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Abstract 

A major focus in modern genomics is determining the connection between genotypes and 

quantifying phenotypes. In this connection, many factors come into play including different 

genetic backgrounds, genetic variation at a locus, and environmental conditions. Genetic 

variation in Drosophila melanogaster, and specifically the simple polymorphisms within Malic 

enzyme (Men), can provide insight into the pathways between genotypes and phenotypes. 

Globally, there are two polymorphic sites in the malic enzyme gene. On site is near the protein 

(MEN) active site and found at an allelic frequency of 50% glycine amino acid and 50% alanine 

amino acid. The second polymorphism is buried within the protein and found at an allelic 

frequency of 90% methionine amino acid and 10% leucine amino acid. To determine the 

complexity of the pathway between genotypes and phenotypes, multiple genetic backgrounds for 

each genotype, using multiple D. melanogaster lines, were included to explore and quantify 

genetic background effects, and paraquat was used to induce oxidative stress. The biochemical 

characteristics of the alleles varied significantly between the genotypes under benign conditions 

and both polymorphic sites effected some phenotypes. The first site played a role in the MEN 

Vmax and Km; the glycine allele had 14% higher Vmax activity than the alanine allele and the 

glycine allele had 8% higher Km than the alanine allele. The second site influenced the Km and 

Vmax/Km ratio (relative activity); the methionine allele had 34% higher malate Km than the leucine 

allele the leucine allele had 52% higher relative activity than the methionine allele. Interestingly, 

the protein product encoded by the rarer allele, leucine, had a higher relative activity and lower 

Km concentration, having a large impact on the enzymatic phenotype. These extreme phenotypes 

of that allele may be an indication of the why the allele is maintained at 10% across populations. 

Different lines with the same genotype had different biochemical phenotypes, indicating the 

importance of backgrounds effects influencing the final phenotype. Further, the flies’ phenotypes 

differed between benign and oxidative stress conditions. Flies exposed to paraquat had a 

decrease in MEN Vmax, and the MEN alleles did not significantly differ from each other. Overall, 

the findings from this study suggest that the final phenotype are strongly influenced by the 

polymorphisms found in MEN, the interactions between genetic background and environmental 

conditions. 
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1.1 Overview of this thesis 

With advances in technology used to study modern genetics, the main focus of research is 

determining genotypes and quantifying phenotypes. However, an essential mechanism in 

genetics has yet to be answered, a question that has existed for about 50 years (Merritt, 

Duvernell, & Eanes, 2005). To begin to understand the complex pathway from a 

genotype to phenotype, it is crucial to fully understand how one gene can lead to a variety 

of phenotypes. These phenotypes derived from one gene are responding to different 

influencers, such as other genes, the environment, and mutations (Boone, Bussey, & 

Andrews, 2007; Chandler, Chari, & Dworkin, 2013; Cordell, 2009; Dworkin et al., 2009; 

Rzezniczak & Merritt, 2012). Therefore, it is not the gene solely that drives the 

phenotype. In this thesis, Drosophila melanogaster is the model organism used to 

understand genetic inheritance, focusing on the Malic enzyme (Men) locus, an NADPH 

network enzyme.  How the different alleles of Men can be affected by multiple genes, in 

this case other NADPH enzymes, and the environment is extensively studied. The 

examples throughout this introduction focus on D. melanogaster and the NADPH 

network.  

A multiple genes and environment approach is used for this thesis, incorporating and 

measuring responses of multiple factors. The focus on the variation in this study is the 

nine different Men genotypes, their interactions with each other, other players in the 

NADPH network, and how MEN alleles acclimates to an environmental stressor, more 

specifically oxidative stress. As background for my work, I will go over the essential 

concepts of the central dogma of molecular genetics, heterozygote advantage, and 

complex traits. Furthermore, an in-depth discussion of the knowledge obtained from 

studying Malic enzyme, the NADPH pathway, and the oxidative stress condition is 

present in this chapter.  

The central dogma is a great schematic that shows a mechanism of converting DNA to 

RNA to protein (Crick, 1970; Li & Xie, 2011; Schreiber, 2005). The limitation with the 

central dogma is that it is a simplified explanation. A gene, solely, does not determine the 

phenotype. Numerous factors have been uncovered, and are still being studied today, that 

can drive changes in the phenotype. Complex traits are a function of genes interacting 
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with other genes to drive changes in the phenotype (Chow, 2016; Dworkin et al., 2009; 

Lessel, Parkes, Dickinson, & Merritt, 2017). Furthermore, the biological system is 

dynamic; in response to variation from its surroundings, and phenotype will change  

(Bernard, Parkes, & Merritt, 2011; Griendling et al., 2016; Rzezniczak & Merritt, 2012). 

Therefore, one allele can display multiple phenotypes for a given circumstance (Bing et 

al., 2014; Dworkin et al., 2009; Lessel et al., 2017; Rzezniczak & Merritt, 2012).  

 

1.2 Malic Enzyme 

Malic enzyme (Men) in Drosophila melanogaster is a metabolic enzyme and a suitable 

model system to answer a fundamental question in genetics: What is the path between 

genetic diversity and biological complexity?  With the advances in modern genomics, the 

focus is now on determining genotype and quantifying phenotypes. However, the 

connection between the two was not always clear. Within the Merritt Lab, the focus is 

attempting to answer that fundamental question, understanding the players that take us 

from DNA to the diverse phenotypes we have today (Merritt et al., 2005, 2009; Merritt, 

Sezgin, Zhu, & Eanes, 2006; Rzezniczak, Lum, Harniman, & Merritt, 2012).  

MEN is a metabolic enzyme that oxidizes malate to pyruvate and reduces NADP+ to 

NADPH (Merritt et al., 2005; Rzezniczak et al., 2012; Rzezniczak & Merritt, 2012; Ying, 

2008). The Men locus is located in the third chromosome in D. melanogaster. Across the 

global population D. melanogaster, there are two known single nucleotide 

polymorphisms (SNPs) that alter the amino acid composition of the MEN protein. The 

first polymorphism occurs at base pair 338, which is a guanine to cytosine substitution 

that results in a glycine to alanine change at amino acid 113. Hereafter, we refer to this 

site as the G-A polymorphism. Between the two amino acids, the glycine amino acid is 

found in Africa D. melanogaster and D. simulans (a Drosophila species that shares a 

common ancestor with D. melanogaster), suggesting that glycine is the ancestral trait 

(Merritt et al., 2005; Rzezniczak et al., 2012; Sezgin et al., 2004). The glycine and 

alanine occur in equal frequencies across North American populations. The G-A 

polymorphism is in an alpha helix near the MEN active site. The second polymorphism 

occurs at base pair 1051, which is an adenine to thymine substitution that results in a 
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methionine to leucine change at amino acid 351. Hereafter, we refer to this as the M-L 

polymorphism. The leucine amino is present in two North American populations 

(Sudbury and Raleigh), however not in African populations or D. simulans, suggesting 

that the methionine amino is the ancestral trait. The M-L polymorphism is in a beta sheet 

buried in the protein, not close to functional components of the protein. The leucine 

amino acid is at an allelic frequency of 10%, whereas methionine is at an allelic 

frequency of 90% (Rzezniczak et al., 2012). Structure-wise, MEN is a tetra-homodimer, 

in which two MEN monomers form a dimer, and two dimers bind to form a tetramer 

(Merritt et al., 2005).  

The biochemical characteristics of the polymorphism in MEN have been previously 

studied (Rzezniczak et al., 2012). The previous work used isothrid chromosomes, in 

which the third chromosomes were identical (homozygous). The phenotypes examined 

were Vmax, which is the maximum velocity of the enzyme, Km, the binding affinity of the 

enzyme and thermal stability, an indication of how stable the enzyme is under denaturing 

conditions. For Vmax, the G-A polymorphism influenced the activity; the glycine amino 

acid had a 46% higher activity than alanine. No differences in MEN Vmax were found at 

the M-L polymorphism. Differences in Vmax were identified at the G-A polymorphism, 

but not the M-L polymorphism, likely because of the G-A polymorphism's location is 

near the active site of the enzyme, and the M-L polymorphism’s location within the 

protein away from the active site.   

The Men gene expression for the different polymorphisms was also quantified. Gene 

expression was analyzed because the Vmax's phenotype is expected to be influenced by 

both the structure of the protein and the regulation of the gene. Regulatory effects consist 

of transcripts and regulatory elements, such as enhancers, insulators and promoters. In 

previous work, lines that had the guanine nucleotide allele has higher Men expression 

level (Rzezniczak et al., 2012). Interestingly, the M-L polymorphism (adenine and 

thymine) was also associated with significant differences in Men expression levels, even 

though their MEN Vmax levels were not significantly different. The thymine nucleotide 

was associated with lower expression of Men than the adenine nucleotide. This difference 

in Men expression levels could possibly dictate the similarities in MEN Vmax. The 
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polymorphisms on its own should not affect gene expression, since it is found within the 

gene. The differences in expression levels could be driven due to regulatory variations. 

The structural changes in the enzyme have yet to be analyzed and further quantification 

of the isolated protein will provide insight into structure variation and regulatory 

variation.  The quantification of expression levels along with the MEN activity indicates 

that both structure and regulatory variations influence the differences and similarities 

found in MEN Vmax. 

The second phenotype quantified was the malate Km of MEN. Km is a measure of the 

binding affinity of an enzyme, and this phenotype is expected to be influenced solely by 

the structure of the enzyme, the amino acid sequence, and not by regulation of gene 

expression. Both polymorphisms, G-A and M-L, influenced the Km of MEN; the glycine 

amino acid had a higher Km than alanine, and the leucine had a higher Km than 

methionine. The M-L polymorphism influence on the Km phenotype is likely due to the 

alteration of the amino acid sequence, which leads to changes in the tertiary structure of 

the protein. Changes in the structure of a protein can change the function of the protein, 

ex. Hemoglobin and prions (Prusiner, 1990; Steinberg, 2008). 

Thermal stability was another MEN phenotype quantified in this study. The authors 

placed the enzyme in denaturing conditions over time and compared the MEN activity 

with a control group. The G-A polymorphisms is in an alpha helix. The alanine amino 

acid at the G-A polymorphic site is assumed to be more stable than the glycine amino 

acid, since glycine amino acid tends to destabilize alpha helices (Chakrabartty, 

Schellman, & Baldwin, 1991; Ganter & Plückthun, 1990). However, the glycine is 15% 

more stable in denaturing condition than the alanine amino acid. With thermal stability, 

the protein as a whole is exposed to denaturating conditions, which may be the reason 

that glycine is more stable than alanine- the interactions between the R groups.  The M-L 

polymorphism did not influence the stability of the enzyme, relating back to the 

proximity of the polymorphic sites. 

Overall, previous studies were able to characterizations in the differences between the 

SNPs found in MEN. These biochemical differences indicate the possibility that MEN is 

under selection and can further provide insight into the maintenance of genetic variations. 
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1.3 The NADPH Pathway 

We expect that some mutations, especially the ones that alter the amino acid sequence, 

can affect the immediate function of the enzyme. However, enzymes do not act in 

isolation; a single gene can affect multiple phenotypes through gene products and 

substrates (Rzezniczak et al., 2012; Rzezniczak & Merritt, 2012). To determine a gene's 

function often times the gene is quantified only in the gene’s primary pathway. However, 

any changes in the direct pathway can disrupt other pathways as well, and vice versa, in 

which other pathways can alter the gene of interest (Bernard et al., 2011; Rzezniczak & 

Merritt, 2012). Therefore, when studying genes, other pathways should be quantified to 

grasps the effects and interactions of the gene; metabolism is a network, not a linear 

pathway. 

MEN is a metabolic enzyme that reduces NADP+ to NADPH while converting malate to 

pyruvate. Other metabolic enzymes also reduce NADP+ to NADPH, including Isocitrate 

dehydrogenase (IDH), Glucose-6-phosphate dehydrogenase (G6PD) and 6-

phosphogluconate dehydrogenase (6PGD;  Rzezniczak et al. 2012; Ying 2008; Merritt, 

Duvernell, and Eanes 2005).  These four enzymes interact to maintain the NADP+: 

NADPH ratio within the cells (Merritt et al., 2005, 2009). These interactions are often 

compensatory, in which a reduction of one enzyme results in upregulation of the other), 

but can also be parallel and counterintuitive, in which a reduction in one enzyme leads to 

down-regulation of others (Rzezniczak & Merritt, 2012). Even though this network is 

small, it is a complex regulatory network. Previous studies found that an extreme 

reduction in MEN activity leads to an increase in G6PD and 6PGD activity, however a 

reduction in IDH activity. In adults, each enzyme contributes to the NADPH pathway 

differently. MEN produces about 30% of the available NADPH in D. melanogaster, IDH 

produces about 20%, and G6PD and 6PGD produces a combined total of 40% of NADPH 

in the cells. Other enzymes are currently being studied to understand this network further. 

The NADPH produced by the enzyme mentioned above have some downstream function, 

such as lipid synthesis and reactive oxygen species (ROS) clearance (Bernard et al., 2011; 

Geer, Lindel, & Lindel, 1979; Hosamani & Muralidhara, 2013; Merritt et al., 2005, 2006; 

Rzezniczak et al., 2011; Rzezniczak & Merritt, 2012).  
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1.4 Genetic Background 

Complex traits are not dependent solely on their genotype, but their phenotype is also 

determined by interactions between multiple genes, the environment, and random chance. 

For example, IDH, G6PD, and 6PDG are all interacting components of the NADPH 

pathway whose function and activity modify that of MEN. Genetic background effects 

take into account the whole genome of an organism, and these genes interact with each 

other to regulate activities (Chandler et al., 2013; Chow, 2016). On a small scale, the 

genetic background can be thought out as IDH, G6PD, and 6PDG interacting with MEN. 

On a larger scale, it is the organism's whole genome interacting with MEN.  Therefore, 

the phenotypes are a result of the interaction of the gene of interest with other genes, plus 

the environment.  Nonidentical siblings can be used as an example to grasp the 

complexity of genetic background effects. When comparing siblings, they come from the 

same parents; however, the combination of the genes in their genome differs. This 

difference in their genome allows for different communication between alleles, overall 

leading to unique phenotypes from one another, hence not clones to each other.  

A study within the Dworkin lab looked at the phenotype of a mutation for wing shape in 

different lines (also be known as different genetic backgrounds; (Dworkin et al., 2009). 

The mutation analyzed in this study was the scalloped allele. When the mutation is in two 

different D. melanogaster background lines, Samarkand and Oregon-R, the phenotype of 

the wings differed significantly. Therefore, one mutation will behave differently in 

different genetic background. Dworkin’s work with genetic background displays the 

importance of using multiple lines.  

1.5 The Environment 

Organisms' phenotypes can respond rapidly to changing environmental conditions, and 

this response is crucial for the survival of the organism. As mentioned before, this change 

in phenotype results from interactions with multiple genes plus the environment. 

Most often, lab-derived mutations are studied in one condition- the lab condition. 

However, mutations' phenotypes can alter depending on the environment it is present. 

Furthermore, environmental factors can alter a phenotype differently across the different 
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genetic backgrounds. Going back to the previous example with the fly wings, a mutant 

allele phenotype of one line can behave differently compared to different environmental 

conditions. Genetic background effects and environmental changes further complicate a 

study, which is why many studies only include one condition and one gene to study 

mutation to reduce variability. However, it is essential to include this variability when 

understanding genetic variation maintenance within a natural population.  This 

maintenance of genetic variation allows for organisms to acclimates to the changing 

environment, which is key to survival. In this study, paraquat was used to induce 

oxidative stress since NADPH is known to play a role in the clearance of ROS within a 

cell (Lessel et al., 2017; Rzezniczak & Merritt, 2012). Oxidative stress will be discussed 

further in the following section.  

1.6 Oxidative Stress 

One downstream function of NADPH is the clearance of reactive oxygen species, ROS, 

within a cell. When ROS begins to accumulate within the cells, it can damage DNA, 

protein, and lipids, sometimes leading to cell death (Bernard et al., 2011; Finkel & 

Holbrook, 2000; Hosamani & Muralidhara, 2013; Weber et al., 2012). The accumulation 

of these products is known as oxidative stress.  Oxidative stress is a common 

environmental condition. To generate an oxidative stress environment for an organism, 

paraquat (1,1’-dimethyl-4-4’-bipyridynium dichloride) is one approach that is used often 

when working with D. melanogaster (Rzezniczak et al., 2011). Paraquat is an herbicide 

and a neurotoxin that can cause a severe hazard to animal and human health (Hosamani & 

Muralidhara, 2013; Rzezniczak et al., 2011). Ingested paraquat combines with an oxygen 

molecule to produce a superoxide anion radical along with a paraquat derivate radical, 

generating a ROS present in the cell. Interestingly, paraquat requires NADPH to generate 

the ROS mentioned above (Rzezniczak & Merritt, 2012). The superoxide anion is a ROS 

that can bind to macromolecules and activate apoptosis within a cell. 

Under conditions of oxidative stress, the antioxidant enzymes superoxide dismutase 

(SOD), catalase (CAT) and glutathione- s-transferase (GST) are major consumers of 

NADPH (Abolaji, Olaiya, Oluwadahunsi, & Farombi, 2017; Aebi, 1984; Müller et al., 

2017). SOD converts superoxide anion into oxygen molecules. CAT takes hydrogen 
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peroxide and converts it into oxygen and water molecules. GST is known to detoxify 

secondary ROS products using glutathione (GSH) as a substrate, it can cycle between its 

reduced (GSH) and oxidized (GSSG) forms, where GSH behaves as a reducing agent and 

ROS scavenger.   

 

A previous study in the Merritt laboratory induced oxidative stress in D. melanogaster 

using paraquat and examined the interactions between the enzymes in the NADPH 

pathway (Rzezniczak & Merritt, 2012). In this study, the authors found that, compared to 

the control flies, the enzymatic activities decreased, the organism’s response to a different 

environment. The reason why there was a decrease in the enzyme activities is to reduce 

the concentration of NADPH present within the cell. 

1.7 Objectives & Hypothesis 

Here, we are extending a combination of previous work to understand further the 

mechanism of genetic variation, biological complexity, and selection by using 

polymorphisms present within Men, a variety of genetic backgrounds and oxidative 

stress. Previous work on the system used isothrid chromosomes, quantifying one gene in 

one condition. In this study, the two Men polymorphisms are furthered biochemically 

characterized. Drosophila Genetic Reference Panel (DGRP) lines are used, with known 

alleles for the polymorphisms. Multiple lines for each allele (AM/AM, AL/AL, GM/GM 

and GL/GL) were crossed to one another to generate multiple heterozygous and 

homozygous genotypes (AM/AM, AM/AL, AL/AL, AM/GM, AM/GL, AL/GL, 

GM/GM, GM/GL and GL/GL). The biochemical characterization of Men will be first 

studied and compared to previous work, determining if as heterozygotes the trend 

observed remains consistent. The phenotypes that will quantify in Chapter 2 are MEN 

Vmax, which is maximum velocity, Km, the binding affinity and thermal stability, how 

stable the enzyme in denaturing condition.  

By including multiple lines, we are generating flies with the same alleles at the Men locus 

that potentially differ at other loci, therefore studying genetic background effects. 

Furthermore, a phenotype is driven by multiple genes, the other NADPH pathway 

enzyme will be quantified as well. These biochemical phenotypes are immediate 
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functions of the allelic variation, and we refer to them as "proximal" phenotypes (Lessel 

et al. 2017). The distal phenotypes carbohydrate and triglyceride content, which are 

downstream functions of the enzymes and cofactors present here (Lessel et al. 2017), will 

be analyzed as well.   

The final component of the study is the inclusion of variation in the environmental, 

Chapter 3. Flies will be exposed to oxidative stress, using paraquat-laced food to induce 

ROS and the various MEN phenotypes compared to oxidative stress and benign 

laboratory conditions. 

In summary, the objective of this study is to quantify the biochemical characteristics of 

the Men homozygous and heterozygous alleles. The results obtained are compared to the 

biochemistry of these Men alleles with the trends previously established. Further, this 

study will explore across the NADPH network and see if interactions are occurring, and if 

there are, do the level of interactions between the Men alleles differ. Lastly, how the 

alleles respond to environmental conditions, in this case, oxidative stress will be 

quantified. If there are changes between the alleles, is there an advantage of an allele to 

another when under oxidative stress. 

I hypothesized that the alleles would vary in their biochemistry at Men locus. These 

alleles will most likely show an additive response with their homozygous alleles. The 

differences between the alleles for the MEN phenotypes will not differ greatly; therefore, 

I do not expect there to be a high level of interactions with the other NADPH enzyme 

(previous work used excisions lines with larger-scale differences in MEN activity to 

understand the players in the pathway). For the environmental conditions, I hypothesized 

that the alleles would behave differently, compare to the control, where the trends will 

not be the same, and some alleles will potentially display a heterozygote advantage. This 

study can provide further insight into understanding the mechanisms between genetic 

variation and biological complexity.   
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Chapter 2: Genetic Background and Single Nucleotide Polymorphism in the 

NADPH Pathway in Drosophila melanogaster at the Malic Enzyme Locus 
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2.1) Introduction  

Given the huge amount of genetic data generated by modern genomics, our lack of 

understanding of biological molecular variation is striking. What is the effect of genetic 

variation? A fundamental task of modern genetics and genomics is still to uncover the 

path between genetic diversity and biological complexity. Part of this task is examining 

the biological effect of simple polymorphisms. The impact of these sites have been a 

central question since the earliest studies of allozymes and genetic molecular variation.  

 

Genetic variation at the Drosophila melanogaster Malic enzyme (Men) locus is an 

interesting model system for the study of the biology of molecular variation in general 

(Merritt et al. 2005; Rzezniczak et al. 2012). Malic enzyme is a metabolic enzyme that 

oxidizes malate to pyruvate while reducing NADP+ to NADPH(Merritt et al. 2009, 2005; 

Rzezniczak et al. 2012). In D. melanogaster, there are two known amino acid changing 

single nucleotide polymorphisms at the Men locus. The first polymorphism, at base pair 

338, is a guanine to cytosine substitution that results in a glycine to alanine change at 

amino acid 113.  This site is in an alpha helix close to the MEN active site. The two 

alleles occur in approximately equal frequency across North America, but only the 

guanine allele is found in Africa and D. simulans, suggesting that it is the ancestral 

condition (Rzezniczak et al. 2012; Sezgin et al. 2004). The second polymorphism, base 

pair 1051, is an adenine to thymine substitution that results in a methionine to leucine 

change at amino acid 351. The leucine allele is found at a frequency of 14% in at least 

two North American populations, but has not been found in African sites or D. simulans, 

suggesting methionine is the ancestral condition (Rzezniczak et al. 2012). This site is in a 

beta sheet buried in the protein, not in close proximity to the active site. Malic enzyme 

functions as a homotetramer. In homozygous individuals, at the Men locus, there will be a 

single form of the enzyme. However, in individuals heterozygous at one site, there will be 

five possible different enzymes (e.g. four alanines, three alanines and one glycine, two 

alanines and two glycines, etc.) For both sites, there is the possibility of 25 different 

enzymes (e.g. four alanine and four methionine, four alanine, three methionine and one 

leucine, etc.).  
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Both polymorphisms significantly affect the biochemistry of the MEN enzyme, 

suggesting that the sites could affect fitness and are under selection (Merritt et al. 2009, 

2005; Rzezniczak et al. 2012). Using homozygous isochromosomal flies, we quantified 

that both polymorphic site influences the Km for malate, with the glycine and leucine 

alleles having a higher Km. Further, the first polymorphism, but not the second, influences 

the Vmax; the glycine allele has 46% higher activity than the alanine. The glycine amino 

acid alleles are associated with higher levels of expression, but the differences in 

expression do not fully explain the differences in activity. This indicates that the 

differences are a function of both structural and regulatory variation (Rzezniczak et al. 

2012). Similarly, only the first polymorphism influences MEN thermal stability with the 

glycine amino acid alleles being more thermostable.  

  

The biochemical effects, widespread distribution, and the consistency of their 

frequencies, suggest that the alleles are under selection (Merritt et al. 2005). The 

approximately equal frequency of the alleles at the first site mean that most individuals 

will be heterozygous and is consistent with the possible heterozygote advantage. If 

heterozygote advantage is maintaining the alleles, then a prediction is that the biology of 

the heterozygote lies outside that of either homozygous genotypes (Charlesworth and 

Charlesworth 1987; Dudash and Fenster 2000). The implication of the rare allele at the 

second are less clear. It could be that this is a recent mutation, but its presence in at least 

two geographically distant population argues against this and suggest that it is being 

maintained at the population level. The biased frequency does mean that homozygotes of 

rare allele will be extremely rare and that it will predominantly occur in the heterozygote. 

We test this prediction for both these sites using a suite of biochemical and complex 

phenotypes.  One of the first heterozygote advantage study completed was done in 

Drosophila melanogaster, examining the ebony allele (Kalmus 1945). In this study, 14 

months of selection was carried out, and found that the heterozygotes were superior to 

both homozygotes at higher temperatures and at lower temperature increased the 

frequency of ebony flies emerging. An example of heterozygote advantage within 

humans is at the Triosephosphate isomerase (TPI) locus, where one mutation, coding for 

aspartic acid instead of glutamic acid, causes inactivation of the enzyme (Ralser et al. 
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2006). This null allele as homozygous causes a TPI deficiency, however, as heterozygote, 

it shows no effects to the organism. The frequency of the heterozygote allele (one null 

allele and one functional) is higher than excepted, also indicating a heterozygote 

advantage based on population genetics. 

 

Most biological traits are complex, influenced by multiple genes and environmental 

factors and potential selection advantages or disadvantages of genetic variation is 

complicated by interactions across these multiple factors (Bernard et al. 2011; Mackay 

2004; Wolf 2003). In previous studies, we showed that Men is an important contributor to 

the maintenance of the NADP+/NADPH ratio within the cell (Merritt et al. 2009; 

Rzezniczak et al. 2012; Rzezniczak and Merritt 2012; Ying 2008). NADPH is a major 

reductant in lipid synthesis and oxidative stress resistance (Bernard et al. 2011; Lessel et 

al. 2017; Merritt et al. 2006; Rzezniczak and Merritt 2012; Wise and Ball 1964). MEN 

shares this role with at least three other enzymes that reduce NADP+, Isocitrate 

dehydrogenase (IDH), Glucose-6-phosphate dehydrogenase (G6PD) and 6-

phosphogluconate dehydrogenase (6PGD). These four enzymes interact and are co-

regulated, likely through cellular monitoring of the NADP+/NADPH ratio (Merritt et al. 

2009; Rzezniczak and Merritt 2012). These interactions are often compensatory 

(reduction of one source of NADPH results in up regulation of others), but can also be 

parallel and counterintuitive (reduction of one source of NADPH results in down 

regulation of others), indicating a complex regulatory network (Rzezniczak and Merritt 

2012). It has been estimated that MEN produces about 30% of available NADPH in D. 

melanogaster. The remaining portion of NADPH is produced from IDH (about 20%) and 

G6PD and 6PGD (combined 40%)  (Geer et al. 1979). Previous studies have found that 

an extreme reduction in MEN activity can lead to an increase in G6PD and 6PGD 

activity, however a reduction in MEN can lead to a reduction in IDH (Rzezniczak and 

Merritt 2012). This work displays the importance of studying a gene with their respective 

influencers rather than in isolation (Chow 2016; Dixon et al. 2009; Huang et al. 2014).   

 

Here we expand our investigation of the biochemical characteristics of the MEN amino 

acid polymorphisms to include heterozygote genotypes and a greater number of genetic 
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backgrounds. By including the heterozygotes, we are able to better understand the 

regulatory and structural variation between the alleles, which may explain the differences 

in allelic frequencies and overdominance at Malic enzyme. Furthermore, studying 

heterozygotes are of interest to us because they better represent a population, since 

heterozygotes tend to exist at a higher frequency than homozygotes. Examining the 

heterozygotes, we find that both polymorphic sites significantly impact the biochemistry 

of the enzyme. In addition, our results are consistent with previous work mentioned 

above.  

 

2.2) Materials and Methods 

2.2.1) Fly Stocks and Lines  

Fly lines are a subset of the DGRP lines obtained from the Bloomington Drosophila 

Stock Centre (Bloomington, USA).  Fly lines were selected based on genotype at the two 

known polymorphism sites in the Malic enzyme gene: Position 351, a G-C polymorphism 

that results in a G-A substitution and position 1051, an A-T polymorphism that results in 

a M-L substitution. Flies were also selected based on parental Vmax activity (mid-activity) 

and IDH and G6PD alleles to be consistent with one another. A lists the parental lines 

used and their respective genotypes can be found in Table 2.1.  Parental lines were 

crossed with one another to create heterozygotes with the following genotypic 

combinations: C/C, A/A (CCAA), C/C, A/T (CCAT), C/C, T/T (CCTT), C/G, A/A 

(CGAA), C/G, A/T (CGAT), C/G, T/T (CGTT), G/G, A/A (GGAA), and G/G, T/T 

(GGTT). A representation of how the crosses were complete to obtain the desired 

genotypes is found in Figure 2.1A. All crosses included five adult male flies from one 

line paired with five virgin female flies from another line. Flies were maintained on a 

standard cornmeal medium with 12:12-hr light dark cycle at 25oC. Emerging male flies 

were aged to 3-6 days, frozen, and stored at -80 oC until further analysis.  
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Sex DGRP 

Line # 

Site 351 Site  1051 

Maternal 517 C A 

Maternal 069 C A 

Maternal 237 G A 

Maternal 890 G A 

Maternal 336 C T 

Maternal 350 C T 

Maternal 555 G T 

Maternal 721 G T 

Parental 101 C A 

Parental 796 C A 

Parental 748 G A 

Parental 142 G A 

Parental 399 C T 

Parental 021 C T 

Parental 075 G T 

Parental 426 G T 

 

 

Table 2.1: DGRP lines, and their genotypes, used to construct homozygous and 

heterozygous genotypes. The sex column distinguishes with sex was used, maternal 

being females and parental being males.  The DGRP Line # indicates which specific 

DGRP line was used. The last two columns state the genotypes at the first and second 

polymorphic sites. 
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Figure 2.1. A. Schematic of crosses performed to generate desired alleles. A virgin 

maternal line from Table 2.1 is crossed to a parental line to generate the desired allele in 

the F1 generation. B. All the crosses performed to generate. The grey row represents the 

maternal lines used and the grey column represents the parental lines used. The white 

boxes are the crosses that were completed. 
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2.2.2) Fly Wet Weight 

Flies were weighed to the nearest 0.01 mg using a Mettler Toledo microbalance MX5. 

Weight was used as a covariate in analyses of covariance (ANCOVA) to standardize 

enzyme activities, triglycerides and carbohydrate concentration for differences in fly size.  

 

2.2.3) Fly Homogenization 

Assays were conducted using whole fly homogenates created by homogenizing samples 

of five flies in grinding buffer (100 mM Tris-HCl, 0.15 mM NADP+, pH 7.4) at a 

concentration of one fly per 100 µL of buffer, and centrifuged at 13 000 RPM for 10 min 

at 4 oC to pellet all solids. Homogenate supernatant was collected and 300 µL of 

supernatant was transferred to a 96-well plate;  aliquots were sampled from this master 

plate for each subsequent analysis. 

 

2.2.4) Enzyme Activity Measurements 

Enzyme activity was quantified by measuring the production of NADPH through time. 

Assays were conducted on a 96-well plate spectrophotometer (Molecular Devices 

SpectraMax 384 Plus), using 10 µL of fly homogenate and 100 µL of assay buffer 

(described below). Absorbance at 340 nm (the wavelength of absorbance of NADPH) 

was measured every 9 s for 3 minutes at 25 oC, with the exception of the G6PD activity 

assays, which was measured for 5 min. 6PGD activity was not quantified since it directly 

follows G6PD in the pentose phosphate pathway and another study shown a correlation 

between G6PD and 6PGD activities (Wilton et al. 1982). Samples were assayed twice 

and the means were used for further analysis. The assay buffers were previously 

optimized to give maximum activities (Merritt et al. 2005, 2009) and were as follows: 

G6PD: 100 mM Tris- HCl, 0.32 mM NADP, 3.5 mM D-glucose-6-phosphate (pH 7.4) 

IDH: 100 mM Tris-HCl, 0.10 mM NADP, 0.84 mM MgSO4, 1.37 mM DL-isocitrate (pH 

8.6) 

MEN: 100 mM Tris-HCl, 0.34 mM NADP, 50 mM MnCl2, 50 mM malate (pH 7.4) 
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2.2.5) Estimation of Michaelis-Menten Constant 

Genotype-specific Michaelis-Menten constants for malate were determined using a 10-

point geometric design method following Rzezniczak et al (2012).  Briefly, rates for each 

genotype were determined using the method described above, but using 10 substrate 

concentrations ranging from 0.1 mM-10 mM, each measurement was done in replicate. 

The average value for each of the 10 concentrations was then used to determine the 

Michaelis-Menten constant using the program GraFit 7.0 software.  

 

2.2.6) Thermal Stability of Malic Enzyme 

MEN thermal stability was estimated by following MEN activity decline over time (0-10 

min) at 50 oC, as described in (Hall 1985; Rzezniczak et al. 2012). Briefly, for each 

genotype, a control sample was kept on ice while matched samples were incubated at 50 
oC.  Single heat-exposed aliquots were removed and placed on ice at interval of 1 

minutes. At the end of 10 minutes, all aliquots were kept on ice until their MEN activities 

were measured. The activity of each sample was compared to the control sample to 

determine the proportion of activity remaining at each time point. The decline in enzyme 

activity with time was treated as a first-order exponential decay process. Denaturing 

constant (kD) was determined by the relationship !
!" #

= 𝑒&'(# where !
!" #

  is the 

proportion of initial enzyme activity remaining at the time t and kD is the denaturation 

constant (Hall 1985). The slope of the line from linear regression of ln !
!" #

 on the time is 

estimate of kD. A mean kD was calculated for each sample. 

 

2.2.7) Soluble Triglyceride Content 

Soluble triglyceride was measured using a commercially available kit (Triglyceride-SL 

Assay, Pointe Scientific, Canton, MI, Catalog No. T7531) following manufacturer’s 

protocol. Briefly, each assay, 10 µL of homogenate and 100 µL of reagent, was incubated 

at 37 oC for 5 min. Sample absorbance was measured at 500 nm and total soluble 

triglycerides concentrations were determined by comparison with commercially available 

standard (Pointe Scientific, Canton, MI, Catalog No. T7532). Each sample was assayed 
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twice, and the mean used in analysis. Results are reported as micrograms of triglycerides 

per sample.  

 

2.2.8) Total Carbohydrate Content 

Total carbohydrate content was measured as previously described (Merritt et al. 2006). 

Briefly, complex carbohydrates were converted to glucose using a digestion cocktail that 

contained 10 µL of fly homogenate sample and 2 µL of amyloglycosidase (Sigma 

Aldrich, St Louis, MO, A1602) at a concentration of 1 unit/sample in 2.0 M sodium 

acetate buffer (pH 5.7). Samples were digested at 55 oC for 45 min. Following digestion, 

total glucose was measured using commercially available kit (Genzyme, Cambridge, MA, 

Catalog No. 23517) in which 10 µL of digested homogenate was combined with 200 µL 

of glucose reagent and incubated at 37 oC for 10 min. Sample absorbance was measured 

at 340 nm and total carbohydrate concentration was determined by comparison to a 

glycogen standard (Sigma Aldrich, St Louis, MO, Catalog No. G0885). Results are 

reported as milligrams per liter. 

 

2.2.9) Soluble protein content 

Soluble protein was measured using the bicinchoninic acid (BCA) assay using a 

commercially available kit (Pierce, Thermo Scientific, Rockford, IL, Catalog No. 23225) 

following the manufacturer’s protocol. In brief, assays contained 10 µL homogenate and 

100 µL reagent and were incubated at 37 oC for 30 min. Sample absorbance was 

measured at 562 nm, and total soluble protein concentrations were determined by 

comparison with bovine serum albumen standards (Sigma Aldrich, St Louis, MO, 

A4503). Each sample was assayed twice, and the mean was used in analysis. Soluble 

protein content was used as a covariate in analyses of covariance (ANCOVA) for enzyme 

activities, triglyceride and carbohydrate concentration to standardize for differences in fly 

size and homogenization.  

 

2.2.10) RNA Extraction and Quantitative RT-PCR 

RT-qPCR was used to test for differences in Men expression across the CCTT genotype 

set. Total RNA was isolated from three groups of five 3 to 5 day old male flies using the 
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RNeasy Kit (QIAGEN, Valencia, CA) according to manufacturer’s instructions, and was 

stored at -80 oC until needed for reverse transcription. For each sample, one microgram of 

total RNA was reverse-transcribed using random hexamers and High Capacity cDNA 

Reverse Transcription Kits with RNase Inhibitor (Applied Biosystem) The qPCR reaction 

consisted of 2 µL of undiluted cDNA template, 0.4 µM of each primer, and 0.2 µM 

probe, and Quantitect Probe PCR Master Mix (QIAGEN); a total volume of 20 µL. The 

primers and the probe flank the Men intron between exon 2 and exon 3 (5’ 

GTATTGCCAACCTGTGCC, 3’ AGCTTGTGTTCGGTGAGT and probe 56-

FAM/ATGGTGGATAGCCGTGGTGTCA/3IABkFQ.  cDNA synthesis of samples 

lacking reverse transcriptase were used as a negative control to ensure that there was no 

genomic DNA contamination and “no-template” blanks were used to ensure there was no 

contamination. Two reactions per template were performed using a Mastercycler Ep 

Realplex Thermal Cycler.  Expression results were normalized to RpL32 and are reported 

relative to MenEx3 using ΔΔCT method (Livak and Schmittgen 2001).  

 

2.2.11) Longevity 

Adult male flies of from each cross were collected 48 hours post eclosion and transferred 

into fresh vials with a maximum of 20 flies per vial. Vials were maintained at 25oC, 12hr 

light: dark cycle and mortality was recorded every two days. Flies were transferred to 

fresh media every seven days until no living flies remained.  

 

2.2.12) Data Analysis 

All crosses were replicated in two independent vials, with three samples taken from each 

vial. Assays were run in duplicates to account for technical error. ANCOVA and Tukey’s 

honesty significant difference (HSD) multiple-comparison tests were performed using 

JMP 12.0 software (SAS Institute) to determine whether there were significant 

differences in enzyme activity, triglyceride or carbohydrate concentration using protein 

concentration and wet weight as covariates.  
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2.3) Results 

The G-A polymorphism has a much larger effect on maximum Malic Enzyme 
reaction velocity (Vmax) than the M-L polymorphisms 

  

Both MEN polymorphisms affect the enzyme’s Vmax for malate, although to different 

degrees. The glycine-alanine (G-A) polymorphism at position 113 was associated with 

significant and substantial differences in Vmax (Figure 2.2A, left-hand columns). Flies that 

are homozygous for the glycine amino acid, G/G (hereafter noted as GG, with similar 

nomenclature for each site and genotype, e.g. A/A is noted as AA, M/M as MM, A/G as 

AG, M/L as ML and A/G, M/L as AGML), had a 28% higher Vmax than those 

homozygous for the alanine amino acids, A/A (hereafter noted as AA), consistent with 

previous work conducted using a distinct set of isothrid chromosome lines 

(F8,372=15.8471, P < 0.0001; Rzezniczak et al. 2012). In contrast, the methionine-leucine 

(M-L) polymorphism at position 351 was not associated with any significant difference in 

the observed Vmax (Figure 2.2A, right-hand columns), but there were significant 

interactions between the two sites (Figure 2.2B, white bars). The GGLL and GGMM had 

a 20% higher observed Vmax than the alanine and leucine combination (AALL), and a 

41% higher observed Vmax than the alanine and methionine combination (AAMM).  

 

A focus of this study was to compare the characteristics of the heterozygotes with those 

of the homozygous genotypes to identify a possible biochemical basis for any 

heterozygote advantage. In testing the effects of the two polymorphisms, we created a 

total of nine genotypes to explore all possible allelic combinations of the sites (Figure 

2B). In all cases, the heterozygous genotypes, shown in black bars, are not significantly 

different from an average of their respective homozygous genotypes, shown in white 

bars. All of the heterozygote combinations fall within ± 11% of expected Vmax based on 

the values observed for the homozygous flies (Table 2.2). If heterozygote advantage is 

maintaining either of these polymorphisms, it is not the function of non-linear 

biochemistry of the heterozygous combinations.  

  



	 27	

 
 

 

Figure 2.2. Average maximum MEN enzyme activity (OD/time) was estimated for 

each genotype as observed enzyme activity under saturating conditions. Bars mean ± 

standard error. An ANCOVA determined significant differences within the data set, and a 

Tukey Honesty Test provided the alleles/crosses that were significantly different. (A) 

MEN enzyme activity for the first and second polymorphic site respectively. The first 

two set of bars represents the G/A polymorphic site, and the second set of bars represents 

the M/L polymorphic sites (B) MEN enzyme activity for all genotypes that were 

generated from the crosses. The white bars represent the alleles that are homozygous for 

the polymorphic sites and the black bars represents where the alleles are heterozygous for 

one or both polymorphic sites. 
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Table 2.2. Predicted MEN activities for Heterozygote alleles derived from the 

homozygous alleles.  The homozygous alleles are AAMM, AALL, GGMM and GGLL. 

An ANCOVA determined significant differences within the data set, and a Tukey 

Honesty Test provided the alleles/crosses that were significantly different. 

 

 

In addition to testing the polymorphisms’ effects on Vmax, and possible heterozygote 

difference, we tested the effect of genetic background within the genotype groups. 

Multiple crosses of independent parental lines were used to create each genotype (Figure 

2.1) and the different line combinations has substantial differences in Vmax. The crosses 

that were used to generate the AAMM, AALL and AAML genotypes are shown in Figure 

2.3A-C (all alleles were analyzed, only AAMM, AALL and AAML are shown in Figure 

2.3). The difference in Vmax between the AALL lines and the AAMM is a function of one 

cross, 350 X 021, which has a much higher Vmax than the rest. If this cross is removed, the 

two allelic combinations have similar Vmax. This fact does not diminish the allelic effects 

so much as highlight the important of line effects; on average the alleles are significantly 

different but the differences between lines are as substantial as the differences between 

the alleles.  
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Figure 2.3. Average maximum MEN enzyme activity (OD/time) was estimated for 

various crosses that contribute to the specific genotypes. Bars mean ± standard error. 

An ANCOVA determined significant differences within the data set, and a Tukey 

Honesty Test provided the alleles/crosses that were significantly different. (A). MEN 

activity is plotted against the crosses that contribute to the allele AALL. (B) MEN 

activity is plotted against the crosses that contribute to the allele AAMM. (C) MEN 

activity is plotted against the crosses that contribute to the allele AAML. 
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Men expression and MEN activity are correlated 

Malic enzyme protein activity and gene expression are correlated, but the relationship is 

sensitive to genetic background (Chandler et al. 2013). MEN Vmax is a function of both 

the amino acid composition of the enzyme and the level of gene expression (Rzezniczak 

et al. 2012) and our Vmax data are consistent with the G-A polymorphism modifying 

enzyme activity with potentially additional variation due to differences in regulation of 

expression across the alanine amino acid containing lines. To test this possibility, we 

measured Men gene expression using quantitative RT-PCR (qRT- PCR), and compared it 

to MEN activity. We compared Men gene expression and MEN enzyme activity within 

the AALL genotype using eight genotypes, four heterozygotes lines and their respective 

homozygous parent lines: 336/021, 336/399, 350/021 and 350/ 399 and 336/336, 

021/021, 399/399, 350/350. As expected, MEN enzyme activity and Men activity were 

correlated (Figure 2.4). In addition to the DGRP wild-derived alleles, we included a pair 

of lines with laboratory engineered Men alleles, MenEx55, a knockout allele, and 

MenEx3, a wild type allele (alleles are described in Lum and Merritt 2011), which 

allowed us to create “known” 100% and 50% Men expression and MEN activity 

genotype, MenEx3/Sb and MenEx55-/Sb (Bing et al. 2014; Lum and Merritt 2011). MEN 

activities are shown in Figure 2.4A and the relationship between activity and expression 

is shown in Figure 2.4B. Not surprisingly, there is a strong overall correlation between 

gene expression and protein activity within these flies. Also not surprisingly, there is 

more error associated with the gene expression data than the protein activity data, which 

is one reason that we generally quantify the later even in cases where phenotypes are 

driven by the former (Bing et al. 2014; Lum and Merritt 2011).There is, however, 

substantial variation in the relationship between the two values with some genotypes, 

strikingly the 021/021 flies, lying far from the average relationship; these flies have about 

103% greater protein activity that their gene expression would predict. The correlation 

between protein activity and Men expression is a R2 value of 0.69689, upon the removal 

of line 021/021, whereas with line 021/021 included, R2 value is 0.11022).  In addition, 

gene expression is not simply the average of the parent lines. The 350/021 flies, for  
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Figure 2.4. Correlation between MEN protein activity and relative Men gene 
expression. (A) Relative Men expression is plotted against AALL genotypes. MENEx55 

and MenEx3 represent the synthetic lines used to quantify the assay.  The crosses used 

generated the AALL genotype, plus the parent lines for that cross. Expression was 

normalized to MENEX3+. Relative expression as calculated using the ΔΔCT method 

(Livak and Schmittgen 2001). (B). Correlation between MEN activity against Relative 

Men expression.  
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example, have twice the gene expression that would be predicted by the parent lines, 

suggesting broad interaction between regulatory regions. Combined, this variation  

indicates that gene expression of Men is a non-linear combination of its parent’s lines, 

indicating that there is the potential of other factors leading to the expression levels, 

therefore influencing the Vmax of MEN we seen above.  

 

 

The M-L polymorphism has a larger effect on the Malate Michaelis-Menton 

constant 
Both the G-A and M-L polymorphism significantly alter the MEN Km for malate, but the 

M-L polymorphism has a much larger effect than the G-A polymorphism (Figure 2.5A-

B). All four homozygous genotypes, AAMM, AALL, GGMM and GGLL, were 

significantly different (Figure 5B; F8, 372 = 49.9519, P < 0.0001). The flies homozygous 

for the GG polymorphism had a 19% higher Km than flies homozygous for the AA 

polymorphism and the MM flies had a 41% higher value than that of the LL flies. 

Interestingly, flies homozygous for this rare allele had strikingly lower Km values than 

any other genotype. Similar to the Vmax results, all of the heterozygous combinations had 

Km values intermediate between those of the homozygous genotypes (Figure 2.5B); all 

experimental values were not significantly different from the calculated values, falling 

within ± 10% of those values (Table 2.2). Previous work has been split on the question of 

genetic background effects on MEN malate Km, with an early study finding effects 

(Merritt et al. 2005) and a later study filing to find any such effects (Rzezniczak et al. 

2012). Comparison of three genotypes, AAMM, AAML and AALL, demonstrates the 

differences in the genetic background effects on Km that we observed (Figure 2.6); some 

genotypes had large background effects (Figure 2.6A), while others showed little or only 

a few crosses that were significantly different from the rest (Figure 2.6B-C). Overall, our 

results indicate that genetic background can modify Km, e.g. that Km is not strictly based 

on the amino acid composition, since variation was found in Figure 2.6A. 
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Figure 2.5. Michaelis-Menton constant (Km) for malate. Substrate-binding kinetics 

were quantified as the Km for malate for each genotype. Units are µM/L. Bars mean ± 

standard error. An ANCOVA determined significant differences within the data set, and a 

Tukey Honesty Test provided the alleles/crosses that were significantly different. (A) 

MEN binding affinity for both polymorphic sites, the first two bars are the G/A 

polymorphic site and the second set of bars are the M/L polymorphic site. (B) MEN 

binding affinity for all genotypes, where the white bars represent the alleles that are 

homozygous for both polymorphic sites, and the black bars represent that alleles that are 

heterozygous for one or both polymorphic sites. 
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Figure 2.6 Average MEN binding affinity various crosses that contribute to the 

specific genotypes. Bars mean ± standard error. An ANCOVA determined significant 

differences within the data set, and a Tukey Honesty Test provided the alleles/crosses that 

were significantly different. (A) Km Malate is plotted against the crosses for the genotype 

AALL. (B) Km Malate is plotted against genotype AAMM. (C) Km Malate is plotted 

against genotype AAML. 
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The M-L polymorphism has a larger effect on the Vmax/Km Ratio 

Previous work suggests that the relative in vivo enzyme activity is better estimated by the 

ratio of Vmax to Km than either phenotype alone (Hall and Koehn 1983; Merritt et al. 2005; 

Watt and Dean 2000). Overall, the ratio is very similar in the GG and AA alleles, but is 

significantly different between the MM and LL alleles (Figure 2.7A; F8, 372 = 24.086 P < 

0.0001). Interestingly, because of the large differences in the denominator Km, the higher 

Vmax genotypes have lower relative activities and the M-L polymorphism, which is not 

located in close proximity to the active site, has the largest influence on the relative 

enzymatic activity. The M-L polymorphism influencing the activity is interesting because 

the leucine amino acid has low Km, has higher Vmax, despite being the rarer allele. There is 

substantial variation in the relative activity across the heterozygotes genotypes (Figure 

2.7B), although as with Vmax and Km, the values are generally intermediate between those 

of the homozygous genotypes. The predicted values and experimental values are not 

significantly different with almost all of the heterozygote combinations falling within ± 

6% of predicted values. The AGLL flies have slightly lower than expected relative 

activities, 15% less of the predicted value (Table 2.2).   
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Figure 2.7. Maximum MEN velocity to Michaelis-Menton constant for malate ratio. 

Bars mean ± standard error. An ANCOVA determined significant differences within the 

data set, and a Tukey Honesty Test provided the alleles/crosses that were significantly 

different. (A) MEN Vmax/Km ratio for both polymorphic sites, where the first 2 bars are 

the G/A polymorphic site and the second bard is the M/L polymorphic site. (B) MEN 

Vmax/Km ratio for all genotypes, where the white bars represent the alleles that are 

homozygous for the polymorphic sites and the black bars represents where the alleles are 

heterozygous for one or both polymorphic sites. 
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Only the G-A polymorphism affects Thermal Stability  

We quantified thermal stability as a general indicator of the structural stability of Malic 

enzyme (Figure 2.8). Similar to previous studies, we found that the G-A polymorphism 

had a slight effect on stability, where GG allele has higher stability than that of the AA 

allele, but not significant (Figure 2.8A). Also similar to previous studies, we found that 

the M-L polymorphism did not influence thermal stability (Figure 2.8A, F8, 372 = 1.9574, 

P=0.1458). Comparing the genotypes, the AGML and AGLL combination resembles the 

thermal stability constant of the observed values for all the alleles that are homozygous 

for the GG alleles; the alleles do not significantly differ from one another (Figure 2.8B; 

F8, 372 = 0.9213, P =0.5167). Even though past studies found differences in thermal 

stability between the polymorphisms, here, this was not the case. The lack of consistency 

between studies in terms of thermal stability likely reflect the small absolute differences 

in stability between the alleles and the different genetic backgrounds used in each study.  
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Figure 2.8. Malic enzyme thermal stability. Thermal stability was measured for each 

genotype as a proxy for overall structural stability of the enzyme and was quantified as 

absolute value for KD of the enzyme after denaturing at 50 oC. Bars mean ± standard 

error. An ANCOVA determined significant differences within the data set, and a Tukey 

Honesty Test provided the alleles/crosses that were significantly different. (A) MEN KD 

for both polymorphic sites, where the first 2 bars are the G/A polymorphic site and the 

second bard is the M/L polymorphic site. (B) MEN KD for all genotypes, where white 

bars represent the alleles that are homozygous for the polymorphic sites and the black 

bars represents where the alleles are heterozygous for one or both polymorphic sites. 
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The polymorphic sites are not correlated with changes in G6PD and IDH activity 

Malic enzyme activity is only one of the major biological sources of NADPH, the 

reduced cofactor, in the fly and previous work has shown that it interacts with other 

sources, specifically IDH and G6PD. In earlier studies, we found interactions between 

MEN activity and the activities of both of these enzymes, however over large-scale 

(engineered) differences in Vmax (Merritt et al 2005). Overall, the MEN amino acid 

polymorphisms are not associated with any significant differences in G6PD activity 

(Figure 2.9A, F8, 372 = 1.9574, P=0.1458), but there were significant differences in G6PD 

Vmax across all nine genotypes, although this was limited to one genotype being 

significantly higher than the rest (Figure 2.9B; F8,372 = 4.3606, P < 0.0001). We also 

found no significant overall correlation between G6PD and MEN relative activities 

(Figure 2.9C; R2=0.01549), in contrast to some earlier studies (Merritt et al 2005). We 

find very similar patterns when comparing IDH and MEN; there was no significant 

difference in IDH Vmax across the MEN polymorphism (Figure 2.10A, F8, 372 = 1.9574, 

P=0.1458) only limited, and here not significant, variation in IDH Vmax across the nine 

genotypes (Figure 2.10B; F8, 372 = 0.967, P =0.461) and no significant correlation between 

IDH activity and MEN activity (Figure 2.10C; R2=0.17374). MEN, G6PD, and IDH are 

key players in the NADPH pathway, however, their phenotypes display trends not found 

previously, indicating the complexity of this pathway and its activation upon larger 

differences in MEN enzymatic activity. 
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Figure 2.9. Average maximum G6PD enzyme activity (OD/time) was estimated for 

each genotype as observed enzyme activity under saturating conditions. Bars mean ± 

standard error. An ANCOVA determined significant differences within the data set, and a 

Tukey Honesty Test provided the alleles/crosses that were significantly different (A) 

Average G6PD activity for MEN polymorphic sites (B) Average G6PD activity for all 

genotype. White bars represent the homozygous alleles and black bars represent the 

heterozygote alleles. (C) Average G6PD activity against MEN Vmax/Km, also known as 

Men Activity. White points represent the homozygous alleles and black points represent 

the heterozygous alleles. 

MEN	Activity	
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Figure 2.10. Average maximum IDH enzyme activity (OD/time) was estimated for 

each genotype as observed enzyme activity under saturating conditions. Bars mean ± 

standard error. An ANCOVA determined significant differences within the data set, and a 

Tukey Honesty Test provided the alleles/crosses that were significantly different. (A) 

Average IDH activity for MEN polymorphic sites (B) Average IDH activity for all 

genotype. White bars represent the homozygous alleles and the black bars represent the 

heterozygous alleles. (C) Average IDH activity against MEN Vmax/Km. White points 

represent the homozygous alleles and black points represent the heterozygous alleles. 

 

MEN	Activity	
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The polymorphic sites are also not correlated with changes in distal phenotypes 

In addition to these relatively proximal phenotypes of enzyme activity, we also quantified 

the effects of the polymorphisms on three more distal phenotypes that are also sensitive 

to levels of NADPH: triglyceride concentrations, carbohydrate concentrations, and 

longevity. NADPH is a major source of reducing power in triglyceride synthesis and 

other studies have found that triglyceride concentration is sensitive to activities of 

NADP+ or NAD+ reducing enzymes (Merritt et al. 2006, 2009, 2005). Previous work in 

the MEN system has found mixed results (Merritt et al. 2009, 2005) largely differences in 

triglyceride concentration driven by large-scale differences in MEN activity (Merritt et al. 

2005). Neither carbohydrate concentrations nor longevity have been quantified across the 

MEN alleles although carbohydrate concentrations do change with metabolic condition 

and enzyme activities and the evidence that the MEN polymorphisms are under selection 

(Merritt et al. 2005)  suggest that they may affect longevity. The amino acid 

polymorphisms were associated with significant differences in carbohydrate 

concentrations (Figure 2.11A; F8,372 = 8.5579, P < 0.0001), but no significant differences 

across the Men alleles (Figure 2.11B; F8,372 = 0.245, P = 0.873). Overall, there is a slight, 

but not statistically significant, trend toward increased carbohydrate concentration with 

higher MEN activity (Figure 2.11C; R2 =0.29107). Similarly, the amino acid 

polymorphisms were not associated with significant differences in triglycerides 

concentration (Figure 2.12A, F8,372 = 0.6609, P = 0.327), and across the alleles (Figure 

2.12A-B, F8,372 = 1.6609, P =1.839). There was no overall trend between MEN activity 

and triglyceride concentration (Figure 2.12C; R2= 0.06845). Similarly, there were no 

significant differences between the polymorphisms and alleles in longevity (Figure 13A-

B; F8,372 = 3.6609, P= 0.115) and no overall correlation (Figure 2.13C; R2= 0.24988). 

Overall, the three distal phenotypes were not significantly influenced by the Men 

polymorphisms or differences in relative MEN activity, likely reflecting the complex 

nature of these phenotypes and the multiple factors that regulate them. 
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Figure 2.11. Average carbohydrate content was estimated for each genotype. Bars 

mean ± standard error. An ANCOVA determined significant differences within the data 

set, and a Tukey Honesty Test provided the alleles/crosses that were significantly 

different. (A) Average Carbohydrate content for MEN polymorphic sites (B) Average 

Carbohydrate content for all genotype. White bars represent the homozygous alleles and 

black bars represent the heterozygous alleles. (C) Average carbohydrate content against 

MEN Vmax/Km. White points represent the homozygous alleles and black points represent 

the heterozygous alleles. 
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Figure 2.12. Average Triglyceride content was estimated for each genotype. Bars 

mean ± standard error. An ANCOVA determined significant differences within the data 

set, and a Tukey Honesty Test provided the alleles/crosses that were significantly 

different. (A) Average Triglyceride content for MEN polymorphic sites (B) Average 

Triglyceride content for all genotype. The white bars represent the homozygous alleles 

and the black bars represent the heterozygous alleles. (C) Average Triglyceride content 

against MEN Vmax/Km. The white points represent the homozygous alleles and the black 

points represent the heterozygous alleles. 
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Figure 2.13. Average Longevity was estimated for each genotype. Bars mean ± 

standard error. An ANCOVA determined significant differences within the data set, and a 

Tukey Honesty Test provided the alleles/crosses that were significantly different (A) 

Average longevity for MEN polymorphic sites (B) Longevity for all genotype. The white 

bars represent the homozygous alleles and the black bars represents the heterozygous 

alleles. (C) Longevity against MEN Vmax/Km. The white points represent the homozygous 

alleles and the black points represents the heterozygous alleles. 
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2.4) Discussion 

 As biology makes great strides in determining both genotypes and phenotypes, 

connecting the two continues to challenges us; what are the mechanisms through which 

genetic diversity leads to biological complexity? Using the simple polymorphisms within 

Men, and studying the biological impact caused by these polymorphisms, provides insight 

into these pathways. Furthermore, the difference in allele frequencies at the two sites, 

essentially 50/50 at the G-A site and 90/10 at the M-L site, suggest that different 

mechanisms maintain the variability at the sites. Can we identify biochemical differences 

that are the basis of these differences?   

 

MEN Phenotypes are influenced by the G-A and M-L Polymorphisms 

In this study, we measured the biochemical characteristics of MEN alleles in Drosophila 

melanogaster to further understand the effects of genetic variation in both homozygous 

and heterozygous individuals. The allelic frequencies of the polymorphisms are relatively 

constant across different populations, suggesting that the alleles may be under selection. 

Presumably, the effects that the polymorphisms cause are a function of many factors, 

including the location of the polymorphic sites within the protein. As mentioned, the G-A 

polymorphism is located within an alpha helix in close proximity to the active site and the 

higher Vmax of the glycine allele than the alanine allele, may be due to changes in stability 

or flexibility in this region of the enzyme. The glycine amino acid likely shortens this end 

of the alpha helix and this change in structure, may alter flexibility at the active site 

affecting substrate binding (Chakrabartty et al. 1991). Previous work found that the 

glycine allele was associated with higher thermal stability in enzyme activity, a general 

proxy for enzyme stability (Rzezniczak et al. 2012). Our data (Figure 2.8) show the same 

trend, although the results are not statistically significant, but combined with the earlier 

findings suggest that the G-A polymorphism changes conformation of the active site or 

the region around this site. The M-L polymorphism does not significantly affect Vmax, 

likely reflecting its location buried within the protein far from the active site. In addition 

to differences driven by the G-A polymorphism, we also found significant line effects; 

different lines with the same allelic genotype had significantly different Vmax, indicating 

that Vmax is a function of both local and global modifiers. Current work is using genome 
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wide association study (GWAS) to identify these more distal modifiers. Metabolic 

pathways are complex and interact with multiple loci to produce a phenotype, the genetic 

background effects at MEN likely reflect interactions between variable sites across such 

loci. The location of the G-A polymorphism within the tertiary structure of the enzyme 

suggests a structural explanation for the difference in the G-A genotypes’ Vmax, but these 

differences, and certainly the genetic background effects across all genotypes, could also 

be driven by differences in gene expression driven by either local regulatory variation or 

variation potentially spread across the genome. 

 

Previous work indicates that MEN Vmax is a function of both structural and regulatory 

variation; higher Vmax is also associated with higher Men expression level (Bing et al. 

2014; Lum and Merritt 2011; Rzezniczak et al. 2012). Overall, we find a similar pattern, 

high MEN Vmax is associated with higher levels of MEN activity (Figure 2.4). 

Interestingly, however, while parental values generally predict the large-scale differences 

in Vmax that we attribute to structure, there is strong non-additively in the levels of gene 

expression; heterozygous offspring are not simply the average of the homozygous 

parental values (Figure 2.4A). For example, cross 350 X 021 has higher gene expression 

level than either 350/350 or 021/021 parental lines. This non-additively suggests complex 

interactions between the regulatory variation in each parental genotype. In D. 

melanogaster, the homologous chromosomes are physically paired and this pairing 

modifies gene expression through a process known as transvection, where trans-

interactions occur between paired homologous chromosomes driving misregulation (Bing 

et al. 2014; Duncan 2002; Lum and Merritt 2011; Mellert and Truman 2012; Morris et al. 

1998; Noble, Dolph, and Supattapone 2016; Wu and Morris 1999). The Men locus is 

known to be a hotspot for transvection and such inter-chromosomal gene regulation may 

be driving this non-additively (Bing et al. 2014; Lum and Merritt 2011; Merritt et al. 

2005). The cross-specific differences that we see in Vmax are likely functions of complex 

interactions between regulatory elements in both cis (along a chromosome) and trans 

(between homologous chromosomes). Further, the 021 line itself is unusual in that its 

Men expression is much higher than would be predicted giving its MEN Vmax (Figure 

2.4B) suggesting unique regulatory differences. 
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While the M-L polymorphism does not significantly modify MEN Vmax, both it and the 

G-A polymorphism significantly modify the binding affinity for malate of the enzyme, 

Km. Km is dependent on the structure of the protein, and the differences in Km of the 

genotypes likely reflects structural changes driven by the physio-chemical differences 

between methionine and leucine at this polymorphism buried within the protein. The 

leucine allele has a substantially lower Km for malate than the methione allele, indicating 

a higher binding affinity for the substrate, consistent with previous work. Methionine 

residues are commonly found buried within the protein, and are unique since they can 

have both hydrophobic and hydrophilic interactions, hydrogen bonding are involved with 

polar oxygen atom (Biswal et al. 2012; Pal and Chakrabarti 2001). In contrast, leucine 

has the potential for fewer interactions with other residue since the R group is simpler and 

smaller, possibly leading to structural changes that modify substrate biding. The fact that 

the M-L polymorphism is not near the active site suggests that its influence is not directly 

on substrate binding, but more likely through broader-scale changes in enzyme structure. 

The site could possibly affect formation of the MEN homotetramer, but we don’t find any 

indication that the site influences stability of the enzyme, at least as indicated by thermal 

stability. Furthermore, the intermediate binding affinity values we see for Km between the 

heterozygotes can be a result of the different enzyme possibility for one genotype (Figure 

2.5B). The intermediate value could be an resultant of the mean binding affinity of the 

different enzymes for one genotype (e.g. the genotype AGLL has the possibility of all 

alanines and all leucines, three alanines, one glycine and all leucines, two alanines, two 

glycine and all leucines, etc.).  

 

Although the effects are smaller, the G-A polymorphism is associated with differences in 

Km, with the alanine allele associated with a lower Km indicating higher substrate binding. 

As with Vmax, this difference likely reflects changes in the alpha helix at the active site.  

Unlike Vmax, which is a function of both expression levels and structure, Km is 

independent of expression and expected to be only a function of structure. Based on this 

structure-only model we would not expect to find differences across genetic background 

within an allele class as these lines all have identical amino acid composition and, 
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presumably, structure, but line-specific differences were apparent, nonetheless (Figure 

2.3C). These genetic background-specific differences indicate that overall structure is 

likely modified by factors coded elsewhere in the genome. Previous work on MEN has 

been split on this issue with studies both finding, and failing to find background effects 

(Merritt et al. 2005; Rzezniczak et al. 2012).The background effects are smaller than 

those seen in Vmax, suggesting that while background has a modifying effect on this 

structural phenotype it is not as pronounced as in a phenotype driven by both structure 

and expression.  

 

A more biologically relevant phenotype than either Vmax or Km alone is the Vmax/Km ratio, 

an indication of the relative of the in vivo enzyme activity. Comparison of the Vmax 

(Figure 2.2) and Km (Figure 2.5) results with this estimate of relative activity (Figure 2.7) 

clearly shows the different implication of each value. In our results, the G-A 

polymorphism has little effect on the relative activity, while the M-L polymorphism has 

substantial effect. Further, because of the large difference in Km associated with the 

leucine allele, the rare allele, lines with this variant have higher relative enzyme activity 

(Figure 2.7B). Comparison of Vmax alone would suggest that the M-L polymorphism has 

little effect and the glycine allele was associated with the highest activity. Relative 

activity, then, suggests that the largest effect on the biochemistry of this system is from 

the rare allele, frequency of the leucine allele is ~10%, and that the more equal frequency 

polymorphism has limit effect on the performance of the enzyme We had speculated that 

the polymorphisms, or at least the approximate equal frequency of the G-A 

polymorphism could be maintained by some heterozygote advantage possibly the result 

of non-linear combinatorial effects on biochemistry. Instead, the relative activities of the 

heterozygotes were all essentially intermediate to those of the homozygous genotypes 

(AAMM, AALL, GGMM and GGLL). Perhaps the frequencies of variants are 

maintained by selection for intermediate, not extreme, activities.  
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Distal Phenotypes and the MEN polymorphism 

 Metabolic enzymes function as components of complex pathways and networks, 

interacting with other genes and regulatory components. Previous research using natural 

and laboratory-derived Men alleles found correlations between MEN activity and 

increasingly distal phenotypes including activities of the other NADPH network enzymes 

IDH and G6PD and carbohydrate and triglyceride concentrations two downstream 

metabolites whose production is dependent on the reducing power of NADPH. These 

correlations were, however, sensitive to both genetic background and environmental 

conditions (Merritt et al. 2009, 2005; Rzezniczak et al. 2012; Rzezniczak and Merritt 

2012). While we did find variation in these phenotypes, and the even more distal 

phenotype of longevity, we did not find a consistent pattern of correlation between MEN 

activity (either Vmax or relative activity) and any of these phenotypes. Our inability to 

replicate the broad-scale correlations that other studies have demonstrated may reflect the 

genetic backgrounds we used, the relatively small scale of natural variation compared to 

laboratory-derived alleles, or the complex nature of these traits, especially metabolite 

concentrations and longevity, or a combination of all of these factors.  The striking 

consistency of the allele frequencies, however, strongly suggests that these sites are under 

selection. The fundamental question remains – what are the selective forces acting on the 

Men locus and across the NADPH network as a whole?  

 

Insight into the Men locus and Heterozygote Advantage 

The roughly equal allele frequency at the G-A site means that most individuals will be 

heterozygosis and the consistency of these frequencies across all North American 

populations surveyed suggests heterozygote advantage (Cormack, Hartl, and Clark 1990). 

Population genetics based expectations for the M-L site are less clear, but the rare allele 

is present, and rare, at the two sites in which it has been looked for and the rare nature 

means that individuals will be either homozygous for the common allele or heterozygous 

for the rare allele. Both sites clearly affect the fundamental biochemistry of the MEN 

enzyme. Interestingly, phenotypes of the heterozygous individuals are consistently 

intermediate between those of the homozygotes (with the noted exception of gene 

expression). While we suspected that heterozygote advantage would manifest as non-
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linear combinations of biochemical phenotypes, perhaps the message from our results is 

that the genetic variation results in relatively consistent biochemistry. But, if the 

consistency is maintained by selection, why haven’t populations simply fixed for one 

allele or the other? The answer to this question may lie in phenotypes we have not, yet, 

discovered, or in responses to changes, such as environmental variation, that we have not 

yet explored.  

  

This study is just a start in understanding the connection between genotype to phenotype 

and the impact of genetic molecular variation. Future work needs to be completed in 

understanding the phenotype changes in environmental stressors to understand the impact 

of the allelic frequencies using larger-scale. With the different environmental stressors, 

the flies will learn to acclimate to those condition, which will provide more information 

on heterozygous advantage at the Men locus.  
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Chapter 3 of this manuscript will have some overlapping information found in the 

introduction and discussion compared to Chapter 2. Chapter 3 is a second, independent 

manuscript in preparation for publication. Chapter 2 is also an independent manuscript in 

preparation for publication.  
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3.1) Introduction 

 

Biological systems are dynamic, taking input from the surroundings and responds 

accordingly for the survival of that organism. These biological systems consist of 

numerous networks that interact with one another to drive changes in their phenotypes. 

Therefore, it is essential to consider that complex traits can be influenced directly or 

indirectly by multiple genes and the environment (and the interaction between the two), 

rather than acting in isolation (Boone, Bussey, & Andrews, 2007; Chandler, Chari, & 

Dworkin, 2013; Dixon, Costanzo, Baryshnikova, Andrews, & Boone, 2009). When 

studying a gene within a network, a common theme amongst most studies is that these 

interactions are quantified in only one condition (e.g. include an example); however, 

changes in the environment can lead to important differences that should be explored 

(e.g. given an example). 

 

Malic enzyme (Men) codes for a metabolic enzyme that oxidizes malate to pyruvate, 

concurrently  reducing NADP+ to NADPH (Merritt, Duvernell, & Eanes, 2005; Merritt et 

al., 2009; Rzezniczak, Lum, Harniman, & Merritt, 2012; Wise & Ball, 1964). In D. 

melanogaster, there are two known single nucleotide polymorphisms (SNPs), which each 

lead to amino acid substitutions in this gene. The first polymorphism is a guanine to 

cytosine substitution, that causes an alanine being coded for instead of the ancestral 

glycine, noted as the G-A polymorphism. This first polymorphism occurs at base pair 

338; or amino acid 113, found within an α-helix near the enzyme’s active site (Merritt et 

al., 2005; Rzezniczak et al., 2012). The second polymorphism occurs at base pair 1051; at 

amino acid 351, in which an adenine is substituted for the ancestral thymine, coding for a 

leucine amino acid rather than a methionine, at amino acid 351, noted as the M-L 

polymorphism. The M-L polymorphism is buried in a β-sheet away from the active site 

(Rzezniczak et al., 2012). The allelic frequencies were found to be approximately 50:50 

for the G-A polymorphism and 90:10 for the M-L polymorphism, throughout different 

populations (Rzezniczak et al., 2012). 

 



	 61	

The biochemistry of these amino acid substitutions has been previously studied, and both 

polymorphisms play a role in altering the phenotype of the enzyme. D. melanogaster with 

isothrid chromosomes was used to study the polymorphism, with the MEN alleles of 

GM/GM (glycine at the G-A polymorphism and methionine and the M-L polymorphism), 

AM/AM and AL/AL. The leucine is the rarer allele, and fly lines with GL/ chromosomes 

were not available for this early study. The alanine allele was associated with a 20% 

higher MEN maximum velocity (Vmax), than the glycine allele and there were no 

significant differences in Vmax between the methione and leucine alleles (Rzezniczak et 

al., 2012).  

Interestingly, in Chapter 2, there were significant line effects between the GM/GM and 

AM/AM alleles. The variation between the genotypes' Vmax may also be driven by 

differences in gene expression driven by either local regulatory variation or non-

regulatory variation potentially spread across the genome: genetic background effects. 

For the Men expression levels, the guanine nucleotide (which codes for glycine) had 51% 

higher expression than cytosine (which codes for alanine), which suggests that the 

differences in Vmax could be due to a difference in gene expression levels. Strikingly, the 

M-L polymorphism did not display any differences in its Vmax of MEN; however, there 

were differences in Men expression levels; alleles with the adenine nucleotide (which 

codes of methionine) were associated with higher Men expression levels than the thymine 

(which codes for leucine) alleles. The difference in expression levels between the alleles 

further confirms that Vmax is a combination of structural and regulatory variation. The G-

A polymorphism shows regulatory variations and the M-L polymorphism shows both. 

Enzyme thermal stability was also modified by the G-A polymorphism. Strikingly, in this 

study, the glycine allele was more stable, by 15% than the alanine allele. The more stable 

glycine allele was surprising since it is known that glycine amino acid tends to destabilize 

α-helices, which was not the case here. Thermal stability was quantified as a proxy for 

the overall stability of the protein, as opposed to helical stability; however, it was 

proposed that with the destabilization of the helix, that would affect the overall protein. 

Another possibility for the increase stability with the glycine allele is that a shorten helix 

would stabilize the protein. Lastly, the binding affinity, Km, was influenced by both 

polymorphisms, where at the G-A polymorphism, the glycine amino acid containing 
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alleles were associated with 10% higher Km values than the alanine alleles, and the 

methionine alleles were associated with 42% higher Km values than the leucine alleles. It 

is interesting to note that leucine alleles, the rare allele, had the lowest Km values. The 

consistency of the allele frequencies between populations and the differences in the 

biochemistry of MEN suggest that the alleles are under selection. We study the 

polymorphisms in Men as a model system for the biological complexity effects derived 

from the genetic variation of on complex traits. 

 

Mutations occurring in genes lead to effects in a primary pathway; however, mutations in 

one gene can also induce changes in connected pathways as well (Bernard, Parkes, & 

Merritt, 2011; Mackay, 2004; Rzezniczak & Merritt, 2012; Wolf, 2003). MEN is known 

to be part of the well-studied, small, network known as the nicotinamide adenine 

dinucleotide phosphate (NADPH) enzyme pathway, in D. melanogaster (Merritt et al., 

2009; Rzezniczak et al., 2012; Ying, 2008). In this pathway, there are four key players: 

cytosolic MEN, cytosolic Isocitrate dehydrogenase (IDH), Glucose-6-phosphate 

dehydrogenase (G6PD) and 6-phosphogluconate dehydrogenase (6PGD). These enzymes 

have been shown to interact and are co-regulated through monitoring of the NADP+: 

NADPH ratio within a cell. In a previous study, engineered excision lines were used to 

generate approximately 50% and 100% enzymatic activity for MEN, IDH and G6PD. 

This study quantified the interactions between the enzymes using these large-scale 

differences in activities. These interactions were often compensatory (reduction of one 

source of NADPH results in up-regulation of others), but some were  parallel and 

counterintuitive (reduction of one source of NADPH results in down-regulation of others; 

(Rzezniczak & Merritt, 2012). Therefore, these enzymes should be taken into 

consideration as an interacting set when quantifying the biochemical characteristics of 

MEN to further account for interactions driving changes in the phenotype. Also, studying 

the other enzymes may provide insight into the maintenance of the alleles in Men 

responsible for the known amino acid substitutions across different populations.   

 

NADPH is known to play a role in reactive oxygen species (ROS) clearance and 

involvement in the immune response (Bernard et al., 2011; Hosamani & Muralidhara, 
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2013; Lessel, Parkes, Dickinson, & Merritt, 2017; Rzezniczak & Merritt, 2012). ROS are 

a byproduct of aerobic metabolism and can include the superoxide anion, hydroxyl 

radical and hydrogen peroxide. ROS is at low concentrations within the cells, serving as 

intermediates in cell signaling. However, at high concentrations, ROS can bind to and 

damage DNA, protein and lipids, leading to cell death (Apel & Hirt, 2004; Bernard et al., 

2011; Reczek & Chandel, 2015; Scherz-Shouval & Elazar, 2007; Valko et al., 2007; 

Zhang et al., 2016). The accumulation of ROS and these damaged macromolecules is 

known as oxidative stress. NADPH is used directly, as a cofactor, or indirectly for 

antioxidant enzymes that aid in clearing out ROS (Bernard et al., 2011; Merritt et al., 

2005; Rzezniczak et al., 2012; Rzezniczak & Merritt, 2012). In another study, Rzezniczak 

and Merritt (2012) used the NADP(H) enzyme knockout and control alleles and 

environmental stress to further understand the interactions within the network 

(Rzezniczak & Merritt, 2012). Paraquat, an herbicide, was used to induce an oxidative 

stress environment (Rzezniczak, Douglas, Watterson, & Merritt, 2011; Rzezniczak & 

Merritt, 2012). Paraquat treatment led to an overall reduction in enzyme activity, but the 

effects varied and paraquat treatment also led to differences in the interactions between 

enzymes. For example, under control conditions a reduction in MEN activity led to a 

reduction in IDH activity, but an increase in IDH activity under paraquat stress. These 

changes in different environmental conditions underscore the importance of studying 

genes under multiple conditions. The focus of previous work on the NADPH network has 

mainly been on the enzymes upstream of NADPH, namely those involved in its 

production (MEN, IDH, and G6PD).  The interactions of these enzymes with enzymes 

further downstream, or those who consume NADPH, has not been studied as extensively. 

Under conditions of oxidative stress, the antioxidant enzymes superoxide dismutase 

(SOD), catalase (CAT) and glutathione- s-transferase (GST) are significant consumers of 

NADPH (Abolaji, Olaiya, Oluwadahunsi, & Farombi, 2017; Bernard et al., 2011; Lessel 

et al., 2017; Migula et al., 2004; Ralser, Heeren, Breitenbach, Lehrach, & Krobitsch, 

2006).  

 

Here, we extend our investigation of the Men polymorphisms, the forces that are driving 

their genetic variation and the further understanding the allelic frequency maintenance, 
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by studying the biochemical characteristics and communication in the NADPH pathway 

with environmental stressors. Previous work focused on the polymorphisms and genetic 

background effects, here we add environmental variations in addition to a wider range of 

lines. Nine different Men genotypes were created using lines from the Drosophila Genetic 

Reference Panel (DGRP) collection, to study line effects on the Men genotypes (Dworkin 

et al., 2009). Oxidative stress was induced to further quantify the complex interactions 

within the NADPH network. We find that the biochemistry of the MEN alleles 

reasonably consistent with that found in previous studies, but also find interactions that 

were not observed previously. Interestingly, we find that the M-L polymorphism impacts 

the Vmax, whereas it was silent in previous studies. We also see interactions between 

proximal phenotypes for the G-A polymorphism. Under oxidative stress, enzyme 

activities responded to the paraquat administration, similarly to other work completed on 

the network. 

 

3.2 Materials and Methods 

3.2.1 Fly Stocks and Rearing Conditions 

Fly lines used are a subset of the DGRP lines obtain from the Bloomington Drosophila 

Stock Centre (Bloomington, USA). The subset of lines was selected for their genotype at 

the two known polymorphism sites in Malic enzyme gene. The first polymorphism is at 

position 351, with a G/C nucleotide polymorphism that results in a G/A amino acid 

substitution. The second is at position 1051, an A/T nucleotide polymorphism that results 

in an M/L amino acid substitution. Table 1 lists the parental lines used and their 

respective genotypes. We included more and new lines for this study compared to 

Chapter 2 of this manuscript. Flies were maintained on a standard cornmeal medium with 

12:12-hr light: dark cycle at 25 oC.   

3.2.2 Fly Crosses 

The parental lines were crossed with one another to create heterozygotes with the 

following genotype combinations: C/C, A/A (CCAA), C/C, A/T (CCAT), C/C, T/T 

(CCTT), C/G, A/A (CGAA), C/G, A/T (CGAT), C/G, T/T (CGTT), G/G, A/A (GGAA), 
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and G/G, T/T (GGTT). All crosses included five adult male flies from one line paired 

with five virgin female flies from another line.  A sample cross is shown in Figure 3.0.  

Flies were maintained on a standard cornmeal medium with 12:12-hr light: dark cycle at 

25 oC. Emerging male flies were aged to 3-6 days, frozen and stored at -80 oC until 

further analysis.  

 

       

 

Figure 3.0. Schematic of crosses performed to generate desired alleles. The crosses 

were performed as followed: Five isogenic males of one line is crossed to five virgin 

isogenic females of another line to generate the respective heterozygote combination. 

 

3.2.3 Oxidative stress treatment 

A subset of flies from the above crosses were selected to place on oxidative stress 

treatment. From the 35 parental lines, 21 lines were chosen to cross and expose the 

offspring to the treatment. Flies were fed 20 mM paraquat incorporated into cornmeal-

yeast-agar-corn syrup diet to induce oxidative stress. Replicates of 20 male flies aged to 
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3-5 days were maintained on the food for 24 hr.  Stress-treated flies were compared to 

control flies that were maintained on standard cornmeal-yeast-agar-corn syrup diet 

(Rzezniczak et al., 2011).  

3.2.4 Fly wet weight 

Flies were weighed to the nearest 0.01 mg using a Mettler Toledo microbalance MX5. 

Weight was used as a covariate in analyses of covariance (ANCOVA) to standardize 

enzyme activity, triglycerides and carbohydrate concentration for differences in fly size. 

3.2.5 Fly homogenization 

Assays were conducted using whole fly homogenates created by homogenizing samples 

of five flies in grinding buffer (100 mM Tris-HCl, 0.15 mM NADP+, pH 7.4 or 0.1 M 

Phosphate buffer, 0.2 M EDTA, pH 7.0) at a concentration of one fly per 100 µL, and 

centrifuged at 13 000 RPM for 10 min at 4 oC to pellet all solids. Tris- Buffer was used 

for the determination of the following enzymatic assays, MEN, IDH and G6PD, as well 

as soluble protein concentration, triglycerides content, and carbohydrate content.  

Phosphate buffer was used for the determination of the following antioxidant activity, 

CAT, GST, and SOD, in addition to total ROS generation. Homogenate supernatant was 

collected, and 300 µL of supernatant was transferred to a 96-well plate; aliquots were 

sampled from this master plate for each subsequent analysis.  

3.2.6 Enzyme activity measurement 

Enzyme activity was quantified by measuring the production of NADPH through time. 

For this set of assays, a Tris-HCl homogenizing buffer was used. Assays were conducted 

on a 96-well plate spectrophotometer (Molecular Devices SpectraMax 384 Plus), using 

ten µL of fly homogenate and 100 µL of assay buffer (described below). Absorbance at 

340 nm was measured every 9 s for 3 min at 25 oC, except for G6PD activity assays, 

which was measured for 5 min. Samples were assayed twice, and the means were used 

for further analysis. The assay buffers were previously optimized to give maximum 

activities and were as follow: 

G6PD: 100 mM Tris- HCl, 0.32 mM NADP, 3.5 mM D-glucose-6-phosphate (pH 7.4) 
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IDH: 100 mM Tris-HCl, 0.10 mM NADP, 0.84 mM MgSO4, 1.37 mM DL-isocitrate (pH 

8.6) 

MEN: 100 mM Tris-HCl, 0.34 mM NADP, 50 mM MnCl2, 50 mM malate (pH 7.4) 

3.2.7 Antioxidant Enzyme activity measurement  

The following antioxidant enzymes were analyzed: Catalase (CAT), Glutathione-S-

transferase (GST) and Superoxide dismutase (SOD). This set of assays, phosphate 

homogenizing buffer, was used, except for CAT, phosphate buffer with the addition of 

0.1% Triton-X was used. Assays were conducted on a 96-well plate spectrophotometer 

(Molecular Devices SpectraMax 384 Plus), using ten µL of fly homogenate and 100 µL 

of assay buffer (described below). For CAT, samples were diluted 1:4 before the addition 

of assay buffer.  

CAT activity was quantified by observing the clearance of H2O2 at 240 nm, which was 

measured every 9 s for 5 min. The assay buffer contained 0.05 M Phosphate buffer and 

15 mM H2O2 (stock 30% H2O2) (Aebi, 1984; Müller et al., 2017). 

GST activity was quantified by observing the formation of the conjugate complex of the 

substrate 1-chloro-2,4-dinitrobenzene (CDNB) and GSH at 340 nm, measured every 9 s 

for 5 min. The assay buffer contained 100 mM phosphate buffer (pH 7.0), 1 mM EDTA, 

1 mM GSH and 2.5 mM CDNB (Habig WH, Pabst MJ, 1974).  

SOD activity was quantified by observing the inhibition of superoxide driven oxidation 

of quercetin by SOD at 406 nm, measured every 9 s for 10 min. The assay buffer 

contained 25 mM phosphate (pH 10), 0.25 mM EDTA, 0.8 mM TEMED and 0.05 µM 

quercetin (Kostyuk & Potapovich, 1989).  

3.2.9 Estimation of Michaelis-Menten Constant 

Genotype-specific Michaelis-Menten constants for malate were determined using a 10-

point geometric design method. Rates for each genotype was determined using the 

method described above, but using 10 substrate concentration ranging from 0.1 mM- 10 

mM, each measurement was done in replicate. The average value for each of the ten 
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concentrations was then used to determine the Michaelis-Menten constant using the 

program GraFit 7.0 software. 

3.2.10 RNA Extraction and quantitative RT-PCR 

RT-qPCR was used to test for differences in Men expression across the CCTT genotype 

set. Total RNA was isolated from three groups of fifteen 3 to 5-day old male flies using 

the RNeasy Kit (QIAGEN, Valencia, CA) according to manufacturer's instructions, and 

was stored at -80 oC until needed for reverse transcription. For each sample, one 

microgram of total RNA was reverse-transcribed using random hexamers and High 

Capacity cDNA Reverse Transcription Kits with RNase Inhibitor (Applied Biosystem) 

The qPCR reaction consisted of 2 µL of undiluted cDNA template, 0.4 µM of each 

primer, and 0.2 µM probe, and Quantitect Probe PCR Master Mix (QIAGEN); a total 

volume of 20 µL. The primers and the probe flank the Men intron between exon 2 and 

exon 3 (5’ GTATTGCCAACCTGTGCC, 3’ AGCTTGTGTTCGGTGAGT and probe 56-

FAM/ATGGTGGATAGCCGTGGTGTCA/3IABkFQ.  cDNA synthesis of samples 

lacking reverse transcriptase were used as a negative control to ensure that there was no 

genomic DNA contamination and “no-template” blanks were used to ensure there was no 

contamination. Two reactions per template were performed using a Mastercycler Ep 

Realplex Thermal Cycler.  Expression results were normalized to RpL32 and are reported 

relative to MenEx3 using ΔΔCT method (Livak & Schmittgen, 2001).  

3.2.11 Soluble Triglycerides Content 

Soluble triglyceride content was measured using a commercially available kit 

(Triglyceride-SL Assay, Pointe Scientific, Canton, MI, Catalog No. T7531) following 

manufacturer’s protocol. Each assay, 10 µL of homogenate and 100 µL of reagent, was 

incubated at 37 oC for 5 min. Sample absorbance was measured at 500 nm, and total 

soluble triglycerides concentration were determined by comparison with a commercially 

available standard (Pointe Scientific, Canton, MI, Catalog No. T7532). Each sample was 

assayed twice, and the mean used in the analysis. Results are reported as micrograms of 

triglycerides per sample. 



	 69	

3.2.12 Total Carbohydrate Content 

Total carbohydrate content was measured as previously described. Complex 

carbohydrates were converted to glucose using a digestion solution that contained 10 µL 

of fly homogenate sample and 2 µL of amyloglucosidase (Sigma Aldrich, St Louis, MO, 

A1602) at a concentration of 1 unit/sample in 2.0 M sodium acetate buffer, pH 5.7. 

Samples and glycogen standards (Sigma Aldrich, St. Louis, MO, Catalog No. G0885) 

were digested at 55 oC for 45 min. Following digestion, total glucose was measured 

using the commercially available kit (Genzyme, Cambridge, MA, Catalog No. 23517) in 

which 10 µL of digested homogenate was combined with 200 µL of glucose reagent and 

incubated at 37 oC for 10 min. Each sample was assayed twice, and the mean was used in 

the analysis. Sample absorbance was measured at 340 nm, and comparison to digested 

glycogen standards determined total carbohydrate concentration. Results are reported as 

milligrams per liter. 

3.2.13 Soluble Protein Content 

Soluble protein was measured using the bicinchoninic acid (BCA) assay using a 

commercially available kit (Pierce, Thermo Scientific, Rockford, IL, Catalog No. 23225) 

following manufacturer's protocol.  In brief, assays contained 10 µL homogenate and 100 

µL reagent and were incubated at 37 oC for 30 min. Sample absorbance was measured at 

562 nm, and total soluble protein concentrations were determined by comparison with 

bovine serum albumin standards (Sigma Aldrich, St Louis, MO, A4503). Each sample 

was assayed twice, and the mean was used in the analysis. Soluble protein content was 

used as a covariate in analyses of covariance (ANCOVA) for enzyme activities, 

triglyceride, and carbohydrate concentration to standardize for differences in fly size and 

homogenization. 

3.2.14 Data analysis 

All crosses were replicated in two independent vials, with three samples taken from each 

vial. Assays were run in duplicates to account for technical error. ANCOVA and Tukey’s 

honesty significant difference (HSD) multiple-comparison tests were performed using 

JMP 12.0 software (SAS Institute) to determine whether there were significant 
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differences in enzyme activity, triglyceride or carbohydrate concentration using protein 

concentration and wet weight as covariates.  

 

3.2.15 Intermediate phenotype calculations 

The heterozygote’s phenotypes were predicted based off of the homozygous phenotypes. 

For example, the Vmax of AALL and AAMM alleles crosses were averaged and the 

standard error was determined. The mean Vmax from AALL and AAMM alleles is the 

theoretical value of Vmax for AAML. An ANCOVA determined if the theoretical value 

and experimental value were significantly different. If the values were not significantly 

different, the heterozygote allele is said to be an intermediate of its respective 

homozygous allele.  

 

3.3 Results 

3.3.1 Both Men Polymorphisms Influence Maximum Velocity  

Effect of polymorphism: Both the G-A and M-L polymorphisms in Men significantly 

alter the Vmax of MEN, with the G-A polymorphism having a more significant influence 

on the MEN activity than the M-L polymorphism (Figure 3.1A). Flies homozygous for 

the glycine amino acid allele, MenG/G (hereafter noted as GG, with similar nomenclature 

for each site and genotype, e.g. A/A is noted as AA, M/M as MM, A/G as AG, M/L as 

ML and A/G, M/L as AGML) had 14% higher activity than the flies with the AA allele 

(F2,1875=17.1253, p < 0.0001). At the M-L polymorphism, flies with the LL allele had 12% 

higher activity than flies with the MM allele (F2,1875=6.0558, p = 0.0024). The 

intermediate activities of the heterozygous genotypes were calculated based on the 

homozygous combinations (AAMM, AALL, GGMM, and GGLL). For example, the 

homozygous combinations for the genotype AAML would be AAMM and AALL. The 

average activity of AAMM and AALL genotype would be the expected (or the 

calculated) value for AAML. If the experimental value of AAML falls within the range of 

the expected value, it would be noted as an intermediate of the homozygous genotypes. 

The GA allele is an intermediate between the GG and AA allele activity, not significantly 

different from the expected value (F8,1875= 4.8514, p= 0.1148). The ML allele also had an 
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intermediate activity for the homozygous amino acid combination, not significantly 

different from the calculated value. Since the M-L polymorphism influences the 

enzymatic activity of MEN, this suggests that structural changes can play a role in the 

function of the enzyme, where the rare allele influences the activity. In Chapter 2, the 

significant difference was observed at the G-A polymorphism. With Chapter 3, the 

experiments increased the number of lines used for each polymorphism to introduce more 

genetic backgrounds into the study. Here, the variation is present at both polymorphic 

site, likely due to the increase in lines used. 
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Figure 3.1. MEN Vmax Activity (OD/time) across different alleles and backgrounds 
under saturating conditions. (A) Displays the genotype at the G-A polymorphisms 

(leftmost three bars) and the M-L polymorphisms (rightmost three bars) mean MEN Vmax 

activity. (B) The nine different alleles with both polymorphic site in the genotype. White 

bars represent the alleles that are homozygous at both polymorphic sites, and black bars 

represents where the allele differs at one or both polymorphic site. (C) The experimental 

flies from various crosses that contribute to the allele AM/AM. The letters above the bars 

indicate which genotypes are different, where letters that differ are significantly different. 

Bars indicate ± one standard error. An ANCOVA determined significant differences 

within the data set, and a Tukey Honesty Test provided the alleles/crosses that were 

significantly different 
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Effect of genotypes: We compared the biochemical characteristics of the Men genotypes 

to test for possible heterozygote advantage (Figure 3.1B). Overall, MEN Vmax were 

significantly different across the genotypes (F8,1875=6.8582, p < 0.0001). The 

heterozygous combinations were not significantly different from the expected values, 

indicating that there is an additive effect towards the Vmax phenotype (F8,1875=2.4382, p < 

0.2360). A similar trend in genotypes were also observed in Chapter 2. 

Genetic background effects: Genetic background effects were analyzed across all the 

crosses; a subset of the variation for genotype AAMM is shown in Figure 3.1C. Multiple 

lines were used for each polymorphism, introducing a range of genetic background to 

analyze per genotype. Despite the identical Men allelic genotype, Figure 3.1C, there is 

variation within the activity of the enzyme, indicating that MEN Vmax is sensitive to 

genetic background effects, the same trend observed in Chapter 2 as well. (Chandler et 

al., 2013; Dworkin et al., 2009). In addition to a sensitivity to background effects, this 

also suggests that other factors can influence the Vmax, not solely the genotype, hinting 

that genotype does not necessarily dictate the phenotype (Rzezniczak et al., 2012).  

3.3.2. Both Polymorphisms Influences Men Expression Levels 

Effect of polymorphism: The variation of MEN activity between the different 

polymorphism and the alleles within each polymorphism could be a function of variation 

of Men expression levels, as opposed to actual variation in the maximum velocity of the 

enzyme itself (i.e expression effects, not structural effects alone). Expression levels of 

Men were quantified using a qPCR. At the G-A polymorphism, alleles with the cytosine 

nucleotide (which codes for alanine) had a 40% higher transcript level than guanine 

alleles (which codes for glycine), a significant difference (Figure 3.2A; F2,18=14.192 p < 

0.0001). At the M-L polymorphism, the adenine nucleotide (which codes for methionine) 

has about 20% higher relative Men transcript than the thymine nucleotide (which codes 

for the leucine), also significantly different.  
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Figure 3.2. Men relative expression levels. (A) Relative Men expression for the single 

nucleotide polymorphism in Men. The leftmost three bars represent the genotypes found 

at G-A polymorphism, and the rightmost three bars represent the genotypes found at the 

M-L polymorphism. (B) Men alleles against relative Men expression. (C) Correlation 

between Men relative expression and MEN activity.  Expression was normalized to 

MENEX3+. Relative expression as calculated using the ΔΔCT method (Livak and 

Schmittgen 2001). Bars indicate ± one standard error. 
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Effect of genotypes: Interestingly, the double heterozygous genotype, CGAT, has lower 

than expected expression levels, more similar to the expression of the GG alleles, GA/GA 

and GT/GT, than an average of the GG and CC alleles (Figure 3.2B). There were also 

differences between the second polymorphism (adenine and thymine) when combined 

with cytosine (CA/CA and CT/CT), where the CT/CT genotype has higher Men 

expression levels than CA/CA (F2,18=9.925, p = 0.0004; Figure 3.2B), however not with 

the guanine alleles (GA/GA and GT/GT).   

 

Men gene expression levels and MEN protein activity for the genotypes CA/CA, CT/CT/ 

CA/GT, GA/GA and GT/GT are plotted in Figure 3.2C. Not surprisingly, as expression 

levels of Men increase, there is a general increase in the activity of MEN, indicating a 

positive correlation. This correlation suggests that the variation in MEN Vmax activity 

across the polymorphisms, where higher MEN activity has higher Men expression levels. 

Therefore, there is a regulatory effect that can influence the differences in the MEN 

activity.  

 

The most striking result is that the trends that are observed in Figure 3.2A, where lines 

with the cytosine alleles have higher expression levels than those with guanine allele. In 

previous studies, guanine allele expression levels were higher than cytosine (Rzezniczak 

et al., 2012). The variation seen in Men expression is highly dependent on line effects. 

The different trend that we observe may be a function of the different lines, and different 

backgrounds, in our study than in the earlier study. Even with the different trends 

observed, the same correlation exists between Men expression and MEN activity, Figure 

3.2B, indicating that MEN activity is manipulated by regulatory expression (Bing et al., 

2014; Lum & Merritt, 2011; Rzezniczak et al., 2012). In Chapter 2, one allele expression 

level was analyzed, AALL. In the analysis, a positive correlation between Men 

expression levels and MEN protein activity was found.  
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3.3.3 Both G-A and M-L Polymorphisms Influences the Binding Affinity  

Effect of polymorphism: To determine if the polymorphisms affected the binding 

affinity of MEN, the Km for malate was calculated using various malate concentrations. 

The G-A polymorphism has a small, but significant effect on Km; the GG genotype is 8% 

higher than the AA genotype (F2,625=7.7925, p = 0.0004, Figure 3.3A). The M-L 

polymorphism has a greater effect on the binding affinity of MEN, which has been 

consistent with previous studies. The MM genotype is 34% higher in malate 

concentration compared to LL genotype (F2,625=54.993, p <0.0001). This is interesting 

that the rare allele, leucine, has a larger effect on the binding affinity. Furthermore, the 

ML allele is intermediate for the homozygous allele; not significantly different from the 

calculated value. A similar trend was also observed in Chapter 2, where the G-A 

polymorphism had a small significant effect on Km and the M-L polymorphism had a 

larger effect. 

Effect of genotypes: The different genotypes were analyzed, and a decrease in malate 

concentration can be observed when going from when going from methionine to leucine 

at the M-L polymorphism, ignoring the G-A polymorphism (AAMM to AALL and 

GGMM to GGLL)  (white bars; Figure 3.3B), which was also present in previous studies 

(F8,1875=17.22442, p < 0.0001) (Rzezniczak et al., 2012). The experimental values of the 

heterozygous alleles (black bars; Figure 3.3B) were quantified and not significantly 

different from the expected value, therefore noted as intermediates values. There is a 

linear effect in the binding affinity of the MEN polymorphisms, similar to MEN Vmax; 

also holds true for the data observed in Chapter 2 (F8,1875= 0.086, p = 3.4282).  

Genetic background effects: Km is a function of the structure, not the amount, of a 

protein and should, therefore, be sensitive to the amino acid sequence of a protein, but not 

the expression level of a gene. Given this structural dependence and expression 

independence, we expected Km to be potentially sensitive to the polymorphic sites, but 

insensitive to background effects (which can change expression, but not sequence). In 

other words, the Km phenotype is not expected to be influenced by the line effects. 

However, previous studies have shown that Km is sensitive to genetic background effects, 

e.g. lines within one genotype have significantly different Km values, suggesting that 
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elements coded elsewhere in the genome are influencing the proteins substrate binding. 

Upon analyzing the different genetic background used, genetic backgrounds impacted the 

Km values, Figure 3.3C, indicating that Km is sensitive to genetic background effects. The 

same genetic background effects were found across lines used in Chapter 2. 
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Figure 3.3. Malate Km binding affinity across different alleles and backgrounds, 

using various malate concentrations. (A) the G-A polymorphisms’ genotype (leftmost 

three bars) and the M-L polymorphisms’ genotype (rightmost three bars) mean malate 

Km. (B) The nine different alleles, taking into account both polymorphisms. White bars 

represent the alleles that are homozygous at both polymorphic sites, and black bars 

represents where the allele differs at one or both polymorphic site. (C) The experimental 

flies from various crosses that contribute to the allele AM/AM. The letters above the bars 

indicate which genotypes are different, where letters that differ are significantly different. 

Bars indicate ± one standard error. An ANCOVA determined significant differences 

within the data set, and a Tukey Honesty Test provided the alleles/crosses that were 

significantly different. 
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3.3.4 The M-L Polymorphism Influences the Vmax/Km Ratio 

Effect of polymorphism: The G-A polymorphism has very similar relative MEN 

activities, not significantly different (Figure 3.4A). The G-A polymorphism allelic 

frequency is at 50:50, and the similarity in activity quantified here may provide insight 

into that. The M-L polymorphism has an evident trend, whereas going from MM to LL, 

there is an increase in the relative activity, where the LL genotype has a 52% greater 

relative activity than MM genotype (F2,625=64.5599, p <0.0001). Furthermore, the 

intermediate value for ML genotype was calculated from the MM and LL genotypes, and 

the experimental value falls within the range, therefore not significantly different from 

the calculated value (F8,1875= 0.2004, p = 0.2360). Similar results are found in Chapter 2, 

where the leucine allele had higher relative activity.  

Effect of genotype: When analyzing the genotypes, observing both polymorphisms 

together, the opposite trend of Km (Figure 3.3B) was observed. Interestingly, as seen with 

previous work (Chapter 2 of this manuscript), the rarer amino acid, leucine, had the 

highest relative MEN activity, compared to the other amino acids, glycine, alanine, and 

methionine. The heterozygous genotypes, blue bars in Figure 3.3B, relative activities 

were not significantly different from the calculated values, therefore being intermediate 

values.  Between the genotypes, significant differences exist (F8,1875=17.3150, p < 

0.0001). Once again, we see the additive effects between the heterozygotes (F8,1875= 

0.0351, p = 0.6761).  

 Genetic background effect: Since there were variations between the MEN Vmax and Km 

and line effects, it is expected to see variation between the ratio of those phenotypes, 

which was the case (Figure 4C).  In Chapter 2, the genetic background effects across the 

lines were present. 
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Figure 3.4. MEN Vmax/Km Activity, or relative in vivo activity across different alleles 

and backgrounds under saturating conditions. (A) the G-A polymorphisms’ genotype 

(leftmost three bars) and the M-L polymorphisms’ genotype (rightmost three bars) mean 

MEN relative activity. (B) The nine different alleles, taking into account both 

polymorphisms. White bars represent the alleles that are homozygous at both 

polymorphic sites, and black bars represents where the allele differs at one or both 

polymorphic site. (C)  The experimental flies from various crosses that contribute to the 

allele AM/AM. Bars indicate ± one standard error. An ANCOVA determined significant 

differences within the data set, and a Tukey Honesty Test provided the alleles/crosses that 

were significantly different. 
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3.3.5 Responses to MEN Activity within the NADPH Pathway  

When studying an enzyme within a biological system, it is important to consider that 

enzymes do not act in isolation. For MEN, three other enzymes contribute to the NADPH 

pathway: IDH, G6PD, and 6PGD. The analysis of IDH and G6PD were included to 

quantify the potential interaction between the genotypes. 

3.3.5.1 The G-A Polymorphism affects IDH Activity  

Effect of polymorphism: To determine if the Men polymorphisms were associated with 

variation in IDH activity for, we quantified the maximum velocity of IDH was 

determined under saturating conditions for all of the Men genotypes. At the MEN G-A 

polymorphism, the AA genotype had approximately 12% higher IDH activity than the 

GG genotype (F2,625=11.4158, p < 0.0001; Figure 3.5A).  The GA genotype was not 

significantly different from the calculated value, from the homozygous genotypes, 

suggesting it to be an intermediate of the homozygous alleles GG and AA, regarding IDH 

activity. The Men M-L polymorphism did not influence IDH activity (F2,625=0.1425, p= 

0.8672; Figure 3.5A). With the larger sample size used in this study, we can quantify 

differences at the G-A polymorphism in IDH activity, whereas previous studies could not 

(Chapter 2). 

Effect of genotypes: Once the polymorphisms were analyzed individually, the suite of 

combined genotypes were interpreted (Figure 3.5B). IDH activity generally decreased 

when going from the alanine to the glycine allele. However, two genotypes expressed 

higher IDH activity than expected. AAML had 9% higher IDH activity compared to the 

calculated value (Figure 3.5B), and this activity surpasses both respective homozygous 

genotypes (AAMM and AALL). The second genotype, AGLL, had 4% higher than 

expected activity and also surpassing the respective homozygous genotypes (AALL and 

GGLL; F8,1875=5.8951, p < 0.0001).   

MEN Correlation: MEN relative activity (Vmax/Km) and IDH activity were plotted 

against each other in order to determine if a correlation existed between the activities 

(Figure 3.5C; R2= 2x10-5); however, no correlation was observed. The lack of a trend in 
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Figure 3.5. IDH Vmax Activity (OD/time) across different Men alleles and 

backgrounds under saturating conditions. (A) the G-A polymorphisms’ genotype 

(leftmost three bars) and the M-L polymorphisms’ genotype (rightmost three bars) mean 

IDH Vmax activity. (B) The nine different alleles, taking into account both polymorphisms. 

White bars represent the alleles that are homozygous at both polymorphic sites, and black 

bars represents where the allele differs at one or both polymorphic site. (C) IDH activity 

plotted against MEN activity. White points represent the alleles that are homozygous, and 

the black points represent the alleles that are heterozygous. Bars indicate ± one standard 

error.   An ANCOVA determined significant differences within the data set, and a Tukey 

Honesty Test provided the alleles/crosses that were significantly different 
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Figures 3.5B-C suggest that IDH activity is independent from the Men polymorphisms, 

which could be because the differences in MEN activity between the genotypes were not 

substantial to drive changes in IDH activity. More substantial differences drive more 

significant interaction between loci.  

3.3.5.2 The G-A Polymorphism affects G6PD Activity 

Effect of polymorphism: The third NADPH enzyme analyzed in this study was G6PD to 

study the possible interactions between MEN and the network. The G-A polymorphism 

significantly affected the activity of G6PD, where the GG genotype had 15% higher 

G6PD activity than the AA genotype (F2,625=18.2082, p < 0.0001; Figure 3.6A). 

Furthermore, the AG genotype was had intermediate levels of activity, since it is value 

was not significantly different from the calculated value. The Men M-L polymorphism 

did not significantly influence the activity of G6PD (F2,625=0.8391, p =0.4324; Figure 

3.6A). With the larger sample size used in this study, we can quantify differences at the 

G-A polymorphism in G6PD activity, whereas previous studies could not (Chapter 2). 

Effect of genotypes: The genotypes of Men were compared against the G6PD activity, 

overall having similar G6PD activities to one another and no significant differences 

between the genotype (Figure 3.6B; F8,1875=0.3395, p=0.7140). To determine if there was 

a correlation between MEN activity and G6PD activity, both activities were plotted 

against each other (Figure 3.6C) and no correlation was quantified (R2= 0.08134).  

MEN Correlation: Similar to IDH activity, the G-A polymorphism influenced G6PD 

activity, but no overall trend was apparent when comparing the MEN genotype and 

activity, suggesting the G6PD activity is independent of the Men polymorphisms or the 

differences in MEN activity was not sufficient to drive changes in G6PD, Figure 3.6 C. 

3.3.6. Responses of distal phenotypes to MEN activity 

As mentioned before, MEN is a metabolic enzyme and a contributor to the NADPH 

pathway. Therefore, variation in Men expression and MEN activity can influence distal 

phenotypes, such as carbohydrate content, which is related to metabolism, and 
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triglycerides stores, which are related to metabolism and NADPH concentration. To 

determine if variation in MEN affected distal phenotypes, carbohydrate content and 

triglyceride concentration were quantified.  

3.3.6.1 MEN Activity affected Carbohydrate Content 

Effect of polymorphism: Carbohydrate content was measured across the different Men 

polymorphisms and genotypes in order to determine if differences in the MEN genotype 

and activity lead to changes in the amount of carbohydrate present in the samples. At the 

G-A polymorphism, as the genotype went from AA to GG, there was a decrease in 

carbohydrate content, significantly different (F2,625=3.5078, p=0.0386; Figure 3.7A). At 

the M-L polymorphism, going from MM to LL there was an increase in carbohydrate 

content, significantly different (F2,625= 3.5514, p = 0.0372; Figure 3.7A). With the larger 

sample size used in this study, we can quantify differences at the G-A polymorphism in 

carbohydrate content, whereas previous studies could not (Chapter 2). 

Effect of genotypes: A similar trend was observed across the different genotype, 

especially at the M-L polymorphism (Figure 3.7B) where the genotypes homozygous 

with the leucine amino acid alleles (AALL and AGLL) had the highest carbohydrate 

content (F8,1875=0.9124, p=0.5167).  

MEN Correlation: Carbohydrate content was compared to MEN activity to determine if 

a correlation existed between the phenotypes, and as MEN activity increases, a general 

increase in carbohydrate content occurred (Figure 3.7C; R2= 0.4818). MEN and 

carbohydrate were correlated, and this likely stems from the fact that MEN cycles 

between glycolysis and the Krebs cycle, which are pathways of respiration. 
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Figure 3.6 G6PD Vmax Activity across different Men alleles and backgrounds under 

saturating conditions. (A) the G-A polymorphisms’ genotype (leftmost three bars) and 

the M-L polymorphisms’ genotype (rightmost three bars) mean G6PD Vmax activity. (B) 

The nine different alleles, taking into account both polymorphisms. White bars represent 

the alleles that are homozygous at both polymorphic sites, and black bars represents 

where the allele differs at one or both polymorphic site. (C) Displays G6PD activity 

plotted against MEN activity. The white points represent the alleles that are homozygous, 

and the black points represent the alleles that are heterozygous. Bars indicate ± one 

standard error.  An ANCOVA determined significant differences within the data set, and 

a Tukey Honesty Test provided the alleles/crosses that were significantly different 
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3.3.6.2 MEN Activity did not influence Triglyceride Storage 

Effect of polymorphism & genotype: Lipid synthesis is known to be a downstream 

target of NADPH, which is why triglyceride stores were also included in this study (Geer, 

Lindel, & Lindel, 1979). Triglyceride content remained fairly consistent across the MEN 

polymorphisms and genotypes, suggesting that the Men genotype did not impact this 

phenotype (Figure 3.8A-B; F2,625=1.5953, p=0.2144; F8,1875=5.8951, p < 0.0001). No 

differences in the polymorphism and genotypes were found in Chapter 2 as well. 

MEN Correlation: Triglyceride content and MEN activity were compared to determine 

if a correlation existed between the two phenotypes (Figure 3.8C; R2= 0.01137). Similar 

to the analysis of the polymorphism and genotype, there was no correlation between 

triglycerides and MEN activity.  Multiple metabolites influence triglyceride content, 

NADPH being one of them. Since multiple loci contribute to the NADPH network, 

triglyceride storage is not likely to be significantly affected by the variation in MEN 

activity. A sufficient impact, such as 50% reduced activity is likely to lead to changes in 

lipid stores, as seen in previous work. 

3.3.7 Response of NADPH Network to a Stressor  

To fully understand one player's role in a metabolic system, two factors are essential to 

consider when analyzing its effects. As mentioned previously, systems do not act in 

isolation, which is why pathways should be studied together. The second is that metabolic 

systems are continually acclimating to the different conditions they are exposed to, in 

order to fulfill the needs of an organism. Since Men is a part of the NADPH pathway, and 

NADPH is an essential metabolite for the clearance of ROS, the Men genotype were 

further studied under oxidative stress, using paraquat as a source. 



	 87	

 

Figure 3.7. Carbohydrate content across different Men alleles and backgrounds 

under saturating conditions. (A) the G-A polymorphisms’ genotype (leftmost three 

bars) and the M-L polymorphisms’ genotype (rightmost three bars) mean carbohydrate 

content. (B) The nine different alleles, taking into account both polymorphisms. White 

bars represent the alleles that are homozygous at both polymorphic (C) Carbohydrate 

content plotted against MEN activity. The white points represent the alleles that are 

homozygous, and the black points represent the alleles that are heterozygous. Bars 

indicate ± one standard error. An ANCOVA determined significant differences within the 

data set, and a Tukey Honesty Test provided the alleles/crosses that were significantly 

different. 
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Figure 3.8. Triglycerides content across different Men alleles and backgrounds 

under saturating conditions. (A) the triglyceride content of the G-A genotypes (leftmost 

three bars) and the M-L genotypes (rightmost three bars) mean triglycerides content. (B) 

The nine different alleles, taking into account both polymorphisms. White bars represent 

the alleles that are homozygous at both polymorphic sites, and black bars represents 

where the allele differs at one or both polymorphic site. (C) Triglycerides content plotted 

against MEN activity. The white points represent the alleles that are homozygous, and the 

black points represent the alleles that are heterozygous. Bars indicate ± one standard 

error. An ANCOVA determined significant differences within the data set, and a Tukey 

Honesty Test provided the alleles/crosses that were significantly different 
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3.3.7.1 The G-A Polymorphism Influences MEN Maximum Velocity under Oxidative 

Stress 

To determine if MEN activity changed under an environmental stressor, the flies were 

placed on paraquat food for 24 hours. Paraquat exposure led to a significant decrease in 

MEN activity of 57% (Figure 3.9A; F2,625=64.2272 p < 0.0001), similar to other studies 

analyzing the NADPH enzymes under paraquat. A decrease in MEN activity is also 

found in previous work with paraquat studying interactions within the NADPH pathway  

(Rzezniczak & Merritt, 2012). 

Effect of polymorphism: The G-A polymorphism displayed significant differences, 

where the GG genotype had 27% higher MEN activity than the AA genotype 

(F2,625=4.5364 p = 0.0162). The M-L polymorphism did not show significant differences 

when placed on paraquat food from each other (F2,625=0.9939 p = 0.3783).  

Effect of genotype: Paraquat treatment did not change the trend of effect of genotype on 

MEN activity. The genotype for MEN, on paraquat food, overall had the same trend as 

seen in Figure 3.1B, whereas you switch from an alanine to a glycine allele, there was an 

increase in MEN activity. The genotypes were not significantly different (F8,1875=1.3934 p 

= 0.2308).  Interestingly the heterozygous combinations did not fall in the range of the 

calculated values, or for them to be considered intermediates of their respected 

homozygous genotype. All the heterozygous genotype, which the exception of GGML 

had lower than expected activities. This lower activity may be advantageous due to the 

decreased concentration of NADPH available for paraquat. The lack of trend viewed for 

MEN activity is largely due to the cells responding to an environmental condition, 

allowing them to behave similarly. 

3.3.7.2 The MEN Genotype does not alter IDH Activity under Oxidative Stress 

To understand if IDH activity changed for the MEN alleles under oxidative stress 

condition, the same protocol was followed as mentioned previously. The IDH activity 

significantly decreased once exposed to paraquat (Figure 3.10A; F2,625=67.7448, p < 

0.0001), however, not to the same extent as MEN activity, decreasing by 27%. This slight 

decrease in IDH is consistent with previous work ( Rzezniczak & Merritt, 2012).  
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Figure 3.9. MEN Vmax Activity (OD/time) across different alleles and backgrounds 

under paraquat condition. (A) MEN activity plotted against Fly condition, where 

control is standard cornmeal fly food and para is where paraquat is administered into the 

food. (B) the G-A polymorphisms’ genotype (leftmost three bars) and the M-L 

polymorphisms’ genotype (rightmost three bars) mean MEN Vmax activity. (C) The nine 

different alleles, taking into account both polymorphisms. White bars represent the alleles 

that are homozygous at both polymorphic sites, and Black bars represent where the allele 

differs at one or both polymorphic site. Bars indicate ± one standard error.   An 

ANCOVA determined significant differences within the data set, and a Tukey Honesty 

Test provided the alleles/crosses that were significantly different 
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Figure 3.10. IDH Vmax Activity across different alleles and backgrounds under 

paraquat condition. (A) IDH activity plotted against Fly condition, where control is 

standard cornmeal fly food and para is where paraquat is administered into the food. (B) 

the G-A polymorphisms’ genotype (leftmost three bars) and the M-L polymorphisms’ 

genotype (rightmost three bars) mean IDH Vmax activity. (C) The nine different alleles, 

taking into account both polymorphisms. White bars represent the alleles that are 

homozygous at both polymorphic sites, and black bars represent where the allele differs 

at one or both polymorphic site. (D) IDH activity is plotted against MEN activity. White 

points represent the homozygous alleles, and black points represent the heterozygous 

alleles. Bars indicate ± one standard error. An ANCOVA determined significant 

differences within the data set, and a Tukey Honesty Test provided the alleles/crosses that 

were significantly different. 
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Effect of polymorphism: At the G-A polymorphism, the IDH activities are relatively 

similar to one another, and do not significantly differ, (Figure 3.10B; F2,625=0.5090 p = 

0.6046). The MEN M-L genotypes also displayed similar IDH activities; however, the LL 

genotype had a 12% higher mean activity than the MM genotype, but these activities 

were not significantly different (F2,625=2.2457 p = 0.1179).  

Effect of genotype: The IDH activities are consistent across the genotypes of MEN 

activity, no significant trend observed (Figure 3.10C; F8,1875=1.0260, p = 0.4338)  

MEN Correlation: As MEN activity increases, a slight increase in IDH activity was 

observed, however, this difference was not significant (Figure 3.10D; R2= 0.19641). The 

lack of difference in IDH activity across the MEN genotypes could be a function of a lack 

of difference initially, under control conditions or due to the system focusing on the 

clearance of ROS. 

3.3.7.3 The Men genotypes do not alter G6PD Activity under Oxidative Stress 

To determine whether G6PD activity changed for the MEN genotypes under oxidative 

stress, the same protocol was followed as mentioned previously. The G6PD activity 

remained consistent when exposed to paraquat compared to control samples, likely 

because G6PD is not as high a contributor to the NADPH ratio as MEN or IDH (Figure 

3.11A). Previous work did not find significant differences between the paraquat and 

control flies for G6PD activity (Rzezniczak & Merritt, 2012). 

Effect of polymorphism: At the MEN G-A polymorphism, the mean G6PD activity for 

the GG genotype was approximately 16% higher than the AA genotype; however, this 

difference was not significant (Figure 3.11B; F2,625=2.4722 p = 0.0960). The MEN M-L 

polymorphism also displayed similar activity across genotypes, however, the LL 

genotype had 17% higher mean activity than the MM genotype, although the difference 

was not significant (F2,625=2.4038 p = 0.1022).  

Effect of genotype: The G6PD activities were consistent across the different MEN 

genotypes (Figure 3.11C; F8,1875=1.1048, p = 0.3817). To determine if there was a 

correlation between MEN and G6PD activity, G6PD activity was compared to MEN 

activity under paraquat condition.  
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MEN Correlation: As MEN activity increased, an increase in G6PD activity was also 

observed, but due to the increase in variation (the error bars) the trend was not significant 

(Figure 3.11D; R2= 4.1743). Overall, the Men genotypes do not alter the activity of G6PD 

under conditions of oxidative stress. 
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Figure 3.11. G6PD Vmax Activity across different alleles and backgrounds under 

paraquat condition. (A) G6PD activity plotted against Fly condition, where control is 

standard cornmeal fly food and para is where paraquat is administered into the food. (B) 

the G-A polymorphisms’ genotype (leftmost three bars) and the M-L polymorphisms’ 

genotype (rightmost three bars) mean G6PD Vmax activity. (C) The nine different alleles, 

taking into account both polymorphisms. White bars represent the alleles that are 

homozygous at both polymorphic sites, and black bars represent where the allele differs 

at one or both polymorphic site. (D) G6PD activity plotted against MEN activity. White 

points represent the homozygous alleles, and black points represent the heterozygous 

alleles. Bars indicate ± one standard error. An ANCOVA determined significant 

differences within the data set, and a Tukey Honesty Test provided the alleles/crosses that 

were significantly different. 
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3.3.7.4 The MEN genotypes do not alter SOD Activity under Oxidative Stress 

SOD is an antioxidant enzyme that plays a role in clearing up superoxide molecules 

present within an organism. SOD is a crucial antioxidant to study since superoxide 

molecules are generated with paraquat. To determine if SOD activity changes for the 

MEN genotypes under oxidative stress condition, a simple enzymatic assay was 

performed under saturating conditions. SOD activity was significantly higher under 

paraquat conditions compared to the control sample (Figure 3.12A, F2,625=34.6686, p < 

0.0001).  

Effect of polymorphism: At the MEN G-A polymorphism, the mean SOD activity for 

the AA genotype was approximately 19% higher than the GG genotype; however, the 

difference was not significant (Figure 3.12B; F2,625=0.9617 p = 0.3903). The MEN M-L 

polymorphism also displayed variation in activity, where the LL genotype had 4% higher 

meaner SOD activity than the MM genotype, although the difference was not significant 

(F2,625=0.1875 p = 0.8297).  

Effect of genotype: There was a lot of variation between the genotypes; however, no 

overall trend was observed between the genotypes and SOD activity (Figure 3.12C; 

F8,1875=0.4925, p = 0.8536).  

MEN Correlation: As MEN activity increases, there is a considerable variation between 

SOD activity, but no overall trend was observed (Figure 3.12D; R2= 0.0053). SOD is a 

line of defense against ROS that accumulates within the cell, SOD indirectly uses 

NADPH, which might explain the lack of communication between SOD and MEN. 
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Figure 3.12. SOD Vmax Activity across different alleles and backgrounds under 
paraquat condition. (A) is SOD activity plotted against Fly condition, where control is 

standard cornmeal fly food, and para is where paraquat is administered into the food. (B) 

the G-A polymorphisms’ genotype (leftmost three bars) and the M-L polymorphisms’ 

genotype (rightmost three bars) mean SOD Vmax activity. (C) The nine different alleles, 

taking into account both polymorphisms. White bars represent the alleles that are 

homozygous at both polymorphic sites, and black bars represent where the allele differs 

at one or both polymorphic site. (D) SOD activity is plotted against MEN activity. White 

points represent the homozygous alleles, and black points represent the heterozygous 

alleles. Bars indicate ± one standard error.   An ANCOVA determined significant 

differences within the data set, and a Tukey Honesty Test provided the alleles/crosses that 

were significantly different. 
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3.3.7.5 The MEN genotypes do not alter GST Activity under Oxidative Stress 

To determine if the activity of GST, an antioxidant enzyme, changed for the MEN 

genotypes under oxidative stress conditions, an enzymatic assay was performed under 

saturating conditions. Unexpectedly, paraquat treatment did not lead to elevated GST 

activity (Figure 3.13A). The lack of increase in activity under high ROS stress may mean 

that GST takes longer than the 24 hours exposure used here to become more active. 

Effect of polymorphism: At the MEN G-A polymorphism, the mean GST activity for 

the AA genotype was approximately 17% higher than the GG genotype, but this 

difference was not significant (Figure 3.13 B; F2,625=1.5391, p = 0.2262). GST activity 

remained consistent between the different allele groupings for the M-L polymorphism 

(F2,625=0.7729, p = 0.4680). 

Effect of genotype: Similar to SOD activity, there was variation between the MEN 

genotypes for GST activity, but no overall trend was observed (Figure 3.13C; 

F8,1875=0.8243, p = 0.5866).  

MEN Correlation: When MEN activity was compared to GST activity, there was a 

positive correlation, but it was not significant (Figure 3.13D; R2= 0.02229). The lack of 

trend observed is most likely due to GST being further down the chain in the antioxidant 

defense system. 

3.3.7.6 The MEN genotypes do not alter CAT Activity under Oxidative Stress 

To determine if CAT activity changed for the MEN genotypes under oxidative stress 

conditions, an enzymatic assay was performed under saturating conditions. CAT activity 

was significantly higher in the samples exposed to paraquat compared to the control 

samples (Figure 3.14A; F2,625=28.936, p < 0.0001).  

 

Effect of polymorphism: At the MEN G-A polymorphism, the mean CAT activity for 

the AG genotype was approximately 24% higher than GG and AA homozygous 

genotypes, however, the difference was not significant (Figure 3.14B; F2,625=0.8081, p = 

0.4530). By being 24% higher, this suggests that CAT activity is not following an 

additive trend, and may point towards heterozygote advantage. For the MEN M-L 



	 98	

polymorphism, the mean CAT activity with the MM genotype was 22% higher than the 

LL genotype, but the difference was not significant (Figure 3.14B; F2,625=0.6892, p = 

0.5080).  
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Figure 3.13. GST Vmax Activity across different alleles and backgrounds under 

paraquat condition. (A) GST activity plotted against Fly condition, where control is 

standard cornmeal fly food and para is where paraquat is administered into the food. 

Figure (B) the G-A polymorphisms’ genotype (leftmost three bars) and the M-L 

polymorphisms’ genotype (rightmost three bars) mean GST Vmax activity. (C) The nine 

different alleles, taking into account both polymorphisms. White bars represent the alleles 

that are homozygous at both polymorphic sites, and black bars represent where the allele 

differs at one or both polymorphic site. (D) GST activity is plotted against MEN activity. 

White points represent the homozygous alleles, and black points represent the 

heterozygous alleles. Bars indicate ± one standard error.   An ANCOVA determined 

significant differences within the data set, and a Tukey Honesty Test provided the 

alleles/crosses that were significantly different. 
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Figure 3.14. CAT Vmax Activity across different alleles and backgrounds under 

paraquat condition. (A) CAT activity plotted against Fly condition, where control is 

standard cornmeal fly food and para is where paraquat is administered into the food. 

Figure (B) the G-A polymorphisms’ genotype (leftmost three bars) and the M-L 

polymorphisms’ genotype (rightmost three bars) mean CAT Vmax activity. (C) The nine 

different alleles, taking into account both polymorphisms. White bars represent the alleles 

that are homozygous at both polymorphic sites, and black bars represents where the allele 

differs at one or both polymorphic site. Figure 3.14 D is where CAT activity is plotted 

against MEN activity. White points represent the homozygous alleles, and black points 

represent the heterozygous alleles. Bars indicate ± one standard error.   An ANCOVA 

determined significant differences within the data set, and a Tukey Honesty Test provided 

the alleles/crosses that were significantly different. 
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Effect of genotype: Interestingly, between the genotypes, there are large variations, 

where all the heterozygous genotypes were superior in CAT activity compared to their 

respective homozygous lines (Figure 3.14C; F8,1875=1.8281, p = 0.1069).  The higher 

activities suggest the possibility of heterozygote advantage.  

 

MEN Correlation: When comparing CAT activity against MEN activity, a negative 

correlation exists, whereas MEN activity increases there was a decrease in CAT activity, 

however, this was not significant (Figure 3.14D; R2= 0.20646). 

 

3.4 Discussion 

3.4.1 MEN Phenotypic Variation across the Different Genotypes  

Understanding the biochemical characteristics of alleles is a crucial first step in 

unraveling the biology of genetic variation and the maintenance of genotypes. In the case 

of single nucleotide polymorphisms (SNPs), two crucial factors play a role in phenotypic 

variation: the type of base pair change, and the base pair location. In D. melanogaster 

MEN, two SNPs lead to nucleotide base substitutions that change the amino acid 

sequence. The location of one of these polymorphisms is near the active site of the 

enzyme, whereas the other is buried within the protein; therefore, we expect to observe 

variation in MEN activity for the polymorphism near the active site (Merritt et al., 2005; 

Rzezniczak et al., 2012). Previous studies completed within the Merritt lab have 

examined these polymorphisms and their biochemical characteristics. Multiple lines are 

incorporated in this study to introduce genetic background effects that can drive changes 

in phenotypes. In Chapter 2, 16 lines were used, whereas Chapter 3 has 35 lines were 

used. The lines chosen for Chapter 2 had similar MEN Vmax activities when compared to 

one another, whereas the lines in Chapter 3 had various MEN Vmax activities ranging from 

low, mid and high activity.   

 

For MEN Vmax, the glycine allele has higher activity than the alanine allele, which also 

holds true with previous studies (Figure 3.1A). In previous studies, the M-L 
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polymorphism did not influence MEN activity, likely because the M-L polymorphism is 

buried within the protein, and not near functional components of the enzyme (Rzezniczak 

et al., 2012). Interestingly, the leucine allele has higher activity than the methionine allele 

(Figure 3.1A). Although the M-L polymorphism is known to be distant from an active 

site, it could be affected MEN activity in two ways. The first is the overall conformation 

of the protein is altered due to that amino acid substitution. Methionine and leucine are 

both nonpolar and bulky amino acids. However, methionine contains a sulfur atom in it is 

R group, which can form disulfide bonds with other sulfur-containing amino acids. By 

replacing methionine with a leucine, those potential disulfide bonds can be disrupted, 

where there are fewer interactions within the protein with the other R groups (Biswal et 

al., 2012; Pal & Chakrabarti, 2001). This loss of potential interactions could lead to a less 

compact protein, allowing greater flexibility overall and better interaction with substrates, 

hence the higher activity with the leucine allele. Furthermore, MEN is a homodimer 

tetramer, where two MEN monomers form dimers, and these dimers form tetramers. The 

M-L polymorphism could also potentially be located at the site where these dimers 

interact with one another. It is possible that the leucine allele leads to stronger positive 

cooperativity for MEN, through interactions between the dimers, corresponding to the 

higher activity at this polymorphic site. The reason why the M-L site did not appear to 

affect the MEN activity in previous studies is potential since the sample size, and genetic 

background effects were not studied as in-depth compared to this study. Here multiple 

lines were included for each genotype to study line effects. The variation between lines, 

in addition to the larger sample size, could lead to the quantification we see at the M-L 

polymorphism. Another interesting point is that leucine, the rarer allele, contributes to an 

overall higher Vmax activity, compared to the other allele. This could potentially provide 

insight into why the leucine genotype is rare, where it might not be favorable to have high 

MEN activity.  

 

The heterozygous genotype at the MEN locus was analyzed throughout, to understand the 

allelic frequency across the population further and provide insight into heterozygote 

advantage at the Men locus. The two Men polymorphisms exist in populations with a 

50:50 ratios at for G-A polymorphism and a 90:10 ratio for the M-L polymorphism, 
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potentially under selection (Sezgin et al., 2004). The consistency of these frequencies 

across populations suggests a factor present within the biochemistry that may lead to this 

maintenance (Cormack, Hartl, & Clark, 1990). In Figure 1A, also viewed in Figure 1B, 

the heterozygous genotypes were quantified to be intermediates with their respected 

homozygous genotype. For example, AAML heterozygous genotypes would have the 

respective homozygous genotypes of AAMM and AALL. This is interesting because the 

heterozygous advantage is defined as the heterozygotes being superior to either 

homozygotes genotype (Kimura, Callahan, Petrov, & Messer, 2011; D. Sellis, Callahan, 

Petrov, & Messer, 2011; Diamantis Sellis, Callahan, Petrov, & Messer, 2011). In this 

scenario, it is likely that being at an intermediate value is the advantage. 

  

As mentioned previously, it is important to study multiple lines, to include accounts for 

genetic backgrounds effects, since metabolic pathways interact with other genes, another 

source of phenotypic variation (Dworkin et al., 2009). The different crosses that 

contribute to the mean activity of the allele AAMM are shown in Figure 3.1C. Here, the 

genotypes at the Men locus are identical to one another; however, there is variation in the 

phenotypes between the lines, where 208 X 309 has the lowest activity, and 786 X 026 

has the highest. This variation is known as the genetic background effect. Complex traits 

are dynamic such that phenotypes vary dependent on conditions. Men locus interacts with 

other loci that drives the changes within its phenotype, which was quantified across the 

different lines.  

  

In previous studies, MEN Vmax activity is a combination of structural changes and 

regulatory variation ( Rzezniczak et al., 2012). Interestingly, the cytosine genotype has 

higher Men expression levels compared to the guanine genotype, Figure 3.2A. Previous 

studies within this network have shown that the guanine genotype had higher Men 

expression levels than the cytosine genotype, which correlated with the glycine allele 

having higher Vmax activity than the alanine allele. Genetic background can explain why 

we see this variation in gene expression. Another potential reason is that novel factors 

outside of the known network are interacting with the locus to drive relative expression 

levels of Men. As these polymorphisms are located within the actual protein itself and not 
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upstream of the gene, the changes at the regulatory level is probably a consequence of 

another molecule, or set of molecules, interacting with this gene, leading to the observed 

variation in activity and expression levels (Bing et al., 2014; Rzezniczak et al., 2012).  

The second polymorphism is an adenine nucleotide substitution to a thymine nucleotide. 

Although the difference in Vmax at the M-L polymorphism was not observed until now, a 

difference in Men expression level was quantified at the M-L polymorphism, where the 

adenine nucleotide had higher expression levels. However, in this study, the opposite was 

observed, where thymine had relatively higher Men expression levels, therefore a positive 

correlation between expression levels and activity levels was observed. In this study, it 

was also noted that there was a slight difference in Vmax activity at the M-L 

polymorphism, where leucine (coded for from the thymine nucleotide) had higher Vmax 

activity in comparison to methionine (adenine nucleotide). The higher Vmax activity with 

the leucine allele could correspond to higher gene expression with the thymine 

nucleotide. The heterozygous genotypes, CG and AT, were also observed and both 

genotypes had relatively lower expression levels compared to the homozygous genotypes. 

Within the Vmax phenotype, the heterozygotes appeared to have a linear additive effect, 

where the heterozygous genotypes are a mean of the homozygous genotypes. However, 

expression levels do not have the same linear additive effect as seen with the Vmax. One 

common type of gene regulation within D. melanogaster is transvection, which is a form 

of trans- interaction between paired homologous chromosomes leading to misregulation 

(Duncan, 2002; Mellert & Truman, 2012; Morris, Chen, Geyer, & Wu, 1998; Wu & 

Morris, 1999). Transvection has been studied at the Men locus, indicating the possibility 

of trans-interactions with our results. When comparing Men expression levels and MEN 

activity, there is a correlation between the two phenotypes, where higher expression 

levels have higher MEN activity (Bing et al., 2014; Lum & Merritt, 2011). Regardless of 

the opposite trend viewed based on the previous study, the correlation still holds, 

indicating that structural and regulatory variations influence the Vmax phenotype. 

 

 Changes to the amino acid sequence can affect the binding affinity of an enzyme due to 

the alteration in the structure. The structure is an essential factor that plays a role in the 

function of a protein. Both polymorphism (G-A and M-L) significantly influence the 
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binding affinity of the enzyme, although the M-L polymorphism had a more significant 

effect, Figure 3.3A, consistent with previous studies (Rzezniczak et al., 2012). 

Furthermore, the leucine allele has a lower Km value when compared to the other allele, 

which indicates that leucine requires a lower concentration of substrate to effectively 

function.  The leucine allele phenotype of a higher Vmax activity and lower Km is 

interesting, despite being the rarer genotype. The Km phenotype may be an indicator as to 

why the leucine allele is being maintained within the population at low frequencies. It 

might not be beneficial to the organism to have such a low Km value and high Vmax, 

essentially being at extremes for these phenotypes. Previously, it was suggested that 

going from a methionine allele to a leucine allows for greater flexibility within the 

enzyme, since some intermolecular bonds are being lost, possibly aiding in the stronger 

binding affinity observed with leucine (Chapter 2). 

Interestingly, the lines that contribute to the AAMM homozygous allele show much 

variation between one another. It is known that Km is only dependent on the amino acid 

sequence; however, these variations suggest that Km is not solely dependent on the 

protein’s primary structure. The first factor that can be distinguished is that genetic 

background influences the binding affinity, seeing as each cross has a different Km value. 

The second factor could be interaction at the MEN Vmax level since these two phenotypes 

work together to drive the function of the enzyme. Differences in Vmax can be based on 

the differences in how well the enzyme binds to its substrate. Therefore, the next 

phenotype observed was the ratio between Vmax and Km.  

 

Looking at Vmax and Km as individual factors are essential to study the biochemistry of the 

enzyme. In order to understand the biological implications of MEN. These two 

phenotypes are examined together as they both drive the function of the enzyme, and that 

ratio provides a more relative in vivo activity of the enzyme. At the G-A polymorphism, 

there was no difference between either allele for activity level, Figure 3.4A. This could 

explain why the G-A polymorphism is found at a 50:50 allelic frequencies, as there is no 

distinguishable activity between the alleles. This indistinguishable activity also suggests 

that this polymorphism might not lead to a heterozygote advantage. However, the M-L 

polymorphism has variation between activities. Here the LL genotype has higher MEN 
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activity in comparison to the MM genotype, and the ML genotype has moderate MEN 

activity. This is an indicator of the allelic frequency, suggesting the M-L polymorphism is 

under selection. The heterozygotes are intermediates, consistent with previous studies, 

indicating that the heterozygous alleles for MEN phenotypes display a linear effect 

throughout its phenotypes (Vmax, Km, and Vmax/Km). The MEN activity was plotted against 

AAMM crosses (Figure 3.4C) to better understand the effects of genetic background on 

the phenotype. Here, there is a variation between the activities across the different lines, 

suggesting that genetic background does play a role in the phenotype of activity. 

However, it is also possible that there are interactions that are occurring in or outside of 

the NADPH pathway that is driving the observed changes (Figure 3.4C), which is a factor 

of complex traits (Rzezniczak et al., 2012).  

3.4.2 MEN Alleles and Interactions within the NADPH Pathway 

With complex traits, communication exists in and between networks, leading to diverse 

phenotypes; where one allele can display the result in multiple phenotypes depending on 

interactions between other genes and the environment. This dynamic system is crucial for 

an organism because it allows them to acclimate to changes over time (Kalmus, 1945; 

Merritt et al., 2005). The enzymes IDH and G6PD were analyzed to see if their activities 

varied for the MEN genotypes. 

The MEN G-A polymorphism was with a significant difference in IDH activity, where 

the AA allele had higher activity than the GG (Figure 3.5A). For MEN activity, the GG 

genotype had higher activity than the AA genotype, Figure 3.1A. Therefore, to aid in 

maintaining the NADPH ratio in cells, it is possible that there is a decrease in IDH 

activity to compensate for the higher MEN activity. However, this is not consistent with a 

previous study, where a decrease in MEN activity leads to a decrease in IDH activity. In 

that paper, they used lab-engineered excision lines, where 100% and 50% enzymatic flies 

were generated (Merritt et al., 2005; Rzezniczak et al., 2012). In this study, we are using 

wild-type flies, and the differences between the alleles are not as pronounced. 

Interestingly, only the G-A polymorphisms had significant differences in IDH activity, 

suggesting that the communication between loci is mainly dependent on the functional 

components of the enzymes, as opposed to structure. There was a slight decrease in 
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activity from the alanine allele towards glycine when comparing the different genotype 

(Figure 3.5B). The lack of interactions between IDH and MEN activity could be because 

the MEN alleles do not differ significantly compared to previous studies, as mentioned 

before, or that the interaction is not as strong because the NADPH ratio is maintained. 

The G6PD activity also was found to significantly differed across the G-A polymorphism 

(Figure 3.6A). Specifically, G6PD activity followed a similar trend to MEN activity, 

where the GG genotype has a higher G6PD activity than AA genotype. As MEN activity 

increases, so does G6PD activity. With only the G-A polymorphism leading to 

differences in G6PD activity, similar to IDH activity, it further suggests that the 

communication between loci may be dependent on the functional components of the 

enzymes, rather than the structural components. G6PD activities did not differ across the 

genotypes, and when compared to MEN activity, there was no overall trend (Figure 3.6B-

C).  

The lack of trend observed in G6PD and IDH activity is likely due to the lack of 

substantial differences in MEN activity, consistent with previous studies (Chapter 2). 

Furthermore, the activities of the NADPH enzymes are dependent on the NADP+: 

NADPH ratio. Therefore, if the ratio does not differ significantly between the MEN 

genotypes, it may not require an acclimatize response in IDH or G6PD (Bernard et al., 

2011; Ying, 2008). 

3.4.3 MEN Alleles Effects Distal Phenotypes 

The main focus of this study is to understand the Men polymorphisms for their allelic 

frequencies. NADPH is a central component when studying Men since it is involved with 

numerous loci. In previous studies, variation in lipid content was observed for the MEN 

engineered flies (Merritt, Sezgin, Zhu, & Eanes, 2006). Therefore, lipid content was 

quantified here, in addition to carbohydrate concentration, since MEN is a metabolic 

enzyme.  

Carbohydrate content varied across the different MEN genotypes (Figure 3.7A-B). The 

results were interesting, as a consistent difference in carbohydrate content was observed 

at the M-L polymorphism, where the leucine allele had higher carbohydrate content than 
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methionine, the rare allele had the more extreme phenotype. A positive correlation 

between carbohydrate content and MEN activity was observed, where an increase in 

MEN activity lead to an increase in carbohydrate content (Figure 3.7C). Overall, seeing a 

difference in carbohydrate content was striking as multiple lines were used, suggesting 

the potential for line effects masking a trend. Furthermore, carbohydrate content is a 

phenotype that is dependent on multiple loci, so it was expected that some of the 

variations would be masked due to this. However, The M-L polymorphism had an 

impact, suggesting that changes in the overall structure of the enzyme had more of an 

effect on this distal phenotype. From these observations, Men is potentially a key player 

for carbohydrate content. 

Triglyceride storage is a vital phenotype to include for this investigation since NADPH is 

involved in lipid synthesis (Geer et al., 1979; Merritt et al., 2005; Rzezniczak & Merritt, 

2012). Surprisingly, the variation in MEN activity did not alter the triglyceride content 

across the different polymorphism or genotypes (Figure 3.8A-C). This lack of interaction 

could be due to that MEN activity does not differ significantly from driving changes in 

triglyceride concentration, keeping an ideal ratio between NADP+ and NADPH. 

Furthermore, triglyceride content is a distal phenotype of MEN, where MEN is an 

indirect contributor to the synthesis of triglycerides rather than a direct contributor.  The 

polymorphisms may not drive significant changes in triglyceride storage as compared to a 

phenotype that is in its direct pathway.  

3.4.4 Men genotypes Effects to Environmental Stressors 

Biological systems are known to be dynamic, acclimatizing to changes that occur in the 

environment, therefore, essential to study metabolic systems in multiple environmental 

conditions. In this study, oxidative stress was chosen to be the environmental stressor, 

since NADPH is known to play a role in ROS clearance (Hosamani & Muralidhara, 2013; 

Scherz-Shouval & Elazar, 2007; Valko et al., 2007; Weber et al., 2012). Paraquat, a 

herbicide, induces oxidative stress, using NADPH to generate ROS (Bernard et al., 2011; 

Rzezniczak & Merritt, 2012; Ying, 2008). Here NADPH enzymes and antioxidant 

enzymes were examined, comparing paraquat fed flies to control flies.  
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For MEN activity, the control flies had significantly higher MEN activity than the 

paraquat fed flies (Figure 3.9A). The decrease in MEN activity is due to paraquat using 

NADPH to produce ROS in the cells. By reducing MEN activity, the NADPH 

concentration in cells is reduced, inhibiting the effect of paraquat on the flies. Concerning 

the SNPs, the G-A polymorphism was significantly different, where the GG genotype had 

higher MEN activity, compared to the AA genotype, consistent with the control 

conditions (Figure 3.9B). Therefore, similar trends were observed in the paraquat 

conditions compared to the control, and the difference is lower activity levels overall. The 

AA and AG genotypes had lower MEN activity, potentially suggesting an advantage for 

an organism to have either of those genotypes since they acclimatize well to paraquat 

stress. This lower MEN activity hints towards the potential of heterozygote advantage. 

For the genotypes, the heterozygous alleles (in the black bars of Figure 3.9C) had lower 

activity in comparison to the homozygous alleles (in the white bars), which the exception 

of GGML. This lower MEN activity suggests the possibility of an advantage as a 

heterozygote at the Men locus since lower MEN activity will lead to a low concentration 

of NADPH available for paraquat to use, reducing ROS present.  

NADPH enzyme IDH activity has similar results as MEN activity (Figure 3.10A) where 

IDH activity was lower in paraquat exposed flies. The extent that IDH activity is driven 

down by paraquat was not the same as observed with MEN activity, since MEN 

contributes a higher percentage to the NADPH ratio in the cell, as opposed to the other 

enzymes.  The reduction in MEN activity could be sufficient to lower the NADPH 

concentrations such that IDH activity was not required to be reduced to the same degree. 

In Figure 3.10B, the polymorphisms appear to be different from one another, but not to 

the level of difference observed in control.  IDH activity was similar across MEN 

genotypes, such that when IDH activity was compared to MEN activity, no overall trend 

was observed (Figure 3.10C-D). One reason why IDH activity seems similar across the 

polymorphisms in the paraquat condition could be since MEN played a superior role in 

reducing the available NADPH for paraquat (Merritt et al., 2005). Therefore, IDH's 

response to paraquat is not as large. Another reason that the IDH activity does not differ 

across the polymorphism is that its function is halted, and the flies first response is to 

clear ROS. 



	 110	

G6PD activities were similar in the paraquat and control conditions, Figure 3.11A. This is 

since G6PD is not a large contributor to the NADPH ratio as compared to MEN and IDH; 

its activity is not required to reduce NADPH concentration. The AA genotype at the G-A 

polymorphism and the MM genotype at the M-L polymorphism is advantageous for 

being in a paraquat environment since the G6PD activity was the most reduced, Figure 

3.11B. Nonetheless, this is a similar trend to that observed with the control sample. 

To further understand the difference between the MEN genotypes, antioxidant enzyme 

activities were measured to quantify interactions in the NADPH network. SOD is an 

essential antioxidant enzyme since superoxide anion is the ROS that is generated through 

paraquat stress (Abolaji et al., 2017; Bernard et al., 2011; Hosamani & Muralidhara, 

2013; Lessel et al., 2017). Overall, under the paraquat condition, there was higher SOD 

activity (Figure 3.12A). However, the SOD activity did not differ at the individual 

polymorphisms or the genotype in general (Figure 3.12B-C). The lack of difference in 

SOD activity between the genotype was interesting since the MEN activities differed. 

Potentially SOD activity is not interacting with the MEN genotype, possibly due to their 

indirect connection via the NADPH pathway (Bernard et al., 2011; Lessel et al., 2017). 

Variation in SOD activity did not correlate to differences in MEN activity. The absence 

of an observable trend between SOD activity and MEN activity could be due to the 

decrease in NADPH production as the first line of defense against paraquat. The low 

concentrations of NADPH available could be a factor of SOD activity since SOD 

indirectly requires NADPH to function. 

The second antioxidant enzyme that was analyzed is GST. The activity of GST did not 

significantly differ between the paraquat and the control flies (Figure 3.13A). When 

comparing the GST activity to the polymorphism and genotype, there were no significant 

differences (Figure 3.13B-C). Since there were no differences between the MEN 

polymorphisms and genotypes, there was also no trend observed when comparing GST 

activity against MEN activity (Figure 3.13D). The lack of variation for GST activity 

across MEN genotypes is since GST is activated under secondary ROS responses. GST 

was not required to modify to acute paraquat conditioning, in this case, since the flies 

were placed on paraquat for 24 hours. 
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The last antioxidant enzyme that was studied was CAT. Under the paraquat condition, 

CAT activity was higher than in the control condition (Figure 3.14A). Similar to SOD 

activity, when compared across the polymorphisms and genotypes, CAT activity did not 

differ significantly (Figure 3.14 B-C). This could be due to the lack of communication 

between MEN and CAT. One overall trend is that the heterozygous genotypes (Figure 

3.14C) had higher CAT activity. SOD is known to produce hydrogen peroxide as one of 

its by-products, which is a reactant for CAT (Lessel et al., 2017). Therefore, the 

increasing activity in SOD will increase the hydrogen peroxide concentration, leading to 

an increase in CAT activity. 

In this investigation, we further studied the SNPs present in Men and how the 

biochemistry of the enzyme may lead to the allelic frequency we see across populations. 

Interestingly, by including more genetic backgrounds in this study, differences between 

the polymorphisms were amplified. The leucine allele, which is the rare polymorphisms, 

had a higher relative activity, which is an indicator as to why it is maintained at a lower 

allelic frequency- an extreme phenotype.  By including an environmental stressor, we can 

test the acclimatization of the enzyme. When the flies were placed on paraquat to 

generate oxidative stress, the enzymes, MEN, IDH, and G6PD, the response was to 

prevent the accumulation and generation of ROS, thereby decreasing its activity.  This 

decrease in activity becomes advantageous to the organisms, being able to acclimatize 

quickly to a stressor. Furthermore, the antioxidant enzymes do not have an overall trend 

for the polymorphism of MEN, but in the flies used, we do see an overall change in 

response, indicating some form of alteration.  

Future work will be focused on teasing apart the structure of the enzyme, to understand 

how the polymorphism affects the overall structure of MEN. Another component that 

requires focus is the difference in expression levels of Men between polymorphisms. The 

polymorphisms are found within the gene, whereas regulatory elements can be found 

upstream and sometimes downstream of a gene. Therefore, the differences in regulation 

between the polymorphism may be indicated in other location than the gene itself. 

Studying these locations can provide insight into the maintenance of the alleles across the 

population. 
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4.1 Overview  

In this current study, we discovered interesting biochemical and biological variations 

between the Men alleles and interactions between NADPH enzymes. My hypothesis 

about variation across the Men alleles was supported; the phenotypes of the heterozygous 

alleles were mainly a linear combination of their respected homozygous alleles. 

Furthermore, the level of interaction between the Men alleles and the known NADPH 

network enzymes was minimal. Interestingly, the flies’ phenotypes’ were altered by the 

environmental stressor, paraquat. The previously observed trend of decrease NADPH 

enzyme MEN and IDH activity is also present here when the flies were exposed to 

paraquat, while G6PD activity did not change. Future work will focus on understanding 

the current players in the NADPH network to the Men polymorphism. In this chapter, I 

discuss the conclusions obtained from the study and provide suggestions for future work. 

The future work would provide further insight into the results obtained here and 

understanding of the connection between genetic variation and biological complexity. 

The goal of understanding the mechanism between a genotype and its phenotypes is a 

project that will extend for many years. My master’s work is the first few steps to 

answering those questions.  

 

4.2 Men Alleles and the Biochemical Variation 

Overall, the heterozygotes followed the same trend found in previous work using isothrid 

chromosomes. Surprisingly, in Chapter 3, with larger sample size, we found that the 

second site does impact the maximum velocity of MEN, although only the first site was 

located to impact the velocity in Chapter 2 and previous studies (Rzezniczak et al., 2012). 

We also found that the heterozygous combinations do not differ significantly from the 

average of the respective homozygous parental lines. This pattern tells us that the 

phenotype for Men has a linear relationship. This linear relationship was also true for the 

Km of MEN, which is the binding affinity of the enzyme. Similar to Vmax, the two 

polymorphisms were found to play a role in the Km phenotypes observed, which is 

consistent with previous work. Another more biologically relevant phenotype included in 

this study is the ratio between Vmax and Km, also known as the relative activity. 
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Interestingly, the rarer allele of the second polymorphism, leucine,, had a more 

significant influence on the ratio than methionine. This difference in phenotype could 

explain why the second polymorphism, M-L, is being maintained across the different 

population. Thermal stability did not show any significant differences between the Men 

alleles, which is most probably due to the fact of genetic background effects, where the 

different background can control the amount of protein produced (Dworkin et al., 2009).  

 

In Chapter 2 and 3, we quantified a set of flies for Men relative expression levels. For 

Chapter 2, one allelic combination was quantified, which was AALL. Chapter 3, five 

allelic combinations were quantified. In Chapter 2, we found that the gene expressions 

are not linear like the Vmax activities were found to be. There is the potential of 

transvection as the reason for nonlinear expression levels, in which the pairing of 

homologous chromosomes and sharing of regulatory elements leads to misregulation 

(Duncan 2002; Fujioka et al. 2016; Mellert and Truman 2012; Morris et al. 1998; Wu and 

Morris 1999). It is also known that transvection occurs at the Men locus (Bing et al. 

2014; Lum and Merritt 2011). 

Furthermore, Vmax is a factor of structural and regulatory effects (Rzezniczak et al. 

2012). We know that the alleles’ overall Vmax shows a linear fashion, but the expression 

does not, therefore the combinations of the two are likely leading to this additive result. 

In Chapter 3, the Men expression results found were not consistent with previous work 

(Rzezniczak et al. 2012). At the C-G polymorphism, the cytosine allele was associated 

with higher expression and at the A-T polymorphism, the thymine with higher 

expression.  Regardless of the differences, the one similar trend observed in the positive 

correlation between Men expression and MEN activity levels.  

Future work for the biochemical characterization of the Men alleles could isolate the 

protein and analyze the Vmax under known protein concentration, as opposed to using 

the crude homogenate. This type of experiment with purified protein could provide 

insight on the how the protein concentrations differ for each allele since the expression 

levels differ, and how much the Vmax changes under isolation.  
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4.3 Interactions with the NADPH Pathway & Genetic Background Effects 

For interactions within the NADPH Pathway, as expected, there were minimal 

interactions between the Men alleles and the other enzymes and downstream functions. In 

the analysis with a large sample set, with multiple lines, the interactions between other 

enzymes were expected to be small for a few reasons. The first is that the Men alleles do 

not differ substantially in their Vmax phenotype, as pointed out in previous studies 

(Rzezniczak et al. 2012). Lines used in this study are from wild-caught flies, with 

different MEN activities. The lines used in the previous study that did show more strong 

interactions were lab-engineered excision levels, generating 100% and 50% MEN activity 

(Merritt et al. 2005; Rzezniczak et al. 2012). Therefore, the differences between alleles 

were not as substantial as those in the previous study with the engineered lines. Secondly, 

with using multiple lines, any outliers would be averaged out. For the downstream 

phenotype, such as carbohydrate content, triglyceride content, and longevity, many genes 

contribute to driving those phenotypes. Once again, the differences in Men alleles are not 

significant to induce changes in these distal phenotypes.   

 

Consistent with previous studies of Men, we found that, regardless of the allele, genetic 

background is a crucial player in determining the phenotype.  Across all of the 

phenotypes studied, genetic background effect impacted the phenotype observed. 

Interestingly, Km is influenced by genetic background effects. The biochemistry of Km is 

expected to be only a function of the structure of the enzyme, specifically the amino acid 

sequence. However, our significant background effect results indicate is that there is 

another factor, or factors, that influence the Km, possibly suggesting bind of factors 

coded elsewhere in the genome to the MEN protein and modifying the binding kinetics of 

this enzyme.   

Future work can be completed on the interactions with the NADPH pathway, discussed 

below. With regards to genetic background and Km, isolating for the protein is crucial to 
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study the background effects quantified in Chapter 2 and 3. Since Km is supposedly a 

factor of the amino acid sequence, understanding how the structure changes with the 

polymorphisms are essential next step, further discussed below.  

 

4.4 Characterizing Metabolic Response to Environmental Stressors 

For metabolic responses within oxidative stress, we found similar results to previous 

studies using excision lines (Rzezniczak and Merritt 2012). Overall, when flies were fed 

paraquat food, the NADPH enzymatic activities were decreased compared to the control 

group. This decrease in activity is how the flies’ metabolism changed, likely because 

paraquat consumes NADPH in producing ROS. The same trends that occurred in the 

control group occurred in the paraquat flies, but with overall reduced activities value. 

Another way to induce oxidative stress within the flies is to control the oxygen levels that 

are present (Finkel and Holbrook 2000). This control on oxygen levels could potentially 

be another way of studying oxidative stress, rather than using NADPH requiring 

paraquat. The issue of using paraquat here is that MEN is an NADPH network enzyme 

and paraquat uses NADPH as a cofactor. The overlap between the two, paraquat and the 

NADPH network, can inhibit difference between the Men alleles. There are other ways to 

generate oxidative stress that would provide insight into a response between the Men 

alleles.  In addition to oxidative stress, other stressors can be used to see the 

acclimatization of the enzyme to the inducing environment. Temperature stress, 

starvation, and desiccator stress are known to alter MEN activity within D. melanogaster 

(Bing et al. 2014; Rzezniczak and Merritt 2012). A more in-depth understanding of the 

polymorphisms and the maintenance of the alleles can be further studied using different 

stressors.  

 

4.5 MEN Structure   

One crucial factor discussed briefly is the structure of MEN and how the polymorphisms 

could potentially alter it. When the amino acid sequence changes, the interactions with 

the background and the R groups alter too. We assume that the changes in MEN 
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biochemistry are a function of changes in structure (Rzezniczak et al. 2012). However, 

the structure of the protein exclusively has yet to be studied. Future work can look into 

using software to understand how the structure can potentially change with the different 

alleles studied here. De novo protein structure prediction exists and can take the amino 

acid sequence and predict what the tertiary protein structure will be (Baker 2012). A 

complication is that MEN is a homo-tetrameric quaternary structure, with 25 different 

quaternary combinations from the different alleles. Being able to predict the changes in 

the structure of the protein will provide insight into the different phenotypes quantified in 

this study.  

Once a protein is translated, there are post-translational modifications that can occur as 

well, such as phosphorylation, acetylation and so on (Wang et al. 2009). Theses addition 

groups added on the protein can alter the structure and function of the protein. Therefore, 

future work should be completed to study the post-translational modification as well as 

the structure.  

 

4.6 The NADP+: NADPH Ratio  

The NADPH network and the enzymes found in the network, work with one another to 

keep the NADP+ and NADPH ratio constant within cells since they are frequently 

required. NADPH acts as a cofactor for numerous enzymes and is in high demand within 

the cell. One assumption made throughout studying the NADPH network is that the 

NADP+ / NADPH ratio must remain constant, which is why the enzymatic activities are 

adjusting (Merritt et al. 2005; Rzezniczak et al. 2012; Ying 2008). However, it would be 

informative to study this phenotype directly. Future work regarding the NADP+: NADPH 

ratio should be considered. If the ratio is not being kept constant, that can explain why the 

phenotypes of the same alleles differ from one, on top of genetic background effects. 

Two methods can be completed: find the concentration with HPLC or through coupled 

enzymatic reaction assays, where UV-Vis spectrophotometry or Fluorescent 

spectrophotometry can be used to measure the concentration of the cofactors (Bernard et 

al. 2011; Zhu and Rand 2012). 
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4.7 6-phosphogluconate dehydrogenase  

The final enzyme of the NADPH network is 6-phosphogluconate dehydrogenase, which 

follows glucose-6-phosphate dehydrogenase in the pentose phosphate pathway. Previous 

studies showed that 6-phosphogluconate dehydrogenase activities did not differ from 

glucose-6-phosphate since it follows immediately after. This result is the reason why 

most studies examine G6PD, but not 6PGD. Nonetheless, there can be different alleles 

for this enzyme, leading to variable phenotype, as we seen with genetic background 

effects. Therefore, there is a possibility that the enzymatic activities are not similar to 

glucose-6-phosphate (Wilton et al. 1982). Future work studying this network could 

include 6-phosphogluconate dehydrogenase to grasp the bigger picture. It is possible that 

the variation expected in the enzymes of the network can be found within in this enzyme. 

A simple protocol can be designed within the Merritt Lab for this enzyme and can be 

applied to the same methodology that is currently being used (Labate and Eanes 1992).  

 

4.8 Environmental Conditions and Stressors 

In this study, there was only one environmental stressor administered, which was 

paraquat incorporated into the fly food. Paraquat was a good stressor to include since 

previous work completed in the lab used paraquat to generated oxidative stress 

(Rzezniczak et al. 2011; Rzezniczak and Merritt 2012). However, since we are studying 

the NADPH network, and paraquat uses NADPH to generate the ROS, some of the 

differences between the alleles could have been masked. We wanted to study the 

heterozygote advantage, and the next step to understanding the system was to include 

another environmental condition. By using paraquat, which uses NADPH, we can restrict 

the acclimatization the organism needs to make since they are focusing on the cofactor 

rather than the ROS generated. Other possible stressors to test are temperature sensitivity, 

starvation, desiccator food, and oxidative stress through changes in atmospheric pressure 

(Bing et al. 2014; Finkel and Holbrook 2000; Rzezniczak and Merritt 2012). By studying 

each condition, it will provide more insight into how the maintenance of the Men alleles, 

since they will have to acclimatize to circumstances outside of their network.   
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4.9 mRNA degradation  

The central dogma of molecular genetics is a simplistic overview of how we go from 

genotype to phenotype. However, the process is more complex. Once DNA is transcribed 

into RNA, numerous processes occur before it is translated into protein, and as mentioned 

before, there are post-translation processes that also occur.  With regards to mRNA, by 

switching the nucleotide base, it can affect the half-life and stability of the mRNA 

(Beelman and Parker 1995; Valencia-Sanchez et al. 2006). Therefore, the transcript levels 

can vary between alleles, leading to different enzyme activities. The general expression 

levels obtained from the qPCR experiment is reverse transcriptase, where RNA is 

converted in cDNA. Therefore, the altered expression levels could be dependent on the 

mRNA half-life, where one allele could have a smaller half-life leading to less protein 

present in that sample. Since one of the focus is attempting to understand what is 

maintaining these alleles in across the different population, and another is understanding 

how we go from genotype to phenotype, including the effects of RNA would be crucial in 

answering these questions.  

 

4.10 Conclusion 

My research is a step towards understanding the pathway from genetic variation and 

biological complexity. It is expected that the mechanism between genotype and 

phenotype is quite complex, however, here, we used SNPs in the Men locus in 

Drosophila melanogaster to take the first few steps to answer that question.  We 

quantified important biochemical characteristics within MEN and interactions that occur 

within the NADPH network. Future work on understanding the connection between 

genotype and phenotype, described in this chapter, could be potentially completed on a 

larger scale, allowing for differences between alleles to be teased out. It is important to 

isolate for the protein from the homogenate so that we can separate protein structure and 

regulatory effects from one another.  As of now, we see a linear effect of activity and 

non-linear effect for regulation. There is a disconnect between the two that remains 

unsolved. Furthermore, isolating the NADPH enzymes, it will allow us to quantify 

interactions between the pathway better. If isolation of protein is required, the number of 
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genetic background effects will be reduced since a larger fly sample is needed. Future 

work should also look at different environmental stressors exposures since paraquat uses 

NADPH to generate ROS. The response between the alleles to another environmental 

stressor will lead to different quantifications since it will not impede in the direct 

pathway, as paraquat did. Furthermore, I also suggest understanding the exact location of 

the polymorphism in MEN’s structure, which can explain some of the results we obtained 

in this study. These main approaches, based on my results presented in Chapter 2 and 

Chapter 3, will provide more insight into the quantification here and how genotypes 

overall lead to phenotype in an organism.  
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