

APPLYING TEELINE SHORTHAND USING LEAP MOTION CONTROLLER

by

Weikai Zang

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (MSc) in

Mathematics and Computational Science

The Faculty of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

©Weikai Zang, 2017

ii

iii

Abstract

A hand gesture recognition program was developed to recognize users’ Teeline

shorthand gestures as English letters, words and sentences using Leap Motion

Controller. The program is intended to provide a novel way for the users to interact

with electronics by waving gestures in the air to input texts instead of using keyboards.

In the recognition mode, the dynamic time warping algorithm is used to compare the

similarities between different templates and gesture inputs and summarize the

recognition results; in the edit process, users are able to build their own gestures to

customize the commands. A series of experiment results show that the program can

achieve a considerable recognition accuracy, and it has consistent performance in face

of different user groups.

Keywords

Human-Computer Interaction, Teeline Shorthand, Leap Motion Controller, Dynamic

Time Warping, Hand Gesture Recognition

iv

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof. Ratvinder

Singh Grewal for the continuous support of my master study and research. His

guidance helped me during the time of research and writing of this thesis.

Besides my advisor, I would like to thank my committee members, Prof. Julia

Johnson and Prof. Kalpdrum Passi for their insightful comments and hard questions;

and all Computer-Human Interaction Lab (CHIL) members for their help and kindly

suggestions.

Last but not the least, I owe sincere and earnest thankfulness to my family: my parents,

for giving birth to me at the first place and supporting me spiritually throughout my

life.

v

Table of Contents

Abstract .. iii

Acknowledgements ... iv

Table of Contents ... v

List of Tables ... viii

List of Figures ... ix

List of Appendices .. xi

Chapter 1 .. 1

Introduction .. 1

1.1 Background .. 1

1.2 Current situation... 3

1.3 Thesis objective ... 4

1.4 Thesis outline ... 6

Chapter 2 .. 7

Literature Review... 7

2.1 Leap Motion Controller ... 7

2.1.1 Overview ... 7

2.1.2 Motion tracking data ... 9

2.1.3 System architecture ... 11

2.2 Shorthand ... 13

2.2.1 Introduction to shorthand .. 13

2.2.2 Classification... 14

2.2.3 Teeline shorthand .. 15

2.3 Programming language and analysis software ... 17

Chapter 3 .. 19

Design .. 19

3.1 Program algorithm-Dynamic Time Warping ... 19

3.1.1 Euclidean distance .. 19

vi

3.1.2 Dynamic programming ... 20

3.2 Program implementation .. 23

3.2.1 Overall design ... 23

3.2.2 Recognition mode ... 25

3.2.3 Edit mode .. 26

3.2.4 Database .. 28

3.2.5 Implementation flow ... 29

3.2.6 Program interface .. 31

Chapter 4 .. 34

Evaluations ... 34

4.1 Testing preparation .. 34

4.2 Questionnaire ... 35

4.3 Pilot testing .. 38

4.3.1 What is pilot testing? .. 38

4.3.2 Conducting the pilot testing .. 39

4.4 Experiment I... 41

4.4.1 Objective ... 41

4.4.2 Hypotheses .. 41

4.4.3 Methodology ... 42

4.4.4 Results ... 48

4.5 Experiment II ... 52

4.5.1 Objective ... 52

4.5.2 Hypotheses .. 53

4.5.3 Methodology ... 53

4.5.4 Results ... 58

Chapter 5 .. 65

Discussion .. 65

5.1 Discussion in Experiment I .. 65

5.2 Discussion in Experiment II ... 73

Chapter 6 .. 82

vii

Conclusion and Future Work ... 82

6.1 Conclusion ... 82

6.2 Future work .. 84

Bibliography .. 87

Appendix .. 91

Appendix A Program source code ... 91

Appendix B Approval letter of research application ... 120

Appendix C Questionnaire template in experiments ... 121

Appendix D Statistical analysis results .. 125

Appendix E Additional findings in program’s performance for different user groups

.. 134

Difference in recognition accuracies based on users’ experience with video games

 .. 134

Difference in recognition accuracies based on users’ experience with motion

control devices.. 136

viii

List of Tables

TABLE 4.1 DATA COLLECTED FROM QUESTIONNAIRES .. 45

TABLE 4.2 VARIATION IN RECOGNITION ACCURACY WITH INCREASING SAMPLE SIZE

USING DATABASE 1 ... 49

TABLE 4.3 VARIATION IN RECOGNITION ACCURACY WITH INCREASING SAMPLE SIZE

USING DATABASE 2 ... 50

TABLE 4.4 OVERALL RECOGNITION ACCURACY FOR EACH PARTICIPANT’S RECORD 59

TABLE 4.5 FREQUENCY ANALYSIS FOR OVERALL RECOGNITION ACCURACIES 61

TABLE 5.1 OPTIMAL SAMPLE SIZE FOR EACH CHARACTER USING DATABASE 1 69

TABLE 5.2 OPTIMAL SAMPLE SIZE FOR EACH CHARACTER USING DATABASE 2 69

TABLE 5.3 FREQUENCY OF OPTIMAL SAMPLE SIZE ... 71

ix

List of Figures

FIGURE 2.1 LEAP MOTION COORDINATE SYSTEM .. 8

FIGURE 2.2 HAND TRACKING .. 9

FIGURE 2.3 FINGER TRACKING.. 10

FIGURE 2.4 TOOL TRACKING ... 10

FIGURE 2.5 A SWIPE GESTURE, A KEY TAP GESTURE, AND A SCREEN TAP GESTURE (FROM

LEFT TO RIGHT) ... 11

FIGURE 2.6 THE SCALE MOTION, ROTATION MOTION, AND TRANSLATION MOTION (FROM

LEFT TO RIGHT) ... 11

FIGURE 2.7 NATIVE APPLICATION INTERFACE ... 12

FIGURE 2.8 TEELINE SHORTHAND ALPHABET ... 16

FIGURE 2.9 REVISED TEELINE ALPHABET ... 17

FIGURE 3.1 EUCLIDEAN DISTANCE OF TWO TIME-DEPENDENT SEQUENCES X AND Y 20

FIGURE 3.2 TIME ALIGNMENT OF TWO TIME-DEPENDENT SEQUENCES X AND Y 21

FIGURE 3.3 PROGRAM OVERVIEW ... 24

FIGURE 3.4 RECOGNITION MODE .. 25

FIGURE 3.5 EDIT MODE... 27

FIGURE 3.6 FLOWCHART OF THE PROGRAM .. 29

FIGURE 3.7 CONSOLE WINDOW .. 32

FIGURE 3.8 DISPLAY WINDOW (WHEN DRAWING A TEELINE CHARACTER “A”) 32

FIGURE 4.1 EVALUATION PROCESS IN EXPERIMENT I .. 47

x

FIGURE 4.2 VARIATION IN RECOGNITION ACCURACY WITH INCREASING NUMBER OF

TEMPLATES USING DATABASE 1 ... 51

FIGURE 4.3 VARIATION IN RECOGNITION ACCURACY WITH INCREASING NUMBER OF

TEMPLATES USING DATABASE 2 ... 52

FIGURE 4.4 AGE DISTRIBUTION OF PARTICIPANTS ... 55

FIGURE 4.5 GENDER OF PARTICIPANTS .. 56

FIGURE 4.6 PARTICIPANTS’ EXPERIENCE PLAYING VIDEO GAMES 56

FIGURE 4.7 PARTICIPANTS’ EXPERIENCE INTERACTING WITH MOTION CONTROL

DEVICES .. 57

FIGURE 4.8 HISTOGRAM OF RECOGNITION ACCURACIES USING DATABASE 1 62

FIGURE 4.9 HISTOGRAM OF RECOGNITION ACCURACIES USING DATABASE 2 63

xi

List of Appendices

APPENDIX A PROGRAM SOURCE CODE ... 91

APPENDIX B APPROVAL LETTER OF LU’S REB ... 120

APPENDIX C QUESTIONNAIRE TEMPLATE IN EXPERIMENTS .. 121

APPENDIX D SPSS STATISTICAL ANALYSIS RESULTS .. 125

APPENDIX E ADDITIONAL FINDINGS IN PROGRAM’S PERFORMANCE FOR DIFFERENT

USER GROUPS ... 134

1

Chapter 1

 Introduction

1.1 Background

Human-Computer Interaction (HCI) refers to the process of information exchange

between a person and a computer using certain dialogue, in a certain interactive way,

to complete a certain task. HCI is more and more common in modern society; people

communicate with one another by phone, work on the computer, and use advanced

machines to improve production. The way people interact with computer is constantly

developing over time.

The field of human-computer interaction has developed greatly, and has shifted from

a time where people adapted to the computers to where, now, computers are adapting

to human needs. The evolution has gone through several stages:

 Manual work;

 Use of job control language and interactive command language;

 Manipulating with graphical user interfaces;

 Human-computer interaction using multi-channel, multi-media intelligent

stage.

2

The now ubiquitous direct manipulation interface is the direct manipulation of

graphical objects; this is where objects visible onscreen are directly manipulated with

a pointing device [1]. For example, a light-pen was used to manipulate objects, which

included grabbing and moving objects, changing size, and using constraints with the

support of a SketchPad [2]; following this, in 1965, the mouse was developed as a

cheap replacement for light-pens and became famous as a practical input device in the

1970s [3]. The current international standard X Window System was developed in

1984, which allows drawing and moving windows on the display device with a mouse

and keyboard.

In recent years, the emergence of motion control devices has made a big difference in

the way people interact with computers. In 2006, the release of the Nintendo Wii had

a massive effect on the gaming industry [4]. After the Nintendo Wii, the

first-generation Kinect was introduced in 2010, which raised users’ enthusiasm for

motion control products. With these products, people can manipulate their virtual

characters in game by changing their own body movements rather than remaining

seated or holding a console or a mouse in one position. Motion-controlled games

rapidly became popular in Europe and America, spreading to Asian countries [5]. In

2013, the launch of the Leap Motion controller (LM) once again expand the way of

3

human-computer interaction. This small motion controller makes motion control

practical not only in gaming, but also in many other fields.

The goal of this thesis is to design a program using the hand motion-sensing feature of

the Leap Motion controller to detect people’s writing gestures in the air and recognize

them as plain texts in English.

1.2 Current situation

Since the release of the Leap Motion Controller (LM), more and more applications

have been published on Airspace: the name of the applications store for LM. When

Leap Motion Controller first launched, there were 75 apps in the store; today, in 2016,

there are over 200 apps are shown in the store [6]. These applications are available on

Windows, OS X or Web Link platforms, and cover education, games, music, and

many other different categories. LM is becoming increasingly common in everyday

life, and will be applied in various fields in the future.

The goal of gesture recognition is interpreting human gestures into computer language

with mathematical algorithm for people and machines to interface more easily [7].

Hand gesture recognition is a challenging interdisciplinary research project, related to

both computer science and language technology. Over the past few years, it has

4

become commonplace technology in both entertainment and gaming markets.

Hidden Markov Model (HMM) and Dynamic Time Warping (DTW), two different

algorithms, are widely applied in speech recognition systems. Since the hand gesture

recognition is similar to the speech recognition with regards to process time variable

data, HMM and DTW can be used in hand gesture recognition as well. The Hidden

Markov Model is a statistical analysis model that can be used to describe the temporal

and spatial variations of gesture signals. When applied to fingertip tracking and hand

gesture recognition, this method has been proven to work well [8]. The Dynamic

Time Warping is an algorithm for measuring similarity between two temporal

sequences even though the lengths of the two sequences are different. According to a

paper published in 2012, DTW performed better than HMM when applied to gesture

recognition [9].

1.3 Thesis objective

With the development and popularization of motion controllers, interpreting hand or

finger movements as character inputs using hand tracking devices will improve and

evolve. The main objective of this thesis is to develop a program that employs the

DTW algorithm to analyze and recognize three-dimensional hand gestures using Leap

Motion Controller. The LM is able to detect and record hands’ and fingers’

5

movements in the air, and an abbreviated symbolic writing method called Teeline

shorthand will be employed as gesture inputs. The program will perform the

following functions:

 Reading templates from a database to identify hand gestures;

 Recording users’ gesture inputs;

 Applying DTW to compare between templates and users’ inputs to recognize

Teeline shorthand;

 Allowing users to add their own templates to database.

The project is novel since it uses the Leap Motion Controller for gesture recognition.

Although it works like other motion control devices, such as Kinect, Leap Motion

focuses on tracking hand and finger movements, which makes it more precise and

efficient than Kinect when tracking subtle movements. Many authors have illustrated

the use of Kinect in finger-writing (see [10-12]). As a new motion control device,

Leap Motion is rarely mentioned in hand gesture recognition. Next, rather than using

English characters, this project requires the input of Teeline shorthand. The Teeline

alphabet consists of characters that are simpler than the individual letters of the

English alphabet, thereby simplifying the input and reducing the complexity of

three-dimensional writing. In addition, the program allows users to build their own

gestures into the database, which is a novel idea in the field of gesture recognition.

6

With this function, the usability and flexibility of this program can be improved.

1.4 Thesis outline

This thesis is organized as follows: The literature review is detailed in Chapter 2,

which lists in detail the foundation of the Leap Motion Controller and Teeline

shorthand used in this thesis. Chapter 3 introduces the method for gesture recognition

applied in this thesis, and explains the functions of the program. The experiments that

were conducted to test the recognition accuracy of the program and the results are

presented in Chapter 4. Chapter 5 addressed further discussion about experiment

results. Finally, Chapter 6 presents the conclusion of this project and suggests future

areas of research.

7

Chapter 2

Literature Review

2.1 Leap Motion Controller

2.1.1 Overview

The Leap Motion controller is a small peripheral device (3 x 1.2 x 0.5 inches) that is

designed to be placed on a physical desktop and connected to a computer. It can sense

the objects observed in the device’s field of view. The Leap Motion system tracks

every movements of the hand, finger and finger-like tool, and reports discrete

positions, gestures, and motions [13]. The Leap Motion controller uses optical sensors

and infrared lights. The heart of the device consists of two cameras and three infrared

LEDs. The sensors have a field of view of 150 degrees wide and 120 degrees deep

when the LM is in its standard operating position, and it can detect objects in a range

of 4 feet width by 1 inch to 2 feet height [14].

8

Figure 2.1 Leap Motion coordinate system

The Leap Motion works based on a right-handed Cartesian coordinate system (Figure

2.1), with the origin centered at the top in the center of the LM controller. The x- and

z-axes lie in the horizontal plane, with the z-axis running parallel to the short edge of

the device and increasing positive values toward the user. The y-axis is vertical and

has positive values increasing upwards [15].

Leap Motion has the capability of tracking objects using the following units in terms

of physical quantities: millimeters in distance, microseconds in time, and radians in

angle. As stated by the manufacturer, the sensor’s accuracy in fingertip position

detection is approximately 0.01 millimeters; however, the studies in a paper published

in 2013 demonstrated that under real conditions, the accuracy of Leap Motion is less

than 0.2 millimeters for the static case and less than 1 millimeters for the dynamic

case [16].

9

2.1.2 Motion tracking data

Leap Motion will provide a set of data as an update when it tracks hands, fingers, and

tools in its field of view. This set of data is named Frame and it contains the measured

coordinates of the current position and other information about each detected entity.

The Frame object is essentially the root of the Leap Motion data model.

Hands Hands are the main entities tracked by the LM controller, and this model

provides information about lists of the fingers associated with the hand (Figure 2.2).

Since an internal model of a human hand is built inside the Leap Motion software to

provide predictive tracking and validate the data from its sensors, LM is able to track

finger positions even when parts of a hand are not visible [14].

Figure 2.2 Hand Tracking

Fingers The Leap Motion controller provides information about each finger on a hand

(Figure 2.3). With the internal model of hand, the finger positions will be estimated

based on recent observations when part of a finger is out of LM’s field of view.

Fingers are identified by type name, i.e. thumb, index, middle, ring, and pinky.

10

Figure 2.3 Finger Tracking

Tools Tools are independent of hands, and these always recognized as being held like

a pencil (Figure 2.4). The Leap Motion system defines tools as thin and cylindrical

objects, longer, thinner, and straighter than a finger.

Figure 2.4 Tool Tracking

Gestures and Motions The Leap Motion controller also provides another two data

models: gestures and motions. Gestures are classified as pre-defined movement

patterns, and motions are recognized as the basic types of movements inherent in the

change of a user’s hands over a period of time. Representative gestures are swipe, key

tap, and screen tap (Figure 2.5), for example, and motions include scale, rotation, and

translation (Figure 2.6). By default, the recognition of ‘Gestures and Motions’ is

disabled; however, this is a function that can be manually enabled.

11

Figure 2.5 A swipe gesture, a key tap gesture, and a screen tap gesture (from left to

right)

Figure 2.6 The scale motion, rotation motion, and translation motion (from left to

right)

Since the tracking data for gestures and motions have not being applied in hand

gesture recognition in this project, the gestures and motions model that allows LM to

recognize them will be kept disabled. Furthermore, to simplify the recognition inputs,

only hands and fingers data will be used in this thesis.

2.1.3 System architecture

The Leap Motion software receives motion tracking data via the USB bus that is

connected to the Leap Motion controller device. This data is then transferred to a

Leap-enable application. A Leap Motion Software Development Kit (SDK) is

provided for the public to develop Leap-enabled applications; this comprises of two

12

varieties of Application Programming Interfaces (API) in several programming

languages including C++, Java, and JavaScript for getting the Leap Motion data from

LM software [17].

A native interface is a dynamic library that developers can use to create new,

Leap-enabled applications, and a WebSocket interface and JavaScript client library

allow users to create Leap-enabled web applications. In this thesis, the writing

recognition program uses the native interface through a dynamically loaded library;

which will be expanded on later in this paper.

Figure 2.7 Native Application Interface

As shown in Figure 2.7, the Leap Motion application (Leap Setting App) is a Control

Panel on Windows that allows users to configure the Leap Motion operations. The

Leap Motion software (Leap Motion Service) takes advantage of the dynamically

Leap Setting App

Leap Software

Foreground

Leap-enabled applications

Background

Leap-enabled applications

USB

13

loaded library which is connected to it, to process information received from the

controller and send it to the running foreground Leap-enabled applications by default.

The foreground Leap-enabled application can receive the motion tracking data from

the software and connect to the software to execute commands using the native library.

Unless it receives a request from the application, the software does not send tracking

data to a background Leap-enabled applications. Configuration settings for

applications in background are determined by the foreground application [17].

The Leap Motion SDK supports many kinds of commonly used programming

languages, such as Unity, C#, C++, and Java, and so forth. Since the Native

Application Interface allows Leap-enabled applications to directly link to the library

in C++, it was chosen as the programming language for this project.

2.2 Shorthand

2.2.1 Introduction to shorthand

Shorthand is any system of abbreviated symbolic rapid handwriting that can be used

to transcribe the spoken word [18]. Many forms of shorthand exist. A typical

shorthand system uses simplifying symbols or abbreviations for letters and characters,

which, for instance, would help a well-trained journalist to accurately speed-write at

the rate of the spoken word at press conferences or similar scenarios, without

14

recorders or computers. Although primarily devised and used to record oral dictation

or discourse, some systems of shorthand are used for compact expression; for

example, healthcare professionals use shorthand notes for medical charts and

correspondence [19].

The use of simplifying symbols in shorthand makes it easier to record English; this

notion is also the case for Leap Motion: abbreviated letters and ‘shorthand’ codes in

three-dimensional recognition makes the program easier to use. Moreover, hand

gesture recognition using the Leap Motion controller, the simpler strokes are needed

so users can avoid long periods of time in an uncomfortable position holding their

hands up in the air. In conclusion, shorthand is a better option for inputting than

English, and therefore, in this project, it will be applied in the writing recognition

program.

2.2.2 Classification

The earliest known indication of shorthand systems is from the Parthenon in Ancient

Greece, which lays out a writing system primarily based on vowels, using certain

modifications to indicate consonants [20]. Many languages have their own shorthand

systems. For example, an abbreviated, highly cursive form of Chinese characters were

used for recording court proceedings in Imperial China, and an interest in shorthand

15

developed towards the end of the 16
th

 century in England [20]. There are a number of

different systems currently in use, and according to the shape, these can be classified

as geometric, script, and semi-script shorthand.

The first modern shorthand systems were geometric. These are based on circles, parts

of circles, and straight line placed strictly horizontally, vertically, or diagonally. Script

shorthand was devised based on the motions of ordinary handwriting, and it is

commonly used in countries such as Austria, Italy, and Russia now. Semi-script

shorthand is also named Script-Geometric shorthand, and this system is a combination

of the geometric systems and the script systems. The Teeline shorthand applied in this

project is one example of a semi-script shorthand system. It is the most recommended

shorthand method for journalists in the UK and New Zealand [21].

2.2.3 Teeline shorthand

Developed by James Hill in 1968, Teeline shorthand became a widely recognized

method based on the English alphabet [22]. Teeline is a system that depends on

reducing the letters of the English alphabet to their simplest possible forms, jointing

characters together using a streamlined way to transcribe the words. Due to its

flexibility and comparatively simple theory, Teeline shorthand gained popularity for

its ability to adapt to the individual’s own pattern of use.

16

Figure 2.8 illustrates the Teeline shorthand alphabet. As can be seen from this

alphabet, some characters are similar to those in the English alphabet, such as ‘c’ and

‘v’, and some characters are far from their original forms like ‘f’ and ‘s’. However, all

characters in Teeline shorthand are simple lines (curved or straight), which can be

easy and logical to learn, and fast and accurate to use for beginners. The simplicity

and understandability of Teeline shorthand are the critical reasons for choosing it for

hand gesture recognition in this project, rather than other shorthand systems.

Figure 2.8 Teeline Shorthand Alphabet

In order to take advantage of the Teeline alphabet in the hand gesture recognition

program, some revisions of the system were made. A revised version of the Teeline

shorthand alphabet is shown in Figure 2.9. In the revised Teeline alphabet, character

‘x’ was modified from two strokes to one stroke, so user just need to do one gesture to

draw a ‘x’ like drawing other characters. Furthermore, a new character to represent

‘space’ was added to this revised alphabet, allowing people to insert a space between

17

the two words they draw by waving this gesture rather than having to move hands to a

keyboard and type it in. The arrow beside each character in the Teeline alphabet

indicates the direction in which a character should be written. In maintaining this, the

input will be formatted and therefore recognized by the program.

Figure 2.9 Revised Teeline Alphabet

2.3 Programming language and analysis software

In the last few decades, various programming languages have been created,

superseded, modified or combined; and one of them is the C++ programming

language. C++ can be easily understand and developed; it is supported by the LM’s

SDK; and its library can be directly linked by the Leap-enabled application; all of the

above make it a powerful and effective programming language for this project.

In order to more efficiently analyze the research data, statistical analysis will be

18

applied using IBM SPSS Statistics 21. It is a highly efficient program that allows

users to enter data, run analyses, as well as display results in tables and graphs within

a matter of minutes [23, 24]. The benefits of SPSS including effective data

management, wide range of options, and clear output organization, which makes it an

effective software for the statistical analyses in this thesis [25].

19

Chapter 3

Design

3.1 Program algorithm-Dynamic Time Warping

Gesture recognition interprets human gestures by using mathematical algorithms to

translate these gestures into computer language; the aim is to enable people and

machines to communicate more easily [26]. The hand gesture recognition algorithms

can be divided into three main categories: template matching-based algorithms,

statistics-based algorithms, and data classification-based algorithms. Dynamic Time

Warping (DTW) is a well-known template matching technique with the advantages of

simple principle and flexible operation [27]. DTW was originally developed in

automatic speech recognition to cope with different speaking speeds [28, 29], and has

been widely used in handwriting recognition, image analysis, and many other fields

[30-33].

3.1.1 Euclidean distance

In mathematics, the Euclidean distance is the straight-line distance between two

points in Euclidean space.

If 𝑝 = (𝑝1, 𝑝2, … , 𝑝𝑛) and 𝑞 = (𝑞1, 𝑞2, … , 𝑞𝑛) are two discrete points in Euclidean

20

space, then the distance (𝑑) from 𝑝 to 𝑞, or from 𝑞 to 𝑝 is given by the formula

[34]:

𝑑(𝑝, 𝑞) = 𝑑(𝑞, 𝑝) = √(𝑞1 − 𝑝1)2 + (𝑞2 − 𝑝2)2 + ⋯ + (𝑞𝑛 − 𝑝𝑛)2 = √∑(𝑞𝑖 − 𝑝𝑖)2

𝑛

𝑖=1

3.1.2 Dynamic programming

Euclidean distance is an efficient method for calculating the distance between two

sequences with same length; however, in many cases, there are possibilities where the

lengths of two time-series are unequal, see Figure 3.1 and Figure 3.2.

Figure 3.1 Euclidean distance of two time-dependent sequences X and Y

Sequence X

Sequence Y

Time

a

b

b
’

21

Figure 3.2 Time alignment of two time-dependent sequences X and Y

Sequence X and sequence Y are two similar time-dependent sequences. When using

Euclidean distance to decide the distance between X and Y, the corresponding element

of 𝑎 in sequence X is 𝑏′ in sequence Y. However, the actual correspond element of

𝑎 in sequence Y is 𝑏. Therefore, Euclidean distance becomes ineffective for

calculating 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 between two sequences in different lengths. Unlike Euclidean

distance, Dynamic Time Warping (DTW) is an algorithm that uses dynamic

programming to find an optimal alignment between two given (time-depend)

sequences.

Consider two time-dependent sequences 𝑋 ≔ (𝑥1, 𝑥2, … , 𝑥𝑚) of length 𝑚 ∈ 𝐍 and

𝑌 ≔ (𝑦1, 𝑦2, … , 𝑦𝑛) of length 𝑛 ∈ 𝐍, where 𝑥𝑖 and 𝑦𝑗 are elements at index 𝑖 and

𝑗 in 𝑋 and 𝑌, respectively. Each element can be a vector with dimension 𝐾, which

represents a measurement at a certain time or position. In order to align these two

sequences, a 𝑛 × 𝑚 matrix needs to be built. The element 𝑑(𝑖, 𝑗) in position (𝑖, 𝑗)

Sequence X

Sequence Y

Time

22

of this matrix represents the distance between elements 𝑥𝑖 and 𝑦𝑗, it is determined

by Euclidean distance: 𝑑(𝑖, 𝑗) = √(𝑥𝑖 − 𝑦𝑗)
2
. In other words, dynamic programming

is an algorithm that looks for a warping path through numbers of elements in the

matrix; the elements are the distances when the 𝑖 − 𝑡ℎ element in 𝑋 is aligned to the

𝑗 − 𝑡ℎ element in 𝑌 [35].

An alignment from 𝑋 to 𝑌 can be represented by a warping path

𝑤 = {𝑤(1), 𝑤(2), … , 𝑤(𝑘), … , 𝑤(𝐾)}, where 𝑚𝑎𝑥(𝑚, 𝑛) ≤ 𝐾 ≤ 𝑚 + 𝑛 − 1. The

warping path satisfies the following conditions [36]:

1) Boundary condition: 𝑤1 = (1,1) and 𝑤𝐾 = (𝑚, 𝑛).

2) Monotonicity condition: if one point in the path is 𝑤𝑘−1 = (𝑎′, 𝑏′), then

for the next point 𝑤𝑘 = (𝑎, 𝑏) in this path, the conditions (𝑎 − 𝑎′) ≥ 0

and (𝑏 − 𝑏′) ≥ 0 are always true.

3) Local continuity condition: if one point in the path is 𝑤𝑘−1 = (𝑎′, 𝑏′),

then for the next point 𝑤𝑘 = (𝑎, 𝑏) in this path, the conditions

(𝑎 − 𝑎′) ≤ 1 and (𝑏 − 𝑏′) ≤ 1 are always true

Constrained by the three conditions above, there are only three directions for a point

to follow at position (𝑖, 𝑗) in a warping path, including 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖 + 1, 𝑗),

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖, 𝑗 + 1), and 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛(𝑖 + 1, 𝑗 + 1). When the number of the elements

23

increase in a sequence, however, the valid warping paths will increase exponentially.

For instance, with the distance measure (e.g. Euclidean distance) 𝑑(𝑖, 𝑗), the

accumulated distance 𝐷(𝑖, 𝑗) along warping path 𝑤 can be calculated by [35]:

𝐷(𝑖, 𝑗) = 𝑑(𝑖, 𝑗) + 𝑚𝑖𝑛{𝐷(𝑖 − 1, 𝑗 − 1), 𝐷(𝑖 − 1, 𝑗), 𝐷(𝑖, 𝑗 − 1)}

 𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛

The object of DTW is to find the warping path 𝑤, which minimizes the distance

𝐷𝑤(𝑋, 𝑌), and the DTW distance between 𝑋 and 𝑌 is calculated by:

𝐷𝑇𝑊(𝑋, 𝑌) = 𝐷(𝑚, 𝑛)

Typically, when 𝑋 and 𝑌 are more similar to each other, 𝐷𝑇𝑊(𝑋, 𝑌) is smaller;

otherwise 𝐷𝑇𝑊(𝑋, 𝑌) will be larger [27].

3.2 Program implementation

In this section, the implementation of the project will be presented. First, a brief

introduction to the framework of the project will be illustrated. Following this, two

different modes of the program will be detailed. In the third section, the database used

in this project will be described. Finally, the interface of the program will be

explained.

3.2.1 Overall design

There are five main components of the hand gesture recognition program: the gesture

data input by the user, the Leap Motion controller that tracks and records hand

24

movements, the display window that shows the movement path, the console window

that receives commands and gives output, and the database that stores templates for

the matching algorithm.

Figure 3.3 Program Overview

Figure 3.3 demonstrates how the program works. It can be divided into two phases.

During the first phase, the Leap Motion Controller (LM) captures Teeline shorthand

gestures done in the air. The LM detects and records the user’s hand movements and

then sends the data to the display window on computer monitor where the user’s hand

movement path will be depicted in 2D space. In the second phase, with the hand

gestures completed, the user inputs commands using a separate window from the

display window called console window. The program will compare the gesture

tracking data to the templates in the database and then output a recognition result in

English letter(s) to display on the console window. In Recognition mode, the database

Command

Inputs

Database

Display

Window

Result

Outputs

User

Console Window

Phase 1 Gesture drawing Phase 2 Gesture processing

25

includes sample gesture data for analyzing users’ input gestures data. In Edit mode,

the program allows users to save gesture information and thus add new templates to

the database. These two modes of the program, Recognition mode and Edit mode, will

be illustrated in the next two subsections.

3.2.2 Recognition mode

Recognition mode is the core function of the program. In this mode, there are two

different input sources: the gesture information drawn by the user, and the database

includes templates for matching algorithm. In Recognition mode, only one output is

allowed: the recognition result analyzed by the program using the Dynamic Time

Warping algorithm. In order to deliver a clear explanation, the program’s work

process in Recognition Mode is expounded in Figure 3.4.

Figure 3.4 Recognition Mode

At the beginning of this mode, the program will retrieve each template from the

Database

Templates

Identifying

Templates

DTW

Algorithm

Tracking Data Recognition

Result

Input Process Output

26

database. It matches each letter in English with the corresponding Teeline shorthand

gesture template in the database, thus assigning each Teeline shorthand template an

English letter as its name. This process can be recognized as the program is

identifying templates. When the user finishes her/his Teeline shorthand gestures, the

Leap Motion Controller will record the gesture tracking data and send it to the

program as test samples. Following this, the DTW algorithm will be called to

compare the similarities of each test sample to each template in the database. The

similarities are represented by the DTW distance, and the shorter the distance, the

higher the similarity. When the smallest value of the DTW distance between the test

sample and a template in database is found, the English letter name of that template

will be assigned to the test sample. After the program processes through all the test

samples, it will output the name of each sample in sequence as the recognition result.

3.2.3 Edit mode

Some gesture recognition systems suffer from the severe limitation that an end-user is

unable to add any new gestures to the pre-existing database of gestures [37]. Such

limitations mean the system are unadaptable; users are restricted and cannot

customize the program based on their own habits and preferences, thus lowering its

usability. For this reason, several applications sold in Apple App Store have added a

function that allows end-users to define new gestures in the application library. For

27

example, an app called Short Hand by LizzardWerks in the Apple Store allows users

to create their own shortcuts. Once installed and programed, the user can type out

these shortcuts commands and they will be changed into full words and sentences

[38].

Taking the above into consideration, for the purpose of increasing the utility of the

program, an Edit mode is designed besides the Recognition mode. This mode allows

users to create their own gesture templates and add them into the database for future

use.

Figure 3.5 Edit Mode

It can be seen from Figure 3.5, the program’s work process in Edit mode is quite

simple. Users design their own gestures with the Leap Motion Controller, which

records the tracking data and then sends it to the program. The program saves this

tracking data to a file as a template that specified by user using a filename and then

outputs it to the database. At the end of Edit mode, a new template is added to the

database, and if the new gesture is used again, the template can be identified by the

program in the Recognition mode.

User Create

Gesture

Save

Tracking

Data

New Template

in Database

Input Process Output

28

3.2.4 Database

In this project, the database is a folder under the C++ release folder. There are 270

Teeline shorthand templates included in this folder, and every template is a text file.

The file contains the movement path for each Teeline shorthand character in the form

of points with x-axis and y-axis positions. Recalling Figure 2.9 in Chapter 2, a revised

Teeline shorthand alphabet of 27 characters was applied in this project. Therefore, 10

templates are allocated for each Teeline character from “a” to “z” plus a space.

At the beginning of this project, all 270 templates in the database were built by one

person: the author. With regard to the technique applied for gesture recognition in this

program, Dynamic Time Warping, which yields results by comparing the similarities

between templates and test samples. Therefore, there is a need to increase the

diversity of the templates for each Teeline character by building another database by

various persons instead of one. A database built by different people includes diverse

writing styles, which may help recognize various gesture test samples and increase the

recognition accuracy of the program. In the next chapter, however, the building of an

additional database by collecting samples from different users will be described; that

is, collecting one template for each character in the Teeline alphabet from each person

and building a database of 270 samples from ten different people. These two

databases are applied respectively in order to compare and review the recognition

29

accuracy of the program, this will be further detailed in Chapter 4.

3.2.5 Implementation flow

Figure 3.6 gives the flowchart of the whole program:

Figure 3.6 Flowchart of the Program

30

The whole program executes as shown above. At the beginning of the program, users

can choose one of the two modes by pressing “Y” or “N” keys according to their

demands. Whether in Recognition mode or in Edit mode, there are several steps that

are the same for the users to follow; in other words, both modes need the same input

commands, as follows:

 Enter command: this command is used for activating the display window on

screen.

 Space command: this command is used for directing Leap Motion to start to

track hand movement and record tracking data.

 ESC command: this command is used for stopping the hand tracking and

guiding the program to proceed according to the following instructions.

In the Recognition mode, the user can draw one Teeline character at a time and save it

temporarily using input command “1”. If the user wants to draw more than one

character, she needs to input the “Enter” key again to draw the next character and

followed by “1” to save the next record until all characters the user intends to draw

have been completed. The total number of characters drawn is displayed on the

console window by inputting the “Tab” and the recognition results will be given as

well.

31

In Edit mode, there are three options for the user after s/he creates a new gesture. By

inputting command “4”, the program will guide the user to save the record as a

template in the database; and the user will need to name the new template file.

Command “5” gives the user access to train the new gesture template, which allows

the user to assign a meaning (an English letter or word) to the new gesture.

Furthermore, command “5” is followed by command “4”, which means the user is

still asked to save it into database. If the user is unsatisfied with the gesture, the

“Enter” key command allows the user to discard it if preferred. If the user intends to

add more than one new gesture into the database, s/he only needs to input “Y” after

the prompt “stay in Edit Mode”, and then repeat the above steps.

3.2.6 Program interface

The program interface consists of two parts: the console window and the display

window. They are illustrated in Figure 3.7 and Figure 3.8 respectively.

32

Figure 3.7 Console Window

Figure 3.8 Display Window (when drawing a Teeline character “a”)

Using the console window in Figure 3.7, users are able to input commands to control

the flow of the program and read the recognition result at the end. The hand gestures

are made in the air using the motion control device and are consequently invisible; the

display window, therefore, is needed for users to monitor their hand movements and

help them finish the gestures. The user’s hand movement path is illustrated in the

Display Window, Figure 3.8. The line on this window is a reference line correspond to

the line on Figure 2.9, which helps the user decide the position of each Teeline

shorthand character. The little black point on the screen is like a penpoint indicating

the position of the user’s index fingertip. When the Space key command is received

33

by the program, the display window will show the user’s hand movement path as the

user drawing Teeline gestures. The action mimics the behavior that drawing on the

screen, but without the user actually touching the screen itself. When a gesture is done

and the “ESC” key command is received by the program, the display window will

only show the path that the user just drew. Until the next “Enter” key command is

made and user put their hand above the Leap Motion, the display window will be

immediately refreshed as in Figure 3.8.

34

Chapter 4

Evaluations

In user-centered interaction design, usability testing is a technique to evaluate a

product or system by running trials with users. This gives designers the opportunity to

see how end-users interact with a product or system, and is thus an irreplaceable

usability practice [39]. Usability testing focuses on measuring a human-made

application’s capacity to meet its intended purpose. The crucial objective for a hand

gesture recognition system like the one in this project is to correctly recognize users’

gestures. For this program, the most important aspect of the usability test is testing

recognition accuracy.

4.1 Testing preparation

In order to test the recognition accuracy of the program in this project, a number of

users will try out the application and evaluate the system. The usability testing will be

conducted at Laurentian University, and students will be recruited as the participants

of the experiments. According to the requirements of the Office of Research Services,

all research involving human subjects that is conducted at Laurentian University must

be reviewed and approved by Laurentian University Research Ethics Board (LU’s

REB) in advance to ensure compliance with the highest ethical standards of the

35

Tri-Council Policy Statement (TCPS).

Before proceeding with the usability testing, a few documents about the project were

submitted to LU’s REB for consideration. The documents included the research

proposal, and the ethics form that describes the potential risks and benefits to human

participants. The documents were reviewed by the REB and an approval letter for this

usability test was issued (Appendix 2).

4.2 Questionnaire

Questionnaires are one of the most important parts of the market research process.

They are the means by which the responds of target respondents are transformed into

quantifiable variables, and they are the measuring device for things that are not

directly observable [40]. For this project’s usability test, a questionnaire will be used

to collect the participant’s background information and related experience on games

and motion control products; the information collected will be helpful for further

comparison and analysis among all participants to find out the relation between users’

experience and the recognition accuracies.

Following the suggested questionnaire design principles (see [41-44]), and based on

the information the testing was required to collect, a questionnaire was designed for

36

the experiments in this paper (Appendix 3). Concentrating on the participants, the

questionnaire focused on five categories: their English capability (Q1-Q2), their

demographic profiles (Q3-Q7), their knowledge of shorthand (Q8-Q9), their

experience of video games (Q10), and previous experience with any kinds of

gesture-controlled products (Q11-Q13). All the questions were closed-ended questions,

except for Question 3, which inquired about the program the participant is in. All

questions were organized into groups based on categories and were ordered in a

logical sequence.

The first two questions were designed to see if the participant would be able to use the

program independently, since the prompts on the console window are in English and

the participant would need to input commands according to the different prompts.

The demographic profile of the participants includes their program, age range, gender,

mother tongue and dominant hand, all of which will be used for classifying

participants into various groups to compare the differences in program recognition

accuracies. The target responders of this project are students at LU, therefore age has

been broken up into eight balanced groups, with each group having a five-year range.

The mother tongue information will indicate participants’ normal writing habits, such

as from left to right or from right to left. A participant’s dominant hand is crucial

37

information to analyze if the program is accommodating to both right-handed and

left-handed people.

This project’s hand gesture recognition program uses Teeline shorthand; therefore, it

is necessary to collect data regarding the participants’ experience with shorthand. The

data will be applied in analyzing whether the program can accommodate to new as

well as experienced shorthand users.

Much of psychological research has been focused on the negative aspect of gaming

effects (see [45-47]), but Isabela Granic has suggested that people may need a more

balanced perspective to understand the influences of video games [48]. Some authors

have focus on exploring both the positive and negative effects of video games, and the

authors found that playing video games benefits people in several ways [48, 49]. In

comparison with those who do not play video games at all, people who play

experience cognitive benefits, motivational benefits, emotional benefits, and social

benefits [48]. Thus, Question 10 was included in the questionnaire to test that whether

people who play video games will better handle the program (gain higher recognition

accuracy).

Since this project centers on motion control and gesture recognition, the three final

38

questions of the questionnaire are related to the participants’ experience with

gesture-based interfaces and motion control technology. Data collected from these

questions will be used to validate that whether or not the more experience a user has

with gesture interfaces or motion control devices, the easier the program is for

him/her to use and the more accurate the recognition result will be.

In total, the questionnaire consists of 13 questions, each of which should be easily

answered, so the predicted time for completion is 5 minutes. This duration is long

enough for participants to fill the questionnaires and does not take up too much of the

whole experiment’s time, which is acceptable for the usability testing.

4.3 Pilot testing

4.3.1 What is pilot testing?

‘Pilot testing’, also referred to as a ‘pilot experiment’ or ‘pilot study’, is a small-scale

trial, where a few participants take the test and comment on the mechanics. It is a

quick and convenient way to evaluate feasibility, time, cost, adverse events, and

statistical variability in an attempt to predict an appropriate sample size and improve

upon the study design prior to performing a full-scale research project [50].

Pilot testing is particularly important in the following situations [51]:

39

 If the conductor will run a usability test for the first time;

 If the conductor will test an unfamiliar subject area;

 If a remote, unmoderated study needs to be conducted;

 If a high-visibility project will be involved in the test;

 If conductor is prepared to work on a one-shot research project.

Not only the novel practitioners, but also veteran usability practitioners can benefit

from running pilot tests.

4.3.2 Conducting the pilot testing

In order to find out if the tasks are clear in the experiment, if the data collected from

the tests can be used, and how much time to schedule for testing one user, a few pilot

experiments were conducted prior to the full-scale study.

For the pilot testing, four participants from Laurentian University were recruited; two

females and two males, from different departments including Science Communication,

Computational Science and Business Administration. Three participants were in age

range of 21-25 years old and one participant was in the age range of 26-30 years old.

Participants were tested one by one, each one given the same tasks in the same order

throughout the whole process.

40

Based on the pilot studies, the average time for participants to complete all the tasks

was about 30 minutes. Each participant had to complete the following tasks: reading a

consent form and completing a questionnaire (about 10 mins), looking at the Teeline

shorthand alphabet and practicing doing gestures using Leap Motion controller (about

5 mins), and recoding Teeline characters using the program (15 mins). Depending on

the participant’s practice time and their speed, each test duration varied slightly. In

addition, the following deficiencies were also found after the pilot tests:

 For most people who do not know about shorthand, Question 8 in the

questionnaire seems unclear for them to answer;

 Since the program needs keyboard inputs as well as gesture control, new

obstacles were brought about, wherein users had to execute the correct commands

in order to keep the program running fluently; for instance, the program’s

response did not meet the user’s expectation if no/incorrect commands were

given to the program;

 The input method of the laptop affects the operations of the program.

Some modifications were made to solve the problems found in pilot testing:

 Being present when the participants filled out the questionnaire and explaining

the meaning of shorthand to them in detail;

41

 Connecting an extra keyboard to the laptop so that command inputs can be done

by the conductor instead of the participants, this allowing participants to focus on

drawing gestures alone;

 Ensuring the input method is in English before starting the experiment.

The changes listed above were applied in the full-scale experiments which will be

described in next two subsections.

4.4 Experiment I

4.4.1 Objective

The objective of Experiment I is to test the influence sample size in the database has

on the recognition accuracy of the program. As stated in subsection 3.2.4 Database,

for this project one database (Database 1) has already been built. It contains10

samples for each symbol in Teeline alphabet (Figure 2.9), for a total of 270 samples

for the 27 Teeline characters. In order to compare the difference between the

recognition accuracies using different databases, another database will be built by the

researcher using samples from population. Both databases will be applied in this

experiment, and the next experiment in section 4.5 Experiment II.

4.4.2 Hypotheses

Referring to subsection 3.2.2 Recognition Mode, the templates in the database will be

file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Database
file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Experiment_II
file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Recognition_Mode

42

processed and identified in Recognition mode and then compared to the user inputs to

obtain a recognition result. Two databases are used in this project, and they have the

same properties, but differ in the writing styles. The database built by one individual

has all the samples in a unified style since it was created by one person. However, the

database of templates made by the population has ten different styles of writing each

character from ten individuals. As a result, the following hypotheses arose:

Hypothesis 1: The more templates the database includes for matching algorithm, the

higher the program recognition accuracy will be;

Hypothesis 2: There is an optimal sample size for each Teeline character, so that the

recognition accuracy remains nearly constant even when the sample size for each

character increases past that number in the database;

Hypothesis 3: The source of the templates in the database will not significantly affect

the optimal sample size.

In order to verify the above hypotheses, the process of Experiment I is illustrated in

subsection 4.4.3 Methodology.

4.4.3 Methodology

Eleven participants were recruited for Experiment I. In the first part of Experiment I,

the first ten participants were asked to create templates for each Teeline shorthand

file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Method

43

character to build a database; and in the second part of Experiment I, one participant

was recruited as the tester to evaluate the hypotheses mentioned in subsection 4.4.2

Hypotheses.

Ten out of eleven practitioners will independently accomplish the same tasks step by

step as follows:

1. Read through a consent form and sign it if s/he agrees to participate.

2. Fill out the questionnaire (Appendix 3).

3. Review the Teeline shorthand alphabet as in Figure 2.9 (the alphabet was

reproduced in a large-sized font, and attached to the wall or placed on the

participant’s table as desires)

4. Practice drawing Teeline gestures using Leap Motion controller to get familiar

with the LM’s sensing area and the program’s running process.

5. Draw one Teeline character at each time, which the conductor will save to the new

database (Database 2); only one sample is needed from each person for each

character. Once all 27 Teeline shorthand symbols have been completed and saved,

the participant will have completed Experiment I.

In the first part, five females and five males were recruited to be the first ten

participants to build Database 2. They had diverse academic backgrounds including

file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Hypothesis

44

Economics, Business Administration, Computational Science, Biomedical Biology,

Chemical Engineering, Mining Engineering, Zoology and Ecology. All of the

participants’ English skills were good enough to successfully carry out the tasks of the

experiment. The ages of the participants ranged from 16 to 25, with the exception of

one participant, whose age range was 31 to 45. All of the participants were

right-handed, and none of them previously knew or had used any form of shorthand.

The other data collected from their questionnaires has been summarized in Table 4.1

below.

45

Table 4.1 Data Collected from Questionnaires

CATEGORY

ID

NUMBER

EXPERIENCE

WITH VIDEO

GAMES

(PER DAY)

EXPERIENCE

WITH

TOUCHED

GESTURE

INTERFACES

EXPERIENCE

WITH

MOTION

CONTROL

DEVICES

EXPERIENCE

WITH LEAP

MOTION

CONTROL

1 3-5hrs. Yes
Few times a

year
None

2 Less than 1 hr. Yes None None

3 1-3 hrs. Yes
Few times a

year
Several times

4 None No None None

5 None Yes
Few times a

year
None

6 3-5 hrs. Yes None None

7 None Yes
Few times a

year
None

8 Less than 1 hr. Yes
Few times a

year
None

9 None Yes
Few times a

year
None

10 None Yes
Few times a

year
None

All of the information collected from Question 10 to Question 13 in the

questionnaires is listed above. The first column of the table represents the

participant’s ID, which was given based on the order in which they took part in the

experiment, while the other columns represents their answers for specific questions.

In Experiment I, the records of all ten participants were used as the templates in

Database 2 rather than as test samples. Therefore, the information provided in the

second column, which details each participant’s experience playing video games

46

(Question 10), is not particularly relevant and will not be referred to within this

subsection. After observing the data, the answers that were provided for Questions 11

to 13 were quite similar across participants. The answers provided regarding

participants’ experience with motion control devices, which were “few times a year”

and “no experience”, both mean that they had very little experience in this aspect. It

can then be concluded that those individuals who built Database 2 have all had prior

experience carrying out gestures on a touch-screen device, although they are novices

to shorthand and motion control products, specifically, the Leap Motion controller.

From now on, this research will regard Database 1 having been built by an

experienced user (in both two aspects including manipulating motion control product

and using shorthand), whereas Database 2 will be considered to have been created by

novice users.

The new database (Database 2) had the same total number of samples as the older

database (Database 1). The eleventh participant in Experiment I was recruited to test

the performance of the program using the different databases. The tester was asked to

do the following tasks:

1. Read through a consent form and sign it if s/he agrees to participate.

2. Fill out the questionnaire (Appendix 3).

3. Review the Teeline shorthand alphabet as in Figure 2.9.

47

4. Practice drawing Teeline gestures using the Leap Motion controller to get familiar

with the LM’s sensing area and the program’s running process.

5. Draw each Teeline character ten times; the record will be saved by the conductor.

In the second part, the eleventh participant was independent of any of the templates in

the two existing databases. In other words, no sample created by the participator was

in any of the two databases. The questionnaire reveals that the eleventh participant has

had no prior experience with Teeline shorthand or the Leap Motion controller.

Once the tester finished all 27 characters, there were 270 test samples in the records.

The recognition accuracies of the program using each of the databases were evaluated

as shown in Figure 4.1.

Figure 4.1 Evaluation Process in Experiment I

Initial Database 1, Database 2

Ten Records for a Teeline character

Recognizing using templates using Database 1

Recognizing using templates using Database 2

Recognition Result 1

Recognition Result 2

Move to next character

All 27 characters recognized, add one sample for each

character using Databases 1 and Database 2

48

As seen in Figure 4.1, the 27 Teeline characters are recognized separately. The two

initial databases include only one template for each character, that is, 27 samples in

total in each database at first. The initial databases were used to recognized 10 test

samples for each Teeline shorthand character done by the eleventh participant from ‘a’

to ‘z’ plus ‘space’. The recognition results were recorded and the accuracies are

obtained. Then one more sample is added for each Teeline character using Database 1

and Database 2 respectively (a total 54 samples in each database), and the recognition

process above is repeated. These final recognition accuracies are obtained until there

are 10 samples for each character in the two databases, and the loop was ended.

Following this procedure, the recognition accuracies of each Teeline shorthand

characters at various database sample sizes (from 27 to 270) using two different

databases are recorded. The results will be addressed in next subsection.

4.4.4 Results

The test samples that were drawn by the eleventh participant in Experiment I were

recognized using Database 1 and Database 2 with a gradually increasing number of

template gestures included. The recognition accuracies are listed in Table 4.2 and

Table 4.3.

49

Table 4.2 Variation in Recognition Accuracy with Increasing Sample Size using Database 1

Sample

Size

Character

1 2 3 4 5 6 7 8 9 10

A 50% 50% 50% 60% 60% 100% 100% 100% 100% 100%

B 80% 80% 70% 60% 70% 80% 80% 90% 90% 90%

C 0% 0% 20% 70% 90% 80% 80% 90% 90% 80%

D 10% 40% 70% 80% 90% 90% 90% 100% 100% 100%

E 40% 40% 80% 90% 80% 80% 90% 90% 90% 100%

F 20% 20% 50% 60% 80% 90% 90% 90% 90% 90%

G 90% 90% 100% 100% 100% 100% 100% 100% 100% 100%

H 100% 80% 90% 90% 90% 100% 100% 100% 100% 80%

I 90% 100% 90% 100% 100% 100% 100% 100% 100% 100%

J 70% 90% 90% 100% 100% 100% 100% 100% 100% 100%

K 100% 90% 40% 20% 40% 50% 30% 20% 80% 90%

L 100% 100% 100% 100% 90% 100% 100% 100% 100% 100%

M 0% 40% 30% 20% 40% 40% 100% 100% 100% 100%

N 80% 80% 90% 90% 90% 90% 100% 100% 100% 100%

O 40% 70% 70% 80% 80% 80% 80% 80% 80% 80%

P 90% 90% 100% 90% 90% 90% 90% 90% 90% 90%

Q 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

R 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

S 70% 80% 90% 100% 100% 100% 100% 100% 100% 100%

T 60% 60% 60% 60% 60% 60% 60% 60% 60% 60%

U 90% 100% 100% 100% 100% 100% 100% 100% 100% 90%

V 20% 70% 40% 70% 90% 100% 100% 100% 100% 100%

W 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

X 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Y 100% 80% 90% 90% 90% 90% 90% 90% 90% 90%

Z 60% 60% 50% 70% 80% 90% 90% 90% 90% 90%

Space 100% 70% 90% 90% 90% 100% 100% 100% 100% 100%

50

Table 4.3 Variation in Recognition Accuracy with Increasing Sample Size using Database 2

Sample Size

Character
1 2 3 4 5 6 7 8 9 10

A 50% 60% 70% 70% 70% 70% 70% 70% 70% 100%

B 50% 70% 80% 80% 80% 80% 90% 80% 80% 70%

C 60% 70% 80% 80% 80% 90% 90% 100% 100% 100%

D 20% 70% 100% 90% 90% 100% 100% 90% 90% 90%

E 60% 70% 70% 70% 70% 80% 80% 80% 80% 80%

F 80% 80% 90% 90% 90% 90% 90% 90% 90% 90%

G 0% 40% 20% 80% 50% 50% 50% 50% 60% 70%

H 10% 10% 30% 70% 100% 100% 100% 100% 100% 100%

I 50% 100% 90% 90% 100% 100% 100% 100% 100% 100%

J 0% 100% 100% 100% 100% 100% 100% 100% 100% 100%

K 0% 50% 80% 100% 100% 100% 100% 100% 100% 100%

L 50% 30% 70% 100% 100% 100% 100% 100% 90% 90%

M 40% 50% 80% 90% 100% 100% 100% 100% 100% 100%

N 60% 50% 100% 90% 100% 100% 100% 100% 100% 100%

O 50% 70% 60% 50% 60% 70% 70% 80% 80% 80%

P 70% 80% 30% 60% 40% 10% 80% 80% 90% 90%

Q 100% 100% 100% 90% 90% 90% 90% 100% 100% 100%

R 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

S 60% 60% 60% 60% 70% 100% 100% 100% 100% 100%

T 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

U 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

V 90% 90% 90% 100% 100% 100% 100% 100% 100% 100%

W 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

X 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Y 70% 70% 70% 70% 100% 90% 100% 100% 100% 100%

Z 10% 10% 20% 20% 20% 50% 50% 60% 70% 70%

Space 100% 100% 90% 80% 90% 90% 90% 90% 90% 90%

The first columns in Table 4.2 and Table 4.3 list all of the 27 characters in the Teeline

shorthand alphabet, and the first rows of the tables represent the number of templates

for each character in the two databases. For example, the “1” represents that there was

51

only one sample for each Teeline character using Database 1 and Database 2,

respectively, while the “10” represents that there were ten templates for each Teeline

character in each of the two databases. Since there were ten test samples generated by

Participant 11 for each Teeline character, the recognition accuracy for each character

at each sample size is calculated by the following equation:

𝐴𝑐𝑐 = (the number of the correctly recognized test samples 10⁄) × 100%.

In order to verify the hypotheses in subsection 4.4.2 Hypotheses, and examine the true

nature of the relationship between the recognition accuracies and the sample size for

each character, the data in Table 4.2 and Table 4.3 were imported to SPSS to be

analyzed. The scatter plots are displayed in Figure 4.2 and Figure 4.3.

Figure 4.2 Variation in recognition accuracy with increasing number of templates

using Database 1

file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Hypothesis

52

Figure 4.3 Variation in recognition accuracy with increasing number of templates

using Database 2

Since the shapes of the points in the two figures above are similar to ellipses, the

relationship between the recognition accuracies and the sample sizes for each Teeline

shorthand character is linear, and the linear relation between them will be further

confirmed and discussed in Chapter 5.

4.5 Experiment II

4.5.1 Objective

The aim of the second experiment is to test the recognition accuracy of the program.

As previously mentioned, accuracy is the most significant property of a hand

53

recognition program; it is the crucial factor in evaluating the utility, and usability of a

product. The two databases applied in Experiment I will be used in this experiment as

well. To test the recognition accuracies for all the characters in the database, a

pangram is an ideal choice for this study. Experiment II will use the 35-letter pangram:

“The quick brown fox jumps over the lazy dog”.

4.5.2 Hypotheses

In this second test, one sentence in Teeline shorthand is recognized using two

databases. The databases were already introduced in section 4.4 Experiment I. Based

on the fact that Database 1 and Database 2 have the same properties except for the

sample source, the hypotheses are made as follows.

Hypothesis 1: The recognition accuracies have no significant difference between

different sourced databases used in the program.

Hypothesis 2: It is consistent when comparing the program’s performance (overall

recognition accuracies) for users in different groups

4.5.3 Methodology

For Experiment II, 30 participants were recruited. Each participant was asked to write

the pangram in the Teeline shorthand alphabet once. The gestures drawn by each

participant were recorded and recognized using Database 1 and Database 2

respectively. For this experiment, a laptop was placed on the table, with a keyboard

file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Experiment_I

54

and a Leap Motion Controller attached to it; all were placed in front of the

participants. Participants were seated at the table and had the Leap Motion Controller

placed directly in front of them. The Teeline shorthand alphabet was either placed on

the table beside the laptop or attached on the wall for participants’ convenience. The

space between words is a separate character, and also need to be drawn as part of the

Teeline alphabet; therefore, participators have a total of 43 Teeline shorthand gestures

to draw to complete the pangram. The tasks that they performed are as follows:

1. Read through a consent form and sign it if s/he agrees to participate.

2. Fill out the questionnaire (Appendix 3).

3. Review the Teeline shorthand alphabet as in Figure 2.9 (the alphabet was

reproduced in a large-sized font, and attached to the wall or placed on the

participant’s table as desires)

4. Practice drawing Teeline gestures using Leap Motion controller to familiarize

themselves with the LM’s sensing area and the program’s running process

5. Write the whole pangram in Teeline shorthand alphabet, drawing one character at

a time from the beginning to the end.

All 30 participants were randomly selected, and they came from sixteen different

programs including Biomedical Biology, Computational Science, Economics, Health

Promotion, Philosophy, Science Communication, and Mathematics, and others. There

55

were 27 right-handed participants involved in this research, while the other three

tended to use their left hand more frequently when carrying out tasks. All of the

participators had no prior knowledge about shorthand, as well as no experience with

the Leap Motion Controller. Other information collected from questionnaires for all

participants were illustrated from Figure 4.4 to Figure 4.7.

Figure 4.4 Age distribution of participants

56

Figure 4.5 Gender of participants

Figure 4.6 Participants’ Experience Playing Video Games

57

Figure 4.7 Participants’ Experience Interacting with Motion Control Devices

It can be concluded from observing the above charts that there were an equal number

of female and male participants. Ten participants were aged between 16 to 20, sixteen

participants were aged between 21 to 25, three participants were aged between 26 and

30 and one participant is aged between 26 and 30. Out of the participants, twelve had

never played video games, nine played video games for a maximum of one hour per

day on average, six averagely spent one to three hours on video games per day, while

three participants claimed to play video games for longer than three hours each day on

average (two of them played three to five hours and one took over five hours to play

each day on average). With regard to their experience with motion control devices, 22

out of the 30 participants had previously tried motion control devices (17 participants

played them several times a year, 4 participants played on a monthly basis, and 1

58

participant played weekly); however, the other 8 participants had no prior experience

with motion control products.

All characters from the participants were recorded and saved by the conductor, and

those records were recognized using the two databases. The recognition results from

Experiment II will be addressed in next subsection.

4.5.4 Results

After utilizing the two databases to recognize those test samples in Experiment II, the

overall recognition accuracy (including the “Space” character) for each participant’s

test samples is listed in Table 4.4.

59

Table 4.4 Overall Recognition Accuracy for Each Participant’s Record

Participant’s

ID

Recognition Acc. Using

Database 1

Recognition Acc. Using

Database 2 1 83.72% 83.72%

2 58.14% 76.74%

3 90.70% 93.02%

4 72.09% 69.77%

5 67.44% 72.09%

6 72.09% 79.07%

7 72.09% 65.12%

8 90.70% 86.05%

9 83.72% 74.42%

10 81.40% 74.42%

11 69.77% 69.77%

12 86.05% 67.44%

13 97.67% 95.35%

14 86.05% 79.07%

15 93.02% 79.07%

16 86.05% 76.74%

17 95.35% 86.05%

18 93.02% 93.02%

19 88.37% 67.44%

20 95.35% 90.70%

21 90.70% 90.70%

22 90.70% 90.70%

23 76.74% 65.12%

24 72.09% 60.47%

25 79.07% 67.44%

26 83.72% 65.12%

27 90.70% 83.72%

28 97.67% 90.70%

29 83.72% 88.37%

30 90.70% 88.37%

60

The recognition accuracies in Table 4.4 describe the overall recognition accuracies for

the pangram (including the character “Space”). The total number of characters in the

pangram is 43; therefore, the accuracy is calculated by a formula:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑡 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑡ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

=
𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑡 𝑟𝑒𝑐𝑜𝑔𝑛𝑖𝑧𝑒𝑑 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

43

It is evident from observing the results that the recognition accuracies are not

consistent across Database 1 and Database 2 for the 30 records collected from 30

different participants. Using Database 1, the recognition accuracy for the given

pangram was as low as 58.14% and as high as 97.67%. However, using Database 2,

the lowest recognition accuracy was 60.47% and the highest was 95.35%. It is

difficult to determine from examining these numbers which database performs more

efficiently with regards to the overall recognition accuracy. Therefore, a frequency

analysis was carried out in SPSS in order to further evaluate the data.

61

Table 4.5 Frequency Analysis for Overall Recognition Accuracies

Statistics

Overall

recognition

accuracies using

Database 1

Overall

recognition

accuracies using

Database 2

N
Valid 30 30

Missing 0 0

Mean 83.9535% 78.992%

Std. Deviation 9.98592% 10.37309%

Skewness -.748 -.074

Std. Error of Skewness .427 .427

Overall recognition accuracies using Database 1

 Frequency Percent Valid Percent Cumulative

Percent

Valid

58.1395% 1 3.3 3.3 3.3

67.4419% 1 3.3 3.3 6.7

69.7674% 1 3.3 3.3 10.0

72.0930% 4 13.3 13.3 23.3

76.7442% 1 3.3 3.3 26.7

79.0698% 1 3.3 3.3 30.0

81.3953% 1 3.3 3.3 33.3

83.7209% 4 13.3 13.3 46.7

86.0465% 3 10.0 10.0 56.7

88.3721% 1 3.3 3.3 60.0

90.6977% 6 20.0 20.0 80.0

93.0233% 2 6.7 6.7 86.7

95.3488% 2 6.7 6.7 93.3

97.6744% 2 6.7 6.7 100.0

Total 30 100.0 100.0

Overall recognition accuracies using Database 2

 Frequency Percent Valid Percent Cumulative

Percent

Valid 60.4651% 1 3.3 3.3 3.3

62

65.1163% 3 10.0 10.0 13.3

67.4419% 3 10.0 10.0 23.3

69.7674% 2 6.7 6.7 30.0

72.0930% 1 3.3 3.3 33.3

74.4186% 2 6.7 6.7 40.0

76.7442% 2 6.7 6.7 46.7

79.0689% 2 6.7 6.7 53.3

79.0698% 1 3.3 3.3 56.7

83.7209% 2 6.7 6.7 63.3

86.0465% 2 6.7 6.7 70.0

88.3721% 2 6.7 6.7 76.7

90.6977% 4 13.3 13.3 90.0

93.0233% 2 6.7 6.7 96.7

95.3488% 1 3.3 3.3 100.0

Total 30 100.0 100.0

Figure 4.8 Histogram of Recognition Accuracies using Database 1

63

Figure 4.9 Histogram of Recognition Accuracies using Database 2

Table 4.5 displays the means of the overall pangram recognition accuracies using

Database 1 and Database 2 for Experiment II. The mean of the recognition accuracies

using Database 1 was 83.9535% while the standard deviation was 9.9859%. The

Database 2 which was built by different participants, had a mean recognition accuracy

of 78.95922% and a standard deviation of 10.3731%. There was indeed a difference

between the means in the two databases. It is worth mentioning that the “skewness” of

each database indicates the position where several recognition accuracies had the

same values. Both the recognition accuracies for Database 1 and Database 2 contain

negative skewness, suggesting that the majority of the recognition results tend to

produce a higher level of recognition accuracy than mean while the recognition

accuracies are claimed to be “negatively skewed”. A positive skewness, although did

64

not shown in this case, reveals that the majority of the recognition results tend to

produce a low accuracy while the recognition accuracies are said to be “positively

skewed”. The skewed distributions in the two databases can be observed in Figure 4.8

and Figure 4.9. The histogram of the distribution of recognition accuracies using

Database 1 reveals a negatively skewed distribution. With regard to Database 2, it is

important to note that the absolute value of the skewness is quite small even though it

is negative as well. The histogram of the distribution of recognition accuracies using

Database 2 also shows a skewed distribution. Further discussion on the overall

recognition accuracies using the two databases will be undertaken in Chapter 5.

65

Chapter 5

Discussion

5.1 Discussion in Experiment I

It is important to note that if the recognition accuracy is related to the number of

templates included in database, then a change in the sample size would tend to be

accompanied by a change in the recognition accuracy. Since there are circumstances

in which statistical measurement can be highly misleading [52], a scatter plot is

always employed before finding the correlation coefficient. Referring to Figure 4.2

and Figure 4.3 in subsection 4.4.4 Results, it is obvious that there is a linear

relationship between these two variables using the two databases, a Pearson

coefficient would be suitable for calculating the overall strength of the relationship.

The Pearson correlation coefficient is a commonly-used parameter for evaluating the

strength and direction of the relationship between two variables that are linearly

related to one another. The value of the Pearson correlation coefficient ranges from -1

to +1. A coefficient of -1 indicates a perfectly inverse relationship; a coefficient of +1

indicates a perfectly positive relationship; and a coefficient of 0 indicates that there is

no linear relationship between the variables.

66

The results of bivariate correlate analysis that have been obtained from employing

SPSS are presented in Table 1 and Table 2 in Appendix D. It is important to note that

the type of measure of correlation that has been applied here is the Pearson

product-moment correlation coefficient (𝑟𝑥𝑦), which is commonly used to describe the

linear relationship between two quantitative variables [53]. The correlation coefficient

of two variables 𝑋 and 𝑌 is 𝑟𝑥𝑦 =
𝐶𝑜𝑣𝑥𝑦

𝑆𝐷𝑥𝑆𝐷𝑦
 [53].

Where: 𝐶𝑜𝑣𝑥𝑦 =
∑(𝑋−𝑋̅)(𝑌−𝑌̅)

𝑁−1
 or

∑ 𝑥𝑦

𝑁−1

 𝑥 = (𝑋 − 𝑋̅) 𝑎𝑛𝑑 𝑦 = (𝑌 − 𝑌̅)

 𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 𝑜𝑓 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠

 𝑆𝐷𝑥 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑋)

 𝑆𝐷𝑦 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑐𝑜𝑛𝑑 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 (𝑌)

After observing the results (see Table 1 in Appendix D), it is evident that with regard

to the majority of the Teeline characters, there is a strong positive relationship

between the recognition accuracies and the sample size using Database 1. The

correlation coefficient could be as high as 0.906, which is statistically significant at

the 0.01 level. Considering the Teeline characters “K”, “P” and “Y”, the relationship

between the recognition accuracies and the sample sizes is inverted using Database 1.

However, the absolute values of the correlation coefficients are 0.13, 0.29 and 0.078

respectively, which are not significant. In addition, no linear relationship can be found

67

between the two variables for five of the Teeline characters, “Q”, “R”, “T”, “W” and

“X”. After examining the data in Table 5.2, it is evident that the recognition accuracies

for these characters are constant and do not change in relation to sample size. The

Pearson correlation coefficient between the recognition accuracy and the sample size

of “U” is 0, thereby suggesting that the two variables could be related in a curvilinear

manner.

There is an inverse relationship between the recognition accuracy and the sample size

for the Teeline characters “Space” using Database 2 (see Table 2 in Appendix D). The

correlation coefficient is -0.420. Although the absolute value of the correlation

coefficient for the character “Space” is larger than those for characters “K”, “P” and

“Y”, it is evident from observing Table 4.3 that the recognition accuracies are

significantly higher for this character in contrast to others. The Pearson correlation

coefficient between the recognition accuracy and the sample size of “Q” is 0, which

suggests that the two variables could be related in a curvilinear relationship. In

addition, the recognition accuracies are maintained at 100% for the four characters

“R”, “T”, “U”, “W” and “X”, regardless of sample size. However, with respect to the

other 20 Teeline shorthand characters, the recognition accuracies are indeed

proportional to the sample size.

68

To conclude, for six Teeline characters “Q”, “R”, “T”, “U”, “W” and “X”, there is no

linear relationships found between the recognition accuracies and the sample size in

both databases. Based on the results in Table 1 and Table 2, the recognition accuracies

for these Teeline characters are either constant or less volatile, which are not affected

by the sample size in database. Therefore, the relationships between the recognition

accuracies and the sample size in database for Teeline characters “Q”, “R”, “T”, “U”,

“W” and “X” are not effective to reject the Hypothesis 1 in subsection 4.4.2

Hypotheses. Even though some inverse relationships are found, the Pearson

correlation coefficients are not statistical significant to prove that the recognition

accuracy is inversely proportional to the sample size for each Teeline character using

the two databases. However, there are positive relationships between the recognition

accuracies and the sample size in database for the rest eighteen and twenty Teeline

characters in two tables; it is evident that in general, the changes that occur in

recognition accuracy are directly related to changes in sample size in the two

databases. The hypothesis 1 in subsection 4.4.2 Hypotheses is true for both databases.

Please refer to subsection 4.4.4 Results for the various recognition accuracies

associated with changes in sample size in two of the databases (the results for

Database 1 are shown in Table 4.2, while the results for Database 2 are presented in

Table 4.3). It is apparent that for every character in each of the two databases, there

69

exists a value for the sample size that results in the recognition accuracies remaining

unchanged. In other words, the recognition accuracy for a Teeline character can reach

its maximum value when a specific sample size is reached. In this case, the specific

sample size is referred to as the optimal sample size for this Teeline shorthand

character. The optimal sample size for recognizing each character of the Teeline

alphabet using Database 1 and Database 2 are summarized in Table 5.1 and Table 5.2.

Table 5.1 Optimal Sample Size for Each Character using Database 1

A B C D E F G H I

6 8 10 8 10 6 3 10 4

J K L M N O P Q R

4 10 6 7 7 4 4 1 1

S T U V W X Y Z Space

4 1 10 6 1 1 3 6 6

Table 5.2 Optimal Sample Size for Each Character using Database 2

A B C D E F G H I

10 10 8 8 6 3 9 5 5

J K L M N O P Q R

2 4 4 5 5 8 9 8 1

S T U V W X Y Z Space

6 1 1 4 1 1 7 9 5

70

According to the tables above, each Teeline character has its own optimal sample size

to achieve the highest recognition accuracies. Hypothesis 2 (an optimal sample size of

the sample size for each Teeline character exists so that the recognition accuracy

remains constant) has therefore been proven to be correct in the cases of both

databases.

Based on the previous discussion, there is an optimal sample size for each character in

the two databases. However, an overall optimal sample size is required in order to

verify Hypothesis 3. A representative for all the optimal sample sizes for all Teeline

characters is an efficient way for verifying whether or not the optimal sample sizes of

two databases are significantly different. SPSS was applied to analyze the frequencies

of the optimal sample sizes in Table 5.1 and Table 5.2, as shown above. Database 1

and Database 2 are regarded as two variables in this analysis, and the central

tendencies are chosen as the Mean, Median and Mode. The output is presented in

Table 5.3.

71

Table 5.3 Frequency of Optimal Sample Size

Statistics

 Database1 Database2

N
Valid 27 27

Missing 27 27

Mean 5.44 5.37

Median 6.00 5.00

Mode 6 1
a

a. Multiple modes exist. The smallest value is

shown

It is important to refer back to what was previously mentioned in last chapter, in that

the sources of the templates in the two databases are different; for example, Database

1 was built by an experienced user while Database 2 was built by novices. After

observing Table 5.3, it can be concluded that one of the central tendencies using

Database 1 and Database 2 can be represented as being the optimal sample size for all

characters associated with the two databases. With regard to Database 1, the mean

value of the optimal sample sizes was 5.44, the median was 6 and the mode was also

6. Therefore, the representative for all the optimal sample sizes for all Teeline

characters in Database 1 is 6. In addition, with regard to Database 2, the mean value

of the optimal sample sizes is 5.37, the median is 5 and the mode is 1 and 5. Even if

there are multiple modes existed, the mean and median can be taken as the

representative. Therefore, the optimal sample size for all of the Teeline characters

presented in the Database 2 is 5.

72

It is evident that the optimal sample sizes for the two databases differ from one

another. In order to determine if the means of these two optimal sample sizes differ to

a statistically significant degree, a T test was carried out in SPSS. Since the test

sample for Database 1 and Database 2 is the same one, the Paired-Samples T test was

selected.

The Paired-Samples T test consists of a set of mathematical procedures that yields a

numerical value, which is referred to as 𝑡𝑜𝑏𝑡 in this particular case. The larger the

absolute value of 𝑡𝑜𝑏𝑡, the more likely it is to reflect a statistically significant

difference between the two groups compared [53]. The formula for the T test with

regard to the dependent (matched) samples can be utilized with samples of equal and

unequal sizes:

𝑡𝑜𝑏𝑡 =
𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅

√𝑆𝑋1̅̅̅̅
2 + 𝑆𝑋2̅̅̅̅

2 − 2𝑟12𝑆𝑋1̅̅̅̅ 𝑆𝑋2̅̅̅̅

𝑊ℎ𝑒𝑟𝑒: 𝑋1
̅̅ ̅, 𝑋2

̅̅ ̅ are the means of the two measurements

𝑆𝑋1̅̅̅̅ 𝑆𝑋2̅̅̅̅ are the standard errors of the means (
𝑆𝐷

√𝑁
)

𝑟12 is the correlation between the two measurements

Determining which sample mean is subtracted from the other is entirely subjective. In

this case, the direction of the difference is unimportant, the T test is nondirectional

and the absolute value of 𝑡𝑜𝑏𝑡 was employed.

73

The result reveals the relationship between the two paired variables (see Table 3 in

Appendix D). The Pearson correlation coefficient is 0.29 and 𝑝 = 0.251. Since

𝑝 > 0.05, the two variables are not significantly related. The 𝑑𝑓 is defined as

“degrees of freedom” which in this particular case is 26 (see Table 3 in Appendix D).

The Paired-Samples T test revealed that the mean difference between the two paired

variables is 0.074, 𝑡(26) = 1.102 and 𝑝 = 0.919. The 95% confidence interval on

the difference was [−1.414, 1.562], which includes the value of zero. Since

𝑝 > 0.05, it can be concluded that there are no significant differences between the

means of the two related samples (the means of the optimal sample sizes using

Database 1 and Database 2). Therefore, a database built by an experienced user of

using motion control devices and Teeline shorthand had a similar mean value of the

optimal sample size as a database built by novices to motion control devices and

shorthand. Hypothesis 3 has been proven to be correct.

5.2 Discussion in Experiment II

Even if the means of the recognition accuracies in the two databases are objectively

different based on Table 4 (see Appendix D), they cannot be used to decide whether

the differences are statistically significant. A paired-samples T test was conducted to

compare the two recognition accuracy means in this case.

74

The means of the recognition accuracies using Database 1 and Database 2 are 83.9535%

and 78.9922%, respectively (see Table 4 in Appendix D). The standard deviations in

the two databases are 9.9859% and 10.3731%, respectively. The table of Paired

Samples Correlations shows that the Pearson correlation coefficient between the

means of the two databases is 0.668 (𝑝 = 0.000). Due to the fact that 𝑝 < 0.05, the

two means are significantly statistically related. A Paired Samples T test proves that

the mean difference between the two paired variables is 4.9613% and the standard

deviation of paired differences is 8.3008%. In addition, the results indicate a

significant relationship beyond the 0.05 level: 𝑡(29) = 3.274 and 𝑝 = 0.003

(2-tailed) which is smaller than 0.05. The 95% confidence interval on the difference is

[1.8617%, 8.0609%], which does not include the value of zero. Therefore, it can be

concluded that Hypothesis 1 in subsection 4.5.2 is false. According to the above

statistical results, the means of the recognition accuracies contain significant

differences between Database 1 and Database 2, which were built by an experienced

user and novices. Specifically, the overall recognition accuracy for this specific

pangram is higher when using a database built by an experienced user with two

aspects including using motion control devices and Teeline shorthand rather than

novices.

It was revealed in the previous section that the program had better performance when

file:///C:/Users/Weikai/Desktop/Applying%20Teeline%20Shorthand%20Using%20Leap%20Motion%20Controller(3).docx%23_Hypothesis_1

75

Database 1 was utilized in Experiment II. Moreover, other information collected from

the questionnaires filled by the participants in Experiment II were already illustrated

in subsection 4.5.3 Methodology. Discussion of further findings based on the

classified user groups will be clarified in this part, and Hypothesis 2 in subsection

4.5.2 will be analyzed here as well.

1. Differences in program’s performance based on users’ age ranges

In the previous discussion, the Paired-Samples T test was applied in SPSS in order to

compare the two means of the optimal sample sizes in two databases. However, after

observing Figure 4.4, the independent variables, which are related to this case, have to

be divided into more than two groups. The T test is not suited here. The analysis of

variance (ANOVA), which is used for testing when the independent variable contains

more than two groups, will be employed here instead of the T test.

The objective of ANOVA is to test for statistical significance of the differences

between the means of two or more groups [53]. The test determines the variance

between groups, and compares it with the variance within groups. The most important

step in carrying out an ANOVA is to compute the variance of the total number of

subjects in the study: 𝑠𝑇
2 =

∑(𝑋−𝑋𝑇̅̅ ̅̅)2

𝑁𝑇−1
. ∑(𝑋 − 𝑋𝑇

̅̅̅̅)2 is called the “total sum of squares”

and is represented by 𝑆𝑆𝑇, since it’s calculated across the total values of each subject,

regardless of the group in which the subject is. 𝑁𝑇 is the total number of subjects in

76

all groups. In detail, the 𝑆𝑆𝑇 can be broken down into two parts: 𝑆𝑆𝑇 = 𝑆𝑆𝑊 + 𝑆𝑆𝐵.

In this equation, 𝑆𝑆𝑊 is the sum of squares within groups, which shows the degree of

variability within groups; 𝑆𝑆𝐵 is the sum of square between groups, which reflects

differences between groups [53]. The total degrees of freedom is equal to 𝑁𝑇 − 1,

and can be divided to the degrees of freedom within all the groups and the number of

groups minus 1. The 𝑆𝑆𝑊 and 𝑆𝑆𝐵 are calculated by the following formulas in an

ANOVA:

𝑆𝑆𝑊 = ∑ ∑ 𝑋2 − ∑
(∑ 𝑋)2

𝑁

𝑆𝑆𝐵 = ∑
(∑ 𝑋)2

𝑁
−

(∑ 𝑋𝑇)2

𝑁𝑇

𝑤ℎ𝑒𝑟𝑒 𝑁 is the number of participants in each group

∑ 𝑋𝑇 is the total value for all groups

Dividing 𝑆𝑆𝑊 by the degrees of freedom within all groups gives a measure of the

variability within groups, called the mean square within, represented by 𝑀𝑆𝑊.

Dividing 𝑆𝑆𝐵 by the number of groups minus 1 gives a measure of the variability

between groups, called the mean square between, represented by 𝑀𝑆𝐵. When

comparing if the between-group differences are significantly greater than they would

be by chance, the ratio of a mean square between groups to a mean square within

groups is given by 𝐹𝑜𝑏𝑡 =
𝑀𝑆𝐵

𝑀𝑆𝑊
. The obt subscript means that it will be compared with

a critical value to test how likely it is that the event represented by 𝐹𝑜𝑏𝑡 could have

happened by chance.

77

In order to discover whether or not there are significant differences between the

recognition accuracies obtained by the participants in each of the age groups, an

ANOVA was conducted on each of the two databases. Since there is only one

independent variable in each test, the One-Way ANOVA seems to be appropriate. In

this case, the participants’ age range was selected as the independent variable.

The ANOVA tables (see Table 5 in Appendix D) show the results of the overall

analysis of variance, including between groups, within groups, as well as the total sum

of squares, degrees of freedom and mean squares. The F-ratios for the analysis using

the two databases are 0.337 and 0.793, respectively, with the probabilities of 0.799

and 0.509 using Database 1 and Database 2. Both probabilities exceed the

requirement of a probability to be less than 0.05 in order to be statistically significant;

therefore, the participants who were in different age ranges obtained similar mean

accuracies. Therefore, the program has consistently performance for users in different

age groups.

2. Differences in program’s performance based on users’ gender

The pie chart in Figure 4.5 displays that there were equal numbers of male and female

participants in Experiment II (15 participants of each gender). In this section, a T test

was applied to examine whether or not there are significant differences between

78

recognition accuracies of males’ and females’ test samples within the two databases.

Since the overall recognition accuracies of males’ and females’ test samples are two

pairs of independent variables, the Independent-Samples T test in SPSS had been

selected.

It is important to note that the Independent-Sample T test in this case is different from

the previous Paired-Sample T test. The t-value of the Independent-Samples T test is

calculated using the following formula [53]:

𝑡𝑜𝑏𝑡 =
𝑋1
̅̅ ̅ − 𝑋2

̅̅ ̅

√[
𝑆𝐷1

2(𝑛1 − 1) + 𝑆𝐷2
2(𝑛2 − 1)

𝑛1 + 𝑛2 − 2] (
1

𝑛1
+

1
𝑛2

)

𝑤ℎ𝑒𝑟𝑒: 𝑡𝑜𝑏𝑡 is the t-value calculated based on the data

𝑋1
̅̅ ̅, 𝑋2

̅̅ ̅ are means in the two groups of data

𝑛1, 𝑛2 are the number of participants in two groups

𝑆𝐷1
2, 𝑆𝐷2

2 are variances in the two groups of data

When the direction of the difference is unimportant such as the cases in this paper, the

Independent-Samples T test is nondirectional and the absolute value of 𝑡𝑜𝑏𝑡 is used.

Depending on whether or not the two groups of data have similar variances for the

dependent variables, there are two different methods for computing the t-value in

SPSS [54]. With regard to the Independent-Samples T test in SPSS, it adopts Levene’s

79

Test for Equality of Variances in order to determine if the two groups of the

independent variable have about the same or different amounts of variability between

values. The Levene’s Tests yield probabilities of 0.131 and 0.277, respectively (see

Appendix D: Table 6 and Table 7). Since the two possibilities are greater than 0.05,

the results suggested that the difference between the variances of the recognition

accuracies of males’ and females’ test samples using Database 1 and Database 2 are

not significant. Therefore, the Independent-Samples T test in SPSS computed the

t-value based on the assumption that the variances of the recognition accuracies of

male’s and females’ test samples using two databases are equal, and the results

corresponding to the row “Equal variances assumed” in Independent Samples Test

tables are valid in this case. In Table 6 in Appendix D, the result is a 𝑡(28) = −0.89

and has a probability of 𝑝 = 0.381 (two-tailed). As this is greater than 0.05, it can be

concluded that the program has similar overall recognition accuracies for both males’

and females’ test samples when employing Database 1. In Table 7 in Appendix D, the

result is a 𝑡(28) = −0.525 with a probability of 𝑝 = 0.603 (two-tailed). As this is

also greater than 0.05, it can be concluded that there is no significant difference

between the overall recognition accuracies for the test samples of males and females

when employing Database 2. To summarize, there are no significant differences in

statistics in the program’s performance when it is used by users with different gender.

3. Differences in program’s performance based on users’ handedness

80

It was stated in subsection 4.4.3 Methodology that all of the participants who built the

templates for Database 2 were right-handed. This therefore raises the question of

whether the program has same performance for right-handed users and left-handed

users or not. To answer such a question, the differences between the means of overall

recognition accuracies for the two groups (right-handed participants and left-handed

participants) requires further investigation.

In total, 30 participants were involved in Experiment II. According to the

questionnaire results, three of the participants claimed to use their left hands more

frequently while the others used their right hands more often. Since the overall

recognition accuracies for the two groups are independent from each other, along with

the fact that the Independent-Samples T test can be applied when two groups have

different sample sizes, it was selected to analyze the above question on the two

databases separately.

As the results shown (see Table 8 and Table 9 in Appendix D), the Levene’s Tests for

Equality of Variances yield probabilities of 0.365 and 0.209, respectively; due to the

fact that they are both greater than 0.05, they suggest that the variances of the

recognition accuracies of two groups’ test samples are not significantly different from

one another using the two databases while the Independent-Samples T test should be

81

applied based on the assumption of equal variances. In Table 8, the result is a

𝑡(28) = 0.461 and has a probability of 𝑝 = 0.648 (two-tailed). As this is greater

than 0.05, it can be concluded that the program has similar overall recognition

accuracies for both left-handed and right-handed users when employing Database 1.

In Table 9, the result is a 𝑡(28) = 0.390 with a probability of 𝑝 = 0.700

(two-tailed). As this is also greater than 0.05, it can be concluded that the program has

similar overall recognition accuracies for left-handed and right-handed users when

employing Database 2. To summarize, there are no statistically significant differences

in the program’s performance when it is used by left-handed and right-handed users.

In addition, there are no significant differences found between the recognition

accuracies for users with different experience with video games and motion control

devices using two databases (Appendix E). Therefore, the program’s performance is

consistent when used by users in different groups (groups in different age ranges,

gender, handedness, experience with video games and motion control devices).

Hypothesis 2 in subsection 4.5.2 Hypotheses was proven to be correct.

82

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Hand gesture recognition is a novel technique in Human-Computer Interaction (HCI).

It has become an important aspect of HCI since gesture recognition is an efficient

method to carry out control features without the usage of a keyboard, and will be a

new trend in the future of user interfaces [55]. The Leap Motion (LM) controller is

part of a new generation of motion control products, which provides a new method for

users to interact with the computers. By using motion control sensors like LM, the

interactive program can collect motion data in a fast, easy and accurate way, which

provides a novel goal and direction in the development of interactive software and the

research in pattern recognition in the coming decades. This paper applied a kind of

abbreviated symbolic writing called Teeline shorthand, utilized the hand tracking

function of the Leap Motion controller, and developed a hand gesture recognition

program used for interpreting users’ 3D Teeline gestures into English words.

The program in this project applied a template matching method called Dynamic Time

Warping (DTW) to implement the recognition capability. There were two modes built

83

in this program: Recognition mode (RM) and Edit mode (EM). The RM is the main

function performed by the program, in which users drew Teeline shorthand gestures

using their fingers or hands, and those gestures were recognized as English letters,

words and sentences by the program. The EM resulted from the idea of building a

flexible application where users are allowed to create their own gesture commands in

this mode. It was designed so that end-users have access to database and enlarge their

gesture vocabulary.

In order to test the program’s performance, specifically the recognition accuracy, a

series of experiments were conducted using two different databases. One database

was built by an experienced user of using motion control devices and Teeline

shorthand, and the other database was built by novices. All the other properties of the

two databases were the same. The experiment results were analyzed in SPSS using

different means, such as T test and ANOVA, and the analysis revealed the following

findings:

 The recognition accuracy of the program has a direct relationship with the sample

size in the database to some extent, and there are optimal sample sizes for each

Teeline characters in two databases at which further increases in sample size

doesn’t leas to big increases in recognition accuracy.

 The program showed better performance when using Database 1 than using

84

Database 2; therefore, a database built by experienced users would be more

appropriate for the program to achieve high recognition accuracy.

 The program’s recognition accuracy is uniform for users in different age ranges,

gender, handedness and experience with video games and motion control devices.

To summarize, the hand gesture recognition program based on the DTW algorithm in

this paper shows consistent performance almost at all times, in cases of using different

databases and facing various user communities. It can be successfully applied in

interpreting Teeline shorthand gestures into English language.

6.2 Future work

Although the recognition program in this paper reaches the basic requirements of the

project, there are still some aspects of the program that need to be improved. The

primary improvements will focus on the following aspects:

 Improving the recognition algorithm to pursue better accuracy

The recognition algorithm in this paper is based on DTW since it is an

appropriate means in the current situation. However, in a more complex situation

in the future (i.e. recognizing complex gestures rather than Teeline), DTW may

not be sufficient to recognize gestures. Combining DTW with other mainstream

algorithms, such as HMM, would be a better method for gesture recognition.

85

 Adding more gestures to extend the program functions

As can be seen from this paper, the program cannot be completely independent

from keyboard at this moment. The more important objective pursued in this

project is the recognition accuracy of the program; some auxiliary functionalities

were done by using a keyboard instead of gesture inputs in order to reduce the

factors which have effects on accuracy. In the future, the author will work on

adding specific gestures to auxiliary functionalities under the requirement of a

high total accuracy and improving the program to one that is not reliant on a

keyboard.

 Updating the means used for collecting motion data with new released Leap

Motion SDK in the future

Even though the Leap Motion Controller has launched in the past few years as a

new technology, the company is always concentrating on better ways to track

movements of hands and fingers. The Leap Motion’s newer motion tracking

technology used in this program, called Leap Motion V2, allows the device to

track subjects that are not directly seen by its sensor, which is a defect in the

original version, called Leap Motion V1 [56]. With different updates of Leap

Motion coming out in the future, there will hopefully be a more accurate way to

track motion data, and achieve better performance.

86

The development of technology keeps changing people’s lives. If motion controlled

interfaces become the new trend of Human-Computer Interaction, there is a

possibility that the mature version of the program discussed in this paper will enter

people’s daily lives and become an essential way of communications between human

and computers.

87

Bibliography

1. Myers, B.A., A brief history of human-computer interaction technology.

interactions, 1998. 5(2): p. 44-54.

2. Sutherland, I.E., Sketch pad a man-machine graphical communication system,

in Proceedings of the SHARE design automation workshop. 1964, ACM. p.

6.329-6.346.

3. English, W.K., D.C. Engelbart, and M.L. Berman, Display-Selection

Techniques for Text Manipulation. IEEE Transactions on Human Factors in

Electronics, 1967. HFE-8(1): p. 5-15.

4. Marchand, A. and T. Hennig-Thurau, Value creation in the video game

industry: Industry economics, consumer benefits, and research opportunities.

Journal of Interactive Marketing, 2013. 27(3): p. 141-157.

5. Xbox One. [cited 2016; Available from:

https://en.wikipedia.org/wiki/Xbox_One.

6. Metz, R. Look Before You Leap Motion. July 22, 2013; Available from:

https://www.technologyreview.com/s/517331/look-before-you-leap-motion/.

7. Srilatha, P. and T. Saranya, Advancements in Gesture Recognition Technology.

IOSR Journal of VLSI and Signal Processing (IOSR-JVSP), 2014. 4(4): p.

1-7.

8. Oka, K., Y. Sato, and H. Koike, Real-time fingertip tracking and gesture

recognition. IEEE Computer Graphics and Applications, 2002. 22(6): p.

64-71.

9. Carmona, J.M. and J. Climent, A Performance Evaluation of HMM and DTW

for Gesture Recognition, in Progress in Pattern Recognition, Image Analysis,

Computer Vision, and Applications: 17th Iberoamerican Congress, CIARP

2012, Buenos Aires, Argentina, September 3-6, 2012. Proceedings, L. Alvarez,

et al., Editors. 2012, Springer Berlin Heidelberg: Berlin, Heidelberg. p.

236-243.

10. Zhichao, Y., et al. Finger-writing-in-the-air system using Kinect sensor. in

Multimedia and Expo Workshops (ICMEW), 2013 IEEE International

Conference on. 2013.

11. Qu, C., Tian, J., Wang, S., & Xu, W., KinWrite: Handwriting-Based

Authentication Using Kinect. 2013.

12. Jambusaria, U., Katwala, N., Kadam, M., & Narula, H., Finger Writing in Air

using Kinect. Utsav Jambusaria et al, / (IJCSIT) International Journal of

Computer Science and Information Technologies, 2014. 5(6): p. 8119-8121.

13. Rajesh Dilip Savatekar , A.A.D., Implementation of Articulated Robot for

Object Dimension Measurement. International Journal of Current Trends in

https://en.wikipedia.org/wiki/Xbox_One
https://www.technologyreview.com/s/517331/look-before-you-leap-motion/

88

Engineering & Research (IJCTER), 26/04/2016. 2(4): p. 112-126.

14. Leap Motion developer API Overview. Available from:

https://developer.leapmotion.com/documentation/v2/cpp/devguide/Leap_Over

view.html#sensor-images.

15. SHIVANGI S NAYAK, V.H.N., Designing a Gesture Based Device to

Recognize Sign Language Using Leap Motion Controller. International Journal

of Innovative Research in Computer

and Communication Engineering, 2016. 4(3): p. 3837-3842.

16. Weichert, F., et al., Analysis of the accuracy and robustness of the leap motion

controller. Sensors (Basel), 2013. 13(5): p. 6380-93.

17. System Architecture — Leap Motion C++ SDK v2.3 documentation. Available

from:

https://developer.leapmotion.com/documentation/v2/cpp/devguide/Leap_Archi

tecture.html.

18. Ager, S. Shorthand. Available from:

http://www.omniglot.com/writing/shorthand.htm.

19. Books, L. and S. Wikipedia, Shorthand Systems: Shorthand, Pitman

Shorthand, Gregg Shorthand, Bezenaek Shorthand, Tironian Notes,

Stiefografie, Dutton Speedwords. 2010: General Books LLC.

20. Shorthand. Available from:

http://www.statemaster.com/encyclopedia/Shorthand.

21. Shorthand. [cited 2016; Available from:

https://www.tititudorancea.net/z/shorthand.htm.

22. Hill, J., Teeline : a method of fast writing. 1968, London: Heinemann

Educational.

23. Quintero, D., et al., Workload Optimized Systems: Tuning POWER7 for

Analytics. 2013: IBM Redbooks.

24. Du Li, K.Y., Research and development on food nutrition statistical analysis

software system. Advance Journal of Food Science and Technology, 2013.

5(12): p. 1637-1640.

25. Benefit of SPSS. 2012 [cited 2016; Available from:

http://benefitof.net/benefits-of-spss/.

26. Prof Kamal K Vyas, A.P., Dr. Sandhya Vyas, Gesture Recognition and Control

Part 1 - Basics, Literature Review & Different Techniques. 2013. 1(7): p.

575-581.

27. Müller, M., Information retrieval for music and motion. Vol. 2. 2007: Springer.

28. Rabiner, L. and B.-H. Juang, Fundamentals of speech recognition. 1993:

Prentice-Hall, Inc. 507.

29. Sakoe, H. and S. Chiba, Dynamic programming algorithm optimization for

spoken word recognition. IEEE transactions on acoustics, speech, and signal

https://developer.leapmotion.com/documentation/v2/cpp/devguide/Leap_Overview.html#sensor-images
https://developer.leapmotion.com/documentation/v2/cpp/devguide/Leap_Overview.html#sensor-images
https://developer.leapmotion.com/documentation/v2/cpp/devguide/Leap_Architecture.html
https://developer.leapmotion.com/documentation/v2/cpp/devguide/Leap_Architecture.html
http://www.omniglot.com/writing/shorthand.htm
http://www.statemaster.com/encyclopedia/Shorthand
https://www.tititudorancea.net/z/shorthand.htm
http://benefitof.net/benefits-of-spss/

89

processing, 1978. 26(1): p. 43-49.

30. Mitoma, H., S. Uchida, and H. Sakoe. Online character recognition using

eigen-deformations. in Frontiers in Handwriting Recognition, 2004. IWFHR-9

2004. Ninth International Workshop on. 2004.

31. Alon, J., V. Athitsos, and S. Sclaroff. Online and offline character recognition

using alignment to prototypes. in Eighth International Conference on

Document Analysis and Recognition (ICDAR'05). 2005. IEEE.

32. Bahlmann, C. and H. Burkhardt, The writer independent online handwriting

recognition system frog on hand and cluster generative statistical dynamic

time warping. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2004. 26(3): p. 299-310.

33. Rath, T.M. and R. Manmatha. Word image matching using dynamic time

warping. in Computer Vision and Pattern Recognition, 2003. Proceedings.

2003 IEEE Computer Society Conference on. 2003. IEEE.

34. Deza, M.M. and E. Deza, Encyclopedia of distances, in Encyclopedia of

Distances. 2009, Springer. p. 1-583.

35. Qiao, Y. and M. Yasuhara, Affine Invariant Dynamic Time Warping and its

Application to Online Rotated Handwriting Recognition, in Proceedings of the

18th International Conference on Pattern Recognition - Volume 02. 2006,

IEEE Computer Society. p. 905-908.

36. zouxy09. 语音信号处理之（一）动态时间规整（DTW）. 2013 [cited 2016;

Available from: http://blog.csdn.net/zouxy09/article/details/9140207.

37. Manjunatha, V. and A. Subramanian, Hand Gesture Recognition from a Single

Training Sample.

38. Bret. App Review: Short Hand by LizzardWerks. 2009 [cited 2016; Available

from:

http://www.appchatter.com/2009/06/app-review-short-hand-by-lizzardwerks/.

39. Nielsen, J., Usability Engineering. 1993: Morgan Kaufmann Publishers Inc.

358.

40. Swain, L., Basic principles of questionnaire design. Survey Methodology,

1985. 11(2): p. 161-170.

41. Crawford, I.M., Marketing research and information systems. 1997: Food &

Agriculture Org.

42. International, B.B. The key principles of effective questionnaire design. 2006

[cited 2016; Available from:

https://www.b2binternational.com/b2b-blog/2006/05/12/the-key-principles-of-

effective-questionnaire-design/.

43. Garcia-Ruiz, M.A., Cases on usability engineering : design and development

of digital products. 2013: p. 65.

http://blog.csdn.net/zouxy09/article/details/9140207
http://www.appchatter.com/2009/06/app-review-short-hand-by-lizzardwerks/
https://www.b2binternational.com/b2b-blog/2006/05/12/the-key-principles-of-effective-questionnaire-design/
https://www.b2binternational.com/b2b-blog/2006/05/12/the-key-principles-of-effective-questionnaire-design/

90

44. Gardner, D. Five helpful principles for questionnaire design. 2012 [cited

2016; Available from:

https://www.visioncritical.com/five-helpful-principles-questionnaire-design/.

45. Anderson, C.A., et al., Violent video game effects on aggression, empathy, and

prosocial behavior in eastern and western countries: a meta-analytic review.

Psychological bulletin, 2010. 136(2): p. 151.

46. Ferguson, C.J., Violent video games and the Supreme Court: lessons for the

scientific community in the wake of Brown v. Entertainment Merchants

Association. American Psychologist, 2013. 68(2): p. 57.

47. Lemola, S., et al., Habitual computer game playing at night is related to

depressive symptoms. Personality and Individual Differences, 2011. 51(2): p.

117-122.

48. Granic, I., A. Lobel, and R.C. Engels, The benefits of playing video games.

American Psychologist, 2014. 69(1): p. 66.

49. Gerling, K., et al., Ageing Playfully: Advancing Research on Games for Older

Adults Beyond Accessibility and Health Benefits, in Proceedings of the 2015

Annual Symposium on Computer-Human Interaction in Play. 2015, ACM:

London, United Kingdom. p. 817-820.

50. Hulley, S.B., et al., Designing clinical research. 2013: Lippincott Williams &

Wilkins.

51. SCHADE, A. Pilot Testing: Getting It Right (Before) the First Time. April 5,

2015 [cited 2016; Available from:

https://www.nngroup.com/articles/pilot-testing/.

52. Gray, C.D. and P.R. Kinnear, IBM SPSS statistics 19 made simple. 2012:

Psychology Press.

53. Kranzler, G., J. Moursund, and J.H. Kranzler, Statistics for the Terrified. 2006:

Prentice-Hall, Inc.

54. Einspruch, E.L., An Introductory Guide to SPSS? for Windows? 2005: Sage.

55. Premaratne, P., Q. Nguyen, and M. Premaratne. Human computer interaction

using hand gestures. in International Conference on Intelligent Computing.

2010. Springer.

56. Buckley, S. Leap Motion's latest motion tracking tech can seee your joints.

2014 [cited 2016; Available from:

https://www.engadget.com/2014/05/28/leap-motions-beta-tracking-tech-can-se

e-your-joints/.

https://www.visioncritical.com/five-helpful-principles-questionnaire-design/
https://www.nngroup.com/articles/pilot-testing/
https://www.engadget.com/2014/05/28/leap-motions-beta-tracking-tech-can-see-your-joints/
https://www.engadget.com/2014/05/28/leap-motions-beta-tracking-tech-can-see-your-joints/

91

Appendix

Appendix A Program source code

LeapMotion_CAS.cpp

// LeapMotion_CAS.cpp: Define the entry of the program for the console

//

#include "stdafx.h"

#include "MyHeader.h"

#include "MyListener.h"

#include "MyKNN.h"

#include <time.h>

static bool isFileExist(string file_name)

{

 string folder = "Database\\";

 string path = folder.append(file_name);

 fstream stream(path);

 if(!stream)

 {

 return false;

 }

 else

 {

 return true;

 }

}

static void FindAllFile(string path,vector<string> &files)

{

 _finddata_t c_file;

 intptr_t hFile;

 hFile=_findfirst(path.append("*.txt").c_str(), &c_file);

 if(hFile == -1)

 return;

92

 do

 {

 if(c_file.attrib&_A_SUBDIR)

 {

 //Ignore it if it is a subfolder

 }

 else

 {

 files.push_back(c_file.name);

 }

 }

 while(_findnext(hFile, &c_file) == 0);

 _findclose(hFile);

}

bool model;

int _tmain(int argc, _TCHAR* argv[])

{

 MyListener m_listener;

 Controller m_controller;

 MyKNN knn;

 SetWindowPos(GetConsoleWindow(), HWND_TOPMOST, 0, 0, 770, 500,

SWP_SHOWWINDOW);

 vector<Mat> records;

 vector<string> result;

 vector<string> filesPathVector;

 // Get a standard I/O handle

 HANDLE hOut = GetStdHandle(STD_OUTPUT_HANDLE);

 HANDLE hIn = GetStdHandle(STD_INPUT_HANDLE);

 DWORD dwRes, dwState=0;

 INPUT_RECORD keyRec;

 char c ;

93

 bool is_reset;

 is_reset = true;

#pragma region Main_Console

 Main_Console:

 {

 if(filesPathVector.size()==0)

 {

 FindAllFile("Database",filesPathVector);

 if(filesPathVector.size() != 0)

 {

 for(int i=0;i<filesPathVector.size();i++)

 {

 string path_name="Database\\";

 string lable;

 for(int j=1;j<filesPathVector[i].length();j++)

 {

 if(filesPathVector[i].substr(j,1)>="0"&

filesPathVector[i].substr(j,1)<="9")

 {

 lable = filesPathVector[i].substr(0,j);

 if(lable=="&")

 {

 lable=" ";

 }

 }

 }

knn.AddSampleFromFile(path_name.append(filesPathVector[i]),lable);

 }

 cout<<endl<<filesPathVector.size()<<" samples trained!"<<endl<<endl;

 }// end if

 }

 if(is_reset)

{cout<<"Do you want to change to Edit Mode? Y/N "<<std::endl;}

 while(1)

 {

 is_reset = false;

94

 ReadConsoleInput(hIn, &keyRec, 1, &dwRes);

 if (keyRec.EventType == KEY_EVENT)

 {

 if(keyRec.Event.KeyEvent.bKeyDown)

 {

 c = keyRec.Event.KeyEvent.uChar.AsciiChar;

 switch(c)

 {

 case 'y'|'Y':

 {

 model = true;

 cout<<endl<<"Please press ENTER key to start and then place

one hand above the Leap Motion"<<endl;

 break;

 }

 case 'n'|'N':

 {

 model = false;

 cout<<endl<<"Please press ENTER key to start and then place

one hand above the Leap Motion"<<endl;

 break;

 }

 case 13://ASCII code for Enter key

 {

 m_controller.addListener(m_listener);

 cout<<endl<<"Please only extend your INDEX FINGER and

then press SPACE to record"<<endl;

 break;

 }

 case ' ':

 {

 m_listener.start();

 cout<<endl<<"Please press ESC to stop"<<endl;

 break;

 }

 case 27://ESC key

 {

 m_controller.removeListener(m_listener);

 if(model)

95

 goto Edit;

 else

 goto Record;

 }

 case 9://TAB key

 {

 if(records.size() >0)

 {

 for(int i=0;i<records.size();i++)

 {

 string f="AllRecords\\";

 char number[100];

 sprintf(number,"%02d",i);

 string recordsname="file.txt";

 recordsname=recordsname.substr(0,4)+number+recordsname.substr(4,4);

 string path=f.append(recordsname);

 ofstream outrecords(path,ios::app);

 for (int m=0;m<records[i].rows;m++)

 {

 for (int n=0;n<2;n++)

 {

 outrecords<<records[i].at<double>(m,n)<<' ';

 }

 outrecords<<endl;

 }

 outrecords.close();

 }

 goto Recognise;

 }

 break;

 }

 case 52://4

 {

 if(model)

 {

 goto Save;

96

 }

 }

 case 53://5

 {

 cout<<endl<<"Please input the letter you just recorded (e.g.

A)"<<endl;

 string console_lable;

 cin>>console_lable;

 Mat mat_coordinate =

knn.CoordinateToMatrix(m_listener.vector_fingerlocation);

 knn.InitMatrix(mat_coordinate);

 knn.Train(mat_coordinate, console_lable);

 cout<<endl<<"Please press 4 to save this record"<<endl;

 break;

 }

 case 49://1

 {

 Mat tmp

=knn.CoordinateToMatrix(m_listener.vector_fingerlocation);

 knn.InitMatrix(tmp);

 records.push_back(tmp);

 cout<<endl<<"Record successfully saved!"<<endl;

 cout<<endl<<"Please press ENTER key to start new record, or

press TAB key to recognize"<<endl;

 is_reset = false;

 }

 }//end switch

 }

 }

 }// end Model

 }

#pragma endregion

#pragma region Edit

Edit:

 {

 if(model)

97

 {

 cout<<endl<<"The size of this record is

"<<m_listener.vector_fingerlocation.size()<<endl;

 if(m_listener.vector_fingerlocation.size() >0)

 {

 cout<<endl<<"Please press 4 to save this record, or press 5 to train this record,

or press ENTER key to start new record"<<endl;

 {cout<<"Do you want to change to Edit Mode? Y/N "<<std::endl;}

 }//end if(m_listener.vector_fingerlocation.size() >0)

 }// end if(model)

 goto Main_Console;

 }//end Edit

#pragma endregion

#pragma region Save

Save:

 {

 cout<<endl<<"Please name this record as the following format: Letter.txt"<<endl;

 cout<<endl<<"e.g. I just recorded an 'A',and the file name should be 'A.txt' "<<endl;

 bool isSaveCompleted = false;

 while(!isSaveCompleted)

 {

 string file_name;

 cin>>file_name;

 if(isFileExist(file_name))

 {

 cout<<endl<<"Sorry, the file name already exists, please input a different

one"<<endl;

 }

 else

 {

 m_listener.SaveCoordination(file_name);

 isSaveCompleted = true;

 cout<<endl<<endl;

 }

 }//end while

 cout<<"Do you want to stay in Edit Mode? Y/N "<<endl;

 if (c=='y'|'Y')

98

 {

 c=13;

 goto Main_Console;

 }

 if(c=='n'|'N')

 {

 is_reset=true;

 goto Main_Console;

 }//end if

 }

#pragma endregion

#pragma region Record

Record:

 {

 if(!model)

 {

 cout<<endl<<"The size of this record is

"<<m_listener.vector_fingerlocation.size()<<endl;

 if(m_listener.vector_fingerlocation.size() >0)

 {

 cout<<endl<<"Please press 1 to keep this record or press ENTER key to start

new record"<<endl;

 }

 goto Main_Console;

 }

 }

#pragma endregion

#pragma region Recognise

Recognise:

 {

 int s=0;

 char c2,c3;

 time_t start,stop;

 if(!model)

 {

 cout<<endl<<"The total number of records is "<<records.size()<<endl;

99

 if(records.size() >0)

 {

 cout<<endl<<"Under recognizing....."<<endl;

 start = time(NULL);

 for(int i=0;i<records.size();i++)

 {

 s++;

 string result_tmp = knn.FindNearst(records[i],5);

 result.push_back(result_tmp);

 }

 cout<<"**

************"<<endl;

 cout<<endl<<"The recognition result is:"<<endl<<endl;

 for(int j=0;j<records.size();j++)

 {

 if (j==0)

 {

 string t=result[j];

 if (t[0]>=97&t[0]<=122) //Transfer it to capital if the first letter is

in lower case

 {

 t[0]-=32;

 }

 result[j]=t;

 }//end if

 cout<<result[j];

 }

 cout<<endl<<endl;

 cout<<"**

************"<<endl;

 stop = time(NULL);

 printf("Use Time: %ldseconds\n\n\n",(stop-start));//Display the time used for

recognizing

 }//end if(records.size() >0)

100

 cout<<"Do you want to compare using another database? Y/N"<<std::endl;

 c2=getchar();

 c3=getchar();

 if(c2=='y'|c2=='Y')

 {

 if (s==records.size())

 {

 knn.ClearTrainedSample(s);

 }

 result.clear();

 filesPathVector.clear();

 goto Compare;

 }

 else if(c2=='n'|c2=='N')

 {

 result.clear();

 records.clear();

 is_reset=true;

 goto Main_Console;

 }

 }//end if(!model)

 }

#pragma endregion

#pragma region Compare

Compare:

 {

 int s=0;

 time_t start,stop;

 if(!model)

 {

 FindAllFile("Zrecord",filesPathVector);

 if(filesPathVector.size() != 0)

 {

 for(int i=0;i<filesPathVector.size();i++)

 {

 string path_name="Zrecord\\";

101

 string lable;

 for(int j=1;j<filesPathVector[i].length();j++)

 {

 if(filesPathVector[i].substr(j,1)>="0"&

filesPathVector[i].substr(j,1)<="9")

 {

 lable = filesPathVector[i].substr(0,j);

 if(lable=="&")

 {

 lable=" ";

 }

 }

 }

 knn.AddSampleFromFile(path_name.append(filesPathVector[i]),lable);

 }

 }// end if

 cout<<endl<<"Under recognizing....."<<endl;

 start = time(NULL);

 for(int i=0;i<records.size();i++)

 {

 s++;

 string result_tmp = knn.FindNearst(records[i],5);

 result.push_back(result_tmp);

 }

 cout<<"==

===================="<<endl;

 cout<<endl<<"The recognition result is:"<<endl<<endl;

 for(int j=0;j<records.size();j++)

 {

 if (j==0)

 {

 string t=result[j];

 if (t[0]>=97&t[0]<=122)

 {

 t[0]-=32;

 }

 result[j]=t;

 }//end if

102

 cout<<result[j];

 }

 cout<<endl<<endl;

 cout<<"==

===================="<<endl;

 stop = time(NULL);

 printf("Use Time: %ldseconds\n\n\n",(stop-start));

 }

 if(s==records.size())

 {

 knn.ClearTrainedSample(s);

 }

 filesPathVector.clear();

 result.clear();

 records.clear();

 is_reset=true;

 goto Main_Console;

 }

#pragma endregion

return 0;

}

103

MyKNN.cpp

#include "StdAfx.h"

#include "MyKNN.h"

MyKNN::MyKNN(void)

{

}

MyKNN::~MyKNN(void)

{

}

Mat MyKNN::CoordinateToMatrix(vector<FingerLocation> vector_fingerlocation)

{

 // Converts the set of input coordinates to a matrix

 Mat input_mat(0,2,DataType<double>::type);//Result matrix used to return

 Mat mat(1,2,DataType<double>::type); //Temporary matrix used to save one pair of input

coordinates

 for(int i=0;i< vector_fingerlocation.size();i++)

 {

 mat.at<double>(0,0)=vector_fingerlocation[i].x;

 mat.at<double>(0,1)=vector_fingerlocation[i].y;

 input_mat.push_back(mat);

 }

 mat.release();//Empty the temporary matrix

 return input_mat;

}

void MyKNN::Train(Mat sample,string lable)

{

 //Set a label to each matrix and add it to the trained sample set

 TrainedSample temp;

 sample.copyTo(temp.TrainedSample_Mat);

 temp.TrainedSample_lable=lable;

 vector_trained_sample.push_back(temp);

}

104

string MyKNN::FindNearst(Mat sample,int K)

{

 //Input a matrix and the value for K, then output a string as label

 Mat sample_dist(0,2,DataType<double>::type);// Result matrix used to return after

recognizing, the first element in each row is the number of the template used for comparing, and

the second elements in each row is the result of DTW algorithm

 Mat temp(1,2,DataType<double>::type); //Temporary matrix

 for(int i=0;i<vector_trained_sample.size();i++)

 {

 temp.at<double>(0,0)=i;

 double dist=dtw_OK(vector_trained_sample[i].TrainedSample_Mat,sample);

 temp.at<double>(0,1)=dist;

 sample_dist.push_back(temp);

 }

 if(K>sample_dist.rows)

 cout<<"K比À¨¨样¨´本À?集¡¥合?的Ì?个?数ºy还1大ä¨®，ê?请?修T改?K的Ì?值

¦Ì"<<endl;

 BubleSort(sample_dist,K);//Bubble sort for K times

 temp.release();

 vector<VoteVector> vector_lable; //Save the voting result

 vector_lable.clear(); //Empty the voting result before begin a new vote

 if(vector_lable.size() != 0)

 {

 cout<<"vector_lable is not empty"<<endl<<endl;

 }

 else

 {

 for(int j=0;j<K;j++)

 {

 bool isFinded=false; //A flag used to identify a label is already existed in the set of

voting result

 int ID=sample_dist.at<double>(j,0);

 for(int count=0;count<vector_lable.size();count++)

 {

 if(vector_lable[count].lable ==

vector_trained_sample[ID].TrainedSample_lable)

105

 {

 vector_lable[count].vote++;

 isFinded = true;//Set flag to true is there is the same label in the voting

result

 }

 }//end for int count

 if(!isFinded)

 { //Add the label to the voting result if there is no same label in the result

 VoteVector tempVote;

 tempVote.lable=vector_trained_sample[ID].TrainedSample_lable;

 tempVote.vote=1;

 vector_lable.push_back(tempVote);

 }

 }//end for int j

 }

 //Voting process is ended, return the vote label which has the maximum number of votes

 int result=0; //Return the first label in case of any exceptions

 for(int i=1;i<vector_lable.size();i++)

 {

 if(vector_lable[i].vote>vector_lable[result].vote)

 result=i;

 }

 return vector_lable[result].lable;

}

void MyKNN::InitMatrix(Mat mat)

{

 //Initial the matrix, subtract each column by the minimum value of this column

 double max_value1,max_value2;

 double min_value1,min_value2;

 cv::minMaxIdx(mat.col(0),&min_value1, &max_value1);

 cv::minMaxIdx(mat.col(1),&min_value2, &max_value2);

 Mat min_mat1(mat.rows,1,DataType<double>::type,min_value1);

 cv::subtract(mat.col(0),min_mat1,mat.col(0));

 Mat min_mat2(mat.rows,1,DataType<double>::type,min_value2);

 cv::subtract(mat.col(1),min_mat2,mat.col(1));

 min_mat1.release();

106

 min_mat2.release();

}

void MyKNN::AddSampleFromFile(string file_name,string lable)

{

 // Read coordinates in the files and train them

 Mat mat=ReadMatrixFromFile(file_name);

 InitMatrix(mat);

 Train(mat, lable);

}

Mat MyKNN::ReadMatrixFromFile(string filename)

{

 //Convert the coordinates in a file to a matrix

 Mat mat(0,2, DataType<double>::type);

 Mat mat_temp(1,2, DataType<double>::type);

 ifstream stream_in; //Input file

 stream_in.open(filename,ios::in);

 if(stream_in.is_open())

 {

 while(!stream_in.eof())

 {

 double x,y;

 stream_in>>x;

 stream_in>>y;

 if(x != NULL && y != NULL)

 {

 mat_temp.at<double>(0,0)=x;

 mat_temp.at<double>(0,1)=y;

 mat.push_back(mat_temp);

 }

 }

 }

 else

 cout<<endl<<endl<<"文?件t不?存ä?在¨²，ê?请?检¨¬查¨¦"<<endl<<endl;

 stream_in.close();

107

 mat_temp.release();

 return mat;

}

void MyKNN::BubleSort(Mat mat,int K)

{

 //Bubble sort for K times

 if(K > mat.rows)

 return;

 Mat temp_row(1,2,DataType<double>::type);

 for(int i=0;i<K;i++)

 {

 mat.row(i).copyTo(temp_row);//Record the start position of each Bubble sort

 for(int ptr=i;ptr < mat.rows;ptr++)

 {

 if(mat.at<double>(ptr,1) < temp_row.at<double>(0,1))

 {

 mat.row(ptr).copyTo(temp_row);

 mat.row(i).copyTo(mat.row(ptr));

 temp_row.copyTo(mat.row(i));

 }

 }

 }

 temp_row.release();

}

double MyKNN::dtw_OK(Mat A,Mat B)

{

 //Compute the similarity of two matrixes using Euclidean distance

 Mat d(A.rows,B.rows,DataType<double>::type);//Save the Euclidean distance of each pair of

coordinates

 for(int i=0;i<d.rows;i++)

 {

 for(int j=0;j<d.cols;j++)

 {

 *d.ptr<double>(i,j)=dist(*A.ptr<double>(i,0),*A.ptr<double>(i,1),*B.ptr<double>(j,0),*B.pt

r<double>(j,1));

 }

108

 }

 Mat D=Mat::zeros(d.rows,d.cols,DataType<double>::type);//Save the DTW distance

between each pair of points

 *D.ptr<double>(0,0)=*d.ptr<double>(0,0);

 for(int i=1;i<D.rows;i++)

 {

 *D.ptr<double>(i,0)=*d.ptr<double>(i,0)+*D.ptr<double>(i-1,0);

 }

 for(int j=1;j<D.cols;j++)

 {

 *D.ptr<double>(0,j)=*d.ptr<double>(0,j)+*D.ptr<double>(0,j-1);

 }

 for(int m=1;m<D.rows;m++)

 {

 for(int n=1;n<D.cols;n++)

 {

 double temp_min = *D.ptr<double>(m-1,n-1);

 if(*D.ptr<double>(m,n-1)< temp_min)

 {

 temp_min=*(D.ptr<double>(m,n-1));

 }

 if(*D.ptr<double>(m-1,n) < temp_min)

 {

 temp_min =*D.ptr<double>(m-1,n);

 }

 *D.ptr<double>(m,n) = *d.ptr<double>(m,n)+temp_min;

 }

 }

 double Dist=D.at<double>(D.rows-1,D.cols-1);

 return Dist;//Dist is used to represent the similarity of two samples, the smaller the value, the

more similar the samples

}

double MyKNN::dist(double x1,double y1,double x2,double y2)

{

 //Compute the Euclidean distance between two coordinates

109

 return sqrt(pow(x1-x2,2) + pow(y1-y2,2));

}

void MyKNN::ClearTrainedSample(int s)

{

 vector_trained_sample.clear();

}

110

MyListener.cpp

#include "StdAfx.h"

#include "MyListener.h"

MyListener::MyListener(void)

{

 img=Mat(400,600,CV_8UC1,cv::Scalar(255));//Set the size of the image to 400 by 600

}

MyListener::~MyListener(void)

{

 Listener::~Listener();

}

void MyListener::start()

{

 flag=true;

}

void MyListener::onInit(const Controller& controller)

{

 this->vector_fingerlocation.clear();//Clear the Display Window

 img.setTo(cv::Scalar(255)); //Set the Display Window to white color

 flag=false;

}

void MyListener::onFrame(const Controller& controller)

{

 const Frame frame = controller.frame();

 FingerList fingers = frame.fingers();

 if(!fingers.isEmpty())

 {

 Finger finger;

 bool isFind_extendedFinger=false;

 if(!isFind_extendedFinger)

 {for(int i=0;i<fingers.count();i++)

 {

111

 if(fingers[i].isExtended() & fingers[i].type() == Finger::TYPE_INDEX)

 {//Tracking the movements of the fingertip of Index finger

 finger=fingers[i];

 i=fingers.count()+4;//End the loop

 isFind_extendedFinger=true;

 }

 }

 }

 if(isFind_extendedFinger)

 {

 FingerLocation finger_location;

 finger_location.x = finger.tipPosition().x;

 finger_location.y = finger.tipPosition().y;

 int i=0;

 int j=0;

 i=finger.tipPosition().x+300;//Modify the value of x to fit the X-axis of Display

Window

 j=finger.tipPosition().y;

 if(j >= 400)

 j=399;

 if(i >=600)

 i=599;

 cv::circle(img,Point(i,400-j-1),2.5,cv::Scalar(0,0,0),2,8,0);

 cv::namedWindow("LeapMotion");

 cv::moveWindow("LeapMotion",800,50);

 imshow("LeapMotion",img);

 waitKey(1);

 if(flag == true)

 {

 vector_fingerlocation.push_back(finger_location);

 }else

 {

 img.setTo(cv::Scalar(255));

 cv::line(img,Point(0,200),Point(599,200),cv::Scalar(0,0,0),2,8,0);

 }

 }

112

 else

 {

 cout<<endl<<"There is no extended finger."<<endl;

 }

 }

 else

 {

 cout<<endl<<"No finger found."<<endl;

 }

}

void MyListener::SaveCoordination(string fileName)

{

 // Save each coordinates to a file

 string folder = "Database\\";

 string path = folder.append(fileName);

 ofstream stream(path,ios::app);

 for(int i=0;i<vector_fingerlocation.size();i++)

 {

 stream<<vector_fingerlocation[i].x<<" "

 <<vector_fingerlocation[i].y<<"\n";

 }

}

113

stdafx.cpp

// stdafx.cpp : source file that includes just the standard includes

// LeapMotion_CAS.pch will be the pre-compiled header

// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// TODO: reference any additional headers you need in STADFA.H

// and not in this file

114

VoteVector.cpp

#include "stdafx.h"

#include "MyHeader.h"

VoteVector::VoteVector()

{

 vote=0; // Default value of vote is zero

}

115

MyHeader.h

#pragma once

#include "stdafx.h"

#include <opencv2\core\core.hpp>

#include <opencv.hpp>

#include <fstream>

#include "Leap.h"

#include <io.h>

#include <Windows.h>

#include <WinUser.h>

#include <math.h>

using namespace Leap;

using namespace cv;

using namespace std;

//Trained sample structure

struct TrainedSample

{

 cv::Mat TrainedSample_Mat; //Coordinate matrix for each template

 string TrainedSample_lable; //Label for each template

};

//Test sample structure

typedef struct FingerLocation

{

 float x;

 float y;

};

//Vote result structure

typedef struct VoteVector

{

 VoteVector(); //Constructor, the default value of vote is set to 0 in VoteVectoe.cpp

 string lable;//Label

 int vote; //Votes

};

116

MyKNN.h

#pragma once

#include "MyHeader.h"

class MyKNN

{

public:

 MyKNN(void);

 ~MyKNN(void);

 vector<TrainedSample> vector_trained_sample; //Store the set of the trained sample

 Mat CoordinateToMatrix(vector<FingerLocation> vector_fingerlocation); //Convert a set

of coordinates to a matrix

 void Train(Mat sample,string lable); //Store Initial matrix and its label into

vector_trained_sample

 string FindNearst(Mat sample,int K); //Find similar template and return its label

 void InitMatrix(Mat mat); //Initial matrix

 void AddSampleFromFile(string filename,string lable); //Read coordinates from files and add

them to the set of samples

 Mat ReadMatrixFromFile(string filename);//Read coordinates from files

 void BubleSort(Mat mat,int K);//Using bubble sort for two matrixes for K times

 double dtw_OK(Mat A,Mat B); //Compute the similarity of two matrixes

 double dist(double x1,double y1,double x2,double y2);//Calculate the Euclidean distance of a

pair of coordinates

 void ClearTrainedSample(int s);

};

117

MyListener.h

#pragma once

#include "MyHeader.h"

class MyListener : public Listener

{

public:

 MyListener(void);

 ~MyListener(void);

 bool flag;//Flag to identify whether start to record or not

 void start();//Start to record

 Mat img; // Display the movements on Display Window

 vector<FingerLocation> vector_fingerlocation;//Save the coordinates of each record

 void SaveCoordination(string fileName); // Save coordinates to a file

 virtual void onInit(const Controller&);

 virtual void onFrame(const Controller&);

};

118

stdafx.h

// stdafx.h : include file for standard system include files,

// or project specific include files that are used frequently,

// but are changed infrequently

#pragma once

#include "targetver.h"

#include <stdio.h>

#include <tchar.h>

// TODO: reference additional headers your program requires here

119

targetver.h

#pragma once

// Including SDKDDKVer.h defines the highest available Windows platform.

// If you wish to build your application for a previous Windows platform, include WinSDKVer.h

and

// set the _WIN32_WINNT macro to the platform you wish to support before including

SDKDDKVer.h.

#include <SDKDDKVer.h>

120

Appendix B Approval letter of research

application

121

Appendix C Questionnaire template in

experiments

122

- - For administrative use only --

Participant’s ID：______________ Date: ________________

Questionnaire

With this questionnaire, I would like to get to know some background information

about you. The information will be helpful for my analyses after you complete the

experiment. This questionnaire consists of 13 questions. None of them will involve

your privacy or be used to identify you. All the information that I collect from this

questionnaire will be kept securely in a password protected USB flash drive, and will

be digitally shredded once the research is finished. It is important that you answer

these questions truthfully. If you don’t understand a certain question, please do not

hesitate to ask me.

Thank you very much for your cooperation!

123

1. Can you read in English? □ Yes □ No

2. Can you understand English? □ Yes □ No

3. What is your program?

_________________________________ (□ undergraduate/□ graduate)

4. What is your age range?

□ 16-20 □ 21-25 □ 26-30 □ 31-35

□ 36-40 □ 41-45 □ 46-50 □ 51+

5. What is your gender:

□ Male □ Female □ Prefer not to disclose

6. What is your mother tongue?

□ English □ French □ Arabic □ Hindi □ Japanese

□ Mandarin/Cantonese □ Korean □ Other, please specify:___________

7. Which hand do you use more frequently in writing?

□ Right hand □ Left hand

8. Have you used shorthand before? □ No □ Yes

If “Yes”, please specify which form you have used:

□ Pitman □ Gregg □ Teeline □ Other:____________

9. Did you know about Teeline shorthand before participating this experiment?

□ No □ Yes

If “Yes”, how much did you know about Teeline shorthand?

□ A little bit (“I heard of it before”)

124

□ Very well (“I can read and write Teeline shorthand”)

10. Do you play video games?

□ Yes □ No

 If “Yes”, how many hours do you play a day on average?

 □ Less than 1 hour □ 1 hr.-3 hr. □ 3 hr.-5 hr. □ More than 5 hours

11. Are you familiar with any touchscreen gesture-based user interface (e.g. screen

pattern lock, zooming in or out using gestures)?

□ Yes □ No

12. Have you tried any motion control products (e.g. Nintendo Wii, Kinect)?

□ Yes □No

If “Yes”, how often do you interact with your motion control product?

□ Daily □ Weekly □ Monthly □ Few times a year

13. Have you heard about Leap Motion controller?

□ No □ Yes

If “Yes”, do you have experience in interacting with Leap Motion controller?

□ Not at all □Only one or two times □ Several times □ Many times

This is the end of this questionnaire.

Thank you again for your cooperation!

125

Appendix D Statistical analysis results

Table 1 Correlations Between Recognition Accuracy and Sample Size using Database 1

Correlations

 SampleSize A B C D E F

SampleSize

Pearson Correlation 1 .906
**
 .609 .837

**
 .867

**
 .822

**
 .899

**

Sig. (2-tailed) .000 .062 .003 .001 .004 .000

N 10 10 10 10 10 10 10

 SampleSize G H I J K L

SampleSize

Pearson Correlation 1 .696
*
 .111 .609 .736

*
 -.130 .058

Sig. (2-tailed) .025 .759 .062 .015 .720 .873

N 10 10 10 10 10 10 10

 SampleSize M N O P Q R

SampleSize

Pearson Correlation 1 .901
**
 .930

**
 .696

*
 -.290 .

c
 .

c

Sig. (2-tailed) .000 .000 .025 .416 . .

N 10 10 10 10 10 10 10

 SampleSize S T U V W X

SampleSize

Pearson Correlation 1 .785
**
 .

c
 .000 .846

**
 .

c
 .

c

Sig. (2-tailed) .007 . 1.000 .002 . .

N 10 10 10 10 10 10 10

 SampleSize Y Z Space

SampleSize

Pearson Correlation 1 -.078 .878
**
 .570

Sig. (2-tailed) .831 .001 .086

N 10 10 10 10

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

c. Cannot be computed because at least one of the variables is constant.

126

Table 2 Correlations between Recognition Accuracy and Sample Size using Database 2

Correlations

 SampleSize A B C D E F

SampleSize

Pearson Correlation 1 .765
**
 .478 .962

**
 .578 .892

**
 .696

*

Sig. (2-tailed) .000 .062 .006 .158 .905 .031

N 10 10 10 10 10 10 10

 SampleSize G H I J K L

SampleSize

Pearson Correlation 1 .659
*
 .870

**
 .621 .522 .743

*
 .684

*

Sig. (2-tailed) .028 .034 .401 .416 .137 .002

N 10 10 10 10 10 10 10

 SampleSize M N O P Q R

SampleSize

Pearson Correlation 1 .824
**
 .720

**
 .807

**
 .354 .000 .

c

Sig. (2-tailed) .090 .007 .052 .469 .631 .

N 10 10 10 10 10 10 10

 SampleSize S T U V W X

SampleSize

Pearson Correlation 1 .897
**
 .

c
 .

c
 .798

**
 .

c
 .

c

Sig. (2-tailed) .009 . .122 .086 . .

N 10 10 10 10 10 10 10

 SampleSize Y Z Space

SampleSize

Pearson Correlation 1 .872
**
 .962

**
 -.420

Sig. (2-tailed) .001 .000 .554

N 10 10 10 10

**. Correlation is significant at the 0.01 level (2-tailed).

*. Correlation is significant at the 0.05 level (2-tailed).

c. Cannot be computed because at least one of the variables is constant.

127

Table 3 Paired-Samples T test for Optimal Sample Size

Paired Samples Correlations

N Correlation Sig.

Pair 1 Database1 & Database2 27 .229 .251

Paired Samples Test

Paired Differences

Mean Std. Deviation Std. Error Mean 95% Confidence

Interval of the

Difference

Lower

Pair 1 Database1 - Database2 .074 3.761 .724 -1.414

Paired Samples Test

Paired Differences t df Sig. (2-tailed)

95% Confidence

Interval of the

Difference

Upper

Pair 1 Database1 - Database2 1.562 0.102 26 .919

128

Table 4 Paired-Samples T test for Overall Recognition Accuracies in Two Databases

Paired Samples Statistics

 Mean N Std. Deviation Std. Error Mean

Pair 1

Overall recognition

accuracies using Database 1

83.9535% 30 9.98592% 1.82317%

Overall recognition

accuracies using Database 2

78.9922% 30 10.37309% 1.89386%

Paired Samples Correlations

 N Correlation Sig.

Pair 1

Overall recognition

accuracies using Database 1

& Overall recognition

accuracies using Database 2

30 .668 .000

Paired Samples Test

 Paired Differences

Mean Std. Deviation Std. Error Mean 95% Confidence

Interval of the

Difference

Lower

Pair 1

Overall recognition

accuracies using Database 1

- Overall recognition

accuracies using Database 2

4.96129% 8.30084% 1.51552% 1.86170%

Paired Samples Test

 Paired Differences t df Sig. (2-tailed)

95% Confidence

Interval of the

Difference

Upper

Pair 1

Overall recognition accuracies

using Database 1 - Overall

recognition accuracies using

Database 2

8.06087% 3.274 29 .003

129

Table 5 One-Way ANOVA for Different Age Groups Users using Database 1 and

Database 2

ANOVA

Overall recognition accuracies using Database 1

 Sum of Squares df Mean Square F Sig.

Between Groups 108.145 3 36.048 .337 .799

Within Groups 2783.693 26 107.065

Total 2891.838 29

ANOVA

Overall recognition accuracies using Database 2

 Sum of Squares df Mean Square F Sig.

Between Groups 261.568 3 87.189 .793 .509

Within Groups 2858.859 26 109.956

Total 3120.426 29

130

Table 6 Independent-Sample T test for males’ and females’ test samples using Database 1

Independent Samples Test

 Levene's Test for Equality of

Variances

t-test for

Equality of

Means

F Sig. t

Overall recognition

accuracies using Database 1

Equal variances assumed 2.419 .131 -.890

Equal variances not

assumed

 -.890

Independent Samples Test

 t-test for Equality of Means

df Sig. (2-tailed) Mean Difference

Overall recognition

accuracies using Database 1

Equal variances assumed 28 .381 -3.25582%

Equal variances not assumed 24.788 .382 -3.25582%

Independent Samples Test

 t-test for Equality of Means

Std. Error

Difference

95% Confidence

Interval of the

Difference

Lower

Overall recognition accuracies

using Database 1

Equal variances assumed 3.65952% -10.75200%

Equal variances not assumed 3.65952% -10.79602%

Independent Samples Test

 t-test for Equality of

Means

95% Confidence

Interval of the

Difference

Upper

Overall recognition accuracies using

Database 1

Equal variances assumed 4.24036%

Equal variances not assumed 4.28438%

131

Table 7 Independent-Sample T test for males’ and females’ test samples using Database 2

Independent Samples Test

 Levene's Test for Equality of

Variances

t-test for

Equality of

Means

F Sig. t

Overall recognition

accuracies using Database 2

Equal variances assumed 1.229 .277 -.525

Equal variances not

assumed

 -.525

Independent Samples Test

 t-test for Equality of Means

df Sig. (2-tailed) Mean Difference

Overall recognition

accuracies using Database 2

Equal variances assumed 28 .603 -2.01539%

Equal variances not assumed 27.693 .603 -2.01539%

Independent Samples Test

 t-test for Equality of Means

Std. Error

Difference

95% Confidence

Interval of the

Difference

Lower

Overall recognition accuracies

using Database 2

Equal variances assumed 3.83590% -9.87287%

Equal variances not assumed 3.83590% -9.87680%

Independent Samples Test

 t-test for Equality of

Means

95% Confidence

Interval of the

Difference

Upper

Overall recognition accuracies using

Database 2

Equal variances assumed 5.84209%

Equal variances not assumed 5.84601%

132

Table 8 Independent-Samples T test for right-handed and left-handed participants’ test samples

using Database 1

Independent Samples Test

 Levene's Test for Equality of

Variances

t-test for

Equality of

Means

F Sig. t

Overall recognition

accuracies using Database 1

Equal variances assumed .848 .365 .461

Equal variances not

assumed

 .331

Independent Samples Test

 t-test for Equality of Means

df Sig. (2-tailed) Mean Difference

Overall recognition

accuracies using Database 1

Equal variances assumed 28 .648 2.84239%

Equal variances not assumed 2.203 .770 2.84239%

Independent Samples Test

 t-test for Equality of Means

Std. Error

Difference

95% Confidence

Interval of the

Difference

Lower

Overall recognition accuracies

using Database 1

Equal variances assumed 6.16144% -9.77874%

Equal variances not assumed 8.59044% -31.04101%

Independent Samples Test

 t-test for Equality of

Means

95% Confidence

Interval of the

Difference

Upper

Overall recognition accuracies using

Database 1

Equal variances assumed 15.46352%

Equal variances not assumed 36.72578%

133

Table 9 Independent-Samples T test for right-handed and left-handed participants’ test samples

using Database 2

Independent Samples Test

 Levene's Test for Equality of

Variances

t-test for

Equality of

Means

F Sig. t

Overall recognition

accuracies using Database 2

Equal variances assumed 1.656 .209 .390

Equal variances not

assumed

 .260

Independent Samples Test

 t-test for Equality of Means

df Sig. (2-tailed) Mean Difference

Overall recognition

accuracies using Database 2

Equal variances assumed 28 .700 2.49781%

Equal variances not assumed 2.169 .817 2.49781%

Independent Samples Test

 t-test for Equality of Means

Std. Error

Difference

95% Confidence

Interval of the

Difference

Lower

Overall recognition accuracies

using Database 2

Equal variances assumed 6.40723% -10.62681%

Equal variances not assumed 9.59176% -35.83636%

Independent Samples Test

 t-test for Equality of

Means

95% Confidence

Interval of the

Difference

Upper

Overall recognition accuracies using

Database 2

Equal variances assumed 15.62244%

Equal variances not assumed 40.83198%

134

Appendix E Additional findings in program’s

performance for different user groups

Difference in recognition accuracies based on users’ experience with

video games

In order to discover if the participants with different experience playing video games

obtained similar overall recognition accuracies, an ANOVA was conducted on each of

the two databases. In this case, the participants’ experience playing video games was

selected as the independent variable. The analysis results using Database 1 and

Database 2 are illustrated in Table 10.

Table 10 One-Way ANOVA for User’s Video Game Experience

Descriptives

 N Mean Std. Deviation Std. Error

Overall recognition

accuracies using Database 1

0 hour 12 84.8837% 8.67325% 2.50375%

Less than 1 hour 9 86.0465% 8.22218% 2.74073%

1-3hrs. 6 82.5581% 11.08011% 4.52344%

2-5hrs. 2 86.0465% 13.15544% 9.30230%

More than 5 hours 1 58.1395% . .

Total 30 83.9535% 9.98592% 1.82317%

Overall recognition

accuracies using Database 2

0 hour 12 77.7131% 10.88349% 3.14179%

Less than 1 hour 9 80.1033% 10.97659% 3.65886%

1-3hrs. 6 80.6202% 9.71936% 3.96791%

2-5hrs. 2 77.9070% 18.08878% 12.79070%

More than 5 hours 1 76.7442% . .

Total 30 78.9922% 10.37309% 1.89386%

Descriptives

 95% Confidence Interval for Mean Minimum

135

Lower Bound Upper Bound

Overall recognition accuracies

using Database 1

0 hour 79.3730% 90.3944% 72.09%

Less than 1 hour 79.7264% 92.3666% 69.77%

1-3hrs. 70.9303% 94.1860% 67.44%

2-5hrs. -32.1504% 204.2434% 76.74%

More than 5 hours . . 58.14%

Total 80.2247% 87.6823% 58.14%

Overall recognition accuracies

using Database 2

0 hour 70.7981% 84.6282% 60.47%

Less than 1 hour 71.6659% 88.5406% 67.44%

1-3hrs. 70.4203% 90.8200% 69.77%

2-5hrs. -84.6143% 240.4283% 65.12%

More than 5 hours . . 76.74%

Total 75.1188% 82.8656% 60.47%

Descriptives

 Maximum

Overall recognition accuracies using Database 1

0 hour 97.67%

Less than 1 hour 97.67%

1-3hrs. 95.35%

2-5hrs. 95.35%

More than 5 hours 58.14%

Total 97.67%

Overall recognition accuracies using Database 2

0 hour 90.70%

Less than 1 hour 95.35%

1-3hrs. 93.02%

2-5hrs. 90.70%

More than 5 hours 76.74%

Total 95.35%

ANOVA

 Sum of Squares df Mean Square F

Overall recognition

accuracies using Database 1

Between Groups 736.616 4 184.154 2.136

Within Groups 2155.222 25 86.209

Total 2891.838 29

Overall recognition

accuracies using Database 2

Between Groups 54.053 4 13.513 .110

Within Groups 3066.373 25 122.655

136

Total 3120.426 29

ANOVA

 Sig.

Overall recognition accuracies using Database 1

Between Groups .106

Within Groups

Total

Overall recognition accuracies using Database 2

Between Groups .978

Within Groups

Total

The ANOVA table above shows the results of the overall analysis of variance,

including between groups, within groups, as well as the total sum of squares, degrees

of freedom and mean squares. The F-ratios for the analysis using the two databases

are 2.136 and 0.110, respectively, with the probabilities of 0.106 and 0.978 when

using Database 1 and Database 2. Both of these probabilities are greater than 0.05;

therefore, the participants with various experience playing video games obtained

similar mean accuracies. In conclusion, the program has consistent performance for

users who have various experience levels playing video games.

Difference in recognition accuracies based on users’ experience with

motion control devices

The ANOVA applied in this part took participants’ experience using motion control

devices as the independent variable. The analysis results using Database 1 and

Database 2 are presented in Table 11.

Table 11 One-Way ANOVA for User’s Motion Control Devices Experience

Descriptives

137

 N Mean Std. Deviation Std. Error

Overall recognition

accuracies using Database 1

No 8 79.0698% 12.24289% 4.32851%

Weekly 1 76.7442% . .

Monthly 4 88.9535% 5.15664% 2.57832%

Few times a year 17 85.4993% 9.28522% 2.25200%

Total 30 83.9535% 9.98592% 1.82317%

Overall recognition

accuracies using Database 2

No 8 78.4884% 9.60875% 3.39721%

Weekly 1 65.1163% . .

Monthly 4 86.0463% 5.02424% 2.51212%

Few times a year 17 78.3857% 11.17624% 2.71064%

Total 30 78.9922% 10.37309% 1.89386%

Descriptives

 95% Confidence Interval for Mean Minimum

Lower Bound Upper Bound

Overall recognition accuracies

using Database 1

No 68.8345% 89.3051% 58.14%

Weekly . . 76.74%

Monthly 80.7481% 97.1588% 83.72%

Few times a year 80.7253% 90.2733% 69.77%

Total 80.2247% 87.6823% 58.14%

Overall recognition accuracies

using Database 2

No 70.4553% 86.5215% 67.44%

Weekly . . 65.12%

Monthly 78.0516% 94.0410% 79.07%

Few times a year 72.6394% 84.1320% 60.47%

Total 75.1188% 82.8656% 60.47%

Descriptives

 Maximum

Overall recognition accuracies using Database 1

No 90.70%

Weekly 76.74%

Monthly 95.35%

Few times a year 97.67%

Total 97.67%

Overall recognition accuracies using Database 2
No 93.02%

Weekly 65.12%

138

Monthly 90.70%

Few times a year 95.35%

Total 95.35%

ANOVA

 Sum of Squares df Mean Square F

Overall recognition

accuracies using Database 1

Between Groups 383.401 3 127.800 1.325

Within Groups 2508.437 26 96.478

Total 2891.838 29

Overall recognition

accuracies using Database 2

Between Groups 399.865 3 133.288 1.274

Within Groups 2720.561 26 104.637

Total 3120.426 29

ANOVA

 Sig.

Overall recognition accuracies using Database 1

Between Groups .288

Within Groups

Total

Overall recognition accuracies using Database 2

Between Groups .304

Within Groups

Total

The ANOVA table above shows the results of the overall analysis of variance.

According to the tables, the F-ratios for the analysis using the two databases are 1.325

and 1.274, respectively, with the probabilities of 0.288 and 0.304 using Database 1

and Database 2. Similar to the above results, both of the two probabilities in this

analysis are greater than 0.05; therefore, the participants, who have different levels of

experience using motion control devices obtained similar overall mean accuracies. It

can be concluded that the program consistently performed no matter if a user has

experience in using motion control products or not.

