

Improving Classification Performance of Microarray Analysis by Feature Selection and Feature
Extraction Methods

by

Jing Sun

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (MSc) in Computational Sciences

The Faculty of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

© Jing Sun, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LU|ZONE|UL

https://core.ac.uk/display/222897394?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

iii

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE

Laurentian Université/Université Laurentienne

Faculty of Graduate Studies/Faculté des études supérieures

Title of Thesis

Titre de la thèse Improving Classification Performance of Microarray Analysis by Feature Selection

and Feature Extraction Methods

Name of Candidate

Nom du candidat Sun, Jing

Degree

Diplôme Master of Science

Department/Program Date of Defence

Département/Programme Computer Science Date de la soutenance octobre 26, 2016

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Kalpdrum Passi

(Supervisor/Directeur(trice) de thèse)

Dr. Ratvinder Grewal

(Committee member/Membre du comité)

Dr. Julia Johnson

(Committee member/Membre du comité)

 Approved for the Faculty of Graduate Studies

 Approuvé pour la Faculté des études supérieures

 Dr. Shelley Watson

 Madame Shelley Watson

Dr. Gulshan Wadhwa Acting Dean, Faculty of Graduate Studies

(External Examiner/Examinateur externe) Doyenne intérimaire, Faculté des études

supérieures

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Jing Sun, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and make

accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the duration

of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or project

report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis, dissertation,

or project report. I further agree that permission for copying of this thesis in any manner, in whole or in part, for

scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that this copy is being made available in this form by the authority of the copyright

owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted

by the copyright laws without written authority from the copyright owner.

 iii

Abstract

In this study, we compared two feature extraction methods (PCA, PLS) and seven feature

selection methods (mRMR and its variations, MaxRel, QPFS) on four different classifiers (SVM,

RF, KNN, NN). We use ratio comparison validation for PCA method and 10-folds cross

validation method for both the feature extraction and feature selection methods. We use

Leukemia data set and Colon data set to apply the combinations and measured accuracy as well

as area under ROC. The results illustrated that feature selection and extraction methods can both

somehow improve the performance of classification tasks on microarray data sets. Some

combinations of classifier and feature preprocessing method can greatly improve the accuracy as

well as the AUC value are given in this study.

Keywords

Microarray datasets, Feature Extraction, Feature Selection, Principal Component Analysis,

Partial Least Square, minimum Redundancy- Maximum Relevant, Quadratic Programming

Feature Selection, Support Vector Machine, Random Forest, k-Nearest-Neighbor, Neural

Network.

 iv

Acknowledgments

First of all, I would like to give my fully thanks to my supervisor, Dr. Kalpdrum Passi, for his

patient and insightful guidance in research, also for his consistent support and encouragement

through all stages of my master study. Although there is a lost when I facing my direction, but

still he is there and point out a way for me. Guide my step by step, that gave me the definition of

a supervisor. Without him, I would not have been able to complete this work.

Secondly, I want to say thanks for my family and my aunt. Without them, I should have been a

high school teacher in my hometown. They gave me a way to have an experience of study abroad

and live in Canada. They gave me full support in financial and mental.

 v

Table of Contents

ABSTRACT ... III

ACKNOWLEDGMENTS ... IV

CHAPTER 1 ... 1

INTRODUCTION ... 1

1.1 INTRODUCTION TO BIOINFORMATICS .. 1

1.2 GENE EXPRESSIONS AND MICROARRAYS .. 2

1.3 CLASSIFICATION TECHNIQUES .. 4

1.4 FEATURE EXTRACTION METHODS AND FEATURE SELECTION METHODS .. 4

1.5 OBJECTIVES OF THE STUDY AND OUTLINE OF THE THESIS ... 5

CHAPTER 2 ... 6

LITERATURE REVIEW .. 6

CHAPTER 3 ... 10

DATASETS AND CLASSIFICATION METHODS ... 10

3.1 DATASET SELECTION .. 10

3.1.1 Colon Cancer Dataset .. 10

3.1.2 Leukemia Dataset .. 11

3.2 CLASSIFICATION METHODS ... 11

3.2.1 Support Vector Machine .. 12

3.2.2 Random Forest .. 16

3.2.3 Neural network .. 20

3.2.4 k‐Nearest‐Neighbor ... 22

3.2.5 List of Classification Parameters ... 24

 vi

CHAPTER 4 ... 25

FEATURE EXTRACTION METHOD AND FEATURE SELECTION METHODS ... 25

4.1 FEATURE EXTRACTION METHOD .. 26

4.2 FEATURE SELECTION METHODS ... 26

4.3 METHODS IN OUR EXPERIMENT ... 28

4.3.1 Principal Component Analysis(PCA) .. 28

4.3.2 Partial Least Square(PLS) ... 33

4.3.3 Peng’s MaxRel Method and mRMR Method ... 34

4.3.4 Quadratic Programming Feature Selection(QPFS) .. 40

4.3.5 List of Parameters of PCA, PLS and Feature Selection Methods ... 43

CHAPTER 5 ... 44

INCREASING EFFICIENCY OF MICROARRAY ANALYSIS BY PCA ... 44

5.1 TOOLS ... 45

5.2 PCA .. 46

5.3 10‐FOLD CROSS VALIDATION ... 47

5.4 RATIO COMPARISON .. 50

5.5 RESULTS AND DISCUSSION .. 51

5.5.1 Principal Component Analysis Dataset List ... 51

5.5.2 10‐fold cross validation ... 52

5.5.3 Ratio Comparison .. 56

5.5.4 Discussion and Conclusion ... 61

CHAPTER 6 ... 66

 vii

IMPROVED MICROARRAY DATA ANALYSIS USING FEATURE SELECTION METHODS WITH MACHINE

LEARNING METHODS ... 66

6.1 TOOLS IN THIS EXPERIMENT... 67

6.2 PROCESS OF EXPERIMENT ... 67

6.3 DISCUSSION AND ANALYSIS ... 68

6.4 CONCLUSION .. 78

CHAPTER 7 ... 79

CONCLUSIONS AND FUTURE WORK ... 79

REFERENCES ... 81

APPENDIX .. 87

APPENDIX A: MATRIX I2000 AND NAMES OF EACH GENE IN COLON DATASET .. 87

APPENDIX B: CODES .. 88

 1

Chapter 1

Introduction

1.1 Introduction to Bioinformatics

Bioinformatics is an interdisciplinary field that develops methods and software tools for

understanding biological data. As an interdisciplinary field of science, bioinformatics combines

computer science, statistics, mathematics, and engineering to analyze and interpret biological

data.

Bioinformatics has become a part of many areas of biology which of great importance. In

experimental molecular biology, bioinformatics techniques such as image and signal processing

allow extraction of useful results from large amounts of raw data. In the field of genetics and

genomics, it aids in sequencing and annotating genomes and their observed mutations. It plays a

role in the text mining of biological literature and the development of biological and gene

ontologies to organize and query biological data. It also plays a role in the analysis of gene and

protein expression and regulation. Bioinformatics tools aid in the comparison of genetic and

genomic data and more generally in the understanding of evolutionary aspects of molecular

biology.

Bioinformatics mainly involves inception, management and examination of biological data

mainly obtained from a substantive number of experimental test runs that may at times provide

large data set. To this effect, there is need to establish comprehensive mechanisms to aid in the

interpretation and processing this data and consequently producing accurate information that is

 2

needed for research and study purposes [1]. This led to the inception of bioinformatics, a

discipline that integrates both biology and computer science.

The advances in biotechnology such as the next generation sequencing technologies are

occurring at breathtaking speed. Advances and breakthroughs give competitive advantages to

those who are prepared. However, the driving force behind the positive competition is not only

limited to the technological advancement, but also to the companion data analytical skills and

computational methods which are collectively called computational biology and bioinformatics.

Without them, the biotechnology-output data by itself is raw and perhaps meaningless.[2]

1.2 Gene Expressions and Microarrays

"Gene expression is the term utilized for portraying the interpretation of data contained inside the

DNA, the storehouse of hereditary data, into messenger RNA (mRNA) atoms that are then

interpreted into the proteins that perform a large portion of the discriminating capacity of cells"

[3]. Gene expression is a complex process that permits cells to respond to the changing inward

prerequisites and furthermore to outside ecological conditions. This system controls which genes

to express in a cell and furthermore to build or reduce the level of expression of genes.

A microarray is a device used to study and record the gene expressions of a large number of

genes at the same time. A microarray comprises of distinctive nucleic acid probes that are

artificially appended to a substrate, which can be a microchip, a glass slide or a microsphere-

sized globule.

Microarrays can be divided into two types [4]:Dual Channel Microarrays and Single Channel

Microarrays. The one we use in our experiment is the Single Channel Microarrays. In these

microarrays, individual samples are subjected through hybridization after it is named with a

 3

fluorescent color. These microarrays measure irrefutably the power of declaration. The last

procedure is completed utilizing a methodology called photolithography.

In Dual Channel Microarrays, example successions and ordinary arrangements are marked with

two distinctive fluorescent colors. Both these DNA arrangements are hybridized together on the

DNA Microarrays and a degree of fluorescence intensities emitted by the two colors is

considered so as to assess differential representation level.

There are distinctive sorts of microarrays, for example, DNA microarrays, protein microarrays,

tissue microarrays and carb microarrays[5]. The microarray innovation was advanced out of the

need to focus measures of specific substances inside a mixture of different substances.

It is possible to get gene expression data relatively inexpensively from micro-arrays. So, this

leads to hope that the genes can tell us who will get or has a disease. Perhaps one can find the

stage of the disease to enable effective treatments. However, we are currently at the stage where

there are many challenges to evaluating the possibilities for genes to be used in diagnosis and

treatment. There are typically many more genes that might be involved than samples for any

given disease. Which genes are important and how stable are the choices an algorithm provides?

We do not know the time of the true onset of a disease, just sometimes when symptoms started

and sometimes when diagnosis was done. Some of the promising work on diagnosis or prognosis

has suffered from data or scientific errors. [6] had discussed the problems and pitfalls of using

genes to predict disease presence or prognosis. It had also discussed some promising ways to

choose the genes that may be predictive for a particular disease, with a focus on cancer, and

point out some open questions.

 4

1.3 Classification Techniques

In this study, we use the classification technique to measure and compare the difference between

different feature extraction/ selection methods. Any classification method uses a set of

parameters to characterize each object. These features are relevant to the data being studied. Here

we are talking about methods of supervised learning where we know the classes into which the

items are to be ordered. We likewise have a set of items with known classes. A training set is

utilized by the order projects to figure out how to arrange the items into wanted classes. This

training set is utilized to choose how the parameters ought to be weighted or consolidated with

one another so we can separate different classes of articles. In the application stage, the trained

classifiers can be utilized to focus the classifications of articles utilizing new examples called the

testing set.

Four classification methods viz Support Vector Machine, Random Forest, k-Nearest-neighbor,

Neural Network have been selected in our study. The details about these methods are given in

Chapter 3. We record the accuracy and AUC (Area under ROC) value for analysis.

1.4 Feature Extraction Methods and Feature Selection Methods

One big problems when applying large microarray dataset onto the different classifier is

Redundancy. Some studies shown that the use of a feature extraction methods or feature

selection method can somehow improve the performance and also reduce the redundancy. In our

study, we will compare different performance between some well-known feature extraction

methods (Principle Component Analysis, Partial Least Square) as well as some famous feature

selection methods (minimum Redundancy-Maximum Relevance, Maximum Relevance,

 5

Quadratic Programming Feature Selection). The detailed introduction of each method will be

given in Chapter 4.

1.5 Objectives of the study and outline of the thesis

In this study, we proposed a measurement of vary feature preprocessing methods. This included

the feature extraction method, feature selection method and discretized method. We are trying to

find on what specific condition that can get the best performance among four different

classifiers.

The thesis is organized as below:

We will present the literature review and some of the previous works done on the microarray

classification. Plus, some results and works about feature extraction as well as feature selection

methods will also be mentioned in Chapter 2.

The datasets and detailed classification methods will be describing in Chapter 3. Following the

description and introduction of different feature extraction and selection method in Chapter 4.

Chapter 5 will give the expansion of the published paper about principle component analysis.

Another ongoing publish paper about the comparison of feature selection and extraction methods

will be detailed in Chapter 6.

Conclusion, future work and other overall contents will list in and after Chapter 7.

 6

Chapter 2

Literature Review

One big task in bioinformatics is to classify and predict the biological inferences of complex,

high-dimensional and voluminous data. With the rapid increase in size and numbers of features

in bioinformatics, it is critical to use some tools and good algorithms to automate the

classification process. Several reports evidence that Classification methods viz SVM, NN, kNN

and RF, have been applied in solving the bioinformatics problems with good accuracy.

Byvatov E , Schneider G noted that the Support Vector Machine(SVM) approach produced

lower prediction error compared to classifiers based on other methods like artificial neural

network, especially when large numbers of features are considered for sample description[7].[8]

used a combination of SVM and Recursive feature elimination method in an experiment which

showed that the genes selected by this method yield better classification performance and are

biologically relevant to cancer. In [9], Yang discussed how the SVM can cooperate with

biological data specifically in protein and DNA sequences. [10] showed that a neural network

grows adopting the topology of a binary tree called Self-Organizing Tree Algorithm is a

hierarchical cluster obtained with the accuracy and robustness of a neural network. They

mentioned that this method is especially suitable for dealing with huge amounts of data.

[11]presented a neural-network-based method to predict a given mutation increases or decreases

the protein thermodynamic stability with respect to the native structure. They mentioned that one

the same task and using the same data, their predictor performs better than other methods on the

 7

web. [12]stated that random forest is a classification algorithm well suited for microarray data.

They investigated the use of random forest for classification of microarray data and proposed a

gene selection method in classification problems based on random forest. Also, in [13],

Boulesteix, A , Janitza, S , synthesized the random forest development of 10 years with emphasis

on applications to bioinformatics and computational biology. They showed that the RF algorithm

has become a standard data analysis tool in bioinformatics. Besides the above, some researchers

also using k-nearest neighbor for the similar tasks. [14] used the k-nearest neighbor based

method for protein subcellular location prediction.[15] presented a learning approach which is

derived from the traditional k-nearest-neighbor algorithm and gave a comparison on a multi-label

bioinformatics data which showed that the new method is highly comparable to existing multi

label learning algorithms. In [16], they compared another knn based method with Neural

networks and SVM, and they concluded that the method is very promising and might become a

useful vehicle in protein science, bioinformatics. In [17], Leping, L, tested an approach combines

Genetic Algorithm and the k-nearest-neighbors to identify genes that can jointly discriminate

between different classes of samples. They also chose the leukemia data set and the colon data

set. The result showed that this method is capable of selecting a subset of predictive genes from a

large noisy data set for sample classification.

Most of the works mentioned above focus on a specific classifier and made some improvement

for the classification and even proposed some new methods which are driven by the classical

methods. In our study, we want to know if the feature selection or feature extraction method can

somehow improve the performance of gene selection problems. We will use the classical

classification methods for the measurement. For the cross validation, [18] recommended using

10-fold cross validation rather than leave-one-out cross validation.

 8

In classification tasks, the performance of the classifier improved when the dimensionality

increases until an optimal number of feature is selected. After that, further increases of the

dimensionality without increases of the samples will cause the performance degrade[19]. This is

what we called the “curse of dimensionality”. To solve this problem, one way is to find out

which subset of the origin data set is of vital importance for the classification tasks. In [20], a

comparative study demonstrated that it is possible to use feature selection method to solve this

problem. Authors have used SVM with different kernel and KNN method for a classification

task and give a ranking method to two gene data set. The results showed the importance of

informative gene ranking to classify test samples accurately. [21] present a hybrid method for

feature selection. Their results showed that increased number of irrelevant and redundant

features has decrease the accuracy of classifier as well as increase the computational cost and

reinforced the curse of dimensionality. Hence feature extraction and feature selection method

become a possible solution.

There are many different feature selection method, in [22], they presented a novel approach

based on Binary Black Hole Algorithm and Random Forest Ranking. They use this method for

gene selection and classification of microarray data. The results showed that selecting the least

number of informative genes can increase prediction accuracy of Bagging and outperforms the

other classification method.

When we move our attention to feature preprocessing methods, Peng H’s paper [23] gets our

most attention, they proposed two methods namely mRMR and MaxRel for the gene selection

and their experiments have showed that the methods are robust and stable for the improvement.

In [24], they gave more detail and experiment to further investigate the two methods, the results

 9

confirm that mRMR leads to promising improvement on feature selection and classification

accuracy.

[25] have used PCA method for analysis of gene expression data. Their results showed that

clustering with the PCA does not necessarily improve and often degrades the cluster quality. In

[26], Antai W, proposed a gene selection method based on PCA and use this method to

demonstrate that the method selects the best gene subset for preserving the original data

structure. In our study, we will cover and give the results on classification tasks using PCA.

In [27], Jalali-Heravi M proposed a method which combined the genetic algorithm- kernel partial

least square for feature selection. Their results indicated that this approach is a powerful method

for the feature selection in nonlinear systems.

In [28], another feature selection method called Quadratic Programming Feature Selection is

proposed. This method reduces the task to a quadratic optimization problem and is capable for

dealing with very large data set. Plus, [29] proposed a sequential Minimal Optimization based

framework for QPFS, and they successfully reduced the computation time of data

dimension(cubic computation time) of standard QPFS.

In our study, we look forward to see how can the combination between the traditional classifiers

and the well-performance feature selection method can somehow improve the performance. We

covered PCA, MaxRel, PLS, QPFS, mRMR methods by using them for the preprocess process.

After that, different validation methods were applied to the classification tasks. We give some

suggestion of vary combination for new data sets.

 10

Chapter 3

Datasets and Classification Methods

3.1 Dataset Selection

3.1.1 Colon Cancer Dataset

The Colon Cancer Dataset was first in use in [30, 31] in 1999. 62 samples, including 20 normal

samples and 40 tumor samples, collected from patients of colon-cancer.

The matrix I2000 (See Appendix A: Matrix I2000 and Names of each Gene in Colon Dataset)

contains the expression of the 2000 genes with highest minimal intensity across the 62 tissues.

The genes are placed in order of descending minimal intensity. Each entry in I2000 is a gene

intensity derived from the ~20 feature pairs that correspond to the gene on the chip, derived

using the filtering process described in the ‘materials and methods’ section. The data is otherwise

unprocessed (for example it has not been normalized by the mean intensity of each experiment).

The file ‘names’ contains the EST number and description of each of the 2000 genes, in an order

that corresponds to the order in I2000. Note that some ESTs are repeated which means that they

are tiled a number of times on the chip, with different choices of feature sequences.

 11

The identity of the 62 tissues is given in file tissues. The numbers correspond to patients, a

positive sign to a normal tissue, and a negative sign to a tumor tissue.

Before our experiments, we have normalized the dataset file to mean 0.

3.1.2 Leukemia Dataset

The Leukemia Dataset was also mentioned in [31]. Leukemias are primary disorders of bone

marrow. They are malignant neoplasms of hematopoietic stem cells. The total number of genes

to be tested is 7129, and number of samples to be tested is 72, which are all acute leukemia

patients, either acute lymphoblastic leukemia (ALL) or acute myelogenous leukemia (AML).

More precisely, the number of ALL is 47 and the number of AML is 25. The dataset has been

normalized before our experiments.

3.2 Classification Methods

In the current study, we deal with a classification problem which focuses on dividing the samples

of two microarray datasets into two categories. Any classification method uses a set of

parameters to characterize each object. These features are relevant to the data being studied. Here

we are talking about methods of supervised learning where we know the classes into which the

items are to be ordered. We likewise have a set of items with known classes. A training set is

utilized by the order projects to figure out how to arrange the items into wanted classes. This

training set is utilized to choose how the parameters ought to be weighted or consolidated with

one another so we can separate different classes of articles. In the application stage, the trained

 12

classifiers can be utilized to focus the classifications of articles utilizing new examples called the

testing set. The different well-known to order techniques are discussed as follows [32].

3.2.1 Support Vector Machine

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating

hyperplane. In other words, given labeled training data (supervised learning), the algorithm

outputs an optimal hyperplane which categorizes new examples.

The original SVM algorithm was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis

in 1963. In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik suggested a

way to create nonlinear classifiers by applying the kernel trick to maximum-margin

hyperplanes[33].The current standard incarnation (soft margin) was proposed by Corinna Cortes

and Vapnik in 1993 and published in 1995.[34]

Let us look at the example for a clear understand.

 13

Figure 0-1: SVM Classification

Suppose we need to find a separating straight line for a linearly separable set of 2D-points which

belong to one of two classes. In Figure 0-1, one can see that there exists multiple lines that offer

a solution to the problem. Is any of them better than the others? The SVM define a criterion to

estimate the worth of the lines:

A line is bad if it passes too close to the points because it will be noise sensitive and it will not

generalize correctly. Therefore, our goal should be to find the line passing as far as possible from

all points.

Then, the operation of the SVM algorithm is based on finding the hyperplane that gives the

largest minimum distance to the training examples. Twice, this distance receives the important

 14

name of margin within SVM’s theory. Therefore, the optimal separating hyperplane maximizes

the margin of the training data. See Figure 0-2.

Figure 0-2: Optimal hyperplane

This is a simple example for SVM. For higher dimension situation, the same concepts apply to

the task.

Formally a hyperplane can be defined as:

݂ሺݔሻ ൌ ଴ߚ ൅ ,ݔ்ߚ

Where ߚ is known as the weight vector and ߚ଴ as the bias.

The optimal hyperplane can be represented in an infinite number of different ways by scaling of

 :଴. SVM would choose the one that meetsߚ and ߚ

଴ߚ| ൅ |ݔ்ߚ ൌ 1,

 15

where ݔ symbolizes the training examples closest to the hyperplane. In general, the training

examples that are closest to the hyperplane are called support vector. This representation is know

as the canonical hyperplane.[35]

Now we use the result of geometry that gives the distance ܦ between a point ݔ and a

hyperplaneሺߚ, :଴ሻߚ

ܦ ൌ
଴ߚ| ൅ |ݔ்ߚ

‖ߚ‖
.

Particularly, for canonical hyperplane, the numerator is equal to one and the distance to the

support vector:

ௌ௨௣௣௢௥௧௏௘௖௧௢௥ܦ ൌ ܦ ൌ
଴ߚ| ൅ |ݔ்ߚ

‖ߚ‖
ൌ

1
‖ߚ‖

Recall that the margin introduced above, we denoted the margin as ܯ , which is twice the

distance to the closest examples:

ܯ ൌ
2
‖ߚ‖

Last but not least, the problem of maximizing ܯ is equivalent to the problem of minimizing a

function ܮሺߚሻ subject to some constraints. The constraints model the requirement for the

hyperplane to classify correctly all the training examples ݔ௜. Formally:

min
ఉ,ఉబ

ሻߚሺܮ ൌ
1
2
 	ଶ‖ߚ‖

subject to:

 16

௜ݔ்ߚ௜ሺݕ ൅ ଴ሻߚ ൒ 1	∀݅,

where ݕ௜represents each of the labels of the training examples.[36]

In [37], Jin, Chi; Wang, Liwei mentioned that for a higher-dimensional feature space, the

generalization error of SVM still performs well even if we give enough samples.

The SVM function we use in the experiment is available as a plugin in Weka. The original

wrapper, named WLSVM, was developed by Yasser EL-Manzalawy. The current version we use

is complete rewrite of the wrapper in order to avoid compilation errors. Package name and all the

parameters will be given in 3.2.5.

3.2.2 Random Forest

The first algorithm for random decision forests was created by Tin Kam Ho [38] using the

random subspace method,[39] which, in Ho's formulation, is a way to implement the "stochastic

discrimination" approach to classification proposed by Eugene Kleinberg.[40, 41]

The function we use in the experiment is available in Weka. The function fully implemented the

method in [42]. The development, verification and the significance of variable importance of RF

were focused in [43].

The RF is an ensemble approach that can also be thought of as a form of nearest neighbor

predictor. This will be mentioned in 3.2.4.

Ensembles are a divide-and-conquer approach used to improve performance. The main target of

the ensemble methods is that a group of weak learners can come together to form a strong

learner.

 17

Here is an example from [44], in Figure 0-3, the data to be modeled are the blue circles. We

assume that they represent some underlying function plus noise. Each individual learner is shown

as a gray curve. Each gray curve (a weak learner) is a fair approximation to the underlying data.

The red curve (the ensemble “strong learner”) can be seen to be a much better approximation to

the underlying data.

Figure 0-3: Strong learner and Weak learner

The random forest starts with a standard machine learning technique called a “decision tree”

which, in ensemble terms, corresponds to our weak learner. In a decision tree, an input is entered

at the top and as it traverses down the tree the data gets bucketed into smaller and smaller sets.

In this example, see Figure 0-4 ,the tree advises us, based upon weather conditions, whether to

play ball. For example, if the outlook is sunny and the humidity is less than or equal to 70, then

it’s probably OK to play.

 18

Figure 0-4: Example of a Decision Tree

The random forest takes this notion to the next level by combining trees with the notion of an

ensemble (See Figure 0-5). Thus, in ensemble terms, the trees are weak learners and the random

forest is a strong learner.

 19

Figure 0-5: Relationship between Random Forest and Random Tree

Here is how such a system is trained; for some number of trees T:

Sample N cases at random with replacement to create a subset of the data (see Figure 0-5). The

subset should be about 66% of the total set.

At each node:

For some number m (see below), m predictor variables are selected at random from all the

predictor variables.

The predictor variable that provides the best split, according to some objective function, is used

to do a binary split on that node.

 20

At the next node, choose another ݉ variables at random from all predictor variables and do the

same.

Depending upon the value of m, there are three slightly different systems:

Random splitter selection: m =1

Breiman’s bagger: m = total number of predictor variables

Random forest: m << number of predictor variables. Brieman suggests three possible values for

݉:
ଵ

ଶ
√݉, √݉, 2√݉	.

When a new input is entered into the system, it is run down all of the trees. The result may either

be an average or weighted average of all of the terminal nodes that are reached, or, in the case of

categorical variables, a voting majority.

Random forest runtimes are quite fast, and they are able to deal with unbalanced and missing

data. Random Forest weaknesses are that when used for regression they cannot predict beyond

the range in the training data, and that they may over-fit data sets that are particularly noisy.

The parameters that we use in the experiment are given in 3.2.5.

3.2.3 Neural network

Inspired by the sophisticated functionality of human brains where hundreds of billions of

interconnected neurons process information in parallel, researchers have successfully tried

demonstrating certain levels of intelligence on silicon. Examples include language translation

and pattern recognition software. While simulation of human consciousness and emotion is still

in the realm of science fiction.

 21

Figure 0-6: Architecture of Neural Network

An artificial neural network(NN) consists of an input layer of neurons (nodes, units), one or two

(or even three) hidden layers of neurons, and a final layer of output neurons. See Figure 0-6 for a

typical architecture, where lines connecting neurons are also shown. Each connection is

associated with a numeric number called weight. The output, ݄௜, of neuron ݅ in the hidden layer

is:

݄௜ ൌ ሺ෍ߪ ௜ܸ௝ݔ௝ ൅ ௜ܶ
௛௜ௗሻ,

ே

௝ୀଵ

 22

where ߪሺሻ is called activation function, ܰ the number of input neurons, ௜ܸ௝ the weights, ݔ௝ inputs

to the input neurons, and ௜ܶ
௛௜ௗ the threshold terms of the hidden neurons.[45]

The most straightforward structural planning of fake neural systems is single-layered system,

likewise called Perceptron, where inputs connect directly to the outputs through a single layer of

weights. The most usually utilized type of NN is the Multilayer Perceptron. NN offers a

compelling and exceptionally general structure for speaking to non-linear mapping from a few

information variables to a few yield variables.[46]

We will use the Weka in-built function ‘MultilayerPerceptron’ for the experiment. Detailed

parameter will be given in 3.2.5.

3.2.4 k-Nearest-Neighbor

K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases

based on a similarity measure (e.g., distance functions). KNN has been used in statistical

estimation and pattern recognition already in the beginning of 1970’s as a non-parametric

technique.[47, 48]

A case is classified by a majority vote of its neighbors, with the case being assigned to the class

most common amongst its K nearest neighbors measured by a distance function. If ܭ	 ൌ 	1, then

the case is simply assigned to the class of its nearest neighbor.

The well-known distance functions are Euclidean Distance, Manhattan Distance, Minkowski

Distance and Hamming Distance.

Euclidean: ට∑ ሺݔ௜ െ ௜ሻଶ௞ݕ
௜ୀଵ

 23

Manhattan: ∑ ௜ݔ| െ |௜ݕ
௞
௜ୀଵ

Minkowski: ൫∑ ሺ|ݔ௜ െ ௜|ሻ௤ݕ
௞
௜ୀଵ ൯

భ
೜

Hamming: ܦ ൌ ∑ ௜ݔ| െ |௜ݕ
௞
௜ୀଵ , where ݔ ൌ ݕ ⇒ ܦ ൌ 0; ݔ ് ݕ ⇒ ܦ ൌ 1

It should also be noted that all three distance measures are only valid for continuous variables. In

the instance of categorical variables, the Hamming distance must be used. It also brings up the

issue of standardization of the numerical variables between 0 and 1 when there is a mixture of

numerical and categorical variables in the dataset.

An example in Figure 0-7, The test sample (green circle) should be classified either to the first

class of blue squares or to the second class of red triangles. If ܭ	 ൌ 	3 (solid line circle) it is

assigned to the second class because there are 2 triangles and only 1 square inside the inner

circle. If ܭ	 ൌ 	5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles

inside the outer circle).

Figure 0-7: k-NN circle with k=3 and k=5

 24

In the classification phase, ܭ is a user-defined constant, and an unlabeled vector (a query or test

point) is classified by assigning the label which is most frequent among the ܭ training samples

nearest to that query point.

Choosing the optimal value for ܭ is best done by first inspecting the data. In general, a large ܭ

value is more precise as it reduces the overall noise but there is no guarantee. Cross-validation is

another way to retrospectively determine a good ܭ value by using an independent dataset to

validate the ܭ value. Historically, the optimal ܭ for most datasets has been between 3-10. That

produces much better results than 1NN.[49]

In our experiment, we will use ܭ ൌ 1 and the Euclidean Distance.

3.2.5 List of Classification Parameters

Classifier Weka Function Parameters
SVM LibSVM -S 0 -K 0 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -B -

model /Users/Stanley -seed 1
RF RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1
NN MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a
KNN IBK -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A

\"weka.core.EuclideanDistance -R first-last\""

 25

Chapter 4

Feature Extraction Method and Feature Selection Methods

The task of the feature extraction and selection methods is to get the most relevant information

from the original data and represent that information in a lower dimensionality space.[50]

For the different between feature extraction and feature selection, feature selection is to select the

relevant information from the original data without modify the original attributes. Feature

selection gets the new data set by use the subset of original data set. Feature extraction is to

select the information and use the information from original attributes to combine for the new

data set.

Dimensionality reduction is typically choosing a basis or mathematical representation within

which you can describe most but not all of the variance within your data, thereby retaining the

relevant information, while reducing the amount of information necessary to represent it. There

are a variety of techniques for doing this including but not limited to PCA, ICA, and Matrix

Feature Factorization. These will take existing data and reduce it to the most discriminative

components. These all allow you to represent most of the information in your dataset with fewer,

more discriminative features.

Feature Selection is hand selecting features which are highly discriminative. This has a lot more

to do with feature engineering than analysis, and requires significantly more work on the part of

the data scientist. It requires an understanding of what aspects of your dataset are important in

whatever predictions you're making, and which aren't. Feature extraction usually involves

 26

generating new features which are composites of existing features. Both of these techniques fall

into the category of feature engineering. Generally, feature engineering is important if you want

to obtain the best results, as it involves creating information that may not exist in your dataset,

and increasing your signal to noise ratio.

4.1 Feature Extraction Method

The goal is to build, using the available features, those that will perform better. Feature

extraction is a general term for methods of constructing combinations of the variables to get

around these problems while still describing the data with sufficient accuracy.

In our experiment, we choose Principle Component Analysis and Partial Least Square as the

feature extraction methods.

Detailed introduction will be given in 4.3.1 and 4.3.2.

4.2 Feature Selection Methods

Feature selection is also called variable selection or attribute selection.

It is the automatic selection of attributes in your data (such as columns in tabular data) that are

most relevant to the predictive modeling problem you are working on.

Feature selection is different from dimensionality reduction. Both methods seek to reduce the

number of attributes in the dataset, but a dimensionality reduction method do so by creating new

combinations of attributes, whereas feature selection methods include and exclude attributes

present in the data without changing them.[51]

 27

Feature selection methods can be used to identify and remove unneeded, irrelevant and

redundant attributes from data that do not contribute to the accuracy of a predictive model or

may in fact decrease the accuracy of the model.

There are three general classes of feature selection algorithms: filter methods, wrapper methods

and embedded methods.

Filter feature selection methods apply a statistical measure to assign a scoring to each feature.

The features are ranked by the score and either selected to be kept or removed from the dataset.

The methods are often univariate and consider the feature independently, or with regard to the

dependent variable.

Example of some filter methods include the Chi squared test, information gain and correlation

coefficient scores.

Wrapper methods consider the selection of a set of features as a search problem, where different

combinations are prepared, evaluated and compared to other combinations. A predictive model

us used to evaluate a combination of features and assign a score based on model accuracy.

The search process may be methodical such as a best-first search, it may stochastic such as a

random hill-climbing algorithm, or it may use heuristics, like forward and backward passes to

add and remove features.

An example if a wrapper method is the recursive feature elimination algorithm.

 28

Embedded methods learn which features best contribute to the accuracy of the model while the

model is being created. The most common type of embedded feature selection methods are

regularization methods.

Regularization methods are also called penalization methods that introduce additional constraints

into the optimization of a predictive algorithm (such as a regression algorithm) that bias the

model toward lower complexity (less coefficients).

Examples of regularization algorithms are the LASSO, Elastic Net and Ridge Regression.

4.3 Methods in Our Experiment

4.3.1 Principal Component Analysis(PCA)

Principal Component Analysis was invented in 1901.[52] as an analogue of the principal axis

theorem in mechanics; it was later independently developed (and named) by Harold Hotelling in

the 1930s.[53] Depending on the field of application, it is also named the discrete Kosambi-

Karhunen–Loève transform (KLT) in signal processing, the Hotelling transform in multivariate

quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular

value decomposition (SVD) of X [54], eigenvalue decomposition (EVD) of XTX in linear

algebra, factor analysis (for a discussion of the differences between PCA and factor analysis see

Ch. 7 of [55]).

PCA is mostly used as a tool in exploratory data analysis and for making predictive models. PCA

can be done by eigenvalue decomposition of a data covariance (or correlation) matrix or singular

value decomposition of a data matrix, usually after mean centering (and normalizing or using Z-

scores) the data matrix for each attribute.[56] The results of a PCA are usually discussed in terms

of component scores, sometimes called factor scores (the transformed variable values

 29

corresponding to a particular data point), and loadings (the weight by which each standardized

original variable should be multiplied to get the component score).[57]

The most common definition of PCA, in [53], is that, for a given set of data vectors ݔ௜	,	݅	 ∈

	1. . . the ݀ principal axes are those orthonormal axes onto which the variance retained under ,ݐ

projection is maximal.

In order to capture as much of the variability as possible, let us choose the first principal

component, denoted by ଵܷ, to have maximum variance. Suppose that all centered observations

are stacked into the columns of an ݊	 ൈ -݊ matrix ܺ, where each column corresponds to an ݐ	

dimensional observation and there are t observations. Let the first principal component be a

linear combination of ܺ defined by coefficients (or weights) ݓ	 ൌ 	 ሾݓଵ. . . .௡ሿݓ

In matrix form:

ଵܷ 	ൌ ்ܺݓ	

ሺݎܽݒ ଵܷሻ 	ൌ ሻ்ܺݓሺݎܽݒ	 	ൌ 	ݓ்ܵݓ	

where ܵ is the ݊	 ൈ 	݊	sample covariance matrix of ܺ. Clearly ݎܽݒሺ ଵܷሻ can be made arbitrarily

large by increasing the magnitude of ݓ . Therefore, we choose ݓ to maximize ݓ்ܵݓ	while

constraining ݓ to have unit length.

 	ݓ்ܵݓ	ݔܽ݉

subject to

	ݓ்ݓ ൌ 	1	

 30

To solve this optimization problem, a Lagrange multiplier ߙଵ is introduced:

,ݓሺܮ ሻߙ ൌ ݓ்ܵݓ െ ݓ்ݓଵሺߙ െ 1ሻ

Differentiating with respect to ݓ gives ݊ equations,

	ݓܵ ൌ ݓଵߙ	

Premultiplying both sides by ்ݓ we have:

	ݓ்ܵݓ ൌ 	ݓ்ݓଵߙ ൌ 1ߙ	

ሺݎܽݒ ଵܷሻ is maximized if ߙଵ is the largest eigenvalue of ܵ.

Clearly ߙଵ and ݓ are an eigenvalue and an eigenvector of ܵ. Differentiating ܮሺݓ, ሻ withߙ

respect to the Lagrange multiplier ߙଵ gives us back the constraint:

	ݓ்ݓ ൌ 	1

This shows that the first principal component is given by the normalized eigenvector with the

largest associated eigenvalue of the sample covariance matrix ܵ. A similar argument can show

that the ݀ dominant eigenvectors of covariance matrix ܵ determine the first ݀ principal

components.

Another nice property of PCA, closely related to the original discussion by Pearson in[52] is that

the projection onto the principal subspace minimizes the squared reconstruction error,

௜ୀଵߑ
௧ ௜ݔ‖ െ ො௜‖ଶݔ

 31

In other words, the principal components of a set of data in ܴே provide a sequence of best linear

approximations to that data, for all ranks ݀ ൑ ݊. Consider the rank-݀ linear approximation model

as:

	݂ሺݕሻ 	ൌ ݔ 	൅	ܷௗݕ	

This is the parametric representation of a hyperplane of rank ݀ . For convenience, suppose

ݔ 	ൌ 	0 (otherwise the observations can be simply replaced by their centered versions ݔ෤ 	ൌ 	 ௜ݔ 	െ

ሻݕUnder this assumption the rank ݀ linear model would be ݂ሺ .(ݔ 	ൌ 	ܷௗݕ, where ܷௗ is a ݊	 ൈ 	݀

matrix with ݀ orthogonal unit vectors as columns and ݕ is a vector of parameters. Fitting this

model to the data by least squares leaves us to minimize the reconstruction error:

min
௎೏,௬೔

௜ߑ
௧‖ݔ௜ െ ܷௗݕ௜‖ଶ,

By partial optimization for ݕ௜ we obtain:

݀
௜ݕ݀

ൌ 0 ⇒ ௜ݕ ൌ ܷௗ
 ௜ݔ்

Now we need to find the orthogonal matrix ܷௗ:

min
௎೏

௜ߑ
௧‖ݔ௜ െ ܷௗܷௗ

 ௜‖ଶݔ்

Define ܪௗ 	ൌ 	ܷௗܷௗ
݊ ௗ is aܪ . ் ൈ ݊ matrix which acts as a projection matrix and projects each

data point ݔ௜ onto its rank d reconstruction. In other words, ܪௗݔ௜ is the orthogonal projection of

 ௜ onto the subspace spanned by the columns of ܷௗ. A unique solution ܷ can be obtained byݔ

finding the singular value decomposition of X [35]. For each rank ݀, ܷௗ consists of the first ݀

 32

columns of ܷ. Clearly the solution for ܷ can be expressed as singular value decomposition (SVD)

of ܺ.

ܺ	 ൌ 	்ܸߑܷ	

since the columns of U in the SVD contain the eigenvectors of ்ܺܺ. So the PCA procedure is

summarized in Table 0-1.

Table 0-1: PCA Algorithm

Algorithm of PCA

1. Recover basis:

Calculate ்ܺܺ ൌ ௜ୀଵߑ
௧ ௜ݔ௜ݔ

் and let ܷ ൌ ்ܺܺ	݂݋	ݏݎ݋ݐܿ݁ݒ݊݁݃݅݁

 corresponding to the top ݀ eigenvalues.

2. Encode training data: ܻ	 ൌ 	்ܷܺ where ܻ is a ݀	 ൈ .matrix of encodings of the original data ݐ	

3. Reconstruct training data: ෠ܺ ൌ ܷܻ ൌ ்ܷܷܺ.

4. Encode test example: ݕ	 ൌ .ݔ is a ݀-dimensional encoding of ݕ where ݔ்ܷ	

5. Reconstruct test example: ݔො ൌ ܷ௬ ൌ ݔ்ܷܷ

We will use the Weka Principle Component function in our experiment. The function is to

performs a principal components analysis and transformation of the data. Use in conjunction

with a Ranker search. Dimensionality reduction is accomplished by choosing enough

eigenvectors to account for some percentage of the variance in the original data---default 0.95

(95%). Attribute noise can be filtered by transforming to the PC space, eliminating some of the

worst eigenvectors, and then transforming back to the original space.

 33

4.3.2 Partial Least Square (PLS)

Partial least squares regression (PLS regression) is a statistical method that bears some relation to

principal components regression; instead of finding hyperplanes of maximum variance between

the response and independent variables, it finds a linear regression model by projecting the

predicted variables and the observable variables to a new space.

Partial Least Squares is a simultaneous feature extraction and regression technique, well suited

for high dimensional problems where the number of samples is much lesser than the number of

features (݊	 ≪ :The linear PLS model can be expressed as .(݌	

ܺ ൌ ܶܲୃ ൅ ܺ௥௘௦

ܻ ൌ ܷܳୃ ൅ ௥ܻ௘௦

where ܺ௡ൈ௣ is the feature matrix, ௡ܻൈ௤ is the matrix of response variables or class labels, ௡ܶൈௗ is

called the X-scores, ௣ܲൈௗ is X-loading, ܷ௡ൈௗ is Y-scores, ܳ௤ൈௗ	 is Y-loadings, ܺ௥௘௦ and ௥ܻ௘௦ are

the residuals. The data in X and Y are assumed to be mean-centered. X-scores and Y-scores are

the projections of n samples onto a d-dimensional orthogonal subspace. The X-scores are

obtained by a linear combination of the variables in X with the weights W as:

ܶ ൌ ܹܺ∗

The inner relation between X-scores and Y-scores is a linear regression model and hence X-

scores are called predictors of Y-scores. If we denote B as the regression coefficient for the inner

relation between the scores, we have:

ܷ ൌ ܤܶ

 34

So that we get:

ܻ ൌ ܷܳୃ ൅ ௥ܻ௘௦	

ൌ ୃܳܤܶ ൅ ௥ܻ௘௦	

ൌ ܤܶ ൅ ௥ܻ௘௦

where ܤ ൌ ୃܳܤ

The least squares estimate of ܤ is then given by:

෠ܤ ൌ ሺܶୃܶሻିଵܶୃܻ

Hence PLS can be expressed in a linear regression from:

෠ܻ ൌ ෠ܤܶ ൌ ܶሺܶୃܶሻିଵܶୃܻ

For more detail about the explanation of the PLS, see [58-60].

The two most popular algorithms to obtain the PLS model are NIPALS [80] and SIMPLS [81].

We have implemented SIMPLS available in Weka.

4.3.3 Peng’s MaxRel Method and mRMR Method

mRMR means minimum-Redundancy-Maximum-Relevance feature/variable/attribute selection.

The goal is to select a feature subset set that best characterizes the statistical property of a target

classification variable, subject to the constraint that these features are mutually as dissimilar to

each other as possible, but marginally as similar to the classification variable as possible. There

 35

are several different forms of mRMR, where "relevance" and "redundancy" were defined using

mutual information, correlation, t-test/F-test, distances, etc.

Importantly, for mutual information, they showed that the method to detect mRMR features also

searches for a feature set of which features jointly have the maximal statistical "dependency" on

the classification variable. This "dependency" term is defined using a new form of the high-

dimensional mutual information.

The mRMR method was first developed as a fast and powerful feature "filter". Then they also

showed a method to combine mRMR and "wrapper" selection methods. These methods have

produced promising results on a range of datasets in many different areas.[24]

4.3.3.1 Discretization Preprocessing Method

Before we go through the MaxRel and mRMR methods, we will introduce the discretize method

in our experiment.

Discretization is an essential pre-processing step for machine learning algorithms that can handle

only discrete data. However, discretization can also be useful for machine learning algorithms

that directly handle continuous variables. [61] indicated that the improvement in classification

performance from discretization accrues to a large extent from variable selection and to a smaller

extent from the transformation of the variable from continuous to discrete.

Many studies [62-66]have shown that induction tasks can benefit from discretization: rules with

discrete values are normally shorter and hence easier to understandable and discretization can

lead to improved predictive accuracy.

 36

[23, 24] showed that discretization will often lead to a more robust classification. There are

several ways for the discretization. Such as Binary discretization. Each feature variable was

divided at the mean value, the value become 1 if it is large than the mean value and -1 otherwise.

Another 3-states discretization method which we will use in our experiment is we use

ߤ േ ߪ

as the divided point, where ߤ is the mean value and ߪ is the standard deviation.

The value become -1 if it is less than ߤ െ ,ߪ

1 if it is larger than ߤ ൅ .and 0 if otherwise ,ߪ

We use python to convert this discretization. See Table 0-1 for codes.

4.3.3.2 Max Relevant Feature Selection (MaxRel)

One of the most popular approaches to realize Max-Dependency is Maximal Relevance

(MaxRel) feature selection: selecting the features with the highest relevance to the target class ܿ.

Relevance is usually characterized in terms of correlation or mutual information, of which the

latter is one of the widely used measures to define dependency of variables. Given two random

variables ݔ and ݕ, their mutual information is defined in terms of their probabilistic density

functions ݌ሺݔሻ, ,ሻݕሺ݌ ,ݔሺ݌	݀݊ܽ :ሻݕ

,ݔሺܫ ሻݕ ൌ ඵ݌ሺݔ, ሻݕ log
,ݔሺ݌ ሻݕ

ሻݕሺ݌ሻݔሺ݌
 ݕ݀ݔ݀

In MaxRel, the selected features ݔ௜ are required, individually, to have the largest mutual

information ܫሺݔ௜, ܿሻ with the target class ܿ, reflecting the largest dependency on the target class.

 37

In terms of sequential search, the ݉ best individual features, i.e., the top ݉ features in the

descent ordering of ܫሺݔ௜, ܿሻ are often selected as the ݉ features.

To measure the level of discriminant powers of genes when they are differentially expressed for

different target classes, we again use mutual information ܫሺ݄, ݃௜ሻ between targeted classes

݄	 ൌ 	 ሺ݄ଵ, ݄ଶ, . . . , ݄௄	ሻ (we call ݄ the classification variable) and the gene expression ݃௜. ,ሺ݄ܫ ݃௜ሻ

quantifies the relevance of ݃௜ for the classification task. Thus the maximum relevance condition

is to maximize the total relevance of all genes in the subset we are seeking (Denoted as S):

ݔܽ݉ ூܸ, ூܸ ൌ
1
|ܵ|

,ሺ݄ܫ௜∈ௌߑ ݃௜ሻ,

With what we mentioned in 4.3.3.1, we denote the MaxRel feature selection method with

continuous data as MRC method and MRD for discretized data.

4.3.3.3 Minimum Redundant – Maximum Relevant (mRMR)

It is likely that features selected according to Max-Relevance could have rich redundancy, i.e.,

the dependency among these features could be large. When two features highly depend on each

other, the respective class-discriminative power would not change much if one of them were

removed. Therefore, the following minimal Redundancy (mR) condition can be added to select

mutually exclusive features:

݉݅݊ ூܹ, ூܹ ൌ
1
|ܵ|ଶ

,ሺ݃௜ܫ௜,௝∈ௌߑ ݃௝ሻ

The mRMR feature selection method is obtained by balance the Maximum Relevant and

Minimum Redundant conditions. Optimization of both conditions requires combining them into

 38

a single criterion function. The method where the author of mRMR treat the two conditions

equally important, and consider two simplest combination criteria:

maxሺ ூܸ െ ூܹሻ

max ൬ ூܸ

ூܹ
൰

These two ways to combine relevance and redundancy lead to the selection criteria of a new

feature. We can choose either Mutual Information Difference criterion(MID) or Mutual

Information Quotient criterion(MIQ).

In our experiment, we will cover both MID and MIQ method. We denote the 4 different methods

as Table 0-2.

Table 0-2:Four methods from mRMR

Methods Mutual Information Criterion Data type

mRDD MID Discrete

mRDQ MIQ Discrete

mRCD MID Continuous

mRCQ MIQ Continuous

 39

4.3.3.4 Mutual information estimation

We consider mutual-information-based feature selection for both discrete and continuous data.

For discrete (categorical) feature variables, the integral operation in mutual information between

two variables reduces to summation. In this case, computing mutual information is

straightforward, because both joint and marginal probability tables can be estimated by tallying

the samples of categorical variables in the data.

However, when at least one of variables x and y is continuous, their mutual information ܫሺݔ, ሻݕ

is hard to compute, because it is often difficult to compute the integral in the continuous space

based on a limited number of samples. One solution is to incorporate data discretization as a

preprocessing step. For some applications where it is unclear how to properly discretize the

continuous data, an alternative solution is to use density estimation method (e.g., Parzen

windows) to approximate ܫሺݔ, ሻ, as suggested by earlier work in medical image registration [67]ݕ

and feature selection [68].

Given N samples of a variable x, the approximate density function ̂݌ሺݔሻhas the following form:

ሻݔሺ̂݌ ൌ
1
ܰ
௜ୀଵߑ
ே ݔ൫ߜ െ ,ሺ௜ሻݔ ݄൯,

where ߜሺሻ is the Parzen window function as explained below, ݔሺ௜ሻ is the ݅th sample, and ݄ is the

window width. Parzen has proven that, with the properly chosen ߜሺሻ, and ݄, the estimation ̂݌ሺݔሻ

can converge to the true density ݌ሺݔሻ when N goes to infinity.[69]. Usually, ߜሺሻ ,is chosen as the

Gaussian window:

 40

,ݖሺߜ ݄ሻ ൌ
exp ൬െ

ݖଵିߑ்ݖ
2݄ଶ ൰

ሺ2ߨሻ
ௗ
ଶ݄ௗ|ߑ|

ଵ
ଶ

where ݖ ൌ ݔ െ ݀ is the covariance of z. When ߑ ሺ௜ሻ, d is the dimension of the sample x andݔ ൌ

݀ ሻ returns the estimated marginal density. Whenݔሺ̂݌ ,1 ൌ ሻ can be use to estimate theݔሺ̂݌ , 2

density of bivariate variable ሺݔ, ,ሻݕ ,ݔሺ݌ ሻ, which is actually the joint densty of x and y. For theݕ

sake of robust estimation, for ݀ ൒ 2, .is often approximated by its diagonal components ߑ

4.3.4 Quadratic Programming Feature Selection (QPFS)

Quadratic Programming Feature Selection was first introduced in [28], the target for this method

is to reduce the feature selection task to a quadratic optimization problem. This method uses the

Nystrom method[70] for approximate matrix diagonalization. This method is ideal for handle

very large data sets for which the use of other methods is computationally expensive.

Assume the classifier learning problem involves ܰ training samples and ܯ variables (also called

attributes or features). A quadratic programming problem is to minimize a multivariate quadratic

function subject to linear constraints as follows:

min
௫
ሺ
1
2
ݔ்ܳݔ െ ሻݔ்ܨ

where x is an ܯ-dimensional vector, ܳ ∈ ܴெൈெis a symmetric positive semidefinite matrix, and

 is a vector in ܴெwith non-negative entries. Applied to the feature selection task, ܳ represents ܨ

the similarity among variables(Redundancy), and ܨ measures how correlated each feature is with

the target class(Relevance).

 41

If the quadratic programming optimization problem has been solved, the components of ݔ

represent the weight of each feature. Features with higher weights are better variables to use for

subsequent classifier training. Since ݔ௜ represents the weight of each variable, it is reasonable to

enforce the following constraints:

௜ݔ ൒ 0	∀݅ ൌ 1,… ܯ,

௜ୀଵߑ
ெ ௜ݔ ൌ 1

Depending on the learning problem, the quadratic and linear terms can have different relative

purposes in the objective function. Therefore, we introduce a scalar parameter ߙ as follows:

min
௫
ሺ
1
2
ሺ1 െ ݔ்ܳݔሻߙ െ ሻݔ்ܨߙ

where ߙ ∈ 	 ሾ0,1ሿ, if ߙ ൌ 0.5, this problem is then equal to mRMR method.

QPFS using mutual information as its similarity measure resembles mRMR, but there is an

important difference. The mRMR method selects features greedily, as a function of features

chosen

in previous steps. In contrast, QPFS is not greedy and provides a ranking of features that takes

into

account simultaneously the mutual information between all pairs of features and the relevance of

each feature to the class label.

 42

In our experiment, we use the program from the author’s code repository. Detailed parameter and

environment will be given in 4.3.5.

 43

4.3.5 List of Parameters of PCA, PLS and Feature Selection Methods

Different platforms are used to execute various programs; the details of platform and settings of

parameters are listed in Table 0-3. PCA and PLS are in-built functions in WEKA. MaxRel and

mRMR have been implemented using the source code from the author’s website and was

compiled on MAC OS 10.11.6. QPFS was implemented using the source code from a related

google code repository and compiled on Ubuntu due to the convenience of installing reliable

computational package.

Table 0-3:Parameters of Methods

Method Platform/Software Parameter Comment

PCA
Weka 3-7-13-oracle-jvm

MAC OS 10.11.1
weka.filters.unsupervised.

attribute.PrincipalComponents

-R [range] -A 5 -M -1

We choose the subset of PCA

from range in

[0.5,0.55,0.6,0.65,0.7,0.75,0.8,

0.85,0.9,0.95]

PLS
Weka 3-9-0-oracle-jvm
MAC OS 10.11.6

weka.filters.supervised.
attribute.PLSFilter
-C [range] -M -A PLS1 -P center

We choose the subset of PLS
from range in
[5,10,20,30,50,100,200]

MaxRel

mRMR

http://penglab.janelia.org
/proj/mRMR/
MAC OS 10.11.6

./mrmr –i [Datasets] –n [range] –m
[method]

range in
[5,10,20,30,50,100,200]
method in [MIQ,MID]

QPFS
https://sites.google.com/s
ite/irenerodriguezlujan/d
ocuments/qpfs
Ubuntu 14.04 LTS

./QPFS –F [Datasets] –O output.txt The QPFS gave all the
features a rank, we than select
the top range features to build
the subsets.
range in
[5,10,20,30,50,100,200]

 44

Chapter 5

Increasing Efficiency of Microarray Analysis by PCA1

Principal Component Analysis (PCA) is widely used method for dimensionality reduction.

However, it has not been studied much as a feature selection method to increase the efficiency of

the classifiers on microarray data analysis. In this chapter, we assessed the performance of four

classifiers on the microarray datasets of colon and leukemia cancer before and after applying

PCA as a feature selection method. Different thresholds were used with 10-fold cross validation.

Significant improvement was observed in the performance of the well-known machine learning

classifiers on microarray datasets of colon and leukemia after applying PCA.

The gene expression profiling techniques by DNA microarrays provide the analysis of large

amount of genes [71]. The number of gene expression data of microarray has grown

exponentially. It is of great importance to find the key gene expression which can best describe

the phenotypic trait [72]. The microarray dataset usually has a large number of genes in small

number of experiments which collectively raise the issue of “curse of dimensionality”[73]. To

find the key gene expression, one way is to use feature selection methods. In this chapter, we use

1 J. Sun, K. Passi and C.K. Jain, Increasing Efficiency of Microarray Analysis by PCA and Machine

Learning Methods, The 17th International Conference on Bioinformatics & Computational Biology

(BIOCOMP’16), in The 2016 World Congress in Computer Science, Computer Engineering & Applied

Computing, July 25 – 28, 2016, Las Vegas, Nevada, USA.

 45

Principal Component Analysis (PCA) for feature selection and apply four well-known machine

learning methods, Support Vector Machine (SVM), Neural Network (NN), K-Nearest-Neighbor

(KNN) and Random Forest algorithms to validate and compare the performance of Principal

Component Analysis. In the first set of experiments presented in this chapter, the performance

of the four machine learning techniques (SVM, NN, KNN, Random Forest) is compared on the

colon and leukemia microarray datasets. The second set of experiments compares the

performance of these machine learning algorithms by applying PCA method on the same

datasets.

5.1 Tools

In this experiment, Weka is the main testing tools for either 10-folds cross validation as well as

the ratio comparison. The version we use in this experiment is 3-7-13-oracle-jvm and can be

download on its official website. The platform we use in this experiment is Mac OS 10.11.1.

The Weka KnowledgeFlow Environment presents a "data-flow" inspired interface to Weka. The

user can select Weka components from a tool bar, place them on a layout canvas and connect

them together in order to form a "knowledge flow" for processing and analyzing data. At present,

all of Weka's classifiers and filters are available in the KnowledgeFlow along with some extra

tools.

 We use Weka KnowledgeFlow for the 10-folds cross validation and Ratio Comparison. The

flow chart will be given in 5.3 below and 5.4 below.

 46

5.2 PCA

Principal Component Analysis (PCA) is a multivariate technique that analyzes a data table in

which observations are described by several inter-correlated quantitative dependent variables. Its

goal is to extract the important information from the table, to represent it as a set of new

orthogonal variables called principal components, and to display the pattern of similarity of the

observations and of the variables as points in maps. The quality of the PCA model can be

evaluated using cross-validation techniques. Mathematically, PCA depends upon the eigen-

decomposition of positive semi-definite matrices and upon the singular value decomposition

(SVD) of rectangular matrices [56]. The PCA viewpoint requires that one compute the

eigenvalues and eigenvectors of the covariance matrix, which is the product ்ܺܺ	, where ܺ is the

data matrix. Since the covariance matrix is symmetric, the matrix is diagonalizable, and the

eigenvectors can be normalized such that they are orthonormal:

்ܺܺ ൌ ்ܹܦܹ

On the other hand, applying SVD to the data matrix ܺ as follows:

ܺ ൌ ܶ^ܸߑܷ

and attempting to construct the covariance matrix from this decomposition gives

்ܺܺ ൌ ሺ்ܷܸߑሻሺ்ܷܸߑሻ்

்ܺܺ ൌ ሺ்ܷܸߑሻሺ்ܸܷߑሻ

and since V is an orthogonal matrix(்ܸܸ ൌ ,(ܫ

 47

்ܺܺ ൌ ଶ்ܷߑܷ

and the correspondence is easily seen.

For each experiment, we need the original dataset and the new dataset obtained by applying the

PCA. Proportion of variance is an important value in PCA which gives the main idea of how

much variance this new attribute covered. Our selection uses this value to be the threshold and

we choose different thresholds for selecting new subsets of data from the original one. We then

obtain different datasets with threshold values of 95%, 90%, …, 50%.

5.3 10-fold cross validation

Cross validation(CV) has an alias as rotation estimation [74-76]. CV is a model evaluation

method and be confirmed that is better than residuals. One important reason for this is that

residual evaluations do not give an estimate for new predictions with the data it has not been

seen. One possible solution to this problem is to separate the entire data set. When training a

learner. Some of the data is removed before training begins. Then when training is done, the data

that was removed can be used to test the performance of the learned model. This is the basic idea

for a whole class of CV.

The holdout method is the simplest kind of cross validation. The data set is separated into two

sets, called the training set and the testing set. The function approximator fits a function using the

training set only. Then the function approximator is asked to predict the output values for the

data in the testing set (it has never seen these output values before). The errors it makes are

accumulated as before to give the mean absolute test set error, which is used to evaluate the

 48

model. The advantage of this method is that it is usually preferable to the residual method and

takes no longer to compute. However, its evaluation can have a high variance. The evaluation

may depend heavily on which data points end up in the training set and which end up in the test

set, and thus the evaluation may be significantly different depending on how the division is

made.

K-fold cross validation is one way to improve over the holdout method. The data set is divided

into k subsets, and the holdout method is repeated k times. Each time, one of the k subsets is

used as the test set and the other k-1 subsets are put together to form a training set. Then the

average error across all k trials is computed. The advantage of this method is that it matters less

how the data gets divided. Every data point gets to be in a test set exactly once, and gets to be in

a training set k-1 times. The variance of the resulting estimate is reduced as k is increased. The

disadvantage of this method is that the training algorithm has to be rerun from scratch k times,

which means it takes k times as much computation to make an evaluation. A variant of this

method is to randomly divide the data into a test and training set k different times. The advantage

of doing this is that you can independently choose how large each test set is and how many trials

you average over.[77]

In [78], Arlot, Sylvain and Celisse, Alain mentioned that when the goal of model selection is

estimation, it is often reported that the optimal K is between 5 and 10 , because the statistical

performance does not increase a lot for larger values of K , and averaging over less than 10 splits

remains computationally feasible[35]. We will use 10-fold cross validation for the following

experiment.

 49

Weka has the in-build CV function. For the whole process with 10-fold cross validation, see

Figure 0-1. We use the arff Loader to load the data file which have been pre-processed by PCA,

then pass the data set to the Cross-Validation Fold Maker. After this, we use the four classifiers

for the cross validation. The result recorded by export the output from the Classifier Performance

Evaluator.

Figure 0-1: Weka KnowledgeFlow Chart for 10-fold Cross Validation

 50

5.4 Ratio Comparison

As another way to measure the performance of PCA, we use the ratio comparison method. This

method is as a follow up method of CV. We split the data set into two different data sets. One for

training and the other for testing. Unlike K-fold cross validation, we split the data by vary

percentages. The specific percentage we choose is 90%, 80%, 70%, 60% for the training set

respectively. The whole process of the ratio comparison can be check from Figure 0-2. We use

the data set split maker after we loaded the data set. The test set and train set were tested by the

four classifiers.

 51

Figure 0-2:Weka KnowledgeFlow Chart for Ratio Comparison

5.5 Results and Discussion

5.5.1 Principal Component Analysis Dataset List

We applied PCA on the colon and leukemia datasets. The variance table returned by PCA is

listed in Table 0-1 and Table 0-2.

Table 0-1:Colon Dataset Thresholds and Attribute Selection

Colon Dataset
Thresholds

Cumulative
Proportion

Attributes
Selected

100%(Raw) 100% 2001
95% 95.013% 45
90% 90.520% 35
85% 85.677% 27
80% 80.006% 20
75% 75.545% 16

70% 71.429% 13

 52

65% 66.004% 10

60% 61.154% 8

55% 57.701% 7

50% 53.180% 6

The experiment is based on the 11 datasets shown in Table 0-1 and Table 0-2. The 100%

dataset threshold means we use the raw data as input for the experiments. The 95% to 50%

datasets are chosen by PCA method.

Table 0-2:Leukemia Dataset Thresholds and Attributes Selection

Dataset
Thresholds

Cumulative
Proportion

Attributes
Selected

100%(Raw) 100% 7130
95% 95.192% 59
90% 90.244% 49
85% 85.560% 41
80% 80.232% 33
75% 75.638% 27

70% 70.261% 21

65% 65.997% 17

60% 60.570% 13

55% 55.557% 10

50% 51.440% 8

5.5.2 10-fold cross validation

The results are listed in Table 3. The accuracy (correctly classified instances) is given by:

ݕܿܽݎݑܿܿܽ ൌ
ܶܲ ൅ ܶܰ

ܰ

where TP indicates the True Positive instances, TN indicates the True Negative instances and N

is the total number of instances in the test set.

Table 5-3 shows the accuracy and Area Under ROC curve (AUC) for the four classifiers on the

colon dataset. K-nearest-neighbor and Random Forest algorithms shows the highest accuracy for

 53

a threshold of 60% by PCA. SVM algorithm shows the highest accuracy for the raw data and for

90% threshold by PCA. Neural Network algorithm shows the highest accuracy for a threshold of

90% by PCA. All the four classifiers show improvement in accuracy for some threshold value of

PCA as compared to raw data except for SVM. Figure 0-3 shows the results of the 10-folds cross

validation for colon dataset.

Figure 0-3:10-fold cross validation results for colon dataset

Table 5-3:10-Folds Cross Validation For Colon Dataset

Data
Mining

Methods

Dataset Accuracy ROC Area(AUC)

KNN

Raw 72.5806% 0.699

95% 70.9677% 0.680
90% 66.129% 0.648
85% 70.9677% 0.728
80% 64.5161% 0.619

75% 62.9032% 0.581
70% 62.9032% 0.592

65% 70.9677% 0.706

60% 82.2581% 0.815
55% 75.8065% 0.752
50% 72.5806% 0.744

Random
Forest

Raw 82.2581% 0.885
95% 69.3548% 0.879
90% 74.1935% 0.877
85% 77.4194% 0.840
80% 74.1935% 0.812
75% 77.4194% 0.845
70% 79.0323% 0.855

65% 82.2581% 0.873

 54

60% 85.4839% 0.892
55% 82.2581% 0.881
50% 82.2581% 0.872

SVM

Raw 87.0968% 0.886
95% 79.0323% 0.868
90% 82.2581% 0.893
85% 74.1935% 0.805
80% 70.9677% 0.797
75% 66.129% 0.759
70% 69.3548% 0.723

65% 70.9677% 0.830
60% 74.1935% 0.903

55% 79.0323% 0.869
50% 80.6452% 0.881

Neural
Network

Raw 77.8% 0.857
95% 79.0323% 0.851
90% 83.871% 0.895
85% 72.5806% 0.819
80% 70.9677% 0.777
75% 77.4194% 0.845
70% 75.8065% 0.786
65% 77.4194% 0.805
60% 80.6452% 0.843
55% 82.2581% 0.834
50% 79.0323% 0.826

Table 0-4:10-FOLD CROSS VALIDATION FOR LEUKEMIA DATASET

Data
Mining

Methods

Dataset accuracy ROC Area (auc)

KNN

Raw 65.2778% 0.505

95% 72.2222% 0.656
90% 75% 0.667
85% 77.7778% 0.719
80% 81.9444% 0.811

75% 83.3333% 0.829
70% 93.0556% 0.911

65% 91.6667% 0.887

60% 88.8889% 0.861
55% 90.2778% 0.874
50% 91.6667% 0.874

Random
Forest

Raw 76.3889% 0.889
95% 79.1667% 0.918
90% 84.7222% 0.945
85% 84.7222% 0.952
80% 93.0556% 0.963
75% 93.0556% 0.958
70% 94.4444% 0.978

65% 94.4444% 0.974

 55

60% 91.6667% 0.963
55% 90.2778% 0.968
50% 91.6667% 0.969

SVM

Raw 98.6111% 0.998
95% 97.2222% 0.995
90% 86.1111% 0.969
85% 87.5% 0.959
80% 93.0556% 0.968
75% 90.2778% 0.977
70% 90.2778% 0.974

65% 88.8889% 0.963
60% 93.0556% 0.969

55% 90.2778% 0.933
50% 86.1111% 0.962

Neural
Network

Raw 81.9444% 0.865
95% 83.3333% 0.877
90% 87.5% 0.917
85% 90.2778% 0.934
80% 90.2778% 0.970
75% 90.2778% 0.977
70% 88.8889% 0.980
65% 88.8889% 0.971
60% 93.0556% 0.971
55% 91.6667% 0.951
50% 93.0556% 0.974

Table 0-4 shows the accuracy and Area Under ROC curve (AUC) for the four classifiers on the

leukemia dataset. K-nearest-neighbor shows the highest accuracy for a threshold of 70% by PCA.

Random Forest shows the highest accuracy for a threshold of 65% and 70% by PCA. SVM

shows the highest accuracy for the raw data and next highest accuracy for a threshold of 95% by

PCA. Neural Network shows the highest accuracy for a threshold of 60% and 50% by PCA.

Figure 0-4 shows the results of the 10-folds cross validation for leukemia dataset.

 56

Figure 0-4:10-fold cross validation results for leukemia dataset

5.5.3 Ratio Comparison

The second method we use for this experiment is that we split the dataset to a training set and

test set by different ratio in 90%:10%,80%:20%,70%:30% and 60%:40%. All the result applied

to the data which preprocessed by PCA. We show the results in Table 0-5 and Table 0-6.

Figure 0-5, Figure 0-6, Figure 0-7, Figure 0-8 show the accuracy for the four algorithms for

different ratios of training and test datasets. Further discussion is given below.

 57

Table 0-5:Ratio Validation Results for Colon Dataset

 9:1 8:2 7:3 6:4

Method accuracy auc accuracy auc accuracy auc accuracy auc
Raw Knn 83.33% 0.75 83.33% 0.75 78.95% 0.683 76% 0.7

Svm 100% 1 91.667% 1 89.47% 0.9 88% 0.93
Rf 100% 1 100% 1 89.47% 0.892 84% 0.9

Nnet 100% 0.85 100% 0.916 89.47% 0.935 88% 0.893

95% Knn 83.33% 0.875 83.3% 0.875 78.95% 0.867 76% 0.775
Svm 100% 1 91.67% 1 89.47% 0.917 80% 0.91
Rf 66.7% 0.875 66.67% 0.797 68.42% 0.725 68% 0.77

Nnet 100% 1 83.3% 0.875 73.68% 0.800 76% 0.81
90% Knn 83.33% 0.875 66.67% 0.688 57.89% 0.642 56% 0.575

Svm 100% 1 100% 1 89.47% 0.95 84% 0.92
Rf 66.67% 1 75% 0.734 73.68% 0.833 76% 0.845

Nnet 100% 1 100% 1 94.74% 0.983 88% 0.91
85% Knn 66.67% 0.625 58.33% 0.563 63.16% 0.675 56% 0.575

Svm 100% 1 91.67% 1 84.21% 0.95 80% 0.910
Rf 83.33% 1 83.33% 0.875 63.16% 0.783 68% 0.82

Nnet 100% 1 91.67% 1 84.21% 0.967 88% 0.88
80% Knn 66.67% 0.5 58.33% 0.438 63.16% 0.4 60% 0.45

Svm 83.33% 1 91.67% 0.938 84.21% 0.850 76% 0.84
Rf 83.33% 1 83.33% 0.969 68.42% 0.817 64% 0.83

Nnet 100% 1 83.33% 0.938 73.68% 0.833 72% 0.77

75% Knn 66.67% 0.5 58.33% 0.438 63.16% 0.4 56% 0.35

Svm 66.67% 0.75 91.67% 1 78.95% 0.842 72% 0.87
Rf 83.33% 1 91.67% 1 84.21% 0.833 68% 0.8

Nnet 100% 1 66.67% 0.906 78.95% 0.817 72% 0.78

70% Knn 66.67% 0.5 58.33% 0.438 63.16% 0.4 60% 0.375
Svm 100% 1 66.67% 0.875 73.68% 0.875 64% 0.835
Rf 83.33% 0.875 66.67% 0.906 78.95% 0.85 72% 0.94

Nnet 66.67% 1 66.67% 0.906 78.95% 0.833 84% 0.92
65% Knn 66.67% 0.5 75% 0.625 73.68% 0.558 68% 0.575

Svm 100% 1 75% 0.938 78.95% 0.858 64% 0.81
Rf 83.33% 1 83.33% 0.938 73.68% 0.933 64% 0.835

Nnet 100% 1 83.33% 1 84.21% 0.917 72% 0.92
60% Knn 83.33% 0.75 83.33% 0.75 84.21% 0.808 84% 0.825

Svm 100% 1 100% 1 78.95% 0.933 84% 0.95
Rf 100% 1 83.33% 1 78.95% 0.942 64% 0.955

Nnet 100% 1 100% 1 84.21% 0.933 84% 0.98
55% Knn 66.67% 0.625 75% 0.688 78.95% 0.775 80% 0.8

Svm 83.33% 1 91.67% 1 63.16% 0.958 88% 0.95
Rf 100% 1 91.67% 1 84.21% 0.917 56% 0.96

Nnet 100% 1 100% 1 78.94% 0.9 80% 0.94
50% Knn 66.67% 0.625 75% 0.688 73.68% 0.65 72% 0.675

Svm 100% 1 100% 1 89.47% 0.9 80% 0.88
Rf 100% 1 100% 1 73.68% 0.908 60% 0.95

Nnet 100% 1 83.33% 1 89.47% 0.883 80% 0.92

 58

Table 0-6:Ratio Validation Results for Leukemia Dataset

 9:1 8:2 7:3 6:4

Method accuracy auc accuracy auc accuracy auc accuracy auc
Raw Knn 28.5714% 0.583 35.7143% 0.550 54.5455% 0.545 58.6207% 0.546

Svm 100% 1 100% 1 100% 1 100% 1
Rf 14.2857% 1 28.5714% 1 59.0909% 0.888 55.1724% 0.798

Nnet 71.4286% 1 42.8571% 0.9 63.6364% 0.983 68.9655% 0.870

95% Knn 71.4286% 0.833 78.5714% 0.775 81.8182% 0.818 72.4138% 0.714
Svm 100% 1 100% 1 95.4545% 1 96.5517% 1
Rf 57.1429% 1 35.7143% 0.975 59.0909% 0.921 65.5172% 0.825

Nnet 71.4286% 1 42.8571% 0.825 72.7273% 0.818 72.4138% 0.731
90% Knn 42.8571% 0.667 50% 0.650 54.5455% 0.545 58.6207% 0.538

Svm 85.7143% 1 85.7143% 1 90.9091% 0.975 89.6552% 0.976
Rf 42.8571% 1 50% 1 59.0909% 0.893 65.5172% 0.873

Nnet 71.4286% 1 64.2857% 0.9 68.1818% 0.851 72.4138% 0.793
85% Knn 42.8571% 0.667 50% 0.650 54.5455% 0.545 62.069% 0.584

Svm 71.4286% 1 71.4286% 0.975 86.3636% 0.975 89.6552% 0.976
Rf 85.7143% 1 57.1429% 1 63.6364 1 68.9655% 0.962

Nnet 57.1429% 1 71.4286% 0.925 72.7273% 0.901 79.3103% 0.870
80% Knn 57.1429% 0.750 57.1429% 0.7 68.1818% 0.682 72.4138% 0.7

Svm 71.4286% 1 71.4286% 1 90.9091% 0.942 89.6552% 0.962
Rf 85.7143% 1 71.4286% 1 81.8182% 0.992 72.4138% 0.988

Nnet 57.1429% 1 85.7143% 1 90.9091% 0.934 72.4138% 0.861

75% Knn 85.7143% 0.917 92.8571% 0.95 81.8182% 0.818 75.8621% 0.752

Svm 71.4286% 1 85.7143% 0.975 86.3636% 0.934 89.6552% 0.942
Rf 100% 1 64.2857% 1 77.2727% 0.996 79.3103% 0.981

Nnet 71.4286% 1 85.7143% 0.975 81.8182% 0.967 79.3103% 0.875

70% Knn 100% 1 100% 1 95.4545% 0.955 93.1034% 0.923
Svm 100% 1 85.7143% 1 100% 1 96.5517% 1
Rf 100% 1 78.5714% 1 95.4545% 1 89.6552% 0.955

Nnet 100% 1 85.7143% 1 90.9091% 1 89.6552% 0.976

65% Knn 85.7143% 0.917 92.8571% 0.95 95.4545% 0.955 89.6552% 0.892
Svm 85.7143% 1 85.7143% 1 95.4545% 1 96.5517% 1
Rf 100% 1 92.8571% 1 95.4545% 1 96.5517% 1

Nnet 85.7143% 1 100% 1 100% 1 100% 1
60% Knn 85.7143% 0.917 85.7143% 0.9 90.9091% 0.909 89.6552% 0.892

Svm 100% 1 78.5714% 1 90.9091% 1 93.1034% 1
Rf 100% 1 92.8571% 1 95.4545% 1 89.6552% 1

Nnet 100% 1 100% 1 100% 1 100% 1
55% Knn 100% 1 71.4286% 0.8 77.2727% 0.773 82.7586% 0.815

Svm 100% 1 92.8571% 0.975 95.4545% 0.992 96.5517% 0.990
Rf 100% 1 92.8571% 1 95.4545% 1 93.1034% 1

Nnet 100% 1 100% 1 95.4545% 1 100% 1
50% Knn 100% 1 78.5714% 0.850 81.8182% 0.818 86.2069% 0.853

Svm 85.7143% 1 92.8571% 1 95.4545% 1 96.5517% 1
Rf 100% 1 92.8571% 1 95.4545% 0.996 96.5517% 1

Nnet 100% 1 100% 1 100% 1 100% 1

 59

Figure 0-5:Accuracy comparison in Ratio 9:1

Figure 0-6:Accuracy comparison in Ratio 8:2

 60

Figure 0-7:Accuracy comparison in Ratio 7:3

Figure 0-8:Accuracy comparison in Ratio 6:4

 61

5.5.4 Discussion and Conclusion

In Table 5-3 for the colon dataset, we observe that K-nearest-neighbor algorithm gives the

highest accuracy of 82.3% for a threshold of 60% by PCA as compared to 72.6% for the raw data,

an increase of 9.7% in accuracy by applying PCA. Random Forest algorithm gives the highest

accuracy of 85.5% for a threshold of 60% by PCA as compared to 82.3% for the raw data, an

increase of 3.3% in accuracy. Neural Network algorithm gives the highest accuracy of 83.9% for

a threshold of 90% by PCA as compared to 77.8% for the raw data, an increase of 6.1% in

accuracy. However, in SVM, the highest accuracy was observed as 87% for the raw data and 82%

accuracy for a threshold of 90% by PCA, a decrease of 5% in accuracy.

In Table 0-4 for the leukemia dataset, we observe that K-nearest-neighbor algorithm gives the

highest accuracy of 93% for a threshold of 70% by PCA as compared to 65% for the raw data, an

increase of 28% in accuracy by applying PCA. Random Forest algorithm gives the highest

accuracy of 94.4% for a threshold of 65% and 70% by PCA as compared to 76.4% for the raw

data, an increase of 18% in accuracy. Neural Network algorithm gives the highest accuracy of 93%

for a threshold of 50% and 60% by PCA as compared to 81.9% for the raw data, an increase of

11% in accuracy. However, in SVM, the highest accuracy was observed as 98.6% for the raw

data as compared to 97.2% for a threshold of 95% by PCA, a decrease of 3.6% in accuracy.

SVM was tested for four different kernels – linear, polynomial, radial basis function and sigmoid

function. The linear kernel gave the best results. For the exception of SVM, all other algorithms

increased the accuracy of classification by applying PCA. Greater increase in accuracy was

observed in leukemia dataset than the colon dataset. Figure 0-3 and Figure 0-4 show the results

for 10-fold cross validation for the colon and leukemia datasets, respectively.

 62

Table 0-5 and Table 0-6 show the accuracy and AUC of the colon and leukemia datasets

respectively for raw data and different thresholds of PCA and by taking different ratios of

training and test data.

In the colon dataset, we observe that highest accuracy is achieved for the training to test ratio of

9:1 and second highest accuracy for the ratio 8:2 for all the algorithms with and without using

PCA.

In training to test ratio 9:1, Random Forest, SVM and Neural Network algorithms give an

accuracy of 100% whereas k-nearest-neighbor gives an accuracy of 83.3% for the raw data. PCA

maintains the accuracy of 100% at the threshold of 50% and 60% for Random Forest, SVM and

Neural Network and maintains the accuracy of 83.3% at the threshold of 60%, 90% and 95% for

the k-nearest-neighbor algorithm. Figure 0-5 shows the comparison of accuracy for the four

algorithms for the ratio 9:1.

In training to test ratio 8:2, Random Forest and Neural Network algorithms give an accuracy of

100%, SVM has an accuracy of 91.6% and KNN has an accuracy of 83.3% for the raw data.

PCA maintains the accuracy of 100% at thresholds of 55% and 60% for Neural Network and at

the threshold of 50% for Random Forest. PCA increased the accuracy of SVM from 91.6% to

100% at the thresholds of 50%, 60% and 90%. PCA maintains the accuracy of KNN at 83.3% at

a threshold of 60%. Figure 0-6 shows the comparison of accuracy for the four algorithms for the

ratio 8:2.

In training to test ratio 7:3, PCA increases the accuracy of KNN from 78.95% to 84.21% at a

threshold of 60% and increases the accuracy of Neural Network from 89.5% to 94.7% at a

threshold of 90%. PCA maintains the accuracy of SVM at 89.5% at the thresholds of 50%, 90%

 63

and 95%. However, the accuracy of Random Forest is decreased from 89.5% to 84.2% at

thresholds of 55% and 80%. Figure 0-7 shows the comparison of accuracy for the four

algorithms for the ratio 7:3.

In training to test ratio of 6:4, PCA increases the accuracy of KNN from 76% to 84% at a

threshold of 60%. PCA maintains the accuracy of SVM and Neural Network at 88% at a

threshold of 55% for SVM and at 85% and 90% for Neural Network. However, the accuracy of

Random Forest decreased from 88% to 76% at a threshold of 95%. Figure 0-8 shows the

comparison of accuracy for the four algorithms for the ratio 6:4.

Overall, PCA either maintains the accuracy of all the four algorithms or increases the accuracy

except for Random Forest at ratios of 7:3 and 6:4.

For the leukemia dataset experiment, we observe from Table 0-6 that the highest accuracy is

achieved for the training to test ratio of 9:1.

In training to test ratio of 9:1, PCA increased the accuracy of KNN from 28.6% to 100% at the

thresholds of 50%, 55% and 70%, an increase of 71.4% in accuracy. PCA increased the accuracy

of Random Forest from 14.3% to 100% at threshold of 50%, 55%, 60%, 65%, 70%, 75%, an

increase of 85.7% in accuracy. PCA increased the accuracy of Neural Network from 71.4% to

100% at threshold of 50%, 55% and 70%, an increase of 28.6% in accuracy. PCA maintains the

accuracy of SVM at 100% at a threshold of 50%, 60%, 65%, 70%, 85%, 90% and 95%.

In training to test ratio of 8:2, PCA increased the accuracy of KNN from 35.7% to 100% at a

threshold of 70%, an increase of 64.3% in accuracy. PCA increased the accuracy of Random

Forest from 28.6% to 92.9% at threshold of 50%, 55%, 60% and 65%, an increase of 64.3% in

 64

accuracy. PCA increased the accuracy of Neural Network from 42.9% to 100% at thresholds of

50%, 55%, 60%, and 65%, an increase of 57% in accuracy. PCA maintains the accuracy of

100% for SVM at a threshold of 95%.

In training to test ratio of 7:3, PCA increased the accuracy of KNN from 54.5% to 95.5% at

threshold of 65% and 70%, an increase of 41%. PCA increased the accuracy of Random Forest

from 59% to 95.5% at thresholds of 50%, 55%, 60%, 65%, and 70%, an increase of 36.5% in

accuracy. PCA increased the accuracy of Neural Network from 63.6% to 100% at thresholds of

50%, 60%, and 65%, an increase of 36.4% in accuracy. PCA maintains the accuracy of SVM at

100% at a threshold of 70%.

In training to test ratio of 6:4, PCA increased the accuracy of KNN from 58.6% to 93% at a

threshold of 70%, an increase of 34.4% in accuracy. PCA increased the accuracy of Random

Forest from 55% to 96.5% at thresholds of 50% and 65%, an increase of 41.5% in accuracy.

PCA increased the accuracy of Neural Network from 68.9% to 100% at thresholds of 50%, 55%,

60% and 65%, an increase of 31% in accuracy. However, the accuracy of SVM decreased from

100% to 96.5% at thresholds of 50%, 55%, 70% and 95%.

From the two datasets that PCA increases the accuracy of the four classifiers at different

thresholds. There are significant improvements in the accuracy for leukemia dataset.

In this chapter, we applied the Principle Component Analysis (PCA) on colon dataset and the

leukemia dataset and we compared the accuracy for four different classifiers. Support Vector

Machine and Neural Network gave the best performance among the four methods. The

experiments included 10-fold cross validation and different training to test ratios of 9:1, 8:2, 7:3

and 6:4.

 65

PCA increased the accuracy of the four classifiers for the colon and leukemia datasets. However,

it was observed that there were significant improvements in the performance of most of the

classifiers with 10-folds cross validation. The improvements were more significant for the

leukemia dataset. In the case of different training to test ratios, PCA maintained the accuracy of

the classifiers or increased the accuracy for the colon dataset. However, PCA increased the

accuracy of the classifiers significantly for the leukemia dataset.

PCA was selected as a feature selection method to test for increase in accuracy of classifiers on

test datasets. The results were promising and it gives us further incentive to test the accuracy of

the classifiers with other feature selection algorithms in future.

 66

Chapter 6

Improved Microarray Data Analysis using Feature Selection

Methods with Machine Learning Methods

The gene expression profiling techniques by DNA microarrays provide the analysis of large

amount of genes [71]. The number of gene expression data of microarray has grown

exponentially. Most of the gene expression dataset has hundreds of variables leading to data with

very high dimensionality. This makes the job for classification more difficult. It is of great

importance to find the key gene expressions which can best describe the phenotypic trait [72].

Feature selection methods become a possible solution for this problem. It gives us a way to

reduce computing time as well as improving the performance of prediction and also provides us

a better chance to understand the data in machine learning tasks [79].

In this study, we use colon cancer dataset and leukemia cancer dataset for the experiment. We

use discretization method combined with some well-known feature selection methods for the

task of preprocessing. After that, we apply 10-folds cross validation with KNN, SVM, RF and

NN classifiers on the dataset. The performance of the classifiers is based on accuracy and the

AUC (area under the curve) values.

The results demonstrate that mRMR is the best method for improving the performance of

microarray data analysis and discretization method can greatly improve the performance of

 67

mRMR method and MaxRel method. Also, the results give the best numbers for specific feature

selection method and classifiers.

In this chapter, we present the state of our experimental environment in Section 6.1.The Process

of this experiment is explained in Section6.2. The discussion and analysis of the results are

presented in Section 6.3. Section 6.4 presents the conclusions of this study and list some future

perspective.

6.1 Tools in this Experiment

In this experiment, Weka is the main testing tools for 10-folds cross validation. The version we

use in this experiment is 3-7-13-oracle-jvm and can be download on its official website. The

platform we use in this experiment is Mac OS 10.11.1.

The Weka KnowledgeFlow Environment presents a "data-flow" inspired interface to Weka. The

user can select Weka components from a tool bar, place them on a layout canvas and connect

them together in order to form a "knowledge flow" for processing and analyzing data. At present,

all of Weka's classifiers and filters are available in the KnowledgeFlow along with some extra

tools.

We use Weka KnowledgeFlow for the 10-folds cross validation of different feature selection

methods. The flow chart is showed in Figure 0-1.

6.2 Process of Experiment

The first step for our experiment is to generate the subsets of the data set. For each feature

selection method, we run the algorithms on different platforms and different programs in order to

 68

generate subsets. Most of the result are given as an attribute list ranked by score. An example

listed in Figure 0-1. The columns represent to rank number, attribute number, attribute name,

score respectively.

1 14 gene14 0.349
2 377 gene377 0.331
3 493 gene493 0.321
4 1917 gene1917 0.306
5 765 gene765 0.295
6 249 gene249 0.273
7 625 gene625 0.273
8 1771 gene1771 0.271

…

Figure 0-1: Format of an output results

In our experiment, we choose 5,10,20,30,50,100,200 features, which means 5,10, 20, …, etc.,

features with higher scores are selected after we applied the feature selection methods. We use

python to transform and gather subset from origin data set. Core code for this transformation is

given in Appendix B: Codes (See Table 0-2 and Table 0-3). After we get all the subsets, we then

apply 10-folds cross validation with SVM, KNN, NN and RF classification algorithms using

Weka knowledge workflow.

6.3 Discussion and Analysis

Results are listed in Table 0-1 ~ Table 0-4, as we can see from Table 0-1, we record all the result

by accuracy indicator. PLS shows the best results for all the four classifiers. It shows 0 error rate

in SVM no matter how many features were selected. Next to PLS, the mRDD method gets a best

performance in RF classifier. It reaches 95.1613 which is the same as PLS + RF.

Not all the methods can reach a good performance such as higher than 90. With KNN and SVM

and NN classifier, mRDD, mRDQ and PLS can perform higher than 90%. With RF classifier, all

method can get higher than 90% except for MRC as well as QPFS. For KNN classifier, most

 69

good results get when 20 or 30 features selected. For SVM and NN, most good results get when

5, 10 feature selected. For RF, most good results get when 5, 50 feature selected.

Table 0-2 shows the AUC part of the colon dataset. We notice that PLS still shows really good

performance except for RF, and mRDD shows the best results. If we use 0.9 as a threshold for a

“good result”, then we will find for KNN, mRDD, mRDQ, MRD and PLS get good results. For

SVM, mRCQ, mRDD, mRDQ, MRC, MRD, QPFS and PLS get good results. For NN and RF,

all the methods get good results.

By compare which number of features selected within certain feature selection method, we can

see that most good result get when 5, 10 or 30 features selected.

Unlike Colon data set. Leukemia data set gave us different results in Table 0-3 and Table 0-4.

PLS and other discretized methods all reach the peak of 100% accuracy. The discretized methods

include mRDD, mRDQ, MRD. When we compare that in accuracy, we can see that PLS+SVM

and RF + mRDD get 100% accuracy all the time. For AUC, mRDD gets 1.0 AUC value all the

time with SVM, NN, RF. If we compare the good results among all the methods and all the

classifiers, we can see that QPFS gets all the worse “good result”. This means that on Leukemia

data set, QPFS is not enough consistent and not enough strong for a feature selection method.

mRDD, mRDQ, MRD, PLS reach the highest performance on 0 error rate when we select

accuracy as the indicator.

mRDD, mRDQ, MRD, PLS reach the highest performance on 1.0 AUC value when we select

AUC as the indicator.

 70

Table 0-1:Colon-Accuracy Results

KNN 5 10 20 30 50 100 200

FS_Methods

mRCD 85.48 79.03 79.03 88.71 85.48 87.10 83.87
mRCQ 83.87 85.48 82.26 82.26 88.71 87.10 83.87
mRDD 91.94 93.55 91.94 95.16 91.94 87.10 85.48
mRDQ 88.71 88.71 93.55 93.55 90.32 87.10 85.48
MRC 87.10 83.87 87.10 82.26 85.48 88.71 85.48
MRD 85.48 87.10 88.71 87.10 83.87 83.87 80.65
QPFS 82.26 82.26 85.48 85.48 82.26 85.48 83.87
PLS 100.00 98.39 80.65 79.03 74.19 75.81 72.58

SVM
mRCD 88.71 79.03 80.65 80.65 82.26 83.87 85.48
mRCQ 85.48 83.87 87.10 85.48 83.87 83.87 85.48
mRDD 88.71 91.94 87.10 87.10 87.10 85.48 85.48
mRDQ 87.10 80.65 83.87 85.48 90.32 90.32 87.10
MRC 88.71 80.65 80.65 87.10 79.03 82.26 87.10
MRD 82.26 85.48 80.65 80.65 80.65 83.87 85.48
QPFS 88.71 88.71 82.26 87.10 82.26 83.87 85.48
PLS 100.00 100.00 100.00 100.00 100.00 100.00 100.00
NN

mRCD 85.48 82.26 80.65 83.87 83.87 85.48 87.10
mRCQ 87.10 82.26 85.48 83.87 85.48 85.48 87.10
mRDD 82.26 91.94 87.10 87.10 90.32 87.10 87.10
mRDQ 87.10 85.48 90.32 90.32 90.32 87.10 87.10
MRC 87.10 79.03 83.87 85.48 83.87 83.87 87.10
MRD 83.87 82.26 83.87 83.87 82.26 85.48 82.26
QPFS 88.71 80.65 77.42 83.87 87.10 83.87 85.48
PLS 100.00 100.00 100.00 100.00 93.55 95.16 96.77
RF

mRCD 85.48 85.48 90.32 87.10 90.32 87.10 85.48
mRCQ 82.26 88.71 87.10 87.10 88.71 90.32 88.71
mRDD 95.16 91.94 91.94 88.71 91.94 91.94 88.71
mRDQ 91.94 91.94 90.32 90.32 91.94 88.71 88.71
MRC 87.10 85.48 87.10 87.10 88.71 87.10 87.10
MRD 88.71 85.48 90.32 90.32 88.71 88.71 85.48
QPFS 88.71 87.10 85.48 87.10 88.71 88.71 88.71
PLS 93.55 95.16 91.94 83.87 70.97 83.87 77.42

 71

Table 0-2:Colon-AUC results

KNN 5 10 20 30 50 100 200

FS_Methods

mRCD 0.81 0.74 0.70 0.84 0.82 0.83 0.81
mRCQ 0.84 0.86 0.78 0.79 0.87 0.83 0.81

mRDD 0.97 0.97 0.95 0.95 0.96 0.89 0.82

mRDQ 0.94 0.93 0.94 0.94 0.92 0.87 0.83
MRC 0.85 0.77 0.82 0.78 0.79 0.87 0.83

MRD 0.85 0.87 0.93 0.91 0.85 0.84 0.83

QPFS 0.80 0.80 0.82 0.79 0.75 0.81 0.82

PLS 1.00 1.00 0.79 0.81 0.67 0.69 0.65
SVM

mRCD 0.89 0.85 0.89 0.83 0.90 0.87 0.89

mRCQ 0.88 0.88 0.91 0.92 0.87 0.87 0.90
mRDD 0.94 0.95 0.92 0.92 0.92 0.93 0.93

mRDQ 0.92 0.86 0.93 0.95 0.95 0.96 0.94

MRC 0.90 0.87 0.85 0.90 0.85 0.88 0.93
MRD 0.90 0.93 0.92 0.84 0.86 0.89 0.90

QPFS 0.95 0.93 0.88 0.91 0.90 0.89 0.92

PLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NN
mRCD 0.89 0.86 0.86 0.85 0.91 0.89 0.90

mRCQ 0.84 0.93 0.92 0.90 0.90 0.89 0.90

mRDD 0.93 0.94 0.94 0.94 0.94 0.93 0.93
mRDQ 0.92 0.88 0.94 0.96 0.94 0.95 0.94

MRC 0.90 0.80 0.90 0.90 0.85 0.88 0.92

MRD 0.90 0.90 0.92 0.87 0.88 0.90 0.90
QPFS 0.94 0.92 0.82 0.90 0.91 0.88 0.91

PLS 1.00 1.00 1.00 1.00 0.97 0.99 1.00

RF

mRCD 0.92 0.91 0.91 0.92 0.93 0.93 0.93
mRCQ 0.92 0.93 0.91 0.93 0.93 0.94 0.93

mRDD 1.00 0.98 0.98 0.98 0.98 0.97 0.94

mRDQ 0.98 0.99 0.97 0.98 0.99 0.97 0.96
MRC 0.94 0.92 0.90 0.90 0.92 0.92 0.93

MRD 0.91 0.93 0.94 0.95 0.94 0.94 0.94

QPFS 0.94 0.93 0.93 0.94 0.92 0.93 0.91
PLS 0.99 0.99 0.99 0.96 0.92 0.84 0.85

 72

Table 0-3:Leukemia-Accuracy Results

KNN 5 10 20 30 50 100 200

FS_Methods

mRCD 94.44 95.83 97.22 95.83 94.44 97.22 98.61

mRCQ 94.44 98.61 97.22 97.22 98.61 95.83 98.61
mRDD 100.00 98.61 97.22 100.00 98.61 98.61 97.22

mRDQ 97.22 98.61 100.00 100.00 100.00 100.00 98.61

MRC 94.44 90.28 97.22 94.44 95.83 95.83 97.22
MRD 97.22 98.61 95.83 95.83 95.83 97.22 97.22

QPFS 72.22 84.72 87.50 86.11 86.11 83.33 79.17

PLS 98.61 93.06 86.11 81.94 58.33 47.22 51.39

SVM

mRCD 93.06 93.06 95.83 95.83 98.61 98.61 98.61
mRCQ 93.06 93.06 94.44 97.22 98.61 98.61 98.61

mRDD 100.00 100.00 100.00 100.00 100.00 98.61 98.61

mRDQ 98.61 100.00 100.00 100.00 100.00 100.00 98.61

MRC 94.44 93.06 95.83 94.44 98.61 98.61 98.61

MRD 97.22 95.83 98.61 94.44 100.00 98.61 98.61

QPFS 75.00 84.72 87.50 91.67 91.67 91.67 94.44

PLS 100.00 100.00 100.00 100.00 100.00 100.00 100.00

NN

mRCD 90.28 93.06 97.22 95.83 98.61 98.61 98.61

mRCQ 91.67 93.06 97.22 98.61 98.61 98.61 98.61

mRDD 98.61 100.00 100.00 100.00 100.00 100.00 100.00

mRDQ 97.22 98.61 100.00 100.00 100.00 100.00 100.00

MRC 95.83 93.06 97.22 97.22 97.22 97.22 98.61

MRD 95.83 97.22 95.83 95.83 98.61 97.22 97.22

QPFS 73.61 91.67 88.89 88.89 94.44 90.28 95.83

PLS 100.00 100.00 100.00 100.00 97.22 94.44 93.06

RF

mRCD 94.44 91.67 93.06 94.44 95.83 97.22 98.61

mRCQ 90.28 94.44 93.06 93.06 95.83 97.22 97.22

mRDD 100.00 100.00 100.00 100.00 100.00 100.00 100.00

mRDQ 93.06 98.61 100.00 100.00 100.00 100.00 100.00

MRC 88.89 91.67 95.83 95.83 97.22 97.22 97.22

MRD 97.22 100.00 98.61 100.00 100.00 100.00 98.61

QPFS 75.00 93.06 95.83 93.06 95.83 93.06 91.67

PLS 98.61 98.61 98.61 98.61 91.67 86.11 76.39

 73

Table 0-4:Leukemia-AUC results

KNN 5 10 20 30 50 100 200

FS_Methods

mRCD 0.93 0.94 0.96 0.93 0.90 0.95 0.98

mRCQ 0.93 0.98 0.96 0.95 0.98 0.95 0.98

mRDD 1.00 0.99 0.99 1.00 0.99 0.98 0.96

mRDQ 0.98 1.00 1.00 1.00 1.00 1.00 0.99

MRC 0.93 0.87 0.96 0.91 0.93 0.93 0.95

MRD 1.00 0.99 0.97 0.98 0.97 0.97 0.96

QPFS 0.72 0.83 0.87 0.85 0.87 0.78 0.75

PLS 1.00 0.95 0.85 0.78 0.62 0.53 0.53

SVM

mRCD 0.98 0.98 1.00 1.00 1.00 1.00 1.00

mRCQ 0.98 0.97 0.99 1.00 1.00 1.00 1.00

mRDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRDQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MRC 0.98 0.98 0.99 1.00 1.00 1.00 1.00

MRD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

QPFS 0.85 0.95 0.92 0.97 0.99 0.98 0.99

PLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NN

mRCD 0.97 0.98 1.00 1.00 1.00 1.00 1.00

mRCQ 0.99 0.98 1.00 1.00 1.00 1.00 1.00

mRDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRDQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MRC 0.99 0.97 1.00 1.00 1.00 1.00 1.00

MRD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

QPFS 0.82 0.95 0.95 0.98 1.00 0.99 0.98

PLS 1.00 1.00 1.00 1.00 1.00 0.99 0.99

RF

mRCD 0.99 0.99 0.99 0.99 1.00 1.00 1.00

mRCQ 0.98 0.98 0.99 0.99 1.00 1.00 1.00

mRDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

mRDQ 0.99 1.00 1.00 1.00 1.00 1.00 1.00

MRC 0.97 0.98 0.99 0.99 1.00 1.00 1.00

MRD 1.00 1.00 1.00 1.00 1.00 1.00 1.00

QPFS 0.83 0.97 0.97 0.96 0.98 0.97 0.98

PLS 1.00 1.00 1.00 1.00 1.00 0.95 0.89

 74

Table 0-5:Summary of Best Accuracy

C
la

ss
if

ie
r FS

Method

Colon Dataset Leukemia Dataset

Best
Accuracy

of
Features

Best
Accuracy

of
Feature
s

K
N
N

mRCD 88.71 30 98.61 200

mRCQ 88.71 50 98.61
10,50,
200

mRDD 95.16 30 100 5,30

mRDQ 93.55 20,30 100 20‐100

MRC 88.71 100 97.22 20,200

MRD 88.71 20 98.61 10

QPFS 85.48 20,30,100 87.5 20

PLS 100 5 98.61 5

S
V
M

mRCD 88.71 5 98.61 50‐200

mRCQ 87.1 20 98.61 50‐200

mRDD 91.94 10 100 5‐50

mRDQ 90.32 50,100 100 10‐100

MRC 88.71 5 98.61 50‐200

MRD 85.48 10,200 100 50

QPFS 88.71 5,10 94.44 200

PLS 100 ALL 100 ALL

N
N

mRCD 87.1 200 98.61 50‐200

mRCQ 87.1 5,200 98.61 30‐200

mRDD 91.94 10 100 10‐200

mRDQ 90.32 20‐50 100 20‐200

MRC 87.1 5,200 98.61 200

MRD 85.48 100 98.61 50

QPFS 88.71 5 95.83 200

PLS 100 5‐30 100 5‐30

R
F

mRCD 90.32 20,50 98.61 200

mRCQ
90.32 100 97.22

100,
200

mRDD 95.16 5 100 ALL

mRDQ 91.94 5,10,50 100 20‐200

MRC 88.71 50 97.22 50‐200

MRD 90.32 20,30 100
10,30‐
100

QPFS 88.71 5,50‐200 95.83 20,50

PLS 95.16 10 98.61 5‐30

 75

Table 6-6:Summary of Best AUC

C
la

ss
if

ie
r FS

Method

Colon Dataset Leukemia Dataset

Best AUC # of
Features

Best AUC
of
Feature
s

K
N
N

mRCD 0.84 30 0.98 200

mRCQ
0.87 50 0.98

10,50,2
00

mRDD 0.97 5 1.00 5,30

mRDQ 0.94 20 1.00 10‐100

MRC 0.87 100 0.96 20

MRD 0.93 20 1.00 5

QPFS 0.82 20 0.87 50

PLS 1.00 5 1.00 5

S
V
M

mRCD 0.90 50 1.00 50‐200

mRCQ 0.92 30 1.00 50

mRDD 0.95 10 1.00 ALL

mRDQ 0.96 100 1.00 10‐200

MRC 0.93 200 1.00 50‐200

MRD 0.93 10 1.00 50

QPFS 0.95 5 0.99 50

PLS 1.00 ALL 1.00 ALL

N
N

mRCD 0.91 50 1.00 30

mRCQ 0.93 10 1.00 30

mRDD 0.94 10 1.00 ALL

mRDQ 0.96 30 1.00 10‐200

MRC 0.92 200 1.00 20,30

MRD
0.92 20 1.00

10,30,
50

QPFS 0.94 5 1.00 50

PLS 1.00 5‐30 1.00 5‐30

R
F

mRCD 0.93 50 1.00 50‐200

mRCQ 0.94 100 1.00 200

mRDD 1.00 5 1.00 All

mRDQ 0.99 10,50 1.00 10‐200

MRC 0.94 5 1.00 200

MRD 0.95 30 1.00 10‐100

QPFS 0.94 5 0.98 200

PLS 0.99 5 1.00 10‐50

TABLE 6-5 and TABLE 6-6 summarize the results. TABLE 6-5 shows the best accuracy of the

four classifiers with the feature selection methods for the colon and leukemia datasets. TABLE

 76

6-6 shows the best AUC of the four classifiers with the feature selections methods for the colon

and leukemia datasets. We observe the following from TABLE 6-5.

1. KNN with PLS gives 100% accuracy for colon dataset when 5 features are selected.

2. KNN with mRDD gives 100% accuracy for leukemia dataset when 5 or 30 features

are selected and mRDQ give 100% accuracy when 20 – 100 features are selected.

3. SVM with PLS gives 100% accuracy for colon dataset irrespective of the number of

features selected.

4. SVM with mRDD give 100% accuracy for leukemia dataset when 5- 50 features are

selected; mRDQ gives 100% accuracy when 10 – 100 features are selected; MRD

gives 100% accuracy when 50 features are selected; and PLS gives 100% accuracy

irrespective of the number of features selected.

5. Neural Network with PLS gives 100% accuracy for colon dataset when 5 – 30

features are selected.

6. Neural Network with mRDD gives 100% accuracy for leukemia dataset when 10 –

200 features are selected; mRDQ gives 100% accuracy when 20 – 200 features are

selected; and PLS gives 100% accuracy when 5 – 30 features are selected.

7. Random Forest with PLS gives the highest accuracy of 95.16% for colon dataset

when 10 features are selected.

8. Random Forest with mRDD give 100% accuracy for leukemia dataset irrespective of

the number of features selected; mRDQ gives 100% accuracy when 20 – 200 features

are selected; MRD gives 100% accuracy when 10 features or 30 – 100 features are

selected.

 77

The following results are observed from TABLE 6-6.

1. KNN with PLS gives AUC value of 1.0 for the colon dataset when 5 features are

selected.

2. KNN with mRDD gives AUC value of 1.0 for the leukemia dataset when 5 or 30

features are selected; mRDQ gives AUC value 1.0 when 10 – 100 features are

selected; MRD and PLS give AUC value of 1.0 when 5 features are selected.

3. SVM with PLS gives AUC value 1.0 for colon dataset irrespective of the number of

features selected.

4. SVM with all except QPFS (0.99) feature selection method give AUC value 1.0 for

leukemia dataset for different number of features.

5. Neural Network with PLS give AUC value 1.0 for colon dataset when 5 – 30 features

are selected.

6. Neural Network gives AUV value of 1.0 for all feature selection methods for the

leukemia dataset.

7. Random Forest with mRDD give AUC value 1.0 for colon dataset when 5 features

are selected.

8. Random Forest gives AUC value of 1.0 with all feature selection methods except

PQFS (0.98) for the leukemia dataset.

 78

6.4 Conclusion

In this chapter, we compared 8 different ways of feature selection preprocess methods from 4

different feature selection methods. The experiment shows that discretize can somehow improve

performance of microarray data analysis. Out of eight feature selection methods, Peng’s mRMR

has shown considerably good performance while PLS has achieved some competitive results

when 5 features were selected. From Colon dataset and Leukemia dataset, we concluded some

general results above in section 6.3, which can be used for other data set.

In [8], one of the most important feature for QPFS is the computational complexity. We didn’t

cover the computational time in this paper. That may be a future work.

We didn’t apply the discretize method onto QPFS and PLS, this could also be a future work.

 79

Chapter 7

Conclusions and Future Work

The main target of our experiment and this study is to determine which method (Feature

Selection or Feature Extraction) give better performance in accuracy or AUC when we use SVM,

RF, KNN or NN to classification.

Thus, we compared the performance among these four classifiers by 10-folds cross validation

and ratio comparison with Principle Component Analysis. We also compared the performance by

10-folds cross validation with 8 different methods of feature selection.

The result shows that both feature extraction method and feature selection method can somehow

improve the classification results. Some suggestions rules are given in Chapter 6 for selection

numbers of attributes.

To conclude, the results in this study suggested that SVM has really good and stable performance

by compare to KNN, RF and NN. PCA can give improve to classification tasks when using 10-

folds cross validation. For feature selection methods, some certain combinations can greatly

improve the performance.

However, there are some other aspects that we didn’t cover due to lack of time. For the four

classifiers, we didn’t measure the computational complexity as well as the computational time

consumptions. Few works we mentioned in our study (QPFS, PCA, PLS) can decrease the

computing time. The improvement of computing speed allows us to discover more and do further

 80

experiments for different parameters of certain classifiers. For instance, the selection of

parameter ݇ in KNN is arguable. Some studies [49] suggested to choose 3 and some suggested to

1. More experiments can give us further suggestion of the selection.

For feature selection methods, we didn’t discuss the comparison continuously. We chose the

number of features fixed (5, 10, 20, 30, 50, 100, 200). The algorithm gives a rank for vary

attributes and we choose the attributes by selecting the top rankings. To compare and selection

the top rankings continuously could also be a possible future work to discover the relationship

and variation of features.

 81

References

[1] D. Jawdat, "The Era of Bioinformatics," in 2006 2nd International Conference on
Information & Communication Technologies, 2006, pp. 1860-1865.

[2] K.-C. Wong, Computational Biology and Bioinformatics: Gene Regulation: CRC Press,
2016.

[3] A. Brazma, A. Robinson, G. Cameron, and M. Ashburner, "One-stop shop for microarray
data," Nature, vol. 403, pp. 699-700, 2000.

[4] A. L. Tarca, R. Romero, and S. Draghici, "Analysis of microarray experiments of gene
expression profiling," American journal of obstetrics and gynecology, vol. 195, pp. 373-
388, 2006.

[5] S. Choudhuri, "Microarrays in biology and medicine," Journal of biochemical and
molecular toxicology, vol. 18, pp. 171-179, 2004.

[6] L. O. Hall, "Finding the right genes for disease and prognosis prediction," in 2010
International Conference on System Science and Engineering, 2010, pp. 1-2.

[7] E. Byvatov and G. Schneider, "Support vector machine applications in bioinformatics,"
Applied bioinformatics, vol. 2, pp. 67-77, 2002.

[8] I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, "Gene selection for cancer classification
using support vector machines," Machine learning, vol. 46, pp. 389-422, 2002.

[9] Z. R. Yang, "Biological applications of support vector machines," Briefings in
bioinformatics, vol. 5, pp. 328-338, 2004.

[10] J. Herrero, A. Valencia, and J. Dopazo, "A hierarchical unsupervised growing neural
network for clustering gene expression patterns," Bioinformatics, vol. 17, pp. 126-136,
2001.

[11] E. Capriotti, P. Fariselli, and R. Casadio, "A neural-network-based method for predicting
protein stability changes upon single point mutations," Bioinformatics, vol. 20, pp. i63-
i68, 2004.

[12] R. Díaz-Uriarte and S. A. De Andres, "Gene selection and classification of microarray
data using random forest," BMC bioinformatics, vol. 7, p. 1, 2006.

[13] A. L. Boulesteix, S. Janitza, J. Kruppa, and I. R. König, "Overview of random forest
methodology and practical guidance with emphasis on computational biology and
bioinformatics," Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, pp. 493-507, 2012.

 82

[14] P. Horton, K.-J. Park, T. Obayashi, N. Fujita, H. Harada, C. Adams-Collier, et al.,
"WoLF PSORT: protein localization predictor," Nucleic acids research, vol. 35, pp.
W585-W587, 2007.

[15] M.-L. Zhang and Z.-H. Zhou, "A k-nearest neighbor based algorithm for multi-label
classification," in 2005 IEEE international conference on granular computing, 2005, pp.
718-721.

[16] H.-B. Shen and K.-C. Chou, "Ensemble classifier for protein fold pattern recognition,"
Bioinformatics, vol. 22, pp. 1717-1722, 2006.

[17] L. Li, C. R. Weinberg, T. A. Darden, and L. G. Pedersen, "Gene selection for sample
classification based on gene expression data: study of sensitivity to choice of parameters
of the GA/KNN method," Bioinformatics, vol. 17, pp. 1131-1142, 2001.

[18] C. Ambroise and G. J. McLachlan, "Selection bias in gene extraction on the basis of
microarray gene-expression data," Proceedings of the National Academy of Sciences, vol.
99, pp. 6562-6566, May 14, 2002 2002.

[19] M. Garc, T. a, G. F, V. mez, D. Becerra-Alonso, B. Meli, et al., "Feature Grouping and
Selection on High-Dimensional Microarray Data," in 2015 International Workshop on
Data Mining with Industrial Applications (DMIA), 2015, pp. 30-37.

[20] S. Kar, K. D. Sharma, and M. Maitra, "A comparative study on gene ranking and
classification methods using microarray gene expression profiles," in Michael Faraday
IET International Summit 2015, 2015, pp. 596-600.

[21] A. Rouhi and H. Nezamabadi-pour, "A hybrid method for dimensionality reduction in
microarray data based on advanced binary ant colony algorithm," in 2016 1st Conference
on Swarm Intelligence and Evolutionary Computation (CSIEC), 2016, pp. 70-75.

[22] E. Pashaei, M. Ozen, and N. Aydin, "Gene selection and classification approach for
microarray data based on Random Forest Ranking and BBHA," in 2016 IEEE-EMBS
International Conference on Biomedical and Health Informatics (BHI), 2016, pp. 308-
311.

[23] C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene
expression data," Journal of bioinformatics and computational biology, vol. 3, pp. 185-
205, 2005.

[24] H. Peng, F. Long, and C. Ding, "Feature selection based on mutual information criteria of
max-dependency, max-relevance, and min-redundancy," IEEE Transactions on pattern
analysis and machine intelligence, vol. 27, pp. 1226-1238, 2005.

[25] K. Y. Yeung and W. L. Ruzzo, "Principal component analysis for clustering gene
expression data," Bioinformatics, vol. 17, pp. 763-774, 2001.

 83

[26] A. Wang and E. A. Gehan, "Gene selection for microarray data analysis using principal
component analysis," Statistics in medicine, vol. 24, pp. 2069-2087, 2005.

[27] M. Jalali-Heravi and A. Kyani, "Application of genetic algorithm-kernel partial least
square as a novel nonlinear feature selection method: activity of carbonic anhydrase II
inhibitors," European journal of medicinal chemistry, vol. 42, pp. 649-659, 2007.

[28] I. Rodriguez-Lujan, R. Huerta, C. Elkan, and C. S. Cruz, "Quadratic programming feature
selection," Journal of Machine Learning Research, vol. 11, pp. 1491-1516, 2010.

[29] Y. Prasad, K. Biswas, and P. Singla, "Scaling-Up Quadratic Programming Feature
Selection," in AAAI (Late-Breaking Developments), 2013.

[30] U. Alon, N. Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, et al., "Broad
patterns of gene expression revealed by clustering analysis of tumor and normal colon
tissues probed by oligonucleotide arrays," Proceedings of the National Academy of
Sciences, vol. 96, pp. 6745-6750, 1999.

[31] T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, et al.,
"Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring," science, vol. 286, pp. 531-537, 1999.

[32] E. D. Feigelson and G. Babu, "Statistical challenges in modern astronomy," arXiv
preprint astro-ph/0401404, 2004.

[33] B. E. Boser, I. M. Guyon, and V. N. Vapnik, "A training algorithm for optimal margin
classifiers," in Proceedings of the fifth annual workshop on Computational learning
theory, 1992, pp. 144-152.

[34] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20, pp. 273-
297, 1995.

[35] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning vol. 1:
Springer series in statistics Springer, Berlin, 2001.

[36] OpenCV.Org. (2016). Introduction to SVM. Available:
http://docs.opencv.org/2.4/doc/tutorials/ml/introduction_to_svm/introduction_to_svm.ht
ml

[37] C. Jin and L. Wang, "Dimensionality dependent PAC-Bayes margin bound," in Advances
in Neural Information Processing Systems, 2012, pp. 1034-1042.

[38] T. K. Ho, "Random decision forests," in Document Analysis and Recognition, 1995.,
Proceedings of the Third International Conference on, 1995, pp. 278-282.

[39] T. K. Ho, "The random subspace method for constructing decision forests," IEEE
transactions on pattern analysis and machine intelligence, vol. 20, pp. 832-844, 1998.

 84

[40] E. M. Kleinberg, "On the algorithmic implementation of stochastic discrimination," IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 473-490, 2000.

[41] E. Kleinberg, "An overtraining-resistant stochastic modeling method for pattern
recognition," The annals of statistics, vol. 24, pp. 2319-2349, 1996.

[42] L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001.

[43] F. Livingston, "Implementation of Breiman’s random forest machine learning algorithm,"
ECE591Q Machine Learning Journal Paper, 2005.

[44] D. Benyamin. (2012). A Gentle Introduction to Random Forests, Ensembles, and
Performance Metrics in a Commercial System. Available:
https://citizennet.com/blog/2012/11/10/random-forests-ensembles-and-performance-
metrics/

[45] S.-C. Wang, "Artificial Neural Network," in Interdisciplinary Computing in Java
Programming, ed Boston, MA: Springer US, 2003, pp. 81-100.

[46] S. Sayad. (2010). Artificial Neural Network. Available: http://chem-
eng.utoronto.ca/~datamining/dmc/artificial_neural_network.htm

[47] T. Cover and P. Hart, "Nearest neighbor pattern classification," IEEE transactions on
information theory, vol. 13, pp. 21-27, 1967.

[48] B. R. Kowalski and C. Bender, "k-Nearest Neighbor Classification Rule (pattern
recognition) applied to nuclear magnetic resonance spectral interpretation," Analytical
Chemistry, vol. 44, pp. 1405-1411, 1972.

[49] S. Sayad. (2010). K Nearest Neighbors - Classification. Available:
http://www.saedsayad.com/k_nearest_neighbors.htm

[50] S. A. Quadri. (2012). Feature Extraction and Principal Component Analysis. Available:
http://www.slideshare.net/reachquadri/feature-extraction-and-principal-component-
analysis

[51] J. Brownlee. (2014). An introduction to feature selection. Available:
http://machinelearningmastery.com/an-introduction-to-feature-selection/

[52] K. Peason, "On lines and planes of closest fit to systems of point in space," Philosophical
Magazine, vol. 2, pp. 559-572, 1901.

[53] H. Hotelling, "Analysis of a complex of statistical variables into principal components,"
Journal of educational psychology, vol. 24, p. 417, 1933.

[54] R. P. Brent, F. T. Luk, and C. Van Loan, "Computation of the generalized singular value
decomposition using mesh-connected processors," in 27th Annual Techincal Symposium,
1983, pp. 66-71.

 85

[55] I. Jolliffe, Principal component analysis: Wiley Online Library, 2002.

[56] H. Abdi and L. J. Williams, "Principal component analysis," Wiley Interdisciplinary
Reviews: Computational Statistics, vol. 2, pp. 433-459, 2010.

[57] P. J. Shaw, Multivariate statistics for the environmental sciences: Wiley, 2009.

[58] V. K. Nagaraja and W. Abd-Almageed, "Feature Selection using Partial Least Squares
regression and optimal experiment design," in 2015 International Joint Conference on
Neural Networks (IJCNN), 2015, pp. 1-8.

[59] P. Geladi and B. R. Kowalski, "Partial least-squares regression: a tutorial," Analytica
chimica acta, vol. 185, pp. 1-17, 1986.

[60] S. Wold, M. Sjöström, and L. Eriksson, "PLS-regression: a basic tool of chemometrics,"
Chemometrics and intelligent laboratory systems, vol. 58, pp. 109-130, 2001.

[61] J. L. Lustgarten, V. Gopalakrishnan, H. Grover, and S. Visweswaran, "Improving
classification performance with discretization on biomedical datasets," in AMIA annual
symposium proceedings, 2008, p. 445.

[62] R. Abraham, J. B. Simha, and S. Iyengar, "A comparative analysis of discretization
methods for medical datamining with naïve Bayesian classifier," in Information
Technology, 2006. ICIT'06. 9th International Conference on, 2006, pp. 235-236.

[63] A. Tillander, "Effect of data discretization on the classification accuracy in a high‐
dimensional framework," International Journal of Intelligent Systems, vol. 27, pp. 355-
374, 2012.

[64] M. R. Chmielewski and J. W. Grzymala-Busse, "Global discretization of continuous
attributes as preprocessing for machine learning," International journal of approximate
reasoning, vol. 15, pp. 319-331, 1996.

[65] J. Catlett, "On changing continuous attributes into ordered discrete attributes," in
European working session on learning, 1991, pp. 164-178.

[66] J. Cerquides and R. L. De Màntaras, "Proposal and Empirical Comparison of a
Parallelizable Distance-Based Discretization Method," in KDD, 1997, pp. 139-142.

[67] S. W. Hadley, C. Pelizzari, and G. Chen, "Registration of localization images by
maximization of mutual information," in Proc. Ann. Meeting of the Am. Assoc. Physicists
in Medicine, 1996.

[68] N. Kwak and C.-H. Choi, "Input feature selection by mutual information based on Parzen
window," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, pp.
1667-1671, 2002.

 86

[69] E. Parzen, "On estimation of a probability density function and mode," The annals of
mathematical statistics, vol. 33, pp. 1065-1076, 1962.

[70] H.-J. Reinhardt, Analysis of approximation methods for differential and integral
equations vol. 57: Springer Science & Business Media, 2012.

[71] R. A. Young, "Biomedical Discovery with DNA Arrays," Cell, vol. 102, pp. 9-15, 7/7/
2000.

[72] H. C. Liu, P. C. Peng, T. C. Hsieh, T. C. Yeh, C. J. Lin, C. Y. Chen, et al., "Comparison
of Feature Selection Methods for Cross-Laboratory Microarray Analysis," IEEE/ACM
Transactions on Computational Biology and Bioinformatics, vol. 10, pp. 593-604, 2013.

[73] A. Antoniadis, S. Lambert-Lacroix, and F. Leblanc, "Effective dimension reduction
methods for tumor classification using gene expression data," Bioinformatics, vol. 19, pp.
563-570, 2003.

[74] J. Kittler, "Pattern recognition. A statistical approach," 1982.

[75] S. Geisser, Predictive inference vol. 55: CRC press, 1993.

[76] R. Kohavi, "A study of cross-validation and bootstrap for accuracy estimation and model
selection," in Ijcai, 1995, pp. 1137-1145.

[77] J. Schneider. (1997). Cross validation. Available:
https://www.cs.cmu.edu/~schneide/tut5/node42.html

[78] S. Arlot and A. Celisse, "A survey of cross-validation procedures for model selection,"
pp. 40-79, 2010 2010.

[79] G. Chandrashekar and F. Sahin, "A survey on feature selection methods," Computers &
Electrical Engineering, vol. 40, pp. 16-28, 1// 2014.

[80] S. De Jong, “SIMPLS: An alternative approach to partial least squares regression,”
Chemometrics and Intelligent Laboratory Systems, vol. 18, no. 3, pp. 251–263, 1993

 87

APPENDIX

Appendix A: Matrix I2000 and Names of each Gene in Colon Dataset

Matrix I2000 is available in http://genomics-pubs.princeton.edu/oncology/affydata/I2000.html

The names of each gene expression is available in:

 http://genomics-pubs.princeton.edu/oncology/affydata/names.html

Below is an example for the first 4 genes.

Hsa.3004 H55933 3' UTR 1 203417 H.sapiens mRNA for homologue to

yeast ribosomal protein L41.

Hsa.3004

Hsa.13491 R39465 3' UTR 2a 23933 EUKARYOTIC INITIATION

FACTOR 4A (Oryctolagus

cuniculus)

Hsa.13491

Hsa.13491 R39465 3' UTR 2a 23933 EUKARYOTIC INITIATION

FACTOR 4A (Oryctolagus

cuniculus)

Hsa.13491

Hsa.37254 R85482 3' UTR 2a 180093 SERUM RESPONSE FACTOR

(Homo sapiens)

Hsa.37254

…

 88

Appendix B: Codes

Table 0-1:Discritization using Python

'''
excel_discrete.py
This program is to discrete the input csv file.
p is the mean value and q is the standard deviation

1: if the value in (p+q/2, + infinite)
0: if the value in [p-q/2,p+q/2]
-1: if the value in (-infinite, p-q/2)

'''
def readfile(filename,p,q):
 import csv

 with open(filename,'rb') as f:

 reader = csv.reader(f)
 rows = [row for row in reader]

 n_column = len(rows[0])
 n_row =len(rows)
 print rows[1][15]
 print p+q/2
 for i in range(1,n_column):
 for j in range(1,n_row):
 if float(rows[j][i])> (p+q/2):

 rows[j][i]=1.0
 elif float(rows[j][i]) < (p-q/2):

 rows[j][i]=-1.0
 else:

 rows[j][i]=0.0
 print rows[1][15]
 print type(rows[1][15])

 f.close()
 return rows

def write_csv(filename, list_towrite):
 import csv
 with open(filename,'w') as f:

 f_csv = csv.writer(f)
 f_csv.writerows(list_towrite)
 f.close()

inputfile = "colon_class_front.csv"

 89

inputfile = "example.csv"
outputfile = "c_dicreted_3t.csv"
rows=readfile(inputfile,0.0,1.0)
write_csv(outputfile, rows)

Table 0-2:Transform format using Python

-*- coding: utf-8 -*-
'''
transform.py
Input: mRMR output files. Format:
1 3320 Attr3320 0.459
2 6281 Attr6281 0.425
3 804 Attr804 0.391
4 6184 Attr6184 0.376
5 1962 Attr1962 0.344
6 1829 Attr1829 0.344
7 2121 Attr2121 0.334
8 1674 Attr1674 0.334
9 6677 Attr6677 0.325
10 2363 Attr2363 0.324
11 4847 Attr4847 0.318
12 2439 Attr2439 0.316
13 1087 Attr1087 0.306
...

OUTPUT: Two files. Format:
File1: MaxRel Feature selector
 3320,6281,804, ...
File2: mRMR Feature selector
 3320,2363,1674, ...

This program is use for preprocess file select.txt for excel_file.py.
We use the output result grep filtered as the input file, we import the
elements we need by order and output them separated by comma.

'''

def read_txt(filename):

 contents = []
 with open(filename) as f:
 for line in f:
 content = line.split('\t')

 contents.extend([content])
 f.close()

 90

 return contents

def write_txt(contents,filename_max,filename_mrmr,number):
 import csv

 maxRel="0,"
 mrmr="0,"
 for i in range(0,number):

 maxRel += contents[i][1].strip()+ ','
 maxRel=maxRel[0:len(maxRel)-1]
 for i in range(number,number<<1):

 mrmr += contents[i][1].strip()+ ','
 mrmr=mrmr[0:len(mrmr)-1]

 with open(filename_max,'w') as f:

 f.write(maxRel)
 f.close()
 with open(filename_mrmr,'w') as f:

 f.write(mrmr)
 f.close()

'''
Main
Change feature_number to the attribute you want to select.
5,10,20,30,50,100,200 in this experiment.

'''
feature_number = 200
inputfile="example_trans.txt"
inputfile_l="mRMR_algorithm_files/leu_con_MIQ" + str(feature_number) +".txt"
inputfile_c="mRMR_algorithm_files/colon_con_MIQ" + str(feature_number)
+".txt"
MaxRel_output_l = "MaxRel_select_l.txt"
mRMR_output_l = "mRMR_select_l.txt"
MaxRel_output_c = "MaxRel_select_c.txt"
mRMR_output_c = "mRMR_select_c.txt"
contents=read_txt(inputfile_l)
write_txt(contents,MaxRel_output_l,mRMR_output_l,feature_number)
contents=read_txt(inputfile_c)
write_txt(contents,MaxRel_output_c,mRMR_output_c,feature_number)

 91

Table 0-3:Subset Extraction using Python

-*- coding: utf-8 -*-
'''
excel_file.py
This program is to select the sub-dataset from original dataset.
We use select file and feature_number to control input.
The variable feature_number need to be change manually.

'''

def readfile(filename):
 import csv

 with open(filename,'rb') as f:

 reader = csv.reader(f)
 rows = [row for row in reader]

 lens = len(rows[0])
 columns = []
 column = []
 for i in range(0,lens):
 column = [col[i] for col in rows]

 columns.extend([column])
 # print column
 # print '\n=====\n'
 f.close()
 return columns

def read_select(filename):
 with open(filename) as f:
 for line in f:

 nums = line.split(',')
 nums = map(int, nums)
 return nums

def write_csv(filename, list_towrite):
 import csv
 with open(filename,'w') as f:

 f_csv = csv.writer(f)
 f_csv.writerows(list_towrite)
 f.close()

def select(datafile,outputfile,selector):

 columns_toselect = read_select(selector)
 columns_all = readfile(datafile)
 new_set=[]

 92

 for i in columns_toselect:

 new_set.extend([columns_all[i]])
 zipped = zip(*new_set)
 write_csv(outputfile,zipped)

'''
Main
'''
feature_number = 200
inputfile1="colon_cf_tf.csv"
inputfile2="leu_cf_tf.csv"
outputfile1="datafiles/MaxRel_tf/colon_con_max_" + str(feature_number)
+".csv"
outputfile2="datafiles/mRMR_MIQ/colon_c_Q_" + str(feature_number) +".csv"
outputfile3="datafiles/MaxRel_tf/leu_con_max_" + str(feature_number) +".csv"
outputfile4="datafiles/mRMR_MIQ/leu_c_Q_" + str(feature_number) +".csv"
selectfile1="MaxRel_select_c.txt"
selectfile2="mRMR_select_c.txt"
selectfile3="MaxRel_select_l.txt"
selectfile4="mRMR_select_l.txt"
print read_select("MaxRel_select.txt")
select(inputfile1,outputfile1,selectfile1)
select(inputfile1,outputfile2,selectfile2)
select(inputfile2,outputfile3,selectfile3)
select(inputfile2,outputfile4,selectfile4)

