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Abstract 

 

Player selection is one of the most important tasks for any sport and cricket is no exception. 

The performance of the players depends on various factors such as the opposition team, the 

venue, his current form etc. The team management, the coach and the captain select eleven 

players for each match from a squad of 15 to 20 players. They analyze different characteristics 

and the statistics of the players to select the best playing 11 for each match. Each batsman 

contributes by scoring maximum runs possible and each bowler contributes by taking 

maximum wickets and conceding minimum runs. This thesis attempts to predict the 

performance of players as how many runs each batsman will score and how many wickets each 

bowler will take for both teams in one-day international cricket matches. Both the problems 

are targeted as classification problems where number of runs and number of wickets are 

classified in different ranges. We used Naïve Bayes, Random Forest, multiclass SVM and 

Decision Tree classifiers to generate the prediction models for both the problems. Random 

Forest classifier was found to be the most accurate for both problems. 

 

Keywords 

 

Cricket, One Day International (ODI), supervised learning, Naïve Bayes, Random Forest, 

multiclass SVM, Decision Trees, Oversampling
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Chapter 1 

 

Introduction 

 

1 Introduction 

 

Selecting the best players for a particular match in any sport involves predicting the players’ 

performance. Players’ performance varies with the team they play against and the ground on 

which they play the match. Player selection is particularly more important in the game of 

cricket as the 11 players selected at the beginning of the match are fixed unless in case of injury. 

Moreover, the substituted players in such cases have limited privileges. Players’ performance 

can be predicted by analyzing their past statistics and characteristics. Cricket players’ abilities 

and performance can be measured in terms of different stats. Batsmen’s statistics include 

batting average, batting strike rate, number of centuries etc. Whereas bowlers’ statistics are 

measured by bowling average, bowling strike rate, economy rate etc. Other characteristics of 

batsmen include, batting hand of the batsman, the position at which the batsman bats etc. and 

those of bowlers include, the type of bowler, bowling hand of the bowler etc. Moreover, recent 

performances of the batsman/bowler, the performance of the batsman/bowler against a 

particular team and the performance of the batsman/bowler at a given venue are also taken into 

account for predicting his performance in the upcoming match. The team management, the 

coach and the captain utilize these facts and their own experience to select the team for a given 

match. 
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In this study, we used machine learning and data mining techniques to predict batsmen and 

bowlers’ performances in a given day’s match. We predict how many runs a batsman will score 

and how many wickets a bowler will take in the upcoming match. We targeted both the 

problems as classification problems where we classified runs and wickets into different ranges. 

We experimented with four supervised machine learning algorithms and compared their 

performance. The models generated by these algorithms can be used to predict the players’ 

performance in future matches. 

 

1.1 The Game of Cricket 

 

Cricket is a sport played by two teams with each side having eleven players. One team bats and 

the other team bowls (fields) at a time and one such session is called an innings. In the center 

of the field, there is a 22-yard long pitch where most of the action takes place. Both ends of the 

pitch will have a wicket which has three wooden stumps and two cross pieces called the bails. 
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Figure 1 Cricket Pitch [1] 

 

Each team consists of batsmen, bowlers and a wicket-keeper. All the players from the bowling 

team are on the field; one of them is behind the wickets, one of them bowls (throws the ball) 

from one end of the pitch and the other players are fielding, arranged in a particular fashion 

decided by the captain of the team. Two players from the batting team are on the field, 

alternating batting at a time. One of them bats from one end while the other one waits at the 

other end where the bowler is bowling from. The batsmen can be dismissed in many different 

ways with each ball bowled and this is called a wicket. As at a given time, there need to be 

exactly two batsmen on the field, the batting team has 10 wickets at the beginning of their 

innings. The batting team has to defend their wickets and score maximum runs possible and 

the bowling team has to get wickets as soon as possible and restrict the batting team from 

scoring runs. The team scoring the most runs wins at the end of the match. 
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The batsman on the opposite end of the bowler is called the striker. The striker takes guard on 

the popping crease which is four feet away in front of the wickets. The striker has to prevent 

the wickets from being hit by the ball by striking the ball hard with his bat. He tires to hit the 

ball well enough to score maximum runs on each delivery. Runs can be scored in two different 

ways. One way is to hit the ball hard enough for it to cross the boundary. If the batsman hits 

the ball into the air and the ball crosses the boundary before dropping on the ground, the batting 

team gets six runs, which is the maximum number of runs that can be scored on a legal delivery; 

otherwise the batting team gets four runs if the ball drops before crossing the boundary. 

Another way to score runs is by the two batsmen swapping ends running the length of the pitch 

in opposite directions while the fielders retrieve the ball. 

 

The fielding team’s role is to prevent the batsmen from scoring runs and dismiss them as soon 

as possible. A batsman can be dismissed in several ways. When the bowler hits the wickets 

directly with the ball and removes the bells from the stumps, the batsman is said to be bowled. 

When the batsman prevents the ball from hitting the stumps with his body, he is said to be 

dismissed as leg before wicket (lbw). If the striker leaves the popping crease and misses the 

ball and the wicket keeper removes the bells by hitting wickets with the ball, the batsman is 

dismissed as stumped. If the batsman hits the ball into the air and the ball is caught by a fielder 

without dropping on the ground, the type of dismissal is called caught. If a fielder retrieves the 

ball and removes bells from the stumps by hitting them with the ball, before the batsman 

reaches the crease while swapping ends to get a run, the batsman running towards the end 

where the bells have been removed, is said to be dismissed by run out. Any type of wicket 

except run out is said to be taken by the bowler who bowled the ball. 
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The bowling ends are swapped at the end of each over. An over consists of six balls bowled by 

a bowler. A different bowler comes in to bowl the next over. The number of balls may increase 

with illegal deliveries as wide balls or no balls which act as penalties against the bowling team 

in the form of an extra run and an extra ball for the batting team in that over. There are several 

ways in which a delivery can be declared a no ball or a wide ball. The umpires declare a delivery 

as a no ball or a wide ball according to those rules. 

 

 

Figure 2 Player Positions in Cricket, B – Batsmen, U – Umpires, 7 – Bowler, 1 – 6 & 8 – 

11 – Fielders [2] 
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1.2 Formats of the Game 

 

Cricket is played in three different formats: one-day matches, T20 matches and test matches. 

One-day matches, also known as ODIs (One Day International) and T20 (twenty-twenty) 

matches are also known as limited overs cricket. In these formats there are two innings, so each 

team gets one chance to bat and one chance to bowl. In ODIs, a maximum of 50 overs can be 

bowled in one innings and in T20s, as the name suggests, a maximum of 20 overs can be 

bowled in one innings. So, an innings ends if 50/20 overs have been bowled or the batting team 

has lost 10 wickets. At the end of the first innings the teams change roles. The bowling team 

now bats and tries to chase the target set by the other team within 50/20 overs or before losing 

their 10 wickets. Similarly, the batting team now bowls and tries to prevent the other team from 

chasing the target down within 50/20 overs or by taking 10 wickets. Test matches on the other 

hand are played over a maximum of five days and each team can play up to two innings in a 

match. 

  

Limited overs cricket is more challenging for both batsmen and bowlers. Batsmen need to score 

runs as fast as possible and the bowlers need to restrict them by conceding the least runs and 

taking wickets. The focus of this thesis is the ODI format which is the most popular format in 

international cricket nowadays. In this study, we are trying to predict how many runs a batsman 

will score and how many wickets a bowler will take in a given day’s match. 
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1.3 Contributions 

 

The principal contributions of this thesis are: 

 We introduce a model that can quantify the performance of batsmen using their past 

statistics. 

 We introduce a model that can quantify the performance of bowlers using their past 

statistics. 

 We introduce four new measures based on raw attributes, that represent different 

aspects of both batsmen and bowlers’ performance 

 We compare the accuracies of different multiclass classification algorithms on our 

cricket dataset. This comparison can be used as a reference by selecting data 

classification algorithms for predicting players’ performance. 

 

1.4 Outline 

 

The rest of the thesis is organized as follows: 

 

Chapter 2 highlights some work related to the game of cricket. 

 

Chapter 3 describes the data and the preprocessing that we did on the data. We describe the 

statistics and the attributes that are used to measure the players’ performance. We also 

introduce some new attributes that we used in this study. 
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Chapter 4 gives a brief description of the machine learning algorithms that we used to create 

the prediction models. 

 

Chapter 5 reveals the results of the experiments that we carried out on our data. We also discuss 

and compare the results and performances of different machine learning algorithms on our data. 

 

Chapter 6 concludes the thesis and gives some directions for future work in the field.
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Chapter 2 

 

Literature Review 

 

2 Related Work 

 

An extensive online search produced very few articles related to players’ performance 

prediction in the game of cricket. A very small number of researchers have tried to predict the 

performance of cricket players. Muthuswamy, S. and Lam, S. [3] predicted the performance of 

Indian bowlers against seven international teams against which the Indian cricket team plays 

most frequently. They used backpropagation network and radial basis function network to 

predict how many runs a bowler is likely to concede and how many wickets a bowler is likely 

to take in a given ODI match. Wikramasinghe, I. [4] predicted the performance of batsmen in 

a test series using a hierarchical linear model. Iyer, S. R. and Sharda, R. [5] used neural 

networks to predict the performance of players where they classify batsmen and bowlers 

separately in three categories – performer, moderate and failure. Then based on the number of 

times a player has received different ratings, they recommend if the player should be included 

in the team to play World Cup 2007. Saikia, H. and Bhattacharjee, D. [6] classified all-rounders 

in four categories using Naïve Bayes classification: Performer, Batting All-rounder, Bowling-

All-rounder and Under-performer. They used the data of 35 all-rounders who played in first 

three seasons of IPL to generate the classification model and used the model to predict the 

expected classes of six new all-rounders. Saikia et al. [7] predicted the performance of bowlers 

in IPL IV using artificial neural networks. They used the bowlers’ performance measures from 
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ODI and T20I (T20 international) matches and the Combined Bowling Rate measure 

introduced by Lemmer, H. H. [8]. 

 

A lot of work has been done to measure players’ performance and rank them. These rankings 

can then be used to select players for matches and tournaments. Barr, G. D. I. and Kantor, B. 

S. [5] defined a criterion for comparing and selecting batsmen in limited overs cricket. They 

defined a new measure P(out) i.e. probability of getting out and used a two-dimensional 

graphical representation with Strike Rate on one axis and P(out) on another. Then they define 

a selection criterion based on P(out), strike rate and batting average of the batsmen. Lemmer, 

H.H. [8] defined a new measure called Combined Bowling Rate to measure the performance 

of bowlers. The Combined Bowling Rate is a combination of three traditional bowling 

measures: bowling average, strike rate and economy. Bhattacharjee, D. and Pahinkar, D. [9] 

used this Combined Bowling Rate to analyze the performance of bowlers in the Indian Premier 

League(IPL). They also determined other factors that affect the performance of bowlers and 

applied multiple regression model to identify the factors that are empirically responsible for 

the performance of bowlers. Mukharjee, S. [10] applied Social Network Analysis to rate 

batsmen and bowlers in a team performance. He generated a directed and weighted network of 

batsmen-bowlers using player-vs-player information available for test and ODI cricket. He also 

generated a network of batsmen and bowlers using the dismissal record of batsmen in the 

history of cricket. Shah, P. [11] also defined new measures to measure players’ performance. 

The new measure for batsmen takes into account the quality of each bowler he is facing and 

the new measure for bowlers considers the quality of each batsman he is bowling to. The 

aggregate of individual performance of a batsman against each bowler is the total performance 

index of the batsman. Similarly, the aggregate of individual performance of a bowler against 

each batsman is the total performance index of the bowler. Parker, D., Burns, P. and Natarajan, 
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H. [12] defined a model for valuation of players for IPL auction. Their model considered factors 

like previous bidding price of the player, experience of the player, strike rate etc. Sharp et al. 

[13] used integer optimization to select a T20 team. They described methods for quantifying 

batsmen’s performance based on their scoring abilities and bowlers’ performance based on 

their wicket taking abilities. These measures were then used in an integer program that would 

select an optimal team of 11 players. Ahmed et al. [14] used evolutionary multi-objective 

optimization for cricket team selection. They used batting average and bowling average as a 

measure of performance for batsmen and bowlers. They redefined team selection as a bi-

objective optimization problem and then used non-dominated sorting genetic algorithm for 

multi-objective genetic optimization over the team. Omkar, S.N. and Verma, R. [15] used 

genetic algorithms for selecting a team. They defined the fitness of a team by considering the 

individual fitness of each player on the team. The fitness of a player is calculated based on his 

performance in batting, bowling, wicket-keeping, fielding, his physical fitness and his 

experience in the game. They also considered the team’s performance against a particular team, 

on a particular pitch and the recent performance of the team. Then they used the genetic 

algorithm by representing the team as a string where each string bit represented a player. Lewis, 

A. J. [16] defined new measures of players’ performance in ODIs using the Duckworth-Lewis 

method. Kimber, A. and Hansford, A. [17] carried out a statistical analysis of batting in cricket. 

They investigated the properties of batting average and stated that the traditional formula of 

batting average depends on unrealistic parameters. They defined an alternative parameter-free 

formula to calculate the batting average.  

 

Another application of predictive analytics in cricket is to predict the winning team for a match 

or tournament. There are different approaches to achieve this. One approach would be to rank 

and compare players of different teams. Another approach would be to use other match-related 
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factors that affect the players’ performance as the entire team. Jhanwar, M. and Paudi, V. [7] 

predict the outcome of a cricket match by comparing the strengths of the two teams. For this, 

they measured the performances of individual players of each team. They developed algorithms 

to model the performances of batsmen and bowlers where they determine the potential of a 

player by examining his career performance and then his recent performances. Prakash C. D., 

Patvardhan, C. and Lakshmi, C. V. [13] defined batting index and bowling index to rank 

players’ performance for their models to predict outcomes of IPL matches. Ovens M. and 

Bukiet B. [14] applied a mathematical approach to suggest optimal batting orders for ODI 

matches. The Duckworth-Lewis method was introduced by Duckworth and Lewis [22] as a fair 

method to reset the target in interrupted ODI matches. Sankaranarayanan et al. [19] used data 

mining techniques to model and predict ODI matches. They used historical match data such as 

average runs scored by the team in an innings, average number of wickets lost by the team in 

an innings etc. and instantaneous match data such as whether the batting team is playing at the 

home ground or away or at a neutral venue, performance features of the two batsmen playing 

at the moment etc. to model the state of the match. Then they predict the outcome of the match 

by using machine learning algorithms such as linear regression and nearest-neighbors 

clustering algorithms. Swartz et al. [22] modelled and simulated ODI matches to predict the 

outcome of each ball that is bowled. They used historic data from past ODI matches to estimate 

the probability of each possible outcome. The probabilities depend on the batsman, the bowler, 

the number of wickets lost, the number of balls bowled and the innings. 

 

Our work is probably the first generalized approach to predict how many runs will a batsman 

score and how many wickets will a player take on a particular match day.  Muthuswamy and 

Lam [3] carried out a similar study predicting how many wickets will a bowler take using 

neural networks but their work was limited to eight Indian bowlers and is difficult to generalize 



 13 

for all bowlers in the world. We did a more detailed study where we derived our own measures 

to capture different aspects of players’ performance. No article in the literature describes such 

attributes. The literature guided us in selecting some of the input attributes that affect players’ 

performance. We used some supervised machine learning algorithms to build prediction 

models that can be used to predict the performance of any player in a given match. 
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Chapter 3 

 

Data and Preprocessing 

 

3 The Data 

 

We obtained all our data from www.cricinfo.com using scraping tools, parsehub [30] and 

import.io [31]. For batting, we considered matches played from 14 January 2005 to 10 July 

2017. The senior most player during this span was SR Tendulkar, so we collected innings by 

innings list of the performance of all the batsmen from 18 December 1989 when he played his 

first ODI match. For bowling, we considered matches played form 2 January 2000 to 10 July 

2017. The senior most player during this span was PA de Silva, so we collected innings by 

innings list of the performance of all the batsmen from 31 March 1984 when he played his first 

ODI match. Since the past stats of the players such as average, strike rate etc. are not available 

directly online for each match they played, we calculated from the innings by innings list for 

each match. We considered only those players who had played at least 10 innings till the match 

day. We had 25927 records for batsmen’s data and 36230 records for bowlers’ data. We 

imported all the data in MySQL tables and used php to manipulate them. 

 

For predictive analytics, we used Weka [32] and Dataiku [33]. Both these tools are a collection 

of machine learning algorithms for data mining and also provide some preprocessing 

functionalities. All the results in this study have been obtained from Weka [32] 3-9-1-oracle-

jvm and Dataiku Data Science Studio [33] on Mac OS 10.11.6 and Windows 10. 
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3.1 Player Statistics 

 

Players’ performance is measured in terms of several measures. The traditional measures that 

we used for measuring players’ performance in this study are explained below in section 3.1.1 

and 3.1.2. We derived four other measures Consistency, Form, Opposition and Venue using 

the traditional measures as will be explained in section 3.2. 

 

3.1.1 Batting Measures 

 

Innings: The number of innings in which the batsman has batted till the day of the match. This 

attribute measures the experience of the batsman. The more innings the batsman has played, 

the more experienced the player is. 

 

Batting Average: Batting average commonly referred to as average is the average number of 

runs scored per innings. This attribute indicates the run scoring capability of the player. 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =  
𝑅𝑢𝑛𝑠 𝑆𝑐𝑜𝑟𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑛𝑖𝑛𝑔𝑠 𝑃𝑙𝑎𝑦𝑒𝑑
 

 

Strike Rate (SR): Strike rate is the average number of runs scored per 100 balls faced. In limited 

overs cricket, it is important to score runs at a fast pace. More runs scored at a slow pace is 

rather harmful to the team as they have a limited number of overs.  This attribute indicates how 

quickly the batsman can score runs. 
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𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒 =  
𝑅𝑢𝑛𝑠 𝑆𝑐𝑜𝑟𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐵𝑎𝑙𝑙𝑠 𝐹𝑎𝑐𝑒𝑑
 ×  100 

 

Centuries: Number of innings in which the batsman scored more than 100 runs. This attribute 

indicates the capability of the player to play longer innings and score more runs. 

 

Fifties: Number of innings in which the batsman scored more than 50 runs (but less than 100). 

This attribute indicates the capability of the player to play longer innings and score more runs. 

 

Zeros: Number of innings in which the batsman was dismissed without scoring a single run. 

 

Highest Score (HS): The highest runs scored by a batsman in any (single) innings throughout 

his career. This attribute is used in the formula for calculating the venue attribute. This attribute 

shows the run scoring capability of the batsman at the venue. If a player has s very high score 

at a venue in past, he is more likely to score more runs at that venue. 

 

3.1.2 Bowling Measures 

 

Innings: The number of innings in which the bowler bowled at least one ball. It represents the 

bowling experience of a player. The more innings the player has played, the more experienced 

the player is. 

 

Overs: The number of overs bowled by a bowler. This attribute also indicates the experience 

of the bowler. The more overs the bowler has bowled, the more experienced the bowler is. 
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Bowling Average: Bowling average is the number of runs conceded by a bowler per wicket 

taken. This attribute indicates the capabilities of the bowler to restrict the batsmen from scoring 

runs and taking wickets at the same time. Lower values of bowling average indicate more 

capabilities. 

 

Bowling Average =  
Number of Runs Conceded

Number of Wickets Taken
 

 

Bowling Strike Rate: Bowling strike rate is the number of balls bowled per wicket taken. This 

attribute indicates the wicket taking capability of the bowler. Lower values mean that the 

bowler is capable of taking wickets quickly. 

 

Strike Rate =  
Number of Balls Bowled

Number of Wickets Taken
 

 

Four/Five Wicket Haul: Number of innings in which the bowler has taken more than four 

wickets. This attribute indicates the capability of the bowler to take more wickets in an innings. 

Higher the value, more capable the player. 

 

3.2 Data Preprocessing 

 

3.2.1 Calculating the Weights 

 

As we saw, different measures highlight different aspects of a player’s abilities and hence some 
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measures have more importance than others, e.g. batting average is an important factor for all 

the formats of the game as it reflects the run scoring abilities of a batsman in general. Similarly, 

strike rate would be an important factor for limited over matches as it is important to score more 

runs in limited overs. So, we weighted each measure of performance according to its relative 

importance over other measures. We determined the weights using analytic hierarchy 

process(AHP) [34] [35]. AHP is an effective tool for complex decision making. It aids in setting 

priorities and making the best decision. AHP reduces complex decisions into a series of pairwise 

comparisons. AHP captures both subjective and objective aspects of a decision. The AHP 

generates a weight for each evaluation criterion according to the decision maker’s pairwise 

comparisons of the criteria. The higher the weight, the more important the corresponding 

criterion. Next, for a fixed criterion, the AHP assigns a score to each option according to the 

decision maker’s pairwise comparisons of the options based on that criterion. The higher the 

score, the better the performance of the option with respect to the considered criterion. Finally, 

the AHP combines the criteria weights and the options scores, thus determining a global score 

for each option, and a consequent ranking. The global score for a given option is a weighted 

sum of the scores it obtained with respect to all the criteria. 

 

The analytic hierarchy process decomposes the decision making process in following steps: [35] 

1. Define the problem and the knowledge sought. 

2. Structure the decision hierarchy with the goal at the top level, objectives/attributes at the 

intermediate levels and alternatives at the lowest level. 

3. Construct a set of pairwise comparison matrices where each element in an upper level 

is compared to the elements in the level immediately below it. These comparisons are 

made using a scale of numbers which indicates how many times more important is one 

element over another. This scale is tabulated in table 1 below. 
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4. The priorities obtained from the comparisons are used to weigh the priorities in the level 

immediately below. This is done for every element. The overall or global priority for 

every element in the level below is obtained by adding its weighted values. This process 

is continued until priorities of the alternatives in the lowest level obtained. The weights 

are calculated using some mathematical operations. 

 

Table 1 Relative importance levels of objectives/attributes [35] 

 

Level of 

Importance 

Meaning Description 

1 Equal Importance 

Two activities contribute equally to the 

objective. 

2 Weak or Slight  

3 Moderate Importance 

Experience and judgement slightly favor one 

activity over another. 

4 Moderate Plus  

5 Strong Importance 

Experience and judgement strongly favor one 

activity over another 

6 Strong Plus  

7 

Very strong or 

demonstrated importance 

An activity is favored very strongly over 

another; its dominance demonstrated in practice 

8 Very, very strong  

9 Extreme importance The evidence favoring one activity over another 
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is of the highest possible order of affirmation 

Reciprocals 

of the 

above 

If activity i has one of the 

above non-zero numbers 

assigned to it when 

compared with activity j, 

then j has the reciprocal 

value when compared 

with i 

A reasonable assumption 

1.1 – 1.9 

If the activities are very 

close 

May be difficult to assign the best value but 

when compared with other contrasting activities 

the size of the small numbers would not be too 

noticeable, yet they can still indicate the relative 

importance of the activities. 

 

Following is an example of how AHP can be used to determine weights of the attributes in our 

study. Here we determine weights of the traditional batting performance measures to calculate 

the new attributes. 

First, using our knowledge of cricket statistics and experience, we arrange the attributes in their 

decreasing order of importance as: 

Average > Innings > Strike Rate > Centuries > Fifties > Zeros 

Next, we create a matrix to compare their importance using table 1. 
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Table 2 Pairwise comparison of the attributes 

 

 Average Innings Strike Rate Centuries Fifties Zeros 

Average 1 3 4 5 6 7 

Innings 
1

3
 1 3 4 5 6 

Strike Rate 
1

4
 

1

3
 1 3 4 5 

Centuries 
1

5
 

1

4
 

1

3
 1 2 3 

Fifties 
1

6
 

1

5
 

1

4
 

1

2
 1 3 

Zeros 
1

7
 

1

6
 

1

5
 

1

3
 

1

3
 1 

 

Next, we calculate the weight of each attribute. First, we calculate the priority of each attribute 

using the formula: 

 

𝑃𝑗 =  (∏ 𝑝𝑖𝑗

𝑁

𝑗=1

)

1
𝑁

 

 

where; Pj is the priority of attribute j, N is the number of attributes and pij is the level of 

importance of attribute j over attribute i. Next, we normalize each attribute’s priority using the 

following formula: 

 

𝑊𝑗 =  
𝑃𝑗

∑ 𝑃𝑖
𝑁
𝑖=1
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Finally, we get following weights for the attributes: 

Average: 0.4262 

Innings: 0.2566 

Strike Rate: 0.1510 

Centuries: 0.0787 

Fifties: 0.0566 

Zeros: 0.0328 

 

3.2.2 New Attributes 

 

To predict a player’s performance, his past performances need to be analyzed in terms of how 

much experience he has, how consistent he has been in his performance, how well he has been 

performing in recent matches, how well can he tackle the bowlers/batsmen of different teams, 

how well does he play at different venues, etc. Traditional measures of players’ performance 

cannot reflect these factors directly. So, we tried to reflect and quantify them by deriving four 

new measures from the traditional measures. These attributes are weighted averages of the 

traditional attributes. These attributes are explained as follows: 

 

Consistency: This attribute represents how experienced and consistent the player is. It is the 

weighted average of the traditional attributes calculated over the player’s entire career. Its 

formula is as follows: 
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For batting, 

 

𝑪𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒚 =  𝟎. 𝟒𝟐𝟔𝟐 ×  𝑨𝒗𝒆𝒓𝒂𝒈𝒆 + 𝟎. 𝟐𝟓𝟔𝟔 ×  𝑰𝒏𝒏𝒊𝒏𝒈𝒔 + 𝟎. 𝟏𝟓𝟏𝟎 

×  𝑺𝒕𝒓𝒊𝒌𝒆 𝑹𝒂𝒕𝒆 + 𝟎. 𝟎𝟕𝟖𝟕 ×  𝑪𝒆𝒏𝒕𝒖𝒓𝒊𝒆𝒔 + 𝟎. 𝟎𝟓𝟓𝟔 ×  𝑭𝒊𝒇𝒕𝒊𝒆𝒔

− 𝟎. 𝟎𝟑𝟐𝟖 ×  𝒁𝒆𝒓𝒐𝒔 

 

For bowling, 

 

𝑪𝒐𝒏𝒔𝒊𝒔𝒕𝒆𝒏𝒄𝒚 =  𝟎. 𝟒𝟏𝟕𝟒 ×  𝑶𝒗𝒆𝒓𝒔 +  𝟎. 𝟐𝟔𝟑𝟒 ×  𝑰𝒏𝒏𝒊𝒏𝒈𝒔 +  𝟎. 𝟏𝟔𝟎𝟐 

×  𝑺𝒕𝒓𝒊𝒌𝒆 𝑹𝒂𝒕𝒆 +  𝟎. 𝟎𝟗𝟕𝟓 ×  𝑩𝒐𝒘𝒍𝒊𝒏𝒈 𝑨𝒗𝒆𝒓𝒂𝒈𝒆 +  𝟎. 𝟎𝟔𝟏𝟓 

×  𝑭𝒐𝒖𝒓/𝑭𝒊𝒗𝒆 𝑾𝒊𝒄𝒌𝒆𝒕𝒔 𝑯𝒂𝒖𝒍 

 

Form: This attribute represents the player’s current form. It quantifies the player’s 

performance over past twelve months. 

 

For batting, 

 

𝐹𝑜𝑟𝑚 =  0.4262 ×  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 + 0.2566 ×  𝐼𝑛𝑛𝑖𝑛𝑔𝑠 + 0.1510 ×  𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒 + 0.0787 

×  𝐶𝑒𝑛𝑡𝑢𝑟𝑖𝑒𝑠 + 0.0556 ×  𝐹𝑖𝑓𝑡𝑖𝑒𝑠 − 0.0328 ×  𝑍𝑒𝑟𝑜𝑠 

 

For bowling, 

 

𝐹𝑜𝑟𝑚 =  0.3269 ×  𝑂𝑣𝑒𝑟𝑠 + 0.2846 ×  𝐼𝑛𝑛𝑖𝑛𝑔𝑠 + 0.1877 ×  𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒 + 0.1270 

×  𝐵𝑜𝑤𝑙𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 +  0.0789 ×  𝐹𝑜𝑢𝑟/𝐹𝑖𝑣𝑒 𝑊𝑖𝑐𝑘𝑒𝑡𝑠 𝐻𝑎𝑢𝑙 

 



 24 

Opposition: This attribute represents the player’s performance against the team with which 

the match is being played. 

 

For batting, 

 

𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  0.4262 ×  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 + 0.2566 ×  𝐼𝑛𝑛𝑖𝑛𝑔𝑠 + 0.1510 ×  𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒

+ 0.0787 ×  𝐶𝑒𝑛𝑡𝑢𝑟𝑖𝑒𝑠 + 0.0556 ×  𝐹𝑖𝑓𝑡𝑖𝑒𝑠 − 0.0328 ×  𝑍𝑒𝑟𝑜𝑠 

 

For bowling, 

 

𝑂𝑝𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =  0.3177 ×  𝑂𝑣𝑒𝑟𝑠 + 0.3177 ×  𝐼𝑛𝑛𝑖𝑛𝑔𝑠 + 0.1933 ×  𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒

+ 0.1465 ×  𝐵𝑜𝑤𝑙𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 +  0.0943 ×  𝐹𝑜𝑢𝑟/𝐹𝑖𝑣𝑒 𝑊𝑖𝑐𝑘𝑒𝑡𝑠 𝐻𝑎𝑢𝑙 

 

Venue: This attribute represents the player’s performance at the ground at which the match is 

being played. 

 

For batting, 

 

𝑉𝑒𝑛𝑢𝑒 =  0.4262 ×  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 + 0.2566 ×  𝐼𝑛𝑛𝑖𝑛𝑔𝑠 + 0.1510 ×  𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒 + 0.0787 

×  𝐶𝑒𝑛𝑡𝑢𝑟𝑖𝑒𝑠 + 0.0556 ×  𝐹𝑖𝑓𝑡𝑖𝑒𝑠 − 0.0328 ×  𝑍𝑒𝑟𝑜𝑠 

 

For bowling, 

 

𝑉𝑒𝑛𝑢𝑒 =  0.3018 ×  𝑂𝑣𝑒𝑟𝑠 + 0.2783 ×  𝐼𝑛𝑛𝑖𝑛𝑔𝑠 + 0.1836 ×  𝑆𝑡𝑟𝑖𝑘𝑒 𝑅𝑎𝑡𝑒 + 0.1391 

×  𝐵𝑜𝑤𝑙𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 +  0.0972 ×  𝐹𝑜𝑢𝑟/𝐹𝑖𝑣𝑒 𝑊𝑖𝑐𝑘𝑒𝑡𝑠 𝐻𝑎𝑢𝑙 
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3.2.3 Rating the Traditional Measures 

 

The values of the traditional attributes fall in very wide ranges and small differences in these 

values do not discriminate different players, e.g. batsmen having batting averages of 32.00, 

35.50 and 38.60 are considered to be of same quality. So, we rated each traditional measure 

from 1 to 5 based on the range in which its value falls, to calculate the derived attributes, with 

1 being the minimum and 5 being the maximum. We looked at the values of these attributes 

for different players and applied our knowledge to rate the measures, e.g. some of the best 

batsmen of the world have had batting averages greater than or equal to 40 for most of the time 

during their career and generally, averages greater than or equal to 40 are considered excellent, 

so we rated such batsmen 5 for averages greater than 39.99. We used these ratings instead of 

actual values of the measures, in the formulae of derived attributes. The measures are rated as 

follows: 

 

No. of Innings: 

 For Consistency: 

1 - 49 : 1 

50 - 99 : 2 

100 - 124 : 3 

125 - 149 : 4 

>=150 : 5 

For Form: 

1 - 4 : 1 

5 - 9 : 2 
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10 - 11 : 3 

12 - 14 : 4 

>=15 : 5 

For Opposition: 

 1 - 2 : 1 

3 - 4 : 2 

5 - 6 : 3 

7 - 9 : 4 

>=10 : 5 

For Venue: 

1 : 1 

2 : 2 

3 : 3 

4 : 4 

>=5 : 5 

 

Batting Average (for all derived attributes): 

0.0 - 9.99 : 1 

10.00 - 19.99 : 2 

20.00 - 29.99 : 3 

30.00 - 39.99 : 4 

>=40 : 5 

 

Batting Strike Rate (for all derived attributes): 

0.0 - 49.99 : 1 
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50.00 - 59.99 : 2 

60.00 - 79.99 : 3 

80.00 - 100.00 : 4 

>=100.00 : 5 

 

Centuries: 

For Consistency: 

1 - 4 : 1 

5 - 9 : 2 

10 - 14 : 3 

15 - 19 : 4 

>=20 : 5 

For Form: 

 1 : 1 

2 : 2 

3 : 3 

4 : 4 

>=5 : 5 

For Opposition: 

 1 : 3 

2 : 4 

>=3 : 5 

For Venue: 

1 : 4 

>=2 : 5 
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Fifties: 

For Consistency: 

1 - 9 : 1 

10 - 19 : 2 

20 - 29 : 3 

30 - 39 : 4 

>=40 : 5 

For Form & Opposition: 

1 - 2 : 1 

3 - 4 : 2 

5 - 6 : 3 

7 – 9 : 4 

>=10 : 5 

For Venue: 

1 : 4 

>=2 : 5 

 

Zeros: 

For Consistency: 

1 - 4 : 1 

5 - 9 : 2 

10 - 14 : 3 

15 – 19 : 4 

>=20 : 5 
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For Form & Opposition: 

1 : 1 

2 : 2 

3 : 3 

4 : 4 

>=5 : 5 

 

Highest Score (For Venue Only): 

1 - 24 : 1 

25 - 49 : 2 

50 - 99 : 3 

100 - 150 : 4 

>=150 : 5 

 

Overs: 

For Consistency: 

1 - 99 : 1 

100 - 249 : 2 

250 - 499 : 3 

500 - 1000 : 4 

>=1000 : 5 

For Form & Opposition: 

1 - 9 : 1 

10 - 24 : 2 

25 - 49 : 3 
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50 - 100 : 4 

>=100 : 5 

For Venue: 

1 - 9 : 1 

10 - 19 : 2 

20 - 29 : 3 

30 - 39 : 4 

>=40 : 5 

 

Bowling Average (for all derived attributes): 

0.00 - 24.99 : 5 

25.00 - 29.99 : 4 

30.00 - 34.99 : 3 

35.00 - 49.99 : 2 

>=50.00 : 1 

 

Bowling Strike Rate (for all derived attributes): 

0.00 - 29.99 : 5 

30.00 -39.99 : 4 

40.00 -49.99 : 3 

50.00 -59.99 : 2 

>=60.00 : 1 

 

Four/Five Wicket Haul: 

For Consistency: 
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1 - 2 : 3 

3 - 4 : 4 

>=5 : 5 

For Form, Opposition & Venue: 

1 - 2 : 4 

>=3 : 5 

 

3.2.4 Other Input Attributes 

 

Our experiments showed that the derived attributes themselves are sufficient to accurately 

predict players’ performance. Also, there are some other factors apart from past performances 

that affect players’ performances, e.g. depending on the types of bowlers the opposition team 

has, it would be better to include more left-handed batsmen than right-handed batsmen in the 

team or vice versa. So, we incorporated additional attributes which indicate the players’, the 

opponents’ and the venues’ characteristics, in our experiments. These attributes are explained 

below: 

 

Batting Hand: The dominant hand of the batsman while batting. It has two possible values: 

Left or Right. Depending on the characteristics of the bowlers of the opposition team, left-

handed batsmen might perform better than the right-handed batsmen or vice versa. 

 

Bowling Hand: The dominant hand of the batsman while bowling. It has two possible values: 

Left or Right. Depending on the characteristics of the opposition team’s batsmen, left-handed 

bowlers might perform better than the right-handed bowlers or vice-versa. 
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Batting Position: The number at which the batsman bats in the batting order. Different batsmen 

tend to play better at certain numbers. So, sending a batsman at a particular number will make 

him more comfortable at play, e.g. M S Dhoni has been playing better at position 7 than other 

positions. 

 

Match Type: The type of the match. This attribute has four possible values: Normal, quarter-

final, semi-final or final. Different types of matches have different levels of importance which 

affects players’ performance, e.g. final matches are more important than normal matches. 

Moreover, different players are more comfortable and have shown better performances in some 

types of matches, e.g. some players tend to play well in normal matches but fail in semi-finals 

and finals or vice versa. 

 

Match Time: The time at which the match is played. There are two possible values: Day or 

Day-night. The time of the match also affects players’ performance depending on different 

factors like weather, visibility, location etc. 

 

Strength of opposition: This is the batting/bowling strength of the opposition team. It is the 

average of the consistency measure of the batsmen/bowlers of the opposition team. Players 

find it easy to score runs/take wickets against weaker teams than stronger teams. 

 

Ven: The relative venue for the teams. It has three possible values: Home, Away or Neutral. 

The relative venue of the match is certainly a factor that affects players’ performance. Some 

players perform better at home while some play better away from home. 
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Oppo: The opposition team. Players usually tend to perform better against some teams. This 

attribute also incorporates the characteristics of the opposition team’s players in general. 

 

Role: Playing role of the player. It can take following values: 

Opening Batsman (OBT) – The two batsmen who usually bat at position one or two are 

called opening batsmen. 

Top Order Batsman (TOB) – The batsmen who usually bat at position three or five are 

called top order batsmen. 

Middle Order Batsman (MOB) - The batsmen who usually bat at position five to eight 

are called middle order batsmen. 

Batsman – The batsmen who usually bat at different positions are categorized simply 

as batsmen here. 

All-rounder – The players who are equally skilled at both batting and bowling are called 

all-rounders. 

Batting All-rounder – The players who can both bat and bowl but are more skilled at 

batting than bowling, are called batting all-rounders. 

Bowling All-rounder – The players who can both bat and bowl but are more skilled at 

bowling than batting, are called bowling all-rounders. 

Bowler – The players who are expert bowlers but not so skilled at batting, are 

categorized as bowlers. 

 

Captain: This is a binary attribute indicating whether a player is captain of the team. This 

attribute tries to indicate the control and responsibilities the player has. Some players perform 

well as captains while some perform worse. 
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WK: This is a binary attribute indicating whether a player is a wicketkeeper. Wicketkeepers 

are primarily batsmen. They are expected to score more runs as they specialize in batting and 

are less fatigued than other players as they are physically less active during fielding compared 

to other fielders. 

 

Innings: This attribute indicates if it is the first or the second innings of the match. Depending 

on different factors like time of the match, the venue, the characteristics of the pitch, etc., 

sometimes it is more desirable to bat in the first innings while sometimes it is better to bowl in 

the first innings. 

 

Tournament: The type of tournament in which the match is being played. Players feel different 

levels of pressure and go through psychological ups and downs during different types of 

tournaments. This attribute can take following values: 

Two Team Tournament (TT) 

Three-Four Team Tournament (TFT) 

Five or more Team Tournament (FT) 

 

Toss: Indicates whether the player’s team won or lost the toss. Toss affects the mental state of 

the players as winning the toss gives them the power to decide whether to bat first or to bowl 

first and gives a strategic lead to the team. 

 

Pressure: Indicates mental and psychological pressure on the player. It takes values from 1 to 

5. Its value depends on the type of match being played and the teams that are playing the match. 

The values are defined as follows: 
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Normal matches: 1 

Quarter Finals: 3 

Semi Finals: 4 

Finals: 5 

Above values are incremented by 1 if the match is India vs Pakistan or Australia vs England 

as these countries are strong rivals of each other. 

 

Host: The country in which the match is being played. Some players tend to perform better in 

certain countries as shown by their stats. This attribute also tries to incorporate the general 

nature of the pitches of different grounds in the country, e.g. Australian and South African 

venues are known to have bouncy pitches which are helpful to pace bowlers whereas pitches 

in India are usually dry and are more supportive to spin bowlers. 

 

Ground: The ground on which the match is being played. The data about different pitches is 

not available at this time, so we tried to incorporate the general nature of the pitches at different 

grounds using this attribute. Also, players are more comfortable at some venues, e.g. a player 

who has had some world records at a particular ground, is more likely to perform better on that 

ground. 

 

3.2.5 Data Cleaning 

 

A large number of values of Opposition and Venue were zero. This is because a player has not 

played any match against a particular team or at a venue before the day of play. We treated 

such values as missing values and replaced them with the class average of corresponding 

attributes. 
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3.2.6 Oversampling 

 

We observed that a majority of the records fall within class 1 in both batting and bowling. This 

created a major imbalance in the distribution of values and affected the performance of the 

learning algorithms. To solve this problem, we applied an oversampling technique Supervised 

Minority Oversampling Technique (SMOTE) [36] on minority classes to make all the classes 

equally distributed. SMOTE over-samples minority classes by creating synthetic example 

tuples. To create synthetic tuples of minority class, SMOTE takes each minority class sample 

and creates synthetic examples along the line segment joining any or all of its nearest 

neighbors. To generate a synthetic sample, the difference between the feature vector under 

consideration and its nearest neighbor is taken. This difference is then multiplied by a random 

number between zero and one and the product is added to the feature vector under 

consideration. This way, a random point along the line segment joining two specific features 

is selected. Neighbors from the k nearest neighbors are selected based on the amount of 

oversampling required. e.g. to oversample a minority class by 300%, three neighbors from a 

tuple’s nearest neighbors are selected and one sample in the direction of each is generated. 

 

3.2.7 Outputs 

 

Both the problems are treated as classification problems. 

Runs are predicted in five classes: 

1 - 24: 1 

25 - 49: 2 

50 - 74: 3 
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75 - 99: 4 

>=100: 5 

 

Wickets are predicted in three classes: 

0 - 1: 1 

2 - 3: 2 

>=4: 3 
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Chapter 4 

 

Learning Algorithms 

 

4 Supervised Learning 

 

Supervised learning is a machine learning technique of deriving a function from a labeled 

training sample. A training sample is a set of training tuples. A training tuple consists of a set 

of input attributes and an associated output value. A supervised learning algorithm generates 

an inferred function by analyzing the training data. This function is then used to classify an 

unseen data. In predictive analytics, the generated function is called a predictive model. For 

our study, we used Naïve Bayes, Decision Tree, Random Forests and multiclass SVM to 

generate the prediction models. 

 

4.1 Naïve Bayes Classifier 

 

Bayesian classifiers are statistical classifiers that predict the probability with which a given 

tuple belongs to a particular class [37]. Naïve Bayes classifier assumes that each attribute has 

its own individual effect on the class label, independent of the values of other attributes. This 

is called class-conditional independence. Bayesian classifiers are based on Bayes’ theorem.  
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4.1.1 Bayes’ Theorem 

 

Let X be a data tuple described by measurements made on a set of n attributes. Let H be a 

hypothesis such that X belongs to a specified class C. Bayesian classifiers calculate P(H|X), 

the probability with which the hypothesis H holds true for the observed attribute values of the 

data tuple X. P(H|X) is called the posterior probability or posteriori probability of H 

conditioned on X. Similarly, P(X|H) is the posterior probability or posteriori probability of X 

given H i.e. the probability with which the data tuple X exists, given the hypothesis H is true. 

P(H) is the prior probability or a priori probability of H which means that H holds true for a 

data tuple regardless of the values of its attributes. P(X) is the prior probability or a priori 

probability of X, which is the probability with which the data tuple X with given attribute 

values exists. Now, Bayes Theorem is defined as, 

 

𝑷(𝑯|𝑿) =  
𝑷(𝑿|𝑯)𝑷(𝑯)

𝑷(𝑿)
 

 

4.1.2 Naïve Bayes Classification 

 

1. Let D be a training set of data tuples and their associated class labels, where each tuple 

is represented by an n-dimensional attribute vector, X=(x1, x2, x3,…,xn). 

 

2. For a multiclass classification, suppose that there are m classes, C1, C2, C3,…,Cm. The 

Naïve Bayes classifier predicts that a given tuple X belongs to the class with the highest 

posterior probability conditioned on X.  That is X belongs to class Ci if and only if 
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P(Ci|X) > P(Cj|X)   for 1 ≤ j ≤ m, j ≠ i 

 

Thus, we need to maximize P(Ci|X). The class with maximum P(Ci|X) is called the 

maximum posteriori hypothesis. 

 

From Bayes theorem, 

𝑷(𝑪𝒊|𝑿) =  
𝑷(𝑿|𝑪𝒊)𝑷(𝑪𝒊)

𝑷(𝑿)
 

 

As P(X) is constant for all classes, we need to maximize 𝑷(𝑿|𝑪𝒊)𝑷(𝑪𝒊). If the class 

prior probabilities are unknown, all the classes are assumed to be equally probable i.e. 

P(C1) = P(C2) = P(C3) =…=P(Cm) and in that case, all we need to do is to maximize 

𝑷(𝑿|𝑪𝒊). Otherwise, we maximize 𝑷(𝑿|𝑪𝒊)𝑷(𝑪𝒊). 

 

3. For high dimension data, it would be very expensive computationally to calculate 

𝑷(𝑿|𝑪𝒊). For this, the naïve assumption of class-conditional independence is made 

which assumes that the attribute values are conditionally independent of each other. 

Thus, 

 

𝑷(𝑿|𝑪𝒊) = ∏ 𝑷(𝒙𝒌|𝑪𝒊)

𝒏

𝒌=𝟏

 

 

= 𝑷(𝒙𝟏|𝑪𝒊)  ×  𝑷(𝒙𝟐|𝑪𝒊)  ×  𝑷(𝒙𝟑|𝑪𝒊)  × … 

×  𝑷(𝒙𝒏|𝑪𝒊) 
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4. Now it is easy to estimate the probabilities 𝑷(𝒙𝟏|𝑪𝒊), 𝑷(𝒙𝟐|𝑪𝒊), … , 𝑷(𝒙𝒏|𝑪𝒊) from 

the training tuples. Here, xk refers to the value of the corresponding attribute Ak of tuple 

X. xk is calculated based on the type of attribute i.e. whether the attribute is categorical 

or continuous valued. For different types xk is calculated differently as follows: 

 

a. If Ak is categorical, then P(xk|Ci) is the number of tuples of class Ci in D having 

the value xk for Ak, divided by |Ci,D|, the number of tuples of class Ci in D. 

b. A continuous-valued attribute is typically assumed to have a Gaussian 

distribution with a mean μ and standard deviation σ , defined by 

 

𝒈(𝒙, 𝝁, 𝝈) =  
𝟏

√𝟐𝝅𝝈
𝒆

−
(𝒙− 𝝁)𝟐

𝟐𝝈𝟐  

 

so that, 

 

𝑷(𝒙𝒌|𝑪𝒊) =  𝒈(𝒙𝒌,𝝁𝑪𝒊
, 𝝈𝑪𝒊

) 

 

Here, 𝝁𝑪𝒊
 and 𝝈𝑪𝒊

 are mean and standard deviation, respectively of the attribute 

values of Ak for tuples of class Ci. 

 

5. 𝑷(𝑿|𝑪𝒊)𝑷(𝑪𝒊) are calculated for each class Ci. The Naïve Bayes classifier predicts that 

the tuple X belongs to class Ci if and only if 

 

P(Ci|X) > P(Cj|X)   for 1 ≤ j ≤ m, j ≠ i 
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4.2 Decision Tree Induction 

 

Decision tree induction is the process of creating decision trees for class-labeled training tuples 

[38]. A decision tree is basically a tree structure like a flowchart [37]. Each internal node of 

the tree represents a test on an attribute and each branch is the outcome of the test. Each leaf 

node is a class label. The first node at the top of the tree is the root node. Figure 3 shows a 

typical decision tree. It is a sample tree describing prediction rules for predicting runs based on 

the four derived attributes explained on section 3. Internal nodes of the tree are denoted by 

rectangles and leaf nodes are represented by ovals. 

 

 

Figure 3 A decision tree describing prediction rules for predicting runs based on the 

derived attributes 
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To classify a given tuple X, the attributes of the tuple are tested against the decision tree starting 

from the root node to the leaf node which holds the class prediction of the tuple. The 

construction of decision trees is easy as it does not require any domain knowledge or parameter 

setting. Decision trees can easily handle multidimensional data. The representation of the 

classification rules in a tree form is intuitive and easy to understand by humans. Decision tree 

classifiers are fast at learning and classification and have a good accuracy in general. 

 

4.2.1 Decision Tree Classification Algorithm 

 

J. Ross Quinlan introduced a decision tree algorithm called ID3 in his paper [38]. Later he 

introduced a successor of ID3 called C4.5 in [39] to overcome some shortcomings such as 

over-fitting. Later on, L. Breiman, J. Friedman, R. Olshen and C. Stone described the 

generation of binary decision trees in their book Classification and Regression trees (CART) 

[40]. ID3 and CART follow a similar approach to learn decision trees from training data. ID3, 

C4.5 and CART are greedy algorithms which construct decision trees from top to down in a 

recursive divide-and-conquer manner. They start with a training set with tuples and their 

associated class labels. The training set is then recursively partitioned into smaller subsets as 

the tree is being built. The general strategy of the decision tree algorithms is described as 

follows: 

 

 The algorithm starts with a data-partition D, an attribute list and an attribute selection 

method. The data partition D is the entire training set at the beginning. Attribute list is 

the list of attributes describing the data tuples. Attribute selection method is a procedure 

that determines the best attribute that discriminates the data tuples according to their 
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class. This procedure uses an attribute selection measure such as information gain or 

Gini index. The attribute selection measure determines if the decision tree is binary or 

non-binary. 

 

 The tree starts at a single node N which contains all the tuples from D. If all the tuples 

in D belong to the same class, N becomes a leaf and the algorithm stops. Otherwise, 

the attribute selection method is called which determines the splitting criterion. The 

splitting criterion determines the best way to partition the training tuples into 

individual classes and returns the attribute that should be tested at node N. The 

splitting criterion also tells us which branches to grow from node N with respect to 

the outcomes of the chosen test. Ideally, the splitting criterion is determined so that 

the tuples in the same partition belong to the same class. 

 

 The node N is labeled with the splitting criterion. Each branch from the node N 

represents the outcome of the splitting criterion. The tuples in D are then partitioned 

according to the test determined by the splitting criterion. There are three possible 

scenarios as shown in figure 4. Let A be the attribute determined by the splitting 

criterion, having v different values {a1, a2, …, av}. 
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Figure 4 Possibilities of partitioning tuples based on splitting criterions 

 

a. A is discrete valued: In this case, the outcomes of the test at node N are simply the 

known discrete values of A. A branch is created for each value and is labeled with 

that value. Partition Dj is the subset of class-labeled tuples in D having value aj of 

A. As all the tuples in a given partition have the same value of A, A need not be 

considered in any future partitioning of the tuples. 
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b. A is continuous values: In this case, there are two possible outcomes of the test at 

node N based on the spilt point determined by the splitting criterion. Let a be the 

split point. The two possible outcomes are 𝐴 ≤ 𝑎 𝑎𝑛𝑑 𝐴 ≥ 𝑎. Two branches are 

created from N corresponding to the two outcomes and the tuples are partitioned 

accordingly. 

c. A is discrete valued and a binary tree must be produced: The test at node N is of the 

form “A ∈ SA?,” where SA is the splitting subset for A, returned by Attribute 

selection method as part of the splitting criterion. It is a subset of the known values 

of A. If a given tuple has value aj of A and if aj ∈ SA, then the test at node N is 

satisfied. Two branches are grown from N. By convention, the left branch out of N 

is labeled yes so that D1 corresponds to the subset of class-labeled tuples in D that 

satisfy the test. The right branch out of N is labeled no so that D2 corresponds to the 

subset of class-labeled tuples from D that do not satisfy the test. 

 

 The above procedure is called recursively to form a decision tree. The recursive 

partitioning stops when one of the following conditions is met: 

a. All the tuples in the partition D belong to the same class. 

b. There are no remaining attributes on which the tuples can be partitioned. In this 

case, node N is converted to a leaf and labeled with the most common class in D. 

c. There are no more tuples to be partitioned. In this case, a leaf node is created with 

majority class in D. 
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4.2.2 Attribute Selection Methods 

 

ID3 uses the attribute selection measure called information gain, which is simply the difference 

of the information needed to classify a tuple and the information needed after the split. These 

two can be formularized as follows: 

Expected information needed to classify a tuple in the training set D 

  

𝑰𝒏𝒇𝒐(𝑫) =  − ∑ 𝒑𝒊

𝒎

𝒊=𝟏

𝒍𝒐𝒈𝟐(𝒑𝒊) 

where; pi is the nonzero probability that a tuple in D belongs to class Ci. 

 

Information needed after the splitting (to arrive at the exact classification) 

𝑰𝒏𝒇𝒐𝑨(𝑫) =  ∑
|𝑫𝒋|

|𝑫|

𝒗

𝒋=𝟏

 ×  𝑰𝒏𝒇𝒐(𝑫𝒋)  

where A is the attribute on which the tuples are to be partitioned. 

 

Then, information gain 

 

𝑮𝒂𝒊𝒏(𝑨) =  𝑰𝒏𝒇𝒐(𝑫) − 𝑰𝒏𝒇𝒐𝑨(𝑫)  

 

The attribute with highest information gain is selected as the splitting attribute. 

 

C4.5 uses gain ratio as the attribute selection measure. Gain ratio is an extension to information 

gain in a sense because it normalizes information gain by using a split information value; 
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𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒐𝑨(𝑫) =  − ∑
|𝑫𝒋|

|𝑫|

𝒗

𝒋=𝟏

 ×  𝒍𝒐𝒈𝟐 (
|𝑫𝒋|

|𝑫|
)  

 

Then, 

 

𝑮𝒂𝒊𝒏𝑹𝒂𝒕𝒊𝒐(𝑨) =  
𝑮𝒂𝒊𝒏(𝑨)

𝑺𝒑𝒍𝒊𝒕𝑰𝒏𝒇𝒐𝑨(𝑫)
 

 

The attribute with the highest gain ratio is selected as the splitting attribute. 

 

4.3 Random Forest 

 

Random Forest is an ensemble method for classification and regression [37]. Random forests 

are a set of decision trees where each tree is dependent on a random vector sampled 

independently and with the same distribution of all the trees in the forest [41]. The algorithm 

generates a number of decision trees creating a forest. Each decision tree is generated by 

selecting random attributes at each node to determine the split [41]. Tim Kam Ho introduced 

the first method for random forests using random subspace method in his paper [42]. Later, 

Breiman Leo extended the algorithm in his paper [41] and this method was official known as 

Random Forests. The general procedure to generate decision trees for random forests starts 

with a dataset D of d tuples. To generate k decision trees from the dataset, for each iteration k, 

a training set Di of d tuples is sampled with replacement form the dataset D. To construct a 

decision tree classifier, at each node, a small number of attributes from the available attributes 

are selected randomly as candidates for the split at the node. Then Classification And 
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Regression Trees(CART) [40] method is used to grow the trees. The trees are then grown to 

maximum size and are not pruned. CART is a non-parametric decision tree induction technique 

that can generate classification and regression trees. CART recursively selects rules based on 

variables’ values to get the best split. It stops splitting when it detects that no further gain can 

be made or some pre-determined stopping conditions are met. 

 

4.3.1 Classification and Regression Trees – CART 

 

L. Breiman, J. Friedman, R. Olshen and C. Stone introduced a decision tree algorithm in their 

book Classification and Regression Trees [40]. The CART algorithm grows trees by choosing 

a split among all possible splits at each node so that the resulting child nodes are the purest. 

CART considers only univariate splits i.e. each split depends on the value of only one predictor 

variable. All possible splits consist of possible splits of each predictor. If X is a nominal 

categorical variable of n categories, there are 2n − 1 possible splits of this predictor. If X is an 

ordinal categorical or continuous variable with m different values, there are m - 1 different 

splits on X. A tree is grown starting from the root node by repeatedly using the following steps 

on each node. Following are the steps of tree growing process of CART algorithm: 

 

1. Find each predictor’s best split. 

a. For each continuous and ordinal predictor, sort its values from the smallest to the 

largest. For the sorted predictor, go through each value from top to examine each 

candidate split point (call it v, if x ≤ v, the case goes to the left child node, otherwise, 

goes to the right) to determine the best. The best split point is the one that maximizes 

the splitting criterion the most when the node is split according to it. 
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b. For each nominal predictor, examine each possible subset of categories (call it A, if x 

∈  A, the case goes to the left child node, otherwise, goes to the right) to find the best 

split. 

 

2. Find the node’s best split.  

Among the best splits found in step 1, choose the one that maximizes the splitting 

criterion. 

 

3. Split the node using its best split found in step 2 if the stopping rules are not satisfied. 

 

Stopping Rules: 

Stopping rules control if the tree growing process should be stopped or not. The following 

stopping rules are used: 

 

 If a node becomes pure; that is, all cases in a node have identical values of the dependent 

variable, the node will not be split.  

 If all cases in a node have identical values for each predictor, the node will not be split.  

 If the current tree depth reaches the user-specified maximum tree depth limit value, the  

 tree growing process will stop.  

 If the size of a node is less than the user-specified minimum node size value, the node 

will not be split.  

 If the split of a node results in a child node whose node size is less than the user- 

specified minimum child node size value, the node will not be split. 
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4.4 Support Vector Machine 

 

Vladimir Vapnik, Bernhard Boser and Isabell Guyon introduced the concept of support vector 

machine in their paper [43]. SVMs are highly accurate and less prone to overfitting. SVMs can 

be used for both numeric prediction and classification. SVM transforms the original data into 

a higher dimension using a nonlinear mapping. It then searches for a linear optimal hyperplane 

in this new dimension separating the tuples of one class from another. With an appropriate 

mapping to a sufficiently high dimension, tuples from two classes can always be separated by 

a hyperplane. The algorithm finds this hyperplane using support vectors and margins defined 

by the support vectors. The support vectors found by the algorithm provide a compact 

description of the learned prediction model. SVM takes different approaches to classify linearly 

separable and linearly non-separable data. 

 

4.4.1 When Data are Linearly Separable 

 

Let D be a data set given as (X1, y1), (X2, y2), (X3, y3), … , (Xn, yn); where Xi is the set of 

training tuples and yi are their corresponding class labels. Each yi has two possible values, +1 

or -1. Consider two input attributes A1 and A2 as shown in figure 5. 
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Figure 5 Linearly separable 2-D data [37] 

 

From the figure, we can see that we can draw a straight line to separate the data points from 

class +1 with the data points form class -1. Thus, this data set is linearly separable. An infinite 

number of lines can be drawn to separate the class +1 and class -1 data points. The problem is 

to find the best one i.e. one that will have minimum classification error on new unseen tuples. 

If our data is 3 dimensional, we have to find a plane separating the data points. In general, for 

n-dimensional data, we need to find the best separating hyperplane to classify our data. 

 

SVM tries to solve this problem by searching for the maximum marginal hyperplane. Figure 6 

shows two possible hyperplanes for separating the data points and their associated margins. 
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Figure 6 Possible hyperplanes for separating the data points [37] 

 

As we can see, both the hyperplanes correctly separate the data points. But it is obvious that 

the one with the larger margin is expected to be more accurate for classifying unseen data 

tuples. SVM tries to find this hyperplane which is called maximum marginal hyperplane. 

 

A separating hyperplane can be written as: 

 

𝑾 ∙ 𝑿 + 𝒃 =  𝟎  

 

where W is a weight vector, W = {w1, w2, w3, … , wn}, n is the number of attributes and b is a 

scalar often referred to as a bias. If we input two attributes A1 and A2, training tuples are 2-D, 

(e.g., X = (x1, x2)), where x1 and x2 are the values of attributes A1 and A2, respectively. Thus, 

any points above the separating hyperplane belong to class +1: 
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𝑾 ∙ 𝑿 + 𝒃 >  𝟎  

 

and any points below the separating hyperplane belong to class -1: 

 

𝑾 ∙ 𝑿 + 𝒃 <  𝟎  

 

4.4.2 When Data are Linearly Inseparable 

 

 

Figure 7 Linearly inseparable 2-D data [37] 

 

Figure 7 shows a sample data where a straight line cannot be drawn to separate the data points. 

Such data are called linearly inseparable data. In this case, the strategy described above will 

not be able to classify the data tuples. But that approach can be extended to create nonlinear 

SVMs to classify such data. 
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In this approach, the original input data is first transformed into a higher dimensional space 

using a nonlinear mapping. Once the data is transformed into the new higher dimensional 

space, the second step is to search for a linear separating hyperplane in the new space. The 

maximum marginal hyperplane in this space corresponds to a nonlinear separating 

hypersurface in the original space. 

 

4.4.3 Multiclass SVM 

 

SVM is originally used for binary classification. However, several multiclass SVM algorithms 

have also been developed. In Weka [32], we used LIBSVM package developed by Chih-Chung 

Chang and Chih-Jen Lin [44]. The package can be downloaded from 

http://www.csie.ntu.edu.tw/∼cjlin/libsvm. LIBSVM is an easy to use package to apply 

multiclass SVM and has gained a wide popularity in machine learning. 
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Chapter 5 

 

Results and Discussion 

 

5 Results and Discussion 

 

5.1 Experiment Setup 

 

We used different sizes of training and test sets to find the best combination that gives the most 

accuracy. We experimented by dividing the data set in four ways: 

  

1. 60% training set – 40% test set 

2. 70% training set – 30% test set 

3. 80% training set – 20% test set 

4. 90% training set – 10% test set 

 

We analyzed and compared the performance of the algorithms in terms of several performance 

measures, which are described below in short: 

 

Accuracy: The prediction accuracy of an algorithm is the ratio of the number of test instances 

correctly classified by the algorithm to the total number of test instances. The higher the 

accuracy, the better the performance. 
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𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =  
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 𝒄𝒍𝒂𝒔𝒔𝒊𝒇𝒊𝒆𝒅 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔
 

 

Precision: Precision of a class is the ratio of the number of instances which were correctly 

predicted to be in that class(true-positive) to the total number of instances which were predicted 

to be in that class. Precision indicates how useful the model is, as it shows the how many 

instances were classified correctly from the ones that were classified. Let x be a class, 

 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔 𝒙 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚 

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒘𝒉𝒊𝒄𝒉 𝒘𝒆𝒓𝒆 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒕𝒐 𝒃𝒆 𝒊𝒏 𝒄𝒍𝒂𝒔𝒔 𝒙
 

 

Recall: Recall of a class is the ratio of the number of instances which were correctly predicted 

to be in that class(true-positive) to the total number of instances of that class. Recall indicates 

how complete the model is, as it shows how many instances was the model able to find out 

correctly out of the total number of instances of a class. Let x be a class, 

 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒐𝒇 𝒄𝒍𝒂𝒔𝒔 𝒙 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅 𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝒍𝒚

𝑻𝒐𝒕𝒂𝒍 𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒊𝒏𝒔𝒕𝒂𝒏𝒄𝒆𝒔 𝒊𝒏 𝒄𝒍𝒂𝒔𝒔 𝒙
 

 

F1 Score: F1 score of a class is the harmonic mean of precision and recall of the class. It 

captures the meaning of both precision and recall. 

 

𝑭𝟏 𝑺𝒄𝒐𝒓𝒆 = 𝟐 ×  
𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ×  𝑹𝒆𝒄𝒂𝒍𝒍

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍
 

 

Area under the ROC curve (AUROC): A Receiver Operating Characteristic curve is a 

graphical plot of true positive rate also known as sensitivity against false positive rate also 
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known as specificity of a binary classifier. True positive rate of a classifier is the ratio of the 

number of instances that were classified correctly as positives to the total number of positive 

instances. False positive rate is the ratio of the number of instances that were incorrectly 

classified as positives to the total number of negative instances. For multiclass problems, ROC 

curves are generated for each class by using one-vs-all approach. The area under the ROC 

curves is a measure of accuracy. Its value ranges from 0.5 to 1, with 0.5 meaning least accurate 

and 1 meaning most accurate. 

 

The values of precision, recall, F1 score and AUROC in the tables in the following sections 

are weighted averages of the values of these measures for each class. 

 

We used four machine learning algorithms: Naïve Bayes, Decision Trees, Random Forest and 

Support Vector Machine in our experiments. We simulated these algorithms in Weka [32] and 

Dataiku [33]. Following is a brief discussion on the performance of these algorithms and then 

we compare their performance based on prediction accuracy. All the results in this study have 

been obtained from Weka [32] 3-9-1-oracle-jvm and Dataiku Data Science Studio [33] on Mac 

OS 10.11.6 and Windows 10. 

 

5.2 Naïve Bayes 

 

Table 3 shows the prediction accuracy of Naïve Bayes for predicting runs with different sizes 

of training and test sets. 

 

 

 



 59 

Table 3 Prediction accuracy of Naïve Bayes for predicting runs 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 43.08 42.95 42.47 42.50 

 

For predicting runs, Naïve Bayes showed highest prediction accuracy of 43.08% with 60% 

training set and 40% test set. As it can be seen from the table, the prediction accuracy of the 

classifier decreases as we increase the size of the training set and decrease the test set. It showed 

an accuracy of 42.95% with 70% training set and 30% test set, 42.47% with 80% training set 

and 20% test set and the least accuracy of 42.50% with 90% training set and 10% test set. We 

simulated Naïve Bayes algorithms in Weka [32] as dataiku [33] does not have an 

implementation of the algorithm. Table 4 shows different performance measures of Naïve Bayes 

classifier with 60% training data and 40% test data for predicting runs. 

 

Table 4 Performance of Naïve Bayes with 60% training data and 40% test data for 

predicting runs 

 

Accuracy (%) Precision Recall F1 Score AUROC 

43.08 0.424 0.431 0.418 0.740 

 

 

Table 5 shows the prediction accuracy of Naïve Bayes for predicting wickets with different 

sizes of training and test sets. 
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Table 5 Prediction accuracy of Naïve Bayes for predicting wickets 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 57.05 57.18 57.48 58.12 

 

For predicting wickets, Naïve Bayes had the highest accuracy of 58.12% with 90% training 

data and 10% test data and the least accuracy of 57.05% with 60% training data and 40% test 

data. Here the prediction accuracy increases as we increase the size of the training sample and 

decrease the test sample. We have an accuracy of 57.18% with 70% training data and 30% test 

data and 57.48% with 80% training data and 20% test data. Table 6 shows the performance of 

Naïve Bayes with 90% training data and 10% test data. 

 

Table 6 Performance of Naïve Bayes with 90% training data and 10% test data for 

predicting wickets 

 

Accuracy (%) Precision Recall F1 Score ROC AUC 

58.12 0.577 0.581 0.575 0.765 

 

5.3 Decision Trees 

 

Table 7 shows the prediction accuracy of Decision Trees for predicting runs with different sizes 

of training and test sets. 
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Table 7 Prediction accuracy of Decision Trees for predicting runs 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 77.93 79.02 79.38 82.52 

 

Decision Trees showed an accuracy of 80.46% with 90% training data and 10% test data for 

predicting runs. The accuracy decreased with decrease in training size and increase in test size. 

We had the least accuracy of 77.93% with 605 training data and 40% test data, 79.02% with 

70% training data and 30% test data and 79.38% with 80% training data and 20% test data. We 

simulated Decision Trees in both Weka [32] and dataiku [33]. Table 8 shows detailed metrics 

of performance of Decision Trees in Weka [32] as we got the highest accuracy in Weka [32]. 

 

Table 8 Performance of Decision Trees with 90% training data and 10% test data for 

predicting runs 

 

Accuracy (%) Precision Recall F1 Score ROC AUC 

82.52 0.824 0.825 0.824 0.923 

 

Table 9 shows the prediction accuracy of Decision Trees for predicting wickets with different 

sizes of training and test sets. 

 

Table 9 Prediction accuracy of Decision Trees for predicting wickets 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 84.40 85.12 85.99 86.50 
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For predicting wickets, the highest accuracy that decision trees could achieve was 86.50% with 

90% training data and 10% test data. We had the least accuracy of 84.40% with 60% training 

data and 40% test data. As can be seen from the table, the prediction accuracy increases with 

increase in training data size and decrease in test data as we have an accuracy of 85.12% with 

70% training data and 30% test data and 85.99% with 80% training data and 20% test data. 

Table 10 shows detailed metrics of performance of Decision Trees for predicting wickets. We 

got the highest accuracy with Decision Trees in Weka [32]. 

 

Table 10 Performance of Decision Trees with 90% training data and 10% test data for 

predicting wickets 

 

Accuracy (%) Precision Recall F1 Score ROC AUC 

86.50 0.865 0.865 0.865 0.921 

 

5.4 Random Forest 

 

Table 11 shows the prediction accuracy of Random Forest for predicting runs with different 

sizes of training and test sets. 

 

Table 11 Prediction accuracy of Random Forest for predicting runs 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 89.92 90.27 90.67 90.88 

 

Random Forest had the accuracy of 90.88% with 90% training set and 10% test set for 

predicting runs. As we decrease the size of the training set and increase the size of the test set, 
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the accuracy of the classifier decreases as shown in the table, where we have 90.67% accuracy 

with 80% training set and 20% test set, 90.27% with 70% training set and 30% test set and the 

least accuracy of 89.92% with 60% training set and 40% test set. Table 12 shows the detailed 

metrics of performance of Random Forest in dataiku [33] as we got the highest accuracy in 

dataiku [33]. 

 

Table 12 Performance of Random Forest with 90% training data and 10% test data for 

predicting runs 

 

Accuracy Precision Recall F1 Score ROC AUC 

90.88 0.908 0.908 0.908 0.987 

 

Table 13 shows the prediction accuracy of Random Forest for predicting wickets with different 

sizes of training and test sets. 

 

Table 13 Prediction accuracy of Random Forest for predicting wickets 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 90.68 91.26 91.80 92.30 

 

For predicting wickets, Random Forest achieved the highest accuracy of 92.30% with 90% 

training data and 10% test data. The accuracy of the classifier decreases as we decrease the size 

of the training set and increase the size of the test set. We have an accuracy of 91.80% with 

80% training set and 20% test set, 91.26% with 70% training set and 30% test set and the least 

accuracy of 90.68% with 60% training set and 40% test set. Table 14 shows the performance 

metrics of Random Forest for predicting wickets in Weka [32]. 
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Table 14 Performance of Random Forest with 90% training data and 10% test data for 

predicting wickets 

 

Accuracy (%) Precision Recall F1 Score ROC AUC 

92.30 0.923 0.923 0.923 0.975 

 

5.5 Support Vector Machine 

 

Table 15 shows the prediction accuracy of Support Vector Machine for predicting runs with 

different sizes of training and test sets. 

 

Table 15 Prediction accuracy of Support Vector machine for predicting runs 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 60.58 60.89 60.92 61.77 

 

For predicting runs, support vector machine had the highest accuracy of 61.77% with 90% 

training data and 10% test data. The accuracy decreases with decrease in the size of training 

data and increase in the size of test data. With 80% training data and 20% test data, we have 

an accuracy of 60.92%, with 70% training data and 30% test data, we have an accuracy of 

60.89% and with 60% training data and 40% test data, we see the least accuracy of 60.58%. 

Table 16 shows detailed metrics of performance of support vector machine for predicting runs 

in Dataiku [33]. 
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Table 16 Performance of Support Vector Machine with 90% training data and 10% test 

data for predicting runs 

 

Accuracy (%) Precision Recall F1 Score ROC AUC 

61.77 0.609 0.616 0.609 0.870 

 

Table 17 shows the prediction accuracy of Support Vector Machine for predicting wickets with 

different sizes of training and test sets. 

 

Table 17 Prediction accuracy of Support Vector machine for predicting wickets 

 

Dataset Split 60% train – 

40% test 

70% train – 

30% test 

80% train –  

20% test 

90% train – 

10% test 

Accuracy(%) 69.45 69.53 70.43 70.95 

 

Support vector machine has the highest accuracy of 70.95% with 90% training data and 10% 

test data. The accuracy of the classifier decreases with decrease in the size of training set and 

increase in the size of the test set. As can be seen from the table, we have an accuracy of 70.43% 

with 80% training set and 20% test set, 69.53% with 70% training set and 30% test set and the 

least accuracy of 69.45% with 60% training set and 40% test set. Table 18 shows the detailed 

performance of support vector machine for predicting wickets in Dataiku [33]. 

 

Table 18 Performance of Support Vector Machine with 90% training data and 10% test 

data for predicting wickets 

 

Accuracy (%) Precision Recall F1 Score ROC AUC 

70.95 0.720 0.707 0.708 0.867 
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5.6 Summary 

 

In this section, we give a summary and a comparison of the performance of the algorithms. 

Table 19 summarizes the accuracies of the algorithms for predicting runs and table 20 

summarizes the accuracies of the algorithms for predicting wickets. 

 

Table 19 Accuracies of the algorithms for predicting runs 

 

Classifier 

Accuracy (%) 

60% train 40% 

test 

70% train 30% 

test 

80% train 20% 

test 

90% train 10% 

test 

Naïve Bayes 43.08 42.95 42.47 42.50 

Decision Trees 77.93 79.02 79.38 80.46 

Random Forest 89.92 90.27 90.67 90.88 

SVM 60.58 60.89 60.92 61.77 
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Table 20 Accuracies of the algorithms for predicting wickets 

 

Classifier 

Accuracy (%) 

60% train 40% 

test 

70% train 30% 

test 

80% train 20% 

test 

90% train 10% 

test 

Naïve Bayes 57.05 57.18 57.48 58.12 

Decision Trees 84.40 85.12 85.99 86.50 

Random Forest 90.68 91.26 91.80 92.30 

SVM 69.45 69.53 70.43 70.95 

 

As we can see, Random Forest builds the most accurate prediction models for predicting both 

runs and wickets in all the cases. Also, the accuracy of the models increases as we increase the 

size of the training dataset for all algorithms except in case of Naïve Bayes for predicting runs 

where the accuracy decreases as we increase the size of the training set. Random Forest predicts 

runs with the highest accuracy of 90.88% when we use 90% of the dataset for training. 

Similarly, Random Forest predicts wickets with highest accuracy of 92.30% when we use 90% 

of the dataset for training. On the other hand, Naïve Bayes predicts runs with the least accuracy 

of 42.5% when we use 90% of the dataset for training. Naïve Bayes predicts wickets too with 

the least accuracy of 57.05% when we use 60% of the dataset for training. Decision Trees 

performs reasonably well with the maximum accuracy of 80.46% and the minimum accuracy 

of 77.93% for predicting runs. It predicts wickets with the maximum accuracy of 86.5% and 

the minimum accuracy of 84.40%, which is again reasonably well against the performance of 
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Random Forest. The prediction models of SVM for predicting runs showed the maximum 

accuracy of 61.77% with 90% training data and the minimum accuracy of 60.58% with 60% 

training data. Also for wickets, SVM had the maximum accuracy of 70.95% with 90% training 

data and the minimum accuracy of 69.45% with 60% training data. 

 

Table 21 summarizes the other performance measures of the algorithms with their best values 

for predicting runs and table 22 summarizes the other performance measures of the algorithms 

with their best values for predicting wickets. 

 

Table 21 Performance measure of the algorithms for predicting runs 

 

Classifier Precision Recall F1 Score AUROC 

Naïve Bayes 0.424 0.431 0.418 0.740 

Decision Trees 0.824 0.825 0.824 0.923 

Random Forest 0.908 0.908 0.908 0.987 

SVM 0.609 0.616 0.609 0.870 

 

As can be seen from the table, Random Forest performs the best in terms of all the measures 

woth precision, recall and F1 Score of 0.908 and AUROC of 0.987 which are excellent values 

for a classifer. On the other hand, Naïve Bayes performs the worst with 0.424 precision, 0.431 

recall, 0.418 F1 score and AUROC of 0.740. SVM also showed a poor performance with 
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precsion of 0.609, recall of 0.616 and F1 score of 0.609. However, it AUROC value is good, 

which is 0.870. Decision Trees has performed well with precision and F1 score of 0.824, recall 

of 0.825 and an excellent ROC value of 0.923. 

 

Table 22 Performance measure of the algorithms for predicting wickets 

 

Classifier Precision Recall F1 Score AUROC 

Naïve Bayes 0.577 0.581 0.575 0.765 

Decision Trees 0.865 0.865 0.865 0.921 

Random Forest 0.923 0.923 0.923 0.975 

SVM 0.720 0.707 0.708 0.867 

 

Random Forest again performed the best for predicting wickets in terms of all the measures with 

precision, recall and F1 score of 0.923 and AUROC value of 0.975. Again, Naïve Bayes shows 

the worst performance with 0.577 precision, 0.581 recall, 0.575 F1 score and 0.765 AUROC. 

Decision Trees shows a good performance with precision, recall and F1 score of 0.865 and 

AUROC of 0.921. SVM performed reasonably well with precision of 0.720, recall of 0.707, F1 

score of 0.708 and a good AUROC of 0.867. 
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Chapter 6 

 

Conclusion and Future Work 

 

6 Conclusion and Future Work 

 

Selection of the right players for each match plays a significant role in a team’s victory. An 

accurate prediction of how many runs a batsman is likely to score and how many wickets a 

bowler is likely to take in a match will help the team management select best players for each 

match. In this paper, we modeled batting and bowling datasets based on players’ stats and 

characteristics. Some other features that affect players’ performance such as weather or the 

nature of the wicket could not be included in this study due to unavailability of data. Four 

multiclass classification algorithms were used and compared. Random Forest turned out to be 

the most accurate classifier for both the datasets with an accuracy of 90.74% for predicting 

runs scored by a batsman and 92.25% for predicting wickets taken by a bowler. Results of 

SVM were surprising as it achieved an accuracy of just 51.45% for predicting runs and 70.95% 

for predicting wickets. 

 

Similar studies can be carried out for other formats of the game i.e. test cricket and T20 

matches. The models for these formats can be shaped to reflect required characteristics of the 

players; e.g. batsmen need to have patience and ability to play longer innings in test matches 

whereas score more runs in less overs in T20 matches. Similarly, bowlers need to have stronger 

wicket taking abilities in test matches and better economy rate i.e. conceding less runs in T20 
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matches. Moreover, attempts can be made to improve accuracies of the classifiers for ODI 

matches. 
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