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Abstract 

The origin of the Platreef in the Northern Limb of the Bushveld Igneous Complex (BIC) and 

its correlation as the stratigraphic equivalent of the Merensky Reef in the Eastern and Western 

limbs has been long debated. Strontium isotope stratigraphy across the Platreef was completed on 

drillcore from the Turfspruit farm to test a possible correlation with the Merensky Reef. The 

results show a significant 87Sr/86Sri shift from ~0.7060 to 0.7090 through the mineralized section 

of the Upper Platreef, which decreases to 0.7074 and then increases again and stabilize at ~0.708 

in the Main Zone. This matches the isotopic shift previously documented through the Merensky 

and Bastard Cyclic units in the Eastern and Western limbs of the BIC. This coincident shift in 

87Sr/86Sri is substantive evidence to confirm that the mineralized intervals in the Upper Platreef 

are the stratigraphic equivalent to the Merensky and Bastard Cyclic units. This thesis also 

documents the presence of micro-cycles within magmatic units (up to 350 cycles identified 

through 215 meters). Working hypotheses linking the micro-cycles to thickness of mineralization 

are suggested. Testing those hypotheses are outside of the main scope of this study and are 

suggested for future work. 

 

Keywords 

Bushveld Igneous Complex, Northern Limb, Platreef, Strontium Isotope Stratigraphy, 

Magmatic Cycles. 
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1. Introduction to thesis 

1.1 General background and outline of the research problem 

This thesis documents the magmatic stratigraphy, geochemistry and Sr isotopic signatures 

through the upper part of the Platreef in the Northern Limb of the Bushveld Igneous Complex as 

sampled at Turfspruit (near Mokopane, Limpopo Province, Republic of South Africa). The 

Bushveld Igneous Complex (BIC) is the largest layered mafic intrusion in the world (60,000 km2) 

and hosts the world’s largest reserves of platinum-group elements (PGE; Maier 2005; Scoates 

and Friedman 2008; Maier et al. 2013 and references therein; Oberthür et al. 2016). Three 

stratigraphic units contain most of the PGE mineralization: the Merensky Reef and the UG2 

chromitite, both located in the Eastern and Western limbs of the BIC, and the Platreef, which is 

located in the Northern Limb of the BIC (Mungall and Naldrett 2008; Cawthorn 2010; Peck and 

Huminicki 2016). Although the Merensky Reef and Platreef are situated roughly at the same 

stratigraphic position (near the base of the Main Zone), they have been thought to be different 

units due, in part, to mineralization within the Platreef being much thicker than the Merensky 

Reef (up to ~90 m vs. ~1.5 m) and style of mineralization (contact-style vs. reef; Schouwstra et 

al. 2000; Manyeruke et al. 2005 and references therein; Maier et al. 2008; Grobler et al. 2018). 

The purpose of this study is to test the hypothesis that the upper part of the Platreef might be the 

stratigraphic equivalent of the Merensky Reef.  

1.2 Research question and significance 

Is there a strontium isotopic shift across the Platreef that matches the isotopic shift 

documented for the Merensky Reef in the Eastern and Western limbs of the BIC? 



 

 

2 

Although the Platreef is roughly at the same stratigraphic position as the Merensky Reef 

(Maier et al. 2008 and references therein), it has been interpreted mostly as a contact-type 

mineralization and not reef-type mineralization. This interpretation is mostly historical and due to 

the fact that initially, the documented Platreef consisted of magmatic units heavily intermingled 

with footwall (sedimentary rocks and granitic basement), suggesting a strong influence of 

sediments in the mineralization processes. However, magmatic stratigraphy, with negligible 

footwall assimilation, down-dip at Turfspruit indicates that the mineralization might be reef-type 

and might therefore correlate with the Merensky Reef (Grobler et al. 2018). The goal of this 

project is to use Sr isotopes to establish whether or not the upper part of the Platreef correlates 

with the Merensky and Bastard cyclic units.  

1.3 Structure of thesis 

This dissertation is presented in a traditional thesis layout. A publication will be submitted to 

Mineralium Deposita based on a condensed version of this thesis, focusing on the in-situ 

strontium isotope analyses of plagioclase. 

1.4 Statement of responsibilities 

The project was initially conceived by P. Jugo, who highlighted the lack of strontium isotope 

stratigraphy within the Northern Limb, especially in mineralized magmatic units unaffected by 

assimilation. 

Field work and sample collection was completed by the candidate in the spring and summer 

of 2016. D. Grobler and the Ivanplats geologists (T. Dunnet, A. Brits, A. Crossingham) assisted 

in selecting the ideal drill core for the project and getting familiarized with the magmatic 
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stratigraphy of the Bushveld Igneous Complex, with special interest to the Northern Limb. P. 

Jugo and M. Leybourne supervised the sampling and assisted with selecting the ideal core 

samples for the project. Some of the samples used were collected by E. Keir-Sage and N. 

Makohliso. 

All samples were cut on site to quarter core or half core at Ivanplats, Mokopane, South 

Africa. Thirty-six samples were cut for thin sections with the help of M. Langa and were then 

prepared by W. Desjardins at Laurentian University. Portions of all samples were later crushed 

and pulverized by the candidate at Laurentian University and sent for analysis at ALS 

Geochemistry, Vancouver, Canada. Sample selection and preparation for whole-rock Sr isotope 

analyses were completed by the candidate with the exception of three samples selected and 

prepared by E. Keir-Sage. Whole-rock strontium isotope analyses were completed by D. Chipley 

and A. Voinot at Queen’s Facility for Isotope Research (QFIR). P. Jugo initiated the push for 

better data using LA-MC-ICP-MS because of large uncertainties in the Sr isotopic values in some 

samples. Thirty-seven samples were cut for 100 m thick thin section for LA-MC-ICP-MS and 

prepared by W. Desjardins at Laurentian University. S. Mkhonto provided four additional thin 

sections, which were initially prepared by N. Makohliso. Analytical protocols for the in-situ 

analyses at QFIR were tested and implemented by the candidate, A. Voinot and M. Leybourne. 

Sample selection and preparation for in-situ strontium isotope analyses in plagioclase, as well as 

data reduction/corrections were completed by the candidate. Samples for EPMA were selected by 

the candidate and analyzed with the help of D. Crabtree at the Ontario Geoscience laboratories. 

Element distribution maps by LA-ICP-MS were acquired with the help of M. Leybourne and J. 

Petrus at Laurentian University. 

1.5 Statement of original contributions 
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The original contributions made by this study are: 

• Documentation of the first strontium isotope stratigraphy through the mineralized unit in 

the Northern Limb of the BIC (the upper part of the Platreef) in a drill core seemingly 

unaffected by assimilation. To our knowledge no previous studies have successfully 

avoided footwall assimilation in the Platreef. 

• Documentation of a clear shift in Sr isotopic ratios within the upper part of the Platreef in 

the Northern Limb of the BIC that match those documented in the main limbs (E and W) 

of the BIC; thus, providing a way to correlate the mineralization in the upper part of the 

Platreef with the Merensky and Bastard cyclic units. 

• Documentation of small-scale cycles (‘micro-cycles’) in the magmatic stratigraphy of the 

Northern Limb. To our knowledge such cyclicity had not been documented previously. 

• Provides a large geochemical data set for magmatic units unaffected by assimilation 

through the Platreef. 

• Proposes a working hypothesis that links micro-cyclicity to the thickness of 

mineralization, which could help explain why the mineralization in the Northern Limb is 

much thicker in comparison to the Merensky Reef in the Eastern and Western limbs.  
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2. Background 

2.1 Bushveld Igneous Complex 

The Bushveld Magmatic Province (BMP) is located in northern South Africa and 

encompasses an extrusive sequence (Rooiberg Group) and an intrusive sequence (Bushveld 

Igneous Complex - BIC; e.g. Kinnaird et al. 2004). The BIC intruded into the Rooiberg Group, 

Transvaal Supergroup and Archean basement, and is composed of three main suites: (1) the 

Rustenburg Layered Suite (RLS; Fig. 1), a sequence of mafic to ultramafic layered cumulate 

rocks; (2) the Lebowa Granite Suite, a series of granites overlying the RLS; and (3) the Rashoop 

Granophyre Suite, interpreted as the late felsic phase of the BIC (Kinnaird et al. 2004; Kruger 

2005). There are five limbs to the BIC: the Eastern, Western, Far-Western, Southern (or Bethal) 

and Northern Limbs (Fig. 1; Maier et al. 2013). This research focuses on the Northern Limb and 

comparisons to the Eastern and Western limbs of the BIC. The Eastern and Western limbs of the 

BIC are the largest in area and have been the most researched, explored and mined of all limbs 

over the past century.  

2.1.1 Magmatic stratigraphy of the RLS 

The reference geology of the Rustenburg Layered Suite is based on studies of the magmatic 

units within the Eastern and Western Limbs of the Bushveld Igneous Complex. The magmatic 

stratigraphy of the RLS is well defined and has five main zones: Marginal Zone, Lower Zone, 

Critical Zone, Main Zone, and Upper Zone (Fig. 2 - Eastern and Western limbs; Maier et al. 2013 

and references therein).  

The Marginal Zone typically occurs between the footwall and the Lower or Critical Zones or 

as sills within the footwall and is considered to be the quenched phase of the intrusion or a late 
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crystallization of residual liquid derived from within the magma chamber (Kruger 2005; 

Cawthorn et al. 2006; Barnes et al. 2010; Maier et al. 2013 and references therein). The Marginal 

Zone is considered to represent a rapid crystallization of the initial magma, which was highly 

contaminated by assimilation of the footwall (Cawthorn et al. 2006). This norite-dominant 

sequence, with minor pyroxenites, can be up to 800 meters thick and host xenoliths of dolostone, 

quartzite and anorthosite (Cawthorn et al. 2006).  

The Lower Zone (LZ) is mainly composed of harzburgite, dunite and orthopyroxenite with 

minor norite layers. It is up to 1300 m thick but varies throughout the Rustenburg Layered Suite 

due to variations in floor topography (Wilson 2012). In the Western Limb, the lowermost part of 

the LZ contains an equal proportion of pyroxenite and harzburgite. By contrast, the uppermost 

section of the LZ contains a higher proportion of harzburgite than pyroxenite. In some locations, 

cycles can be observed in the LZ such as the Far-Western Limb, which shows up to nine cyclic 

units containing dunite-harzburgite-pyroxenite, respectively, in that order. Throughout the Lower 

Zone, less than 1% chromite is present through the magmatic stratigraphy (Cawthorn et al. 2006; 

Maier et al. 2013).  

The Critical Zone (CZ) is of interest for mining because it hosts multiple chromitite layers, 

some of them containing PGE, and mineralized horizons or ‘reefs’. The chromite layers are 

grouped into three distinct clusters: up to seven Lower Group (LG) chromitites, up to four Middle 

Group (MG) chromitites and up to three Upper Group (UG) chromitites (Maier et al. 2013 and 

references therein). Of significant interest is the UG2 chromitite, which hosts significant PGE 

mineralization (e.g. ~2000 ppb Pt, ~1200 ppb Pd ~360 ppb Ru and ~100 ppb Ir over 66 cm; 

Maier and Barnes 2008). The CZ can be separated into two: (1) the Lower Critical Zone (LCZ) 

and the Upper Critical Zone (UCZ). The LCZ is dominantly pyroxenite with some olivine-rich 

intervals and hosts all of the LG and half of the MG chromitites (Kruger 2005). The appearance 
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of an anorthosite layer located between the MG2 and MG3 chromitites is used to separate the 

LCZ from the UCZ. The UCZ is dominantly norite and pyroxenite but also has major chromite 

seams, including the PGE-rich UG2 chromitite. The UCZ hosts the MG3, MG4 and all of the UG 

chromitites including the UG1 and UG2. Chromite is a trace mineral in most units of the UCZ 

(excluding most anorthosites and norites) that occur in between the major MG and UG chromite 

seams, but also appears as small chromite seams (centimeters to millimeters in thickness; Veksler 

et al. 2014). In the uppermost UCZ, PGE mineralization is found within the Merensky Reef but 

also the Pseudoreef, Bastard Reef and Boulder Bed, all occurring above the UG chromitites. The 

Pseudoreef is a mineralized reef that occurs stratigraphically above the UG chromite seams but 

below the Merensky Cyclic Unit (MCU) within small cyclic units in the northwestern BIC (e.g. 

Maier et al. 2013). Above the MCU is the Bastard Reef, which in the Western and Eastern Limb 

is typically 1-5 cm thick but can be up to 30 cm thick and defines the bottom of the Bastard 

Cyclic Unit (BCU; Maier et al. 2013 and references therein). In most locations in the BIC, the 

Bastard Reef contains little PGE mineralization but is commonly mistaken for the Merensky Reef 

(due to the presence of a chromitite seam and sulfides; Maier and Barnes 2008), hence the name. 

The BCU is the uppermost unit of the Critical Zone just below the Main Zone of the RLS. 

The 2-3 km thick Main Zone (MZ) occurs above the Critical Zone and is dominated by 

gabbronorite and norite with minor occurrences of pyroxenite. Placement of the contact between 

the MZ and CZ was suggested to be the top of the uppermost unit of the Bastard Cyclic Unit, 

which is a mottled anorthosite (Maier et al. 2013). The MZ is dominated by gabbronorite-norite 

cycles in the lower part of the MZ. These cycles are separated by small pyroxenite units. The first 

appearance of magnetite has been used to identify the boundary between the MZ and the UZ (e.g. 

Maier et al. 2013).  
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The Upper Zone (UZ) is the uppermost unit of the RLS and typically is between 1-2 km 

thick. The UZ is dominated by layers of gabbronorite, anorthosite, diorite and magnetite. There 

are 26 magnetite layers in the Upper Zone of the Eastern and Western Limbs. The magnetite 

layers are typically between a few centimeters to a few meters thick but can be thicker than 10 m 

and commonly contain anorthosite xenoliths (Cawthorn et al. 2006). Cumulate olivine and apatite 

appear in the uppermost section of the Upper Zone (Cawthorn et al. 2006). 

2.2 Northern Limb geology 

The stratigraphy of the Northern Limb is roughly similar to that of the Eastern and Western 

limbs. Within the RLS, the Main Zone and Upper Zone are present, the Lower Zone is locally 

present as satellite bodies in parts of the Northern Limb, and the Platreef occurs at the 

stratigraphic level of the Critical Zone.  

The Platreef in the Northern Limb of the Bushveld Igneous Complex is host to the thickest 

Pt-Pd deposits in the world (Kinnaird et al. 2005; Holwell et al. 2006), with a maximum 

thickness of ~90 m averaging 4.5 g/t PGE  (TMT006 at Turfspruit; Grobler et al. 2018). The 

Platreef is north of the Planknek Fault (Fig. 3) and was defined by Kinnaird and McDonald 

(2005; p. 196) as: “Mafic units enriched in Ni-Cu-PGE that occur between the Archean granite-

gneiss basement or the Transvaal Supergroup and gabbros-gabbronorites of the Main Zone”. 

Although this definition seemingly depicts the Platreef as mineralized from the Main Zone to the 

footwall, it is not the case; PGE mineralization occurs within distinct sections of the Platreef and 

is not continuous throughout the whole stratigraphy. In most areas, the Platreef occurs in 

proximity to the footwall and forms an interaction zone or assimilation zone between the 

magmatic units and the Transvaal Supergroup in the southern part of the Northern Limb, or the 

Archean granitic gneiss in the northern part (Fig. 3). Although the Platreef has been suggested to 
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be the stratigraphic equivalent to the Merensky Reef in the Eastern and Western Limbs of the 

BIC, it is significantly thicker than the Merensky Reef (50-400 m thick vs. ~1 m on average; 

Schouwstra, et al. 2000; Manyeruke et al. 2005 and references therein; Kinnaird 2005; Grobler et 

al. 2018).  

The magmatic stratigraphy of the Critical Zone in the Northern Limb was variably affected 

by assimilation of different footwall lithologies (Harris and Chaumba 2001; Holwell et al. 2007; 

Maier et al. 2008; Smith et al. 2016). This footwall assimilation resulted in the development of 

many different interpretations of the magmatic stratigraphy (Fig. 2). The most common 

stratigraphic interpretations are: (1) the widely-used Platreef stratigraphy (described above); (2) 

the A, B, C reef nomenclature (Barton et al. 1986; Kruger 2010); (3) the Grasvally norite-

pyroxenite-anorthosite (GNPA) member, used south of the Planknek Fault (Fig. 3; McDonald et 

al. 2005); (4) the T1 and T2 reefs at the Waterberg Project (Kinnaird et al. 2017); (5) units 1, 2 

and 3 used at the Aurora Project (McDonald et al. 2017); and (6) the stratigraphy used at 

Turfspruit by Ivanplats (Grobler et al. 2018). Figure 1 shows the locations where some of the 

different stratigraphic schemes are used within the Northern Limb. 

The A, B, C reef stratigraphy was mainly used to describe multiple mineralized reefs 

occurring within a series of pyroxenites in the Platreef (Barton et al. 1986; Fig. 2). 

Stratigraphically, the lowermost reef is the A-reef (heterogenous feldspathic pyroxenite), 

followed by the B-reef (medium- to coarse-grained pyroxenite with minor chromite), and the C-

reef (feldspathic pyroxenite) occurring just below the Main Zone (Barton et al. 1986; Manyeruke 

et al. 2005; Kruger 2010). The term “GNPA member” (Fig. 2) is used for stratigraphy South of 

the Planknek Fault (Fig. 3) and consists of 2 sections: (1) the lower sub-zone dominated by 

cumulate orthopyroxene and clinopyroxene with minor chromite and plagioclase; and (2) the 

upper sub-zone is dominated by units containing cumulate plagioclase (McDonald et al. 2005). 



 

 

10 

The stratigraphy at the Waterberg project (Fig. 2) consists of a mineralized zone (T1 and T2 

reefs) occurring between the Upper Zone and a troctolite-gabbronorite-anorthosite unit (TGA; 

Kinnaird et al. 2017). Below the TGA sequence is an ultramafic unit also containing 

mineralization, underlain by granofels or granite (Kinnaird et al. 2017). At the Aurora Project, 

Cu-Ni-PGE mineralization is hosted in the Upper Main Zone of the Northern Limb (e.g. Maier et 

al. 2008; McDonald et al. 2017). The Aurora stratigraphy (Fig. 2) is separated into three main 

units: Unit 3, the lowermost unit, composed of peridotite and mela-gabbronorite with meter-sized 

calc-silicate rafts; Unit 2, a sequence of gabbronorite to leuco-gabbronorite with minor units of 

olivine-gabbronorite and minor pegmatoidal units containing sulfides and magnetite (~10 cm to 5 

m-thick); and Unit 1, composed of pigeonite gabbronorite (McDonald et al. 2017). 

The magmatic stratigraphy established by Ivanplats is summarized in figure 4 and has been 

developed to take account of units seen throughout over 700 000 m of drill core. Grobler et al. 

(2018) observed that, at Turfspruit, the Platreef seems to represent the Upper Critical Zone and 

parts of the Lower Critical Zone, which include two higher grade reefs (the Bastard and 

Merensky reefs). Minor magmatic units throughout Turfspruit pinch and swell along strike but 

major units can be followed throughout the property (Grobler et al. 2018). The Main Zone 

gabbronorite (HW3) is the uppermost unit in every hole down-dip at Turfspruit. Below the Main 

Zone there are four main cyclic units that can be observed: (1) the Bastard Cyclic Unit (BCU); 

(2) the Merensky Cyclic Unit (MCU); (3) the Footwall Cyclic Unit (FCU); and (4) the UG2 

Cyclic Unit (UG2CU). Within the BCU there are a total of three possible sub-units, which are a 

mottled-spotted anorthosite (HW2), pyroxenite-norite cyclic units (HW1) and a mineralized 

feldspathic pyroxenite (BAR). A small chromite stringer occurs rarely at the top or the bottom of 

the mineralized feldspathic pyroxenite. The MCU can have up to five different units: (1) 

pyroxenite-norite cyclic units (MD2), (2) feldspathic orthopyroxenite (MD1), (3) mineralized 
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feldspathic pyroxenite (M2), (4) mineralized pegmatoidal feldspathic orthopyroxenite (M1U) 

and, (5) mineralized pegmatoidal feldspathic harzburgite (M1L). A chromite stringer occurs 

between M2 and M1U. The top of the M2 marks the start of the Merensky Reef equivalent. 

Below the MCU is the FCU, which can contain up to three units: (1) pyroxenite-norite cyclic 

units (FW3), (2) norite resulting from shale or hornfels assimilation (HW2) and (3) para-

harzburgite resulting from dolomite or calc-silicate assimilation (HW1). The UG2CU follows the 

FCU and is composed of feldspathic pyroxenite (UG2HW), the UG2 chromitite and pyroxenite 

or harzburgite (UG2FW). Below the UG2CU is Lower Zone followed by the footwall, which is 

mainly the Duitshland Formation at Turfspruit. Xenoliths of the footwall are mainly found in the 

eastern portion of the Turfspruit farm; further down-dip to the west only minor xenoliths are 

found and typically occur within 50 meters of the footwall contact. The Ivanplats stratigraphy 

was modelled based on primary magmatic units seen at Turfspruit but also considers the units 

found within the assimilation zone (Grobler et al. 2018). 

2.3 Mineralization in the Rustenburg Layered Suite 

Platinum-Group Element mineralization within the Rustenburg Layered Suite of the Eastern 

and Western limbs is hosted in four main units: (1) the Merensky Reef, (2) the UG2 chromitite, 

(3) the Pseudoreef and (4) the Platreef.  

2.3.1 The Merensky Reef 

The Merensky Reef is located at the base of the Merensky Cyclic Unit throughout the 

Eastern and Western limbs. In the Eastern and Western limbs, mining is focused on the Merensky 

Reef because of thick mineralization (up to ~1.5 m) and high PGE concentrations (5-7 g/t PGE; 

Osbahr et al. 2013) in comparison to other units within the RLS of the Eastern and Western 
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limbs. The Merensky Reef is typically a feldspathic pyroxenite bounded by a lower and upper 

chromite stringer (~1-2 cm thick) and occurs at the base of the MCU of the BIC (Osbahr et al. 

2013). The mineralization of the Merensky reef is typically a few decimeters up to two meters in 

thickness and the mineralized feldspathic pyroxenite can be pegmatoidal (typically between 4 cm 

and 2.5 m), composed of pegmatitic pyroxenes with intercumulate plagioclase and minor sulfide 

(~3%) that contain PGE mineralization (~5-7 g/t PGE; Naldrett et al. 2009; Osbahr et al. 2013). 

Although facies variations of the Merensky Reef occur throughout the BIC, and within individual 

mines (Smith et al. 2003), the Merensky Reef mineralization is always located at the base of the 

MCU and almost always associated with a pegmatoid and two chromite stringers. 

2.3.2 The UG2 chromitite 

The UG2 chromitite is located at the base of the UG2 Cyclic Unit throughout the Eastern and 

Western limbs of the BIC. It is on average a 70 cm-thick chromitite containing 75-90% chromite 

(Mondal and Mathez 2007) and hosts PGE mineralization (~6 ppm; Maier et al. 2013). 

Mineralization typically occurs within the base and the upper part of the UG2 chromitite, but is 

commonly also hosted within the upper part of the pegmatoidal feldspathic pyroxenite located 

below the chromitite (Maier and Barnes 2008). 

2.3.3 The Pseudoreef 

The Pseudoreefs occur below the Merensky Reef and above the UG2 chromitite mainly in 

the northwestern region of the BIC, north of Pilanesberg. Their mineralization is typically hosted 

within a small (~10 cm thick) sulfide-bearing pegmatoidal harzburgite unit (Naldrett et al. 1986), 

but can be within a sulfide-bearing pyroxenite or troctolite (Maier and Barnes 2008). Pseudoreefs 

are typically poorly developed or absent but can contain up to ~5-6 ppm of PGE (Maier and 

Barnes 1999; Naldrett et al. 2009). 
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2.3.4 Platreef 

The Platreef mineralization is located below the Main Zone in the Northern Limb of the BIC 

(Kinnaird and McDonald 2005). Ni-Cu-PGE mineralization is erratically distributed throughout 

the Platreef but the main high-grade mineralization is typically located near the upper contact 

(Kinnaird et al. 2005). The Platreef may contain similar PGE grades as the Merensky Reef, with 

some intersections that are above 10 g/t PGE (Kinnaird et al. 2005). However, most 

mineralization in the Platreef is typically ~1-2 g/t PGE over several tens of meters (Kinnaird et al. 

2005). One of the best mineralized intersections through the Platreef is drill hole TMT006, drilled 

by Ivanplats, with ~90 m averaging 4.5 g/t PGE (Grobler et al. 2018). 

2.4 Strontium isotopic stratigraphy of the transition from the Upper Critical Zone 

to the Main Zone 

Strontium isotope stratigraphy in the BIC uses the initial strontium isotope ratio (87Sr/86Sri) 

calculated from whole-rock or mineral separates (e.g., plagioclase or pyroxene) to distinguish 

isotopically different magmatic sequences through the stratigraphy. The 87Sr/86Sri is calculated 

using a known age of crystallization of the Bushveld (2054.89  0.37 Zeh et al. 2015) and a 

decay constant ( = 1.393 ± 0.004 x 10-11 y-1; Nebel et al. 2011) with measured 87Sr/86Sr and 

87Rb/86Sr. The strontium isotopic system is used in layered mafic intrusions mainly for 

interpretations of processes occurring at the time of formation and for stratigraphic correlation of 

magmatic units across the intrusion. 

2.4.1 Eastern and Western limbs 

Strontium isotope stratigraphy has previously been used in the Eastern and Western limbs 

and documents isotopic shifts through the magmatic stratigraphy, which have been related to new 
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pulses of magma into the magma chamber (Hamilton 1977; Yang et al. 2013 and references 

therein). Table 1 is a summary of the available studies documenting strontium isotope 

stratigraphy throughout the BIC. The first study on strontium isotopes in the BIC was conducted 

by Hamilton (1977), who identified different 87Sr/86Sri signatures throughout the different zones 

of the BIC. The strontium isotopic shift associated with the Merensky Reef was initially 

identified in the Western Limb of the RLS by Kruger and Marsh (1982). The shift in initial Sr 

isotope ratio, from 0.7064 to 0.7075, starts at the base of the Merensky Reef and occurs through 

the Merensky and Bastard cyclic units, which are a combined total of 20 meters in thickness. 

Two scenarios were suggested to explain the increase in initial strontium isotopic ratios 

(87Sr/86Sri): (1) contamination of the magma by country rocks at the level of emplacement 

(because the footwall rocks would have higher 87Sr/86Sri); or (2) crystallization triggered by a 

new contaminated influx of magma (higher 87Sr/86Sri due to assimilation of crustal material in a 

preceding staging chamber), which interacts with the resident magma in the magma chamber 

causing an increase in the initial Sr isotope ratio (Kruger and Marsh 1982). Two main shifts were 

identified by Sharpe (1985) in the strontium isotope stratigraphy from the Upper Critical Zone to 

the Upper Zone of the Eastern Limb. The largest is the shift occurring through the Merensky and 

Bastard Cyclic units (0.7065 to 0.7085), analogous to the shift identified by Kruger and Marsh 

(1982), and the second occurs at the Main Zone-Upper Zone boundary, also known as the 

Pyroxenite Marker (87Sr/86Sri = 0.7085 to 0.7073; Sharpe 1985). A study at the Atok section in 

the Eastern Limb showed similar results across the Merensky Reef in the strontium isotopic 

profile to the Western Limb (Lee and Butcher 1990). Although there are variations in 

pegmatoids, Pt-Pd mineralization, chromite stringers and magmatic units between the Eastern 

and Western limbs, the strontium isotopic profiles suggest that the Bushveld magma chamber 

was homogenized at the time of formation of the MCU and BCU. Lee and Butcher (1990) also 
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documented a shift between the Merensky and Bastard Cyclic units and hypothesized that the 

Merensky Reef and the Bastard Reef could have formed from a sill-like intrusion based on four 

main points: (1) the Merensky and Bastard Reef bifurcate along strike; (2) contacts between the 

reefs and the underlying units are sharp; (3) the thickness of the Merensky and Bastard 

pyroxenite fluctuates along strike, indicating that they might have assimilated the lower unit; and 

(4) the 87Sr/86Sri shift seen through the Merensky and Bastard Cyclic units might be associated 

with the interaction of the intrusion with an underlying low 87Sr/86Sri source (~0.706 - Critical 

Zone) and an overlying higher 87Sr/86Sri source (~0.708 - Main Zone; Lee and Butcher 1990). 

The most commonly cited strontium isotope stratigraphic profile of the BIC was compiled by 

Kruger (1994; Fig. 5A). Kruger (1994) compiled the strontium isotope stratigraphy from the 

Lower Zone into the Upper Zone of the Western Limb of the BIC, representing the first complete 

strontium isotope stratigraphy of the Rustenburg Layered Suite. According to Kruger (1994), the 

Sr isotope profile of the RLS has two main stages: the Integration Stage and the Differentiation 

Stage. The Integration Stage occurs through the Lower Zone, Critical Zone and Lower Main 

Zone and documents an open system with multiple pulses of magma feeding a magma chamber. 

Interaction with the resident magma caused many isotopic shifts throughout the lower 

stratigraphy of the RLS. The Differentiation Stage encompasses the Upper Main Zone and Upper 

Zone and documents a closed system fractional crystallization sequence. This stage does not have 

many Sr isotopic shifts and reflects a lack of new magmatic activity. The only shift recorded 

through the Differentiation Stage is the shift that occurs at the Pyroxenite Marker (Sharpe 1985; 

Kruger 1994). 

In the early 2000s, the focus of studies shifted towards the bimodal population of chemically 

and isotopically distinct minerals within the Merensky and Bastard Cyclic units (Seabrook et al. 

2005; Chutas et al. 2012; Yang et al. 2013). Orthopyroxene and plagioclase were determined to 
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have different trace element compositions in the Critical Zone magma compared to the Main 

Zone. Through the MCU and BCU, a mixture of chromium-rich orthopyroxene (> 2500 ppm) 

from the Critical Zone and chromium-poor orthopyroxene (< 1000 ppm) from the Main Zone can 

be found (Seabrook et al. 2005). Likewise, plagioclase showed a similar chemical trend with 

strontium-rich plagioclase (> 450 ppm) in samples from the Critical Zone and strontium-poor 

plagioclase (< 390 ppm) in samples from the Main Zone (Seabrook et al. 2005). Because the 

difference in Sr content between the MCU and BCU also coincides with the strontium isotope 

shift and a Cr/MgO shift seen in whole-rock analyses, Seabrook et al. (2005) considered the 

MCU and BCU as Transitional Units between the Upper Critical Zone and the Lower Main Zone. 

The Sr isotopic values show that there is isotopic disequilibrium between minerals within the 

Lower and Critical Zone but the Upper Zone is isotopically uniform (Chutas et al. 2012). 

Disequilibrium of strontium isotopes from core to rim within individual plagioclase grains has 

also been reported (from 0.706 at the rim to 0.708 at the core within the MCU; Yang et al. 2013). 

2.4.2 Northern Limb 

In the Northern Limb, Kruger (2005) recorded values for 87Sr/86Sri of the Platreef on the 

Turfspruit Farm. These values average ~0.7109, with a maximum 87Sr/86Sri of 0.71459 (Kruger 

2005). Other studies in the Platreef record values of 87Sr/86Sri ranging from 0.7054 to 0.7226 at 

Overysel and Sandsloot (Barton et al. 1986). Such values are much higher than typical isotopic 

values in the Eastern and Western limbs, and were therefore inconsistent with a correlation 

between the Northern Limb and the rest of the BIC. Mangwegape et al (2016) published the 

strontium isotope stratigraphy of the Upper and Main zones of the Northern Limb using in-situ 

strontium isotope analyses of plagioclase (Fig. 5B). Data collected by Mangwegape et al (2016) 

shows relatively constant Sr isotopic ratios (~0.7073 to 0.7078) in the Upper Zone and Upper 
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Main Zone with small fluctuations. Strontium isotope data documented in Mangwegape et al. 

2016 only covers stratigraphy above the Platreef, likely because of footwall assimilation, 

therefore cannot be used to test the existence of an isotopic shift across the mineralization or 

correlation with the rest of the BIC. Lastly, Huthmann et al. (2017) published data from the 

Waterberg Project in the far Northern Limb, which show relatively consistent 87Sr/86Sri values 

between 0.7065 to 0.7075 throughout the magmatic stratigraphy.  
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3. Methods 

3.1. Core logging and sampling 

Drill hole UMT094 is located further southwest, compared to most holes drilled by Ivanplats, 

which are located closer to the exposed contact between the Northern Limb of the RLS and the 

Transvaal sequence. UMT094 was selected because it is located down dip from the Flatreef (a 

section of mineralization that is relatively flat-lying; Grobler et al. 2018) and drill core shows 

magmatic stratigraphy with limited footwall interaction compared to core from holes located up 

dip, in the assimilation zone. Hole UMT094 is 1602 meters in depth and intersects 1185 meters 

of Main Zone gabbronorite before intersecting mineralized cyclic units (BCU, MCU, FCU and 

UG2CU).  

Samples were collected from drill core available as either full (if previously unsampled) or 

half core (if sampled previously by other workers). Samples were selected based on the lack of 

alteration/assimilation textures and distance from what was interpreted as the possible base of the 

Merensky Cyclic Unit (identified by significant increase in Pt, Pd, Rh, Ni, Cu, Cr content in 

whole-rock geochemistry and the presence of magmatic cycles). Because the main focus of the 

thesis is to document the possible existence of shifts in Sr87/Sr87
i across this unit, sample density 

was higher across this boundary. Other samples were taken around the possible Pseudoreef and 

the Bastard Reef to document possible changes in Sr86/Sr87
i through these stratigraphic units. 

Sections of core that were selected were then cut in half on site at Ivanplats. Intervals for thin 

section were specifically chosen to be representative of major units, to be on contacts, chromite 

stringers or other areas of interest. Samples were then cut to small thin section slabs and used for 

thin section preparation at Laurentian University. 



 

 

19 

3.2 Petrography 

Petrography was completed at Laurentian University using a polarizing microscope. Thirty-

six representative samples were chosen for petrography and prepared as standard-thickness 

polished sections (30 m thick). The focus of petrography was to identify and document 

mineralogy, alteration, veining, grain size and shape, with special attention to plagioclase within 

the samples for later in-situ plagioclase analyses. An additional set of 36 polished sections (100 

m thick) was prepared for in-situ strontium isotope analyses (to ensure laser ablation did not hit 

the glass support of the polished sections during analyses).  

3.3 Sample preparation for whole-rock geochemistry 

Some of the sample preparation was completed at Laurentian University. Samples were 

firstly crushed with a hammer. To avoid contamination, samples were placed in thick sample 

bags before hammering. In addition, the steel plate and hammer used to crush the samples were 

wiped with ethanol between samples. Samples were hammered until all pieces were small enough 

to be inserted into the low Cr-Mo steel ring mill, in which they were pulverized. To avoid 

contamination between samples, clean quartz was pulverized between samples, commonly more 

than once, and then the container, lid, ring and puck were wiped with ethanol. The pulverized 

sample was put into plastic vials. Pulverized samples were split and half was sent to ALS 

Geochemistry, Vancouver, BC, Canada for geochemical analyses with reference materials 

(MRG-1 and SY-3) labelled as unknown samples for quality control. Analyses performed at ALS 

Geochemistry included the following: 1) major elements were analyzed by inductively coupled 

plasma atomic emission spectroscopy (ICP-AES) following lithium metaborate fusion; 2) trace 

elements (Ba, Cr, Cs, Ga, Hf, Nb, Rb, Sr, Ta, Th, U, V, Y, Zr and the REE) by ICP mass 
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spectrometry (ICP-MS) following lithium metaborate fusion (Method ME-MS81) to include 

elements within phases resistant to acid digestion (zircon, chromite, monazite); 3) trace and some 

major elements (Ag, Al, As, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, 

Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb, Sc, Se, Sn, Sr, Ta, Te, Ti, Tl, U, V, W, Y, Zn, Zr) 

by an ultra-trace four-acid digestion (HF, HClO4, HCl, HNO3) method (ME-MS61L) followed by 

a mixture of ICP-AES and ICP-MS analysis, to allow lower detection limits on elements not 

incorporated in resistant phases; 4) lead oxide fire assay was used to preconcentrate and collect 

Au, Pt and Pd, with subsequent analysis by ICP-MS and ICP-AES (method PGM-MS23L or 

PGM-ICP27 where contents were over range by ICP-MS).  

3.4 Electron probe microanalyses 

Electron probe microanalyses (EPMA) were performed at the Geoscience Laboratories 

(GeoLabs) of the Ontario Geological Survey, Sudbury. Individual plagioclase grains were 

selected from 24 samples representative of the magmatic stratigraphy. Plagioclase were analyzed 

at the core and care was taken to avoid zones with evident alteration. Seven analyses per sample 

were collected and used to calculate an average anorthite content (and associated quartiles with 

maximum and minimum values) of plagioclase per sample. Analytical conditions used for the 

WDS acquisition were a rastered beam diameter of 8 m, a probe current of 20 nA and an 

acceleration voltage of 20 kV. Elements analyzed, presented as weight percent oxides, with 

detection limits were SiO2 (0.024), TiO2 (0.018), Al2O3 (0.019), MgO (0.009), CaO (0.018), 

MnO (0.027), FeOt (0.026), SrO (0.071), Na2O (0.012) and K2O (0.014). 

3.5 Element distribution maps (LA-ICP-MS) 
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Elemental distribution maps laser ablation (LA)-ICP-MS were completed at Laurentian 

University in the Chemical Fingerprinting Lab. Areas of interests for mapping were selected 

based on plagioclase type (cumulate or intercumulate) to assess whether there was any significant 

contrast in trace element chemistry. Further, samples and areas of interest within samples were 

selected based on the amount of alteration present to assess changes in element content and 

element mobility due to alteration. A Resonetics M50 193 nm excimer laser interfaced with an 

ICP-MS was used for the analyses. The parameters used were: a laser energy of 4 J/cm2, a pulse 

frequency of 8 Hz, a beam diameter of 36 m, a scan velocity of 18 m/s and a round spot size. 

Glass standards (GSC-1, GSE-1G, GSD-1G and NIST610) were used for calibration and quality 

control. The masses analyzed to calculate concentrations correspond to: 23Na, 24Mg, 27Al, 29Si, 

39K, 44Ca, 45Sc, 47Ti, 51V, 52Cr, 55Mn, 57Fe, 60Ni, 71Ga, 72Ge, 85Rb, 88Sr, 89Y, 90Zr, 133Cs, 137Ba, 

139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Yb, 175Lu, 

204Pb, 206Pb, 207Pb and 208Pb. 

3.6 Whole-rock strontium isotopes 

Samples for strontium isotope analyses were chosen based on stratigraphic position relative 

to the base of the Merensky Cyclic Unit. Samples were chosen to cover a few meters below the 

base of the MCU, across both the MCU and BCU, and ~100 m into the MZ. Sample weights for 

analyses were decided based on concentrations of Rb-Sr within the sample. Spike AVI (Sr) and 

spike AVIII (Rb) were added to the samples prior to digestion, which act as internal standards. 

Blanks and reference material (BHVO-1, JB-2 and BIR-1) were included in the process as quality 

control. The amount of the spike added was determined by the concentration of Sr and Rb within 

the sample based on whole-rock geochemistry. The sample was then digested with 5 mL of 
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hydrofluoric (29 M), nitric (15 M) and hydrochloric acid (10 M) at a 3:2:1 ratio, respectively. The 

samples were dried following 3-4 days of digestion on a hot plate. If fluorides formed during 

digestion, the samples were allowed to dry completely and 1 to 2 mL of boric acid and 

hydrochloric acid at a 1:1 ratio were added to the samples to dissolve the fluorides. Once all 

fluorides were dissolved the sample was dried once more. Some samples were not completely 

dissolved after this step (likely chromite grains in the residue); therefore, aqua regia was added to 

the samples. Once samples were completely dissolved and dried, 1 mL of 3 M nitric acid was 

added to the samples to prepare them for automated chromatography (using a prepFAST system). 

If not completely dissolved, 2-2.5 mL of 3 M nitric acid was added to attempt dissolving minor 

chromite grains. Some samples still had chromite grains following this process but chromite does 

not contain any Sr-Rb and therefore does not affect the Sr-Rb isotopic system. All samples were 

then placed in a centrifuge to separate minor undissolved particles. Samples were then put 

through the prepFAST 15 samples at a time, including blanks and certified reference materials 

(BHVO-1, JB-2 and BIR-1). Following this, sample aliquots of Sr and Rb were analysed with the 

Neptune multi-collector (MC)-ICP-MS. 

The isotope dilution correction calculation was modelled after Cheong et al. (2014). Based 

on the calculated strontium ratios, including the 87Sr/86Sr, from the equations in Cheong et al. 

(2014), the strontium and rubidium concentrations, the 87Rb/85Rb, the 87Rb/86Sr and finally the 

87Sr/86Sri could be calculated. An age of 2054.89  0.37 (Zeh et al. 2015) and a decay constant of 

1.393  10-11 y-1 (Nebel et al. 2011) was used for the initial strontium isotope calculation. 

Uncertainties were calculated using a Monte Carlo simulation. 

3.7 In-situ strontium isotopes in plagioclase by LA-MC-ICP-MS 
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The analytical protocol used for in-situ analyses in plagioclase was based on the procedures 

documented in Yang et al. (2013), Mangwegape et al. (2016) and Wilson et al. (2017). Thirty-

seven samples representative of the magmatic stratigraphy, above the assimilation zone, were 

selected from drill core UMT094 at Turfpruit (Fig. 3). Polished 100 m thick sections were 

prepared for each sample. Plagioclase grains (rim, core or whole plagioclase) were selected prior 

to analysis. In-situ Sr isotope analyses were performed by laser ablation multi-collector 

inductively coupled plasma mass spectrometry (LA-MC-ICP-MS) at the Queen’s Facility for 

Isotope Research (QFIR) using a 193 nm excimer laser (Elemental Scientific NWR193) 

interfaced with a Thermo-Finnigan Neptune MC-ICP-MS. A laser beam of circular section and 

150 m diameter was used with a repetition rate of 10 Hz, a beam energy density of ~2.3 J/cm2 

and a duration of 120 s per analysis preceded by a 60 s blank analysis. The masses analyzed were 

82Kr, 83Kr, 84Sr, 85Rb, 86Sr, 87Sr, 88Sr, 44CaPO, as well as double charged REE (163Dy++, 167Er++, 

171Yb++, 173Yb++ and 175Lu++) using dynamic mode (centre mass jumping from 86 to 86.5). The 

idle time was set to 3.0 s to allow for magnet and amplifiers to settle. The integration time was 

set to 2.0 s for Kr, Rb, Sr and CaPO, and 1.0 s for doubly charged REE. After analysis, all data 

that resulted in a negative value were nulled (mainly Kr and REE). Five to ten spot analyses were 

completed per sample with one reference material (BHVO-2G, BIR-1G or TB-1G) analyzed after 

every two spot analyses on plagioclase. Spot analyses were done on the rim or core of plagioclase 

grains; commonly both on the same grain if the grains were large enough. If the grains were too 

small to analyze the rim or core, the points were labeled as a “whole plagioclase”. After 

acquisition, data were corrected for Kr interference (84Kr on 84Sr and 86Kr on 86Sr, calculated 

from 82Kr and 83Kr) using the blank analysis for each individual sample (background counts), and 

then corrected for doubly charged REE interference on Rb and Sr (85Rb was corrected for 
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interference of 170Er++ and 170Yb++; 86Sr was corrected for interference of 172Yb++; 87Sr was 

corrected for interference of 174Yb++; and 88Sr was corrected for interference of 176Yb++ and 

176Lu++). The 87Rb/85Rb mass bias was calculated using the Sr mass bias (86Sr/88Sr measured 

relative to the 86Sr/88Sr natural value = 0.1196). The 87Sr/86Sr values were then corrected for 

interference of 87Rb on 87Sr. At that stage, the calculated 87Sr/86Sr values were not in agreement 

with the certified values of the reference materials. Therefore, a time-dependent function was 

used to correct for the certified values of 87Sr/86Sr values of the standards. This correction was 

completed using the 85Rb/88Sr measured (y) and 87Sr/86Sr measured subtracted by the certified 

value of 87Sr/86Sr for the reference materials (TB-1G and BHVO-2G) analyzed at the start and 

end of each analytical session (typically includes four samples). BIR-1G was not used for the 

correction because of lower Sr-Rb concentrations (larger analytical uncertainties) but is used to 

check the accuracy of the correction calculation. Using linear regressions, the slope (m) and 

intercept (b) were calculated for each individual analysis, then used to correct for drift over time 

and differences in the standard 87Sr/86Sr measured values to the true 87Sr/86Sr values. The certified 

value of 87Rb/86Sr in TB-1G was used to correct for 87Rb/86Sr in the samples. This was calculated 

using natural ratios and average published concentrations of Sr (1322  52 ppm) and Rb (140  

10 ppm) for TB-1G (Norman et al. 2004; Elburg et al. 2005; Lucassen et al. 2011; Kimura and 

Chang 2012; Norman et al. 2016). Based on the difference between the value measured and the 

true 87Rb/86Sr in TB-1G empirical correction factors were calculated for each analysis (~2.3 to 

2.0) and applied to the 87Rb/86Sr measured. In total, 131 analyses of BHVO-2G were completed 

with an average 87Sr/86Sr of 0.70347  0.00022 (1σ), 55 analyses of BIR-1G gave an average 

87Sr/86Sr of 0.7029  0.0017 (1σ) and 56 analyses of TB-1G gave an average 87Sr/86Sr of 0.70565 

 0.00011 (1σ). The standard deviation on BIR-1G is slightly higher because of lower 
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concentrations of both Sr and Rb within the reference material. Values obtained here i.e., BHVO-

2G = 0.70345 to 0.70353, BIR-1G = 0.7030 to 0.7032, and TB-1G = 0.70558 to 0.70576 are 

within error of published ranges for these standards, available from the Georem database 

(http://georem.mpch-mainz.gwdg.de). The standard deviation was calculated individually for 

each analytical session based on the reproducibility of the standards within that sequence. The 

87Sr/86Sri was calculated using the true values of 87Sr/86Sr and 87Rb/86Sr calculated and using an 

age of 2054.89  0.37 Ma (Zeh et al. 2015) and a decay constant of 1.39 x 10-11 (Nebel et al. 

2011). 

  

http://georem.mpch-mainz.gwdg.de/
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4. Results 

4.1 Core logging 

Drill hole UMT094 is part of a sequence of drill holes located further down-dip on the 

central-western portion of Turfspruit (Fig. 3). The rocks sampled by these holes are considerably 

less affected by contamination with country rocks compared to other drill cores in the area. The 

magmatic stratigraphy established by Ivanplats (Fig. 4; Grobler et al. 2018) was used to log 

UMT094. Although not all units of the Ivanplats stratigraphy (Fig. 4; Grobler et al. 2018) are 

observed in UMT094, the drill core contains some of the best-preserved magmatic stratigraphy in 

the area. Figure 6 summarizes the magmatic stratigraphy logged in UMT094. Main Zone 

gabbronorite (HW3) is the uppermost unit in UMT094 from 0 to 1186.66 meters. Below this, the 

four main cyclic units (BCU, MCU, FCU and UG2CU) are all present within UMT094. The 

BCU is composed of a mottled-spotted anorthosite (HW2 – 1186.66 to 1214.27 m) at the top, 

followed by pyroxenite-norite cyclic units (HW1 – 1214.27 to 1233.22 m) and a mineralized 

feldspathic pyroxenite (BAR – 1233.22 to 1239.13 m) at the base. A thin (~1 cm) chromite 

stringer is observed at the top of the mineralized feldspathic pyroxenite (1233.22 m). Following 

this, the MCU of UMT094 contains four of the six units in the MCU: feldspathic orthopyroxenite 

(MD1 – 1239.13 to 1252.34 m) occurs just below the BAR, followed by a mineralized 

feldspathic pyroxenite (M2 – 1252.34 to 1253.98 m), underlain by a mineralized pegmatoidal 

orthopyroxenite (M1U – 1253.98 to 1291.83 m) and lastly at the base, the mineralized 

pegmatoidal feldspathic harzburgites (M1L – 1291.83 to 1291.93 m). A chromite stringer occurs 

between M2 and M1U at 1253.98 meters. The FCU is located below the MCU and contains only 

two units: pyroxenite-norite cyclic units (FW3 – 1291.93 to 1335.95 m) and a weakly 
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mineralized interval (1335.95 to 1338.15 m), interpreted as a possible pseudoreef (PSDR). 

Although there is no pseudoreef unit within the Ivanplats stratigraphy (Fig. 4) because of 

inconsistent pseudoreef-type mineralization at Turfspruit, the pseudoreef unit was added in the 

stratigraphy of UMT094 due to similarities to other pseudoreefs in the BIC (PGE-mineralized 

olivine gabbronorite/troctolite located between the Merensky Reef and UG2-equivalent 

chromitite). The UG2CU underlies the FCU and is composed of feldspathic pyroxenite (UG2HW 

– 1338.15 to 1364.77 m), the UG2 chromitite (1364.77 to 1365.42 m) and a pyroxenite or 

harzburgite (UG2FW – 1365.42 to 1404.03). Although most of the UG2CU in UMT094 is in part 

of the assimilation zone, the UG2 chromitite is still visible and the upper part of the UG2HW is 

unaffected by assimilation (Grobler et al. 2018). Another chromite seam (possibly the UG1-

equivalent) is located within the assimilation zone at the bottom of the magmatic units in 

UMT094 (~1402 m). 

Many major cyclic units (i.e., BCU, MCU, FCU and UG2CU) can be identified in drill core 

UMT094. Minor cyclic units (meter to 10s of meters scale) were identified within the major 

cyclic units and some seem to be composed of cycles smaller than one meter (micro-cyclic units). 

The general stratigraphy of a cycle, where fully developed, grades from an olivine cumulate-

bearing rock at the base to anorthosite at the top (Fig. 7). Although major cycles are developed 

within the stratigraphy, they do not typically include all units from a hypothetical fully developed 

cycle. Within these major cyclic units (i.e., BCU, MCU and FCU), minor and micro-cycles are 

also observed. More than 350 separate micro-cyclic units were identified through 215 m of drill 

core (Main Zone to UG2CU). At the meter scale, from below the Main Zone to the assimilation 

zone in UMT094, repetition of two to three units was observed (i.e., micro-cyclic units; Figs. 7-

8). Figure 8 shows core box pictures of these micro-cyclic units within UMT094. Starting from 

just below the Main Zone, figure 8A shows norite to pyroxenite cycles from the HW2 of the 
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Bastard Cyclic Unit. The repetition of a pyroxenite and mela-gabbronorite is also observed below 

the BAR in the MD1 of the MCU (Fig. 8B). These micro-cycles eventually grade into 

mineralized (sulfide-bearing) pyroxenites at the transition between the MD1 and M2 units. 

Repetition of micro-cyclic units is also found in the mineralized section of the MCU. Figure 8C 

shows alternating pegmatoidal feldspathic pyroxenite with a mineralized (sulfide-bearing) 

pyroxenite of the MCU. These micro-cycles are dominantly the pegmatoidal feldspathic 

pyroxenite in the lowermost part of the sequence of sub-cycles but gradually change upwards to 

dominantly pyroxenite with a small pegmatoidal feldspathic pyroxenite at the base of each small 

cycle. Repetition of micro-cycles constituting a pegmatoidal feldspathic pyroxenite containing 

disseminated-chromite at the base and a pegmatoidal feldspathic pyroxenite at the top, occurs in 

the lower part of the M1U (Fig. 8D). The most noticeable example of micro-cyclic units is in 

FW3 of the FCU (Fig. 8E), where repetition of small cycles (anorthosite at the top to pyroxenite 

at the bottom) at the tens of centimeters scale, and in some case at the meter scale, occur. This 

section is a repetition of the uppermost part of a fully developed cycle (Fig. 7-8E). In the 

Pseudoreef, an olivine-rich cumulate rock transitions to a pegmatoidal mineralized olivine-

bearing feldspathic pyroxenite (Fig. 8F), containing an increase in intercumulus plagioclase and 

sulfides. 

4.2 Petrography 

Petrography was completed on 36 thin sections that were classified into groups based on 

their stratigraphic units. The main mineralogy of these stratigraphic units is displayed in Table 2.  

The lowermost part of the preserved magmatic stratigraphy is mostly unaffected by 

assimilation is the UG2HW. This unit is mainly composed of mela-gabbronorite containing 

~60% orthopyroxene, ~16% clinopyroxene, and ~20% plagioclase (intercumulate). Minor 
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amounts of chromite (5-2%) are found within the UG2HW as well as trace amounts of white 

mica (~2%) and sulfides (~1%, dominantly pyrrhotite). Weak white mica alteration can be 

observed throughout the UG2HW.  

The pseudoreef (PSDR), located just above the UG2HW, is mainly composed of an olivine 

gabbronorite/norite. The PSDR is dominantly composed of intercumulate plagioclase (40-20%), 

olivine (up to 25%), and orthopyroxene (~35%). Clinopyroxene is present in minor amounts (~4-

8%). Chromite abundance is up to ~8%, whereas sulfide abundance (in a combination of 

pyrrhotite, chalcopyrite, pentlandite) account for up to ~4% of the sample. Some alteration is 

evident (white mica alteration of plagioclase, serpentinization of olivine).  

Within the FW3, cycles from pyroxenite at the base to anorthosites at the top are present, 

therefore a large range in mineral abundance occurs through this unit. The FW3 is dominantly 

pyroxenite and mela-gabbronorite at the base containing ~20-15% intercumulate plagioclase, 

with ~50% orthopyroxene and 35-25% clinopyroxene. In the upper part of the FW3, plagioclase 

is dominantly cumulate ranging from ~50-90%, with ~40-2% orthopyroxene and ~40-1% 

clinopyroxene. Sulfides are concentrated at the base of the FW3, ranging from 3-1% (pyrrhotite > 

chalcopyrite > pentlandite) at the base and ~2% (pyrrhotite > chalcopyrite = pentlandite) to trace 

amounts in the upper part of FW3. Alteration within these samples is usually weak to moderate 

white mica alteration with some localized alteration containing biotite, chlorite, magnetite, pyrite 

and gedrite.  

The M1L, the lowest unit of the Merensky Cyclic Unit, is described as an olivine norite and 

is composed of ~20% cumulate olivine, ~15% clinopyroxene, ~8% intercumulate plagioclase, 

~3% orthopyroxene, and alteration products (45%) mostly from serpentinization of olivine. 

Sulfides compose ~ 3% (pyrrhotite = chalcopyrite = pentlandite) of the M1L and chromite is 
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present up to ~3%. Strong alteration is found throughout the unit, including moderate white mica 

alteration of plagioclase, and minor magnetite stringers associated with serpentinization (~3%).  

The M1U consist of a large range in rocks due to cyclicity between a pegmatoidal feldspathic 

pyroxenite to pyroxenite/orthopyroxenite to mela-gabbronorite/gabbro. This section has a large 

range in mineral abundance where orthopyroxene can range from ~75 to 1% in abundance, 

clinopyroxene can range from ~80 to 1% and intercumulate plagioclase can range from ~25 to 

10%. Chalcopyrite, pyrrhotite and pentlandite (Ccp = Po = Pn) can all reach ~2% in some 

sections but can also occur in trace amounts. Chromite can be present in up to ~3% but is absent 

in some sections of M1U. Strong alteration is present in some samples, mainly the pegmatoidal 

feldspathic pyroxenites, where up to ~15% white mica can be present with some chlorite, biotite, 

calcite, magnetite and gedrite.  

In the MD1, the uppermost part of the Merensky Cyclic Unit, the samples are mainly mela-

gabbronorite/norite and contain ~70% orthopyroxene, ~10-3% clinopyroxene and ~20-15% 

intercumulate plagioclase. Weak white mica alteration occurs within the plagioclase with some 

magnetite within these units. Only ~1% of pyrrhotite and trace amounts of chalcopyrite and 

pentlandite can be found in this section.  

The BAR (Bastard Reef) ranges from an olivine-bearing mela-gabbronorite to mela-

gabbronorite and contains roughly ~65% orthopyroxene,  ~15-5% clinopyroxene, and ~25-15% 

intercumulate plagioclase. Some olivine (~5%) can be found associated with the chromite 

stringer at the top of the Bastard Reef. Chalcopyrite is the dominant sulfide in the Bastard Reef 

(~2-1%) but some pyrrhotite (~1%) and trace pentlandite are also present. Minor chromite 

sometimes occurs in the BAR up to ~1% in specific sections. The dominant alteration is white 

mica (~4-3%) of plagioclase but some biotite (~1% to trace), magnetite (trace) and chlorite 

(trace) is present.  
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Just above the BAR is the HW1, still part of the BCU, which is composed of cyclic units 

from mela-gabbronorite at the base to anorthosite at the top. The main unit within this sequence 

is gabbronorite that contains mostly cumulate plagioclase (~60-50%) with ~20% cumulate 

orthopyroxene and ~20% cumulate clinopyroxene. Some minor white mica (~3%) does occur and 

trace amounts of sulfides (pyrrhotite = chalcopyrite = pyrite) are present.  

The uppermost unit of the BCU is the HW2, which is a mottled anorthosite. This unit is 

composed of mainly ~70% cumulate plagioclase with ~25% cumulate orthopyroxene and ~3% 

cumulate clinopyroxene. Minor white mica alteration occurs within the plagioclase and trace 

amounts of biotite, magnetite, pyrrhotite, chalcopyrite and pyrite occur throughout the unit.  

Lastly, the Main Zone (HW3) is composed mainly of gabbronorite with minor pyroxenite 

units. The gabbronorite is composed of ~65-55% cumulate plagioclase, ~30% orthopyroxene and 

~15% clinopyroxene. 

4.3 Plagioclase composition 

Data for An content of plagioclase are presented in Table 3. As illustrated in Fig. 9, the 

anorthite content of plagioclase changes through the magmatic stratigraphy of UMT094 but 

varies more significantly within some cyclic units than others. From the uppermost part of the 

UG2CU to the uppermost part of the FCU there is a gradual increase in anorthite content from 

~An69 to ~An76, with little variation in An content within individual samples. The olivine 

gabbronorite of the M1L has the highest anorthite content at An82. For the rest of the MCU and 

BCU, the median anorthite content fluctuates mainly between An60 and An76. Larger ranges of 

anorthite content within individual samples occur in the MCU and BCU. Significant ranges in An 

content can be observed at ~1282 m depth with samples ranging from An45 to An76. Most 

mineralized units within the BCU and MCU have a larger range in anorthite content compared to 
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the MZ and FCU. The anorthite content is relatively constant in the Main Zone, ranging between 

An67 and An74 but does shift slightly between individual units.  

4.4 Whole-rock strontium isotopes 

Whole-rock strontium isotope analyses, including uncertainties and 87Sr/86Sri values are 

presented in Table 4. A total of 25 whole-rock sample analyses for strontium isotopes were 

completed throughout the magmatic stratigraphy (Fig. 10). The 87Sr/86Sri for samples below the 

MCU range from 0.7053 to 0.7071, increasing slightly towards the contact between the FCU and 

MCU. Throughout the MCU and BCU, 87Sr/86Sri values range from 0.7056 within the M1L to 

0.7093 within the lower M1U. The 87Sr/86Sri values change between 0.7068 and 0.7090 

throughout the rest of the MCU and BCU. Within the Main Zone, one sample at 126 m above the 

base of the MCU has a 87Sr/86Sri value of 0.7066. All other samples within the Main Zone are 

between 0.7081 and 0.7094.  

4.5 In-situ strontium isotopes in plagioclase 

Data for individual plagioclase analyses for strontium isotope are presented in Table 5. A 

total of 251 plagioclase analyses (core, rim or whole grain) were completed on thirty-seven 

samples through the stratigraphy (Fig. 11). Below the MCU, 87Sr/86Sri values are between 0.7058 

and 0.7069. Within the MCU, 87Sr/86Sri values increase from ~0.7062 at the bottom to ~0.7090 at 

~1261 m, before decreasing to ~0.7072 at the top of the MCU. 87Sr/86Sri values within the BCU 

show considerable variation between 0.7070 to just above 0.7080. In the Main Zone, the initial Sr 

isotope ratios range from ~0.7075 in the lowermost sample, up to ~0.7085 at ~1135 m, and 

decreasing to ~0.7080 in the uppermost sample.  
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4.6 Cr/MgO 

Cr/MgO values of UMT094 (Table 6) show a decreasing trend from the lower major cyclic 

units (FCU and UG2CU) to the Main Zone (Fig. 12). Within the UG2CU and FCU, Cr/MgO 

values are variable but are higher than values within the MCU, BCU and Main Zone. Values 

within the UG2CU peak at ~2450 and within the FCU Cr/MgO exceeds 500 in parts of the 

stratigraphy. Within the MCU there is a peak at Cr/MgO = ~500, followed by a sharp decrease to 

~110-120 through the rest of the MCU and Lower BCU. The upper part of the BCU changes 

from Cr/MgO = 60 and increases to 75, which remains constant into the Main Zone. These 

variations are mostly controlled by the distribution of chromitite seams (which control the Cr 

content in the rocks). 
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5. Discussion 

5.1 Strontium isotope stratigraphy of the Northern Limb 

The whole-rock strontium isotope profile of UMT094 (Fig. 10) demonstrates a similar trend 

to the well-known 87Sr/86Sri shift, from 0.7065 to 0.7080, that occurs at the stratigraphic height of 

the Merensky Reef initially identified by Kruger & Marsh (1982) in the Eastern and Western 

limbs of the BIC (Fig. 5A). In UMT094 the shift is from 87Sr/86Sri = 0.706 at the base of the 

FCU, to 87Sr/86Sri = 0.708 in the Main Zone. Minor fluctuations can be observed throughout the 

isotopic profile (Fig. 10). Although the transition from the Critical Zone to the Main Zone in the 

Eastern and Western limbs is typically sharp or gradational without many smaller shifts, the 

isotope profile in the Northern Limb is different (Fig. 10). Smaller shifts can be observed 

throughout the Transitional Units (MCU and BCU) and Footwall Cyclic Unit. The shifts 

commonly coincide with some minor-cycles, smaller than the Bastard, Merensky and Footwall 

Cyclic units, but are most likely associated with increased alteration within some of the samples 

especially through the MCU and BCU. The large variation (largest from 45 to 76) and decrease in 

An content of plagioclase through the MCU and BCU confirms that there is an increase in 

alteration through these cyclic units (Fig. 9). Although some uncertainties on the strontium 

isotope analyses for whole-rock are much larger than the in-situ analyses (mainly in the MCU 

due to high whole-rock Rb/Sr values) the main shift can still be identified. Samples within the 

assimilation zone (below 1355 m) have more radiogenic signatures (> 0.710) and therefore have 

inherited part of the footwall isotopic signature, making them unusable for developing a 

strontium isotope stratigraphy of the primary magmas (see Table 4 for additional samples within 

the assimilation zone and footwall). The high 87Sr/86Sri coincide with values published by Kruger 
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(2005; average of 0.7109 at Turfspruit) and Barton et al. (1986; range from 0.7054 to 0.7226 at 

Overysel and Sandsloot) indicating that both of these studies sampled magmatic stratigraphy 

affected by footwall assimilation. Additionally, with the new stratigraphy from Grobler et al. 

(2018) one can identify the location of the samples analysed by Kruger (2005) in relation to the 

Merensky Reef. 

Due to the high uncertainties of some of the whole-rock strontium isotope sample analyses, 

in-situ strontium isotope analyses on plagioclase were completed on the same set of samples, 

including additional samples to fill gaps within the whole rock strontium isotope stratigraphy 

(Fig. 11). These data are similar to the whole-rock strontium isotope data but show some 

significant differences. Firstly, the uncertainties on the in-situ analyses are much smaller 

(~0.0002) than the uncertainties of the samples completed for whole-rock strontium isotopes (up 

to ~0.0013). Fluctuations in strontium isotope stratigraphy within major cyclic units are seen in 

the whole-rock data; however, such fluctuations are absent in the strontium isotope stratigraphy 

based on in in-situ analyses in plagioclase. This is attributed to the addition of radiogenic Sr 

because of increased alteration within the MCU and BCU, which is the stratigraphic location for 

most of the fluctuations occurring in the stratigraphy (Fig. 10). Use of in-situ analyses in 

plagioclase allow for selection of unaltered plagioclase grains (grains with evident alteration were 

not analyzed). Additionally, the in-situ analyses for the Main Zone, FCU and UG2CU are much 

more consistent throughout the units compared to the samples completed by whole-rock analyses. 

This is likely because of the whole-rock data consisting of a mixture of three main sources within 

the rock: (1) plagioclase, (2) pyroxene and (3) alteration. Although alteration was avoided as 

much as possible during sampling and selection of samples for whole-rock strontium isotope 

analyses, alteration through some sections of the stratigraphy was unavoidable. Nonetheless, the 

whole-rock data indicate that the Northern Limb stratigraphy shows a similar shift, at a similar 
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stratigraphic position, to the shift occurring at the Merensky Reef in the Eastern and Western 

limbs. 

The in-situ analyses assist in inferring processes, from the mineral scale to the scale of the 

whole magma chamber, occurring at the time of formation of the Northern Limb and the rest of 

the BIC. Firstly, the comparison between core, rim and whole-plagioclase analyses give some 

insight on magmatic processes occurring at the time of formation. Through the UG2CU, FCU, 

MCU and BCU, there is no clear distinction between the core, rim and whole-plagioclase values. 

In the three uppermost samples of the Main Zone, there is a clear distinction between the rim and 

core values. The mean of the rims is more radiogenic than the cores in samples 1096, 1111 and 

1135 (1096 – core of 0.70784  21 and rim of 0.70796  8; 1111 – core of 0.70781  27 and rim 

of 0.70817  9; 1135 – core of 0.70813  2 and rim of 0.70861  8). Although there was no 

visual evidence of zonation in plagioclase (EMPA and LA-ICPMS element distribution maps; 

Appendix A), there was evidence of isotopic zonation within the Main Zone plagioclase (Fig. 

11). Both cumulate and intercumulate plagioclase was analyzed for in-situ strontium isotopes but 

there was no significant difference between the two types in the same major cyclic unit (Fig. 13). 

As the whole-rock strontium isotopes showed, the shift occurring through the Transitional Units 

in the Eastern and Western limbs is also present through mineralization in the Upper Platreef. 

The shifts towards higher 87Sr/86Sri through the stratigraphy (lower sections of the MCU and 

BCU) correlate with significant Pt-Pd mineralization (Fig. 14) indicating that mineralization and 

the isotopic shift are likely related to the same process (e.g., influx of contaminated magma into 

the chamber). 

5.2 Magmatic stratigraphy 
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Different stratigraphic schemes have been used across the Northern Limb (e.g. GNPA 

member, A-B-C Reefs, Platreef, Aurora and Waterberg; Fig. 15). Unfortunately, the use of 

different stratigraphic units has made it challenging to correlate lithologies throughout the 

Northern Limb and to test correlations with the Eastern and Western limbs. The lack of 

correlation is mostly due to the disturbance of magmatic stratigraphy in proximity to the footwall 

as a result of extensive assimilation. In the Northern Limb there are distinct differences between 

Bushveld rocks located relatively close to the footwall (in outcrop and up-dip) compared to 

Bushveld rocks further down-dip (Fig. 16). In the assimilation zone (up to several hundreds of 

meters above the footwall) all magmatic units have textures reflecting assimilation of Transvaal 

rocks but textures vary depending on proximal footwall lithologies (Fig. 16). Most units have 

sporadic intervals of vari-textured norite, gabbronorite, pyroxenite or harzburgite. Within this 

zone, cyclic units are indistinguishable from one another and magmatic cumulate textures are 

almost lost. The presence of calc-silicate xenoliths within the magmatic stratigraphy is indicative 

of assimilation within those specific units. Xenoliths are common within the assimilation zone 

and are remnants of footwall assimilation, but they can also be found outside of the assimilation 

zone. Xenoliths typically occur at the bottom of larger cyclic units, possibly indicating that they 

were transported into the magma chamber with new pulses of magma or dislodged from the 

footwall or hanging wall to the chamber during the emplacement of new pulses of magma. At the 

Aurora project, calc-silicate xenoliths are present throughout all units (Mcdonald et al. 2017), 

indicating that these magmatic units are likely all part of the assimilation zone. I suggest that at 

the Aurora Project, Unit 3 can be correlated to the Main Zone, Unit 2 contains the Bastard, 

Merensky and Footwall Cyclic Units, and Unit 1 represents the Critical Zone (Fig. 15). Similarly, 

throughout the Platreef calc-silicate xenoliths have been identified in most of the magmatic 

stratigraphy (Holwell and McDonald 2006; Hutchinson and McDonald 2008; Maier et al. 2008; 
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Ihlenfeld and Keays 2011). Although individual units are lost within the assimilation zone, 

chromitite layers such as the UG2-equivalent, can typically be observed within the assimilation 

zone and are relatively undisturbed (Grobler et al. 2018). The Pt-Pd mineralization of the Bastard 

Reef and Merensky Reef also progresses through the assimilation zone but becomes more 

dispersed due to mingling between the magmatic units and footwall rocks. Although assimilation 

affects the consistency of mineralization, the main reefs can typically be located with the highest 

grade in Pt-Pd-Rh-Au (Grobler et al. 2018). 

The down-dip stratigraphy of the Northern Limb has many similarities to the Eastern and 

Western limbs. As proposed by Grobler et al. (2018), the Bastard and Merensky Cyclic Units are 

present but are thicker in comparison to equivalent cyclic units in the Eastern and Western limbs. 

The stratigraphy documented at Turfspruit can be applied throughout the magmatic units located 

out of the assimilation zone in the Northern Limb. Figure 15 shows the stratigraphy at Turfspruit 

with potential correlations between the A-B-C reef described by Barton et al. (1986) and other 

stratigraphic units used through the Northern Limb (Platreef, GNPA Member, Aurora, 

Waterberg). The Platreef is a combination of all the major cyclic units stacked together and can 

be much thicker than 100 m (Kinnaird et al. 2005), seemingly showing erratic mineralization 

throughout the whole unit (Fig. 15). 

The micro-cyclicity present within UMT094 (Fig. 8) could indicate processes related to 

mineralization in the Northern Limb. Although outside the scope of this study, the presence of 

these micro-cyclic units could provide clues to explain the thicker mineralization of the Northern 

Limb. The stacking of multiple micro-cycles containing mineralization at the bottom of 

individual cycles could lead to a thicker mineralization compared to the single reef seen in the 

Eastern and Western limbs of the BIC. One hypothesis could be that the presence of these cycles 

is related to the proximity of a major feeder, which some have suggested is located in the vicinity 
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of Mokopane (Kruger 2005; van der Merwe 2008 and references therein; Finn et al. 2015). The 

relation between the thickness of mineralization, micro-cycles and the proximity of a feeder is 

simply a hypothesis and more work needs to be done. 

5.3 Comparison of Turfspruit results to the Eastern and Western limbs 

In the Western Limb of the BIC at Rustenburg Platinum Mines, Kruger and Marsh (1982) 

identified a shift in 87Sr/86Sri at the stratigraphic location of the Merensky pegmatoid. Elsewhere 

in the BIC, the shift at this stratigraphic level comprises of a shift through the MCU (~10 m 

thick) from ~0.7064 at the base to ~0.7075 at the top. This shift continues through the BCU and 

the 87Sr/86Sri value increases to ~0.7080. Kruger and Marsh (1982) suggested that this isotopic 

shift is related to a new magma influx and magma mixing. Additionally, the MCU and BCU are 

thought to represent proportions of mixing between the resident magma and the new magma 

influx, which was homogenized throughout the Bushveld magma chamber (Kruger and Marsh 

1982; Kruger 1992). Seabrook et al. (2005) compiled different Sr isotope studies through the 

Transitional Units (MCU and BCU) across the BIC (Fig. 17; Western Limb localities: 

Amandelhult, Union, Rustenburg, Brits; Eastern Limb localities: Richmond, Atok). Throughout 

the BIC, the 87Sr/86Sri shift is present through the Transitional Units, although it varies from a 

sharp shift at the base of the MCU to a gradual shift through the Transitional Units. 

Data collected during this project show a similar shift in the upper part of the Platreef in 

UMT094. The shift occurs through the MCU and BCU (Fig. 11). In the UG2CU and FCU, the 

87Sr/86Sri values are consistently near ~0.7064 on average. The MCU contains the main isotopic 

shift, which is also seen in the rest of the BIC but increases up to ~0.709 within the MCU. The 

87Sr/86Sri values at the top of the BCU in UMT094 are ~0.7075 on average and increase to just 

under 0.7080 in the Main Zone. Thus, the Transitional Units of the Northern Limb show the same 
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shift as that of the Eastern and Western limbs (Fig. 17). In addition, the Cr/MgO values (Cr 

content mainly controlled by chromite and clinopyroxene; MgO content mainly controlled by 

orthopyroxene) from UMT094 (Fig. 12) shows a similar transition from the Critical Zone to the 

Main Zone than that of Seabrook et al. (2005) in the Eastern and Western limbs. I conclude that 

the mineralized sections of the Platreef in the Northern Limb can be correlated with the Merensky 

and Bastard reefs in the Eastern and Western limbs and, therefore, the stratigraphy used in the 

Eastern and Western limbs is applicable to the Northern Limb. 

The magnitude of the excursion up to 87Sr/86Sri ~0.7090 at ~1261 m in the MCU has yet to 

be documented elsewhere in the BIC. However, some samples with 87Sr/86Sri values of 0.7090 

have been measured within the Transitional Units at Brits and Atok (Seabrook et al. 2005; Fig. 

17). In the Northern Limb, increases in 87Sr/86Sri values occur only through the mineralized units 

of the MCU. Another subtle increase in 87Sr/86Sri is located through the mineralization at the base 

of the BCU. Thus, reef mineralization is coincident with increasing 87Sr/86Sri values, which I 

interpret as linking new pulses of different or contaminated magma to PGE mineralization. The 

87Sr/86Sri of 0.7090 could be a closer representation of the isotopic signature from the 

contaminated pulse of magma that entered the magma chamber at the stratigraphic location of the 

Merensky Reef. Furthermore, the thickness of the MCU and BCU in the Northern Limb is also 

consistent with a thicker interval over which the 87Sr/86Sri shift occurs compared to locations in 

the Eastern and Western limbs of the BIC. Therefore, the proximity to the feeder could play a 

role in the magnitude of the excursion being thicker at Turfspruit Farm and thinner further away 

in the Eastern and Western limbs. The presence of a gradual isotopic shift through the 

Transitional Units compared to a sharp shift could possibly also be explained by the proximity of 

a feeder to Mokopane, which Finn et al. (2015) identified as the possible location of the feeder to 

the BIC. 



 

 

41 

5.4 Comparison of Turfspruit results to the Northern Limb 

Only a few studies on strontium isotopes have been completed in the Northern Limb of the 

BIC. Barton et al. (1996) and Kruger (2005) analysed samples from the Platreef but these were 

within the assimilation zone, resulting in more radiogenic 87Sr/86Sri values (> 0.710). The in-situ 

Sr isotopic data documented by Mangwegape et al. (2016) in the Upper and Main zones of the 

Northern Limb show similar trends to the compilation by Kruger (1994) in the Western Limb 

(Fig. 5A). However, correlation between all limbs was still unclear primarily because 

Mangwegape et al. (2016) did not document samples in the Critical Zone that were not heavily 

influenced by footwall assimilation. The data presented from the Main Zone here are consistent 

and overlap with data in Magnwegape et al. 2016, but the main contribution of the work 

documented in this thesis pertains to data stratigraphically below (i.e., within the Critical Zone). 

Some samples (e.g. 1111, 1135, 1165; Table 5) in the Main Zone show similar 87Sr/86Sri values to 

the least radiogenic samples in Mangwegape et al. (2016) but direct correlation is difficult 

without detailed logging of magmatic units. Huthmann et al. (2017) published data from the 

Waterberg Project, which show consistent 87Sr/86Sri values between 0.7065 to 0.7075 throughout 

the whole sequence. There is no large shift within the mineralization of the Waterberg Project, 

further indicating that the Waterberg magmatic sequence might be disconnected from the rest of 

the BIC, as suggested by Huthmann et al. (2017). 

5.5 The Platreef 

The Platreef is renowned to be the mineralized unit located in the Northern Limb of the BIC 

between the Main Zone and the footwall, and has been suggested to be the stratigraphic 

equivalent to the Merensky Reef in the Eastern and Western limbs (Schouwstra et al. 2000; 
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Manyeruke et al. 2005 and references therein; Grobler at al. 2018). The data presented here 

confirms a direct correlation between the units containing mineralization in the upper Platreef and 

the Merensky Reef. Therefore, the magmatic stratigraphy presented by Grobler et al. (2018; Fig. 

4) should be applicable to the rest of the Northern Limb and the term “Platreef” should be used 

with caution. The term is valid to describe sections in which footwall assimilation has destroyed 

recognizable magmatic stratigraphy but not to imply that the Platreef has a different origin than 

the MCU. The term Platreef has been used because it was thought that the magmatic units 

containing mineralization in the Northern Limb were of a different origin than the magmatic units 

hosting the Merensky Reef in the Eastern and Western limbs. This interpretation (i.e., the Platreef 

having a different origin than the Upper Critical Zone in the rest of the BIC) is likely due to the 

deceiving overprinting assimilation textures disrupting the magmatic stratigraphy, which 

texturally makes the Platreef seem like one magmatic unit. However, the Platreef consists of 

multiple magmatic units within the assimilation zone of the Northern Limb (Grobler et al. 2018). 

The Platreef is not a reef itself but contains multiple mineralized reefs within its stratigraphy, 

which are interlayered with magmatic units containing no mineralization. Although assimilation 

of the footwall might disrupt minor magmatic units and textures, major cyclic units can still be 

distinguished from one another (Grobler et al. 2018; this study). 
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6. Conclusions 

The strontium isotope stratigraphy through the upper part of the UCZ and the lower MZ in 

the Northern Limb of the BIC exhibits a gradual shift in 87Sr/86Sri from 0.7064 at the top of the 

FCU to 0.7090 in the MCU. This main shift is followed by a decrease to 0.7074 at the base of the 

BCU, which finally increases through the BCU and stabilizes at 0.7080 within the MZ (Fig. 11). 

The main 87Sr/86Sri shift coincides with the mineralized interval in the drill core investigated. 

Thus, the Sr isotope shift provides strong evidence that mineralization in the Platreef correlates 

with the Merensky Reef in the Eastern and Western limbs of the Bushveld Igneous Complex. 

This is consistent with the stratigraphy proposed in Grobler et al. (2018) defining the mineralized 

units in the Northern Limb as the Merensky Cyclic Unit. This correlation has been obscured in 

other areas in the Northern Limb due to the proximity and extensive assimilation of footwall 

rocks in outcropping and shallow mineralized areas. Additionally, the isotopic correlation 

validates that the stratigraphy of the Northern Limb is similar to that of the Eastern and Western 

Limbs. Therefore, the magmatic stratigraphy proposed by Grobler et al. (2018) should be 

applicable throughout the Northern Limb, with exception to the magmatic stratigraphy of the 

Waterberg Project because of different magmatic and strontium isotope stratigraphy. The 

strontium isotope shifts towards more radiogenic 87Sr/86Sri values, at the base of the MCU and 

BCU, are directly linked to significant Pt-Pd mineralization indicating that the mineralization 

may be linked to the processes causing the shift in 87Sr/86Sri (Fig. 14). Also, the thickness of the 

interval across which the 87Sr/86Sri changes in the Northern Limb is much thicker than the Sr 

isotopic shift occurring elsewhere in the BIC. Lastly, micro-cyclicity within the magmatic units 

of the Northern Limb could provide new evidence that could help unravel the origin of the thick 

mineralization, although more work is needed to explore this hypothesis. 
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7. Recommendations for future work 

Although this research has answered some major questions about the Northern Limb and the 

correlation of the Northern Limb to the rest of the BIC, there are still some unanswered questions 

and new questions that have surfaced over the course of this research: 

(1) Strontium isotope stratigraphy 

a) Are there pristine magmatic units down-dip away from assimilation along the whole Northern 

Limb? Looking at drill core further down-dip away from assimilation is key to identifying 

magmatic units undisturbed by assimilation. 

b) Can the strontium isotopic shift be documented throughout the Northern Limb? Strontium 

isotopic stratigraphy has a very good potential to assess the extent of the MCU and BCU towards 

the northernmost sections of the Northern Limb. 

 

(2) Micro-cyclic units 

a) Are the micro-cyclic units only in the Northern Limb or can some be observed throughout the 

Bushveld? Documentation in this thesis of micro-cyclicity has been described in detail and needs 

to be documented by others during future work for comparison across the BIC. 
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9. Figure Captions 

Figure 1. Geological map of the Rustenburg Layered Suite (modified from Mungall et al. 2016) 

showing locations of sites for the compiled strontium isotope stratigraphy in the Eastern and 

Western Limb (Seabrook et al. 2005) and locations of strontium isotope stratigraphy studies in 

the Northern Limb. Inset shows the locations of the Bushveld Igneous Complex. 

 

Figure 2. Summary of the magmatic stratigraphy of the Eastern and Western Limbs of the 

Bushveld Igneous Complex (Maier et al. 2013) and comparison with the stratigraphic units used 

by different studies in Northern Limb. References: GNPA Member, McDonald et al. 2005; A-B-

C Reef, Barton et al. 1986; Turfspruit, Grobler et al. 2018; Platreef, Kinnaird et al. 2005; Aurora 

Project, McDonald et al. 2017; Waterberg Project, Kinnaird et al. 2017. 

 

Figure 3. Geological map of the central part of the Northern Limb of the Bushveld Igneous 

Complex (see insert in top right corner), the location of the Turfspruit and Macalacaskop farms, 

and the location of drill hole UMT094. Map modified from McDonald et al. (2017). 

 

Figure 4. General magmatic stratigraphy at Turfspruit (Grobler et al. 2018), including rock-types 

generally associated with the different stratigraphic units within the major cyclic units (BCU, 

MCU, FCU and UG2CU). 

 

Figure 5. A) Strontium isotope stratigraphy of the Western Limb (modified from Kruger 1994). 

B) Strontium isotope stratigraphy of the Upper Zone and Main Zone of the Northern Limb 

(modified from Mangwegape et al. 2016). The largest shift in the strontium isotope profile of the 
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Western Limb is at the stratigraphic height of the Merensky Reef. In the Northern Limb, data 

from Mangwegape et al. (2016) stops just above the Platreef, likely because of footwall 

assimilation (as inferred from values higher than 0.710). 

 

Figure 6. Magmatic stratigraphy logged from UMT094 using the magmatic units described by 

Grobler et al. 2018.  

 

Figure 7. Sketch summarizing the micro-cylcles documented in UMT094. The diagram on the 

left represents a full cycle commencing from a cumulate olivine-bearing rock (not always 

present) at the base to anorthosites at the top. Stratigraphic columns on the right are examples of 

five-meter sections of core with multiple micro-cycles (mineralization is shown in red on the left 

of the columns). Letters and arrows to the left of the legend indicate the lithologies present in 

each example. Micro-cycles are displayed as blue arrows on the right of the stratigraphic 

columns.  

 

Figure 8. Sections of core showing micro-cyclicity: (A) anorthosite to pyroxenite within the 

Bastard Cyclic Unit; (B) mela-gabbronorite to pyroxenite also within the Merensky Cyclic Unit ; 

(C) pyroxenite to pegmatoidal feldspathic pyroxenite in also the Merensky Cyclic Units; (D) 

pegmatoidal feldspathic pyroxenite to chromite-bearing pegmatoidal feldspathic pyroxenite in the 

Merensky Cyclic Unit; (E) anorthosite to pyroxenite within the Footwall Cyclic Unit; and (F) 

pyroxenite to cumulate olivine-bearing rock in the Pseudoreef. 
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Figure 9. Variation in the anorthite content (Ca/[Ca+Na+K]) in plagioclase with depth in drill 

core UMT094. Black squares are medians of multiple analyses (minimum 7), black circles are 

first and third quartile and error bars are maximum and minimum values. MZ = Main Zone, BCU 

= Bastard Cyclic Unit, MCU = Merensky Cyclic Unit, FCU = Footwall Cyclic Unit, U2CU = 

UG2 Cyclic Unit. 

 

Figure 10. Whole rock strontium isotopic stratigraphy of the Platreef (from this study – red; 

uncertainties are 2 STD) compared to available data from the Main Zone (blue – Mangwegape 

et al. 2016) and the Eastern Limb (orange – Seabrook et al. 2005). BCU = Bastard Cyclic Unit, 

MCU = Merensky Cyclic Unit, FCU = Footwall Cyclic Unit, UG2CU = UG2 Cyclic Unit, CZ = 

Critical Zone. 

 

Figure 11. 87Sr/86Sri values of core (red), rim (blue) and whole plagiolcase (green)  throughout the 

magmatic stratigraphy at Turfspruit Farm in UMT094 (uncertainties are 1 STD). Cyclic units 

are displayed for reference. BCU = Bastard Cyclic Unit, MCU = Merensky Cyclic Unit, FCU = 

Footwall Cyclic Unit, U2CU = UG2 Cyclic Unit. 

 

Figure 12. Downhole Cr/MgO to show the transition between the Critical Zone and Maine Zone. 

A gradual decrease in Cr/MgO can be seen through the transitional Units (BCU and MCU). 

Large spikes at 1370 and 1400 meters are due to chromitite units. BCU = Bastard Cyclic Unit, 

MCU = Merensky Cyclic Unit, FCU = Footwall Cyclic Unit, UG2CU = UG2 Cyclic Unit, TV = 

Transvaal Supergroup. 
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Figure 13. 87Sr/86Sri values of cumulate (red) and intercumulate (blue) plagioclase throughout the 

magmatic stratigraphy of UMT094. BCU = Bastard Cyclic Unit, MCU = Merensky Cyclic Unit, 

FCU = Footwall Cyclic Unit, U2CU = UG2 Cyclic Unit. 

 

Figure 14. Comparison of stratigraphic variations in 87Sr/86Sri (this work) with whole rock 

content in 3PGE (Pt+Pd+Rh), Cr, Ni and Cu/Pd (data provided by Ivanplats). The comparison 

highlights the relationship between increased 3PGE content within the MCU and increasing 

87Sr/86Sri. 

 

Figure 15. Magmatic stratigraphy of the Eastern and Western limbs of the Bushveld Igneous 

Complex (Maier et al. 2013) and possible correlation with the stratigraphic units used by 

different studies in Northern Limb. Although different nomenclature has been used throughout 

the Northern Limb (mainly due to assimilation obscuring magmatic lithologies), the units can be 

correlated through mineralization, chromitite seams and chromium content. Thickness displayed 

are from the interpreted top of the Bastard Cyclic Unit to the base of the Critical Zone (if 

present). Dashed line shows possible correlation between different nomenclature in the Northern 

Limb and to the stratigraphy in the Eastern and Western Limbs. References: GNPA Member, 

McDonald et al. (2005); A-B-C Reef, Barton et al. (1986); Turfspruit, Grobler et al. (2018); 

Platreef, Kinnaird et al. (2005); Aurora Project, McDonald et al. (2017); Waterberg Project, 

Kinnaird et al. (2017). 

 

 

Figure 16. Geological interpretation of the mineralization in the Northern Limb showing the 

transition from the up-dip section closer to the footwall to the down-dip region where the 
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magmatic sequence is less affected by footwall assimilation. The mineralization up-dip is mostly 

within the assimilation zone compared to down-dip, where mineralization is mostly above the 

assimilation zone. The location of drill hole UMT094 is also displayed. Most of the early 

research on the Platreef focused on outcropping lithologies or sections up-dip, where footwall 

assimilation is pervasive. The surface geology is based on a geological map from McDonald et al. 

(2017); the front face of the diagram was modified from an interpretation completed by Ivanplats 

(Grobler et al. 2018). The side of the diagram has been interpreted based on the surface geology. 

Descriptions are observations from different sources (B - McDonald et al. 2017; D – Barnes et al. 

2017; C, G and H – Grobler et al. 2017). 

 

Figure 17. Comparison of 87Sr/86Sri data from this study (Northern Limb) to data summarized in 

Seabrook et al. (2005) for different sections of the Eastern and Western limbs. Seabrook et al. 

(2005) is shown in sections 10 meters below the contact between the Critical Zone and the 

Merensky Cyclic Unit and 40 meters above it. With the exception of the section at Brits, the 

MCU is no thicker than 20 m. In contrast in UMT094 the MCU is more than 50 m thick.
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11. Tables 

Table 1. Summary of strontium isotope studies throughout the Bushveld Igneous Complex. 

Limb Limb/Location Analytical 

Details 

87Sr/86Sri per 

Stratigraphic Zone 

Age* Model Conclusion Reference 

EL, WL N/S WR and MS 

(cpx, plag, 

biotite) 

Upper: 0.70769-0.70735 

Main: 0.70592-0.70863 

Critical: 0.70639-

0.70603 

Transition**: 0.70563 

2100 Ma Contamination at level 

of emplacement, 

contamination at depth 

or nature of melting 

event 

Magmatic influxes 

caused isotopic shifts 

(Hamilton 

1977) 

WL Rustenburg 

Platinum Mines 

WR and MS 

(plag) 

Transitional Units***: 

0.7064-0.7075 

2100 Ma Relation between PGE 

mineralization related 

and magma influxes 

Magma influxes (Kruger and 

Marsh 1982) 

EL Galgstroom WR Upper: 0.7073 

Main: 0.7085 

Critical: 0.7065 

2050 Ma Density stratification, 

double diffusive 

convection and magma 

mixing 

Main Zone magma 

intruded between 

cumulate pile and 

Upper Zone 

crystals+liquid 

(Sharpe 1985) 

EL Burgersfort to 

Stoffberg 

WR Marginal B1: 0.7032-

0.7057 

Marginal B2: 0.7064-

0.7077 

Marginal B3: 0.7059-

0.7072 

2050 Ma Marginal rocks are 

derived from mixing of 

two mantle domains 

Multistage 

subcratonic history 

for the evolution of 

the Bushveld 

(Harmer and 

Sharpe 1985) 

WL Union Section WR Main: 0.70731-0.70890 2050 Ma Main Zone can be 

separated into sub-units 

based on rock type and 

geochemistry 

Main Zone is from 

the Pyroxenite 

Marker to the top of 

the Bastard Cyclic 

Unit based on Sr 

isotopes 

(Mitchell 

1986) 
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Table 1. Summary of strontium isotope studies throughout the Bushveld Igneous Complex (continued). 
 

Limb Limb/Location Analytical 

Details 

87Sr/86Sri per 

Stratigraphic Zone 

Age* Model Conclusion Reference 

WL Union Section WR Main: 0.7087 

Transitional Units: 

0.7064-0.7087 

Critical Zone: 0.7063 

N/S Wedged Main Zone 

liquid above crystalline 

floor with hybrid layer 

in between, multiple 

magma influxes 

Magma influx 

associated with each 

cyclic unit 

(Eales et al. 

1986) 

WL Bierkraal N/S Upper: 0.7073 2050 Ma Upper Zone is a single 

magmatic series due to 

an influx of magma at 

the Pyroxenite Marker 

Upper-Main Zone 

boundary should be 

at the Pyroxenite 

Marker 

(Kruger et al. 

1987) 

EL Atok Section WR Transitional Units: 

0.7062-0.708 

2050 Ma Sharp contacts and 

bifurication along strike 

indicate intrusive 

nature, Sr isotopes 

gradually change 

upwards of intrusion 

The Merensky and 

Bastard Reef are 

intrusive (sills) in 

nature 

(Butcher 

1990) 

WL Union Section WR and MS 

(plag, opx) 

Transitional Units: 

0.7064-0.7078 

Upper Critical: 0.7049-

0.7070 

2050 Ma New magma pulse 

injected near crystalline 

floor, hybridizes by 

partial reabsorption of 

cumulate pile 

Jetting (LCZ) 

followed by pluming 

(UCZ-LMZ) for new 

magma pulses into 

the chamber 

(Eales et al. 

1990) 

WL Nooitgedagt 

and Union 

Section 

WR and MS 

(plag, px) 

Lower Critical: 0.7047-

0.7055 

Lower: 0.7046-0.7071 

N/S Interaction between 

magma batches and 

fractionation rather than 

fractionation alone 

Magma influxes (Eales et al. 

1990) 
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Table 1. Summary of strontium isotope studies throughout the Bushveld Igneous Complex (continued). 
 

Limb Limb/Location Analytical 

Details 

87Sr/86Sri per 

Stratigraphic Zone 

Age* Model Conclusion Reference 

WL, EL Union Section, 

Amandelbult 

Section, 

Rustenburg 

Sections and 

Atok Mine 

N/S Transitional Units: 

0.7064-0.7080 

(Amandelbult) 

2060 Ma 

(Amandelbult) 

Cool Magma Fountain 

Model 

New magma was 

compositionally 

denser, sank to the 

bottom of the 

chamber and 

scavenged the metals 

from the resident 

magma creating the 

Merensky and 

Bastard Reefs 

(Kruger 

1992) 

WL Northam to 

Rustenburg 

WR and MS 

(plag) 

Upper: 0.7072-0.7077 

Upper Main: 0.7080-

0.7085 

Lower Main: 0.7072-

0.7090 

Upper Critical: 0.7060-

0.7073 

Lower Critical: 0.7048-

0.7056 

Lower: 0.7047-0.7071 

2060 Ma Integration Stage 

(multiple pulses of new 

magma) and 

Differentiation Stage 

(dominantly 

fractionation) 

Lower Zone to 

Lower Main Zone is 

part of the 

Integration Stage, 

Upper Main Zone 

and Upper Zone is 

part of 

Differentiation Stage 

(Kruger 

1994) 

WL Western 

Platinum Mine 

WR and MS 

(plag) 

Transitional Units: 

0.7065-0.7068 

2060 Ma Footwall Extension 

Model 

Extension of the 

magmatic chamber 

during the formation 

of the Merensky Reef 

(Carr et al. 

1999) 
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Table 1. Summary of strontium isotope studies throughout the Bushveld Igneous Complex (continued). 
 

Limb Limb/Location Analytical 

Details 

87Sr/86Sri per 

Stratigraphic Zone 

Age* Model Conclusion Reference 

WL, EL Brakspruit and 

Steelport 

WR and MS 

(plag) 

Upper Critical: 0.7057-

0.7080 (AM38 - South of 

the Steelport Lineament - 

EL) 

Lower Critical: 0.7057-

0.7077 (AM38 - South of 

the Steelport Lineament - 

EL) 

Upper Critical: 0.7059-

0.7086 (KF17 - North of 

the Steelport Lineament - 

EL) 

Upper Critical: 0.7062-

0.7099 (BK - WL) 

Upper Critical: 0.7062-

0.7083 (SK9 – Union 

Section - WL) 

2057 Ma New magma entering 

the chamber triggers 

chromite to be formed 

Each chromitite layer 

represents a new 

replenishment of 

magma into the 

chamber 

(Kinnaird et 

al. 2002) 

EL Richmond MS (plag) Main: 0.7077-0.7087 

Transitional Units: 

0.7062-0.7080 

Critical: 0.7061-0.7071 

2059 Ma Co-accumulation of 

minerals in the Bastard 

and Merensky Reef due 

to stratified magmas 

Bastard and 

Merensky Cyclic 

Units should be 

classified as 

transitional units 

because they contain 

minerals from both 

the Main and Critical 

Zone 

(Seabrook et 

al. 2005) 

NL, SL Turfspruit 

(NL), Bethal 

(SL) 

MS (plag, 

opx) 

Assimilation Zone: 

0.70723-0.71459 (NL) 

Upper: 0.70514-0.70581 

(SL) 

2055 Ma (NL) 

2060 Ma (SL) 

Four different magmas 

contributed to forming 

the Rustenburg Layered 

Suite (BvLz, BvCz, 

BvMz and BvUz) 

Magmatic 

unconformities are 

ideal for stratabound 

mineralization 

(Kruger 

2005) 
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Table 1. Summary of strontium isotope studies throughout the Bushveld Igneous Complex (continued). 
 

Limb Limb/Location Analytical 

Details 

87Sr/86Sri per 

Stratigraphic Zone 

Age* Model Conclusion Reference 

EL Jagdlust 

Section 

MS (plag, 

opx) 

Critical: 0.7032-0.7063 

Lower: 0.7029-0.7063 

2060 Ma Isotopic disequilibrium 

between minerals in the 

Critical and Lower Zone 

Bulk rock nor 

mineral separates can 

be used to infer 

primary magmatic 

isotopic ratios, 

processes or sources 

(Chutas et al. 

2012) 

WL Union Section WR and MS 

(plag rim and 

core) 

Transitional Unit: 

0.7062-0.7088 

Upper Critical: 0.7050-

0.7073 

2055 Ma Plagioclase from the 

Main and Critical Zone 

are incorporated in the 

Merensky and Bastard 

Cyclic Units because of 

mineral sorting due to 

slumping crystal mushes 

Disequilibrium 

between core and rim 

of plagioclase is due 

to overgrowth of 

plagioclase from 

silicate melts with a 

different composition 

(Yang et al. 

2013) 

NL Moordkopje 

and Bellevue 

In-situ plag Upper: 0.7063-0.70786 

Main: 0.70694-0.71061 

2054.4 Ma Strontium isotope 

analyses record similar 

processes as the 

Western Limb (Kruger 

1994) 

Variations within 

samples and grains is 

likely due to the 

intrusion of crystal 

mushes 

(Mangwegape 

et al. 2016) 

 

Compilation of strontium isotope work completed through the Rustenburg Layered Suite of the Bushveld Complex. Each row 

describes the location, methods, 87Sr/86Sri values, age used in calculation for the initial ratio and the main model and conclusions of 

each publication. 

*Age used to calculate 87Sr/86Sri 

**Zone between the Critical and Lower Zone (now likely the LCZ) 

***Transitional Units include the Bastard Cyclic Unit and Merensky Cyclic Unit 

N/S = Not specified WR = Whole rock, MS = Mineral separates, WL = Western Limb, EL = Eastern Limb, NL = Northern Limb 
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Table 2. Mineralogical abundances throughout magmatic units within UMT094. 

 

 Trace 

(<1%) 

Bt, Mag, 

Po, Ccp, Py, 

Ser 
Bt, Mag, 

Po, Ccp, Py 

Po, Ccp, Py 

Mag, Pn, 

Chl 

Mag, Ccp, 

Pn, Chl 

Mag, Ged 

Bt 

Mag, Py, 

Ged 

Bt 

Bt, Ccp 

Minor (<10%;>1%) 

 

Cpx (3), WM (2) 

WM (3) 

Ol (5-0), WM (4-3), Ccp (2-1), 

Po (1), Bt (1-tr), Cr (1-0) 

Cpx (10-3), WM (4-2), Bt (1), Po 

(1-tr) 

Cr (3-0), Chl (3-tr), Bt (2-tr), Po 

(2-0), Ccp (2-tr), Pn (2-tr), Cal 

(2-tr) 

Pl (8), Opx (3), Mag (3), WM 

(3), Cr (1), Po (1), Ccp (1), Pn (1) 

WM (3-1), Cr (2-0), Bt (1-0), Po 

(1-tr), Ccp (1-tr), Pn (1-0), Chl 

(1-0) 

Cr (8-tr), WM (5-2), Cpx (7-4), 

Srp (2), Po (2-1), Mag (1-tr), 

Ccp (1-tr), Pn (1-tr) 

Cr (5-2), WM (2-tr), Po (1-tr) 

Major (>10%) 

Pl (65-55), Opx (30), Cpx 

(15-5) 

Pl (70), Opx (25) 

Pl (57), Cpx (20), Opx (20) 

Opx (64-52), Pl (25-15), 

Cpx (18-5) 

Opx (72-71), Pl (20-15) 

Opx (73-1), Cpx (67-8), 

Pl (25-10), WM (15-3) 

Srp (44), Ol (20), Cpx (15) 

Pl (91-15), Opx (63-2), 

Cpx (40-1) 

Pl (38-20), Ol (25-20), 

Opx (31-30) 

Opx (61-60), Pl (20-18), 

Cpx (16-15) 

Grain Size 

MG-CG 

CG 

MG 

MG-CG 

MG 

CG 

MG-CG 

MG-CG 

MG 

MG-CG 

Rock Type 

Norite to Gabbronorite 

Norite 

Gabbronorite 

Gabbronorite to Olivine 

Gabbronorite 

Norite to Gabbronorite 

Orthopyroxenite/ 

Pyroxenite to Gabbro/ 

Gabbronorite 

Olivine Gabbronorite to 

Olivine Norite 

Anorthosite to 

Gabbronorite 

Olivine Gabbronorite to 

Olivine Norite 

Gabbronorite 

Cycle 

MZ 

BCU 

BCU 

BCU 

MCU 

MCU 

MCU 

FCU 

FCU 

UG2CU 

Stratigraphy 

HW3 

HW2 

HW1 

BAR 

MD1 

M1U 

M1L 

FW2 

PSDR 

UG2HW 
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Table 3. Plagioclase composition and anorthite (An) content (by EPMA-WDS). 

Sample SiO2 Al2O3 MgO CaO FeOt Na2O K2O Total An Cont. 

1096-1 52.12 29.74 0.03 13.21 0.33 3.99 0.26 99.72 63.7 

1096-2 51.15 30.41 0.03 13.91 0.40 3.49 0.22 99.65 67.9 

1096-3 51.18 30.66 0.02 14.14 0.39 3.41 0.24 100.08 68.7 

1096-4 50.78 30.92 0.01 14.20 0.34 3.37 0.19 99.84 69.2 

1096-5 50.38 30.96 0.03 14.39 0.39 3.22 0.24 99.61 70.2 

1096-6 50.10 31.22 0.03 14.67 0.38 3.13 0.18 99.74 71.4 

1096-7 51.19 30.37 0.03 13.89 0.35 3.58 0.27 99.71 67.1 

1184-1 48.77 32.00 0.03 15.70 0.28 2.44 0.19 99.40 77.2 

1184-2 49.50 31.67 0.04 15.19 0.35 2.69 0.18 99.66 74.9 

1184-3 49.74 31.75 0.02 15.10 0.31 2.82 0.23 100.00 73.7 

1184-4 48.87 32.01 0.04 15.54 0.33 2.51 0.18 99.51 76.6 

1184-5 50.36 31.19 0.04 14.71 0.33 3.06 0.25 99.97 71.6 

1184-6 49.96 31.25 0.03 14.68 0.34 3.04 0.25 99.58 71.7 

1184-7 49.55 31.49 0.04 14.80 0.34 2.85 0.26 99.37 73.0 

1213-1 51.07 30.19 0.04 13.74 0.42 3.62 0.29 99.41 66.6 

1213-2 50.88 30.52 0.02 13.92 0.37 3.51 0.25 99.52 67.7 

1213-3 51.43 30.26 0.03 13.72 0.38 3.67 0.24 99.77 66.5 

1213-4 49.52 31.44 0.03 15.06 0.32 2.90 0.18 99.44 73.4 

1213-5 50.56 30.84 0.03 14.30 0.41 3.21 0.28 99.64 70.0 

1213-6 50.89 30.71 0.02 14.18 0.39 3.41 0.29 99.92 68.5 

1213-7 51.25 30.30 0.03 13.86 0.46 3.62 0.27 99.81 66.9 

1226-1 48.82 31.95 0.05 15.78 0.38 2.57 0.15 99.78 76.6 

1226-2 49.83 31.28 0.03 15.05 0.32 2.90 0.21 99.66 73.2 

1226-3 48.38 32.20 0.03 16.08 0.44 2.38 0.15 99.67 78.2 

1226-4 48.61 32.35 0.02 15.85 0.31 2.50 0.14 99.78 77.2 

1226-5 49.01 31.80 0.04 15.63 0.36 2.55 0.15 99.56 76.5 

1226-6 48.53 32.11 0.04 15.95 0.34 2.46 0.14 99.59 77.5 

1226-7 49.83 31.33 0.05 14.90 0.35 2.96 0.19 99.62 72.7 

1232-1 54.12 28.72 0.03 11.62 0.19 4.81 0.38 99.90 55.9 

1232-2 54.23 28.84 0.03 11.69 0.20 4.82 0.39 100.33 56.0 

1232-3 52.60 29.73 0.03 12.80 0.22 4.08 0.34 99.84 62.2 

1232-4 54.09 28.67 0.03 11.56 0.17 4.87 0.31 99.75 55.7 

1232-5 49.88 31.50 0.03 14.93 0.20 2.90 0.22 99.68 73.0 

1232-6 53.66 29.06 0.03 12.12 0.21 4.48 0.38 100.10 58.6 

1232-7 49.68 31.70 0.02 14.95 0.20 2.94 0.11 99.64 73.3 

1233-1 51.33 30.43 0.03 13.61 0.25 3.59 0.32 99.69 66.4 

1233-2 51.19 30.86 0.04 14.12 0.21 3.44 0.29 100.25 68.2 

1233-3 53.21 29.50 0.03 12.47 0.20 4.42 0.30 100.19 59.9 

1233-4 51.40 30.54 0.04 13.79 0.22 3.56 0.38 100.03 66.7 

1233-5 51.31 30.52 0.03 13.60 0.24 3.62 0.31 99.65 66.3 

1233-6 50.71 30.73 0.03 14.29 0.24 3.29 0.29 99.62 69.4 

1233-7 51.39 30.69 0.03 13.85 0.26 3.40 0.34 99.98 67.9 

1238-1 53.41 28.63 0.02 11.76 0.19 4.64 0.51 99.22 56.6 

1238-2 51.26 30.48 0.03 13.81 0.23 3.56 0.26 99.67 67.2 

1238-3 51.44 30.58 0.03 13.54 0.23 3.60 0.29 99.72 66.4 

1238-4 54.51 28.58 0.03 11.33 0.18 4.91 0.39 99.97 54.8 

1238-5 51.17 30.52 0.02 13.71 0.19 3.61 0.27 99.59 66.7 

1238-6 55.10 28.41 0.02 11.00 0.15 5.17 0.39 100.29 52.8 

1238-7 51.03 30.56 0.03 13.77 0.19 3.55 0.24 99.40 67.2 

1245-1 53.75 28.93 0.03 11.87 0.21 4.79 0.26 99.87 56.9 
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Table 3. Plagioclase composition and anorthite (An) content (by 

EPMA-WDS; continued). 

Sample SiO2 Al2O3 MgO CaO FeOt Na2O K2O Total An Cont. 

1245-2 52.68 29.38 0.03 12.61 0.23 4.46 0.24 99.66 60.1 

1245-3 53.18 29.00 0.03 12.16 0.24 4.63 0.25 99.55 58.4 

1245-4 51.34 30.45 0.03 13.69 0.23 3.78 0.31 99.96 65.5 

1245-5 50.94 30.65 0.09 14.06 0.28 3.36 0.42 99.84 68.1 

1245-6 50.16 31.13 0.03 14.63 0.22 3.15 0.23 99.57 71.0 

1245-7 50.51 30.75 0.04 14.39 0.20 3.31 0.25 99.47 69.6 

1252-1 51.09 31.05 0.03 14.13 0.24 3.46 0.30 100.29 68.1 

1252-2 52.55 29.87 0.03 12.99 0.20 4.12 0.36 100.26 62.2 

1252-3 50.35 31.28 0.03 14.67 0.19 3.26 0.23 100.02 70.4 

1252-4 54.16 28.77 0.03 11.41 0.17 4.87 0.38 99.85 55.2 

1252-5 54.35 28.77 0.02 11.45 0.14 4.97 0.34 100.09 54.9 

1252-6 49.95 31.68 0.02 14.92 0.24 2.98 0.19 100.00 72.6 

1252-7 49.77 31.41 0.02 14.79 0.23 3.07 0.18 99.61 71.9 

1277-1 52.34 29.78 0.02 13.05 0.27 4.10 0.26 99.86 62.8 

1277-2 52.13 29.88 0.02 12.98 0.24 4.13 0.27 99.79 62.5 

1277-3 53.13 29.31 0.02 12.30 0.23 4.53 0.31 99.97 58.9 

1277-4 52.99 29.53 0.02 12.51 0.23 4.35 0.34 100.01 60.2 

1277-5 52.93 29.32 0.03 12.42 0.19 4.39 0.30 99.61 59.9 

1277-6 53.25 29.19 0.02 12.13 0.20 4.57 0.28 99.75 58.5 

1277-7 53.70 29.16 0.03 11.99 0.27 4.56 0.34 100.08 58.1 

1282-1 53.85 29.04 0.02 11.99 0.17 4.57 0.38 100.08 57.9 

1282-2 48.95 31.96 0.02 15.63 0.32 2.52 0.24 99.74 76.3 

1282-3 49.40 31.72 0.05 15.26 0.32 2.76 0.24 99.78 74.3 

1282-4 49.71 31.60 0.03 15.20 0.30 2.88 0.27 100.00 73.3 

1282-5 49.84 31.70 0.03 15.19 0.32 2.94 0.17 100.31 73.3 

1282-6 49.78 31.45 0.03 14.84 0.29 3.03 0.23 99.75 72.0 

1282-7 56.55 26.82 0.02 9.45 0.25 6.30 0.22 99.68 44.8 

1285-1 51.30 30.44 0.03 13.62 0.30 3.64 0.39 99.76 65.9 

1285-2 53.23 28.98 0.02 11.90 0.25 4.59 0.50 99.49 57.2 

1285-3 51.65 30.23 0.03 13.39 0.27 3.78 0.42 99.81 64.6 

1285-4 50.61 30.77 0.06 14.11 0.26 3.31 0.42 99.65 68.5 

1285-5 51.16 30.54 0.03 13.91 0.34 3.51 0.44 99.95 66.9 

1285-6 51.14 30.58 0.04 13.75 0.36 3.66 0.30 99.85 66.3 

1285-7 54.81 28.19 0.02 10.88 0.27 5.32 0.44 99.97 51.7 

1289-1 47.81 32.80 0.03 16.31 0.43 2.09 0.15 99.62 80.5 

1289-2 47.26 33.09 0.02 16.58 0.38 1.95 0.13 99.52 81.8 

1289-3 47.37 33.16 0.01 16.83 0.32 1.92 0.09 99.70 82.5 

1289-4 48.41 32.20 0.02 15.80 0.44 2.34 0.21 99.42 77.9 

1289-5 47.77 32.57 0.02 16.24 0.45 2.17 0.17 99.48 79.7 

1289-6 47.83 32.47 0.03 16.05 0.40 2.29 0.12 99.20 78.9 

1289-7 48.04 32.18 0.03 15.80 0.47 2.32 0.23 99.13 77.9 

1291B-1 47.69 32.83 0.06 16.45 0.39 2.09 0.15 99.67 80.6 

1291B-2 46.53 33.68 0.03 17.37 0.33 1.60 0.09 99.62 85.3 

1291B-3 48.34 32.66 0.03 16.13 0.33 2.27 0.11 99.86 79.2 

1291B-4 46.41 33.55 0.02 17.49 0.30 1.62 0.08 99.47 85.2 

1291B-5 47.91 32.62 0.03 16.12 0.35 2.26 0.17 99.49 79.0 

1291B-6 47.43 33.13 0.03 16.67 0.35 2.02 0.10 99.72 81.5 

1291B-7 47.44 33.19 0.02 16.98 0.34 2.02 0.07 100.19 82.0 

1292A-2-1 49.62 31.89 0.03 15.38 0.41 2.76 0.21 100.32 74.6 

1292A-2-2 48.85 31.89 0.03 15.64 0.46 2.63 0.18 99.70 75.9 

1292A-2-3 48.98 31.71 0.03 15.59 0.48 2.60 0.17 99.68 76.1 
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Table 3. Plagioclase composition and anorthite (An) content (by 

EPMA-WDS; continued). 
 

Sample SiO2 Al2O3 MgO CaO FeOt Na2O K2O Total An Cont. 

1292A-2-4 49.11 31.75 0.04 15.45 0.47 2.77 0.19 99.88 74.7 

1292A-2-5 48.35 31.99 0.05 16.04 0.54 2.39 0.19 99.58 77.9 

1292A-2-6 48.62 32.01 0.05 15.98 0.54 2.42 0.16 99.81 77.8 

1292A-2-7 48.36 32.22 0.04 15.95 0.51 2.48 0.17 99.88 77.3 

1296-1 49.30 31.80 0.04 15.31 0.37 2.73 0.17 99.72 74.9 

1296-2 49.38 31.77 0.04 15.34 0.31 2.73 0.18 99.76 74.8 

1296-3 49.27 31.70 0.04 15.53 0.38 2.69 0.19 99.84 75.3 

1296-4 49.28 31.76 0.04 15.52 0.36 2.66 0.18 99.80 75.5 

1296-5 48.35 32.12 0.04 16.13 0.37 2.29 0.15 99.48 78.9 

1296-6 49.23 31.74 0.04 15.37 0.33 2.80 0.20 99.74 74.3 

1296-7 49.32 31.67 0.04 15.34 0.35 2.73 0.18 99.65 74.8 

1300-1 49.82 31.46 0.05 15.05 0.35 2.83 0.23 99.80 73.6 

1300-2 49.00 31.87 0.05 15.68 0.35 2.58 0.17 99.71 76.3 

1300-3 49.06 31.73 0.03 15.67 0.26 2.66 0.19 99.71 75.7 

1300-4 49.07 31.81 0.05 15.51 0.34 2.64 0.18 99.63 75.7 

1300-5 49.69 31.66 0.04 15.19 0.32 2.81 0.21 99.93 74.0 

1300-6 50.04 31.17 0.04 14.84 0.37 3.05 0.23 99.84 71.9 

1300-7 49.16 31.69 0.04 15.33 0.34 2.70 0.21 99.50 74.9 

1311-1 49.25 31.52 0.04 15.24 0.30 2.77 0.21 99.32 74.3 

1311-2 49.39 31.42 0.04 15.09 0.31 2.83 0.24 99.34 73.6 

1311-3 51.40 30.03 0.03 13.40 0.29 3.66 0.36 99.20 65.5 

1311-4 49.20 31.71 0.02 15.34 0.25 2.69 0.16 99.39 75.2 

1311-5 50.44 30.84 0.03 14.39 0.31 3.20 0.27 99.58 70.2 

1311-6 51.31 30.50 0.04 13.84 0.32 3.63 0.24 99.92 66.9 

1311-7 50.06 31.39 0.02 14.90 0.31 3.00 0.25 99.92 72.2 

1319-1 51.30 30.50 0.03 13.91 0.27 3.44 0.36 99.91 67.6 

1319-2 49.63 31.52 0.03 15.40 0.26 2.82 0.26 99.92 74.0 

1319-3 49.23 32.28 0.02 15.69 0.30 2.49 0.18 100.22 76.9 

1319-4 49.14 31.78 0.04 15.29 0.29 2.65 0.22 99.55 75.1 

1319-5 52.10 30.03 0.03 13.14 0.23 3.93 0.40 100.00 63.4 

1319-6 48.28 32.43 0.02 15.86 0.29 2.45 0.14 99.48 77.5 

1319-7 49.60 31.26 0.01 15.12 0.23 2.17 1.24 99.70 73.7 

1325B-1 49.71 31.44 0.03 14.97 0.32 2.82 0.26 99.57 73.4 

1325B-2 49.52 31.68 0.03 15.34 0.38 2.77 0.23 99.97 74.4 

1325B-3 49.88 31.37 0.04 14.77 0.31 2.89 0.29 99.69 72.6 

1325B-4 51.57 30.30 0.04 13.45 0.37 3.54 0.43 99.73 66.0 

1325B-5 50.09 31.06 0.03 14.56 0.33 3.05 0.28 99.52 71.3 

1325B-6 50.87 30.76 0.03 14.40 0.25 3.31 0.29 99.93 69.4 

1325B-7 49.27 31.83 0.02 15.43 0.31 2.63 0.23 99.75 75.4 

1329-1 50.85 30.89 0.03 13.89 0.20 3.48 0.27 99.65 67.7 

1329-2 50.00 31.55 0.02 14.84 0.23 2.99 0.26 99.90 72.2 

1329-3 50.81 30.98 0.03 14.10 0.21 3.43 0.32 99.91 68.2 

1329-4 49.90 31.58 0.02 14.88 0.25 2.97 0.20 99.81 72.6 

1329-5 49.94 31.44 0.02 14.73 0.26 2.99 0.31 99.68 71.8 

1329-6 50.42 31.26 0.04 14.55 0.28 3.19 0.26 100.14 70.5 

1329-7 50.50 31.47 0.01 14.49 0.23 3.33 0.13 100.16 70.1 

1336-1 49.93 31.18 0.02 14.64 0.27 3.13 0.36 99.67 70.6 

1336-2 50.93 30.78 0.04 14.09 0.29 3.43 0.38 99.96 67.9 

1336-3 49.46 31.63 0.03 15.26 0.31 2.95 0.24 100.00 73.1 

1336-4 50.17 31.15 0.03 14.74 0.30 3.19 0.27 99.90 70.7 

1336-5 49.49 31.74 0.03 15.34 0.27 2.82 0.20 99.99 74.2 

1336-6 50.32 31.10 0.03 14.27 0.31 3.25 0.28 99.62 69.7 



 

 

83 

Table 3. Plagioclase composition and anorthite (An) content (by 

EPMA-WDS; continued). 
 

Sample SiO2 Al2O3 MgO CaO FeOt Na2O K2O Total An Cont. 

1336-7 50.48 31.16 0.03 14.67 0.28 3.21 0.28 100.25 70.5 

1339-1 50.81 31.14 0.03 14.36 0.25 3.30 0.34 100.33 69.3 

1339-2 50.73 30.95 0.02 14.26 0.19 3.31 0.36 99.82 69.0 

1339-3 51.50 30.19 0.03 13.51 0.20 3.53 0.60 99.65 65.5 

1339-4 50.17 31.16 0.03 14.43 0.28 3.12 0.37 99.64 70.3 

1339-5 50.39 31.10 0.02 14.32 0.27 3.19 0.33 99.65 69.9 

1339-6 50.88 31.14 0.02 14.13 0.24 3.34 0.36 100.12 68.6 

1339-7 50.87 31.00 0.03 14.17 0.24 3.29 0.42 100.02 68.7 

1343-1 50.86 30.73 0.03 14.00 0.21 3.43 0.35 99.68 67.9 

1343-2 50.41 31.09 0.03 14.57 0.22 3.22 0.27 99.84 70.3 

1343-3 50.29 31.34 0.02 14.65 0.21 3.13 0.26 99.98 71.0 

1343-4 49.96 31.47 0.03 14.65 0.22 3.08 0.27 99.80 71.3 

1343-5 50.92 30.66 0.02 13.80 0.24 3.45 0.34 99.55 67.5 

1343-6 50.02 31.16 0.02 14.55 0.22 3.10 0.25 99.31 71.1 

1343-7 50.99 30.53 0.02 13.84 0.21 3.52 0.40 99.63 66.9 

 

* Detection limits (wt.%): SiO2: 0.024, Al2O3: 0.019, MgO: 0.009, CaO: 0.018, FeOt: 0.026, 

Na2O: 0.012 and K2O: 0.014. 
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Table 4. Whole-rock strontium isotope data. 

Sample 
Depth 
(m) 

Sr 
(ppm) 

Rb 
(ppm) 

87Sr/86Sr 2 87Rb/86Sr 2 87Sr/86Sri 2 

1096 195.73 279.0 10.9 0.71154 0.00003 0.1130 0.0063 0.70825 0.00018 

1111 181.17 247.0 7.8 0.71082 0.00003 0.0914 0.0051 0.70817 0.00015 

1135 156.91 279.0 18.1 0.71483 0.00003 0.1878 0.0104 0.70938 0.00030 

1135 156.91 279.0 18.1 0.71489 0.00003 0.1878 0.0104 0.70944 0.00030 

1165 126.65 243.0 12.2 0.71082 0.00003 0.1453 0.0080 0.70661 0.00024 

1184 107.38 302.0 2.4 0.70883 0.00003 0.0230 0.0013 0.70816 0.00005 

1213 78.81 307.0 6.9 0.70996 0.00003 0.0650 0.0036 0.70807 0.00011 

1226 65.57 337.0 34.7 0.71596 0.00003 0.2981 0.0165 0.70730 0.00048 

1232 58.96 53.8 2.0 0.71205 0.00003 0.1076 0.0060 0.70893 0.00018 

1238 53.29 61.9 7.5 0.71696 0.00003 0.3508 0.0194 0.70678 0.00056 

1245 46.67 78.4 10.9 0.72045 0.00003 0.4027 0.0223 0.70876 0.00065 

1252 39.87 44.4 6.1 0.71888 0.00003 0.3978 0.0220 0.70732 0.00064 

1258 33.30 30.5 4.4 0.71897 0.00003 0.4177 0.0231 0.70684 0.00067 

1265 26.36 33.8 9.1 0.73043 0.00003 0.7805 0.0432 0.70777 0.00125 

1277 15.10 25.9 3.6 0.71937 0.00003 0.4025 0.0223 0.70768 0.00065 

1277 15.10 25.9 3.6 0.71960 0.00003 0.4025 0.0223 0.70791 0.00065 

1285 6.91 30.6 6.8 0.72805 0.00003 0.6441 0.0356 0.70935 0.00104 

1288 3.13 109.5 1.5 0.71022 0.00003 0.0396 0.0022 0.70907 0.00007 

1291B 0.15 67.4 1.6 0.70759 0.00003 0.0687 0.0038 0.70559 0.00011 

1291B 0.15 67.4 1.6 0.70766 0.00003 0.0687 0.0038 0.70567 0.00011 

1292A 0 513.0 31.7 0.71236 0.00003 0.1788 0.0099 0.70716 0.00029 

1300 -8.31 328.0 6.4 0.70828 0.00003 0.0564 0.0031 0.70664 0.00010 

1311 -19.78 280.0 13.2 0.71102 0.00003 0.1364 0.0075 0.70706 0.00022 

1319 -27.95 114.0 6.1 0.71071 0.00003 0.1548 0.0086 0.70621 0.00025 

1327 -35.89 103.5 3.1 0.70901 0.00003 0.0866 0.0048 0.70650 0.00014 

1336 -44.27 122.5 4.9 0.70866 0.00003 0.1157 0.0064 0.70530 0.00019 

1343 -52.01 78.7 2.0 0.70809 0.00003 0.0735 0.0041 0.70595 0.00012 

1359 -67.89 90.8 3.8 0.70955 0.00003 0.1211 0.0067 0.70604 0.00020 

1365 -73.80 34.4 0.8 0.70882 0.00003 0.0673 0.0037 0.70686 0.00011 

1376 -84.72 107.5 14.0 0.71954 0.00003 0.3771 0.0209 0.70859 0.00061 

1410 -118.7 30.3 0.2 0.70761 0.00003 0.0191 0.0011 - - 

1436 -144.44 5.4 0.1 0.71079 0.00003 0.0536 0.0030 - - 

1461 -169.66 30.0 0.8 0.74345 0.00003 0.0774 0.0043 - - 

1537 -245.28 64.6 0.2 0.70656 0.00003 0.0090 0.0005 - - 

1601 -309.51 100.5 0.2 0.70698 0.00003 0.0058 0.0003 - - 

LUD006 o/c 32.9 1.5 0.72238 0.00003 0.1321 0.0073 - - 

LUD007-2 o/c 47.9 124.0 0.94578 0.00004 7.6682 0.4255 - - 

LUD007-2 o/c 47.9 124.0 0.94583 0.00004 7.6679 0.4254 - - 

LUD008 o/c 10.3 0.6 0.71872 0.00003 0.1687 0.0094 - - 

LUD002 o/c 108.5 177.5 0.86381 0.00004 4.8093 0.2668 - -  

 

* Uncertainties for Sr and Rb concentrations are 5% based on ALS quality standards. 

Depth is relative to the contact between the Footwall and Merensky Cyclic Units located at 

1291.93 meters depth. 
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Table 5. Strontium isotope data from in-situ analyses of plagioclase. 

Sample Depth (m) 87Sr/86Sr 1 87Rb/86Sr 1 87Sr/86Sri 1 

1096_R -1096.33 0.70789 0.00023 0.00245 0.00009 0.70782 0.00023 

1096_C -1096.33 0.70806 0.00023 0.00505 0.00018 0.70791 0.00023 

1096_R -1096.33 0.70804 0.00023 0.00275 0.00010 0.70796 0.00023 

1096_C -1096.33 0.70756 0.00023 0.00157 0.00006 0.70752 0.00023 

1096_C -1096.33 0.70790 0.00023 0.00205 0.00007 0.70784 0.00023 

1096_R -1096.33 0.70808 0.00023 0.00411 0.00015 0.70796 0.00023 

1111_R -1110.89 0.70829 0.00023 0.00119 0.00011 0.70825 0.00023 

1111_C -1110.89 0.70807 0.00023 0.00164 0.00016 0.70802 0.00023 

1111_R -1110.89 0.70822 0.00023 0.00170 0.00016 0.70817 0.00023 

1111_C -1110.89 0.70814 0.00023 0.00203 0.00019 0.70808 0.00023 

1111_R -1110.89 0.70815 0.00023 0.00250 0.00024 0.70808 0.00023 

1111_C -1110.89 0.70766 0.00023 0.00183 0.00017 0.70760 0.00023 

1111_C -1110.89 0.70775 0.00023 0.00618 0.00059 0.70757 0.00023 

1135_W -1135.16 0.70865 0.00029 0.00393 0.00027 0.70854 0.00029 

1135_C -1135.16 0.70827 0.00029 0.00504 0.00035 0.70812 0.00029 

1135_R -1135.16 0.70888 0.00029 0.00762 0.00053 0.70866 0.00029 

1135_R -1135.16 0.70891 0.00029 0.01056 0.00073 0.70860 0.00029 

1135_C -1135.16 0.70830 0.00029 0.00539 0.00037 0.70815 0.00029 

1135_R -1135.16 0.70877 0.00029 0.01010 0.00070 0.70848 0.00029 

1135_R -1135.16 0.70868 0.00029 0.00250 0.00017 0.70861 0.00029 

1165_C -1165.42 0.70811 0.00023 0.01123 0.00106 0.70779 0.00023 

1165_R -1165.42 0.70786 0.00023 0.00421 0.00040 0.70773 0.00023 

1165_C -1165.42 0.70812 0.00023 0.00520 0.00049 0.70796 0.00023 

1165_R -1165.42 0.70839 0.00023 0.00371 0.00035 0.70828 0.00023 
1165_R -1165.42 0.70816 0.00023 0.01319 0.00125 0.70778 0.00023 

1165_R -1165.42 0.70819 0.00023 0.00800 0.00076 0.70796 0.00023 

1184_C -1184.68 0.70802 0.00023 0.00596 0.00021 0.70784 0.00023 

1184_C -1184.68 0.70805 0.00023 0.00747 0.00027 0.70784 0.00023 

1184_R -1184.68 0.70795 0.00023 0.01037 0.00037 0.70765 0.00023 

1184_R -1184.68 0.70775 0.00023 0.01020 0.00037 0.70745 0.00023 

1184_C -1184.68 0.70739 0.00023 0.00522 0.00019 0.70723 0.00023 

1184_C -1184.68 0.70776 0.00023 0.00300 0.00011 0.70767 0.00023 

1184_R -1184.68 0.70789 0.00023 0.00629 0.00023 0.70770 0.00023 

1213_R -1213.25 0.70799 0.00023 0.00356 0.00013 0.70789 0.00023 

1213_C -1213.25 0.70813 0.00023 0.00224 0.00008 0.70806 0.00023 

1213_C -1213.25 0.70812 0.00023 0.00355 0.00013 0.70802 0.00023 

1213_R -1213.25 0.70826 0.00023 0.00589 0.00021 0.70809 0.00023 

1213_C -1213.25 0.70792 0.00023 0.00306 0.00011 0.70783 0.00023 

1213_C -1213.25 0.70751 0.00023 0.00456 0.00016 0.70738 0.00023 

1213_C -1213.25 0.70824 0.00023 0.00272 0.00010 0.70816 0.00023 

1218_W -1218.19 0.70745 0.00022 0.00292 0.00019 0.70737 0.00022 

1218_C -1218.19 0.70740 0.00022 0.00496 0.00032 0.70725 0.00022 

1218_C -1218.19 0.70747 0.00022 0.00169 0.00011 0.70742 0.00022 

1218_R -1218.19 0.70726 0.00022 0.00335 0.00022 0.70716 0.00022 

1218_C -1218.19 0.70720 0.00022 0.00310 0.00020 0.70711 0.00022 

1218_W -1218.19 0.70713 0.00022 0.00102 0.00007 0.70710 0.00022 

1226_R -1226.5 0.70733 0.00023 0.00205 0.00019 0.70727 0.00023 

1226_C -1226.5 0.70768 0.00023 0.00175 0.00017 0.70763 0.00023 

1226_R -1226.5 0.70760 0.00023 0.00162 0.00015 0.70755 0.00023 

1226_C -1226.5 0.70805 0.00023 0.00148 0.00014 0.70800 0.00023 

1226_C -1226.5 0.70766 0.00023 0.00290 0.00028 0.70758 0.00023 

1226_R -1226.5 0.70682 0.00023 0.00129 0.00012 0.70678 0.00023 
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Table 5. Strontium isotope data from in-situ analyses of plagioclase 

(continued). 
 

Sample Depth (m) 87Sr/86Sr 1 87Rb/86Sr 1 87Sr/86Sri 1 

1226_R -1226.5 0.70757 0.00023 0.00068 0.00006 0.70755 0.00023 

1229_R -1229.65 0.70759 0.00024 0.00422 0.00044 0.70747 0.00024 

1229_C -1229.65 0.70814 0.00024 0.02378 0.00249 0.70745 0.00025 

1229_C -1229.65 0.70755 0.00024 0.00083 0.00009 0.70753 0.00024 

1229_C -1229.65 0.70821 0.00024 0.00331 0.00035 0.70811 0.00024 

1229_C -1229.65 0.70822 0.00024 0.00702 0.00074 0.70802 0.00024 

1232_C -1233.12 0.70799 0.00024 0.00190 0.00020 0.70794 0.00024 

1232_C -1233.12 0.70744 0.00024 0.00067 0.00007 0.70742 0.00024 

1232_R -1233.12 0.70748 0.00024 0.00049 0.00005 0.70746 0.00024 

1232_W -1233.12 0.70758 0.00024 0.00450 0.00047 0.70745 0.00024 

1232_R -1233.12 0.70758 0.00024 0.00120 0.00013 0.70754 0.00024 

1235_R -1235.09 0.70767 0.00022 0.00320 0.00015 0.70758 0.00022 

1235_R -1235.09 0.70738 0.00022 0.00134 0.00006 0.70734 0.00022 

1235_R -1235.09 0.70782 0.00022 0.00211 0.00010 0.70776 0.00022 

1235_R -1235.09 0.70767 0.00022 0.00220 0.00010 0.70760 0.00022 

1235_R -1235.09 0.70759 0.00022 0.00119 0.00006 0.70756 0.00022 

1235_C -1235.09 0.70758 0.00022 0.00319 0.00015 0.70749 0.00022 

1235_C -1235.09 0.70771 0.00022 0.00350 0.00016 0.70761 0.00022 

1238_R -1238.78 0.70756 0.00022 0.00418 0.00027 0.70744 0.00022 

1238_R -1238.78 0.70727 0.00022 0.00140 0.00009 0.70722 0.00022 

1238_R -1238.78 0.70694 0.00022 0.00129 0.00008 0.70690 0.00022 

1238_W -1238.78 0.70702 0.00022 0.00103 0.00007 0.70699 0.00022 

1238_W -1238.78 0.70764 0.00022 0.00202 0.00013 0.70758 0.00022 

1238_C -1238.78 0.70727 0.00022 0.00175 0.00011 0.70722 0.00022 

1238_W -1238.78 0.70746 0.00022 0.00155 0.00010 0.70742 0.00022 

1245_R -1245.39 0.70837 0.00022 0.00095 0.00005 0.70834 0.00022 

1245_R -1245.39 0.70832 0.00022 0.00076 0.00004 0.70830 0.00022 

1245_W -1245.39 0.70828 0.00022 0.00703 0.00039 0.70808 0.00022 

1245_C -1245.39 0.70838 0.00022 0.00351 0.00020 0.70827 0.00022 

1247_R -1247.23 0.70814 0.00022 0.00277 0.00013 0.70806 0.00022 

1247_R -1247.23 0.70841 0.00022 0.00673 0.00031 0.70821 0.00022 

1247_R -1247.23 0.70810 0.00022 0.00594 0.00028 0.70793 0.00022 

1247_R -1247.23 0.70803 0.00022 0.00157 0.00007 0.70799 0.00022 

1247_W -1247.23 0.70795 0.00022 0.00089 0.00004 0.70792 0.00022 

1247_C -1247.23 0.70803 0.00022 0.00308 0.00014 0.70794 0.00022 

1247_W -1247.23 0.70793 0.00022 0.00130 0.00006 0.70789 0.00022 

1252_C -1252.22 0.70832 0.00024 0.00346 0.00036 0.70822 0.00024 

1252_C -1252.22 0.70858 0.00024 0.00203 0.00021 0.70852 0.00024 

1252_C -1252.22 0.70790 0.00024 0.00114 0.00012 0.70786 0.00024 

1252_C -1252.22 0.70859 0.00024 0.00093 0.00010 0.70856 0.00024 

1252_C -1252.22 0.70789 0.00024 0.00106 0.00011 0.70786 0.00024 

1252_C -1252.22 0.70778 0.00024 0.00146 0.00015 0.70774 0.00024 

1253_W -1253.56 0.70918 0.00022 0.01012 0.00057 0.70888 0.00022 

1253_W -1253.56 0.70881 0.00022 0.00250 0.00014 0.70873 0.00022 

1253_C -1253.56 0.70856 0.00022 0.00192 0.00011 0.70851 0.00022 

1253_W -1253.56 0.70803 0.00022 0.00045 0.00003 0.70802 0.00022 

1253_R -1253.56 0.70817 0.00022 0.00105 0.00006 0.70814 0.00022 

1253_C -1253.56 0.70850 0.00022 0.00135 0.00008 0.70846 0.00022 

1253_R -1253.56 0.70837 0.00022 0.00099 0.00006 0.70834 0.00022 

1256_R -1256.18 0.70867 0.00026 0.00344 0.00021 0.70857 0.00026 

1256_W -1256.18 0.70818 0.00026 0.00400 0.00025 0.70806 0.00026 
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Table 5. Strontium isotope data from in-situ analyses of plagioclase (continued). 
 

Sample Depth (m) 87Sr/86Sr 1 87Rb/86Sr 1 87Sr/86Sri 1 

1256_W -1256.18 0.70880 0.00026 0.00433 0.00027 0.70867 0.00026 

1256_W -1256.18 0.70839 0.00026 0.00404 0.00025 0.70827 0.00026 

1256_W -1256.18 0.70854 0.00026 0.00514 0.00032 0.70839 0.00026 

1256_C -1256.18 0.70888 0.00026 0.00517 0.00032 0.70873 0.00026 

1256_W -1256.18 0.70865 0.00026 0.00689 0.00042 0.70845 0.00026 

1260_R -1260.88 0.70938 0.00029 0.00500 0.00035 0.70924 0.00029 

1260_R -1260.88 0.70885 0.00029 0.00579 0.00040 0.70868 0.00029 

1260_C -1260.88 0.70924 0.00029 0.00139 0.00010 0.70920 0.00029 

1260_C -1260.88 0.70893 0.00029 0.00335 0.00023 0.70883 0.00029 

1260_C -1260.88 0.70900 0.00029 0.00668 0.00046 0.70881 0.00029 

1260_C -1260.88 0.70916 0.00029 0.00938 0.00065 0.70888 0.00029 

1260_R -1260.88 0.70896 0.00029 0.00869 0.00060 0.70871 0.00029 

1265_C -1265.68 0.70859 0.00026 0.00189 0.00012 0.70854 0.00026 

1265_C -1265.68 0.70863 0.00026 0.00771 0.00047 0.70841 0.00026 

1265_C -1265.68 0.70947 0.00026 0.01945 0.00120 0.70890 0.00026 

1265_C -1265.68 0.70890 0.00026 0.00478 0.00029 0.70876 0.00026 

1265_C -1265.68 0.70844 0.00026 0.00230 0.00014 0.70837 0.00026 

1265_R -1265.68 0.70903 0.00026 0.00354 0.00022 0.70893 0.00026 

1265_R -1265.68 0.70848 0.00026 0.00315 0.00019 0.70839 0.00026 

1273_C -1213.25 0.70774 0.00023 0.00568 0.00020 0.70758 0.00023 

1273_C -1272.95 0.70784 0.00023 0.00083 0.00003 0.70781 0.00023 

1273_R -1272.95 0.70772 0.00023 0.00099 0.00004 0.70769 0.00023 

1273_C -1272.95 0.70776 0.00023 0.00065 0.00002 0.70774 0.00023 

1273_C -1272.95 0.70779 0.00023 0.00086 0.00003 0.70777 0.00023 

1273_R -1272.95 0.70776 0.00023 0.00070 0.00003 0.70774 0.00023 

1273_C -1272.95 0.70789 0.00023 0.00138 0.00005 0.70785 0.00023 

1277_C -1276.94 0.70741 0.00022 0.00305 0.00020 0.70732 0.00022 

1277_C -1276.94 0.70754 0.00022 0.00124 0.00008 0.70750 0.00022 

1277_C -1276.94 0.70789 0.00022 0.01034 0.00066 0.70759 0.00023 

1277_W -1276.94 0.70758 0.00022 0.00538 0.00035 0.70742 0.00022 

1277_R -1276.94 0.70767 0.00022 0.00340 0.00022 0.70757 0.00022 

1285_C -1285.12 0.70799 0.00018 0.01300 0.00075 0.70762 0.00018 

1285_C -1285.12 0.70784 0.00018 0.01157 0.00067 0.70750 0.00018 

1285_C -1285.12 0.70800 0.00018 0.00868 0.00050 0.70775 0.00018 

1285_C -1285.12 0.70775 0.00018 0.01002 0.00058 0.70746 0.00018 

1285_C -1285.12 0.70769 0.00018 0.01381 0.00079 0.70729 0.00018 

1285_C -1285.12 0.70791 0.00018 0.01993 0.00115 0.70734 0.00018 

1285_C -1285.12 0.70782 0.00018 0.01273 0.00073 0.70745 0.00018 

1286_C -1286.03 0.70737 0.00022 0.00815 0.00052 0.70714 0.00022 

1286_C -1286.03 0.70748 0.00022 0.01994 0.00128 0.70690 0.00023 

1286_R -1286.03 0.70788 0.00022 0.01512 0.00097 0.70744 0.00023 

1286_R -1286.03 0.70795 0.00022 0.02027 0.00130 0.70736 0.00023 

1291_C -1291.87 0.70624 0.00026 0.00217 0.00013 0.70617 0.00026 

1291_R -1291.87 0.70630 0.00026 0.00058 0.00004 0.70629 0.00026 

1291_R -1291.87 0.70625 0.00026 0.00181 0.00011 0.70620 0.00026 

1291_C -1291.87 0.70633 0.00026 0.00061 0.00004 0.70631 0.00026 

1291_R -1291.87 0.70603 0.00026 0.00104 0.00006 0.70600 0.00026 

1291_R -1291.87 0.70619 0.00026 0.00184 0.00011 0.70614 0.00026 

1291_R -1291.87 0.70615 0.00026 0.00340 0.00021 0.70605 0.00026 

1292_C -1292.1 0.70656 0.00018 0.00659 0.00038 0.70637 0.00018 

1292_C -1292.1 0.70653 0.00018 0.00874 0.00050 0.70628 0.00018 
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Table 5. Strontium isotope data from in-situ analyses of plagioclase (continued). 
 

Sample Depth (m) 87Sr/86Sr 1 87Rb/86Sr 1 87Sr/86Sri 1 

1292_C -1292.1 0.70641 0.00018 0.00843 0.00048 0.70617 0.00018 

1292_R -1292.1 0.70649 0.00018 0.00862 0.00050 0.70624 0.00018 

1292_C -1292.1 0.70661 0.00018 0.00830 0.00048 0.70637 0.00018 

1292_R -1292.1 0.70627 0.00018 0.00842 0.00048 0.70603 0.00018 

1292_R -1292.1 0.70634 0.00018 0.00752 0.00043 0.70612 0.00018 

1294_C -1294.07 0.70614 0.00017 0.00381 0.00030 0.70603 0.00017 

1294_C -1294.07 0.70657 0.00017 0.00396 0.00031 0.70645 0.00017 

1294_C -1294.07 0.70633 0.00017 0.00278 0.00022 0.70625 0.00017 

1294_C -1294.07 0.70647 0.00017 0.00305 0.00024 0.70638 0.00017 

1294_R -1294.07 0.70653 0.00017 0.00447 0.00035 0.70640 0.00017 

1294_C -1294.07 0.70586 0.00017 0.00389 0.00030 0.70575 0.00017 

1294_C -1294.07 0.70631 0.00017 0.00356 0.00028 0.70620 0.00017 

1296_R -1295.92 0.70639 0.00022 0.00193 0.00011 0.70633 0.00022 

1296_C -1295.92 0.70634 0.00022 0.00136 0.00008 0.70631 0.00022 

1296_C -1295.92 0.70632 0.00022 0.00326 0.00018 0.70623 0.00022 

1296_W -1295.92 0.70615 0.00022 0.00202 0.00011 0.70609 0.00022 

1296_W -1295.92 0.70640 0.00022 0.00090 0.00005 0.70637 0.00022 

1296_W -1295.92 0.70606 0.00022 0.00111 0.00006 0.70603 0.00022 

1300_C -1300.38 0.70669 0.00026 0.00995 0.00061 0.70640 0.00026 

1300_R -1300.38 0.70680 0.00026 0.00784 0.00048 0.70657 0.00026 

1300_C -1300.38 0.70667 0.00026 0.00939 0.00058 0.70640 0.00026 

1300_C -1300.38 0.70677 0.00026 0.00622 0.00038 0.70659 0.00026 

1300_C -1300.38 0.70709 0.00026 0.00792 0.00049 0.70686 0.00026 

1300_C -1300.38 0.70692 0.00026 0.00886 0.00055 0.70666 0.00026 

1300_C -1300.38 0.70642 0.00026 0.00883 0.00054 0.70617 0.00026 

1311_C -1311.83 0.70680 0.00024 0.00378 0.00033 0.70669 0.00024 

1311_C -1311.83 0.70675 0.00024 0.00418 0.00037 0.70663 0.00024 

1311_C -1311.83 0.70653 0.00024 0.00985 0.00087 0.70624 0.00024 

1311_C -1311.83 0.70687 0.00024 0.00811 0.00072 0.70663 0.00024 

1311_W -1311.83 0.70679 0.00024 0.00525 0.00046 0.70663 0.00024 

1311_C -1311.83 0.70652 0.00024 0.00770 0.00068 0.70629 0.00024 

1311_C -1311.83 0.70688 0.00024 0.00964 0.00085 0.70660 0.00024 

1311_R -1311.83 0.70611 0.00024 0.00670 0.00059 0.70592 0.00024 

1311_R -1311.83 0.70639 0.00024 0.00422 0.00037 0.70627 0.00024 

1314_C -1314.61 0.70609 0.00017 0.00242 0.00019 0.70602 0.00017 

1314_R -1314.61 0.70657 0.00017 0.00330 0.00026 0.70648 0.00017 

1314_C -1314.61 0.70662 0.00017 0.00346 0.00027 0.70652 0.00017 

1314_R -1314.61 0.70652 0.00017 0.00426 0.00033 0.70640 0.00017 

1314_R -1314.61 0.70673 0.00017 0.00525 0.00041 0.70658 0.00017 

1314_C -1314.61 0.70677 0.00017 0.00627 0.00049 0.70658 0.00018 

1314_C -1314.61 0.70661 0.00017 0.00577 0.00045 0.70644 0.00017 

1319_R -1320.02 0.70676 0.00022 0.00215 0.00012 0.70670 0.00022 

1319_R -1320.02 0.70647 0.00022 0.00338 0.00019 0.70637 0.00022 

1319_R -1320.02 0.70673 0.00022 0.00479 0.00027 0.70659 0.00022 

1319_C -1320.02 0.70653 0.00022 0.00500 0.00028 0.70638 0.00022 

1319_C -1320.02 0.70671 0.00022 0.00541 0.00030 0.70655 0.00022 

1319_C -1320.02 0.70634 0.00022 0.00474 0.00027 0.70620 0.00022 

1322_C -1322.65 0.70664 0.00022 0.00467 0.00022 0.70650 0.00022 

1322_C -1322.65 0.70662 0.00022 0.00428 0.00020 0.70650 0.00022 

1322_R -1322.65 0.70676 0.00022 0.00910 0.00042 0.70649 0.00022 

1322_C -1322.65 0.70640 0.00022 0.00429 0.00020 0.70628 0.00022 
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Table 5. Strontium isotope data from in-situ analyses of plagioclase (continued). 
 

Sample Depth (m) 87Sr/86Sr 1 87Rb/86Sr 1 87Sr/86Sri 1 

1322_C -1322.65 0.70663 0.00022 0.00842 0.00039 0.70638 0.00022 

1322_R -1322.65 0.70637 0.00022 0.00461 0.00021 0.70624 0.00022 

1322_C -1322.65 0.70629 0.00022 0.00590 0.00027 0.70612 0.00022 

1327_C -1327.94 0.70683 0.00028 0.00321 0.00022 0.70674 0.00028 

1327_W -1327.94 0.70705 0.00028 0.00531 0.00037 0.70689 0.00028 

1327_C -1327.94 0.70682 0.00028 0.00439 0.00030 0.70669 0.00028 

1327_C -1327.94 0.70660 0.00028 0.00645 0.00045 0.70641 0.00028 

1327_C -1327.94 0.70680 0.00028 0.00206 0.00014 0.70674 0.00028 

1327_R -1327.94 0.70655 0.00028 0.00137 0.00010 0.70651 0.00028 

1327_C -1327.94 0.70678 0.00028 0.00312 0.00022 0.70669 0.00028 

1331_R -1331.59 0.70627 0.00022 0.00308 0.00014 0.70618 0.00022 

1331_C -1331.59 0.70653 0.00022 0.00346 0.00016 0.70643 0.00022 

1331_C -1331.59 0.70644 0.00022 0.00285 0.00013 0.70635 0.00022 

1331_R -1331.59 0.70624 0.00022 0.00582 0.00027 0.70607 0.00022 

1331_C -1331.59 0.70658 0.00022 0.00692 0.00032 0.70637 0.00022 

1331_C -1331.59 0.70645 0.00022 0.00909 0.00042 0.70618 0.00022 

1331_C -1331.59 0.70618 0.00022 0.00424 0.00020 0.70606 0.00022 

1336_C -1336.34 0.70684 0.00017 0.01165 0.00091 0.70650 0.00018 

1336_R -1336.34 0.70677 0.00017 0.00557 0.00043 0.70660 0.00017 

1336_C -1336.34 0.70661 0.00017 0.00298 0.00023 0.70653 0.00017 

1336_R -1336.34 0.70692 0.00017 0.00694 0.00054 0.70672 0.00018 

1336_C -1336.34 0.70650 0.00017 0.00429 0.00033 0.70638 0.00017 

1336_C -1336.34 0.70684 0.00017 0.01117 0.00087 0.70651 0.00018 

1336_R -1336.34 0.70703 0.00017 0.00831 0.00065 0.70678 0.00018 

1339_R -1339.2 0.70638 0.00024 0.00920 0.00097 0.70611 0.00024 

1339_R -1339.2 0.70718 0.00024 0.01418 0.00149 0.70677 0.00024 

1339_C -1339.2 0.70670 0.00024 0.00403 0.00042 0.70658 0.00024 

1339_W -1339.2 0.70641 0.00024 0.00409 0.00043 0.70629 0.00024 

1339_C -1339.2 0.70624 0.00024 0.00563 0.00059 0.70608 0.00024 

1343_W -1343.84 0.70611 0.00023 0.00655 0.00062 0.70592 0.00023 

1343_R -1343.84 0.70639 0.00023 0.00354 0.00034 0.70629 0.00023 

1343_W -1343.84 0.70626 0.00023 0.00665 0.00063 0.70607 0.00023 

1343_W -1343.84 0.70649 0.00023 0.00539 0.00051 0.70633 0.00023 

1343_C -1343.84 0.70614 0.00023 0.00281 0.00027 0.70606 0.00023 

1343_C -1343.84 0.70638 0.00023 0.00510 0.00048 0.70623 0.00023 

1343_R -1343.84 0.70626 0.00023 0.00503 0.00048 0.70611 0.00023 

 

* C = core, R = rim, W = whole plagioclase (grain too small for core or rim analysis) 
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Table 6. Cr/Mgo values with depth in UMT094. 

Sample Depth Cr (ppm) MgO (%) Cr/MgO 

UMT094-1096 -1096.21 480 6.8 70.6 

UMT094-1111 -1110.77 670 9.1 74.0 

UMT094-1135 -1135.03 570 7.7 73.6 

UMT094-1165 -1165.29 580 8.2 70.5 

UMT094-1184 -1184.56 390 6.0 64.6 

UMT094-1213 -1213.13 250 5.1 48.7 

UMT094-1218 -1218.07 1200 12.4 97.2 

UMT094-1226 -1226.37 380 3.8 100.3 

UMT094-1228 -1228.04 2330 23.9 97.5 

UMT094-1232 -1232.98 2850 25.0 114.0 

UMT094-1233 -1233.26 2840 23.1 122.9 

UMT094-1238 -1238.65 2830 23.3 121.5 

UMT094-1245 -1245.27 2720 23.5 115.7 

UMT094-1252 -1252.07 2910 25.3 115.0 

UMT094-1254 -1254.10 3230 26.8 120.5 

UMT094-1258 -1258.64 3770 26.9 140.1 

UMT094-1265 -1265.58 3400 25.5 133.3 

UMT094-1273 -1273.51 1860 14.6 127.4 

UMT094-1277 -1276.84 2970 26.4 112.5 

94-1278 -1278.56 3110 25.7 121.0 

94-1279 -1279.71 4900 31.4 156.1 

UMT094-1282 -1282.51 6280 23.7 265.0 

UMT094-1285 -1285.03 5660 25.9 218.5 

UMT094-1286 -1285.91 3730 22.7 164.3 

UMT094-1288 -1288.81 7310 15.1 484.1 

UMT094-1289 -1289.62 6020 13.9 433.1 

UMT094-1291A -1291.54 3690 14.2 260.8 

UMT094-1291B -1291.79 3230 28.7 112.5 

UMT094-1292A -1291.94 390 1.6 246.8 

UMT094-1292B -1292.74 920 5.0 182.5 

UMT094-1294 -1293.98 480 2.7 177.8 

UMT094-1296 -1295.78 1430 8.1 176.1 

UMT094-1300 -1300.25 1960 9.4 207.6 

UMT094-1311 -1311.72 6630 12.4 534.7 

UMT094-1319 -1319.89 4070 19.9 205.0 

UMT094-1325A -1325.31 2880 22.3 129.1 

UMT094-1325B -1325.75 3120 15.3 203.9 

UMT094-1326A -1325.97 4460 22.3 200.0 

UMT094-1326B -1326.67 4030 24.3 165.8 

UMT094-1327 -1327.83 4130 21.1 195.7 

UMT094-1329 -1329.78 3500 24.8 141.1 

UMT094-1332 -1332.55 2950 21.8 135.3 

UMT094-1335 -1335.80 2190 17.4 126.2 

UMT094-1336 -1336.21 3790 23.5 161.3 

94-1336 -1336.10 4090 21.3 192.0 

UMT094-1337 -1337.88 12453 23.1 539.1 

UMT094-1339 -1339.09 8700 24.6 353.7 

UMT094-1340 -1340.10 8010 23.1 346.8 

UMT094-1343 -1343.72 9700 23.1 419.9 

UMT094-1351 -1351.71 5810 25.6 227.0 

94-1359 -1359.67 7260 26.4 275.0 

UMT094-1365 -1365.74 19637 28.4 691.4 

94-1366 -1366.64 45089 18.4 2457.2 
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Table 6. Cr/Mgo values with depth in UMT094 continued. 

 

Sample Depth Cr (ppm) MgO (%) Cr/MgO 

94-1376 -1376.52 1020 15.3 66.7 

UMT094-1384 -1384.07 170 25.3 6.7 

94-1386 -1386.83 100 24.0 4.2 

UMT094-1402 -1402.00 26000 21.8 1192.7 

94-1405 -1405.08 110 32.5 3.4 

94-1410 -1410.50 170 11.7 14.5 

94-1412 -1412.56 20 23.4 0.9 

94-1421 -1420.77 30 27.8 1.1 

94-1424 -1424.64 80 26.5 3.0 
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12. Appendices 

Appendix A: Element distribution maps 

In-situ laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) element 

distribution maps were completed to: first, assess trace element zonation in plagioclase; second, 

compare element distribution in altered versus fresh plagioclase and pyroxene; and third, assess 

compositional differences between cumulate and intercumulate plagioclase among the samples 

analyzed. Four samples were chosen: (1) sample UMT094-1311, containing cumulate plagioclase 

with weak alteration (Fig. A1); (2) sample UMT094-1238, containing intercumulate plagioclase 

with no alteration (Fig. A2); (3) sample UMT094-1285, having intercumulate plagioclase with 

moderate alteration (Fig. A3); and (4) sample UMT094-1282, containing intercumulate 

plagioclase with pervasive alteration (Fig. A4). 

A.1 Alteration 

The elemental distribution maps show 3 prominent types of alteration: (1) alteration within 

plagioclase, (2) semi-massive fine-grained alteration within the sample, and (3) alteration within 

fractures dominantly in pyroxene. The alteration within plagioclase is characterized by high K 

and Rb. Semi-massive alteration is represented by high K, Rb, Sr and Eu. Alteration within 

fractures is high in Cs and rarely Pb. Other elements commonly associated with alteration are Al, 

Ga and some LREE (La, Ce, Pr and Nd). 

A.2 Cumulate vs. intercumulate 
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Geochemical comparison between cumulate and intercumulate plagioclase is essential because 

they represent two types of formation and could have signatures representing these different 

processes. Cumulate plagioclase could have been formed in a previous holding chamber before 

being brought into the BIC magma chamber and deposited or could represent geochemical 

signatures of the magma chamber at the time of formation (Roelofse et al. 2015). Intercumulate 

plagioclase can be the last phase to form during the crystallization of a cumulate rock and can 

represent the crystallization of the last intercumulate liquid, which could result in plagioclase 

having a different chemical composition than cumulate plagioclase (Prevec et al. 2005; Chutas et 

al. 2012; Yang et al. 2013). Although chemical changes should be present between the cumulate 

and intercumulate plagioclase due to forming from different processes, their chemical signatures 

are relatively the same. Only one minor difference can be observed, which is the presence of 

zoned Ba in the cumulate plagioclase where intercumulate plagioclase has no zonation in Ba. 

Although there are only minor differences in major and trace element geochemistry between 

cumulate and intercumulate plagioclase, isotopic differences can occur between the two have 

been documented in the Bushveld (Chutas et al. 2012; Yang et al. 2013). 

A.3 Plagioclase zonation 

Zonation in plagioclase is not prominent in both the cumulate and intercumulate plagioclase. As 

mentioned above, the cumulate plagioclase shows zonation in Ba from high at the core to low at 

the rim. Both cumulate and intercumulate plagioclase show very minor zonation in La and Ce, 

also higher at the core and lower at the rims. All other elements show no zonation within 

plagioclase. 

A.4 Pyroxene 
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Both opx and cpx were present during the analysis of plagioclase. Although the maps were 

focused on the plagioclase, one can see geochemical trends within the pyroxenes. Both opx and 

cpx have minor zonation in elements such as Zr, Ti, Y, REE and Cr. The most prominent 

zonation is Zr with typically the pyroxene having a Zr-depleted core and Zr-rich rim. This has 

been interpreted as interaction with fluids during post-cumulate processes as seen in gabbroic 

intrusions (Gao et al. 2007). Cr also show a moderate zonation from core (high) to rim (low) but 

is the only element that has a higher concentration at the core than at the rim. Both Y and Ti show 

lower concentrations at the core and higher at the rims, similar to Zr but with less of a contrast 

between core and rim but possibly related to similar processes as Zr. The REE show a zonation 

from high in the rim to low at the core within cpx but not opx. Within sample UMT094-1282, an 

altered sample occurring within the MCU, a Na-Al-rich amphibole (lower left corner) is present 

adjacent to opx (lower right corner) and plagioclase altering to white mica. 

A.5 Interpretation 

The goal of the elemental distribution maps was to identify if there was zonation within the 

cumulate or intercumulate plagioclase, which would affect the EMPA of plagioclase to measure 

anorthite content. Other than minor zonation for Ba in cumulate plagioclase and La and Ce in 

intercumulate plagioclase, no other zonation was present within plagioclase. Therefore, EPMA 

data from core to rim for anorthite content of plagioclase will not be affected. The lack of 

chemical difference between the cumulate and intercumulate plagioclase is likely due to both 

forming from similar melts with possibly different isotopic signatures (Chutas et al. 2012; Yang 

et al. 2013). The zonation within both cpx and opx of Ti, Zr and REE from high in the rim and 

lower at the core indicates that there might have been interaction with pyroxene crystals and post-

cumulate fluids (Gao et al. 2007). The faint zonation of high-Cr at the core to low-Cr at the rims 
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indicate that this might be primary zonation in pyroxene or replacement of Cr with Ti, Zr and 

REE in the rim. Three types of alteration are seen through the samples: (1) alteration within 

plagioclase, (2) black semi-massive alteration, and (3) alteration with fraction of pyroxene. 

Alteration within plagioclase is recognized dominantly by high K-Rb-Ba and likely represents the 

formation of white mica. This alteration usually occurs at the core of plagioclase or pockets 

throughout. Black semi-massive fine-grain alteration can be identified by high Na-Sr-Eu-Ca and 

is usually pervasive throughout the samples, almost completely replacing intercumulate 

plagioclase in between cumulate pyroxene. This alteration is commonly found in pegmatoidal 

feldspathic pyroxenites and can be associated with the presence amphiboles. The last alteration is 

strongly correlated with pyroxene and occurs only within or at grain edges of pyroxene. This 

alteration can be identified with very high Cs. 
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A.7 Figures 

 

Figure A 1. LA-ICP-MS elemental distribution maps of sample UMT094-1311. Elements have 

been separated into rows based on mineral association. The first two rows are elements strongly 

associated with clinopyroxene (augite), the third row is elements associated with plagioclase and 

the fourth row are elements associated with alteration. Both fifth and sixth row are the REE and 

the last row is Pb isotopes; 204Pb, 206Pb, 207Pb and 208Pb respectively. Small inset in cross-

polarized light was added of the thin section mapped. 
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Figure A 2. LA-ICP-MS elemental distribution maps of sample 094-1238. Elements have been 

separated into rows based on mineral association. The first 2 rows are elements strongly 

associated with orthopyroxene, the third row is elements associated with plagioclase and the 

fourth row are elements associated with alteration. Both fifth and sixth row are the REE and the 

last row is Pb isotopes; 204Pb, 206Pb, 207Pb and 208Pb respectively. Small inset in crossed-polarized 

light was added of the thin section mapped. 
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Figure A 3. LA-ICP-MS elemental distribution maps of sample 094-1285. Elements have been 

separated into rows based on mineral association. The first 2 rows are elements strongly 

associated with clinopyroxene, the third row is elements associated with plagioclase and the 

fourth row are elements associated with alteration. Both fifth and sixth row are the REE and the 

last row is Pb isotopes; 204Pb, 206Pb, 207Pb and 208Pb respectively. Small inset in crossed-polarized 

light was added of the thin section mapped. 
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Figure A 4. Figure B4. LA-ICP-MS elemental distribution maps of sample 094-1282. Elements 

have been separated into rows based on mineral association. The first 2 rows are elements 

strongly associated with orthopyroxene, the third row is elements associated with plagioclase and 

clinopyroxene, and the fourth row are elements associated with alteration. Both fifth and sixth 

row are the REE and the last row is Pb isotopes; 204Pb, 206Pb, 207Pb and 208Pb respectively. Small 

inset in crossed-polarized light was added of the thin section mapped.  
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Appendix B: Whole-rock geochemistry 

Sample Sampler Lithology Stratigraphy From Bottom of MCU 

(m) 
From (m) To (m) 

UMT094-1096 CM GN MZ 195.73 1096.21 1096.45 

UMT094-1111 CM GN MZ 181.17 1110.77 1111.01 

UMT094-1135 CM GN MZ 156.91 1135.03 1135.28 

UMT094-1165 CM GN MZ 126.65 1165.29 1165.54 
UMT094-1184 CM GN MZ 107.38 1184.56 1184.8 

UMT094-1213 CM MAN BCU 78.81 1213.13 1213.36 

UMT094-1218 CM NC BCU 73.87 1218.07 1218.31 

UMT094-1226 CM NC BCU 65.57 1226.37 1226.62 

UMT094-1228 CM FPX BCU 63.9 1228.04 1228.3 
UMT094-1232 CM FPX BCU 58.96 1232.98 1233.26 

UMT094-1233 CM FPX MCU 58.68 1233.26 1233.59 

UMT094-1238 CM FPX MCU 53.29 1238.65 1238.91 

UMT094-1245 CM FPX MCU 46.67 1245.27 1245.5 

UMT094-1252 CM FPX MCU 39.87 1252.07 1252.36 
UMT094-1254 CM FPX MCU 37.84 1254.1 1254.95 

UMT094-1258 CM FPX MCU 33.3 1258.64 1259.64 

UMT094-1265 CM FPX MCU 26.36 1265.58 1266.58 

UMT094-1273 CM FPX MCU 18.43 1273.51 1273.89 

UMT094-1277 CM PGFPX MCU 15.1 1276.84 1277.04 
UMT094-1282 CM PGFPX MCU 9.43 1282.51 1282.72 

UMT094-1285 CM PGFPX MCU 6.91 1285.03 1285.21 

UMT094-1286 CM PGFPX MCU 6.03 1285.91 1286.14 

UMT094-1288 CM PGFPX MCU 3.13 1288.81 1289.09 

UMT094-1289 CM FPX MCU 2.32 1289.62 1289.85 

UMT094-1291A CM FPX MCU 0.4 1291.54 1291.79 

UMT094-1291B CM OLPX MCU 0.15 1291.79 1291.94 

UMT094-1292A CM NC FCU 0 1291.94 1292.25 
UMT094-1292B CM NC FCU -0.8 1292.74 1292.92 

UMT094-1294 CM AN FCU -2.04 1293.98 1294.16 

UMT094-1296 CM NC FCU -3.84 1295.78 1296.05 

UMT094-1300 CM NC FCU -8.31 1300.25 1300.5 

UMT094-1311 CM GN FCU -19.78 1311.72 1311.93 
UMT094-1319 CM FPX FCU -27.95 1319.89 1320.15 

UMT094-1325A CM PX FCU -33.37 1325.31 1325.52 

UMT094-1325B CM NC FCU -33.81 1325.75 1325.93 

UMT094-1326A CM FPX FCU -34.03 1325.97 1326.28 

UMT094-1326B CM PX FCU -34.73 1326.67 1326.91 
UMT094-1327 CM FPX FCU -35.89 1327.83 1328.05 

UMT094-1329 CM PX FCU -37.84 1329.78 1330 

UMT094-1332 CM FPX FCU -40.61 1332.55 1332.79 

UMT094-1335 CM FPX PSDR -43.86 1335.8 1335.98 

UMT094-1336 CM OLFPX PSDR -44.27 1336.21 1336.47 
UMT094-1337 CM FPX PSDR -45.94 1337.88 1338.1 

UMT094-1339 CM FPX UG2HW -47.15 1339.09 1339.31 

UMT094-1340 CM FPX UG2HW -48.16 1340.1 1340.26 

UMT094-1343 CM FPX UG2HW -51.78 1343.72 1343.95 

UMT094-1351 CM PAPX UG2HW -59.77 1351.71 1351.94 
UMT094-1365 CM PAPX UG2FW -73.8 1365.74 1365.93 

UMT094-1384 CM PAPX UG2FW -92.13 1384.07 1384.31 

UMT094-1402 CM PAPX UG2FW -110.06 1402 1402.24 

 

CM = Cedric Mayer, GN = Gabbronorite, MAN = Mottled Anorthosite, NC = Noritic Cycles, 

FPX = Feldspathic Pyroxenite, PGFPX = Pegmatoidal Feldspathic Pyroxenite, OLPX = Olivine-

Bearing Pyroxenite, AN = Anorthosite, PX = Pyroxenite, OLFPX = Olivine-Bearing Feldspathic 

Pyroxenite, PAPX = Para-Pyroxenite, MZ = Main Zone, BCU = Bastard Cyclic Unit, MCU = 

Merensky Cyclic Unit, FCU = Footwall Cyclic Unit, PSDR = Pseudoreef, UG2HW = UG2 

Hanging Wall, UG2FW = UG2 Footwall
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Table 1B. Major Elements (ME-ICP06, OA-GRA05, TOT-ICP06). 

 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO LOI Total 

D.L. % 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

UMT094-1096 51.4 20.8 6.16 10.85 6.8 2.28 0.43 0.07 0.22 0.1 0.02 0.03 0.01 0.22 99.39 

UMT094-1111 52 18.55 7.38 10.6 9.06 2.08 0.34 0.09 0.23 0.12 0.01 0.03 0.01 0.15 100.65 

UMT094-1135 52.3 19.65 6.86 10.35 7.74 2.36 0.42 0.07 0.29 0.11 0.01 0.03 0.01 0.65 100.85 

UMT094-1165 50 18.55 7.24 9.99 8.23 1.96 0.36 0.08 0.2 0.13 0.02 0.03 0.01 1.62 98.42 

UMT094-1184 49.7 23.2 5.27 12.65 6.04 2.07 0.21 0.05 0.12 0.09 0.01 0.03 0.01 0.21 99.66 

UMT094-1213 50.3 23.5 5.34 12.15 5.13 2.41 0.3 0.04 0.14 0.09 0.03 0.03 0.01 0.32 99.79 

UMT094-1218 51 17.15 7.49 9.18 12.35 1.6 0.18 0.16 0.15 0.13 0.01 0.03 0.01 0.33 99.77 

UMT094-1226 47.9 26.9 2.69 13.3 3.79 2.18 0.77 0.05 0.08 0.05 0.01 0.04 0.02 1.26 99.04 

UMT094-1228 52.4 5.09 12.2 3.92 23.9 0.61 0.07 0.32 0.2 0.22 0.02 0.01 <0.01 -0.02 98.94 

UMT094-1232 53.3 4.66 12.8 4.14 25 0.46 0.07 0.4 0.21 0.23 <0.01 <0.01 <0.01 0.53 101.8 

UMT094-1233 52.8 6.79 11.95 5.11 23.1 0.7 0.15 0.41 0.15 0.2 <0.01 0.01 0.01 0.61 101.99 

UMT094-1238 52.1 5.42 11.5 4.56 23.3 0.62 0.19 0.4 0.18 0.2 0.02 0.01 <0.01 0.4 98.9 

UMT094-1245 52.5 6.56 10.9 4.42 23.5 0.6 0.24 0.38 0.13 0.21 0.01 0.01 0.01 0.36 99.83 

UMT094-1252 53.3 4.3 12.2 3.71 25.3 0.5 0.16 0.4 0.19 0.22 0.01 0.01 <0.01 0.31 100.61 

UMT094-1254 53.8 2.95 13.05 3.07 26.8 0.35 0.13 0.45 0.17 0.23 0.01 <0.01 <0.01 0.72 101.73 

UMT094-1258 52.7 3.19 12.35 2.96 26.9 0.27 0.09 0.52 0.15 0.22 <0.01 <0.01 <0.01 0.77 100.12 

UMT094-1265 52.6 3.84 11.75 3.93 25.5 0.36 0.19 0.46 0.18 0.21 0.01 <0.01 0.01 1.03 100.07 

UMT094-1273 52.2 13.25 8.18 8.27 14.6 1.79 0.59 0.25 0.15 0.15 0.1 0.02 0.02 1.23 100.8 

UMT094-1277 53 2.92 13.85 3.16 26.4 0.29 0.09 0.41 0.17 0.23 0.01 <0.01 <0.01 0.53 101.06 

UMT094-1282 50.3 5.1 12.35 3.83 23.7 0.56 0.07 0.86 0.17 0.21 0.01 0.01 <0.01 1.54 98.71 

UMT094-1285 51.8 3.24 14.8 2.89 25.9 0.36 0.12 0.79 0.23 0.22 0.03 <0.01 <0.01 0.44 100.82 

UMT094-1286 47.7 3.34 12.1 10.45 22.7 0.33 0.1 0.52 0.27 0.19 0.01 <0.01 <0.01 1.02 98.73 

UMT094-1288 47 5.35 8.67 20.1 15.1 0.42 0.04 1.03 0.36 0.17 0.03 0.01 <0.01 1.25 99.53 

UMT094-1289 47.6 8.09 8.05 19.95 13.9 0.62 0.19 0.86 0.36 0.15 0.02 0.02 0.01 1.61 101.43 

UMT094-1291A 47.9 6.55 7.29 19.55 14.15 0.72 0.08 0.51 0.26 0.13 <0.01 0.01 <0.01 1.28 98.43 

UMT094-1291B 38 4.85 15.1 6.24 28.7 0.26 0.04 0.45 0.09 0.15 0.01 0.01 <0.01 5.66 99.56 

UMT094-1292A 44.5 28.1 4.04 15.25 1.58 2.17 0.62 0.05 0.04 0.03 0.01 0.06 0.02 2.12 98.59 

UMT094-1292B 49.3 26.8 2.91 13.35 5.04 2.21 0.5 0.13 0.05 0.05 0.02 0.05 0.01 0.97 101.39 

UMT094-1294 48.7 29.1 1.97 14.45 2.7 2.39 0.44 0.07 0.04 0.03 <0.01 0.05 0.01 0.98 100.93 

UMT094-1296 48.2 22 5 11.6 8.12 1.89 0.25 0.19 0.07 0.08 <0.01 0.04 0.01 0.85 98.3 

UMT094-1300 50 21.4 5.05 11.55 9.44 1.84 0.19 0.27 0.09 0.09 <0.01 0.04 0.01 0.65 100.62 

UMT094-1311 48.7 15.75 8.62 9.04 12.4 1.64 0.28 0.9 0.17 0.13 0.01 0.03 0.01 0.82 98.5 

UMT094-1319 51 8.3 11.25 5.86 19.85 0.78 0.15 0.56 0.16 0.2 0.01 0.01 0.01 0.6 98.74 

UMT094-1325A 51.1 5.46 13 4.86 22.3 0.55 0.1 0.4 0.17 0.22 0.02 0.01 0.01 0.67 98.87 

UMT094-1325B 51 13.8 8.66 8.37 15.3 1.29 0.16 0.43 0.15 0.16 0.01 0.02 0.01 0.21 99.57 

UMT094-1326A 52.2 5.87 12.65 5.2 22.3 0.54 0.1 0.63 0.2 0.22 0.02 0.01 <0.01 1 100.94 

UMT094-1326B 51.9 4.43 12.45 3.84 24.3 0.32 0.03 0.56 0.12 0.22 0.01 <0.01 <0.01 0.36 98.54 

UMT094-1327 51 7.26 11.45 5.22 21.1 0.72 0.13 0.62 0.18 0.21 0.01 0.01 0.01 0.42 98.34 

UMT094-1329 52.2 4.36 12.45 4.22 24.8 0.41 0.05 0.47 0.14 0.22 <0.01 0.01 <0.01 0.22 99.55 
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Table 1B. Major Elements (ME-ICP06, OA-GRA05, TOT-ICP06) continued. 
 

 SiO2 Al2O3 Fe2O3 CaO MgO Na2O K2O Cr2O3 TiO2 MnO P2O5 SrO BaO LOI Total 

D.L. % 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

UMT094-1332 51.3 6.39 11.95 5.13 21.8 0.67 0.11 0.4 0.15 0.21 0.01 0.01 0.01 0.43 98.57 

UMT094-1335 44.6 6.97 9.9 18.15 17.35 0.34 0.09 0.31 0.33 0.14 0.01 0.01 0.01 1.79 100 

UMT094-1336 46.5 8.1 12.9 5.72 23.5 0.71 0.17 0.54 0.11 0.19 <0.01 0.01 <0.01 0.95 99.4 

UMT094-1337 48.9 5.02 15.15 3.83 23.1 0.46 0.06 1.82 0.21 0.22 0.01 0.01 <0.01 0.14 98.93 

UMT094-1339 50.7 3.72 13.55 3.82 24.6 0.34 0.07 1.19 0.2 0.23 0.01 0.01 <0.01 0.39 98.83 

UMT094-1340 51.3 5.49 12.65 5.24 23.1 0.54 0.1 1.14 0.18 0.22 <0.01 0.01 <0.01 0.61 100.58 

UMT094-1343 50.4 6.05 12.4 4.7 23.1 0.53 0.08 1.35 0.18 0.22 0.01 0.01 <0.01 0.26 99.29 

UMT094-1351 46.9 5.81 13.45 5.3 25.6 0.57 0.08 0.81 0.13 0.22 0.01 0.01 <0.01 1.11 100 

UMT094-1365 34.2 5.68 15.1 7.62 28.4 0.16 0.01 2.87 0.19 0.19 0.01 <0.01 <0.01 5.39 99.82 

UMT094-1384 36.2 10.25 10.6 7.87 25.3 0.5 0.13 0.02 0.22 0.15 0.02 0.01 0.01 6.79 98.07 

UMT094-1402 32.4 9.5 15.55 10.15 21.8 0.25 0.17 3.8 0.36 0.17 0.01 <0.01 <0.01 3.85 98.01 
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Table 2B-1. Trace Elements (ME-MS81). 

 Ba Ce Cr Cs Dy Er Eu Ga Gd Hf Ho La Lu Nb Nd 

D.L. ppm 0.5 0.5 10 0.01 0.05 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 0.2 0.1 

UMT094-1096 134.5 13.6 480 0.39 1.14 0.74 0.64 16.3 1.09 1 0.25 7.2 0.1 1.6 5.7 

UMT094-1111 123 14 670 0.38 1.38 0.87 0.71 15.1 1.43 0.6 0.3 7.3 0.12 1.1 6.2 

UMT094-1135 113.5 13.5 570 0.8 1.2 0.84 0.58 16.4 1.16 1 0.27 7 0.13 2.2 5.8 

UMT094-1165 120.5 10 580 0.92 0.97 0.64 0.53 14.3 0.93 0.6 0.2 5.3 0.1 1 4.4 

UMT094-1184 81 5.7 390 0.12 0.64 0.4 0.51 16.7 0.52 0.3 0.14 3 0.07 0.3 2.5 

UMT094-1213 93 8.1 250 0.36 0.65 0.46 0.53 16.7 0.77 0.4 0.16 4.3 0.07 0.7 3.6 

UMT094-1218 69.9 6.7 1200 0.47 0.64 0.49 0.39 13.5 0.46 0.3 0.16 3.6 0.1 0.4 2.7 

UMT094-1226 196 6.3 380 1.26 0.4 0.23 0.43 18.4 0.43 0.2 0.09 3.6 0.03 0.3 2.5 

UMT094-1228 28 4.7 2330 0.45 0.96 0.7 0.19 6.2 0.66 0.4 0.2 2.3 0.13 0.6 2.4 

UMT094-1232 26.5 3.2 2850 0.97 0.83 0.58 0.16 5.5 0.67 0.3 0.2 1.5 0.09 0.2 2 

UMT094-1233 57.8 4 2840 0.58 0.62 0.48 0.18 6.6 0.59 0.3 0.14 2 0.08 <0.2 1.9 

UMT094-1238 45 6 2830 0.74 0.88 0.56 0.23 6.3 0.73 0.3 0.18 2.9 0.1 1.2 3 

UMT094-1245 69.5 2.9 2720 0.95 0.53 0.35 0.19 6.2 0.4 0.2 0.12 1.5 0.07 <0.2 1.3 

UMT094-1252 39.1 5 2910 0.55 0.86 0.59 0.16 5.7 0.72 0.4 0.19 2.4 0.1 0.6 2.6 

UMT094-1254 29.2 4.1 3230 0.98 0.76 0.54 0.15 4.6 0.63 0.3 0.18 1.9 0.1 0.5 2.1 

UMT094-1258 30.9 3.5 3770 0.76 0.65 0.53 0.13 5 0.48 0.3 0.15 1.7 0.09 0.2 1.8 

UMT094-1265 47.5 5.6 3400 1.14 0.89 0.56 0.21 5.4 0.75 0.4 0.19 2.6 0.1 0.6 3 

UMT094-1273 210 14.1 1860 1.27 0.89 0.61 0.35 11 0.93 0.7 0.19 7.5 0.09 1.3 5.6 

UMT094-1277 29.5 2.9 2970 1.04 0.81 0.53 0.12 4.8 0.54 0.3 0.19 1.3 0.11 0.2 1.6 

UMT094-1282 19.8 3.6 6280 2.15 0.48 0.43 0.13 6.4 0.41 0.3 0.14 1.9 0.09 0.3 1.8 

UMT094-1285 35.9 5.6 5660 1.08 0.75 0.53 0.15 5.8 0.6 0.5 0.17 2.9 0.1 0.9 2.4 

UMT094-1286 39.3 9.7 3730 0.69 1.87 1.07 0.47 5.3 1.92 0.8 0.39 3.3 0.15 0.2 7.1 

UMT094-1288 15.7 16.2 7310 0.37 2.42 1.34 0.65 7.8 2.42 1.5 0.5 6.5 0.17 0.4 9.7 

UMT094-1289 69.4 17.9 6020 0.7 2.34 1.37 0.66 8.6 2.52 1.6 0.51 7.3 0.16 0.7 10.7 

UMT094-1291A 33.8 8.5 3690 0.52 1.6 0.96 0.42 7.1 1.49 0.7 0.37 3.3 0.13 0.3 5.6 

UMT094-1291B 12.2 2.1 3230 0.75 0.48 0.3 0.12 4.4 0.49 0.3 0.11 0.9 0.05 <0.2 1.4 

UMT094-1292A 148 2.7 390 0.92 0.19 0.11 0.28 16.9 0.17 <0.2 0.03 1.5 0.01 <0.2 1.2 

UMT094-1292B 123 2.9 920 1.04 0.18 0.14 0.25 16.4 0.2 <0.2 0.05 1.6 0.02 0.2 1.2 

UMT094-1294 97.5 2.7 480 0.88 0.2 0.13 0.27 17.8 0.15 <0.2 0.04 1.6 0.01 0.2 1.1 

UMT094-1296 74.5 3.5 1430 0.76 0.27 0.2 0.28 15.1 0.26 0.2 0.07 1.9 0.03 0.2 1.4 

UMT094-1300 62.9 3.4 1960 0.52 0.33 0.26 0.26 14.3 0.26 0.2 0.08 1.9 0.03 0.2 1.5 

UMT094-1311 89.2 6.8 6630 0.61 0.57 0.33 0.36 13.3 0.55 0.3 0.13 3.7 0.06 0.6 2.9 

UMT094-1319 49.4 4.5 4070 0.62 0.58 0.46 0.26 8.2 0.54 0.3 0.13 2.4 0.08 0.4 2.3 

UMT094-1325A 50 4.1 2880 0.65 0.71 0.48 0.17 6.1 0.57 0.3 0.15 1.9 0.1 0.6 2 

UMT094-1325B 60.1 4.1 3120 0.24 0.49 0.4 0.3 10.8 0.5 0.3 0.12 2.2 0.08 0.2 2.1 

UMT094-1326A 34 4.9 4460 1.07 0.76 0.58 0.19 6.9 0.61 0.4 0.18 2.3 0.09 0.7 2.4 

UMT094-1326B 13.9 3.5 4030 0.15 0.37 0.28 0.12 5 0.31 <0.2 0.08 1.5 0.07 1.7 1.8 

UMT094-1327 53.4 4.7 4130 0.24 0.65 0.45 0.23 7.5 0.52 0.3 0.16 2.5 0.09 0.4 2.4 

UMT094-1329 21 2 3500 0.12 0.56 0.41 0.12 5.2 0.34 0.2 0.11 1 0.06 0.2 1.2 
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Table 2B-1. Trace Elements (ME-MS81) continued. 

 Ba Ce Cr Cs Dy Er Eu Ga Gd Hf Ho La Lu Nb Nd 

D.L. ppm 0.5 0.5 10 0.01 0.05 0.03 0.03 0.1 0.05 0.2 0.01 0.5 0.01 0.2 0.1 

UMT094-1332 50.8 4.1 2950 0.2 0.64 0.41 0.17 6.8 0.43 0.3 0.14 2.1 0.08 0.5 2 

UMT094-1335 49.1 12.3 2190 0.52 1.91 1.11 0.59 8.1 2.05 1.7 0.41 4.4 0.16 0.4 8.2 

UMT094-1336 34 2.2 3790 0.85 0.38 0.29 0.15 7.2 0.27 0.2 0.08 1.2 0.05 <0.2 1.1 

UMT094-1337 30.9 4.5 >10000 0.27 0.57 0.43 0.17 8.1 0.46 0.2 0.13 2.2 0.09 0.4 2.2 

UMT094-1339 26.1 2.9 8700 0.36 0.6 0.53 0.13 6.9 0.49 0.3 0.15 1.3 0.11 0.3 1.7 

UMT094-1340 30.7 3 8010 0.45 0.65 0.47 0.15 7.1 0.5 0.3 0.14 1.3 0.09 0.2 1.8 

UMT094-1343 30 2.5 9700 0.24 0.54 0.34 0.13 7.9 0.39 0.2 0.12 1.2 0.08 0.2 1.3 

UMT094-1351 32.4 3 5810 0.08 0.55 0.35 0.17 6.3 0.45 0.2 0.11 1.4 0.06 0.2 1.6 

UMT094-1365 9.3 6.9 >10000 0.14 0.76 0.42 0.22 8.4 0.82 0.6 0.17 3 0.06 0.5 3.6 

UMT094-1384 65.9 7.3 170 0.77 1.12 0.67 0.28 12.8 1.08 1 0.24 3.3 0.12 0.4 4.4 

UMT094-1402 32.4 9.3 >10000 1.05 1.57 0.9 0.37 23.9 1.58 1.2 0.31 3.4 0.12 0.4 6.4 
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Table 2B-2. Trace Elements (ME-MS81).  

 Pr Rb Sm Sn Sr Ta Tb Th Tm U V W Y Yb Zr 

D.L. ppm 0.03 0.2 0.03 1 0.1 0.1 0.01 0.05 0.01 0.05 5 1 0.5 0.03 2 

UMT094-1096 1.55 10.9 1.12 <1 279 0.1 0.18 1.71 0.11 0.35 99 <1 6.4 0.8 31 

UMT094-1111 1.63 7.8 1.41 <1 247 0.1 0.22 1.34 0.13 0.12 124 <1 7.7 0.83 19 

UMT094-1135 1.51 18.1 1.23 <1 279 0.1 0.19 1.46 0.12 0.37 124 <1 7.2 0.87 38 

UMT094-1165 1.11 12.2 0.85 <1 243 <0.1 0.16 0.86 0.11 0.19 111 1 5.6 0.62 21 

UMT094-1184 0.67 2.4 0.54 <1 302 <0.1 0.11 0.3 0.06 <0.05 91 <1 3.5 0.42 9 

UMT094-1213 0.92 6.9 0.78 <1 307 <0.1 0.12 0.58 0.07 0.15 80 <1 4.3 0.4 15 

UMT094-1218 0.72 4.4 0.63 <1 246 <0.1 0.1 0.35 0.09 0.1 87 <1 4 0.55 10 

UMT094-1226 0.72 34.7 0.48 <1 337 <0.1 0.08 0.18 0.03 <0.05 38 <1 2.2 0.19 6 

UMT094-1228 0.58 2.1 0.62 <1 56.4 <0.1 0.12 0.5 0.09 0.19 139 <1 5.6 0.75 11 

UMT094-1232 0.41 2 0.55 <1 53.8 <0.1 0.12 0.1 0.09 <0.05 129 <1 5.2 0.63 6 

UMT094-1233 0.49 5.2 0.43 <1 111 <0.1 0.1 0.15 0.08 <0.05 113 <1 4.1 0.45 7 

UMT094-1238 0.72 7.5 0.57 <1 61.9 0.1 0.14 0.41 0.09 <0.05 123 <1 5.1 0.62 10 

UMT094-1245 0.33 10.9 0.38 <1 78.4 <0.1 0.08 0.13 0.08 <0.05 104 <1 3.2 0.49 5 

UMT094-1252 0.56 6.1 0.6 <1 44.4 <0.1 0.14 0.7 0.09 <0.05 121 <1 5.1 0.64 11 

UMT094-1254 0.52 6 0.49 1 22.4 <0.1 0.11 0.43 0.08 0.07 126 <1 4.8 0.61 8 

UMT094-1258 0.44 4.4 0.42 <1 30.5 <0.1 0.09 0.24 0.08 <0.05 121 <1 3.9 0.47 8 

UMT094-1265 0.69 9.1 0.7 <1 33.8 <0.1 0.13 0.66 0.08 0.33 118 <1 5.1 0.65 16 

UMT094-1273 1.54 25.6 1.06 <1 194 <0.1 0.15 1.38 0.08 0.32 82 <1 5.3 0.45 26 

UMT094-1277 0.39 3.6 0.45 <1 25.9 <0.1 0.1 0.23 0.1 <0.05 123 1 5.1 0.7 8 

UMT094-1282 0.46 4.2 0.37 <1 64.3 <0.1 0.08 0.29 0.07 0.09 140 <1 3.6 0.48 12 

UMT094-1285 0.63 6.8 0.65 <1 30.6 <0.1 0.11 0.8 0.1 0.22 141 1 4.7 0.58 16 

UMT094-1286 1.48 3.3 1.81 1 42.4 <0.1 0.29 0.24 0.15 <0.05 146 3 10.1 0.95 21 

UMT094-1288 2.36 1.5 2.36 1 109.5 0.1 0.43 0.72 0.2 0.37 215 <1 12.8 1.18 48 

UMT094-1289 2.48 7.9 2.35 1 178 0.1 0.41 0.62 0.2 0.12 178 <1 12.9 1.13 43 

UMT094-1291A 1.18 2.5 1.35 <1 108.5 <0.1 0.26 0.19 0.12 <0.05 163 <1 8.6 0.76 17 

UMT094-1291B 0.35 1.6 0.35 <1 67.4 <0.1 0.08 0.17 0.05 <0.05 63 <1 2.7 0.27 7 

UMT094-1292A 0.31 31.7 0.2 1 513 <0.1 0.03 0.11 0.02 <0.05 19 <1 0.9 0.09 3 

UMT094-1292B 0.31 23.5 0.25 <1 423 <0.1 0.03 0.12 0.02 <0.05 29 <1 1 0.1 4 

UMT094-1294 0.29 19 0.17 <1 440 <0.1 0.03 0.14 0.01 <0.05 22 <1 0.9 0.11 3 

UMT094-1296 0.4 10.2 0.27 <1 374 <0.1 0.04 0.19 0.03 <0.05 47 <1 1.6 0.22 5 

UMT094-1300 0.43 6.4 0.26 <1 328 <0.1 0.06 0.18 0.04 <0.05 58 <1 2 0.22 6 

UMT094-1311 0.79 13.2 0.57 <1 280 <0.1 0.1 0.41 0.04 0.08 142 <1 3.1 0.35 11 

UMT094-1319 0.54 6.1 0.47 <1 114 <0.1 0.1 0.23 0.08 0.07 131 <1 3.8 0.43 10 

UMT094-1325A 0.5 5.3 0.52 <1 74.8 <0.1 0.1 0.52 0.09 0.07 124 <1 4.2 0.56 11 

UMT094-1325B 0.48 2.7 0.36 <1 206 <0.1 0.08 0.16 0.06 0.05 105 <1 3.3 0.38 8 

UMT094-1326A 0.6 5.2 0.56 <1 63.3 <0.1 0.13 0.55 0.09 0.12 153 <1 4.8 0.61 15 

UMT094-1326B 0.42 0.5 0.32 <1 49.7 <0.1 0.06 0.17 0.04 <0.05 112 <1 2.2 0.33 3 

UMT094-1327 0.55 3.1 0.53 <1 103.5 <0.1 0.09 0.34 0.08 0.1 126 <1 3.9 0.48 11 

UMT094-1329 0.29 1.2 0.29 <1 50.6 <0.1 0.06 0.11 0.05 <0.05 107 <1 2.9 0.44 6 
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Table 2B-2. Trace Elements (ME-MS81) continued.  

 Pr Rb Sm Sn Sr Ta Tb Th Tm U V W Y Yb Zr 

D.L. ppm 0.03 0.2 0.03 1 0.1 0.1 0.01 0.05 0.01 0.05 5 1 0.5 0.03 2 

UMT094-1332 0.5 2.8 0.54 <1 93.6 <0.1 0.1 0.24 0.07 0.06 105 <1 3.7 0.46 8 

UMT094-1335 1.84 3.9 2.07 1 74.5 <0.1 0.33 0.38 0.17 0.05 96 <1 10.8 0.93 43 

UMT094-1336 0.26 4.9 0.24 <1 122.5 <0.1 0.05 0.11 0.04 <0.05 90 <1 2.3 0.25 5 

UMT094-1337 0.5 1.8 0.48 <1 59.3 <0.1 0.09 0.61 0.08 0.06 198 <1 3.6 0.54 6 

UMT094-1339 0.38 2.7 0.5 <1 40.2 <0.1 0.1 0.27 0.08 0.07 164 <1 4.1 0.56 9 

UMT094-1340 0.37 3.3 0.43 <1 71.6 <0.1 0.08 0.14 0.07 <0.05 150 <1 3.9 0.48 7 

UMT094-1343 0.33 2 0.36 <1 78.7 <0.1 0.08 0.14 0.05 <0.05 160 <1 3.2 0.47 5 

UMT094-1351 0.37 1.7 0.41 <1 91.9 <0.1 0.09 0.24 0.05 <0.05 110 <1 3.1 0.38 7 

UMT094-1365 0.89 0.8 0.82 1 34.4 <0.1 0.13 0.51 0.08 0.07 121 <1 3.9 0.42 23 

UMT094-1384 0.98 4.9 0.93 <1 121.5 <0.1 0.17 0.34 0.11 0.05 89 <1 6.3 0.62 25 

UMT094-1402 1.37 12.7 1.43 1 36.7 <0.1 0.26 0.31 0.13 <0.05 220 <1 8.5 0.9 29 
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Table 3B-1. Trace Elements (ME-MS61L) 

 Al Ca Fe K Mg Na P S Ti 

D.L. % 0.01 0.01 0.002 0.01 0.01 0.001 0.001 0.01 0.001 

UMT094-1096 8.35 7.29 3.79 0.28 3.24 1.59 0.008 <0.01 0.126 

UMT094-1111 9.08 6.81 4.55 0.27 4.94 1.43 0.007 <0.01 0.146 

UMT094-1135 8.37 6.96 4.25 0.31 3.79 1.69 0.004 <0.01 0.173 

UMT094-1165 8.9 6.94 4.77 0.27 4.71 1.445 0.007 <0.01 0.122 

UMT094-1184 9.77 8.29 3.22 0.11 2.99 1.405 0.004 <0.01 0.074 

UMT094-1213 8.92 8.26 3.37 0.12 2.34 1.675 0.009 <0.01 0.089 

UMT094-1218 7.49 6 4.38 0.14 6.23 1.12 0.005 0.02 0.081 

UMT094-1226 10.2 8.83 1.69 0.43 1.79 1.51 0.004 <0.01 0.051 

UMT094-1228 2.88 2.82 8.21 0.07 14.55 0.447 0.005 <0.01 0.138 

UMT094-1232 2.5 2.88 8.55 0.05 15.05 0.326 0.002 0.41 0.13 

UMT094-1233 3.46 3.33 7.61 0.12 13.25 0.475 0.002 0.62 0.096 

UMT094-1238 2.92 3.15 7.58 0.17 13.85 0.442 0.005 0.33 0.12 

UMT094-1245 3.3 2.98 7.14 0.2 13.75 0.43 0.002 0.05 0.08 

UMT094-1252 2.28 2.48 7.85 0.14 14.6 0.352 0.003 0.22 0.122 

UMT094-1254 1.58 2.07 8.52 0.11 15.8 0.245 0.003 0.33 0.112 

UMT094-1258 1.75 2.1 8.14 0.08 15.55 0.213 0.002 0.44 0.096 

UMT094-1265 2 2.58 7.47 0.15 14.7 0.254 0.004 0.17 0.111 

UMT094-1273 6.57 5.38 5.14 0.45 8.4 1.23 0.041 0.41 0.097 

UMT094-1277 1.5 2.11 9.05 0.08 15.55 0.194 0.002 0.33 0.11 

UMT094-1282 2.73 2.63 8.31 0.05 14.45 0.4 0.004 0.16 0.108 

UMT094-1285 1.67 1.92 9.52 0.1 15.1 0.256 0.012 0.94 0.136 

UMT094-1286 1.79 6.98 7.92 0.08 13.4 0.219 0.004 0.62 0.166 

UMT094-1288 2.9 12.9 5.68 0.03 8.73 0.304 0.01 0.6 0.217 

UMT094-1289 4.15 12.6 5.22 0.14 8.11 0.422 0.009 0.39 0.215 

UMT094-1291A 3.58 13.05 4.86 0.07 8.57 0.514 0.002 0.5 0.168 

UMT094-1291B 2.65 4.21 9.67 0.03 17.05 0.167 0.003 0.57 0.057 

UMT094-1292A 11.8 10 2.56 0.41 0.7 1.515 0.002 1.09 0.025 

UMT094-1292B 10.85 8.84 1.77 0.25 2.37 1.505 0.002 0.01 0.034 

UMT094-1294 11.35 9.35 1.18 0.23 1.17 1.64 0.002 <0.01 0.028 

UMT094-1296 10.4 7.84 3.31 0.17 4.59 1.325 0.002 0.24 0.047 

UMT094-1300 9.99 7.61 3.16 0.13 5.16 1.275 0.003 0.03 0.053 

UMT094-1311 8.17 6.07 5.37 0.23 7.01 1.17 0.005 0.56 0.101 

UMT094-1319 4.44 4.01 7.36 0.12 12 0.561 0.003 0.2 0.097 

UMT094-1325A 3 3.35 8.6 0.09 13.15 0.384 0.007 0.34 0.105 

UMT094-1325B 6.39 5.34 5.39 0.11 8.42 0.912 0.005 0.02 0.086 

UMT094-1326A 3.03 3.42 7.92 0.07 12.65 0.37 0.009 0.08 0.114 

UMT094-1326B 2.5 2.78 8.67 0.02 14.6 0.246 <0.001 0.49 0.076 

UMT094-1327 3.81 3.63 7.6 0.09 12.65 0.529 0.004 0.07 0.102 

UMT094-1329 2.46 3.03 8.6 0.04 15.35 0.287 0.002 0.18 0.091 

UMT094-1332 3.31 3.47 7.5 0.09 12.65 0.479 0.003 0.28 0.094 

UMT094-1335 3.55 11.45 6.3 0.07 9.84 0.228 0.005 1.21 0.208 

UMT094-1336 4.07 3.73 8.28 0.12 13.35 0.512 0.003 0.45 0.066 

UMT094-1337 2.65 2.61 9.81 0.05 13.75 0.328 0.002 0.9 0.116 

UMT094-1339 1.92 2.55 8.93 0.06 14.75 0.235 0.006 0.09 0.123 

UMT094-1340 2.89 3.46 7.84 0.08 13.2 0.378 0.001 0.15 0.1 

UMT094-1343 3.14 3.15 8.01 0.06 13.75 0.368 0.002 0.03 0.104 

UMT094-1351 3.1 3.64 8.69 0.06 15 0.4 0.003 0.07 0.081 

UMT094-1365 1.59 5.18 8.14 0.01 16.5 0.09 0.004 0.54 0.099 

UMT094-1384 4.01 5.04 6.73 0.1 14.75 0.343 0.005 0.42 0.132 

UMT094-1402 2.44 6.67 6.84 0.14 11.75 0.154 0.003 0.46 0.191 
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Table 3B-2 Trace Elements (ME-MS61L). 

 Ag As Ba Be Bi Cd Ce Co Cr Cs Cu Ga Ge Hf In 

D.L. ppm 0.002 0.05 1 0.02 0.005 0.005 0.01 0.005 0.3 0.01 0.02 0.05 0.05 0.004 0.005 

UMT094-1096 0.021 0.45 126 0.37 0.009 0.032 9.17 32.4 323 0.22 26.5 16.35 <0.05 0.705 0.022 

UMT094-1111 0.034 0.46 117 0.42 0.006 0.042 11.05 39.6 447 0.26 32.9 15.15 0.08 0.661 0.021 

UMT094-1135 0.028 0.53 98 0.46 0.011 0.042 10.05 40.7 352 0.53 30.7 15.15 0.05 0.728 0.018 

UMT094-1165 0.064 1.34 111 0.38 0.083 0.117 9.16 42.8 402 0.67 22.2 14.8 0.05 0.574 0.028 

UMT094-1184 0.018 0.2 78 0.26 <0.005 0.028 3.85 29.8 241 0.05 12 16.85 0.06 0.233 0.017 

UMT094-1213 0.029 0.5 79 0.29 0.006 0.043 4.74 28.9 188.5 0.13 26.7 16.55 <0.05 0.335 0.009 

UMT094-1218 0.025 0.19 58 0.29 0.011 0.035 4.99 44.9 747 0.3 30 12.9 <0.05 0.198 0.018 

UMT094-1226 0.014 0.34 177 0.25 0.012 0.026 2.76 15.95 211 0.42 28.1 19.1 <0.05 0.158 0.011 

UMT094-1228 0.021 0.35 29 0.2 0.014 0.061 5.03 89.4 1630 0.43 39.9 6.85 0.08 0.378 0.027 

UMT094-1232 0.455 0.1 24 0.11 0.201 0.125 2.93 115 2060 0.84 1010 6.07 0.1 0.202 0.028 

UMT094-1233 0.603 0.2 59 0.16 0.885 0.169 4.02 123 1960 0.57 1350 6.71 0.12 0.226 0.033 

UMT094-1238 0.34 0.36 46 0.22 0.235 0.116 6.25 101 2030 0.74 812 6.58 0.1 0.327 0.03 

UMT094-1245 0.111 0.24 66 0.13 0.039 0.069 2.72 84.7 1880 0.88 351 6.41 0.07 0.156 0.02 

UMT094-1252 0.155 0.24 39 0.16 0.092 0.087 5.01 96.7 1910 0.55 456 5.56 0.08 0.335 0.026 

UMT094-1254 0.185 0.88 30 0.14 0.199 0.126 4.12 112 2370 1.05 675 5.12 0.1 0.33 0.028 

UMT094-1258 0.261 0.43 28 0.09 0.179 0.132 3 114 2640 0.81 928 4.86 0.1 0.246 0.025 

UMT094-1265 0.139 0.44 42 0.14 0.089 0.106 4.96 96 2300 1.02 392 5.02 0.08 0.363 0.028 

UMT094-1273 0.277 2.1 189 0.29 0.455 0.113 13.15 74.9 1110 1.15 931 10.2 0.07 0.357 0.025 

UMT094-1277 0.255 0.33 29 0.12 0.214 0.165 2.82 107.5 2150 1.07 565 4.87 0.11 0.255 0.031 

UMT094-1282 0.2 0.23 17 0.15 0.079 0.117 3.5 101 4840 1.88 592 6.4 0.08 0.186 0.029 

UMT094-1285 0.716 0.56 34 0.12 0.738 0.244 5.44 146 3840 1.04 1880 5.39 0.12 0.445 0.037 

UMT094-1286 0.479 0.32 41 0.13 0.346 0.172 9.91 123.5 2450 0.72 1140 5.18 0.1 0.799 0.038 

UMT094-1288 0.492 0.62 16 0.25 0.313 0.29 15.3 80.9 5440 0.36 1220 8.26 0.09 1.33 0.033 

UMT094-1289 0.512 0.67 57 0.33 0.351 0.265 17.15 69.9 4140 0.66 1150 8.89 0.1 1.505 0.038 

UMT094-1291A 0.525 0.51 35 0.15 0.323 0.229 8.72 66.9 2580 0.55 1430 7.38 0.09 0.72 0.038 

UMT094-1291B 0.456 0.31 12 0.04 0.371 0.122 2.16 173.5 2090 0.75 1360 4.23 0.12 0.276 0.02 

UMT094-1292A 1.33 0.28 144 0.15 1.015 0.296 1.64 79.7 261 0.42 2680 17.55 0.12 0.095 0.022 

UMT094-1292B 0.031 0.2 114 0.13 0.015 0.037 1.49 19.35 488 0.31 40.9 17.75 <0.05 0.102 <0.005 

UMT094-1294 0.03 0.48 94 0.16 0.008 0.029 1.43 11.2 271 0.31 26.6 18.7 <0.05 0.092 0.005 

UMT094-1296 0.318 0.3 73 0.17 0.154 0.09 2.69 50.2 881 0.41 710 15.7 0.05 0.147 0.014 

UMT094-1300 0.035 0.21 61 0.17 0.02 0.039 2.68 35.2 1155 0.27 79.8 14.85 0.07 0.156 0.01 

UMT094-1311 0.691 0.56 86 0.27 0.552 0.198 6.97 83.6 4140 0.53 1150 13.4 0.09 0.314 0.028 

UMT094-1319 0.209 0.39 44 0.15 0.218 0.115 4.42 89 2750 0.6 516 8.15 0.06 0.293 0.022 

UMT094-1325A 0.337 0.38 50 0.13 0.413 0.178 3.87 105 2070 0.65 706 6.32 0.08 0.342 0.031 

UMT094-1325B 0.03 0.18 56 0.19 0.04 0.051 3.85 63.2 1955 0.16 88.1 10.5 0.05 0.175 0.017 

UMT094-1326A 0.129 0.4 32 0.15 0.227 0.103 4.86 102.5 3040 1.04 281 6.98 0.07 0.405 0.03 

UMT094-1326B 0.504 0.15 13 0.04 0.402 0.165 0.97 117 2880 0.15 1180 5.32 0.08 0.1 0.023 

UMT094-1327 0.133 0.15 48 0.18 0.074 0.079 4.64 87.9 3050 0.2 238 7.39 0.06 0.289 0.026 

UMT094-1329 0.19 0.18 21 0.07 0.225 0.116 2.09 103.5 2440 0.12 439 5.51 0.08 0.2 0.029 
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Table 3B-2 Trace Elements (ME-MS61L) continued. 

 Ag As Ba Be Bi Cd Ce Co Cr Cs Cu Ga Ge Hf In 

D.L. ppm 0.002 0.05 1 0.02 0.005 0.005 0.01 0.005 0.3 0.01 0.02 0.05 0.05 0.004 0.005 

UMT094-1332 0.257 0.47 47 0.15 0.296 0.116 3.76 96.6 1930 0.19 572 6.38 0.07 0.234 0.02 

UMT094-1335 0.598 0.59 48 0.11 0.582 0.287 11.85 90.5 1440 0.53 1680 8.07 0.11 1.735 0.052 

UMT094-1336 1.325 0.26 31 0.11 0.625 0.181 1.95 126 2360 0.71 957 7.9 0.09 0.147 0.024 

UMT094-1337 0.776 0.27 24 0.09 0.73 0.287 2.1 145 8770 0.25 1680 7.56 0.1 0.194 0.037 

UMT094-1339 0.171 0.19 24 0.1 0.166 0.132 2.76 105 6010 0.37 277 6.15 0.07 0.256 0.03 

UMT094-1340 0.149 0.14 30 0.11 0.144 0.123 2.64 89.4 5140 0.46 354 6.82 0.07 0.211 0.024 

UMT094-1343 0.083 0.14 27 0.09 0.058 0.071 2.34 91.1 6320 0.27 143.5 7.35 0.08 0.179 0.025 

UMT094-1351 0.115 0.33 33 0.11 0.057 0.084 2.98 111.5 3970 0.08 241 6.19 0.09 0.224 0.019 

UMT094-1365 0.18 0.28 9 0.13 0.214 0.135 6.68 97.4 6940 0.14 542 4.08 0.08 0.608 0.025 

UMT094-1384 0.247 0.73 54 0.14 0.495 0.226 6.6 71.6 111.5 0.45 496 11 0.06 0.916 0.039 

UMT094-1402 0.172 0.67 29 0.11 0.24 0.09 9.51 79.7 7900 1.11 514 9.91 0.09 1.215 0.036 
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Table 3B-3. Trace Elements (ME-MS61L). 

 La Li Mn Mo Nb Ni Pb Rb Re Sb Sc Se Sn Sr Ta 

D.L. ppm 0.005 0.2 0.2 0.02 0.005 0.08 0.01 0.02 0.002 0.02 0.01 0.2 0.02 0.02 0.01 

UMT094-1096 4.69 8.5 719 0.45 1.38 151.5 2.75 3.32 <0.002 0.07 11.8 <0.2 0.36 269 0.1 

UMT094-1111 5.61 8.2 841 0.31 0.965 197.5 2.08 4.38 <0.002 0.06 17.2 <0.2 0.29 242 0.08 

UMT094-1135 4.99 11.6 839 0.44 2.08 177 2.6 10.15 <0.002 0.19 14.45 <0.2 0.37 259 0.15 

UMT094-1165 4.59 14.3 1020 0.48 0.927 204 20.1 7.73 <0.002 0.23 15.25 <0.2 0.28 252 0.06 

UMT094-1184 1.97 4.6 631 0.33 0.242 134 1.53 0.19 <0.002 0.03 11.55 <0.2 0.13 287 0.02 

UMT094-1213 2.25 3.9 638 0.33 0.614 122 1.9 1.11 <0.002 0.07 9.48 <0.2 0.18 293 0.05 

UMT094-1218 2.69 6.3 883 0.32 0.199 276 1.52 2.65 <0.002 0.05 12.85 <0.2 0.16 239 0.02 

UMT094-1226 1.305 9.1 334 0.43 0.201 91.8 2.31 2.09 <0.002 0.14 4.73 <0.2 0.2 305 0.01 

UMT094-1228 2.55 7.9 1650 0.39 0.4 581 2.44 2.07 <0.002 0.1 28.7 <0.2 0.24 61.6 0.03 

UMT094-1232 1.36 9.1 1715 0.23 0.095 2460 2.68 1.84 0.005 0.22 31.7 2.4 0.3 55.5 <0.01 

UMT094-1233 2.05 7.9 1460 0.28 0.13 3440 4.6 5.3 0.007 0.09 25 3.6 0.3 113 0.01 

UMT094-1238 2.98 5.9 1480 0.35 0.374 1800 2.88 8.26 0.003 0.06 27.5 1.5 0.24 65.5 0.03 

UMT094-1245 1.425 6.1 1575 0.35 0.125 862 2.29 10.2 <0.002 0.05 24 0.3 0.16 78.9 0.01 

UMT094-1252 2.47 8.2 1560 0.25 0.351 1300 2.08 6.14 0.003 0.08 27.3 0.7 0.25 44.6 0.02 

UMT094-1254 2.06 5.8 1695 0.47 0.403 1800 4.65 6.52 0.004 0.11 28.5 1.6 0.41 25.3 0.03 

UMT094-1258 1.48 6.9 1605 0.15 0.215 2180 3.03 4.12 0.004 0.08 27.6 2 0.27 27.8 0.01 

UMT094-1265 2.26 6.1 1540 0.2 0.33 1265 3.36 8.6 0.003 0.13 29.1 0.5 0.27 34.1 0.02 

UMT094-1273 6.75 10.2 1050 0.55 0.981 1680 7.61 23.5 0.004 0.16 21.5 2.4 0.47 192 0.07 

UMT094-1277 1.22 5.7 1705 0.24 0.204 1695 5.08 3.59 0.002 0.11 30.7 1.2 0.32 25.2 0.02 

UMT094-1282 1.815 16.2 1615 0.27 0.274 1620 4.22 3.64 0.003 0.06 26.6 1 0.26 62.1 0.02 

UMT094-1285 2.87 6.2 1630 0.42 0.918 3940 9.95 6.56 0.009 0.11 25.8 4.2 0.52 31.8 0.06 

UMT094-1286 3.38 7.3 1345 0.24 0.186 2750 9.74 3.4 0.004 0.11 29.4 2.2 0.62 45.8 0.02 

UMT094-1288 6.26 10.5 1225 0.27 0.454 2150 5.52 1.65 0.005 0.12 42.8 2.4 0.56 116.5 0.06 

UMT094-1289 6.91 14.2 1080 0.3 0.695 2300 20.8 6.63 0.004 0.19 36.5 2.9 0.63 186.5 0.05 

UMT094-1291A 3.53 10.1 987 0.23 0.275 2120 7.66 2.68 0.004 0.06 38.5 2 0.49 118 0.02 

UMT094-1291B 0.88 2.7 1110 0.21 0.123 3570 3.64 1.46 0.003 0.04 9.58 2.1 0.27 71.7 0.02 

UMT094-1292A 0.774 6.1 232 0.34 0.163 3880 11.75 4.08 0.011 0.07 2.17 4.2 0.47 499 0.01 

UMT094-1292B 0.717 4.1 370 0.31 0.178 111 2.64 1.16 <0.002 0.09 4.3 <0.2 0.12 405 0.02 

UMT094-1294 0.677 3.5 208 0.35 0.216 66.1 2.04 1.12 <0.002 0.14 2.8 <0.2 0.14 416 0.01 

UMT094-1296 1.425 3.7 618 0.34 0.208 1030 4.14 1.68 0.002 0.07 9 1 0.16 368 0.01 

UMT094-1300 1.38 3.7 645 0.31 0.22 236 1.32 1.12 <0.002 0.04 10.55 <0.2 0.13 330 0.02 

UMT094-1311 3.72 4.7 921 0.4 0.397 1835 8.94 11.35 0.005 0.08 19 1.6 0.35 275 0.03 

UMT094-1319 2.24 4.6 1485 0.24 0.282 1140 6.14 5.81 <0.002 0.29 27.9 0.5 0.29 118.5 0.02 

UMT094-1325A 1.85 3.4 1615 0.25 0.474 1745 6.84 5.08 <0.002 0.07 28.1 1.2 0.3 78.9 0.03 

UMT094-1325B 2 2.9 1130 0.29 0.179 437 1.48 2.01 <0.002 0.05 19.35 <0.2 0.15 209 0.01 

UMT094-1326A 2.24 7.9 1525 0.3 0.423 991 3.36 4.5 <0.002 0.06 30.2 <0.2 0.25 62.9 0.03 

UMT094-1326B 0.45 2.6 1650 0.29 0.069 2030 3.81 0.51 0.004 0.05 29 1.9 0.21 52.6 0.01 

UMT094-1327 2.42 3.7 1540 0.22 0.279 729 2.2 2.75 <0.002 0.06 28.1 <0.2 0.17 105.5 0.02 

UMT094-1329 0.97 3.4 1705 0.28 0.171 1000 2.36 1.12 0.002 0.04 28.7 0.4 0.16 52.7 0.01 

 



 

 

112 

Table 3B-3. Trace Elements (ME-MS61L) continued. 

 La Li Mn Mo Nb Ni Pb Rb Re Sb Sc Se Sn Sr Ta 

D.L. ppm 0.005 0.2 0.2 0.02 0.005 0.08 0.01 0.02 0.002 0.02 0.01 0.2 0.02 0.02 0.01 

UMT094-1332 1.92 4.1 1480 0.23 0.258 1320 3.3 2.75 0.003 0.05 27.6 0.7 0.16 96 0.02 

UMT094-1335 4.19 5.9 986 0.27 0.35 2100 12 3.87 0.002 0.09 24.5 2 0.88 74.2 0.04 

UMT094-1336 1.05 5.7 1360 0.2 0.116 1700 6.37 4.17 0.004 0.06 20.8 1.2 0.25 126 0.01 

UMT094-1337 1.06 2.8 1650 0.25 0.18 2820 8.88 1.62 0.006 0.05 27.6 2.5 0.34 62.2 0.01 

UMT094-1339 1.295 4.1 1720 0.15 0.268 823 3.5 2.63 <0.002 0.04 30.7 <0.2 0.21 40.6 0.02 

UMT094-1340 1.215 4.7 1525 0.19 0.163 787 3.27 3.18 <0.002 0.03 26.7 <0.2 0.15 72.7 0.01 

UMT094-1343 1.135 3.6 1590 0.18 0.157 526 2.06 1.69 <0.002 0.03 23.3 <0.2 0.14 81.7 0.01 

UMT094-1351 1.39 5.5 1580 0.25 0.247 1105 1.94 1.63 <0.002 0.05 20.4 <0.2 0.13 97.4 0.02 

UMT094-1365 2.89 4 1225 0.19 0.534 858 4.9 0.54 <0.002 0.09 9.42 0.3 0.44 33.1 0.06 

UMT094-1384 2.89 8.4 1040 0.12 0.389 573 4.91 3.05 <0.002 0.17 14.25 0.6 0.41 116.5 0.04 

UMT094-1402 3.42 3.4 876 0.21 0.365 764 3.8 12.8 <0.002 0.18 15.2 0.3 0.6 37 0.04 
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Table 3B-4. Trace Elements (ME-MS61L). 

 Te Th Tl U V W Y Zn Zr 

D.L. ppm 0.04 0.004 0.004 0.01 0.1 0.008 0.01 0.2 0.1 

UMT094-1096 <0.04 0.869 0.049 0.3 89.3 0.118 4.46 46 25 

UMT094-1111 <0.04 0.784 0.035 0.2 109.5 0.256 6.55 53.4 23.4 

UMT094-1135 <0.04 1.375 0.099 0.45 101.5 0.142 5.95 55.6 28 

UMT094-1165 <0.04 0.626 0.078 0.18 102.5 0.241 5.07 91.9 20.2 

UMT094-1184 <0.04 0.197 0.01 0.06 81.1 0.029 2.52 40.4 8.3 

UMT094-1213 <0.04 0.313 0.043 0.11 73.9 0.058 3.06 40.9 12.1 

UMT094-1218 <0.04 0.225 0.027 0.07 75.4 0.029 3.14 52.3 7 

UMT094-1226 <0.04 0.077 0.107 0.03 33.1 0.092 1.36 25.6 5.2 

UMT094-1228 <0.04 0.392 0.018 0.14 125.5 0.07 5.65 94.2 13.4 

UMT094-1232 0.58 0.059 0.072 0.02 118.5 0.022 5.09 81.8 6 

UMT094-1233 2.88 0.152 0.095 0.03 102.5 0.03 3.91 75.7 7.3 

UMT094-1238 0.8 0.913 0.052 0.09 117 0.035 5.02 79.3 11.1 

UMT094-1245 0.13 0.116 0.044 0.03 101.5 0.025 2.85 73.1 5.3 

UMT094-1252 0.22 0.662 0.037 0.12 110 0.047 4.79 82.1 10.2 

UMT094-1254 0.35 0.827 0.061 0.19 119 0.245 4.7 94.9 11.6 

UMT094-1258 0.44 0.19 0.04 0.04 111.5 0.045 3.59 87 7.9 

UMT094-1265 0.18 0.559 0.056 0.14 109 0.143 4.85 80.2 11.6 

UMT094-1273 1.61 1.275 0.11 0.33 84.1 0.296 5 57.2 12.3 

UMT094-1277 0.28 0.213 0.054 0.05 114.5 0.262 4.85 96.1 8.1 

UMT094-1282 0.14 0.418 0.074 0.08 133 0.184 3.49 91.7 6.7 

UMT094-1285 1.04 0.881 0.104 0.25 125 0.14 4.53 96.2 15.9 

UMT094-1286 0.35 0.237 0.06 0.06 127 0.041 9.93 68.4 24.7 

UMT094-1288 0.36 0.664 0.12 0.16 191 0.048 11.35 57.7 46.8 

UMT094-1289 0.4 0.601 0.14 0.14 159 0.135 12 47.3 47.9 

UMT094-1291A 0.31 0.197 0.098 0.06 151 0.048 8.61 35.1 21 

UMT094-1291B 0.49 0.169 0.061 0.02 51.1 0.024 2.61 78.3 7.9 

UMT094-1292A 1.02 0.081 0.409 0.02 15.5 0.029 0.65 20.1 3.3 

UMT094-1292B <0.04 0.075 0.137 0.02 25.9 0.046 0.78 26.3 4.1 

UMT094-1294 <0.04 0.063 0.106 0.02 18.8 0.047 0.62 17.2 3.6 

UMT094-1296 0.08 0.114 0.085 0.04 41.8 0.038 1.34 38.2 5.4 

UMT094-1300 <0.04 0.113 0.037 0.04 51.7 0.027 1.51 38.4 5.7 

UMT094-1311 0.32 0.384 0.086 0.1 120.5 0.074 2.95 71.1 11.5 

UMT094-1319 0.3 0.239 0.048 0.07 120.5 0.109 3.53 88.3 9.6 

UMT094-1325A 0.32 0.472 0.041 0.13 114 0.113 3.98 93.4 13 

UMT094-1325B <0.04 0.144 0.013 0.04 93.2 0.03 3.06 66.9 6.4 

UMT094-1326A 0.13 0.498 0.036 0.13 128.5 0.063 4.4 92.7 13.4 

UMT094-1326B 0.37 0.043 0.009 0.01 104.5 0.017 2.07 91.4 3.3 

UMT094-1327 0.04 0.33 0.019 0.08 117.5 0.036 3.8 88.5 10.3 

UMT094-1329 0.07 0.131 0.013 0.04 103 0.031 2.89 93.8 5.9 

UMT094-1332 0.15 0.217 0.028 0.06 98.5 0.032 3.59 84.1 7.7 

UMT094-1335 0.55 0.33 0.079 0.07 88.5 0.043 10.05 69.7 48.3 

UMT094-1336 0.39 0.096 0.043 0.03 74.8 0.026 2.19 86.3 4.4 

UMT094-1337 0.49 0.111 0.033 0.04 160.5 0.026 3.25 116.5 6 

UMT094-1339 0.08 0.233 0.031 0.06 144 0.029 4.11 110.5 8.5 

UMT094-1340 0.06 0.112 0.023 0.03 121.5 0.02 3.35 92.1 6.8 

UMT094-1343 <0.04 0.122 0.016 0.03 130.5 0.021 3.11 103.5 6.1 

UMT094-1351 <0.04 0.218 0.016 0.05 95.8 0.038 2.98 105.5 7.8 

UMT094-1365 0.04 0.467 0.036 0.11 64.8 0.031 3.75 55.5 25.8 

UMT094-1384 0.23 0.276 0.083 0.07 74.2 0.074 5.57 155 25 

UMT094-1402 0.05 0.296 0.14 0.08 114.5 0.096 8.29 110.5 33.5 
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Table 4B. Pt-Pd-Au (PGM-MS23L, PGM-ICP27). 

 Au Pt Pd  Au Pt Pd 

D.L. ppb 1 0.1 0.2 D.L. ppm 0.01 0.01 0.01 

UMT094-1096 1 1.7 0.8     

UMT094-1111 2 0.9 0.8     

UMT094-1135 1 2.4 1.1     

UMT094-1165 2 2.7 1.1     

UMT094-1184 1 1.9 1.1     

UMT094-1213 2 16.6 1.4     

UMT094-1218 2 2.9 2.1     

UMT094-1226 2 2.4 0.5     

UMT094-1228 2 1.7 0.8     

UMT094-1232 290 603 323     

UMT094-1233 598 >1000 >1000  1.23 1.46 1.27 

UMT094-1238 229 538 217     

UMT094-1245 52 90.3 26.9     

UMT094-1252 126 326 119     

UMT094-1254 213 >1000 >1000  0.18 1.44 1.18 

UMT094-1258 144 >1000 >1000  0.14 1.25 1.1 

UMT094-1265 78 630 664     

UMT094-1273 111 >1000 >1000  NSS NSS NSS 

UMT094-1277 115 >1000 >1000  0.14 1.06 1.08 

UMT094-1282 40 287 311     

UMT094-1285 294 >1000 >1000  0.36 1.76 2.03 

UMT094-1286 155 956 946     

UMT094-1288 139 699 615     

UMT094-1289 130 >1000 >1000  0.17 0.93 1.03 

UMT094-1291A 188 969 >1000  0.2 0.91 1.06 

UMT094-1291B 190 979 944     

UMT094-1292A 347 877 769     

UMT094-1292B 2 113.5 39.5     

UMT094-1294 2 47.3 6.7     

UMT094-1296 20 46.4 63.4     

UMT094-1300 4 65.3 29.1     

UMT094-1311 102 581 657     

UMT094-1319 110 488 432     

UMT094-1325A 143 >1000 910  0.13 1.06 0.86 

UMT094-1325B 11 55.7 36.6     

UMT094-1326A 63 483 313     

UMT094-1326B 97 >1000 921  0.1 1.29 0.92 

UMT094-1327 12 115.5 173.5     

UMT094-1329 25 312 263     

UMT094-1332 63 290 354     

UMT094-1335 380 724 854     

UMT094-1336 207 >1000 >1000  0.25 1.57 1.57 

UMT094-1337 240 >1000 >1000  0.19 3.17 2.11 

UMT094-1339 30 250 203     

UMT094-1340 22 137.5 149.5     

UMT094-1343 6 22.4 19.7     

UMT094-1351 12 58.4 71.4     

UMT094-1365 16 173.5 194     

UMT094-1384 63 96.3 198.5     

UMT094-1402 18 203 307     
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Appendix C: Thin section descriptions 
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Figure C 1. Scanned thin sections associated with thin section descriptions below. 

 

  



 

 

117 

Table C 1. Thin section mineralogy of individual samples. 

 Main Minerals Sulfides Alteration Minerals 

Thin Section Opx Cpx Pl Ol Chr Po Ccp Pn Py Mag Bt Amp WM Chl Srp Cal 

094-1096 30 15 55 - - tr tr - tr tr tr - tr - - - 

094-1184 30 5 65 - - - tr - tr tr - - tr - - - 

094-1213 25 3 70 - - tr tr - tr tr tr - 2 - - - 

094-1226 20 20 57 - - tr tr - tr - - - 3 - - - 

094-1232 52 18 16 5 1 1 2 tr - tr 1 - 4 tr - - 

094-1233 63 5 25 - - 1 2 tr - tr tr - 4 - - - 

094-1238 64 15 15 - - 1 1 tr - tr 1 - 3 - - - 

094-1245 72 3 20 - - tr tr - - tr 1 - 4 tr - - 

094-1252 71 10 15 - - 1 tr tr - tr 1 - 2 - - - 

094-1277 73 8 10 - tr 2 1 tr - tr 1 tr 4 1 - - 

094-1282 65 10 17 - - 1 1 tr - tr tr - 5 1 - - 

094-1285 10 45 25 - tr 1 tr tr - tr 1 - 15 3 - 2 

094-1286 56 20 10 - 1 - 2 2 - tr tr - 8 1 - tr 

094-1288 5 56 20 - 3 2 1 tr - tr 1 - 12 tr - - 

094-1289 1 67 20 - 1 1 2 2 - tr tr - 6 tr - - 

094-1291A 5 71 15 - 2 1 1 tr - tr 2 - 3 tr - tr 

094-1291B 3 15 8 20 1 1 1 1 - 3 tr - 3 - 44 - 

094-1292A-1 2 15 61 10 tr tr tr - - 2 - - 2 - 8 - 

094-1292A-2 4 1 91 - - 1 tr tr - - - - 2 1 - - 

094-1292B 12 5 81 - - tr tr - - - - - 2 - - - 

094-1294 8 4 87 - tr tr tr - - - - - 1 tr - - 

094-1296 40 5 50 - tr 1 1 tr - - tr - 3 - - - 

094-1300 30 5 63 - 1 tr tr - - - - - 1 - - - 

094-1311 10 40 44 - 2 1 tr tr - tr tr - 3 - - - 

094-1314-1 15 2 80 - 1 tr tr - tr tr tr - 2 - - - 

094-1314-2 55 5 36 - 1 1 1 tr tr - tr tr 1 - - - 

094-1319 57 18 20 - 1 tr 1 tr - - 1 - 2 - - - 

094-1325B 38 25 35 - 1 tr tr - - - tr - 1 tr - - 

094-1326A 51 25 20 - tr 1 1 1 - - tr - 1 - - - 

094-1327 48 30 15 - 2 1 1 1 - tr tr - 2 - - - 

094-1329 43 35 20 - tr 1 tr tr tr tr tr - 1 - - - 

094-1332 63 20 15 - tr 1 tr tr - tr tr - 1 - - - 

094-1336 30 4 38 20 tr 1 tr tr - tr tr - 5 - 2 - 

094-1337 31 7 20 25 8 2 1 1 - 1 tr - 2 - 2 - 

094-1339 61 16 18 - 2 1 tr tr - - tr - 2 - - - 

094-1343 60 15 20 - 5 tr tr - - - tr - tr - - - 

 

Amp = Amphibole, Bt = Biotite, Cal = Calcite, Ccp = Chalcopyrite, Chl = Chlorite, Chr = 

Chromite, Cpx = Clinopyroxene, Mag = Magnetite, Ol = Olivine, Opx = Orthopyroxene, Pl = 

Plagioclase, Pn = Pentlandite, Po = Pyrrhotite, Py = Pyrite, Srp = Serpentine, tr = trace and WM 

= White Mica. 
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Table C 2. Thin section rock classification, mineral textures and alteration in individual samples. 

 Rock Classification Mineral Textures Alteration 

Thin 

Section 
Rock Type Color Index Pl Opx Cpx Ol Amp Cal Chl WM Srp 

094-1096 Gabbronorite Meso A O H - - - - VW - 

094-1184 Norite to Gabbronorite 
Leuco-

Meso 
A O H - - - - VW - 

094-1213 Norite Leuco A H H - - - - M - 

094-1226 Gabbronorite Meso A O H - - - - M - 

094-1232 Olivine Gabbronorite Mela H C C C - - W S - 

094-1233 Gabbronorite to Norite Mela H C C - - - - M - 

094-1238 Gabbronorite Mela H C C/P - - - - M - 

094-1245 Norite Mela H C C - - - - M-S - 

094-1252 Gabbronorite Mela H C C - - - - M - 

094-1277 
Orthopyroxenite - 

Gabbronorite 
Mela I C H/P - W - S M-S - 

094-1282 Pegmatitic Gabbronorite Mela I C C - - - W S - 

094-1285 Gabbronorite Mela I - C - - W W VS - 

094-1286 Gabbronorite/Pyroxenite Mela I C C - - W S S - 

094-1288 Gabbronorite Mela I A A - - - W S - 

094-1289 Gabbro to Gabbronorite Mela I C A - - - W S - 

094-1291A Gabbro to Gabbronorite Mela I C A/H - - - - M - 

094-1291B 
Olivine Gabbronorite - 

Olivine Norite 
Mela I/C C A C - - - M VS 

094-

1292A-1 

Olivine 

Gabbronorite/Anorthosite 
Meso I/A I H C - - - W VS 

094-

1292A-2 
Anorthosite Leuco A I I - - - - W - 

094-1292B Gabbronorite to Norite Leuco A C I - - - - M - 

094-1294 Norite Leuco A C I - - - - M - 

094-1296 Norite to Gabbronorite Meso A C I - - - - M - 

094-1300 Gabbronorite Meso A C/I I - - - - W - 

094-1311 Gabbronorite Meso A C/A A/I - - - - M-S - 

094-1314-1 Norite Leuco C/A C I - - - - M - 

094-1314-2 Norite - Gabbronorite Meso A/I C I - W - - M - 

094-1319 Gabbronorite Mela H/I C I/H - - - - M-S - 

094-1325B Gabbronorite Meso-Mela A C H - - - - M - 

094-1326A Gabbronorite Mela H C C/H - - - - M - 

094-1327 Gabbronorite Mela H C C/H - - - - M - 

094-1329 Gabbronorite Mela H C C/H - - - - W - 

094-1332 Gabbronorite Mela H C A - - - - W-M - 

094-1336 Olivine Norite Meso H H/C H C - - - S W 

094-1337 Olivine Gabbronorite Mela H C A C - - - W W 

094-1339 Gabbronorite Mela H C C/P - - - - W - 

094-1343 Gabbronorite Mela H C H - - - - W - 
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Leuco = Leucocratic, Meso = Mesocratic, Mela = Melanocratic, A = Adcumulate, C = Cumulate, 

H = Heteradcumulate, I = Intercumulate, O = Orthocumulate, P = Poikilitic, VW = Very Weak, 

W = Weak, M = Moderate, S = Strong, VS = Very Strong, Amp = Amphibole Cal = Calcite, Chl 

= Chloritization, Srp = Serpentinization and WM = White Mica.  
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