary Principles in Statistical Mechanics. Courier Corporation,

Mineola, 2014.

[47] Sandra C Greer. Physical chemistry of equilibrium polymerization. The J. Phys. Chem.

B, 102(28):5413–5422, 1998.

[48] Arne L Grimsmo and Susanne Still. Quantum predictive filtering. Physical Review A,

94(1):012338, 2016.

70



[49] John Harte. Maximum entropy and ecology: a theory of abundance, distribution, and

energetics. OUP Oxford, 2011.

[50] Barry Herschy, Alexandra Whicher, Eloi Camprubi, Cameron Watson, Lewis Dartnell,

John Ward, Julian R. G. Evans, and Nick Lane. An origin-of-life reactor to simulate

alkaline hydrothermal vents. J. Mol. Evol., 79(5):213–227, 2014.

[51] Paul G Higgs and Ralph E Pudritz. A thermodynamic basis for prebiotic amino acid

synthesis and the nature of the first genetic code. Astrobiology, 9(5):483–490, 2009.

[52] J. J. Hopfield. Kinetic proofreading: A new mechanism for reducing errors in biosyn-

thetic processes requiring high specificity. Proc. Natl. Acad. Sci., 71(10):4135–4139,

1974.

[53] Jordan M. Horowitz, Takahiro Sagawa, and Juan M. R. Parrondo. Imitating chemical

motors with optimal information motors. Phys. Rev. Lett., 111:010602, Jul 2013.

[54] Howard C Howland, Stacey Merola, and Jennifer R Basarab. The allometry and scaling

of the size of vertebrate eyes. Vision research, 44(17):2043–2065, 2004.
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