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EXECUTIVE SUMMARY 

Within the decommissioning scenarios for the B-Zone waste rock pile, a passive 

treatment approach for seepages which might emerge from the recontoured and 

revegetated pile is being considered. The muskeg areas to be used are within the 

waste management area, located between the waste rock pile and the pit or lvison Bay. 

Design criteria for a scale-up of the process to relegate As and Ni to sediments in these 

areas are based on 3 years of laboratory and field work. In collaboration with CANMET 

biotechnology, the forms of As and Ni which would be retained in the wetland 

sediments were determined and found to be environmentally stable under prevailing 

condition. Both elements are primarily complexed as organic particulates which are 

formed in association with the decomposition of added organic materials. In this form, 

the As and Ni settle to the sediment where they are transformed into insoluble metal 

precipitates as favourable Eh and pH conditions are encountered in the deeper portions 

of the sediment. 

Estimates of removal rates based on the experiments are 0.046 to 0.25 g.m-*.day-’ for 

As and 0.05 to 0.36 gm*.day” for Ni. Loading from the waste rock pile seepages are 

estimated as 153-398 kg.yr-’ for As and Xl-1,397 kg.yr-’ for Ni for 1992 to 1994 based 

on 7 % of precipitation reporting as run-off. 

An open water muskeg in the vicinity has an area of 2.4 ha and therefore theoretically 

sufficient to accommodate the annual loadings from the pile. Design criteria for scale- 

up are presented. 
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1.0 INTRODUCTION 

The decommissioning plans for the B-Zone waste rock pile are being developed. 

Recontouring and revegetation are options under consideration which would reduce, 

to a large extent, the seepages which emerge from the waste rock pile. At present, the 

seepages are collected in a ditch system and pumped to the mill site treatment plant. 

A decommissioning plan ideally would not require perpetual collection, pumping and 

treatment of the seepages and therefore, the elimination of the ditch system is being 

considered. 

Boojum research has been contracted since 1992 to evaluate the potential of using 

passive polishing approaches. The company specialises in the utilization of natural 

cleansing processes which contain contaminants within the mine waste management 

area. These processes take place in wetland sediments. As the waste rock pile is 

surrounded by a raised water table with muskeg and open-water ponds, using these 

areas for such a passive approach is an attractive option for consideration as it 

potentially eliminates the need for seepage collection. 

Stimulation of sediment microbiology has been proven to raise pH and remove metals 

in acid mine drainage (Kalin, 1993). In the B-Zone muskeg sediments, such processes 

could be enhanced through the addition of readily degradable organic materials such 

as potato waste or alfalfa pellets. This was tested both in laboratory reactor 

experiments and in field enclosures in the BT-2 area adjacent to the waste rock pile. 

This report summarises all of the laboratory and field work and identifies the forms of 

As and Ni which are formed in the sediments. The waste rock pile seepage 

characteristics are described and related to waste rock type. Estimates of loadings are 

derived from the hydrology data and scale-up design criteria are presented. 

Boojum Research Ltd. 
1994 B-Zone Final Report 1 
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2.0 ARSENIC AND NICKEL REMOVAL BY MUSKEG SEDIMENT 

The seepages from the B-Zone waste rock pile exhibit large fluctuations in pH, As and 

Ni concentrations. They are collected in a ditch system surrounding the waste rock pile 

and pumped to a treatment facility at the mill. Within the options to be considered for 

decommissioning of the waste rock pile, the conventional treatment approach for the 

pit and the seepages is not attractive, as it produces sludges which require further 

maintenance and disposal. Passive treatment approaches involve utilization of the 

muskeg sediments, located between the waste rock pile and the flooded open pit. The 

muskeg areas (BT-1 and BT-2) surrounding the waste rock pile represent a perched 

water body, thus suitable for use as a treatment vessel for the seepages which might 

emerge from the recontoured waste rock pile. 

The microbial activity of the muskeg sediments could be enhanced through addition of 

easily degradable organic material. Consequently As and Ni is removed from the water 

through organic complexation with decomposition products, The pH would be elevated 

due to microbial iron reduction. In the deeper portions of the sediments, where low Eh 

is prevailing, metals form either carbonates or sulphates, which would result in 

environmentally stable metals. 

These As and Ni removal processes, expected to take place in the sediments, formed 

the working hypothesis which was tested both in the laboratory and in the field since 

1992. The laboratory reactor work is summarized in Section 2.1 and the BT-2 field 

enclosure studies in Section 3.0. The chemistry and hydrology of the waste rock pile 

and vicinity is summarised in Section 4.0. In Section 5.0 the results are compiled to 

arrive at design criteria for the scale up using the muskeg sediments. 

Emjum Research Ltd. For CAMECO Corporation 
1994 B-Zone Final Repolt 2 
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2.1 Summary of Laboratory Experiments 

Five laboratory experiments have been carried out in 2.5 L reactors to characterize the 

removal rates and processes of Ni and As from B-Zone waste rock pile seepage water. 

The reactors represent static conditions (i.e. no continuous flow). The removal rates 

determined in the reactors, dictate the required retention time of water to be treated in 

the muskeg. The area of the sediments inside the reactor (78.6 cm’) represents the 

area which is considered to be active in the removal process with the volume of water 

overlaying the sediments. Design criteria for the scale up of the process can therefore 

be derived from the reactor experiments which are to be verified with removal rates 

observed in the field enclosures. 

The main findings from the reactors as follows: 

. Muskeg sediments remove As and Ni 

. Organic amendments increase rates of As and Ni removal 

. Diluted and full strength seepages are effectively treated by 

sediments (the combined seepage collected at 6.11; diluted 6.11 

water simulating run-off events and seepages directly emerging 

at the foot of the pile were tested) 
. As is removed principally as organic complexes 
. Ni is removed as organic complexes and as carbonates and 

sulphates. 

. Maximum removal rates from stn 6.11 water were 0.17 mg.m-‘.min-’ 

for As and 0.25 mg rn-‘min.’ for Ni. 

. Sediment removal capacity is at least 59.3 g.m-’ for Ni and 52.2 

g.m-’ for As. 

In Table 1, a chronological summary of the experimental series is presented, listing for 

each experiment the objectives of each experiment, the type of seepage water and 

Boojum Research Ltd. For CAMECO Corporation 
1994 B-Zone Final Report 3 
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Table 1 Summary of Laboratory Reactor Expc 

xpt. 
# 
T: 

Tar 
set-up 

July 
1992 

. rlovember 
1992 

March 10 
1993 

May10 
1993 

lanuary 21 1’ 
1994 

>bjective 7 

To test ability of BT2 and I 
1,3 

‘emove As and Ni from -T- wa 
designed to mimic condiiil 

To test reproducibility of A 3,5 

5 
To compare removal from 
stn 6.11 and diluted stn 6. I-- 
To compare alfalfa and 

-p- 
pa 

stimulation of As and Ni n 
To determine role of sedir 
To determine form of As e 

To determine sediment trc 
2,3,4,6 l- 

9/L 
w/L 

I 

) I 
CO Collins Bay B-Zone Decommissic 

2 CANMET Arsenic and nickel removal from 
3 Fyson, A., Kalin, M. and Adrian, L.W. 1994’ 

vol. 1, pp 109-116 

4 Fyson, A., Kalin, M. and Smith, M.P. 1995 
va, pp. 103-l 17 

5 Boojum Progress Report No 2, April 7, IS9 
6 Appendix 6 this report 

Boojum Research Ltd. 
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organic amendments used. The main results obtained at the end of the experiments 

are also summarized in the table and references are given for the Appendices, where 

methodology and detailed results are outlined. The first two experiments basically 

determined that BT muskeg sediments are able to remove As and Ni from WRP 

seepage (stn 6.11) water. Seepage was used at a 5 five fold dilution, as it was felt that 

addition of the seepage at full strength would provide a shock to the microbial system 

in the sediment. In addition, under field conditions, the seepage will always be diluted 

with some fraction of fresh water. Arsenic concentrations were increased through 

adding spikes of arsenic. As the removal of both As and Ni was very effective after 

112 days, A second experiment was set up to test the reproducibility of the removal 

process, Ninety percent (90 %) of the As was removed and 95 % of the Ni in 45 days. 

Measurement intervals in the second experiment were much shorter, thus the rates of 

removal, based on the first experiment, where after 112 days effective removal was 

noted could be revised to 45 days. The results were reported previously in the Collins 

Bay Decommissioning report and formed part of a paper presented at the Pittsburgh 

Acid mine drainage conference. The information is included for ease of reference as 

Appendices 1 and 3 

The 2nd experiment, which tested reproducibility (6 identically set-up reactors) was 

allowed to sit up to 115 days, at which point experiment 3 was started. New water was 

added to the same reactors, this time representing full strength 6.11, seepage 

collected at the toe of the Waste rock Pile (WRP-P) and diluted 6.11 water. The 

reactors were run without addition of more organic amendment. The measurement 

intervals were decreased in the third experiment, to determine the removal rate. After 

21 days significant removal has taken place in all seepage types. Controls were run 

where amendment was tested in the absence of sediment to determine the role of the 

sediment. In the absence of sediment microbial community, limited removal was noted. 

This removal is through adsorption of the metals to organic surfaces. The detailed 

results are summarized in an internal progress report given in Appendix 5. 

Boojum Research Ltd. 
1994 B-Zone Final Report 5 
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With the reproducibility and the observed rates of removal the approach to seepage 

treatment looked very promising. The next step in process development was to test the 

role of the sediment in the removal process, to test alternative organic amendments to 

mulch and alfalfa as well as determine the chemical form in which both arsenic and 

nickel might be present in the sediment. 

The reactor sediments from the previous experiments were sacrificed for the 

determination of the chemical forms of As and Ni. A new set of reactors was set-up 

with sediments collected from the field enclosure (E-6) prior to addition of organic 

amendments in the field. This assured, that the same microbial community is active 

in the reactors and the field enclosures. From the results of the fourth experiment it 

was determined, that the organically amended sediments indeed removed Ni and As 

more effectively than when no organic amendment was added. The details of the 

experiment were previously reported in a CANMET report and are summarized in the 

Pittsburgh proceedings which are included as Appendices 2 and 3. 

In the last experiment, Experiment 5, the reactors were used to test the maximum 

removal capacity of the sediments. This was achieved through weekly additions of new 

6.11 water until the removal capacity was exhausted. After standing from day 129 to 

day 274, additions of 6.11 water recommenced. By day 305 As removal ceased and 

the removal rate of Ni was much reduced. The early results of the final experiment are 

given in Appendices 2, 3 and 4 and the later results in Appendix 6. 

2.2 Form of As, Ni and Fe in Sediments 

The sediments from Experiment 4 were used as for sequential extraction which 

determined the amounts of various forms of As and Ni held in sediments. This 

technique employs extraction in KNO, to remove ion exchanged metals, Na,P,O,/EDTA 

to remove complexed ions, ammonium acetate to remove acid soluble precipitates 

(some oxides) and HNO, to extract the remaining precipitates (mainly carbonates and 

Ekqml Research Ltd. For CAMECO corporation 
1994 S-Zone Final Report 6 
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sulphides). The applicability of the technique to these highly organic sediments was 

tested with spikes of known quantity of both Ni, As and Fe. The sequential extractions 

yielded good mass balances for As and Fe but yielded highly variable results for Ni, 

and element which has a very high adsorption affinity for organic material. The details 

of the recovery are summarised in Appendix 2. 

The sequential analyses carried out on the sediments from the reactors and from the 

field enclosures suggest that much As is held by the sediment in organic complexes. 

In the presence of organic amendments in the reactors, a substantial amount of 

precipitate was present. This indicates that reducing conditions, established through 

addition of potato waste or alfalfa pellets, can lead to removal of arsenic as precipitates. 

The EhlpH phase diagram suggests that the conditions found soon after addition of the 

organic amendments were favourable for formation of arsenite (Appendix 4). This form 

of As has recently been detected in anaerobic soils contaminated by waste waters from 

a gold mine (Bowel1 et al 1994). In the reactors EhlpH conditions were reached, which 

would also allow for the formation of sulphide forms of arsenic. It can be expected that 

such precipitates would be stable and that, in the field, such conditions are prevailing 

in the deeper parts of the sediments. 

The Ni data from the sequential analysis is too variable for quantitative estimation of 

forms removed. Reducing conditions where achieved in the reactors through the 

microbial decomposition of organic matter, which based on the EhlpH diagrams, can 

lead to precipitation of Ni salts. Using the data generated during the last experiment, 

and fitting them into EhlpH phase diagram for Ni, it is evident that data points fall into 

the zone where equilibria favour dissolved Ni’*. The data indicate that at the onset of 

decomposition activity when very low Eh values are coupled to low pHs (4-5), sulphide 

formation is possible (Appendix 4). 

Boojum Research Ltd. For CAMECO Corporation 
1994 S-Zone Final Report 7 
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2.3 Role of Sediments 

In the water column of the reactors, a few days after set-up, particulates formed in the 

reactors with added organic amendments. At time, water samples were filtered through 

filter papers (0.45 pm pores) which were analyzed by ICAP. The data is summarised 

in Table 2. 

Table 2: Filter analysis of laboratory reactor waters 

Element 
ug/filter 

Al 
As 
Ca 
Fe 
Mg 
Mn 
Ni 
P 

Fe/As 
Fe/Ni 

ixperiment 2 reactors 
inean (n=6) SD 
Ilfalfa/hydroseeding mulct 

72, 32 
198 196 
414 175 
790 715 
116 27 
20 15 
78 80 

387 90 
4.0 3.6 

10.1 8.9 

ixperiment 4 reactors 
R-2 R-3 R-4 R-5 

potato potato alfalfa alfalfa 
235 213 132 300 

4,727 3,250 1,125 2,769 
633 1,110 5,317 27,385 

2,345 1,988 1,800 9,292 
360 500 1,063 3,754 
65 64 160 649 

6,836 2,488 890 2,108 
942 1,186 3,400 9,723 
0.5 0.6 1.6 3.4 
0.3 0.8 2.0 4.4 

100 mL reactor water column was passed through a 0.45 urn cellulose acetate filter 
Filters were analysed by ICAP 

All filter papers contained both As and Ni, which suggests that Ni and As are formed 

in the water column as particulates and which will later settle to the sediment. The 

ratios of As, Fe and Ni these three elements on the filters showed little vari$tion 

suggesting that similar precipitates were forming in the different reactors. The 

particulates collected on the filter papers do confirm, that indeed processes in the 

sediment lead to the formation of compounds, which in turn remove As and Ni from the 

water. 

Boojum Research Ltd. 
1994 S-Zone Final Report 
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The rates of change taking place in the control jars, where organic matter was added 

to seepage water in the absence of sediments, indicated clearly the role of the 

sediment in the removal process. The rates of change of pH, Eh, phosphorus and 

nitrate and acidity (measured in mg.L-’ equivalent of CaC03) were almost identical for 

the jars and reactors. The changes in concentrations of As, Ni and electrical 

conductivity on the other hand, differed between the controls and the reactors with 

sediment. These declined at a much faster rate in the presence of a sediment 

indicating that sediment surfaces enhance the removal processes. The sediments 

therefore enhance the formation of organic complexes with both Ni and As. 

2.4 Contaminant Removal Pattern 

Overall, the BT wetland sediments in the reactors effectively removed both As and Ni 

from 6.11 water. In laboratory conditions, contaminant removal occurred in three 

phases defined by measured changes in water chemistry: 

Phase 1: O-5 davs). Initially rapid changes in concentrations of ions are attributable to 

effects of ion exchange, complexation and precipitation on contact between 6.11 water 

and the sediments and associated porewater. Also dilution of 6.11 water by pore water 

contributes to decline in contaminant concentrations, The small changes in some 

contaminants (e.g. As) suggest that quantitatively this is a small factor. 

Phase 2: 5-60 davs During this second phase, there were dramatic changes in all 

parameters monitored with the exception of ammonium-N, which fluctuated with no 

clear pattern. Overall, pH rose from around 4 to 7 and Eh, conductivity, acidity, Ni, As, 

nitrate and phosphate declined. More than 90 % of the Ni and As removal due to 

sediments occurred within 60 days. 

Phase 3: 60 davs on. Changes in chemistry in this phase were slow for all parameters 

measured and small relative to phase 2. Phase 3 represents a near ‘steady state 

Boojum Research Ltd. For CAMECO Corporation 
1994 B-Zone Final Report 9 
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situation. The trends observed in phase 2 continued. Concentrations of phosphate, 

arsenic and nickel and also conductivity continued to decline through this period and 

pH continued to rise. Eh and ammonium remained fairly constant. Nitrate and Fe 

remained below detection limits. 

2.5 Ni and As Removal Capacity of Sediments 

The ‘sediment treatment capacity’ experiment, Experiment 5 yielded valuable data on 

the dynamics of As and Ni removal and the treatment capacity of the B-Zone muskeg 

sediments. Over the initial 129 day period of observations (discussed in detail in 

Appendix 4) As concentrations in the water column declined from 85 mg.L-’ to 5 mg.L-‘. 

In previous experiments with similar conditions, As concentration eventually declined 

to stable values of 0.5 mg.L-’ to 1 mg.L-‘. In the present experiment, Ni declined from 

70 mg.L-’ to < 1 mg.L-‘. 

After a standing period of 145 days, measurements and additions of stn 6.11 water to 

the ‘exchanged’ reactors resumed. Results from this 145 day period are discussed in 

detail in Appendix 6. Chemistry of the water column changed little during the standing 

period. Laboratory analysis of samples of the ‘exchanged’ reactors following 4 weekly 

changes of column water with ‘fresh’ stn 6.11 water, Ni removal had slowed down 

considerably and As removal had ceased. The limits of As removal with one ‘dose’ of 

organic amendment (potato waste) could thus be defined. At this time, a mean removal 

of 410 mg of As was estimated for the two reactors. The reactors had removed 466 

mg of Ni. A final removal capacity for Ni from 5 g of potato waste has not yet been 

determined as at the time of writing Ni concentrations were still declining in the 

reactors. The results indicate that addition of 2 L of 6.11 water over 4 weeks, 

overloaded the As removal mechanisms. 

Boojum Research Ltd. 
1994 EZone Final Report 10 
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3.0 FIELD ENCLOSURES 

Other studies (Kalin, 1993; Wildeman, 1993) have demonstrated the capacity of 

wetlands to remove heavy metals from contaminated waters in a wide variety of 

situations. Literature on passive treatment systems and the chemistry of As and Ni in 

relation to potential removal processes has been reviewed and has been presented in 

a paper (Appendix 3). Laboratory experiments (see Section 2) have established the 

potential for removal and have also characterised the pattern and rate of removal when 

sediments are augmented with organic amendments designed to enhance removal 

processes. Field enclosures (Map 1) were set up in B-Zone muskeg to determine 

whether the laboratory observed As and Ni processes can be reproduced in the field 

and to assist in the development of design parameters for scale up. Early results have 

been published (Smith et al 1993) and were presented in the Boojum, 1992 B-Zone 

Report and are attached as Appendix 1. 

3.1 History and Performance of the Enclosures 

Each of the 6 enclosures were constructed by enclosing a 2.4 x 2.4 m area of the BT2 

wetland within a Fabrene curtain which was anchored within the sediment. The 

chronology of activities with the enclosure set-up, the addition of amendments and the 

addition of seepage water and sludges is summarised in Table 3. The enclosures were 

constructed in July, 1992. After set-up, hydroseeding mulch and fertilizer were added 

to E-2 and E-5 and mulch, fertilizer and alfalfa to E-3 and E-6. E-l and E-4 served as 

amendment-free controls. Station 6.11 water was added to E-4, E-5 and E-6. Data for 

Ni and As concentrations in the water of the 3 enclosures receiving seepage water and 

sludge (E-4, E-5 and E-6) since the first sampling in 1992, are shown in Figs. 1 and 2. 

Seepage water was added annually (a sludge was also added in 1993) and the water 

sampled 3 or 4 times annually including from under the ice cover in April. Samples 

were collected from the enclosures immediately prior to, and also 1 to 3 days after, the 

Boojum Research Ltd. 
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Table 3: BT2 W&and Enclosures-History 

inserted into sediment 

E-l No amendment 

E-2 0.1 m3 mulch. 2 kg NPK 

E-3 40 L alfalfa, 2 kg NPK 

E-l 800 L stn 6.11 water 

contaminants from waste rock pile seepage 

and whether removal rates are enhanced 

organic amendment (alfalfa) 

E-5 BOO L stn 6.11 water, 0.1 m3 mulch. 2 kg NPK 
E-6 900 I stn 6.11 water. 40 L alfalfa, 2 kg NPK 

amended reactors over 2 month period 

water chemistry (sampled under ice) 

20 kg potato waste added to E-3 and E-6 and subsequently removed by sediments 

microbiological processes 

Water sampled before a” er amendment addition 

loading of contaminants over a summer 

1 CAMECO Collins Bay B-Zone Decommissioning Year l-Proposed Target Levels, July 1993 
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addition of contaminated water or sludge. Water was first sampled in September 1992, 

on the first field trip following set-up. 

In 1993, WRP-P sludge was added to determine whether contaminants were mobilised 

and if so, were subsequently removed by the sediments. There was little elevation in 

either As or Ni as shown in Figs. 1 and 2 respectively. In August of 1993, a further 

addition of stn 6.11 water was made to E-4, E-5 and E-6. Water was sampled the 

following April (under the ice) by which time most As (Fig. 1) and Ni (Fig. 2) had been 

removed from the water. 

On each site visit in 1994, the surface water of each enclosure and the BT-2 wetland 

at large were sampled. A summary of water chemistry for the 6 enclosures and BT2- 

250 are presented in Table 4. There was little effect of the enclosure amendments on 

Ra226 of U concentration. 

Samples were collected from under the ice cover in April 1994, 9 months after addition 

of stn 6.11 water in August 1993. Water chemistry in the enclosures not receiving 

seepage water or sludge (E-l, E-2 and E-3) were similar except for concentrations of 

NH,-N and NO,-N which were higher in E-3, the enclosure with alfalfa (Table 4a). The 

presence of this N-rich material augments the N cycling in this enclosure. At this time, 

the chemistry of water in E-6 (amended with seepage water/sludge and with alfalfa 

pellets added in 1992) was similar to that of the enclosures receiving no seepage water 

(E-l, E-2 and E-3) as shown in Table 4a. In other words, contaminant removal to 

background levels was complete. In E-4 and E-5 however, concentrations of dissolved 

Fe and Ni and overall conductivity were higher than in E-l and E-2 both in April (Table 

4a) and in June (Table 4b). As concentrations were similar to the background 

concentrations on both occasions. This indicates that alfalfa increases contaminant 

removal rates. Earlier data (Fig. 1 and 2) indicate that Ni and As removal to 

background concentrations is possible in the absence of alfalfa. 

Boojum Research Ltd. 
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Fig. 1: BT2 Enclosures 

1164LWRP.a 

Date 

f Seepage only (E-4) 8 + NPK (E-5) -)c- + NPK/alfalfa (E-6) 

6COL6.11 

soy 

Fig.2: BT2 Enclosures 
Dissolved Ni 1154LwRP-Q 

1 

Date 

c seepage only (E-4) -a- + NPK (E-5) x + NPWalfalfa (E-6) 
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In June, 1994, 1154 L of WRP-Q was added to E-4, E-5 and E-6. This seepage has 

high As (45 mg.L-‘) and Ni (130 mg.L-‘). A large addition was added with the hope that 

by the next sampling, some Ni and As would still be present such that removal rates 

could be more accurately determined. 

Enclosures E-4, E-5 and E-6 were sampled 24 h after addition of WRP-Q water on 

June 25. The chemistry of the water was similar in the 3 enclosures (Table 4b). As 

concentrations were in the 9.3 to 10 mg.L-’ range and Ni, 26-28 mg.L-‘. At the same 

time, pH declined from 6.3-6.6 prior to seepage water addition to 3.6-4.0. 

At the time of the September sampling, it was 74 days since addition of WRP-P water. 

At this time, the water quality in E-l, E-2 and E-3, i.e. those not receiving seepage 

water, was similar to the background in the BT-2 muskeg (BT2-250) (Table 4~). It 

should be noted that E-2 had lower concentrations of NH,-N, P, As and Ni than the 

other two enclosures and the wetland at large. In the enclosures amended with 

seepage water, concentrations of As (0.55 mg.L-‘), Ni (0.25 mg.L-‘) were substantially 

less in E-6 with alfalfa than in E-4 and E-5 (mean of 1.15 mg.L-’ for As and 2.95 mg.L-’ 

for Ni). The As concentration was similar to that in E-l, E-2 and E-3 indicating that an 

equilibrium concentration had been reached in the 74 days since seepage water 

addition. The concentration of Ni, in E-6, while much lower than in E-4 and E-5 was 

still higher than in E-l to E-3 indicating that potential removal had not yet been 

achieved. 

Overall, observed rates of Ni and As removal in the enclosures were consistent with 

those of the reactors where most of the As and Ni were removed from solution in a 60 

to 75 day period. 
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4.0 THE WASTE ROCK PILE 

A total of 5.6 million m3 of waste rock was deposited at B-Zone within seven years, up 

to 1990. Waste rock was end-dumped and compacted by bulldozer during the mining 

operation. Since completion of the operation, no further measures, such as contouring, 

capping or revegetating have been performed. The waste rock included overburden, 

sandstone and basement rock excavated from the B-Zone open pit. This volume is 

equivalent to 12.9 million tonnes of material (average density, 2.3) placed within a 31.8 

ha area, including the peripheral ditch system. 

A summary of observations on seepages emerging from the waste rock pile is 

presented. Seepages have been collected through the ditch system at station 6.11 at 

the north eastern corner of the waste rock pile (Map 1). Since 1989, the water quality 

of samples was regularly determined at the waste rock pile seepage collection point, 

Station 6.1 I. 

In 1992 and 1993, all seepages drained to a common peripheral ditch system, which 

directed water to the Station 6.11 seepage collection pond. High water level in this 

pond trigger a submersible pump, which pumps seepage water to the Rabbit Lake Mill 

for treatment. 

In late 1993, a lined pond was constructed between the waste rock pile and the ore 

stock pile for retention of perimeter ditch water during periods of run-off in excess of 

the pumping capacity of the station 6.11 submersible pump and lines. 

Upon construction of this lined pond, seepages emerging from the toe of the waste rock 

pile along the northeast and southeast sides no longer report to station 6.11 and, 

instead, pool in the ditch at Station WRP-Q. A submersible pump is situated at WRP-Q 

for pumping of this water during periods of high run-off. 

Boojum Research Ltd. For CAMECO Corporation 
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Table 5: Water Quality of B-Zone WRP Seepages, 1992-l 994 

Average STD Mm Min N 
IELD 

Temp. (C) 9 5 20 0.70 73 
PH 3.53 2.89 6.00 1.94 110 

[H+], mM/L 2.9SE-04 1.28E-03 l.OOE-06 l.l5E-02 110 
Cond. (&/cm) 1463 771 4550 273 73 

Eh W’l 217 64 454 111 72 
Flow, L/s 0.053 0.065 0.250 0.002 61 

AB 

Cond. (US/cm) 1311 ~538 2140 160 22 
Acidity (mg/l) 147 269 1723 5 70 

In mg/L: Diss Al 5 13 56 0.11 19 
Diss As 46 54 221 0.06 84 

Total As 48 62 235 0.09 39 
DissCa 164 61 292 43 61 
Diss Fe 8 36 220 <0.0001 49 

Total Fe 8 22 85 0.06 14 
Diss K 28 10 56 6 61 

Diss Mg 81 43 253 19 57 
Diss Mn 7 4 18 2 49 

Total Mn 11 0 11 11 1 
Diss Na 27 11 70 5 61 
Diss. Ni 80 82 400 2 86 
Total Ni 63 64 320 2 39 

Diss Si 17 6 30 5 18 
Bq/L Diss Ra 226 3 2 8 0.25 39 

Bq/L Total Ra 226 5 3 20 1 39 
Diss U 1 4 27 <o.OQOQ5 39 

Total U 2 5 28 0.01 39 
In mg/L: Chloride 3 1 7 1 61 

Bicarbonate 1 1 6 Cl 64 
Sulphate 806 549 3590 108 80 

Nitrate (as N) 21 15 70 1 61 
Ammonia (as N) 7 5 21 1 43 

Total Kjeld., N 10 6 16 5 2 
Total P 25 35 178 0.03 43 
T.D.S. ~1234 592 2700 327 56 
T.S.S. 264 610 2300 <l 15 

Total Hardness 672 169 903 292 12 

c 
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Fig. 3: WRP, Station 6.11 
Average, Minimum and Maximum pH by Year 
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Fig. 4: Stn 6.11, 1989 - 1994 
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Shallow piezometers have been installed in the wetland areas around the waste rock 

pile and water quality is monitored periodically. The hydrology of the waste rock pile 

is summarized, leading to estimations of contaminant loadings from the waste rock pile 

to the ditch collection system. 

4.1 Waste Rock Seepage Characteristics 

Waste rock pile run-off water quality has been regularly assessed since 1989 at Station 

6.11 and is summarized in Table 5. 

From 1989 to 1994, the pH of Stn 6.11 water has overall declined from an average pH 

of 5.4 in 1989, to an average pH of 4.1 in 1994 (Figure 3). Between 1989 and 1993, 

the annual average arsenic concentration overall increased (6.1 to 40 mg.L”), but in 

1994, the annual average arsenic decreased to 14 mg.L-’ (n=4; Figure 4). Annual 

average nickel concentrations have increased in each year since 1989 (4.9 mg.L-‘) to 

an average of 137 mg.L-’ in 1994 (n=4; Figure 4). 

Boojum Research Ltd. 
1994 BZone Final Report 21 

For CAMECO Corporation 



4.1.1 Waste Rock Pile Toe Seepages 

In 1992, 1993 and 1994, water quality and flow rates have been determined for small 

seepages emerging from the toe of the waste rock pile on the northwest, northeast and 

southeast sides (Map 1). Seepages have not been observed along the southwest side 

adjacent to the ore stockpile area. 

Seepage samples were collected on May 21, 1992, August 11, 1992, September 18, 

1992, May 10, 1993, August 3, 1993, August 17, 1993, August 28, 1993, June 13, 

1994, June 26, 1994, July 6, 1994 and September 8, 1994. In Table 5 the data are 

presented for all toe seepages, describing the average value min max and the standard 

deviation. The individual samples and their characteristics are given in Appendix 7. 

The data are discussed, describing the ranges of the concentrations reported for the 

sampling dates considering all three years. 

The pH of the seepages has ranged from pH 1.94 to pH 6.0, averaging pH 3.53 

(n=llO). The conductivity has ranged from 273 to 4,550 @S.cm-‘, averaging 1,463 

&cm-’ (n=73). 

The arsenic concentrations have ranged from 0.09 to 235 mg.L-‘, averaging 47 mgL’ 

(n=86). Nickel concentrations have ranged from 1.8 to 400 mg.L-‘, averaging 81 mg.L-’ 

(n=86). 

Sulphate concentrations have ranged from 108 to 3590 mg.L-‘, averaging 806 mg.L-’ 

(n=90). Iron concentrations have ranged from 0.001 to 229 mg.L-‘, averaging 7.4 mg.L- 

’ (n=61). 

4.1.2 Toe Seepage Drainage Trends 

During the 1994 ice-free season, seepages WRP-A through WRP-J, Stn 16, and 

BZWR-5 through BZWR-7 (northwest side) drained to Station 6.11 (Map 1). Seepages 

Boojum Research Ltd. 
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WRP-K through WRP-P, BZWR-1 through BZWR4, and the seepage at BZWRD-6 

report to the peripheral ditch at pool at station WRP-Q (Map 1). The drainage pattern 

to determine differences in the seepage characteristics are used to group the 

seepages. 

In Figure 5, the average concentrations of elements in the seepages between 1992 and 

1994 are presented in three groups. The first group is a single water sample (WRP-T) 

collected from a pool on top of the northeast end of the waste rock pile on August 19, 

1993. The second group is comprised of the northwest seepages which have always 

reported to station 6.11. The third group is comprised of seepages which, in 1994, 

drained to station WRP-Q. 

As expected, the WRP-T sample (Figure 5: WRP Top Pool) contained, overall, lower 

concentrations of elements than the seepages which had passed over/through the 

waste rock pile (NW, SE Seepages). However, as water drained over the waste rock 

pile surface to the WRP-T pond, it still gained 5.1 mg.L-’ As and 12 mg.L-’ Ni. 

The northwest seepages contain, on average, higher concentrations of As (61 mg.L-‘) 

and Ni (87 mg.L-‘) than the southeast seepages (38 and 78 mg.L-‘, respectively; Figure 

8). 

Boojum Research Ltd. For CAMECO Corporation 
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Fig. 5: WRP Seepages, 1992 - 1994 
N-W Seepages, SE Seepages; WRP Top Pool 

As Fe Mg Na P we ” N02,3-N Acid HCW 
Element 

c 
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4.2 Whole Rock Analysis and Leach Tests 

Whole rock analysis, leach test results and metal concentrations are presented as a 

preliminary attempt to identify the sources and the processes leading the seepage 

characteristics. Whole rock analyses were performed on waste rock pile samples 

collected during a coring program conducted in November, 1993. In addition, 24 hour 

leach tests were performed on selected samples collected during the coring program. 

4.2.1 Results of Whole Rock Analyses 

The elemental composition of a total of 95 solid samples was determined. Sandstone 

(bleached, hematized, limonized) was the primary constituent of 59 of these samples, 

while 34 samples were comprised primarily of till, and 1 sample of overburden sand, 

and the remaining 2 samples contained mainly quartz biotite gneiss. 

In Figure 6, the average concentrations of elements in the six categories of rock are 

shown (note log scale). Elements which either comprise a large fraction of the samples 

(Al, Ca, Fe, K, Mg, Mn, Na, S) or are of environmental concern (As, Ni, 226Ra, U) are 

presented. 

The till is not free of arsenic or nickel, compared to the sandstone or quartz biotite 

gneiss samples, but actually contained, on average, higher concentrations of these 

elements than the other five categories. The till also contained, on average, more Ca 

and Na than the other rock types. 

Compared to the sandstone, overburden sand and quartz biotite gneiss, the till 

contained a similar content of Al, Cr, Fe, K, Mg, P, S and U. The till contained 

relatively little 226Ra. Overall, arsenic and nickel seems to be more associated with the 

till component of the waste rock pile, compared to other components, including 

sandstone, overburden sand and quartz biotite. This suggests, that till containing likely 

Boojum Research Ltd. For CAMECO Corporation 
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Fig. 6: WRP Whole Rock Analyses 
Grouped by Type of Waste Rock Sample 
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a significant component of clays, which would adsorb both Ni and As serves as a 

collector material of the elements. 

Having identified, that till contains the highest fraction of As and Ni an analysis of the 

concentrations with respect to their distribution with depth in the waste rock pile, might 

reveal that the metals are accumulated at a particular depth. In Figure 7, the 

distribution of elements with depth of sampling, regardless of rock type (sandstone, 

overburden, combination), is presented. One sample of overburden sand has an 

extremely high As and Ni content, collected at a depth of 17 m from drill hole 6, and 

it is presented separately in the graph. 

No relationship between the depth of sample and the concentration of any element can 

be discerned. As and Ni concentrations are somewhat higher, on average, in samples 

taken at depth between 6 and 10 m, compared to samples taken above and below 

these depths. There is some suggestion that average Al, Ba, Mg and Mn 

concentrations slightly increase with depth. 

As stated above, the overburden-sand sample collected at a depth of 17 m from drill 

hole 6 exceptionally high As and Ni. The As concentration in this sample was 2,760 

La&-‘> compared to average arsenic concentrations in the four depth ranges which 

were between 20 and 50 E.rg.9.‘. The Ni concentration in this sample was 1,844 pg.g-I, 

compared to average concentrations in the four depth ranges of 40 to 100 I.rg.g-‘. 

Overall, no clear trends in the distribution of arsenic and nickel according to depth 

within the pile, can be discerned. This absence of variation in arsenic and nickel 

concentrations with depth suggests that As and Ni leaching from the upper layer of 

waste rock is not enriching, the lower layer of the waste rock pile. Instead, leached 

arsenic and nickel is likely moving out of the pile via run-off and seepages. It remains 

possible that enrichment of the till component with arsenic and nickel may be occurring 

within the waste rock oile at the same time. 
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Fig. 7: WRP Whole Rock Analyses 
Grouped by Depth of Sample 
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4.2.2 Results of 24 Hour Leach Tests 

If the leach conditions during testing for acid generation potential are those which lead 

to the liberation of metals in the waste rock pile, then a relations ship should be found 

between the rock type with the highest metals content and its leachate. This 

furthermore assumes, that indeed the rock type with the highest concentrations of 

metals, is indeed that type, which liberates most of the metals. 

Bleached sandstone, hematized sandstone and till samples collected during the 

November 1993 drilling program were subjected to a 24 hour leach test in order to 

determine which elements are solubilized from the waste rock during this procedure. 

In Figure 8, the results of analyses of leachates, grouped by primary rock type 

(bleached sandstone, hematized sandstone and till) are shown. 

Overall, the average concentrations, for at least one of the three groups of waste rock, 

of As, Ca, K, Mg, Na, Ni, NH,-N, NO,+NO,-N, TKN-N, acidity, alkalinity and SO, 

exceeded 1 mg.L-‘. 

The As concentrations of leachates was highest in the till samples, reaching 30 mg.L-’ 

on average (n=3). The leachate from the single sample (n=l) of bleached sandstone 

contained only 0.05 mg.L-’ As, while the hematized sandstone samples’ leachates 

averaged 0.6 mg.L-’ As (n=5). This corroborates with the whole rock analyses, where 

the till samples contained the highest As concentrations. 

The Ni concentrations in the leachates from the hematized sandstone and the till 

samples were similar, at 2.4 and 2.5 mg.L-’ , respectively. The bleached sandstone 

leachate contained ~0.005 mg.L-’ Ni. 

226Ra concentrations in the bleached sandstone leachate was only 0.11 Bq.L-’ , while 

in the hematized sandstone and till leachates, 226Ra concentrations were 0.45 and 0.25 

BqL’, respectively. Uranium concentrations were less than 0.01 mg.L-’ on 
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Fig. 8: 24 Hr Leach Test 
Grouped by Waste Rock Type 
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average in all three types of waste rock. Therefore, uranium was not leaching from 

these samples during this test. 

This preliminary analysis of rock types and leachates suggests, that indeed 

concentrations of As and Ni in the till are mobile and likely contributing to the metal 

loadings in the seepages. If geological records could be used to evaluate the total 

quantity of till in the waste rock pile, it could lead to an estimate of the total long term 

loading of these two contaminants which can be expected to emerge from the waste 

rock pile. This could be confirmed with further leach tests which could also address the 

source of the acidity in the seepages. 
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4.3 Water in the Vicinity of the Waste Rock Pile 

Surface water samples have been periodically sampled from at station BT-3 100 and 

125, stations 6.9.44. 6.9.4, 6.9.3, a stream flowing into the lvison Bay wetland and from 

within the lvison Bay wetland (see Map 2). 

In Figure 9, arsenic concentrations at these stations are plotted. At the BT-3 100 

station, As concentrations have been typically elevated and above 1 mg.L-‘. At station 

6.9.4.4, the point where a surface stream (Stream 1) begins, As concentrations have 

remained below 0.09 mg.L-‘. Downstream, at Stn 6.9.4, As concentrations have 

remained below 0.03 mg.L-‘. At Stn 6.9.3, a point on a second stream (Stream 2) to 

the west of station 6.9.4, As concentrations were less than 0.09 mg.L-’ on the two 

occasions. At both the Stream 1 location near the lvison wetland, and in the lvison 

wetland, As concentrations have been less than 0.09 mg.L-‘. 

In Figure 10, nickel concentrations are presented for surface waters between the WRP 

and the lvison wetland. Some WRP seepage water has recently entered the BT-3 

area, indicated by the high Ni concentration in this surface water. There is some 

indication that BT-3 water is moving to Stn 6.9.44, as Ni concentrations have overall 

increased to 0.33 mg.L-‘, in 1994, compared to <O.OOl mg.L-‘in 1991. Ni 

concentrations at other locations are less than 0.06 mg.L-‘. 
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Fig. 9: Run-off Southeast of WRP 
As Concentrations in Surface Water 
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4.4 Shallow Groundwater piezometers 

Shallow piezometers were installed at nine locations in the vicinity of the B-Zone waste 

rock pile in 1993 indicated as SP in Map 2. Installation records are provided in the 

CAMECO B-Zone 1993 Decommissioning report, Appendix 2B. 

Water samples were collected from the shallow piezometers in June, 1993, June 1994 

and September, 1994. As, Ni, Cl and Na concentrations are presented in Figure II. 

Only 3 or 4 samples have been collected to date. Overall, As concentrations have 

remained less than 0.6 mg.L-‘. There is some indication that the As and possible Ni 

concentrations in subsurface waters at SP9A and 3B might be increasing, but with the 

scarcity of the samplings the suggestion is very tentative. As and Ni concentrations do 

not appear to be increasing at all other locations. 

Water levels in the shallow piezometers are presented in Figure 12 although there are 

very few water level measurements the general assumption that the BT-2 wetlands 

represent a perched water table appear to be confirmed, given the small fluctuations 

in the piezometers. 
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Fig. 11: B-Zone Shallow Piezometers 
Subsurface Water Quality, 1993-1994 

Fig. 12: B-Zone Shallow Piezometers 
Water Level, m.a.s.1. 

-m- Location A 8 Location B - Ground Elev,A A Ground Elev,B 
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4.5 Waste Rock Pile Hydrology and Contaminant Loadings 

Daily precipitation data can be compared to daily pumped volumes in 1992 and 1993 

(Figure 13, Table 6). 

In 1992, an estimated 73,402 m3 of precipitation fell on the 26.2 ha WRP area between 

May 7 and October 10 (Table 6). During this period, 5,085 m3 of water was pumped 

out of the Stn 6.11 pond. Therefore, 6.9 % of precipitation reported to Stn 6.11 as run- 

off (Figure 13). In 1993, an estimated 63,886 m3 of precipitation fell on the WRP area 

between May 1 and October 10 (Table 6). During this period, 8,466 m3 of water was 

pumped out of the Stn 6.11 pond. Therefore, 13.3 % of precipitation reported to Stn 

6.11 as run-off (Figure 13). 

These run-off percentages (6.9%, 13.3%) are in the same range of the estimated run- 

off value of 7 % derived from HELP modelling of the waste rock pile in its current 

configuration (bare rock, no contouring, capping or revegetation; Table 6). 

Annual average arsenic and nickel concentrations in Stn 6.11 water are shown in Table 

6. These average concentrations, multiplied by the pumped water volumes, give the 

arsenic and nickel loads for the May to October period for 1992, 1993 and 1994. 

Using the pumped volume data in these three years, it appears that the arsenic load 

to Stn 6.11 is variable, while the nickel load is increasing (Table 6). 

The arsenic and nickel load at Stn 6.11 are also calculated using the 7 % run-off value 

(HELP modelling) and the 16 year annual average precipitation for Collins Bay for the 

entire year. This run-off estimate is considerably higher than the 3 % run-off estimate 

calculated in 1992, and estimated As and Ni loads are accordingly higher. 
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Fig. 13: WRP Measured Cumulative Prec. 
and Cumulative Pumped Run-off, 1992-93 

Date 

8 Cumuhtive Precip. + Cumulative Run-df I 
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Table 6: Estimated Arsenic and Nickel Loads in Run-off from the B-Zone Waste Rock Pile, 1992-1994 

Days in Period 
Area of WRP including peripheral ditch, m2 

156 
262,000 

Measured Prec. x Area, m3 in period 73,402 
Measured Pumped Volume, m3 in period 5,085 

Calculated % Run-off 6.9% 

Stn 6.11 Annual Avg Tot [As], mg/L 36 
Stn 6.11 Annual Avg Tot [Nil, mg/L 80 

As Load in period, kg 183 
Ni Load in period, kg 407 

Total volume on WRP, based on 16 year 
precipitation average, 0.556 m/yr, m3/yr 

At est. 7% of Precip. reporting as run-off, m3/yr 
145,672 
10,197 

As Load, kg/yr 367 
Ni Load, kg/yr 816 

1992 
!lay 7 - October 1 C 

- -r 

1 I 

- 

1993 
vlay 1 - October 1 r 

162 
262,000 

63,886 
8,466 
13.3% 

39 
54 

330 
457 

145,672 
10,197 

398 
551 

- 

1 

L - 

1994 
May - October 

262,000 

8,100 

15 
137 

122 
1110 

145,672 
IO,1 97 

153 
1,397 

r  
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5.0 DESIGN PARAMETERS: ARSENIC AND NICKEL REMOVAL BY MUSKEG 

The capacity of muskeg sediments to remove Ni and As from WRP seepage water has 

been demonstrate both in the laboratory (Section 2) and in the field (Section 3). 

Removal rates both in field and laboratory conditions can be calculated. The total 

estimated capacity of 1 m* of sediment with additions of 637 g of potato waste are 

assessed at 52.2 g for As and a minimum of 59.3 g for Ni based on reactor Experiment 

5. The field enclosures should continued to be charged with seepage, in order to 

determine a final carrying capacity for both contaminants. These results demonstrate 

that a low maintenance treatment option exists for the waste rock pile seepages. 

The estimates of annual Ni and As loadings from WRP seepages were to range for the 

years 1992 to 1994 between 150 kg and 400 kg of As and 0.5 to 1.4 tonnes of Ni. From 

these expected loadings, areas required for seepage treatment can be derived using 

estimates presented in Table 7. The highest rates were not surprisingly found for the 

reactors with frequent changes of seepage water (0.36 g.m:*day-’ for Ni and 0.245 

g.m.?day-’ for As, Experiment 5). The rates for the field enclosures are of the same 

order of magnitude as in the laboratory reactors. It should be noted, that these rates 

are determined by the sampling interval and not by the removal process. As the 

sampling intervals for the enclosures are long, the rates are low. By the time the 

enclosures are sampled after the addition of seepage, all Ni and As has been removed, 

but this may have occurred within a shorter period. 

The removal rate data has been combined with the estimated WRP loadings for 1992, 

1993 and 1994 in Table 8 to provide estimates of the area required to treat the total 

annual loadings of As and Ni. Each of the 3 years for which total annual loadings have 

been calculated, are considered separately as the loadings show considerable annual 

variation. Using the ‘conservative’ enclosure removal rates (0.135 g.m:*day. for As 

and 0.11 g.m:‘day- for Ni), areas required for As removal range from 0.31 ha (with 

1994 loadings) to 0.81 ha (with 1993 loadings). 
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Table 7: B-Zone enclosures and laboratory reactors-As and Ni removal rates 

A Arsenic 

Treatment Source of rate Removal rate Removal rate Note 

(mg/m2/min) (g/mZ/day) 
Weekly pumping of seepage water Recharged reactors (Expt.5) 0.17 0.245 1 

Rates with 1 annual loading of seepage water Unchanged reactors (Expt.5) 0.06 0.115 2 

Rates in field with annual C addition and qnnual addition of seepage water Enclosures (1992 data for stn 6.11 water) 0.093 0.046 (5) 3 

Rates in field with annual C addition and annual addition of seepage water Enclosures (1994 data for WRP-P water) 0.042 0.059 4 

B Nickel 

Weekly pumping of seepage water Recharged reactors (Expt.5) 

1 Based on removal from day 12 to day 91 in R-l, R-2 and R-3 in Expt.5 

2 Based on removal from day 12 to day 56 in Expt. 5 
3 Based on removal from addition of 6.11 water on 22 July to sampling on 17 September 1992 

4 Based on mean removal in E4. E5 and E6 from 25 June to 8 September 1994 

5 From 1992 Report 



Table 6: Areas of wetland required to remcwe As and Ni from seepages 
Based on estimated contaminant removal rates from field enclosure and Laboratory reactor experiment 5 
&a available is 2.4 ha in ET-l, 6.1 ha in BT-2 and 5.6 ha in Lake 1 

Enclosure rates 1994 Weekly changed 
0.059 glm2lday (4) 0.245 g/m2/day 

Nickel 

Enclosure rates 1994 Weekly changed 
0.165 g/m2/day (4) 0.36 gim2lday 

(1) Estimated loadings based on stn 6.11 pump volumes and water quality data for year in question 
(2) From 1992 report 
(3) Based on rates in 1992 report and recalculated loadings 
(4) Based on mean change in concentration from June 25 to September 6, 1994 
Removal rates for reactors are based on Experiment 5 data 
(5) Rates for ‘weekly changed reactors’ based on change in mean [As] or [Ni] in reactors 4-6 from 12 to 91 days 
(6) Rates for unchanged reactors are based on change in mean [As] or [Nil in Reactor 1-3 water column from 12 

c 
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Areas required for Ni removal are larger and range from 1.37 ha (1993 loadings) to 

3.48 ha (1994 loadings). The BT-1 wetland with an area of 2.4 ha would be large 

enough to remove the As and large enough to remove the Ni for two of the three years. 

It is therefore suggested, that the removal process be scaled-up in one of the selected 

muskeg areas along with the continued additions of seepage to the old enclosures. 
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EXECUTIVE SUMMARY 

Passive treatment systems for mine waste water have, over the past 10 years, received 
increasing attention from the research community. These types of treatment options 
are particularly attractive for decommissioning in situations where effluent loadings are 
low and flows seasonal. The effluent-cleansing processes are natural in passive 
systems, and are biologically-mediated. Wetland sediments are the most important 
aspect of these natural treatment systems. 

The use of sediments for passive treatment in ponds within a muskeg area surrounding 
a waste rock pile is being investigated. Acidic seepage from that waste rock pile 
requires treatment, specifically for the removal of As and Ni. Microbial activity is 
stimulated in the sediment with additions of degradable carbon. Field enclosures set 
up in the muskeg ponds have removed As and Ni from seepage water and the pH has 
been increased. Detailed laboratory studies confirmed the removal at similar rates in 
batch conditions. 

A literature review on As and Ni in sediments indicates that adsorption/desorption are 
the main processes which control both metals’ chemistry in the sediment; these 
processes are affected by Eh and pH. Arsenic can be precipitated as ferrous-arsenate 
and Ni as nickel sulphide. Both precipitates can be microbially mediated in the lower 
parts of the sediment. 

Sediments were spiked with these precipitates and recovered using sequential 
extractions. The sequential extractions identify the exchangeable forms of the 
precipitates, those ~which are organically bound, the carbonate forms of the precipitates, 
and finally with a nitric acid extraction, the mineralized forms of the precipitates. Arsenic 
was extracted mainly in the organically-bound fraction, ranging from 86 % to 98 % of 
the spike. Nickel was partitioned between the exchangeable fraction and the organic 
fraction. In the presence of sulphide, a significant shift was noted in that more Ni was 
extracted as exchangeable (86 %) and less remained in the pore water (1.3 %). This 
suggests indirectly that the sediment adsorption properties change in the presence of 
sulphide reduction, which increases the stability of the sediment as a Ni sink. 

The laboratory reactor sediments, which facilitated the removal of As and Ni from the 
seepage, were sampled destructively to determine pore water chemistry and the 
chemical forms of As and Ni which had accumulated in the top 1 cm of the sediment. 
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The pore water chemistry indicated that in reactors where microbial sulphate reduction 
took place, the lowest Ni concentrations (0.43 mg/L) were detected in the pore water. 
In the control reactor, the concentrations were 7.8 mg/L. The highest As concentrations 
were reported in the control reactors, at 11 mg/L, which was reduced to 3 mg/L when 
carbon amendments were added to the sediment. The original seepage water 
concentrations were 39 mg/L and 81 mg/L of As and Ni respectively. 

The As in the top layer of the sediment is present either as organically bound or 
extractable with the carbonate fraction. Through carbon additions, a shift takes place 
to the carbonate form. None of the As is present in the mineral fraction of the 
sediments. The distribution of the precipitated Ni is different from As in that about 43 
% to 84 % is present in the exchangeable form, 42 % to 69 % as organically bound, 
and the remainder as either carbonate (3 % to 8 %) or in the mineral form (6.8 % to 16 
%) 

A final mass balance on the reactors suggests that, overall, only a small fraction of the 
As and Ni is available in the pore water. In the reactors where organic matter was 
added to the sediment, generally higher fractions are retained in the sediment. 

Experiments were carried out in 2 L column reactors to repeat the previously noted 
removal capacity of muskeg sediments to treat seepage high in As (85 mg/L) and Ni 
(74 mg/L). The results were repeated and effective removal (> 90 %) was achieved for 
both elements within 56 days. Organic amendments (potato waste) stimulated 
microbial activity and generated reducing conditions. 

Further work will be required to compare the laboratory results to the field results. To 
date however, the stimulation of microbial activity in muskeg sediments appears to be 
a promising option for decommissioning. 

I 
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1.0 INTRODUCTION 

Wetlands have been employed for the mitigation of acid mine drainage. Most of these 

wetlands are for the treatment of coal drainage and function by precipitation of iron as 

iron(lll) hydroxides in aerobic conditions (Brodie 1990). Treatment of base-metal-rich 

mine drainage has been less extensively investigated. Emphasis has been placed on 

anaerobic microbial treatment where, in sediments, alkalinity generation takes place 

through iron and sulphate reducing bacteria. The pH is elevated as a result of the 

microbial activity which, in turn, facilitates the precipitation of metals as either sulphides 

and/or hydroxides (Bell et al 1989, Kalin 1993, Wildeman 1992). These processes take 

place in wetland and lake sediments and might be utilized as a decommissioning option 

for seepage treatment. 

A waste rock pile of a uranium operation in northern Saskatchewan generates acidic 

seepages with elevated concentrations of arsenic, nickel, phosphate, sulphate and 

nitrate. The quantity of seepage from the waste rock pile is not extremely large and 

only emerges seasonally. The waste rock pile is surrounded by muskeg, which has 

several open shallow ponds; the ponds have been assessed as to their usage as 

seepage treatment areas. The muskegtietland is a perched water body, supplied only 

by atmospheric precipitation with diffuse inflow and oufflow. 

The feasibility of using the open water ponds in the muskeg has been addressed 

through a series of field and laboratory experiments. It has been proposed that if 

microbial activity can be stimulated in the muskeg sediments through additions of 

carbon to generate alkalinity, then the production of reducing conditions would lead to 

the precipitation of contaminants. As the concentrations of nutrients in the seepage are 

relatively high, the biomass expected to be produced in the ponds could utilize both 

phosphate and nitrate present in the seepage. This biomass, in turn, could provide a 

continuous source of carbon for the microbial activity in the sediments. Since 1992, 

seepage water has been introduced to field enclosures and laboratory reactors in which 

the rates of removal of both As and Ni have been determined. 
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Results are summarized in Smith et al (1993) and Fyson et al (1994). The field 

enclosures and the laboratory reactor experiments established that, under reducing 

conditions and in the presence of potato waste or alfalfa pellets, the sediment from the 

wetland was able to remove As and Ni from seepage water in batch conditions. 

Prior to large-scale treatment in the field, it is essential to assess the treatment capacity 

of the muskeg sediment and the stability of the removed contaminants in the 

sediments, with particular reference to the possibility that the pond water chemistry 

could change over the season (e.g. an influx of spring runoff water could result in 

dilution of the pond seepage water). 

The objective of the work carried out jointly with CANMET and CAMECO seeks to 

characterize the chemical forms of As and Ni removed from the seepage water to the 

sediments. Laboratory reactor experiments will be initiated to determine the capacity 

of sediments to remove As and Ni under flow conditions. The sediments from the 

laboratory reactors, from which the initial data were collected on the removal of As and 

Ni, will be used to determine the stability of the precipitates formed in the sediments. 

Sequential extractions are used to determine the chemical form of the precipitates, 

either as an organocomplex or in an adsorbed form. 

A literature review on both arsenic and nickel biogeochemistry is used to identify the 

main chemical factors controlling the water-sediment interface, as this is the driving 

force of the proposed seepage treatment system. 
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2.0 ARSENIC AND NICKEL IN THE AQUATIC ENVIRONMENT -A LITERATURE 

REVIEW 

2.1 Species of Arsenic 

The average concentrations of arsenic in shales, igneous rocks and sandstones is 13, 

1.8 and 1 .O mg/kg respectively (Onishi and Sandell 1955, Lemmo et al 1983). Arsenic 

is an element of multiple oxidation states. The common species of arsenic found in 

water, sediment and soil systems are arsenate(+5), arsenite(+3), monomethylarsonate 

(MMAA +3) and dimethylarsonite (DMAA +l) (Andreae 1979, 1983). Their respective 

chemical structures are presented in Figure 1. Most of the natural arsenic pool in water 

exists in the inorganic forms of arsenite (As+3) and arsenate (As+5). The organic 

forms MMAA and DMAA are very small components of the total As pool, representing 

up to 5% in water or sediments (Faust et al 1987a). 

The inorganic As species are primarily controlled by Eh and pH. Figure 2 is a pH - Eh 

diagram of As which shows the interchange between As(+5) and As(+3). The 

thermodynamic data are from Kotz and Purcell (1987) and Stumm and Morgan (1981). 

Generally, As(+5) dominates in surface waters, sediment surfaces and aerobic 

environments. In some sandy sediments, even under anaerobic conditions, As(+5) is 

the dominant species. This is probably due to the absence of electron donors (i.e. 

organic matter in the sandy sediments) (Faust et al 1987a), or due to the presence of 

oxidizing material in the sediments (Oscarson et al 1980). As(+3) exists in the deep 

sediments and pore water under anaerobic conditions. 

l 
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Figure 1. The MaJor Arsenic Species In Nature 
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2.1.1 Biological Cvclina of Arsenic 

Arsenic can enter a biological system similar to the phosphorus cycle in the 

environment; the As cycle and balance in nature are important. Arsenic is toxic due to 

its ability to form covalent bonds with sulphur, and As(+3) has a high affinity for thiol 

groups of proteins. This reaction inactivates many enzymes, making this radical more 

toxic than As(+5) (Tamaki and Frankenberger 1992). 

In highly productive ecosystems in the water, up to 80% of the total As pool may 

undergo reduction and methylation by algae (Sanders 1983). Arsenic uptake is not 

influenced by external phosphate (Budd and Craig 1981) however the presence of As 

may depress the uptake of phosphorus by algae (Brunskill et al 1980). 

In aerobic conditions algae can reduce As(+5) to As(+3), and methylate As(+3) to the 

non-volatile compounds (Baker et al 1983) monomethylarsonic acid (MMAA +3), 

dimethylarsinic acid (DMAA +I) or trimethylarsine oxide (TMAO -1) (Johnson and Burke 

1978, Andreae 1983). Methylation is equivalent to a biological detoxification process 

for As. In Figure 3 all biological reactions for As are summarized and lettered, starting 

with “(a)” for the algal reduction and methylation. 

Bacteria are approximately lo-fold more resistant to As(+5) than to As(+3) (Osborne 

and Ehrlich 1976). Under aerobic conditions, bacteria catalyse 78-96% of the As(+3) 

oxidation into As(+5) (Wakao et al 1988) (see Figure 3(b)). 

Under anaerobic conditions, bacteria reduce As(+5) to As(+3) and methylate As(+3) 

into MMAA (+3), DMAA (+I) and further into dimethylarsine (see Figure 3(c)). Sbme 

fungi generate trimethylarsine (Tamaki and Frankenberger 1992). 
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Figure 3. Arsenic Cycle in Nature 
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Soil and sediment bacteria can demethylate dimethylarsine and trimethylarsine into 

arsine; this is the primary mechanism for As loss to the atmosphere (see Figure 3(d)). 

Arsine in the air can be oxidized into As(+3) and As(+5) forms, and fall down to the 

ground with rain (Figure 3(e)). 

Since As can enter the food chain, microbial metabolism is another facet of its 

biological cycling. The end product of As in the higher trophic levels (e.g. shrimps) is 

arsenobetaine (Norin and Christakopoulos 1982). Such organic forms of As can be 

broken down by bacteria to As(+5) and carbon dioxide. The general degradation 

process follows the direction below (Kaise et al 1987, Hanaoka 1987): 

arsenobetaine --c trimethylarsine oxide + DMAA + 

+ MMAA -t ASO; + AsO;’ (see Figure 3(f)) 

2.1.2 Stabilitv of Arsenic Species 

The residence times of arsenic in various environmental components are listed below 

(Mackenzie et al 1979, Woolson 1983): 

Environment Residence Time &ears) 

Sediments 99,800,OOO 

Ocean (dissolved) 9,400 

Land 2,400 

Terrestrial Biota 17 

Oceanic Biota 0.07 

Air (total) 0.03 

Overall, organic fractions comprise only about 5% of the total As. These organic forms 

are chemically less stable than inorganic arsenate and arsenite - the more desirable 

forms of arsenic - which can remain in the sediments as stable precipitates. 
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2.1.3 Arsenic Adsorption Processes 

Arsenic chemistry in soils and sediments is believed to be mainly controlled by 

adsorption-desorption mechanisms; both As(+3) and As(+5) can be adsorbed. The 

adsorption process is controlled by Eh and pH (Goldberg and Glaubig 1988) which are 

the same factors controlling the chemical species of the inorganic As forms. 

Elkhatib et al (1984) used a modified Freundlich equation to describe the kinetics of the 

As(+3) adsorption process in soil. They found that Fe(+3) oxides and Eh are the main 

soil properties controlling the As adsorption rate. 

Pierce and Moore (1982) studied the adsorption of As(+5) and As(+3) on amorphous 

iron hydroxide. Their conclusion was that As(+5) adsorbs more readily than As(+3); the 

optimum pH condition for As(+5) adsorption is pH 4, and for As(+3) pH 7. 

The adsorption of As to oxides (Fe, Al, and Mn), clays and sediments has been 

studied. Strong linear correlations exist between total As concentrations and both Fe 

and Mn concentrations (all elements are determined by neutron activation analysis) in 

the surface sediments of Lake Washington. A poor linear correlation of total As 

concentration with organic carbon concentration (oven-dried sediment treated with HCI 

and then with a LECO carbon analyzer) was observed in the same sediments 

(Crecelius 1975). 

Although adsorption of As occurs on the surfaces of both Fe(+3) and Mn(+4) oxides, 

the situation is different. The surface of Mn(+4) oxide is mostly negatively charged. 

When Mn(+4) oxide is reduced to Mn(+2) in the deeper sediment, it dissolves and 

diffuses into the porewater. Mn(+2) may then be adsorbed by the surface of M$+4) 

oxide. This changes the sediment-bound Mn(+4) oxide’s surface charge from negative 

to positive, which then adsorbs the negatively charged As(+5) anions (Takamatsu et 

al 1985). These oxidation/reduction processes can be affected by microbial activity in 

the sediment. 
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Mn(+4) oxide can oxidize As(+3) into As(+5) (Takamatsu et al 1985). For example, 

As(+3) is observed to be oxidized by Mn(+4) in fresh sediments from a southern 

Saskatchewan lake into As(+5) through an abiotic process. The reaction activation 

energy is only 3.3-8.5 kcallmole. This low activation energy required for the reaction 

indicates that the oxidation process is very fast and mainly diffusion-controlled (Huang 

et al 1982). It has been shown that under N, gas flow, As(+3) is oxidized by Mn(+4) 

and Fe(+3) in the sediments. These oxidations can take place according to the 

following reactions: 

HAsO, + MnO, + 2H+ = H,AsO, + Mn” 

HAsO, + 2Fe’3 + 2H,O = H,AsO, + 2Fe” + 2H’ 

Sorption of As is occurring simultaneously with the oxidation of As(+3) to As(+5) 

(Oscarson et al 1980). 

The Fe(+3) oxide surface is mostly positively charged, hence it readily adsorbs the 

negatively charged As(+5) anions. However, the adsorption is only favoured by a low 

pH. At a higher pH (> 5.5 - 6) the Fe(+3) hydroxide surface becomes negatively 

charged and this makes the adsorbed As unstable (Dzombak et al 1990, Brewster 

preprint). 

There is disagreement in the findings about the relationship between As and Al(+3) 

oxide components in the sediments. Some reports showed a positive correlation effect 

between them (Huang 1975, Livesey and Huang 1981) whereas a poor correlation was 

indicated by others (Crecelius 1975). 

Phosphate (P+5) and sulphate (S+6) sometimes compete with As in the adsorption 

process. Addition of phosphate or sulphate after As(+5) or As(+3) had been adsorbed 

had very little affect on the adsorption of As. A significant effect on the adsorption of 

As at low concentrations was evident after phosphate or sulphate had already been 

adsorbed (Pierce and Moore 1982). Barrow (1974) found that high concentrations of 
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As(+5) solution (As(+5) = 37.5 g/L) can displace phosphate (200 pg phosphate per g 
of soil) from soil. Livesey and Huang (1981) examined the influence of anions (nitrate 

(N+5), chloride (Cl-l), sulphate, and phosphate) on the adsorption of As by active soil 

components. The molar ratio of anions to As(+5) ranged from 100 to 10000 (As(+5) 

= 0.10 mg/L to 2.15 mg/L). Nevertheless, other anions, which were tested in relation 

to affecting the adsorption of As by the soils, did not vary significantly with increased 

concentrations of chloride, nitrate and sulphate. Only phosphate substantially 

suppressed the adsorption of As. 

As mentioned above, adsorption-desorption equilibria with sediments are considered 

to dominate the As concentrations in the aqueous phase. Part of the adsorbed As is 

related with Fe(+3) oxide and may be extracted by oxalate solution, while the remainder 

is complexed with organic molecules and, hence, is not oxalate-extractable. 

Faust et al (1987a, b, and c) did a series of experiments to test the stability of As in 

sediments of the Maurice River, Blackwater Branch, and Union Lake. They found that 

both sandy and organic sediments have 43% to 81% As non-extractable by distilled 

water or 1 N HCI solutions (Faust et al, 1987a). Among the extractable As, less than 

1% is released from organic sediments while 2848% is released from sandy 

sediments. This indicates that organic sediments have a stronger affinity and a greater 

capacity for sorption of As than sandy sediments (Faust et al, 1987b). 

As(+3) is more mobile than As(+5). Under reducing conditions therefore, where this 

form will predominate, As concentration increases greatly (Masscheleyn et al 1991). 

The As release is strongly dependent on the oxidation states and the surface charge 

of Fe(+3) hydroxide in sediments. Under anaerobic conditions, 10 times as much As 

is released from sediment than in aerobic conditions (Clement and Faust, 1981). 

Arsenic is not released within the aerobic range of 10% to 100% oxygen saturation in 

the sediment. 
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2.1.4 Arsenic Precipitation Processes 

Besides adsorption to the sediments, arsenic may also precipitate or coprecipitate in 

the sediments. Various metal ions can form precipitates with arsenate (As+!?). Hess 

and Blanchar (1976) used ion products of Al, Ca, Fe, Mn, and Pb arsenate compounds 

to study the equilibrium states of As in some soil samples. They found that Pb 

arsenate and Mn arsenate are more stable than Fe, Al, Pb and Ca arsenate 

precipitates in their soil samples, and both Mn and Pb concentrations control the level 

of As in solution. Under reducing conditions, As can react with sulphur to form the 

stable sulphides As,S, (realgar) and A.@, (orpiment). 

Overall, adsorption of As in sediments with Fe(+3) and Mn(+4), Al(+3), and precipitation 

of As with sulphide (S-2) and other metal ions are the major mechanisms for arsenic 

removal from aqueous environments. 

2.2 Species of Nickel 

Most nickel is produced from sulphide ores, such as pentlandite ((Fe,Ni),S,), the 

arsenide ores, such as niccolite (NiAs), chloanthite (NiAs,) and nickel glance (NiAsS) 

(Nicholls 1973). Nickel can form compounds in a series of valence states from -1 to 

+4; the most common state is Ni(+2). Additionally, nickel can form organometallic 

compounds (Nicholls 1973) while free nickel ions can form a large number of 

complexes with organic phosphorus and nitrogen compounds. Nickel also has quite 

a high adsorption ability (Weider, 1990). a 

In a study of the Yukon and Amazon rivers, 2.2% to 2.7% of the total nickel was found 

in solution as free ions and complexes. The rest was found adsorbed on suspended 

materials in metallic coatings, or incorporated in solid biological materials, or in 

crystalline structures (Gibbs 1973). 



The mobility of nickel in soil and sediment pore water is low. In Sudbury, nickel and 

copper concentrations in surface samples of soil and sediment were found to be 

elevated (Hutchinson et al 1975). However, the elevated concentrations were confined 

to the top 15 cm. This indicates that the nickel does not move vertically downward 

through the sediment or soil profile. 

2.2.1 Bioloaical Cvclina of Nickel 

Nickel is one of the essential trace elements for living organisms (Mertz 1974, Nielsen 

1971). It is an essential component of bacterial enzymes such as hydrogenases 

(Hausinger 1987) but it is also very toxic to most bacteria (>5.87 mg/L). 

Bacteria with high nickel resistance have been isolated from heavy-metal-rich sites. 

Four hundred nickel tolerant “isolates” have been collected (Schmidt et al 1991) and 

some were able to grow in the presence of 2.35 mg/L NiCI,. 

Nickel resistance is determined by the presence of genes on a DNA plasmid which can 

be transferred between bacteria and can, therefore, potentially spread within heavy- 

metal-polluted ecosystems. The plasmids carrying nickel resistance may show 

resistance to other heavy metallic ions such as cobalt, chromate, and mercury 

(Mergeay et al 1985, Schmidt et al 1991). 

Algae (Scenedesmus acutiforrnis var a/remans) isolated from heavy-metal-polluted 

lakes near Sudbury, Ontario are tolerant to nickel (Stokes et al 1973). This study found 

that growth rates were sub-maximal in solutions containing 1.5 mg/L nickel; some algal 

growth occurred at 3 mg/L nickel. In the laboratory, 0.25 mg/L nickel solutions had no 

effect on the growth of the cultured isolate (Stokes et al 1973). 

Stokes et al (1973) established a positive correlation between nickel concentrations in 

water and algae, and between sediment and roots of the water lily Nymphaea. The 

highest concentrations of nickel were found in the algal periphyton which had 20,000 
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times more nickel than in the water. In the vegetation, nickel concentrations uniformly 

exceeded both copper and zinc levels at the contaminated sites. 

A few flowering plants, termed nickel-hyperaccumulators, can survive in heavily 

contaminated soils and may accumulate 1% dry weight as nickel (Schlegel et al 1991). 

The oral toxicity of nickel to man is very low. Nickel does not accumulate in human 

tissues and is eliminated via the faeces and urine. 

2.2.2 Stabilitv of Nickel Species 

In aquatic ecosystems, the biogeochemical processes that may contribute to the 

removal of nickel from polluted waters include: (1) uptake by vegetation; (2) binding to 

organic matter as organic complexes; (3) adsorption to sediment by cation exchange 

or coprecipitation; (4) the formation of insoluble metal oxides/oxyhydroxides; (5) 

insoluble metal sulphides; and (6), other insoluble metal precipitates. The ability to 

form organic complexes assists nickel removal and retention by organic sediments. 

An experiment to measure the maximum binding capacities for ten cations to sphagnum 

peat and sawdust showed that Ni’* was one of the more strongly bound ions (Weider 

1990) The ions are listed below in decreasing order of binding capacity: 

AIt3 = Zn’2 > Fe’3 > Ni” = Cde2 > Na’ = Mn” > K’ > Cae2 > Mg’2 

Eger and Lapakko (1989) and Lapakko and Eger (1988) showed that, at a neutral pH, 

peat could remove up to 20 mg Ni per g peat (dry weight). Removal rates were 

reduced at lower pH. 
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2.2.3 Nickel Adsorption Processes 
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The removal of nickel from the aquatic environment is mainly a result of adsorption on 

other metal oxide surfaces (Theis and Richter 1980). Sediments rich in iron hydroxide 

(goethite) and manganese oxide are effective scavengers of heavy metals in the 

aquatic environment (Singh and Subramanian 1984). The adsorption of Ni on goethite 

has been studied under different conditions - pH 4 to 8, concentration of Ni from 

5.87’10.* mg/L to 5.87 mg/L, and temperature from 5°C to 35°C (Bruemmer et al 1988). 

Ni adsorption on MnO, solid has also been studied (Laitinen and Zhou 1988). The 

adsorption was in agreement with the Langmuir equation and it was found that the 

adsorption increased with pH, reaction time and temperature. 

2.2.4 Nickel Precipitation Processes 

Precipitation as sulphides under reducing conditions is a further common mechanism 

by which nickel is precipitated in the sediment. Reactor studies (Hammack and 

Edenborn 1992, Dvorak et al 1992) have shown that nickel is effectively removed from 

solutions in batch-reactor conditions into sulphide precipitates. The resulting sulphide 

precipitates are stable over a wide range of pH’s and can be expected to trap the nickel 

as long as reducing conditions prevail. 

The nickel sulphide formation may be closely linked to the presence of nickel organic 

complexes since, in nature, metal sulphides commonly exhibit a close association with 

high-molecular-weight organics in fine-grained sediments (Kirchner 1985) and several 

studies suggest that organo-metallic complexes which form in situ play an important 

role in the transfer of metallic ions to sulphide phases (Nissenbaum and Swaine 1976, 

Lett and Fletcher 1980). 

Nickel may form organic complexes at the bacterial cell surface, then further react with 

microbially produced S*. Ferris et al (1987) found microcrystalline millerite (NiS) 
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associated with bacterial surfaces in a lake sediment contaminated from mine drainage 

near Sudbury, Ontario. Ferris et al (1989) also showed that bacterial biofilms formed 

on slides suspended in lakes accumulated more Ni in neutral conditions than in acidic 

conditions, indicating that an increase in pH may be important in determining Ni 

removal rates. 

Baojum Research Limbd CANMET 



I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

3.0 MATERIALS AND METHODS 

3.1 Site description 

The study was conducted at CAMECO’s Rabbit Lake uranium operation in northeastern 

Saskatchewan (Collins Bay, Wollaston Lake). Located northwest of the waste rock pile 

in the B-Zone area is the BT-1 wetland which covers 40.5 hectares, and drains 

primarily towards the flooded B-Zone open pit (Map 1). The BT-2 wetland is 

immediately adjacent to the northwest side of the ore stockpile, and covers 55.2 

hectares; water from this wetland also drains towards the flooded pit. A series of 

ponds, with an average depth of 0.5 m and underlain by 1 m of sediment primarily 

composed of peat particles, is located in the northeast section of the BT-2 wetland. An 

overview of the BT-2 wetland is depicted in Plate 1. 

Plate 1: Overview of the BT-2 Wetland 
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3.2 Preparation and Operation of Reactors 

3 2.1 1993 Laboratory Reactors L 

Six acrylic cylinders (9.5 cm internal diameter and 42 cm high) were used as “reactors” 

for the water column experiment, as well as two 2 L glass jars. They were cleaned and 

rinsed with distilled water. The reactors are shown in Plate 2. 

The experiment was set up on May 3, 1993 and terminated on January 10th 1994. To 

each reactor, 500 mL of original BT-2 station 250 muskeg sediment was added and left 

to settle for 24 hours. Then 760 mL of 6.11 water from the Waste Rock Seepage was 

carefully added to the top of the sediment in each reactor. Reactor Rl was the control 

without organic amendments, reactors R2 and R3 were used for the potato waste 

anaerobic treatment, and reactors R4 and R5 were used for the alfalfa anaerobic 

treatment. 

Plate 2: 1993 Laboratory reactors used to study biological arsenic removal 
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Six days after adding the 6.11 water (May 10, 1993) 5 g of potato waste was added 

to R2 and R3, and alfalfa pellets (55 mL or 31.5 g) were added to R4 and R5. At the 

same time, glass jars 1 and 2 were set up as controls with 760 mL 6.11 water and no 

sediment. Jar 1 was amended with 5 g potato waste and Jar 2 was amended with 55 

mL alfalfa pellets. All the reactor cylinders and jars were tightly sealed. 

3.2.2 1994 Laboratorv Reactors 

The sediment contained in the 1993 reactors was used in sequential extractions to 

determine the form of the As and Ni which had accumulated in the sediment, The 

same reactors were washed and reused to set up the 1994 experiment; the set-up of 

the reactors was identical to the experiments carried out in 1993. 

900 mL of sediment collected at the BT-2 250 m section of the transect, and 900 mL 

of 6.11 seepage water was added carefully by siphoning to minimize sediment 

disturbance. Glass jars were set up with 6.11 water (900 mL) to which no sediment 

was added. The slightly milky appearance of the seepage water in the reactor is 

depicted in Plate 3; the reactor shown is following set-up with 5 g of potato waste 

(McCain Foods) afler a 24 h settling period. Potato waste was added to the top of the 

water and reached the sediment surface within 1 hour. 

The sediment in the reactors received the following treatments: 

A. Reactors 1,2,3,7,8 & 9 

B. Reactors 4,5,& 6 

C. Jar 1 8 3 

D. Jar 2 

- no further treatment 

- replace 500 mL of the water column weekly, 

simulating continuous flow of the seepage in the 

“field” 

- no further treatment 

- replace 500 mL of the water column weekly 
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Plate 3: 
, 

-aboratory reactor at set-up 
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3.3 Monitoring and Analytical Methods 

Water was drawn from the sediment with a syringe while seepage water was carefully 

replaced from above to minimize or avoid sediment disturbance. The following 

parameters were monitored: 

PH acidity Ni 
Em alkalinity As 
conductivity NO, Fe 

The pH was measured with a Canlab probe and Jenco meter, Em with Fisher probes 

and Corning Model 103 meter, and conductivity with an Orion 140 meter and probe. 

Em values were converted to Eh values by means of the formula: 

Eh (mv) = Em (mV) + (241 - 0.66(T-25)) 

where T is the measured temperature (“C). Acidity was determined by titration against 

NaOH with a Metrohm 702 SM Titrino autotitrator. Nickel was determined with a 

calorimetric test (Rollet’s dimethylglyoxime complexation) and reading absorbance at 

445 nm. Arsenic was measured with the Merck Merckoquant strip test which measures 

the reaction between hydrogen arsenide gas and mercury(+2) bromide. Iron was 

determined by a phenanthroline test (absorbance at 510 nm) and NO,-N with a Hach 

cadmium reduction (absorbance at 545 nm). For the calorimetric tests, a Bausch and 

Lomb Spectronic 70 spectrophotometer was employed. 

The calorimetrically-determined concentrations were compared to those determined by 

ICP (Inductively Coupled Plasma Spectrophotometry). These analyses are carried out 

by a certified laboratory in Toronto; the laboratory’s QA/QC procedures are givfn in 

Appendix 7. For the seepage water which was treated, the agreement between the 

calorimetric concentrations and those determined by ICP were reasonable, but nickel 

concentrations in the solutions derived from the sequential sediment extraction were 

unacceptable due to interference. Therefore, all Ni concentrations in solutions from the 

sequential sediment extractions were determined by ICP. 
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3.4 Sediment Sampling in the 1993 Reactors 

After 35 weeks (January 10, 1994) of operation the sediments were sampled. The 

water overlying the sediments in the reactors was syphoned carefully not to disturb the 

sediment. The seepage water overlying the sediments in the reactors was referred to 

as the Top water sample. Water filtered from the top and middle layers of the 

sediments was referred to as the Middle water sample. Water filtered from the bottom 

sediments was referred to as the Bottom water sample. 

Sediments in the reactors were divided into three layers -the top 1 cm was referred to 

as the top sediment sample of the reactors while the 5 cm section of sediment 

immediately below it was referred to as the middle sediment sample. The remaining 

sediment below this was referred to as the bottom sediment sample. 

Each layer of sediment was collected with a spoon and filtered immediately. The pore 

water derived in this manner was used to quickly measure Em, pH and electrical 

conductivity. 

All of the pore water samples were purged with N, gas, sealed in plastic bottles and 

refrigerated (4°C). ICP analysis was carried out within 48 h of removal from the 

sediment. Concentrations of sulphide and sulphate were determined in the pore water. 

Each of the sediment layers were well mixed and then separated into two portions. 

One portion was sealed under nitrogen gas and kept in the refrigerator (4%) for 

sequential extraction analysis. One portion was used for measurement of wet volume, 

dry weight and loss on ignition (LOI), a measure of the organic content of the material. 
* 

The sequential analysis of sediment is designed to determine: (1) the form of metal 

deposit in the sediment, and (2) the stability of the various As and Ni precipitates. 
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The sequential extractants are referred to in previous metal extraction studies 

(Salomons and Forstner 1984, Bupp and Ghosh 1991, Henrot and Wieder 1990). The 

extraction steps are: 

(1) 

(2) 

(3) 

(4) 

3.5 

1M KNO, solution for exchangeable metals, solid/solution ratio 150, 2 hours 

shaking. 

O.lM Na,P,O, + 0.01 N EDTA solution for organically-bound metals, solid/solution 

ratio 150, 24 hours shaking. 

IM ammonium acetate solution (pH=5) for metal carbonate, solid/solution ratio 

150, 5 hours shaking. 

concentrated HNO, solution for other metal precipitates (arsenates, hydroxides 

and sulphides), solid/solution ratio 1:50, 2 hours heating at 120°C. 

Sequential Extraction of ‘Spiked’ Sediments 

To test the applicability of the sequential extraction method to the sediments and 

determine the reliability of the calorimetric tests as monitoring tools for the experiment, 

extractions were carried out with sediments spiked with precipitates, The proposed As 

and Ni precipitates were synthesized as described below and mixed with the sediment; 

this allowed for an assessment of the effectiveness of the extraction method with 

respect to the relevant elements which were removed from the seepage water in the 

reactors. 

BT-2 250 sediment (collected in 1993) was used to adsorb all the precipitates in the 

spike experiment. The sediment moisture was measured by drying the sediments at 

104% in an oven for 24 hours (Clesceri et al 1989). 

In the reactors, to which seepage water was added, the concentrations of As and Ni 

were reported as 50 mg/L and 82 mg/L respectively. The total volume of seepage 

water added to the reactors was 700 mL which resulted in a total quantity of As and Ni 

(precipitated or adsorbed onto the sediments) of about 35 mg and 57.4 mg respectively. 
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To precipitate the total loading of As and Ni added to the reactors, it required 26 mg 

of Fe and 121.3 mg Na$O,.H,O or 234.7 mg Na,SSH,O. 

In order to run the spike experiment within a similar concentration range, precipitate 

was produced in solutions which considered concentrations of reagents in 

stoichiometric proportions to achieve the desired concentration range of total As and 

Ni. 

Sediment was prepared once to produce a combination of iron arsenate precipitate and 

nickel carbonate, referred to as sample #2, while a second combination produced a 

sediment spiked with iron arsenate and nickel sulphide, referred to as sample #3 For 

each preparation 20 g of the wet sediments were used. Sample #I sediment was used 

as a control with no precipitates added. 

To make precipitates of FeAsO, and NiCO,, a solution consisting of 98.6 mg Na,AsO, 

(22.2 mg As) and 260 mg NiS0,.6H20 (58 mg Ni) was prepared and added to the 

sediments in 20 mL distilled water. A second solution containing 167 mg FeCI,.GH,O 

and 119 mg Na,CO, solutions was prepared in 10 mL distilled water and slowly 

dropped into the slurry of the sediment. Thus in the sediment, the respective 

precipitates were expected to form (sample #2). Finally, the pH was adjusted to 6.35 

by dilute NaOH or H,SO, solutions, and the slurry was allowed to settle for 1 hour. 

To form the combination of FeAsO, and NiS precipitates (sample #3), solutions of 93 

mg Na,AsO, (20.5 mg As) and 266 mg NiSO,.6H,O (59.4 mg Ni) were dissolved in 20 

mL distilled water and added to the sediments. This was followed by adding a solution 

of 158 mg FeCI, and 205 mg Na,S dissolved in 10 ml of distilled water to the sediment. 

The sediment changed colour to a dark black and the pH was adjusted with IN NgOH 

to 6.30. 
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After the sediments and their respective precipitates settled for one hour, the sediments 

were filtered with a 0.45 pm filter paper. Before each extraction, the sediments were 
rinsed twice with 50 mL distilled water to wash away the remaining extractants. The 

washing water was combined with the extraction solutions to give a total volume of 150 

mL. The sequential extractions, as described above, were carried out on the washed 

sediments. 

Solutions derived from each extraction were assayed using the calorimetric methods 

to determine the concentrations of iron, arsenic and nickel which were released from 

the sediment during the extractions. 
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4.0 RESULTS 

4.1 1993 Experiment - Arsenic and Nickel Forms in Sediments 

In the 1993 reactors, where arsenic and nickel was removed from the seepage water 

to the sediment, a known amount of both contaminants can be expected when the 

sediments are extracted. Through (a) destructive sampling of these reactors, (b) 

analysis of the pore water collected from different depths, and (c) analysis of the 

sediment in the reactors, estimates can be derived as to the fraction of the 

contaminants removed by the sediments. The pore water concentrations are those 

which are potentially available to diffuse throughout the sediment layers and to the 

water column. The results from the pore water analysis are presented in Section 4.1 .l. 

The chemical form in which the contaminants are present in the sediment can be 

determined through their extractability using sequential extractions; exchangeable 

metals are recovered in the first extraction with potassium nitrate, followed by the 

extraction of organically-bound metals with a sodium diphosphate and EDTA solution 

in the second step. The third extraction is carried out with ammonium acetate, which 

recovers carbonate precipitates formed in the sediment, and finally a hot nitric acid 

extraction is employed to recover all remaining metals not bound in a silicate matrix. 

Although the sequential extraction steps will provide good estimates as to the form of 

metals bound to the sediment, it can not be expected that a complete recovery of all 

precipitates formed in the sediments is possible with such an extraction process. Each 

extraction step will have its own methodological error as well as an analytical error. 

Thus, in order to assess the ability of the procedure to allow for accurate quantification 

of the extracted fractions, a spiked sediment extraction was carried out. ’ 

The results of the spiked sediment extraction are presented in Section 4.1.2., and the 

sequential extractions carried out on the top 1 cm layer of the sediments in the reactors 

are presented in Section 4.1.3. 
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4.1.1 Seeoaae Water and Sediment Pore Water Analvsis 

Laboratory measurements of pH, Eh and conductivity of the reactor seepage water 

overlying the sediments, and pore water derived from filtrations of the sediments are 

summarized in Table 1. The Top layer refers to the treated seepage water overlying 

the sediments, the Middle layer to the pore water derived from a combination of the top 

and middle layers of the sediment, and the Bottom layer to the pore water derived from 

the lower part of the sediment. Also included in Table 1 are the concentrations of As, 

Ni, Fe, P, sulphate and hydrogen determined by the assay laboratory. 

Table 1: 1993 Reactor Experiment - Chemistrv of Water Overlvina Sediment 
& Sediment Pore Water after 35 Weeks of 0peration:Jai. 10, 1994 

- 
PH 

- 
4.31 

5.17 

5.32 

6.44 

6.53 

6.43 

6.35 

6.42 

6.16 

7.48 
7.48 

7.02 

7.33 

7.47 

7.16 - 
4.41 

- 
=ET 
(mv) 

516 

402 

Ml 

221 

173 

152 

223 

123 
111 

2 
131 

106 

167 
96 

EACTOR Layers 

R-l TOP 
Control Middle 

R-2 

Bottom 

TOP 
Potato Middle 

Waste Bottom 

R-3 TOP 
Potat0 Middle 

waste Bottom 

R-4 Top 
Aifalfa Middle 

PSllStS BOttWn 

R-5 Top 
Alfalfa Middle 

Pellets Bottom 

6.11 Water- 

- 
Cond. 

(umhos/cm] 

474 

477 

393 

470 

393 

268 

376 

328 

316 

3650 
3360 

4030 

3890 

3910 

4100 

n.d. = not determined 

Note: all parameters measured at room temperature (20-21 C) 

As 
OwN - 

11 

7 

3.5 

3 

6 

3 

0.7 

6 
3 

3 

4.5 

5.5 

3 
3 

3.5 
- 
39.6 

=z- 
mfL) - 
0.034 

0.03 

0.056 

0.266 

0.177 

0.581 

0.094 

0.161 

1.45 

0.488 

0.770 

1.21 

0.176 

0.132 

0.368 
- 
0.48 - 

Ni 
(mgR) 

7.65 

5.17 

1.82 

0.66 

1.41 

0.18 

0.28 

1.36 

0.37 

0.46 

0.43 

0.53 

0.33 

0.6 

0.63 - 
61.0 - 

- 
P 
OWL) - 
0.25 

0.15 

0.1 

1.56 

1.19 

0.68 

0.78 

0.76 
1 

6.97 

7.47 

7.66 

6.01 

7.31 

2.49 - 
20 - 

HS 
(mgR1 
<O.Ol 

co.01 

<O.Oi 

<O.Ol 

<O.Ol 

co.01 

<O.Ol 

0.01 

co.01 

0.17 

0.05 

co.01 

co.01 

<O.Ol 

co.01 - 
n.d. 

- 
so4 
(msn: 

235 

242 

199 

64.4 

44.9 

12.5 

47.8 

21.9 
12.4 

4.93 

4.62 

5.81 

70 
23.9 

4.08 - 
22 - 
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To determine the fractionation of the contaminants between pore water (mobile 

fractions) and sediments, the calculations have to be based on the pore water 

concentrations. This is the potentially mobile fraction which can move out of the 

sediment and become available for release into the water column. The results obtained 

from the analysis of the seepage water overlying the sediment and the pore water are 

briefly discussed for each reactor below. 

Rl (no organic amendment to sediment): It is evident that pH values for RI (6.11 

seepage water and E-6 sediment) were lower than those of the other reactors. 

However, they were much higher than the seepage water added at the start of the 

experiment (pti 4.41). In this reactor, redox potential (Eh) was much higher in the top 

samples (+518 mv) than in the middle (+402 mv) or bottom samples (+201 mv) where 

more reducing conditions prevailed. The pH was higher at the bottom of the reactor 

(pH 5.32) than in the middle (pH 5.17) or top (pH 4.31) indicating that alkalinity 

generating processes, such as denitrification, iron reduction and sulphate reduction 

have taken place. The lower conductivity in the bottom sample (393 flmhoslcm 
compared to 477 pmhoslcm in the middle and 474 pmhoslcm at the top) suggests that 
precipitation or other ion removal processes have occurred or that ions have been 

removed from the seepage water before it reaches this zone. The chemistry data 

(Table 1) indicates that concentrations of As and Ni were substantially lower at the 

bottom (3.5 mg/L and 1.82 mglL) than at the surface (11 mg/L and 7.85 mg/L). In 

contrast, iron concentrations were highest in the bottom sample (0.056 mg/L compared 

to 0.034 mg/L for the surface sample). 

R2 and R3 (with potato waste): The water from these reactors had a higher pH (6.44 

and 6.35 for surface samples) and lower Eh (221 mV and 223 mV for surface samples) 

than the control reactor (pH 4.31 and Eh 518 mv). The fermentation of the potato 

waste can result in development of more reducing conditions than with the sediment 

alone. This in turn results in promotion of alkalinity generating anaerobic processes. 

There was no clear difference in pH between top and bottom samples but as observed 

for RI, the Eh and conductivity were lower at the bottom of the reactors. There were 
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no substantial differences in top and bottom samples for As and Ni. Iron concentrations 

were higher in the bottom samples (0.58 mg/L and 1.45 mg/L for R2 and R3 

respectively) than the top samples (0.27 mg/L and 0.09 mg/L for R2 and R3 

respectively) indicating that iron (Ill) reduction and dissolution may have taken place 

here in reducing conditions. Overall, conductivity was lower than in the control reactor 

(Rl) indicating the enhancement of metal removal processes by the potato waste. 

R4 and R5 (with alfalfa pellets): The pH of reactors with alfalfa pellets was higher 

and the Eh lower in the top, middle and bottom layers of R4 and R5 than both that of 

the control (RI) and the potato waste reactors (R2 and R3). The conductivity was an 

order of magnitude higher than in the other reactors (approximately 4000 pmhos/cm 
compared to approximately 400pmhos/cm). In R4, arsenic concentrations were higher 
at the bottom (5.5 mg/L) than at the top (3 mg/L) whereas in R5 they were consistent 

throughout (3 mg/L to 3.5 mg/L). Iron concentrations increased with depth from 0.49 

mg/L (R4) and 0.18 mg/L (R5) at the surface to 1.21 mg/L (R4) and 0.37 mg/L (R5) at 

the bottom. Sulphide was detected in R4 sediments but not in any of the other 

reactors. This sulphide was associated with the lowest Eh values and may indicate the 

occurrence of sulphate reduction and subsequent precipitation of metal sulphides. Very 

high phosphate concentrations (2.5 to 7.3 mg/L) were found in the alfalfa pellet 

reactors. 

Comparison of the pore water concentrations of all the reported elements clearly 

indicates that changes have taken place. For example, the highest concentration of As 

in the pore water was reported as 11 mg/L in the control reactor (RI), but the seepage 

water contained 39.6 mg/L of As. In all other reactors, where organic amendments 

were added to stimulate microbial activity, the concentrations of As in the pore yater 

were lower ranging between 3 mg/L to 5 mg/L. Similar trends are seen for Ni in that 

the control reactors had the highest pore water concentrations with 7.8 mg/L in the 

surface water, but considerably lower concentrations were noted (0.3 mg/L to 1.4 mg/L) 

in sediments of reactors with organic amendments. 
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For the nutrient phosphate, the conditions were reversed as expected, since no 

additions of phosphate-rich organic amendments were made to the control reactors. 

Here the control had the lowest concentration of P at 0.25 mg/L (top sample), followed 

by the potato waste reactors (R2 and R3) with concentrations of 0.8 mg/L to 1.6 mg/L 

in the surface layer. The alfalfa-pellet amended reactors (R4 and R5) had the highest 

P concentrations with 6.0 mg/L to 7.0 mg/L in the surface layer. 

The fact that sulphide reduction can take place in the presence of alfalfa pellets is 

indicated by the presence of sulphide in R4 and also the reduced concentrations of 

sulphate in sediments at the bottom of reactors. The highest sulphate concentrations 

are present in the control reactor sediments with 235 mg/L in the surface sample. In 

the potato waste amended reactors (R2 and R3) a reduction to 47.8 mg/L and 84.4 

mg/L at the surface and lower in the lower layers of the reactors was observed. In R4 

(alfalfa-pellet amended) the lowest sulphate concentrations are reported with 4.9 mg/L 

at the surface where concurrently HS concentrations are noted. In order to detect 

hydrogen sulphide in the pore water, the availability of metals to react with the sulphide 

must be low. This is suggested by the relatively low Ni concentrations in R4, where the 

highest hydrogen sulphide concentrations are reported. The pore water data strongly 

indicate, that the sediments are instrumental in changing the chemical composition of 

the seepage water. 
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4.1.2 Sequential Extraction Effectiveness and SoecificiQ 

Sediments were spiked with precipitates of FeAsO, and NiCO, to produce one 

combination, called sample #2, and a second combination was made by spiking 

sediment with FeAsO, and NiS, called sample #3. Sample #l was the original 

sediment without a spike. 

The results from the spike sequential extractions are summarized in Table 2a for As, 

Table 2b for Ni, and Table 2c for Fe. All data determined in the experiment, including 

data required for the calculations to arrive at summary Table 2 are given in Appendix 

Table Al. 

Metal concentrations in the original solution and in each extraction were measured. 

The total extracted metal values in each solution were calculated by multiplying the 

assays by the solution volume. The percentages of extracted metals in each extraction 

were determined by comparison with the total extracted metal value. In Table 2, the 

final column “total measured %” is the sum of all the measured amounts divided by the 

original added amount. 

The As present in the original sediment is bound mainly as organic complexes, as this 

was the only extraction in which As was detected (Table 2a). For Ni, fractions are 

present in the sediment as exchangeable Ni, organically-bound Ni, and Ni in a mineral 

form, while no Ni is present as a carbonate (Table 2b). For Fe, the original sediment 

does not contain exchangeable iron. A large fraction of Fe is organically-bound, 

followed by mineral forms (Table 2~); no other forms of Fe exist in the sediment. 

Sample #2 was spiked with iron arsenate and nickel carbonate to concentratio& of 

known amounts. With these extractions it is possible to examine the behaviour of these 

precipitates in the selective extractions. Sample #2 for As indicates that the largest 

fraction is organically-bound, followed by some recovery as a carbonate but none in the 

exchangeable form or the mineral phase. For Ni, the results are different as a large 
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a. 
mat 

measured 

As % 

b. 

NoIs: tot.M(mg) = [M](mg!lJ l vol.(mL)/1000 

% M extracted = tot.M/tot.M(exlract wig. + etiractl + extract2 + extract3 + extract4) 

where: M = As. Ni. Fe 

fraction remained in the pore water, not bound in any form to the sediment. ‘The 

second largest fraction was the organically- bound, while some fraction was present in 

the exchangeable phase; none of the Ni was extracted in the mineral form. The Fe 

results were very comparable to the original sediment in that most was organic, none 

exchangeable, and some present as carbonates and in the mineral form. 
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Sample #3 contained iron arsenate together with nickel sulphide. For arsenic, one 

would expect very similar results to sediment sample #2 unless the formation of nickel 

sulphide changes surface charges in the sediment thereby facilitating different 

adsorptions for the arsenic forms. This indeed seems to be the case, as lower 

recoveries were reported in the pore water solutions than in sample #2; this was also 

the case for the carbonate extractions which reported lower “% recoveries” than in 

sample #l. In the presence of nickel sulphide, the largest fraction of As is organically- 

bound in the sediment while none is present in the mineral extraction. 

For Ni, the distribution of the forms changes drastically, in that very low fractions remain 

in the original pore water. The largest fraction is present as extractable Ni followed by 

organically-bound Ni in the sediment. The two last extractions - carbonate and mineral 

forms - yielded no nickel. 

Nickel concentrations in sample #‘s 2 and 3 display a different distribution in five 

solutions. Sample #2 contains synthesized NiCO, precipitates. Sample #3 contains 

synthesized NiS precipitates. The sequential extraction analysis shows that, for NiCO,, 

almost 40 % of Ni remained in solution, while for sample #3 only 1.3 % was measured 

in the original solution. Most of the nickel was adsorbed as organic complexes onto the 

sediment in both samples. For NiS, 3.6 % and 1.2 % of the measured Ni was present 

in the 3rd and 4th extractions respectively; these are the weak-acid-soluble or mineral- 

stable precipitates (most likely NiS). 

In the presence of nickel sulphide, Fe concentrations in the original pore water were 

the highest of all three samples, which might suggest that some FeS had also been 

formed in the sediment. None of the iron was in the exchangeable form, which was 

consistent with all the previous extractions. The largest fraction was, again, organidally- 

bound Fe followed by extracted fractions as carbonate an in the mineral phase 

(although very little). 
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In summary, the spiked sediment extractions suggest that, for As, the presence of 

sulphide reduction produces a larger fraction of organically-bound As, while for Ni the 

presence of sulphide suggests a shift towards exchangeable Ni forms. Iron is mainly 

present in the organically-bound form, which is essential to the microbially-driven 

sediment contaminant removal process 

In Table 3, the concentrations of As , Ni and Fe determined calorimetrically in the 

laboratory are compared to concentrations determined by ICP in the same solutions 

recovered from the sequential extractions. In-house calorimetric determinations were 

required due to time limitationss (given the large set of analyses required to complete 

the examination of the reactors) and economic constraints. 

Table 3: Comparison of Boojum and EPL Data 

Comparing the reported elements for both analyses with respect to concentrations’ and 

total measured %, it is evident that the results for iron and arsenic are in good 

agreement and acceptable. However, the nickel determinations show large deviations 

in concentrations between the two laboratories. 
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In summary, the laboratory measurements of arsenic and iron are similar to those 

determined by ICP. For higher concentrations, the differences between the analyses 

are somewhat larger, as the calorimetric determinations have to go through several 

dilution factors. 

With respect to the effectiveness of the sequential extractions, it can be concluded, 

based on the summary of the total measured concentrations from the spiked sediment 

extractions, that As can be accounted for in the range of 73 % to 95 %. Nickel 

determined by ICP is accounted for between 86% and =-lo0 % (some of the Ni was 

extracted from the original sediment in addition to the spiked concentrations added). 

The methods yield reliable results on which conclusions can be based with respect to 

the sediments capacity to act as an environmental sink for both Ni and As. 

4.1.3 1993 Reactor Sediment Extraction Test 

The first series of sequential extractions on the reactors were carried out on the top 

samples of the sediments, The top layer of the sediments (about 1 cm thick) can be 

expected to have the largest component of accumulated As and Ni from the treated 

seepage water. The summary results for As, Ni, and Fe are given in Table 4. All 

analytical results are presented in Appendix Tables A3a and A3b with a detailed 

explanation of the calculations for the approach taken. Table 5 presents a summary 

of the mass balance in the reactors. 

Arsenic 

The sum of all measured As amounts (last column in Table 5) are low; they are’only 

22 % to 38 % of the total As content in the R2 to R5 columns. However in Rl, the 

control column, the measured As amount is 117% of total estimated original As. The 

difference is probably caused by the distribution of As in the reactor sediments, 
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Table 4: Extraction of As, Ni, and Fe in top 1 cm of Sediment in Reactors 

Table 5: Mass Balance of As, Ni, and Fe in Reactors 

measured measured to 
sample I total sediment pore water total 

(mg) % % % 
Rl As 31.9 88.8 13.4 117.3 

Ni 24.2 88 12 52.5 
Fe 79.1 100 0 
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The pore water data show that As is mostly concentrated in the top water in RI, 

therefore the surface sediment should contain more as. In the pore water of the R2 to 

R5 reactors, the As concentrations increased with depth. This indicates that As may 

be more concentrated in lower layers of sediments. 

Since only the top layers of sediments were used in the extraction experiment, and the 

calculated total As amounts in the sediments were based on the top sediment values, 

the measured As amounts are lower than the real values. In most reactors As was 

concentrated in the sediments (78.7 % to 86.6 %). Reactor R4 sediment only 

contained 58.2 % of the total As, the reason probably being that most As in the lower 

layers was not detected. 

In all reactors, none of assayed As in the sediments was in the ion-exchangeable form 

(1st extraction) or in the least soluble form (4th extraction), as shown in Figure 4. All 

the As found was in the form of organic complexes and weak-acid-soluble forms. 

In Rl sediment, 84.3 % of As (Table 4) was adsorbed as organic complexes, while the 

rest was extracted as weak-acid-soluble precipitates. In reactors R2 to R5, the As 

organic complexes ranged from 73.5 % to 43.2 % in the sediments. The weak-acid- 

soluble form increased from 8.8 % to 26.9 %. This indicates that the as has moved into 

relatively stable precipitate forms. 

The final Ni “accounted for” amounted to about 50 % to 100 % of the feed IJi in 

reactors Rl, R4, and R5. In reactors R2 and R3 (potato waste as substrate) the 

“accounted for” Ni was higher than the original content. The Ni was concentrated in 

the sediments, especially in the R2 to R5 reactors (Figure 5). 
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Fig 4: Reactor sediments Fig 4: Reactor sediments 
As in sequential extractions As in sequential extractions 

Rl control Rl control R2potato R2potato Wpotato R3potato R4alfalfa R4alfalfa R5alfalfa R5alfalfa 
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Fig 5: Reactor sediments 
Ni in sequential extractions 

RI control R2potato R3Dotato R4alfalfa R5alfalfa 
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Nickel was detected in all four extraction fractions. The adsorbed Ni indicated by the 

first extraction fraction was less in R4 and R5 reactors (alfalfa as substrate). The 

percentage of Ni in organic complexes was similar in all reactors (Figure 5). Nickel 

formed weak-acid-soluble and strong-stable precipitates only in reactors R2 to R5. 

As the initial Fe concentration in 6.11 water was very low, most of the extracted Fe was 

from the original sediments therefore no original amount of Fe was estimated. In Table 

A3b, the “accounted for” Fe contents are listed. The values from reactors Rl, R2 and 

R5 are very close and indicate that the calculations are rational. The R3 and R4 

bottom pore water samples had relatively high Fe concentrations, therefore it was 

expected that the bottom sediment samples would have the highest Fe concentrations. 

This, however, was not the case. 

The extraction data showed that over 99 % of the Fe was in the sediment, and almost 

none was ion-exchangeable. In Rl, 87.8 % of the Fe was organically-complexed and 

about 12.2 % was in the form of weak-or-strong-acid-soluble precipitates (Figure 6). 

This is consistent with the spike experiment. 
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Fig 6: Reactor sediments 
Fe in sequential extractions 
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In the R2 to R5 reactors, the amount of organically-complexed Fe decreased to 24 % 

to 70 %, while the acid-extractable precipitates increased to 29 % to 75 %. Most of the 

Fe precipitates were in the stable form and only concentrated nitric acid could dissolve 

it (Figure 6). 
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4.2 1994 Experiment - As and Ni Removal Capacity of Sediments 

This experiment was designed to test the capacity of muskeg sediment to treat a 

seasonal seepage from the waste rock pile. 

Measurements made on the water columns of the reactors after set-up but prior to 

addition of potato waste are shown in Table 6. The initial readings for the columns 

indicate that the water chemistry is similar to that of the seepage water. Mixing with 

sediment pore water results in an elevated pH (4.3 to 5.0 compared to 3.85 for 6.11 

water) and reduced conductivity (1155 pmhoslcm to 1262 pmhoslcm compared to 1386 
pmhoslcm for the seepage water) and Eh (367 mV to 445 mV for column water and 
522 mV for the seepage water). 

After 4 to 5 days of incubation with potato waste, samples from all reactors and jars 

were analyzed together with the added seepage water and sediment pore water. The 

data is shown in Table 7. By this time, dramatic changes in the Eh had occurred in 

some of the columns due to the hydrolysis and fermentation of potato waste. In 5 of 

the 9 reactors, reducing conditions had established negative Eh values. The 

fermentation of potato waste was reflected in the increased acidity in the reactors with 

low Eh values. Under these conditions, denitritication had commenced as indicated by 

lower NO,-N concentrations compared to the seepage water. Also, the reducing 

conditions were responsible for the appearance of dissolved iron in solution. There was 

no detectable dissolved iron in 6.11 water. In general, the lower the Eh value for the 

reactor column, the higher the iron concentration. Arsenic concentrations were 

consistently lower in the reactor columns than in the seepage water. Nickel 

concentrations were somewhat lower in the reactors than in the seepage water. The 

lower values in the reactors with the lowest Eh values indicates that some precipitation 

may already be occurring in reducing conditions. 

The chemistry of water samples from the controls (seepage water and potato waste) 

was very similar to that of 6.11 water. There was no clear indication that hydrolysis 
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Table 6: Sediment Treatment Capacity Reactors, 
Chemistry after 24 h. 

435 
369 
445 
430 
414 
432 
366 
409 - 

Table 7: Sediment Treatment Capacity Reactors, Chemistry after 96 h. 

Reactor 

1 
2 
3 
4 
5 
6 
7 
8 
9 

jar 1 
jar 2 
jar 3 
8.11 

F 
- 
4.81 
4.87 
4.69 
4.76 
4.59 
4.82 
4.54 
4.49 
4.41 
4.04 
4.03 
3.98 
3.85 - 

Sediment 5.88 
BT2Stn250 

257 
-272 
299 
319 

-272 
146 
-72 

-243 
469 
471 
469 
522 

173 

l (mg/c) equivalent of C&O3 

Cond. 
umhos/cm 

1255 
1301 
1313 
1269 
1306 
1291 
1334 
1291 
1384 
1570 
1568 
1587 
1386 

196 

F 
4% 
20.8 
20.6 
20.8 
20.8 
20.8 
20.7 
20.7 
20.9 
20.1 
20.3 
20.5 
21.6 

20.9 

As 
&l/LJ 

56 
50 
50 
56 
62 
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at day 40. By this time, 250-300 mg/L of acidity had been consumed in both 

unchanged reactors and unchanged jars 

The seepage water had a pH of 3.95. The first readings at 10 days showed little 

change (pH 4.31 to 4.87 in reactors and pH 4.75 to 5.55 in jars). There was a steady 

rise in pH from the second sample onwards for all reactors to around pH 6-6.5 by day 

40 (Figure 9). In other words, the ‘recharge’ reactors exhibited the same pH rise as the 

‘unchanged’ reactors. There was a similar pH rise in the jars. 

Conductivitv 

For reactors not receiving ‘fresh’ seepage water, there was a fairly steady decline in 

conductivity through the course of the experiment from around 1300 pmhos/cm to 
around 960 pmhos/cm (Figure 10). This decrease was not apparent in the control jars. 
Initially, the conductivity was considerably higher in these jars compared to the reactors 

(around 1600 ~mhoslcm). Thereafter, values were steady at around 1300 pmhos/cm. 
The reactors receiving ‘fresh’ seepage water weekly exhibited an initial decline in 

conductivity between the first two readings, comparable to that observed for the other 

reactors. Thereafter, values were steady at around 1150 pmhos/cm. 

The nickel concentration in the reactors was generally lower (25-61 mglL) than the 

control jars (60-70 mgR) at the first sampling (4 to 5 days), attributable to dilution by 

sediment water in the reactors (Figure 11). In contrast, in the reactors with no further 

additions of seepage water, there was a decline to approximately 20 mg/L at day 26 

after which the concentration remained steady. Nickel concentration in the control jars 

remained more or less constant throughout the course of the experiment. , 
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Fig. 11: Reactor water column 
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Arsenic 

The seepage water contained 90 mg/L dissolved arsenic (Figure 12). By the first 

reading (10 days), the As concentration had dropped to 50 mg/L. Much of this change 

is attributable to dilution by water in the sediment, although removal by other means 

cannot be discounted. 

In the jars, there was no decline in As concentration over the course of the 

measurements. After this time, the As concentration in the reactors without water 

change declined to a mean value of 10 mg/L by 40 days from 50 mg/L at 4 to 5 days. 

There was an increase in iron in both jars and reactors (Figure 13). The Fe in the jars 

is released from the potato waste as it decomposes. The maximum concentration 

observed was around 4 mg/L. The concentration was lower in the ‘recharged’ jar due 

to removal at the time of water change. In the ‘no change’ reactors, Fe concentration 

rose to a mean of 16.5 mg/L. The dramatic dip at 33 days may be due to settling of 

weakly-suspended solids. Iron in the reactors came both from the potato waste and 

the sediments. 

Nitrate-N 

There was a dramatic decline in nitrate-N concentrations in all reactors and jars from 

day 5 to day 12 (Figure 14). Thereafter, the decline continued in reactors until day 40 

when concentrations were 0.13 mg/L or less for the ‘unchanged’ reactors and 0.49 

mg/L or less for the ‘recharged’ reactors. For the ‘unchanged’ jars, there was a 

substantial increase in nitrate-N from day 12 to day 19 followed by a decline to < 0.5 

mglL by day 40. 8 

Ammonium-N 

There was a steady decline in ammonium-N in all reactors and jars to day 26, after 

which values recovered to near initial values (Figure 15). There was no clear effect of 

‘recharging’ with 6.11 water on the ammonium-N concentration. 
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Phosphate 

Phosphate-P concentrations were higher in reactors than in jars up to 26 days, 

presumably due to release from the sediments (Figure 16). Overall there was a steady 

decline in phosphate-P concentrations in all reactors to 4-6 mg/L and control jars until 

day 33. From this time to day 40, concentrations were steady in both reactors and 

control jars. 

Overall 

The data for the unchanged control jars shows the effects of potato waste on seepage 

water. The early decline in Eh and establishment of reducing conditions is associated 

with the decomposition of potato waste and probable release of volatile fatty acids 

which contributes to the increase in acidity. The reducing conditions thus established 

support the reduction of nitrate (denitrification) and iron. The removal of phosphate and 

ammonium may be due in part to uptake by microorganisms. The lack of arsenic and 

nickel removal are attributable to a lack of ferric and sulphide ions respectively for 

precipitation and/or surface sites for adsorption processes. The steady conductivity in 

the jars suggests little overall removal of ions from solution. 

In contrast to the jars, there was a steady reduction in conductivity in the reactors 

indicating a net removal of ions from solution. The drop in Eh and rise in acidity 

exhibited a similar pattern to that of the jars. The removal of nitrate, ammonium and 

phosphate was also similar. Iron concentrations were much higher in the reactors, 

undoubtedly due to reduction and dissolution of iron from the sediments. Iron reduction 

inhibits sulphate reduction if ferrous iron is present (Lovley and Phillips 1987). 

Therefore sulphate reduction may not have occurred. In some reactors, Eh values 

were lower at the initial reading (4-5 days) than the theoretical maximum value (-220 

mV) at the initial reading at which sulphate reduction occurs (Zehnder and Stumm 

1988). The removal of approximately 70 % of the Ni from solution before a steady 

state was achieved is interesting. If nickel is removed as a sulphide precipitate, 

sulphate reduction must occur for generation of sulphide. This may have occurred early 

on. Some removal by adsorption processes is possible. However, the available sites 

would likely be filled within hours of set-up as indicated by the data of Eger and 
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Lapakko (1989). The steady decline in Ni is more suggestive of a precipitation process. 

The steady decline in As is also indicative of precipitation. The low Eh and release of 

ferrous iron from the sediments suggests that precipitation of ferrous arsenate may be 

occurring. 

Weekly changing of 500 mL of water with ‘fresh’ seepage water resulted in 

concentrations of Ni and As similar to the original values after 2 weeks for As. This 

suggests that for As, the net removal ceases. For Ni, on the other hand, some removal 

continued. It is possible to estimate the total Ni removed from the water column in 

these reactors during the period of observations. The estimated total removal (mean 

of 3 reactors) together with the total Ni in the reactors is summarized in Figure 17. 

It is assumed that the volume of water in the reactors being treated is 0.9 L. The data 

indicate that by day 40, a total of 93 mg of Ni had been removed from a total of 145 mg 

added to the reactors. This is nearly double that removed from the ‘unchanged’ 

reactors. However by the end of the observations the amount of Ni removed with each 

addition of seepage water was small. Clearly the system is approaching saturation. 

Calculations of As removal form the ‘recharged’ reactors 4, 5 and 6 have also been 

made (Figure 18). With additions of seepage water, the As concentration in the water 

column remains fairly constant (Figure 11) but is considerably lower than in the 

seepage water (85 mg/L), therefore the As is being removed from the reactor water 

throughout the period of obsen/ations. Figure 18 shows that by day 40, a total of 83 

mg had been removed. The rate of removal remained constant over the observation 

period. In other words there is no indication that the removal process(es) is nearing 

full capacity. 

Since the As concentration in the ‘unchanged’ reactors was still declining at the end of 

the observation period, the water column in reactors 7, 8 and 9 was not changed. It 

is planned to run these reactors until there is no longer any net removal of As and Ni 

at which point, 500 mL of the water column will be replaced with ‘fresh’ seepage water. 
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5.0 DISCUSSION AND CONCLUSIONS 

To date, analyses have demonstrated that the muskeg sediment was effective in 

removal of Ni and As from added acid mine drainage, especially when organic 

supplements (potato waste, alfalfa pellets) were added. 

Analysis of the 1993 reactors provided a test for sequential extraction techniques for 

determination of amounts and forms of As and Ni held in sediments, The method was 

found to be reproducible for As and Fe but yielded highly variable results for Ni. 

The sequential analysis suggests that much As is held by the sediment in organic 

complexes. In the presence of organic amendments in the reactors, a substantial 

amount of precipitate was present. This indicates that reducing conditions, established 

through addition of potato waste or alfalfa pellets, can lead to removal of arsenic as 

precipitates. The EhlpH diagram suggests that the conditions found soon afler addition 

of the organic amendments were favourable for formation of arsenite. This form of As 

has recently been detected in anaerobic soils contaminated by waste waters from a 

gold mine (Bowel1 et al, 1994). Although reducing conditions were no longer present 

in the water column at the time of sampling for the sediment analysis, pre-formed 

precipitates would be expected to be stable in the conditions observed. In the absence 

of organic amendments, less As was removed. The As removed was entirely as organic 

complexes. These are likely to be less stable than inorganic precipitates when 

conditions change. 

The Ni data from the sequential analysis is too variable for quantitative estimation of 

forms removed. However it is clear that precipitates are formed only when organic 

amendments (potato waste or alfalfa) have been added to the reactors. As for arsenic, 

reducing conditions produced through decomposition of organic matter can lead to 

precipitation of nickel salts which will be more stable in sediments than complexed 

forms. 
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The ‘sediment treatment capacity’ experiment yielded valuable data on the dynamics 

of As and Ni removal and began to examine the treatment capacity of the B-Zone 

muskeg sediments. Over the 40 day period of observations, As concentrations in the 

water column declined from 85 mg/L to 10 mg/L. In previous experiments with similar 

conditions, dissolved As concentration eventually declined to stable values of 0.5 mg/L 

to 1 mgR. In the present experiment, Ni declined from 70 mg/L to 20 mg/L. Further 

decline was likely inhibited by the high Fe in solution (reduced Fe released under 

reducing conditions). This will inhibit sulphate reduction (Lovley and Phillips 1991) so 

sulphide ions would not be present for precipitation of nickel sulphides. 

Exchange of 6.11 water in the water column of reactors determined that the sediment 

can remove considerably more Ni and As than present in a ‘single dose.’ Arsenic 

removal continued at a linear rate through 5 changes of water. Nickel removal rates 

declined towards the end of the observations. The third treatment, where 6.11 is 

exchanged when a steady state concentration of As and Ni prevails in the water 

column, has not yet commenced. 

To summarize, both As and Ni can be removed from 6.11 water as potentially stable 

precipitates if exposed to reducing conditions induced through decomposition of organic 

amendment and the sediment environment. 
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Table Al. Spike Extraction Data 

ion 

vol. 

nlL mg,L 

150 0 

150 0.5 

150 38.2 
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150 50.1 

150 65.6 

150 68.7 
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mg 

0 0 
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5.6 14.2 
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10.2 19.9 

0 0 
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86.0 

,003 

80.3 
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Appendix 3. Explanation of Sequential Extraction Calculations 

In Table A3a the second column gives the metal loadings which have been added with 

the seepage to the reactors, and represents the mg/L multiplied by the volume of 

seepage added. In the third column, the accumulated As and Ni losses due to the 

weekly sampling where water is withdrawn from the reactors is presented. 

The fourth column represents the amount of As and Ni which remained in the reactors 

for removal by sediments. The sediment ratios represented in the fifth column are the 

ratios of the dry weight of the total sediment in the reactors to the dry weight of the 

sediment used in the extractions. 

For each of type of sequential extraction, the extracted metal concentrations and the 

volumes of the extraction solutions were measured, from which the total quantity of 

metal extracted (representing the respective form of the metal present in the sediment) 

was calculated. The percentage of each fraction is referenced back to the original 

amount present in the reactor sediments. 

The concentrations of each metal in the reactors’ water columns are shown in Table 

A3b. The waters are divided into three layers; the “top” solution is the water above the 

sediment (the treated seepage in the reactors), the “middle” solution is the pore water 

from sediment layers 1 and 2, and the “bottom” solution is the pore water from 

sediment layer 3. The metal content and percentages were calculated. The “pore 

water %” is the sum of the dissolved metals in the three solutions, and the “sediment 

%” is the total extracted. 

The percentage comparison of the amounts of metal in the sediment and those i; the 

water body, assessed by analysis, is listed in the three columns under the “measured” 

section of Table A3b. The last column in Table A3b shows the comparison of the 

“head” less the “sampling loss” (the 3rd column in Table A3a) with the total metal 

analyzed in the pore water and the sediment. 
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ARSENIC AND NICKEL REMOVAL BY WETLAND SED:MENTS I 

Andrew Fyson2, Margarete Kahn’, and Les W. Adrian’ 

Abstract: Laboratory experiments were carried out to test the capacity of sediments from muskeg ponds to treat 
waste rock seepages with mean concentrations of As and Ni of 36 mg/L and 79 mg/L., respectively (1992 data). 
Seepage water was added to column reactors containing muskeg sediment, and additions of organic matter (alfalfa, 
potato waste and hydroseeding mulch) were made to the sediments to stimulate microbial activity. In the first 
experiment, arsenic concentrations in the water column of the reactors decreased to less than 1 mg/L from 50 
mg/L, and Ni to less than 0.1 mg/L from 74 mg/L in 112 days. A second experiment established that the results 
are reproducible. More than 90% of As and Ni present at start-up is removed within 43 days. A third experiment 
indicated that alfalfa and potato waste increased the rate at which reducing conditions were established, which in 
turn resulted in increasing the rate of arsenic and nickel removal from the seepage water. The addition of alfalfa 
resulted in greater metal removal than when potato waste was used. These experiments have shown that muskeg 
sediments have the capacity to remove As and Ni from a waste rock seepage water through providing conditions 
that facilitate precipitation and adsorption with or without the addition of organic amendments. 

Additional Key Words: acid mine drainage, passive treatment, sulfate reduction, iron reduction. 

Introduction 

Waste rock piles from metal mining operations often generate seepages. with low pH and high 
concentrations of heavy metals. Depending on decommissioning methods chosen, contaminated seepage waters 
may emerge from waste rock piles for a long time. Treatment may therefore be required in perpetuity. Passive 
treatment systems, utilizing natural processes driven by bacteria, are attractive treatment alternatives, as opposed 
to maintaining a chemical treatment plant. Such systems would provide a low maintenance option and are 
environmentally sustainable. 

Research on the utilization of wetlands for the treatment of a variety of wastewaters has been carried out 
in the past decade, including constructed wetlands treating acid mine drainage (AMD) from coal operations 
(Brodie 1988, Hammer 1989). Wetlands are considered passive treatment systems, since they have the capacity 
to regenerate themselves through continued growth. 

Microbially-driven sulfate and iron reduction are processes occurring naturally in wetland sediments which 
facilitate the removal of metals from the AMD through increasing the pH, which in turn results in precipitation 
of the metals either as hydroxides or as sulfides (Wildernan 1993, K&in 1993). Adsorption processes, which assist 
in metal removal, can also be active in wetlands. Wieder (1992) has provided some estimates quantifying’ 
different metal removal mechanisms in wetlands. Eger and Lapakko (1989) utilized peat in constructed wetlands 
to treat AMD with Ni concentrations up to 15 mg/L., following laboratory studies where peat was observed to 
adsorb up to 20 g N&g dry weight. 

Kahn (1993) reported Ni concentration reductions in an AMD tailings seepage from an initial concentration 
of 25 mg/L originally to less than 1 mgiL. The microbially-driven treatment system removes Ni likely by co- . 

‘Paper presented at the International Land Reclamation and Mine Drainage Conference and the Third International 
Conference on the Abatement of Acidic Drainage, Pittsburgh, PA, April 24-29, 1994. 

*Andrew Fyson, Microbiologist and Margarete Kalin, Ecologist, Boojum Research Ltd., Toronto, Ont, Canada. 

‘Les W. Adrian, Environmental Engineer, CAMECO Corp., Saskatoon, Saskatchewan, Canada. 
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precipitation with iron. When reducing conditions are established in the treatment system, Ni also potentially 
precipitates as a sulfide. Through additions of organic matter to the sediments, it should be possible to stimulate 
microbial activity and thereby maintain the capacity of the sediment to remove metals from water. If reducing 
conditions can be achieved in the sediment, a biological treatment system, for seepage waters which contact 
sediments in muskeg ponds, would be developed. 

This paper presents the results of laboratory reactor experiments in which waste rock seepage water was 
added to sediments from muskeg ponds. The objective of this study was to determine the chemical and microbial 
processes which take place in the sediment and define the specific conditions necessary for metal removal. 

Materials and Methods 

Laboratory reactors were set up, constructed from acrylic columns with a diameter of 10 cm and a total 
volume of 2.5 L. The reactors were gas-tight and fitted with rubber stoppers as sampling ports. In the first set 
of experiments, sediment samples were supplemented with an amendment consisting of 10 % w/w of ground 
alfalfa and 90 % w/w of weathered hydroseeding mulch. Prior to addition to each column, 100 cm’ of the 
amendment blend were mixed into 300 cm’ of the sediment sample. The reactors were then filled with 1.0 to 1.5 
L of test water, leaving approximately 0.5 litres of headspace in each reactor. The test water (station 6.11) is from 
a seepage collection pond next to the waste rock pile of a uranium mining operation in northern Saskatchewan, 
Canada. Three types of sediments from three different locations in two muskeg ponds in the same drainage basin 
of the waste rock pile were used in the first experiment. Water for the reactors was prepared by diluting waste 
rock pile seepage water with water to 20% of the original seepage concentration, since it was expected that, upon 
scale-up in the muskeg ponds, a dilution of the concentrations of most ions in the seepage would take place. To 
increase the arsenic concentrations in the seepage, the water was spiked with KH,AsO, to a concentration of 50 
mg/L arsenic to test the ability of the ecosystem to remove As at the maximum concentration likely to be 
encountered in the field. 

A second experiment was set up using sediment from a single location, In this experiment, the same 
conditions were provided as in the first experiment, including the mixing of organic amendments into the sediment 
and using diluted (20%) seepage. This experiment was performed in order to establish whether the results 
obtained in the first experiment were reproducible. 

During set-up of the third experiment, new samples of muskeg pond sediments without additions of organic 
matter (Control) and undiluted waste rock seepage water were added to the reactors. The sediments in the reactors 
were left for 6 days prior to addition of seepage water (760 mL), thereby allowing them to equilibrate. Those 
reactors receiving organic matter were treated with a surface layer of potato waste (5 g) or alfalfa (37.5 g). 
Application of a surface layer to the sediment surface was considered a realistic approach to simulating application 
of organic matter in field conditions. 

To verify the function of sediments in the treatment process, 2 L glass jars with organic material hut 
without sediment at the same ratio as used in the reactors were set up, using 760 mL of seepage water and 5 g 
potato waste or 37.5 g alfalfa. The quantities of organic matter added to the sediment were based on related work 
in base metal AMD (Kahn 1993). 

Measurements of redox potential, electrical conductivity and pH were made using standard methods. The 
potential (Em), measured in the reactors, was converted to redox potential (Eh) by the following formula: Eh (mV) 
= Em (mV) + (241 - 0.66(FC - 25)) to adjust for the potential of the reference electrode (Hem 1985). Water 
samples from above the sediment-water interface were extracted from the reactors through the sampling ports with 
a syringe. Samples were then filtered through 0.45 urn cellulose-acetate filters, acidified with concentrated HNO, 
and stored under ice or at 4°C until required for further analyses. Acidity and alkalinity were determined by 
titration with O.OlN_ NaOH (to pH 8.3) and O.OlN H,SO, (to pH 4.5) respectively. Concentrations of Ni and As 
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were determined by inductively coupled plasma spectrophotometry (ICAP) analysis and total Fe, PO,, NH, and 
NO, were determined by calorimetric methods (Hach). Nickel was determined by the diacetyldioxamine 
calorimetric method (Merck). Arsenic was determined by the Merck test strip method. Sulfate was determined 
by the BaSO, turbidometric method (ASTM 4500-SO:). 

I 
Adenosine triphosphate (ATP) concentration, a measure of biomass, was determined with a firefly 

luciferase test. Cells were lysed with ethanol, filtered, further lysed with acetone, filtered and then ATP was 
extracted in t&odium phosphate buffer containing Mg-EDTA to prevent inhibition of the luciferase enzyme by 

I 

heavy metal ions. Sulfate reducers were enumerated with Rapidchek II tests (Conoco, Houston, Texas) which 
detect the presence of adenosine phosphosulfate (APS) reductase by a colour-linked immunological assay. 
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The water chemistry of the seepage used in the experiments for 1991 and 1992 is summarized in table 1. 
The average uH of this water was 4.28. This water is characterized by high concentrations of Ni and As. The 

1 .  

seepage water also contains very high nutrient concentrations (ammonium~ nitrate and phosphate). The sample 
used for the laboratory experiments had a Ni concentration of 74 mg/L, an As concentration of 50 mg/L and pH 
of 3.85. 

Table 1. Major chemical parameters in waste rock seepage pumping pond water, 1992. 
Parameter Mean Standard Minimum Maximum Number of 

deviation samples 
PH.. . . . . . . . . . . . . . . . . units 4.28 4.38 3.94 ’ 5.20 6 
Conductivity . . . . . . . . . . . . . . . . . . . . . . &/cm 1,433 569 259 2,120 6 
Total dissolved solids ..,.... mglL 774 524 210 1,360 4 
Chloride ..,.......................... mg/L 3.0 1.8 0.8 6.0 6 
Bicarbonate . . . . . . . . m$L 2.7 2.1 0.0 5.0 3 
Sulfate.. ............................. mg/L 546 376 a6 1,060 5 
Calcium.. ........................... mg/L 137 68 24 210 8 
Iron .................................... m$L 3.3 4.4 0.1 9.6 3 
Potassium ......................... mg/L 23 11.9 5.0 46 8 
Magnesium ......................... mg/L 51 28 7 92 0 
Manqanese ........................ mg/L 3.9 1.0 0.9 6.5 6 
Sod&m .............................. mg/L 28 1 a.0 3.0 61 5 
Ammonia-N.. ..................... mg/L 4.6 2.4 0.8 7.2 6 
Nitrate-N ,,.......................... m$L a7 39 12.0 128 6 
Phosphate.. ....................... mg/L 34 30 1 .o 89 5 
Total arsenic.. .................... mslL 36 32 5.4 97 5 
Total nickel ,....................... mi/L 80 74 4.8 220 5 
Aluminum . . . . . . . . . . . . . . . mglL 14 27 0.1 68 5 

The characteristics of the sediments are given in table 2. The sediments have a diverse microbial 
population. In two of the sediments, sulfate reducing bacteria could be quantified (1 to 50 x lo’ cells/ml). Fine 
particulates plugged equipment which prevented quantification of sulfate reducing bacteria in the third sediment. 
The ATP values indicate the presence of active microbial populations in all 3 reatitors at the time the leactors were 
set up. 

I The Ni and As concentrations after 87, 112 and 229 days in the first experiment are given in table 3 for each of 
the three sediment types used. Nickel concentrations declined in all three reactors to less than 0.12 ma by day 
87. Thereafter, low Ni concentrations were maintained until the experiment was terminated after 237 days. 

I 
Arsenic concentrations decreased substantially, in the presence of all three sediments, to 0.4 to 0.7 mg/L. 
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Ni concentrations decreased in the potato waSte reactors over the course of the experiment at rates similar 
to those observed in the control reactor up to 30 days (fig. le). Arsenic concentrations held constant over the first 
16 days (fig. If). From samples collected 63 days after set up, As concentrations had declined, averaging 4. l 
mg/L. Sulfate concentrations increased in the reactors (fig. Ig). Sulfate was likely being released from both the 
potato waste and the sediments to the overlying water. 

Alfalfa Reactors 

Most trends of concentration changes in the reactors with added alfalfa were similar to those in the reactors 
with potato waste, except that concentration changes were more pronounced and changes occurred earlier in the 
experiment. The Eh decreased, within 2 to 3 days following set-up, to values much lower than in the potato waste 
reactors (fig. Ic). Greater NO, concentration decreases were observed (fig. li), more NH, was generated (fig, lh) 
and higher pH’s were reached (fig. la) than in the potato waste reactors. Phosphate concentrations declined more 
slowly than in the potato waste or control reactors, possibly due to release of phosphate from the decomposing 
alfalfa at a faster rate than precipitation (fig. lj). 

The measured iron concentrations increased (fig. Id) and, according to the low Eh (fig. lc), iron was likely 
in the reduced form, due to iron reduction by bacteria in the presence of alfalfa as a nutrient source. The nickel 
concentration decreases (fig. le) are likely related to production of large quantities of CO,, with subsequent 
precipitation of Ni as NiCO,. A consistent decrease in arsenic concentrations was not observed during the first 
35 days of the experiment (fig. If). By 63 days however, the concentrations in the reactors had decreased to 2.49 
mg/L As (mean of 2 reactors) with the exception of the control reactor. These decreases are likely related to the 
rate of microbial arsenate reduction and arsine production, which require low redox conditions for relatively long 
periods compared to precipitation reactions. 

To determine the effects of the sediments in the metal removal process, and that of the organic material 
added to the sediment in the reactors, seepage water was tested in 1 L jars with additions of organic matter only. 
The results are summarized in table 5. After 51 days the organic matter had decomposed, the pH had increased 
and the concentrations of As, sulfate, nitrate, and phosphate, particularly in the jar with potato waste, had 
increased in the water. The possibility exists that interferences during calorimetric tests may account for the 
higher concentrations of As at this time. 

Diseussion 

Arsenic Removal Processes 

Arsenic may exist in natural systems as many chemical species, owing to the fact that it two major 
oxidation states: +V and +III. The oxidation state of arsenic is dependent on the pH and the redox potential (Eh) 
of the system. A pH-Eh diagram was constructed to show possible forms of arsenic in particular chemical 
conditions (fig. 2). 

At high Eh and low pH, arsenic +V exists as arsenic acid (H,AsO,). At higher pH, the As +V species, 
hydrogen arsenate ions (H,AsO,‘, HAsO,‘~, AsO,“) predominate in water. Also, at higher pH, these As +V ions 
are predominant over an increasingly wide range of Eh; at pH greater than I 1, hydrogen arsenate ions are the only 
arsenic species in a system at Eh between -350 mV and +750 mV (Katz and Purcell 1987, Stumm and Morgan 
1981). Different metals can precipitate with arsenate ions above specific pH’s. The average concentrations of 
metals and arsenic in three field enclosures are taken to calculate the pH of precipitation for these various 
compounds, including Fe, Al, Ni, Mg, Ca and Zn. They are shown as dotted vertical lines in the diagram. 

The Eh values from the reactor experiments are plotted as they were changing over the period of the 
experiment, from the time at set-up (day I), on day 10 and on day 64. On day 1, all the reactors lay within the 
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Figure 2. Redox-pH arsenic species phase diagram. Experiment 3 reactors’ pH and redox on day 1, 10 and 
64 are plotted. 

zone where As occurs as H,AsO;. By day 10, the reactors which received organic material had changed 
considerably; the control and potato waste reactors were still in the H,AsO,‘ zone, whereas the alfalfa reactors 
were in the zone where the predominant form is H,AsO,. By day 64, one of the potato waste reactors had moved 
near to the AsO, zone, the zone where precipitation of AS as sulfides is possible. The control reactor remained 
in the H,AsO; zone for the entire 64 days. 

In aquatic ecosystems, the chemistry of nickel is less complex than arsenic, owing to its predominant 
oxidation state of +II. Therefore, there is both a more limited variety of chemical species of nickel, and fewer 
pathways by which dissolved nickel is removed from solution. Nickel is very mobile in acidic, high Eh water, 
while in high pH, reducing (low Eh) conditions, nickel sulfides can form. In addition, nickel is relatively 
amenable to adsorption onto iron and manganese hydroxides, clay particles and organic surfaces, Because of these 
properties, nickel removal can be anticipated in wetland environments with microbially active, reducing, organic 
sediments. 

Summsrv and Conclusions 

The reductions in arsenic and nickel concentrations observed in laboratory column experiments were also 
demonstrated in field enclosures installed in some of the same wetlands from which the reactor sediments were 
collected (Smith et al. 1993). Overall, field and laboratory estimates all fall within the same order of magnitude. 

The laboratory experiments have established that muskeg sediments represent an effective tnicro- 
environment for removal of As and Ni from waste rock seepage water. The metal removal is associated with 
reducing conditions and is accelerated by the addition of readily degradable organic amendments which feed 
microbial processes. 

I 
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The rate of arsenic removal was augmented by the presence of alfalfa, but not by potato waste. Both 
amendments reduced the Eh and augmented the supply of nutrients for anaerobic, alkalinity-generating microbial 
processes. This microbial community was active, as suggested by the decline in sulfate, the H,S odour indicating 
sulfate reduction, the increases in dissolved iron (Fe III reduction), the dramatic decline in nitrate (denitrification) 
and the rise in pH. The removal of Ni in the reactors without amendments indicates that the processes involved 
were already present in the sediment. The addition of alfalfa increased the rates of As and Ni removal, compared 
to the other treatments. The rapid decline in Ni can be attributed to precipitation of NiCO, and/or NiS following 
the rise in pH generated by anaerobic microbial processes, including denitrification. iron reduction and sulfate 
reduction. Addition of alfalfa, both in the reactors and in the field, increased rates of Ni and As removal. 

As a first approximation, the experimental results can be used to estimate the muskeg pond treatment 
capacity. A decrease of 49 mg in As concentration in the columns with a surface area of 0.005 m2 in 65 to 1 IO 
days is equivalent to 151 mg/m2/day and 89 mg/m2/day, respectively. For Ni, in all three reactors of the first 
experiment, nickel concentrations decreased from 12.9 mg/L to 0.2 mg/L in 40 days, equivalent to 64 mgim21day. 
The rates for the third experiment range from 154 to 253 mglm?day for Ni and for As, 196 to 211 mg/m2/day. 

The data presented here, together with resulrs from a field experiment (Smith et al. 1993), indicate that 
long-term exposure of seepage water to wetland sediments is a very promising approach to treatment of this 
wastewater. Ongoing experiments will determine the long-term stability of precipitates or other forms of the 
heavy metals held in the ecosystem. 
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NICKEL AND ARSENIC REMOVAL FROM MINE WASTEWATER 
BY MUSKEG SEDIMENTS 

A. FYSON, M. KALIN and M.P. SMITH 

Boojum Research Limited, Toronto, ON 

ABSTRACT 

Experiments were carried out in 2.5 L column reactors to assess the capacity of muskeg 
sediment to treat an arsenic (97 mg.L”) and nickel (72 mg.L”) rich seepage from a wasterock 
pile of a Saskatchewan mining operation. When degradable organic material (potato waste) is 
added, effective removal (> 90 %) of both elements was achieved within 60 days and was 
associated with reducing conditions and an increase in pH from 4 to > 7. Frequent replacement 
of seepage water in the column above the sediment has shown that sediments can remove at least 
3.8 g.L” sediment for both nickel and arsenic. Analysis of sediments established that most of the 
arsenic and nickel is in the surface layer of the sediment. Removal rates of 50 pg.m’*.rniri’ for 
nickel and 80 pg.m’2.min” for arsenic were estimated for the reactors receiving one dose of 
seepage waters. For the reactors recharged every 1 to 2 weeks, rates of 170 pg.m’2.min-’ for 
nickel and 250 pg.m’*.min” for arsenic were obtained. Microbially-active muskeg sediments have 
a capacity to remove substantial quantities of both nickel and arsenic from the seepage water, 
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ItLIMlNATION DEL'ARSENICT~U~,;KELPARDESSfDIMENTSDE 

A. FYSON, M. KALM et M.P. SMITH 

Boojum Research Limited, Toronto, ON 

IU?SUM~ 

Des experiences ont Cte faites en reacteurs (colonnes) de 2.5 L pour verifier le potentiel 
de sediments de tourbiere a traiter des eaux d’infiltration de terrils dune mine en exploitation de 
Saskatchewan, riche en arsenic (97 mg.L’) et nickel (72 mg.L*‘). Lorsque de la mat&e organique 
degradable comme des dechets de pommes de terre est ajoutee, un taux d’elimination de plus de 
90 % des deux elements est obtenu en 60 jours et est associe a des conditions reductrices et a 
une augmentation du pH de 4 a > 7. Le remplacement frequent de I’eau dinfiltration au dessus 
des sediments a montre que les sediments peuvent eliminer au moins 3.8 g.L” de nickel et 
d’arsenic. L’analyse des sediments a permis d’etablir que la majorite de l’arsenic et du njckel se 
retrouve dam uue couche a la surface des sediments. Des taux d’elirnination de 50 pg.m”.min“ 
pour le nickel et de 80 pg.m’2.min“ pour I’arsenic ont ete estimes pour les reacteurs ne recevant 
qu’un seul ajout d’eau d’infiltation. Pour les reacteurs recevant de l’eau a chaque 1 ou 2 semaines, 
des taux d’elimination de 170 ug.m-*.min.’ pour le nickel et de 250 pg.m’*.min” pour l’arsenic 
etaient obtenus. Des sediments de tourbiere microbiologiquement actifs peuvent eliminer des 
quantites apprtciables de nickel et d’arsenic des eaux d’intiltation. 
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INTRODUCTION 

Wasterock piles from metal mining operations often generate seepages with low pH and 
high concentrations of heavy metals in perpetuity. Passive treatment systems, utilizing natural 
processes driven by bacteria, are an attractive alternative to continued operation of a chemical 
treatment plant, as passive treatment systems require little maintenance and are environmentally 
sustainable. 

Microbial sulfate and iron reduction occur naturally in wetland sediments. These 
processes, which take place in reducing conditions, facilitate the removal of metals from acid 
mine drainage through an increase in pH and precipitation of metal ions as sulfides or hydroxides 
(1, 2) or co-precipitation. In oxidizing conditions and pH > 3, iron(III) is hydrolysed and will 
precipitate as iron(lI1) hydroxides with co-precipitation of other metal ions (1). Metals may also 
be removed through adsorption processes to sediment surfaces (3). 

Kahn (1) reported nickel concentration reductions from 25 to 1 mg.L” in a passive 
treatment system through enhancement of microbial activity and generation of reducing 
conditions. 

Run-off and seepages from a wasterock pile in northern Saskatchewan contain high 
concentrations of nickel and arsenic. The possibility of using sediments of muskegs surrounding 
the pile to passively treat this water is being investigated. This paper presents the results of 
laboratory reactor experiments in which wasterock seepage water is added to muskeg sediments 
in laboratory reactors. Previously published results (4) established that both arsenic and nickel 
could be effectively removed and that removal was enhanced in reducing conditions, established 
through addition of microbially-degradable organic material (potato waste or alfalfa). 

Decomposition of these amendments generates reducing conditions and supports 
microbially-mediated processes (denitrification, iron(N) reduction and sulfate reduction (5)) 
which generate alkalinity, raise the pH and lead to removal of metals from solution. The present 
study was designed to further define the rates of contaminant removal and the removal capacity 
of sediments to help establish design criteria for scale-up in the field. 

MATERIALS AND METHODS 

. 
2.5 L reactors of acrylic tubing with an internal diameter of 100 mm were set up. 

Muskeg sediment (500 mL) was placed in the reactors followed by the addition of 900 mL of 
wasterock pile seepage water. AAer a 24 h settling period, 5 g of potato waste (McCain Foods) 
was sprinkled on the water surface (to minimise sediment disturbance). This material sank to the 
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sediment surface within IO min. 2 L wide-mouthed glass jars, containing seepage water and 
potato waste only, provided sediment-free controls to facilitate interpretation of the role of the 
sediment materials in contaminant removal processes. 

For some reactors and jars, 500 mL of water from the water column was removed (by 
syphoning), and the reactor or jar was ‘recharged with ‘fresh’ seepage water to assist in 
determination of arsenic and nickel removal capacity of a particular sediment material. 

The experiment investigated nickel and arsenic removal in recharged reactors and 
‘unchanged reactors’ with sediments, and ‘recharged jars’ and ‘unchanged jars’, the controls. 

Water Cm 

The seepage water (station 6.11) used in the present study is characterized by high 
concentrations of both nickel (72 mg.L“) and arsenic (97 mg.L-‘) as determined by ICAF’ 
analysis. This water also has high concentrations of sulfate and nutrients (21 mg.L’ nitrate-N, 
21 mg.L“ ammonium-N and 29 mg.L’ phosphorus) and a pH of 3.9. The unusually high nutrient 
concentrations make this water very suitable for passive biological treatment. 

Measurements of redox potential, electrical conductivity and pH were made using standard 
methods (5). The measured potential (I?,) was converted to I?,, to adjust for the potential of the 
reference electrode by means of the following formula: 

E, = E, + (241 - (0.66*(F - 25))) 

where E, and & are in mV and T” in degrees Celsius. 

Water samples from 5 cm above the sediment-water interface were extracted with a 
syringe. Acidity and alkalinity were determined by titration against 0.01 N NaOH (to pH 8.3) and 
0.01 N H,SO, (to pH 4.5) respectively (6) with a Metrohm 702M Titrino autotitrator. Nickel was 
determined with a calorimetric test (Rollet’s dimethylglyoxime complexation) and reading 
absorbance at 445 nm. Arsenic was measured with the Merck Merckoquant strip test which 
measures the reaction between hydrogen arsenide gas and mercury(+2) bromide. Iron was 
determined by a phenanthroline test (absorbance at 5 10 run) and nitrate-N with a Hach cadmium 
reduction test (absorbance at 545 nm). For the calorimetric tests, a Bausch and Lomb Spectronic 
70 spectrophotometer was employed. 

Sediment samples from the reactors were sent to the Saskatchewan Research Council 
Analytical Chemistry Laboratory for more detailed chemical analysis. From inductively coupled 
plasma spectrophotometry (ICAP) data, a mass balance for arsenic, nickel and iron in the reactors , 
was made. 
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RESULTS and DISCUSSION 

Laboratory chemistry measurements, collected over 129 days, are summarj~d ]n Figures 
]a to lj. The data for the unchanged jars shows the effects of potato waste on seepage water, 
The early decline in E, (Figure la) and establishment of reducing conditions is associated with 
the decomposition of potato waste and release of volatile fatty acids. These acids contribute to 
the observed increase in acidity (Figure Id). The reducing conditions supported the reduction in 
concentrations of nitrate (denitrification; Figure Ih) and of iron (Figure lg). The removal of 
phosphate (Figure lj) and ammonium (Figure Ii) may be due in part to uptake by 
microorganisms. Minor arsenic and nickel removal are attributable to a lack of iron and sulfide 
ions, respectively. Also, in the absence of sediment, there are fewer sites for adsorption. The 
steady conductivity values in the control jars (Figure Ic) suggests little overall removal of ions 
from solution. Overall, despite the presence of reducing conditions in the jars, conditions were 
not favourable for arsenic and nickel removal when sediment was absent. 

In the reactors, in contrast to the control jars, there was a steady reduction in conductivity 
(Figure Ic), indicating a net removal of ions from solution. The decrease in lZ$, (Figure la) and 
rise in pH (Figure lb) and acidity (Figure Id) follows a similar pattern to that of the jars. The 
removal pattern in the reactors for nitrate, ammonium and phosphate (Figures lh to lj) was also 
similar to the jars. However, nickel and arsenic were effectively removed (Figures le and If) in 
the reactors. Clearly, the sediments appear to be essential for substantial nickel and arsenic 
removal. Removal of arsenic in the reactors may be related to the higher iron concentrations 
compared to the jars (Figure Ig). This iron is probably released from sediments following 
reduction and dissolution. 

The low & and release of ferrous iron from the sediments suggests that precipitation of 
ferrous arsenate may be occurring. In addition, the EJpH diagram (Figure 3b) suggests that the 
conditions found soon after addition of the organic amendments were also favourable for 
formation of arsenite (AsO,). This form of arsenic has recently been detected in anaerobic soils 
contaminated by waste waters from a gold mine (7). Finally, the sequential analysis of sediments 
from a previous experiment (data not shown) suggests that much arsenic is held by the sediment 
in organic complexes. Overall, arsenic removal in the reactors could be due to several processes. 

The removal of most of the nickel from solution in the reactors before a fairly constant 
concentration of 3 mg.L-’ was achieved (Figure ]e) is interesting. The experimental data was 
fitted to an E$,/pH phase diagram for nickel (Figure 3a). Most data points fit in the zone where 
equilibria favour Ni’* in solution. Early on, when short lived, very low E, values were coupled 
to low pHs (4-S), the data points clearly fit into the zone where sulfide formation is fayoured 
(Figure 3a). If nickel is removed as a sulfide precipitate, sulfate reduction must occur for 
generation of sulfide. NiS formed during this period early in the experiment till not likely 
redissolve in the conditions prevailing later, i.e., stable NiS precipitates may have formed. 

Some removal of Ni by adsorption processes, such as ion-exchange and complexation to 
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organic molecules, undoubtedly occurred too. However, the available sites for cation exchange 
would likely be filled within hours of set-up as indicated by the data of Eger and Lapakko (8). 
In fact, sequential analysis of sediments in a previous experiment indicated that much of the Ni 
was complexed to organic matter. 

Frequent ‘recharging’ of the water column of three reactors with ‘fresh’ seepage water was 
carried out. The estimated total nickel removed is shown in Figure 2a. The data indicate that 
during the first 91 days, 264 mg of nickel, of a total of 271 mg added, had been removed from 
‘recharged’ reactors water columns. This is nearly double that removed from the ‘unchanged 
reactors. There is no indication that the ‘recharged’ reactors are approaching nickel saturation. 

Calculations of arsenic removal form the ‘recharged’ reactors have also been made. With 
additions of seepage water, the arsenic concentration in the water column remained fairly constant 
(Figure 2b), but is considerably lower than in the seepage water (97 mg.L-‘). This indicates that 
the rate of removal remained constant over the observation period. Figure 2b shows that by day 
91, 184 mg of arsenic, of a total of 236 mg added, had been removed in the ‘recharged’ reactors. 
As for nickel, there is no indication that the ‘recharged’ reactors are approaching saturation. 

Table 1 summarizes the distribution, in mm01 of nickel, arsenic, sulphur and iron in the 
top 2 cm (surface), 2 to 7 cm (middle) and 7 to 12 cm (bottom) layers of the sediments in an 
‘unchanged’ reactor. The content of these elements in sediments is the sum of pore water and 
solids. These solids include fractions removed by precipitation, ion-exchange and complexation 
as well as the amount originally present in the sediments. The surface layer of sediment had a 
higher nickel and arsenic content, while the bottom layer contained the highest iron content. This 
indicates that nickel and arsenic have accumulated, following precipitation/adsorption, in the top 
layer of the unchanged reactors. In contrast, the bottom layer of sediment serves as an iron sink, 
possibly due to sulfate reduction and iron sulfide precipitation in this zone. 

According to WpH diagrams (Figures 3a and 3b), the conditions in the reactors were, at 
times, favourable for sulfate reduction (9). Based on the total sulphur content, in mmol, in the 
sediment, it is plausible that all nickel and arsenic could be bound in the sediments as sulfides. 

In Table 2, the total nickel and arsenic content of the water cohunn and the three sediment 
layers are expressed as in total mg and as percentages of the total amount added to the reactors. 
Most of the nickel (87 %) and arsenic (73 %) added to the reactors was recovered, and almost 
all was present in the sediments. The nickel and arsenic unaccounted for in this mass balance 
may reside on acrylic reactor walls, or the disparity may be due to analytical error. 

From the experimental data, rates of contaminant removal have been calculated in terms 
of both water volume and sediment area. This data can help determine optimum rates of addition 
of contaminant water. Calculations were based both on ‘recharged’ reactors (Table 3) and’ 
‘unchanged’ reactors (Table 4). 

The data for ‘unchanged’ reactors gives rates of arsenic removal of 0.71 mg.m-’ watermin” 
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or 0.08 mg.m’2 sedimentmin~’ (Table 3). The ‘recharged’ reactors give higher figures of 1.47 
mg.m“ water.min” and 0.17 mg.m’2 sediment.min”, respectively. For nickel, the ‘unchanged 
reactors give removal rates of 0.39 mg.m”.min“ and 0.05 mg.m’2.min”. The ‘recharged’ reactors 
yield values of 2.21 mg.m”.min” and 0.25 mg.m’*.min”. For both arsenic and nickel, recharging 
the reactors enabled the sediments to attain high removal rates. Tbis is likely due to the 
additional supply of nutrients in the seepage water (N and P). 

CONCLUSIONS 

The results of this study indicate that in laboratory conditions and in the presence of 
organic amendment, muskeg sediments have a considerable capacity for removal of both nickel 
and arsenic from a wasterock pile seepage water. 
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Fig. 1 a: Reactor water column 
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Fig. 1 b: Reactor water column 
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Fig. le: Ree&d&er column 
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Fig If: Reactor water column 
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Fig. 11: Reactor water column 
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Fig. 1 j: Reactor water column 
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Fig. 3a: Eh-pH phase diagram for Ni 
1200- 

looo- 

800- 

600 1 Ni+2 

-NOM 

Activities Ni 10 -6 

s 10-3 

298 K 1 bar 

b 

6 8 
PH 

I HNiOB 

lb 
22 

12 1 

12001 , 
Fig 3b: Eh/pH Phase Diagram for As 

Activities As 10 -6 

I 
I 
I 
I 
I 
I 

I 

I , 
4 I. 

1; 
J-l’ 

PH 

114 



- 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I! 

i 

Table 1: S, Ni. As and Fs Content in Unchanged Reactor Sediments 

Table 2: Distribution of Ni and As in Water Column and Sediment Fractions of Unchanged Reactors 

ass / % in water column 
ass / % in top 1 cm of sediment 
ass / % in middle of sediment 

Table 3: Rates of Removal of Ni and As, Based on Recharged Reactors. 

Table 4: Rates of Ni and As Removal Based on Uncharged Reactor Data. 
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B-Zone Progress Report 

April 7, 1993 

1.0 E6 enclosure laboratory reactors-Experiment I 
It was decided on completion of the 1992 work, that we should repeat the reactor 
experiment to obtain confirmation on reproducibility of the removal rates 
observed. The 3 reactors were set up at the Dearborn laboratory originally and 
transferred to Boojum in February 1993. 

The first, EG-enclosure sediment reactor experiment was described in the first progress 
report and samples were sent for ICAP analysis. Results are summarised in Fig.1 -3. 

The pH of all 6 reactors remained in the 6 to 7 range. Arsenic and Ni concentrations 
showed the same rapid decline in all 6 reactors (Fig.2 and Fig.3). More than 90 % of 
both elements was removed within 44 days, which represented the first time Dearborn 
had been sampling the reactors, but unfortunately they did not analyze for either Ni or 
As during the intervening period. 

On arrival at Boojum laboratory the experiment was terminated afler 121 days since 
low, steady concentrations of As and Ni were maintained in all reactors. This 
experiment established that E6 enclosure sediment with added alfalfa and mulch 
material could effectively remove As, Ni and other measured elements from B-Zone 
seepage water. A second experiment was established adding additional seepage water 
to determine the capacity of the sediment to improve water quality. 

2.0 E6 enclosure laboratory reactors - Experiment 2 (recharged reactors) 
. 

The 6 reactors were set up as described in the previous report (March, 1993 Section 
2.3) reactors E6-1 and E6-2 receiving WRP-P water, reactors E6-3 and E6-6 receiving 
undiluted 6.11 water and reactors E6-4 and E6-5 receiving 5 x diluted 6.11 water. The 
chemistry of the two seepage waters added is summarised in Table 1. The chemistry 
of the water overlying the sediment was assayed for As, Fe, Ni, NO,, NH,, SO,, PO,, 
E,. pH and titratable acidity 1 day, II days and 21 days atter set up. Analytical 
methods were as described previously (see March, 1993 progress report). The results 
are summarised in Figures 4 to 13. 

2.1 WRP-P reactors (E6-1 and E6-2) 

The pH rose in the WRP-P reactors (E6-1, E6-2) from around 4 to around 5.5 (Fig.‘4). 
This change was associated with a drop in acidity from 282 to 17 mg/L equivalent of 
CaCO, in E6-1 and 255 to 10 mg/L equivalent of CaCO, in E6-2 (Fig. 5). ln.E6-1 the 
acidity loss was linear over the study period at a rate of 12 mg/L /day. 

The E, in E6-1 declined from an initial +270 mV to -111 mV (Fig. 6). In contrast, the 
E, in E6-2 remained fairly steady at around +I50 mV. In other words, reducing 



conditions were established in the water column above the sediment in one reactor (E6- 
I) but not in the other. 

Dissolved As concentrations (Fig. 7) declined in both reactors from 2 mg/L to below 
detection limits (1 mg/L). iron concentrations declined linearly in both reactors at a rate 
of 1.4 to 1.6 mg/Uday (Fig. 8). Nickel concentrations declined 20-30 % during the 
course of the observations (Fig. 9). Ammonium concentrations (Fig. IO) declined at 
first in both reactors. However in E&l there was a dramatic rise between 11 and 21 
days from 9 to 29 mg/L. Nitrate was depleted rapidly (Fig. 11). The rise in ammonium 
in E6-1 may be due to reduction of some of the nitrate by anaerobic bacteria 
(dissimilatory nitrate reduction). 
The rest of the nitrate loss is attributable to denitrification to N, and N,O gases. This 
process carried out by bacteria generates alkalinity and may in part at least account for 
the observed rise in pH and decline in titratable acidity. The high concentrations of PO, 
in the water were rapidly depleted from ~50 mg/L at day one to <I mg/L at 11 days 
(Fig. 12). Sulphate concentrations were erratic (Fig. 13) but overall showed a decline 
indicating the probability of sulphate reduction occurring. This is another alkalinity 
generating bacterial process which may contribute to the observed increase in pH and 
decline in acidity. 

2.2 6.11 reactors 

Acidity declined in the 6.11 reactors with both full strength and dilute seepage added 
(Fig, 5). This was associated with a rise in pH in the two reactors. In the others, pi-l 
stayed steady. All pH readings were in the 6-7 range (Fig. 4). Negative E, values 
(reducing conditions) were established in all reactors within 24 h (Fig. 6). 

In the undiluted reactors, initial As concentrations (1 day after set up) were much higher 
(70-80 mg/L) than in the diluted reactors (1.7 mg/L) indicating that some process was 
already removing As in the diluted reactors (Fig. 7). In the undiluted reactors (E6-3 and 
E6-6), As was removed at a linear rate of approximately 3.7 mg/Uday. By 21 days, 
more than 80 % of the dissolved As had been removed. Iron concentrations (Fig, 8) 
were higher in the undiluted reactors. Concentrations of Fe remained fairly steady 
during the observation period. Nickel concentrations (Fig. 9) declined in the undiluted 
reactors from 21-22 mg/L at 1 day to 6.1-6.7 mg/L at 21 days, or approximately 0.7 
mg/L/day. In the undiluted reactors, ammonium declined by 50 % from 7.8 mg/L to 3.9 
mg/L (Fig. 10). In contrast, there was a slight increase in the diluted reactors. Nitrate 
concentration declined dramatically in the undiluted reactors from approximately 50 e 
mg/L at day one to 3-4 mg/L after 11 days. This decline is attributable to denitrification 
in the reducing conditions prevailing. Phosphate declined rapidly within the first 11 
days (Fig. 12) and remained steady thereafter. Sulphate concentrations were erratic 
but exhibited an overall decline between day 1 and day 21 (Fig. 13). 

2.3 Summary 

Overall, within 21 days, substantial changes have occurred in the water chemistry of 
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all reactors. Negative E, values, indicative of reducing conditions have been 
established in the water column of 5 reactors. Substantial declines in As, Fe, Ni, PO,, 
NO,, SO, and acidity and a rise in pH are apparent in most reactors. In the WRP-P 
reactors (E6-1 and E6-2) the high concentrations of Fe, PO, and NO, were nearly all 
removed within 21 days of experimental set up. In the 6.11 reactors, approximately 70 
mg/L of As was removed from solution. Ni concentrations declined with both seepage 
waters but it will clearly take a much longer period to remove this metal than the As. 

3.0 NEXT STEPS 

The analytical data which are presented in the graphs included with this progress report 
were received last week. Chemical reactions from these experiments which might 
account for the removal of both Arsenic and Nickel will be derived. The initial decreases 
in arsenic for example are certainly due to precipitation of ferric arsenate. 

Although this may be revised after the chemistry of the reactors is interpreted, we 
envisage at present the following experiments to be completed before the field season 
starts. 

Four reactors from experiment 2 will be used to replace the water above the sediment 
with WRP seepage full strength and 6.11 seepages (second recharge). Measurements 
of removal rates are obtained in weekly intervals up to 40 days to determine the rates 
indicated between day 0 and 40 figure 2 and 3. This would give us the real removal 
rate in laboratory conditions for the worst case that all of the B-zone seepage is turning 
acid. 

From the results obtained in the field enclosures, we know that amendment in the form 
of alfalfa was required. Fertilizer additions were not needed, as the seepages 
themselves contain both phosphorus and nitrogen. 

However we should consider the differences in sediments which might be encountered 
in the B-zone wetland with the material collected on the last field trip and with the same 
application rate for alfalfa and mulch. Reactors will be set up with different sediments 
with the addition of 6.11 to be able to compare with the field situations between the 
different enclosures. 

Furthermore, the addition of alfalfa without sediment and its effect on the chemistry 
should be evaluated, for both the field application rate ( enclosure 7U m2 and the 
reactor rate which is 1.4 U m2). Alfalfa reactors are run with 6.11 seepage. 

This will conclude the experimental phase and we should have conclusions on the 
removal process by the beginning of the field season. 



Fig. 1: B-Zone reactors, Expt. 1 -pH 
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Fig.3: B-Zone reactors, Expt. I - Ni 
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Fig. 4: B-Zone reactors -pH 
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Fig. 5: B-Zone reactors -acidity 
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Fig. 8: B-Zone reactors -iron 
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Fig. 12: 8-i Zone reactors -phosphate 
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Appendix 6 Experiment 5: Total removal capacity continued. 

The results for the first 129 days of this experiment are summarised and discussed in 

Appendix 4. Later observations are discussed below. 

Following the sampling at 129 days, the reactors were left standing for 145 days. Two 

‘unchanged ’ reactors (R-l and R-2) and two ‘recharged ’ reactors (R-4 and R-5) were 

sampled further from 274 days to 367 days from set up. 500 mL of water column water 

of the recharged reactors R-4 and R-5 was exchanged for stn 6.11 water (as used 

previously) weekly from 274 days to 305 days. From 306 days, no further stn 6.11 

water was added. The reactors were sampled at 274 days, prior to the new water 

changes, after 4 exchanges (305 days, prior to last water change) and at 345 and 367 

days from set up. The results are summarised in Fig. Al to AIO. 

Following the 145 days of standing without any changes, the chemistry of the reactor 

water was little changed from the 129 day sampling. Conductivity showed a decline 

(Fig. A3 indicating that the sediment is was still removing ions from solution during this 

period. Little change in pH was observed (Fig Al. Eh increased in all 4 reactors (Fig. 

A2), In R-l and R-2, this is probably as a consequence of exhaustion of potato waste 

for decomposition and a consequent reduction in oxygen consumption. In R-4 and R-5 

the dilution of potato decomposition products in solution would also have an effect. 

Arsenic (Fig. A5), Ni (Fig. A6) and Fe (Fig. A7) concentrations remained low. NO,-N 

remained undetectable (Fig. A8). Ammonium-N (Fig. A9) and phosphate-P (Fig. 

AlO)concentrations were similar to those at 129 days. 

Following 4 changes of water in R-4 and R-5, there were substantial changes in the 

water chemistry. In contrast at day 305, the chemistry of the water column of R-l 

and R-2 was little changed from that of day 274. Data for R-4 will be considered. 

Numbers for R-5 showed the same trends. There was a decline in pH in R-4 from 

7.64 to 6.65 (Fig. Al), a decrease in Eh from 333 V to 177 mV (Fig. A2) and an 
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increase in conductivity from 620 umhoscm” to 1110 umhoscm-I (Fig A3). The 

changes in pH and conductivity suggest that contaminated water is being added 

faster than it can be treated. Arsenic concentration increased dramatically from 3 

mg.L-’ at day 274 to 80 mg.L” at day 306 (Fig. A5). There was no net removal of 

As in this period (stn 6.11 water added contains 85 mg.L” As). Ni concentration 

also increased from ~0.1 mg.L-’ to 58 mg.L-’ (Fig. A6). Ammonium-N, NO,-N and 

PO,-P concentrations (Fig. A9, A8 and A10 respectively) remained low (much lower 

than in stn 6.11 water) suggesting that these ions were being treated in the 

columns. The low NO,-N concentration, together with the decline in Eh, suggests 

that reducing conditions were still present in the sediment. Iron concentration (Fig. 

A7) and acidity (Fig.A4) also remained low. 

One exchange of water was carried out immediately following the 305 day sampling. 

Thereafter the reactors were sampled at 345 and 367 days to determine if Ni and 

As removal processes continued to operate in the ‘exchanged ’ columns R-4 and R- 

5. The trends noted for the 305 day sampling continued. The chemistry of R-l and 

R-2 changed a little with slight increases in Eh (Fig. A2) and acidity (Fig. A4). The 

pH remained high and concentrations of As and Ni low (Fig. A5 and A6 respectively) 

indicating that with one dose of potato waste, Ni and As can be stably held within 

the sedient for a full year. In R-4 and R-5, there was a continuation in decline in pH 

(Fig. Al). Conductivity remained more or less constant (Fig. A3) indicating no net 

overall removal of dissolved species from the water column. Acidity (Fig. A4) 

increased along with phosphate-P (Fig. AIO), the release of which may be related to 

the drop in pH. There was no increase in NO,-N (Fig. A8) and Eh (Fig. A2) was still 

favourable for denitrification. Nickel (Fig. A6) and As (Fig.A5 ) concentrations 

remained high. There was a decline in Ni concentration (Fig A6). For example, 

concentration in R-4 declined from 58 mg.L-’ at day 305 to 26.5 mg.L-’ at day 367 

indicating that net removal by the sediment is continuing. 
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Results of alkalinity titrations (carried out with the Metrohm Titrino autotitrator with 5 

mL samples titrated against 0.01 N H,SO,) for 274 days (after 145 day standing), 

305 days (after 4 water exchanges in R-4 and R-5) and after 367 days are shown in 

Fig All to A13. 

The estimated accumulated removal of Ni and As by the changed reactors are 

shown in Fig. Al4 and Fig. Al5 respectively. The data indicate that by the last 

sampling (367 days), there was a small net release of As from the sediment into the 

water column. Sediment removal processes are now equalled or exceeded in rate 

by release processes. Total As removed is estimated at 410 mg per reactor (mean 

of R-4 and R-5) at day 305. Net Ni removal by sediments was still taking place at 

day 367 as indicated above. Total estimated Ni removed by day 305 was 466 mg 

per reactor (mean of R-4 and R-5). 

Overall, Experiment 5 showed that the reactors with one dose of potato waste could 

remove all the Ni and As from at least 5 L of stn 6.11 water. Eventually, the potato 

waste is exhausted through decomposition and dilution. This slows down sediment 

removal processes and with a decline in pH and rise in Eh, conditions are less 

favourable for Ni and As removal. 
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Fig. Al : B-Zone Reactors Expt. 5 
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Fig. A3: B-Zone Reactors Expt. 5 
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Fig A5: B-Zone Reactors Expt. 5 
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Fig. A7: B-Zone Reactors Expt. 5 
Iron 
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Fig. A9: B-Zone Reactors Expt. 5 
Ammonium-N 
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Fig. Al 1: B-Zone Reactors Titrations 
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Fig. Al 4: Expt. 5 - Recharged reactors 
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