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Abstract 

In this study, we compared two feature extraction methods (PCA, PLS) and seven feature 

selection methods (mRMR and its variations, MaxRel, QPFS) on four different classifiers (SVM, 

RF, KNN, NN). We use ratio comparison validation for PCA method and 10-folds cross 

validation method for both the feature extraction and feature selection methods. We use 

Leukemia data set and Colon data set to apply the combinations and measured accuracy as well 

as area under ROC. The results illustrated that feature selection and extraction methods can both 

somehow improve the performance of classification tasks on microarray data sets. Some 

combinations of classifier and feature preprocessing method can greatly improve the accuracy as 

well as the AUC value are given in this study. 

 

Keywords 

Microarray datasets, Feature Extraction, Feature Selection, Principal Component Analysis, 

Partial Least Square, minimum Redundancy- Maximum Relevant, Quadratic Programming 

Feature Selection, Support Vector Machine, Random Forest, k-Nearest-Neighbor, Neural 

Network. 
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Chapter 1  

Introduction 

1.1 Introduction to Bioinformatics 

Bioinformatics is an interdisciplinary field that develops methods and software tools for 

understanding biological data. As an interdisciplinary field of science, bioinformatics combines 

computer science, statistics, mathematics, and engineering to analyze and interpret biological 

data.  

Bioinformatics has become a part of many areas of biology which of great importance. In 

experimental molecular biology, bioinformatics techniques such as image and signal processing 

allow extraction of useful results from large amounts of raw data. In the field of genetics and 

genomics, it aids in sequencing and annotating genomes and their observed mutations. It plays a 

role in the text mining of biological literature and the development of biological and gene 

ontologies to organize and query biological data. It also plays a role in the analysis of gene and 

protein expression and regulation. Bioinformatics tools aid in the comparison of genetic and 

genomic data and more generally in the understanding of evolutionary aspects of molecular 

biology.  

Bioinformatics mainly involves inception, management and examination of biological data 

mainly obtained from a substantive number of experimental test runs that may at times provide 

large data set. To this effect, there is need to establish comprehensive mechanisms to aid in the 

interpretation and processing this data and consequently producing accurate information that is 
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needed for research and study purposes [1]. This led to the inception of bioinformatics, a 

discipline that integrates both biology and computer science. 

The advances in biotechnology such as the next generation sequencing technologies are 

occurring at breathtaking speed. Advances and breakthroughs give competitive advantages to 

those who are prepared. However, the driving force behind the positive competition is not only 

limited to the technological advancement, but also to the companion data analytical skills and 

computational methods which are collectively called computational biology and bioinformatics. 

Without them, the biotechnology-output data by itself is raw and perhaps meaningless.[2] 

1.2 Gene Expressions and Microarrays 

"Gene expression is the term utilized for portraying the interpretation of data contained inside the 

DNA, the storehouse of hereditary data, into messenger RNA (mRNA) atoms that are then 

interpreted into the proteins that perform a large portion of the discriminating capacity of cells" 

[3]. Gene expression is a complex process that permits cells to respond to the changing inward 

prerequisites and furthermore to outside ecological conditions. This system controls which genes 

to express in a cell and furthermore to build or reduce the level of expression of genes. 

A microarray is a device used to study and record the gene expressions of a large number of 

genes at the same time.  A microarray comprises of distinctive nucleic acid probes that are 

artificially appended to a substrate, which can be a microchip, a glass slide or a microsphere-

sized globule. 

Microarrays can be divided into two types [4]:Dual Channel Microarrays and Single Channel 

Microarrays. The one we use in our experiment is the Single Channel Microarrays. In these 

microarrays, individual samples are subjected through hybridization after it is named with a 
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fluorescent color. These microarrays measure irrefutably the power of declaration. The last 

procedure is completed utilizing a methodology called photolithography.  

In Dual Channel Microarrays, example successions and ordinary arrangements are marked with 

two distinctive fluorescent colors. Both these DNA arrangements are hybridized together on the 

DNA Microarrays and a degree of fluorescence intensities emitted by the two colors is 

considered so as to assess differential representation level. 

There are distinctive sorts of microarrays, for example, DNA microarrays, protein microarrays, 

tissue microarrays and carb microarrays[5]. The microarray innovation was advanced out of the 

need to focus measures of specific substances inside a mixture of different substances. 

It is possible to get gene expression data relatively inexpensively from micro-arrays. So, this 

leads to hope that the genes can tell us who will get or has a disease. Perhaps one can find the 

stage of the disease to enable effective treatments. However, we are currently at the stage where 

there are many challenges to evaluating the possibilities for genes to be used in diagnosis and 

treatment. There are typically many more genes that might be involved than samples for any 

given disease. Which genes are important and how stable are the choices an algorithm provides? 

We do not know the time of the true onset of a disease, just sometimes when symptoms started 

and sometimes when diagnosis was done. Some of the promising work on diagnosis or prognosis 

has suffered from data or scientific errors. [6] had discussed the problems and pitfalls of using 

genes to predict disease presence or prognosis. It had also discussed some promising ways to 

choose the genes that may be predictive for a particular disease, with a focus on cancer, and 

point out some open questions. 
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1.3 Classification Techniques 

In this study, we use the classification technique to measure and compare the difference between 

different feature extraction/ selection methods. Any classification method uses a set of 

parameters to characterize each object. These features are relevant to the data being studied. Here 

we are talking about methods of supervised learning where we know the classes into which the 

items are to be ordered. We likewise have a set of items with known classes. A training set is 

utilized by the order projects to figure out how to arrange the items into wanted classes. This 

training set is utilized to choose how the parameters ought to be weighted or consolidated with 

one another so we can separate different classes of articles. In the application stage, the trained 

classifiers can be utilized to focus the classifications of articles utilizing new examples called the 

testing set. 

Four classification methods viz Support Vector Machine, Random Forest, k-Nearest-neighbor, 

Neural Network have been selected in our study. The details about these methods are given in 

Chapter 3. We record the accuracy and AUC (Area under ROC) value for analysis. 

1.4 Feature Extraction Methods and Feature Selection Methods 

One big problems when applying large microarray dataset onto the different classifier is 

Redundancy. Some studies shown that the use of a feature extraction methods or feature 

selection method can somehow improve the performance and also reduce the redundancy. In our 

study, we will compare different performance between some well-known feature extraction 

methods (Principle Component Analysis, Partial Least Square) as well as some famous feature 

selection methods (minimum Redundancy-Maximum Relevance, Maximum Relevance, 
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Quadratic Programming Feature Selection). The detailed introduction of each method will be 

given in Chapter 4. 

1.5 Objectives of the study and outline of the thesis 

In this study, we proposed a measurement of vary feature preprocessing methods. This included 

the feature extraction method, feature selection method and discretized method. We are trying to 

find on what specific condition that can get the best performance among four different 

classifiers. 

The thesis is organized as below: 

We will present the literature review and some of the previous works done on the microarray 

classification. Plus, some results and works about feature extraction as well as feature selection 

methods will also be mentioned in Chapter 2. 

The datasets and detailed classification methods will be describing in Chapter 3. Following the 

description and introduction of different feature extraction and selection method in Chapter 4. 

Chapter 5 will give the expansion of the published paper about principle component analysis. 

Another ongoing publish paper about the comparison of feature selection and extraction methods 

will be detailed in Chapter 6. 

Conclusion, future work and other overall contents will list in and after Chapter 7. 
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Chapter 2  

Literature Review 

One big task in bioinformatics is to classify and predict the biological inferences of complex, 

high-dimensional and voluminous data. With the rapid increase in size and numbers of features 

in bioinformatics, it is critical to use some tools and good algorithms to automate the 

classification process. Several reports evidence that Classification methods viz SVM, NN, kNN 

and RF, have been applied in solving the bioinformatics problems with good accuracy. 

Byvatov E , Schneider G noted that the Support Vector Machine(SVM) approach produced 

lower prediction error compared to classifiers based on other methods like artificial neural 

network, especially when large numbers of features are considered for sample description[7].[8] 

used a combination of SVM and Recursive feature elimination method in an experiment which 

showed that the genes selected by this method yield better classification performance and are 

biologically relevant to cancer. In [9], Yang discussed how the SVM can cooperate with 

biological data specifically in protein and DNA sequences.  [10] showed that a neural network 

grows adopting the topology of a binary tree called Self-Organizing Tree Algorithm is a 

hierarchical cluster obtained with the accuracy and robustness of a neural network. They 

mentioned that this method is especially suitable for dealing with huge amounts of data. 

[11]presented a neural-network-based method to predict a given mutation increases or decreases 

the protein thermodynamic stability with respect to the native structure. They mentioned that one 

the same task and using the same data, their predictor performs better than other methods on the 
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web. [12]stated that random forest is a classification algorithm well suited for microarray data. 

They investigated the use of random forest for classification of microarray data and proposed a 

gene selection method in classification problems based on random forest. Also, in [13],  

Boulesteix, A , Janitza, S , synthesized the random forest development of 10 years with emphasis 

on applications to bioinformatics and computational biology. They showed that the RF algorithm 

has become a standard data analysis tool in bioinformatics. Besides the above, some researchers 

also using k-nearest neighbor for the similar tasks. [14] used the k-nearest neighbor based 

method for protein subcellular location prediction.[15] presented a learning approach which is 

derived from the traditional k-nearest-neighbor algorithm and gave a comparison on a multi-label 

bioinformatics data which showed that the new method is highly comparable to existing multi 

label learning algorithms. In [16], they compared another knn based method with Neural 

networks and SVM, and they concluded that the method is very promising and might become a 

useful vehicle in protein science, bioinformatics. In [17], Leping, L, tested an approach combines 

Genetic Algorithm and the k-nearest-neighbors to identify genes that can jointly discriminate 

between different classes of samples. They also chose the leukemia data set and the colon data 

set. The result showed that this method is capable of selecting a subset of predictive genes from a 

large noisy data set for sample classification.  

Most of the works mentioned above focus on a specific classifier and made some improvement 

for the classification and even proposed some new methods which are driven by the classical 

methods. In our study, we want to know if the feature selection or feature extraction method can 

somehow improve the performance of gene selection problems. We will use the classical 

classification methods for the measurement. For the cross validation, [18] recommended using 

10-fold cross validation rather than leave-one-out cross validation. 
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In classification tasks, the performance of the classifier improved when the dimensionality 

increases until an optimal number of feature is selected. After that, further increases of the 

dimensionality without increases of the samples will cause the performance degrade[19]. This is 

what we called the “curse of dimensionality”. To solve this problem, one way is to find out 

which subset of the origin data set is of vital importance for the classification tasks. In [20], a 

comparative study demonstrated that it is possible to use feature selection method to solve this 

problem. Authors have used SVM with different kernel and KNN method for a classification 

task and give a ranking method to two gene data set. The results showed the importance of 

informative gene ranking to classify test samples accurately. [21] present a hybrid method for 

feature selection. Their results showed that increased number of irrelevant and redundant 

features has decrease the accuracy of classifier as well as increase the computational cost and 

reinforced the curse of dimensionality. Hence feature extraction and feature selection method 

become a possible solution. 

There are many different feature selection method, in [22], they presented a novel approach 

based on Binary Black Hole Algorithm and Random Forest Ranking. They use this method for 

gene selection and classification of microarray data. The results showed that selecting the least 

number of informative genes can increase prediction accuracy of Bagging and outperforms the 

other classification method.  

When we move our attention to feature preprocessing methods, Peng H’s paper [23] gets our 

most attention, they proposed two methods namely mRMR and MaxRel for the gene selection 

and their experiments have showed that the methods are robust and stable for the improvement. 

In [24], they gave more detail and experiment to further investigate the two methods, the results 
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confirm that mRMR leads to promising improvement on feature selection and classification 

accuracy. 

[25] have used PCA method for analysis of gene expression data. Their results showed that 

clustering with the PCA does not necessarily improve and often degrades the cluster quality. In 

[26], Antai W, proposed a gene selection method based on PCA and use this method to 

demonstrate that the method selects the best gene subset for preserving the original data 

structure. In our study, we will cover and give the results on classification tasks using PCA.  

In [27], Jalali-Heravi M proposed a method which combined the genetic algorithm- kernel partial 

least square for feature selection. Their results indicated that this approach is a powerful method 

for the feature selection in nonlinear systems.  

In [28], another feature selection method called Quadratic Programming Feature Selection is 

proposed. This method reduces the task to a quadratic optimization problem and is capable for 

dealing with very large data set. Plus, [29] proposed a sequential Minimal Optimization based 

framework for QPFS, and they successfully reduced the computation time of data 

dimension(cubic computation time) of standard QPFS. 

In our study, we look forward to see how can the combination between the traditional classifiers 

and the well-performance feature selection method can somehow improve the performance. We 

covered PCA, MaxRel, PLS, QPFS, mRMR methods by using them for the preprocess process. 

After that, different validation methods were applied to the classification tasks. We give some 

suggestion of vary combination for new data sets. 
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Chapter 3  

Datasets and Classification Methods 

 

3.1 Dataset Selection 

3.1.1 Colon Cancer Dataset 

The Colon Cancer Dataset was first in use in [30, 31] in 1999. 62 samples, including 20 normal 

samples and 40 tumor samples, collected from patients of colon-cancer.  

The matrix I2000 (See Appendix A: Matrix I2000 and Names of each Gene in Colon Dataset) 

contains the expression of the 2000 genes with highest minimal intensity across the 62 tissues. 

The genes are placed in order of descending minimal intensity. Each entry in I2000 is a gene 

intensity derived from the ~20 feature pairs that correspond to the gene on the chip, derived 

using the filtering process described in the ‘materials and methods’ section. The data is otherwise 

unprocessed (for example it has not been normalized by the mean intensity of each experiment). 

The file ‘names’ contains the EST number and description of each of the 2000 genes, in an order 

that corresponds to the order in I2000. Note that some ESTs are repeated which means that they 

are tiled a number of times on the chip, with different choices of feature sequences.  
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The identity of the 62 tissues is given in file tissues. The numbers correspond to patients, a 

positive sign to a normal tissue, and a negative sign to a tumor tissue. 

Before our experiments, we have normalized the dataset file to mean 0. 

3.1.2 Leukemia Dataset 

The Leukemia Dataset was also mentioned in [31]. Leukemias are primary disorders of bone 

marrow.  They are malignant neoplasms of hematopoietic stem cells. The total number of genes 

to be tested is 7129, and number of samples to be tested is 72, which are all acute leukemia 

patients, either acute lymphoblastic leukemia (ALL) or acute myelogenous leukemia (AML). 

More precisely, the number of ALL is 47 and the number of AML is 25. The dataset has been 

normalized before our experiments. 

 

3.2 Classification Methods 

In the current study, we deal with a classification problem which focuses on dividing the samples 

of two microarray datasets into two categories. Any classification method uses a set of 

parameters to characterize each object. These features are relevant to the data being studied. Here 

we are talking about methods of supervised learning where we know the classes into which the 

items are to be ordered. We likewise have a set of items with known classes. A training set is 

utilized by the order projects to figure out how to arrange the items into wanted classes. This 

training set is utilized to choose how the parameters ought to be weighted or consolidated with 

one another so we can separate different classes of articles. In the application stage, the trained 
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classifiers can be utilized to focus the classifications of articles utilizing new examples called the 

testing set. The different well-known to order techniques are discussed as follows [32]. 

3.2.1 Support Vector Machine 

A Support Vector Machine (SVM) is a discriminative classifier formally defined by a separating 

hyperplane. In other words, given labeled training data (supervised learning), the algorithm 

outputs an optimal hyperplane which categorizes new examples. 

The original SVM algorithm was invented by Vladimir N. Vapnik and Alexey Ya. Chervonenkis 

in 1963. In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N. Vapnik suggested a 

way to create nonlinear classifiers by applying the kernel trick to maximum-margin 

hyperplanes[33].The current standard incarnation (soft margin) was proposed by Corinna Cortes 

and Vapnik in 1993 and published in 1995.[34] 

Let us look at the example for a clear understand. 
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Figure 0-1: SVM Classification 

Suppose we need to find a separating straight line for a linearly separable set of 2D-points which 

belong to one of two classes. In Figure 0-1, one can see that there exists multiple lines that offer 

a solution to the problem. Is any of them better than the others? The SVM define a criterion to 

estimate the worth of the lines: 

A line is bad if it passes too close to the points because it will be noise sensitive and it will not 

generalize correctly. Therefore, our goal should be to find the line passing as far as possible from 

all points. 

Then, the operation of the SVM algorithm is based on finding the hyperplane that gives the 

largest minimum distance to the training examples. Twice, this distance receives the important 
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name of margin within SVM’s theory. Therefore, the optimal separating hyperplane maximizes 

the margin of the training data. See Figure 0-2. 

 

Figure 0-2: Optimal hyperplane 

This is a simple example for SVM. For higher dimension situation, the same concepts apply to 

the task. 

Formally a hyperplane can be defined as: 

, 

Where  is known as the weight vector and  as the bias. 

The optimal hyperplane can be represented in an infinite number of different ways by scaling of 

 and . SVM would choose the one that meets: 

| | 1, 
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where  symbolizes the training examples closest to the hyperplane. In general, the training 

examples that are closest to the hyperplane are called support vector. This representation is know 

as the canonical hyperplane.[35] 

Now we use the result of geometry that gives the distance  between a point  and a 

hyperplane , : 

| |

‖ ‖
. 

Particularly, for canonical hyperplane, the numerator is equal to one and the distance to the 

support vector: 

| |
‖ ‖

1
‖ ‖

 

Recall that the margin introduced above, we denoted the margin as , which is twice the 

distance to the closest examples: 

2
‖ ‖

 

Last but not least, the problem of maximizing  is equivalent to the problem of minimizing a 

function  subject to some constraints. The constraints model the requirement for the 

hyperplane to classify correctly all the training examples . Formally: 

min
,

1
2
‖ ‖ 	 

subject to: 
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1	∀ , 

where represents each of the labels of the training examples.[36] 

In [37], Jin, Chi; Wang, Liwei mentioned that for a higher-dimensional feature space, the 

generalization error of SVM still performs well even if we give enough samples. 

The SVM function we use in the experiment is available as a plugin in Weka. The original 

wrapper, named WLSVM, was developed by Yasser EL-Manzalawy. The current version we use 

is complete rewrite of the wrapper in order to avoid compilation errors. Package name and all the 

parameters will be given in 3.2.5. 

3.2.2 Random Forest 

The first algorithm for random decision forests was created by Tin Kam Ho [38] using the 

random subspace method,[39] which, in Ho's formulation, is a way to implement the "stochastic 

discrimination" approach to classification proposed by Eugene Kleinberg.[40, 41] 

The function we use in the experiment is available in Weka. The function fully implemented the 

method in [42]. The development, verification and the significance of variable importance of RF 

were focused in [43]. 

The RF is an ensemble approach that can also be thought of as a form of nearest neighbor 

predictor. This will be mentioned in 3.2.4.  

Ensembles are a divide-and-conquer approach used to improve performance. The main target of 

the ensemble methods is that a group of weak learners can come together to form a strong 

learner. 
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Here is an example from [44], in Figure 0-3, the data to be modeled are the blue circles. We 

assume that they represent some underlying function plus noise. Each individual learner is shown 

as a gray curve. Each gray curve (a weak learner) is a fair approximation to the underlying data. 

The red curve (the ensemble “strong learner”) can be seen to be a much better approximation to 

the underlying data. 

 
Figure 0-3: Strong learner and Weak learner 

The random forest starts with a standard machine learning technique called a “decision tree” 

which, in ensemble terms, corresponds to our weak learner. In a decision tree, an input is entered 

at the top and as it traverses down the tree the data gets bucketed into smaller and smaller sets.  

In this example, see Figure 0-4 ,the tree advises us, based upon weather conditions, whether to 

play ball. For example, if the outlook is sunny and the humidity is less than or equal to 70, then 

it’s probably OK to play. 
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Figure 0-4: Example of a Decision Tree 

The random forest takes this notion to the next level by combining trees with the notion of an 

ensemble (See Figure 0-5). Thus, in ensemble terms, the trees are weak learners and the random 

forest is a strong learner. 
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Figure 0-5: Relationship between Random Forest and Random Tree 

Here is how such a system is trained; for some number of trees T: 

Sample N cases at random with replacement to create a subset of the data (see Figure 0-5). The 

subset should be about 66% of the total set. 

At each node: 

For some number m (see below), m predictor variables are selected at random from all the 

predictor variables. 

The predictor variable that provides the best split, according to some objective function, is used 

to do a binary split on that node. 
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At the next node, choose another  variables at random from all predictor variables and do the 

same. 

Depending upon the value of m, there are three slightly different systems: 

Random splitter selection: m =1 

Breiman’s bagger: m = total number of predictor variables 

Random forest: m << number of predictor variables. Brieman suggests three possible values for 

: √ , √ , 2√ 	. 

When a new input is entered into the system, it is run down all of the trees. The result may either 

be an average or weighted average of all of the terminal nodes that are reached, or, in the case of 

categorical variables, a voting majority. 

Random forest runtimes are quite fast, and they are able to deal with unbalanced and missing 

data. Random Forest weaknesses are that when used for regression they cannot predict beyond 

the range in the training data, and that they may over-fit data sets that are particularly noisy.  

The parameters that we use in the experiment are given in 3.2.5. 

3.2.3 Neural network 

Inspired by the sophisticated functionality of human brains where hundreds of billions of 

interconnected neurons process information in parallel, researchers have successfully tried 

demonstrating certain levels of intelligence on silicon. Examples include language translation 

and pattern recognition software. While simulation of human consciousness and emotion is still 

in the realm of science fiction. 
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Figure 0-6: Architecture of Neural Network 

An artificial neural network(NN) consists of an input layer of neurons (nodes, units), one or two 

(or even three) hidden layers of neurons, and a final layer of output neurons. See Figure 0-6 for a 

typical architecture, where lines connecting neurons are also shown. Each connection is 

associated with a numeric number called weight. The output, , of neuron  in the hidden layer 

is: 

, 
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where  is called activation function,  the number of input neurons,  the weights,  inputs 

to the input neurons, and  the threshold terms of the hidden neurons.[45] 

The most straightforward structural planning of fake neural systems is single-layered system, 

likewise called Perceptron, where inputs connect directly to the outputs through a single layer of 

weights. The most usually utilized type of NN is the Multilayer Perceptron. NN offers a 

compelling and exceptionally general structure for speaking to non-linear mapping from a few 

information variables to a few yield variables.[46] 

We will use the Weka in-built function ‘MultilayerPerceptron’ for the experiment. Detailed 

parameter will be given in 3.2.5. 

3.2.4 k-Nearest-Neighbor 

K nearest neighbors is a simple algorithm that stores all available cases and classifies new cases 

based on a similarity measure (e.g., distance functions). KNN has been used in statistical 

estimation and pattern recognition already in the beginning of 1970’s as a non-parametric 

technique.[47, 48] 

A case is classified by a majority vote of its neighbors, with the case being assigned to the class 

most common amongst its K nearest neighbors measured by a distance function. If 	 	1, then 

the case is simply assigned to the class of its nearest neighbor.  

The well-known distance functions are Euclidean Distance, Manhattan Distance, Minkowski 

Distance and Hamming Distance. 

Euclidean: ∑  
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Manhattan: ∑ | | 

Minkowski: ∑ | |  

Hamming: ∑ | |, where ⇒ 0; ⇒ 1 

It should also be noted that all three distance measures are only valid for continuous variables. In 

the instance of categorical variables, the Hamming distance must be used. It also brings up the 

issue of standardization of the numerical variables between 0 and 1 when there is a mixture of 

numerical and categorical variables in the dataset. 

An example in Figure 0-7, The test sample (green circle) should be classified either to the first 

class of blue squares or to the second class of red triangles. If 	 	3 (solid line circle) it is 

assigned to the second class because there are 2 triangles and only 1 square inside the inner 

circle. If 	 	5 (dashed line circle) it is assigned to the first class (3 squares vs. 2 triangles 

inside the outer circle). 

 

Figure 0-7: k-NN circle with k=3 and k=5 
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In the classification phase,  is a user-defined constant, and an unlabeled vector (a query or test 

point) is classified by assigning the label which is most frequent among the  training samples 

nearest to that query point. 

Choosing the optimal value for  is best done by first inspecting the data. In general, a large  

value is more precise as it reduces the overall noise but there is no guarantee. Cross-validation is 

another way to retrospectively determine a good  value by using an independent dataset to 

validate the  value. Historically, the optimal  for most datasets has been between 3-10. That 

produces much better results than 1NN.[49] 

In our experiment, we will use 1 and the Euclidean Distance. 

 

3.2.5 List of Classification Parameters 

Classifier Weka Function Parameters 
SVM LibSVM -S 0 -K 0 -D 3 -G 0.0 -R 0.0 -N 0.5 -M 40.0 -C 1.0 -E 0.001 -P 0.1 -B -

model /Users/Stanley -seed 1 
RF RandomForest -P 100 -I 100 -num-slots 1 -K 0 -M 1.0 -V 0.001 -S 1 
NN MultilayerPerceptron -L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a 
KNN IBK -K 1 -W 0 -A "weka.core.neighboursearch.LinearNNSearch -A 

\"weka.core.EuclideanDistance -R first-last\"" 
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Chapter 4  

Feature Extraction Method and Feature Selection Methods 

The task of the feature extraction and selection methods is to get the most relevant information 

from the original data and represent that information in a lower dimensionality space.[50] 

For the different between feature extraction and feature selection, feature selection is to select the 

relevant information from the original data without modify the original attributes. Feature 

selection gets the new data set by use the subset of original data set. Feature extraction is to 

select the information and use the information from original attributes to combine for the new 

data set.  

Dimensionality reduction is typically choosing a basis or mathematical representation within 

which you can describe most but not all of the variance within your data, thereby retaining the 

relevant information, while reducing the amount of information necessary to represent it. There 

are a variety of techniques for doing this including but not limited to PCA, ICA, and Matrix 

Feature Factorization. These will take existing data and reduce it to the most discriminative 

components. These all allow you to represent most of the information in your dataset with fewer, 

more discriminative features. 

Feature Selection is hand selecting features which are highly discriminative. This has a lot more 

to do with feature engineering than analysis, and requires significantly more work on the part of 

the data scientist. It requires an understanding of what aspects of your dataset are important in 

whatever predictions you're making, and which aren't. Feature extraction usually involves 
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generating new features which are composites of existing features. Both of these techniques fall 

into the category of feature engineering. Generally, feature engineering is important if you want 

to obtain the best results, as it involves creating information that may not exist in your dataset, 

and increasing your signal to noise ratio. 

4.1 Feature Extraction Method 

The goal is to build, using the available features, those that will perform better. Feature 

extraction is a general term for methods of constructing combinations of the variables to get 

around these problems while still describing the data with sufficient accuracy. 

In our experiment, we choose Principle Component Analysis and Partial Least Square as the 

feature extraction methods. 

Detailed introduction will be given in 4.3.1 and 4.3.2. 

4.2 Feature Selection Methods 

Feature selection is also called variable selection or attribute selection. 

It is the automatic selection of attributes in your data (such as columns in tabular data) that are 

most relevant to the predictive modeling problem you are working on. 

Feature selection is different from dimensionality reduction. Both methods seek to reduce the 

number of attributes in the dataset, but a dimensionality reduction method do so by creating new 

combinations of attributes, whereas feature selection methods include and exclude attributes 

present in the data without changing them.[51] 
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Feature selection methods can be used to identify and remove unneeded, irrelevant and 

redundant attributes from data that do not contribute to the accuracy of a predictive model or 

may in fact decrease the accuracy of the model. 

There are three general classes of feature selection algorithms: filter methods, wrapper methods 

and embedded methods. 

Filter feature selection methods apply a statistical measure to assign a scoring to each feature. 

The features are ranked by the score and either selected to be kept or removed from the dataset. 

The methods are often univariate and consider the feature independently, or with regard to the 

dependent variable. 

Example of some filter methods include the Chi squared test, information gain and correlation 

coefficient scores.  

Wrapper methods consider the selection of a set of features as a search problem, where different 

combinations are prepared, evaluated and compared to other combinations. A predictive model 

us used to evaluate a combination of features and assign a score based on model accuracy. 

The search process may be methodical such as a best-first search, it may stochastic such as a 

random hill-climbing algorithm, or it may use heuristics, like forward and backward passes to 

add and remove features. 

An example if a wrapper method is the recursive feature elimination algorithm. 
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Embedded methods learn which features best contribute to the accuracy of the model while the 

model is being created. The most common type of embedded feature selection methods are 

regularization methods. 

Regularization methods are also called penalization methods that introduce additional constraints 

into the optimization of a predictive algorithm (such as a regression algorithm) that bias the 

model toward lower complexity (less coefficients). 

Examples of regularization algorithms are the LASSO, Elastic Net and Ridge Regression. 

4.3 Methods in Our Experiment  

4.3.1 Principal Component Analysis(PCA) 

Principal Component Analysis was invented in 1901.[52] as an analogue of the principal axis 

theorem in mechanics; it was later independently developed (and named) by Harold Hotelling in 

the 1930s.[53] Depending on the field of application, it is also named the discrete Kosambi-

Karhunen–Loève transform (KLT) in signal processing, the Hotelling transform in multivariate 

quality control, proper orthogonal decomposition (POD) in mechanical engineering, singular 

value decomposition (SVD) of X [54], eigenvalue decomposition (EVD) of XTX in linear 

algebra, factor analysis (for a discussion of the differences between PCA and factor analysis see 

Ch. 7 of [55]).  

PCA is mostly used as a tool in exploratory data analysis and for making predictive models. PCA 

can be done by eigenvalue decomposition of a data covariance (or correlation) matrix or singular 

value decomposition of a data matrix, usually after mean centering (and normalizing or using Z-

scores) the data matrix for each attribute.[56] The results of a PCA are usually discussed in terms 

of component scores, sometimes called factor scores (the transformed variable values 
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corresponding to a particular data point), and loadings (the weight by which each standardized 

original variable should be multiplied to get the component score).[57] 

The most common definition of PCA, in [53], is that, for a given set of data vectors 	,	 	 ∈

	1. . . , the  principal axes are those orthonormal axes onto which the variance retained under 

projection is maximal.  

In order to capture as much of the variability as possible, let us choose the first principal 

component, denoted by , to have maximum variance. Suppose that all centered observations 

are stacked into the columns of an 	 	  matrix , where each column corresponds to an -

dimensional observation and there are t observations. Let the first principal component be a 

linear combination of  defined by coefficients (or weights) 	 	 . . . .  

In matrix form:  

	 	  

	 	 	 	 	 

where  is the 	 	 	sample covariance matrix of . Clearly  can be made arbitrarily 

large by increasing the magnitude of . Therefore, we choose  to maximize 	while 

constraining  to have unit length.  

	 	 

subject to  

	 	1	 
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To solve this optimization problem, a Lagrange multiplier  is introduced: 

, 1  

Differentiating with respect to  gives  equations, 

	 	  

Premultiplying both sides by  we have: 

	 	 	 1 

 is maximized if  is the largest eigenvalue of . 

Clearly  and  are an eigenvalue and an eigenvector of . Differentiating ,  with 

respect to the Lagrange multiplier  gives us back the constraint: 

	 	1 

This shows that the first principal component is given by the normalized eigenvector with the 

largest associated eigenvalue of the sample covariance matrix . A similar argument can show 

that the  dominant eigenvectors of covariance matrix  determine the first  principal 

components. 

Another nice property of PCA, closely related to the original discussion by Pearson in[52] is that 

the projection onto the principal subspace minimizes the squared reconstruction error,  

‖ ‖  
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In other words, the principal components of a set of data in  provide a sequence of best linear 

approximations to that data, for all ranks . Consider the rank-  linear approximation model 

as: 

	 	 	 	 	 

This is the parametric representation of a hyperplane of rank . For convenience, suppose 

	 	0 (otherwise the observations can be simply replaced by their centered versions 	 	 	

). Under this assumption the rank  linear model would be 	 	 , where  is a 	 	  

matrix with  orthogonal unit vectors as columns and  is a vector of parameters. Fitting this 

model to the data by least squares leaves us to minimize the reconstruction error:  

min
,

‖ ‖ , 

By partial optimization for  we obtain: 

0 ⇒  

Now we need to find the orthogonal matrix :  

min ‖ ‖  

Define 	 	  .  is a  matrix which acts as a projection matrix and projects each 

data point  onto its rank d reconstruction. In other words,  is the orthogonal projection of 

 onto the subspace spanned by the columns of . A unique solution  can be obtained by 

finding the singular value decomposition of X [35]. For each rank ,  consists of the first  
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columns of . Clearly the solution for  can be expressed as singular value decomposition (SVD) 

of .  

	 	 	 

since the columns of U in the SVD contain the eigenvectors of . So the PCA procedure is 

summarized in Table 0-1. 

Table 0-1: PCA Algorithm 

Algorithm of PCA 

1. Recover basis:  

Calculate  and let 	 	   

 corresponding to the top  eigenvalues.  

2. Encode training data: 	 	  where  is a 	 	  matrix of encodings of the original data.  

3. Reconstruct training data: .  

4. Encode test example: 	 	  where  is a -dimensional encoding of .  

5. Reconstruct test example:   

We will use the Weka Principle Component function in our experiment. The function is to 

performs a principal components analysis and transformation of the data. Use in conjunction 

with a Ranker search. Dimensionality reduction is accomplished by choosing enough 

eigenvectors to account for some percentage of the variance in the original data---default 0.95 

(95%). Attribute noise can be filtered by transforming to the PC space, eliminating some of the 

worst eigenvectors, and then transforming back to the original space. 
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4.3.2 Partial Least Square (PLS) 

Partial least squares regression (PLS regression) is a statistical method that bears some relation to 

principal components regression; instead of finding hyperplanes of maximum variance between 

the response and independent variables, it finds a linear regression model by projecting the 

predicted variables and the observable variables to a new space.  

Partial Least Squares is a simultaneous feature extraction and regression technique, well suited 

for high dimensional problems where the number of samples is much lesser than the number of 

features ( 	 ≪ 	 ). The linear PLS model can be expressed as: 

 

 

where  is the feature matrix,  is the matrix of response variables or class labels,  is 

called the X-scores,  is X-loading,  is Y-scores, 	 is Y-loadings,  and  are 

the residuals. The data in X and Y are assumed to be mean-centered. X-scores and Y-scores are 

the projections of n samples onto a d-dimensional orthogonal subspace. The X-scores are 

obtained by a linear combination of the variables in X with the weights W as: 

∗ 

The inner relation between X-scores and Y-scores is a linear regression model and hence X-

scores are called predictors of Y-scores. If we denote B as the regression coefficient for the inner 

relation between the scores, we have: 
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So that we get: 

	

	

 

where  

The least squares estimate of  is then given by: 

 

Hence PLS can be expressed in a linear regression from: 

 

For more detail about the explanation of the PLS, see [58-60]. 

The two most popular algorithms to obtain the PLS model are NIPALS [80] and SIMPLS [81]. 

We have implemented SIMPLS available in Weka. 

 

4.3.3 Peng’s MaxRel Method and mRMR Method 

mRMR means minimum-Redundancy-Maximum-Relevance feature/variable/attribute selection. 

The goal is to select a feature subset set that best characterizes the statistical property of a target 

classification variable, subject to the constraint that these features are mutually as dissimilar to 

each other as possible, but marginally as similar to the classification variable as possible. There 
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are several different forms of mRMR, where "relevance" and "redundancy" were defined using 

mutual information, correlation, t-test/F-test, distances, etc. 

  

Importantly, for mutual information, they showed that the method to detect mRMR features also 

searches for a feature set of which features jointly have the maximal statistical "dependency" on 

the classification variable. This "dependency" term is defined using a new form of the high-

dimensional mutual information.  

The mRMR method was first developed as a fast and powerful feature "filter". Then they also 

showed a method to combine mRMR and "wrapper" selection methods. These methods have 

produced promising results on a range of datasets in many different areas.[24] 

4.3.3.1 Discretization Preprocessing Method 

Before we go through the MaxRel and mRMR methods, we will introduce the discretize method 

in our experiment. 

Discretization is an essential pre-processing step for machine learning algorithms that can handle 

only discrete data. However, discretization can also be useful for machine learning algorithms 

that directly handle continuous variables. [61] indicated that the improvement in classification 

performance from discretization accrues to a large extent from variable selection and to a smaller 

extent from the transformation of the variable from continuous to discrete.  

Many studies [62-66]have shown that induction tasks can benefit from discretization: rules with 

discrete values are normally shorter and hence easier to understandable and discretization can 

lead to improved predictive accuracy. 



 36

[23, 24] showed that discretization will often lead to a more robust classification. There are 

several ways for the discretization. Such as Binary discretization. Each feature variable was 

divided at the mean value, the value become 1 if it is large than the mean value and -1 otherwise. 

Another 3-states discretization method which we will use in our experiment is we use  

 

as the divided point, where  is the mean value and  is the standard deviation. 

The value become -1 if it is less than , 

1 if it is larger than , and 0 if otherwise. 

We use python to convert this discretization. See Table 0-1 for codes. 

4.3.3.2 Max Relevant Feature Selection (MaxRel)  

One of the most popular approaches to realize Max-Dependency is Maximal Relevance 

(MaxRel) feature selection: selecting the features with the highest relevance to the target class . 

Relevance is usually characterized in terms of correlation or mutual information, of which the 

latter is one of the widely used measures to define dependency of variables. Given two random 

variables  and , their mutual information is defined in terms of their probabilistic density 

functions , , 	 , : 

, , log
,

 

In MaxRel, the selected features  are required, individually, to have the largest mutual 

information ,  with the target class , reflecting the largest dependency on the target class. 
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In terms of sequential search, the  best individual features, i.e., the top  features in the 

descent ordering of ,  are often selected as the  features. 

To measure the level of discriminant powers of genes when they are differentially expressed for 

different target classes, we again use mutual information ,  between targeted classes 

	 	 , , . . . , 	  (we call  the classification variable) and the gene expression . ,  

quantifies the relevance of  for the classification task. Thus the maximum relevance condition 

is to maximize the total relevance of all genes in the subset we are seeking (Denoted as S): 

,
1
| | ∈ , , 

With what we mentioned in 4.3.3.1, we denote the MaxRel feature selection method with 

continuous data as MRC method and MRD for discretized data. 

4.3.3.3 Minimum Redundant – Maximum Relevant (mRMR) 

It is likely that features selected according to Max-Relevance could have rich redundancy, i.e., 

the dependency among these features could be large. When two features highly depend on each 

other, the respective class-discriminative power would not change much if one of them were 

removed. Therefore, the following minimal Redundancy (mR) condition can be added to select 

mutually exclusive features: 

,
1
| | , ∈ ,  

The mRMR feature selection method is obtained by balance the Maximum Relevant and 

Minimum Redundant conditions. Optimization of both conditions requires combining them into 
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a single criterion function. The method where the author of mRMR treat the two conditions 

equally important, and consider two simplest combination criteria: 

max  

max  

These two ways to combine relevance and redundancy lead to the selection criteria of a new 

feature. We can choose either Mutual Information Difference criterion(MID) or Mutual 

Information Quotient criterion(MIQ). 

In our experiment, we will cover both MID and MIQ method. We denote the 4 different methods 

as Table 0-2. 

Table 0-2:Four methods from mRMR 

Methods Mutual Information Criterion Data type 

mRDD MID Discrete 

mRDQ MIQ Discrete 

mRCD MID Continuous 

mRCQ MIQ Continuous 
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4.3.3.4 Mutual information estimation 

We consider mutual-information-based feature selection for both discrete and continuous data. 

For discrete (categorical) feature variables, the integral operation in mutual information between 

two variables reduces to summation. In this case, computing mutual information is 

straightforward, because both joint and marginal probability tables can be estimated by tallying 

the samples of categorical variables in the data. 

However, when at least one of variables x and y is continuous, their mutual information ,  

is hard to compute, because it is often difficult to compute the integral in the continuous space 

based on a limited number of samples. One solution is to incorporate data discretization as a 

preprocessing step. For some applications where it is unclear how to properly discretize the 

continuous data, an alternative solution is to use density estimation method (e.g., Parzen 

windows) to approximate , , as suggested by earlier work in medical image registration [67] 

and feature selection [68]. 

Given N samples of a variable x, the approximate density function ̂ has the following form: 

̂
1

, , 

where  is the Parzen window function as explained below,  is the th sample, and  is the 

window width. Parzen has proven that, with the properly chosen , and , the estimation  ̂  

can converge to the true density  when N goes to infinity.[69]. Usually,  ,is chosen as the 

Gaussian window: 
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,
exp 2

2 | |
 

where , d is the dimension of the sample x and  is the covariance of z. When 

1,  ̂  returns the estimated marginal density. When 2 , ̂  can be use to estimate the 

density of bivariate variable , , , , which is actually the joint densty of x and y. For the 

sake of robust estimation, for 2,  is often approximated by its diagonal components. 

4.3.4 Quadratic Programming Feature Selection (QPFS) 

Quadratic Programming Feature Selection was first introduced in [28], the target for this method 

is to reduce the feature selection task to a quadratic optimization problem. This method uses the 

Nystrom method[70] for approximate matrix diagonalization. This method is ideal for handle 

very large data sets for which the use of other methods is computationally expensive. 

Assume the classifier learning problem involves  training samples and  variables (also called 

attributes or features). A quadratic programming problem is to minimize a multivariate quadratic 

function subject to linear constraints as follows: 

min
1
2

 

where x is an -dimensional vector, ∈ is a symmetric positive semidefinite matrix, and 

 is a vector in with non-negative entries. Applied to the feature selection task,  represents 

the similarity among variables(Redundancy), and  measures how correlated each feature is with 

the target class(Relevance). 
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If the quadratic programming optimization problem has been solved, the components of  

represent the weight of each feature. Features with higher weights are better variables to use for 

subsequent classifier training. Since  represents the weight of each variable, it is reasonable to 

enforce the following constraints: 

0	∀ 1,… ,  

1 

Depending on the learning problem, the quadratic and linear terms can have different relative 

purposes in the objective function. Therefore, we introduce a scalar parameter  as follows: 

min
1
2
1  

where ∈ 	 0,1 , if 0.5, this problem is then equal to mRMR method. 

QPFS using mutual information as its similarity measure resembles mRMR, but there is an 

important difference. The mRMR method selects features greedily, as a function of features 

chosen 

in previous steps. In contrast, QPFS is not greedy and provides a ranking of features that takes 

into 

account simultaneously the mutual information between all pairs of features and the relevance of 

each feature to the class label. 
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In our experiment, we use the program from the author’s code repository. Detailed parameter and 

environment will be given in 4.3.5. 
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4.3.5 List of Parameters of PCA, PLS and Feature Selection Methods 

Different platforms are used to execute various programs; the details of platform and settings of 

parameters are listed in Table 0-3. PCA and PLS are in-built functions in WEKA. MaxRel and 

mRMR have been implemented using the source code from the author’s website and was 

compiled on MAC OS 10.11.6. QPFS was implemented using the source code from a related 

google code repository and compiled on Ubuntu due to the convenience of installing reliable 

computational package. 

Table 0-3:Parameters of Methods 

Method Platform/Software Parameter Comment 

PCA 
Weka 3-7-13-oracle-jvm 

MAC OS 10.11.1 
weka.filters.unsupervised. 

attribute.PrincipalComponents 

-R [range] -A 5 -M -1 

We choose the subset of PCA 

from range in 

[0.5,0.55,0.6,0.65,0.7,0.75,0.8,

0.85,0.9,0.95] 

PLS 
Weka 3-9-0-oracle-jvm 
MAC OS 10.11.6 

weka.filters.supervised. 
attribute.PLSFilter 
-C [range] -M -A PLS1 -P center 

We choose the subset of PLS 
from range in 
[5,10,20,30,50,100,200] 

MaxRel 

mRMR 

http://penglab.janelia.org
/proj/mRMR/ 
MAC OS 10.11.6 

./mrmr –i [Datasets] –n [range] –m 
[method] 

range in 
[5,10,20,30,50,100,200] 
method in [MIQ,MID] 

QPFS 
https://sites.google.com/s
ite/irenerodriguezlujan/d
ocuments/qpfs 
Ubuntu 14.04 LTS 

./QPFS –F [Datasets] –O output.txt The QPFS gave all the 
features a rank, we than select 
the top range features to build 
the subsets. 
range in 
[5,10,20,30,50,100,200] 
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Chapter 5  

Increasing Efficiency of Microarray Analysis by PCA1 

Principal Component Analysis (PCA) is widely used method for dimensionality reduction. 

However, it has not been studied much as a feature selection method to increase the efficiency of 

the classifiers on microarray data analysis. In this chapter, we assessed the performance of four 

classifiers on the microarray datasets of colon and leukemia cancer before and after applying 

PCA as a feature selection method. Different thresholds were used with 10-fold cross validation. 

Significant improvement was observed in the performance of the well-known machine learning 

classifiers on microarray datasets of colon and leukemia after applying PCA.  

The gene expression profiling techniques by DNA microarrays provide the analysis of large 

amount of genes [71].  The number of gene expression data of microarray has grown 

exponentially. It is of great importance to find the key gene expression which can best describe 

the phenotypic trait [72]. The microarray dataset usually has a large number of genes in small 

number of experiments which collectively raise the issue of “curse of dimensionality”[73]. To 

find the key gene expression, one way is to use feature selection methods. In this chapter, we use 

                                                 

1 J. Sun, K. Passi and C.K. Jain, Increasing Efficiency of Microarray Analysis by PCA and Machine 

Learning Methods, The 17th International Conference on Bioinformatics & Computational Biology 

(BIOCOMP’16), in The 2016 World Congress in Computer Science, Computer Engineering & Applied 

Computing, July 25 – 28, 2016, Las Vegas, Nevada, USA. 
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Principal Component Analysis (PCA) for feature selection and apply four well-known machine 

learning methods, Support Vector Machine (SVM), Neural Network (NN), K-Nearest-Neighbor 

(KNN) and Random Forest algorithms to validate and compare the performance of Principal 

Component Analysis.  In the first set of experiments presented in this chapter, the performance 

of the four machine learning techniques (SVM, NN, KNN, Random Forest) is compared on the 

colon and leukemia microarray datasets. The second set of experiments compares the 

performance of these machine learning algorithms by applying PCA method on the same 

datasets.  

5.1 Tools 

In this experiment, Weka is the main testing tools for either 10-folds cross validation as well as 

the ratio comparison. The version we use in this experiment is 3-7-13-oracle-jvm and can be 

download on its official website. The platform we use in this experiment is Mac OS 10.11.1.  

The Weka KnowledgeFlow Environment presents a "data-flow" inspired interface to Weka. The 

user can select Weka components from a tool bar, place them on a layout canvas and connect 

them together in order to form a "knowledge flow" for processing and analyzing data. At present, 

all of Weka's classifiers and filters are available in the KnowledgeFlow along with some extra 

tools. 

 We use Weka KnowledgeFlow for the 10-folds cross validation and Ratio Comparison. The 

flow chart will be given in 5.3 below and 5.4 below. 
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5.2 PCA 

Principal Component Analysis (PCA) is a multivariate technique that analyzes a data table in 

which observations are described by several inter-correlated quantitative dependent variables. Its 

goal is to extract the important information from the table, to represent it as a set of new 

orthogonal variables called principal components, and to display the pattern of similarity of the 

observations and of the variables as points in maps. The quality of the PCA model can be 

evaluated using cross-validation techniques. Mathematically, PCA depends upon the eigen-

decomposition of positive semi-definite matrices and upon the singular value decomposition 

(SVD) of rectangular matrices [56]. The PCA viewpoint requires that one compute the 

eigenvalues and eigenvectors of the covariance matrix, which is the product 	, where  is the 

data matrix. Since the covariance matrix is symmetric, the matrix is diagonalizable, and the 

eigenvectors can be normalized such that they are orthonormal: 

 

On the other hand, applying SVD to the data matrix  as follows: 

^  

and attempting to construct the covariance matrix from this decomposition gives 

 

 

and since V is an orthogonal matrix( ), 
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and the correspondence is easily seen. 

For each experiment, we need the original dataset and the new dataset obtained by applying the 

PCA. Proportion of variance is an important value in PCA which gives the main idea of how 

much variance this new attribute covered. Our selection uses this value to be the threshold and 

we choose different thresholds for selecting new subsets of data from the original one. We then 

obtain different datasets with threshold values of 95%, 90%, …, 50%.  

 

5.3 10-fold cross validation 

Cross validation(CV) has an alias as rotation estimation [74-76]. CV is a model evaluation 

method and be confirmed that is better than residuals. One important reason for this is that 

residual evaluations do not give an estimate for new predictions with the data it has not been 

seen. One possible solution to this problem is to separate the entire data set. When training a 

learner. Some of the data is removed before training begins. Then when training is done, the data 

that was removed can be used to test the performance of the learned model. This is the basic idea 

for a whole class of CV. 

The holdout method is the simplest kind of cross validation. The data set is separated into two 

sets, called the training set and the testing set. The function approximator fits a function using the 

training set only. Then the function approximator is asked to predict the output values for the 

data in the testing set (it has never seen these output values before). The errors it makes are 

accumulated as before to give the mean absolute test set error, which is used to evaluate the 



 48

model. The advantage of this method is that it is usually preferable to the residual method and 

takes no longer to compute. However, its evaluation can have a high variance. The evaluation 

may depend heavily on which data points end up in the training set and which end up in the test 

set, and thus the evaluation may be significantly different depending on how the division is 

made. 

K-fold cross validation is one way to improve over the holdout method. The data set is divided 

into k subsets, and the holdout method is repeated k times. Each time, one of the k subsets is 

used as the test set and the other k-1 subsets are put together to form a training set. Then the 

average error across all k trials is computed. The advantage of this method is that it matters less 

how the data gets divided. Every data point gets to be in a test set exactly once, and gets to be in 

a training set k-1 times. The variance of the resulting estimate is reduced as k is increased. The 

disadvantage of this method is that the training algorithm has to be rerun from scratch k times, 

which means it takes k times as much computation to make an evaluation. A variant of this 

method is to randomly divide the data into a test and training set k different times. The advantage 

of doing this is that you can independently choose how large each test set is and how many trials 

you average over.[77] 

In [78], Arlot, Sylvain and Celisse, Alain mentioned that when the goal of model selection is 

estimation, it is often reported that the optimal K is between 5 and 10 , because the statistical 

performance does not increase a lot for larger values of K , and averaging over less than 10 splits 

remains computationally feasible[35]. We will use 10-fold cross validation for the following 

experiment. 
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Weka has the in-build CV function. For the whole process with 10-fold cross validation, see 

Figure 0-1. We use the arff Loader to load the data file which have been pre-processed by PCA, 

then pass the data set to the Cross-Validation Fold Maker. After this, we use the four classifiers 

for the cross validation. The result recorded by export the output from the Classifier Performance 

Evaluator.  

 

Figure 0-1: Weka KnowledgeFlow Chart for 10-fold Cross Validation 
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5.4 Ratio Comparison 

As another way to measure the performance of PCA, we use the ratio comparison method. This 

method is as a follow up method of CV. We split the data set into two different data sets. One for 

training and the other for testing. Unlike K-fold cross validation, we split the data by vary 

percentages. The specific percentage we choose is 90%, 80%, 70%, 60% for the training set 

respectively. The whole process of the ratio comparison can be check from Figure 0-2. We use 

the data set split maker after we loaded the data set. The test set and train set were tested by the 

four classifiers. 
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Figure 0-2:Weka KnowledgeFlow Chart for Ratio Comparison 

5.5 Results and Discussion 

5.5.1 Principal Component Analysis Dataset List 

We applied PCA on the colon and leukemia datasets. The variance table returned by PCA is 

listed in Table 0-1 and Table 0-2. 

Table 0-1:Colon Dataset Thresholds and Attribute Selection 

Colon Dataset 
Thresholds 

Cumulative 
Proportion 

Attributes 
Selected 

100%(Raw) 100% 2001 
95% 95.013% 45 
90% 90.520% 35 
85% 85.677% 27 
80% 80.006% 20 
75% 75.545% 16 

70% 71.429% 13 
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65% 66.004% 10 

60% 61.154% 8 

55% 57.701% 7 

50% 53.180% 6 

 

The experiment is based on the 11 datasets shown in Table 0-1 and Table 0-2. The 100% 

dataset threshold means we use the raw data as input for the experiments. The 95% to 50% 

datasets are chosen by PCA method. 

 

Table 0-2:Leukemia Dataset  Thresholds and Attributes Selection 

Dataset 
Thresholds 

Cumulative 
Proportion 

Attributes 
Selected 

100%(Raw) 100% 7130 
95% 95.192% 59 
90% 90.244% 49 
85% 85.560% 41 
80% 80.232% 33 
75% 75.638% 27 

70% 70.261% 21 

65% 65.997% 17 

60% 60.570% 13 

55% 55.557% 10 

50% 51.440% 8 

 

5.5.2 10-fold cross validation 

The results are listed in Table 3. The accuracy (correctly classified instances) is given by: 

 

where TP indicates the True Positive instances, TN indicates the True Negative instances and N 

is the total number of instances in the test set. 

Table 5-3 shows the accuracy and Area Under ROC curve (AUC) for the four classifiers on the 

colon dataset. K-nearest-neighbor and Random Forest algorithms shows the highest accuracy for 
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a threshold of 60% by PCA. SVM algorithm shows the highest accuracy for the raw data and for 

90% threshold by PCA. Neural Network algorithm shows the highest accuracy for a threshold of 

90% by PCA. All the four classifiers show improvement in accuracy for some threshold value of 

PCA as compared to raw data except for SVM. Figure 0-3 shows the results of the 10-folds cross 

validation for colon dataset. 

 

Figure 0-3:10-fold cross validation results for colon dataset 

Table 5-3:10-Folds Cross Validation For Colon Dataset 

Data 
Mining 

Methods 

Dataset Accuracy ROC Area(AUC) 

KNN 
 
 
 

Raw 72.5806% 0.699 

95% 70.9677% 0.680 
90% 66.129% 0.648 
85% 70.9677% 0.728 
80% 64.5161% 0.619 

75% 62.9032% 0.581 
70% 62.9032% 0.592 

65% 70.9677% 0.706 

60% 82.2581% 0.815 
55% 75.8065% 0.752 
50% 72.5806% 0.744 

Random 
Forest 

 
 
 

Raw 82.2581% 0.885 
95% 69.3548% 0.879 
90% 74.1935% 0.877 
85% 77.4194% 0.840 
80% 74.1935% 0.812 
75% 77.4194% 0.845 
70% 79.0323% 0.855 

65% 82.2581% 0.873 



 54

60% 85.4839% 0.892 
55% 82.2581% 0.881 
50% 82.2581% 0.872 

SVM 
 
 
 

Raw 87.0968% 0.886 
95% 79.0323% 0.868 
90% 82.2581% 0.893 
85% 74.1935% 0.805 
80% 70.9677% 0.797 
75% 66.129% 0.759 
70% 69.3548% 0.723 

65% 70.9677% 0.830 
60% 74.1935% 0.903 

55% 79.0323% 0.869 
50% 80.6452% 0.881 

Neural 
Network 

 
 
 

Raw 77.8% 0.857 
95% 79.0323% 0.851 
90% 83.871% 0.895 
85% 72.5806% 0.819 
80% 70.9677% 0.777 
75% 77.4194% 0.845 
70% 75.8065% 0.786 
65% 77.4194% 0.805 
60% 80.6452% 0.843 
55% 82.2581% 0.834 
50% 79.0323% 0.826 

 

 

 

Table 0-4:10-FOLD CROSS VALIDATION FOR LEUKEMIA DATASET 

Data 
Mining 

Methods 

Dataset accuracy ROC Area (auc) 

KNN 
 
 
 

Raw 65.2778% 0.505 

95% 72.2222% 0.656 
90% 75% 0.667 
85% 77.7778% 0.719 
80% 81.9444% 0.811 

75% 83.3333% 0.829 
70% 93.0556% 0.911 

65% 91.6667% 0.887 

60% 88.8889% 0.861 
55% 90.2778% 0.874 
50% 91.6667% 0.874 

Random 
Forest 

 
 
 

Raw 76.3889% 0.889 
95% 79.1667% 0.918 
90% 84.7222% 0.945 
85% 84.7222% 0.952 
80% 93.0556% 0.963 
75% 93.0556% 0.958 
70% 94.4444% 0.978 

65% 94.4444% 0.974 
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60% 91.6667% 0.963 
55% 90.2778% 0.968 
50% 91.6667% 0.969 

SVM 
 
 
 

Raw 98.6111% 0.998 
95% 97.2222% 0.995 
90% 86.1111% 0.969 
85% 87.5% 0.959 
80% 93.0556% 0.968 
75% 90.2778% 0.977 
70% 90.2778% 0.974 

65% 88.8889% 0.963 
60% 93.0556% 0.969 

55% 90.2778% 0.933 
50% 86.1111% 0.962 

Neural 
Network 

 
 
 

Raw 81.9444% 0.865 
95% 83.3333% 0.877 
90% 87.5% 0.917 
85% 90.2778% 0.934 
80% 90.2778% 0.970 
75% 90.2778% 0.977 
70% 88.8889% 0.980 
65% 88.8889% 0.971 
60% 93.0556% 0.971 
55% 91.6667% 0.951 
50% 93.0556% 0.974 

Table 0-4 shows the accuracy and Area Under ROC curve (AUC) for the four classifiers on the 

leukemia dataset. K-nearest-neighbor shows the highest accuracy for a threshold of 70% by PCA. 

Random Forest shows the highest accuracy for a threshold of 65% and 70% by PCA. SVM 

shows the highest accuracy for the raw data and next highest accuracy for a threshold of 95% by 

PCA. Neural Network shows the highest accuracy for a threshold of 60% and 50% by PCA. 

Figure 0-4 shows the results of the 10-folds cross validation for leukemia dataset. 
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Figure 0-4:10-fold cross validation results for leukemia dataset 

 

5.5.3 Ratio Comparison 

The second method we use for this experiment is that we split the dataset to a training set and 

test set by different ratio in 90%:10%,80%:20%,70%:30% and 60%:40%. All the result applied 

to the data which preprocessed by PCA. We show the results in Table 0-5 and Table 0-6. 

Figure 0-5, Figure 0-6, Figure 0-7, Figure 0-8 show the accuracy for the four algorithms for 

different ratios of training and test datasets. Further discussion is given below.  
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Table 0-5:Ratio Validation Results for Colon Dataset 

  9:1 8:2 7:3 6:4 

Method accuracy auc accuracy auc accuracy auc accuracy auc 
Raw Knn 83.33% 0.75 83.33% 0.75 78.95% 0.683 76% 0.7 

Svm 100% 1 91.667% 1 89.47% 0.9 88% 0.93 
Rf 100% 1 100% 1 89.47% 0.892 84% 0.9 

Nnet 100% 0.85 100% 0.916 89.47% 0.935 88% 0.893 

95% Knn 83.33% 0.875 83.3% 0.875 78.95% 0.867 76% 0.775 
Svm 100% 1 91.67% 1 89.47% 0.917 80% 0.91 
Rf 66.7% 0.875 66.67% 0.797 68.42% 0.725 68% 0.77 

Nnet 100% 1 83.3% 0.875 73.68% 0.800 76% 0.81 
90% Knn 83.33% 0.875 66.67% 0.688 57.89% 0.642 56% 0.575 

Svm 100% 1 100% 1 89.47% 0.95 84% 0.92 
Rf 66.67% 1 75% 0.734 73.68% 0.833 76% 0.845 

Nnet 100% 1 100% 1 94.74% 0.983 88% 0.91 
85% Knn 66.67% 0.625 58.33% 0.563 63.16% 0.675 56% 0.575 

Svm 100% 1 91.67% 1 84.21% 0.95 80% 0.910 
Rf 83.33% 1 83.33% 0.875 63.16% 0.783 68% 0.82 

Nnet 100% 1 91.67% 1 84.21% 0.967 88% 0.88 
80% Knn 66.67% 0.5 58.33% 0.438 63.16% 0.4 60% 0.45 

Svm 83.33% 1 91.67% 0.938 84.21% 0.850 76% 0.84 
Rf 83.33% 1 83.33% 0.969 68.42% 0.817 64% 0.83 

Nnet 100% 1 83.33% 0.938 73.68% 0.833 72% 0.77 

75% Knn 66.67% 0.5 58.33% 0.438 63.16% 0.4 56% 0.35 

Svm 66.67% 0.75 91.67% 1 78.95% 0.842 72% 0.87 
Rf 83.33% 1 91.67% 1 84.21% 0.833 68% 0.8 

Nnet 100% 1 66.67% 0.906 78.95% 0.817 72% 0.78 

70% Knn 66.67% 0.5 58.33% 0.438 63.16% 0.4 60% 0.375 
Svm 100% 1 66.67% 0.875 73.68% 0.875 64% 0.835 
Rf 83.33% 0.875 66.67% 0.906 78.95% 0.85 72% 0.94 

Nnet 66.67% 1 66.67% 0.906 78.95% 0.833 84% 0.92 
65% Knn 66.67% 0.5 75% 0.625 73.68% 0.558 68% 0.575 

Svm 100% 1 75% 0.938 78.95% 0.858 64% 0.81 
Rf 83.33% 1 83.33% 0.938 73.68% 0.933 64% 0.835 

Nnet 100% 1 83.33% 1 84.21% 0.917 72% 0.92 
60% Knn 83.33% 0.75 83.33% 0.75 84.21% 0.808 84% 0.825 

Svm 100% 1 100% 1 78.95% 0.933 84% 0.95 
Rf 100% 1 83.33% 1 78.95% 0.942 64% 0.955 

Nnet 100% 1 100% 1 84.21% 0.933 84% 0.98 
55% Knn 66.67% 0.625 75% 0.688 78.95% 0.775 80% 0.8 

Svm 83.33% 1 91.67% 1 63.16% 0.958 88% 0.95 
Rf 100% 1 91.67% 1 84.21% 0.917 56% 0.96 

Nnet 100% 1 100% 1 78.94% 0.9 80% 0.94 
50% Knn 66.67% 0.625 75% 0.688 73.68% 0.65 72% 0.675 

Svm 100% 1 100% 1 89.47% 0.9 80% 0.88 
Rf 100% 1 100% 1 73.68% 0.908 60% 0.95 

Nnet 100% 1 83.33% 1 89.47% 0.883 80% 0.92 
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Table 0-6:Ratio Validation Results for Leukemia Dataset 

  9:1 8:2 7:3 6:4 

Method accuracy auc accuracy auc accuracy auc accuracy auc 
Raw Knn 28.5714% 0.583 35.7143% 0.550 54.5455% 0.545 58.6207% 0.546 

Svm 100% 1 100% 1 100% 1 100% 1 
Rf 14.2857% 1 28.5714% 1 59.0909% 0.888 55.1724% 0.798 

Nnet 71.4286% 1 42.8571% 0.9 63.6364% 0.983 68.9655% 0.870 

95% Knn 71.4286% 0.833 78.5714% 0.775 81.8182% 0.818 72.4138% 0.714 
Svm 100% 1 100% 1 95.4545% 1 96.5517% 1 
Rf 57.1429% 1 35.7143% 0.975 59.0909% 0.921 65.5172% 0.825 

Nnet 71.4286% 1 42.8571% 0.825 72.7273% 0.818 72.4138% 0.731 
90% Knn 42.8571% 0.667 50% 0.650 54.5455% 0.545 58.6207% 0.538 

Svm 85.7143% 1 85.7143% 1 90.9091% 0.975 89.6552% 0.976 
Rf 42.8571% 1 50% 1 59.0909% 0.893 65.5172% 0.873 

Nnet 71.4286% 1 64.2857% 0.9 68.1818% 0.851 72.4138% 0.793 
85% Knn 42.8571% 0.667 50% 0.650 54.5455% 0.545 62.069% 0.584 

Svm 71.4286% 1 71.4286% 0.975 86.3636% 0.975 89.6552% 0.976 
Rf 85.7143% 1 57.1429% 1 63.6364 1 68.9655% 0.962 

Nnet 57.1429% 1 71.4286% 0.925 72.7273% 0.901 79.3103% 0.870 
80% Knn 57.1429% 0.750 57.1429% 0.7 68.1818% 0.682 72.4138% 0.7 

Svm 71.4286% 1 71.4286% 1 90.9091% 0.942 89.6552% 0.962 
Rf 85.7143% 1 71.4286% 1 81.8182% 0.992 72.4138% 0.988 

Nnet 57.1429% 1 85.7143% 1 90.9091% 0.934 72.4138% 0.861 

75% Knn 85.7143% 0.917 92.8571% 0.95 81.8182% 0.818 75.8621% 0.752 

Svm 71.4286% 1 85.7143% 0.975 86.3636% 0.934 89.6552% 0.942 
Rf 100% 1 64.2857% 1 77.2727% 0.996 79.3103% 0.981 

Nnet 71.4286% 1 85.7143% 0.975 81.8182% 0.967 79.3103% 0.875 

70% Knn 100% 1 100% 1 95.4545% 0.955 93.1034% 0.923 
Svm 100% 1 85.7143% 1 100% 1 96.5517% 1 
Rf 100% 1 78.5714% 1 95.4545% 1 89.6552% 0.955 

Nnet 100% 1 85.7143% 1 90.9091% 1 89.6552% 0.976 

65% Knn 85.7143% 0.917 92.8571% 0.95 95.4545% 0.955 89.6552% 0.892 
Svm 85.7143% 1 85.7143% 1 95.4545% 1 96.5517% 1 
Rf 100% 1 92.8571% 1 95.4545% 1 96.5517% 1 

Nnet 85.7143% 1 100% 1 100% 1 100% 1 
60% Knn 85.7143% 0.917 85.7143% 0.9 90.9091% 0.909 89.6552% 0.892 

Svm 100% 1 78.5714% 1 90.9091% 1 93.1034% 1 
Rf 100% 1 92.8571% 1 95.4545% 1 89.6552% 1 

Nnet 100% 1 100% 1 100% 1 100% 1 
55% Knn 100% 1 71.4286% 0.8 77.2727% 0.773 82.7586% 0.815 

Svm 100% 1 92.8571% 0.975 95.4545% 0.992 96.5517% 0.990 
Rf 100% 1 92.8571% 1 95.4545% 1 93.1034% 1 

Nnet 100% 1 100% 1 95.4545% 1 100% 1 
50% Knn 100% 1 78.5714% 0.850 81.8182% 0.818 86.2069% 0.853 

Svm 85.7143% 1 92.8571% 1 95.4545% 1 96.5517% 1 
Rf 100% 1 92.8571% 1 95.4545% 0.996 96.5517% 1 

Nnet 100% 1 100% 1 100% 1 100% 1 
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Figure 0-5:Accuracy comparison in Ratio 9:1 

 

Figure 0-6:Accuracy comparison in Ratio 8:2 
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Figure 0-7:Accuracy comparison in Ratio 7:3 

 

Figure 0-8:Accuracy comparison in Ratio 6:4 
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5.5.4 Discussion and Conclusion 

In Table 5-3 for the colon dataset, we observe that K-nearest-neighbor algorithm gives the 

highest accuracy of 82.3% for a threshold of 60% by PCA as compared to 72.6% for the raw data, 

an increase of 9.7% in accuracy by applying PCA. Random Forest algorithm gives the highest 

accuracy of 85.5% for a threshold of 60% by PCA as compared to 82.3% for the raw data, an 

increase of 3.3% in accuracy. Neural Network algorithm gives the highest accuracy of 83.9% for 

a threshold of 90% by PCA as compared to 77.8% for the raw data, an increase of 6.1% in 

accuracy. However, in SVM, the highest accuracy was observed as 87% for the raw data and 82% 

accuracy for a threshold of 90% by PCA, a decrease of 5% in accuracy.  

In Table 0-4 for the leukemia dataset, we observe that K-nearest-neighbor algorithm gives the 

highest accuracy of 93% for a threshold of 70% by PCA as compared to 65% for the raw data, an 

increase of 28% in accuracy by applying PCA. Random Forest algorithm gives the highest 

accuracy of 94.4% for a threshold of 65% and 70% by PCA as compared to 76.4% for the raw 

data, an increase of 18% in accuracy. Neural Network algorithm gives the highest accuracy of 93% 

for a threshold of 50% and 60% by PCA as compared to 81.9% for the raw data, an increase of 

11% in accuracy. However, in SVM, the highest accuracy was observed as 98.6% for the raw 

data as compared to 97.2% for a threshold of 95% by PCA, a decrease of 3.6% in accuracy. 

SVM was tested for four different kernels – linear, polynomial, radial basis function and sigmoid 

function. The linear kernel gave the best results. For the exception of SVM, all other algorithms 

increased the accuracy of classification by applying PCA. Greater increase in accuracy was 

observed in leukemia dataset than the colon dataset. Figure 0-3 and Figure 0-4 show the results 

for 10-fold cross validation for the colon and leukemia datasets, respectively. 
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Table 0-5 and Table 0-6 show the accuracy and AUC of the colon and leukemia datasets 

respectively for raw data and different thresholds of PCA and by taking different ratios of 

training and test data.  

In the colon dataset, we observe that highest accuracy is achieved for the training to test ratio of 

9:1 and second highest accuracy for the ratio 8:2 for all the algorithms with and without using 

PCA.  

In training to test ratio 9:1, Random Forest, SVM and Neural Network algorithms give an 

accuracy of 100% whereas k-nearest-neighbor gives an accuracy of 83.3% for the raw data. PCA 

maintains the accuracy of 100% at the threshold of 50% and 60% for Random Forest, SVM and 

Neural Network and maintains the accuracy of 83.3% at the threshold of 60%, 90% and 95% for 

the k-nearest-neighbor algorithm.  Figure 0-5 shows the comparison of accuracy for the four 

algorithms for the ratio 9:1. 

In training to test ratio 8:2, Random Forest and Neural Network algorithms give an accuracy of 

100%, SVM has an accuracy of 91.6% and KNN has an accuracy of 83.3% for the raw data. 

PCA maintains the accuracy of 100% at thresholds of 55% and 60% for Neural Network and at 

the threshold of 50% for Random Forest. PCA increased the accuracy of SVM from 91.6% to 

100% at the thresholds of 50%, 60% and 90%. PCA maintains the accuracy of KNN at 83.3% at 

a threshold of 60%. Figure 0-6 shows the comparison of accuracy for the four algorithms for the 

ratio 8:2. 

In training to test ratio 7:3, PCA increases the accuracy of KNN from 78.95% to 84.21% at a 

threshold of 60% and increases the accuracy of Neural Network from 89.5% to 94.7% at a 

threshold of 90%. PCA maintains the accuracy of SVM at 89.5% at the thresholds of 50%, 90% 
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and 95%. However, the accuracy of Random Forest is decreased from 89.5% to 84.2% at 

thresholds of 55% and 80%. Figure 0-7 shows the comparison of accuracy for the four 

algorithms for the ratio 7:3. 

In training to test ratio of 6:4, PCA increases the accuracy of KNN from 76% to 84% at a 

threshold of 60%. PCA maintains the accuracy of SVM and Neural Network at 88% at a 

threshold of 55% for SVM and at 85% and 90% for Neural Network. However, the accuracy of 

Random Forest decreased from 88% to 76% at a threshold of 95%. Figure 0-8 shows the 

comparison of accuracy for the four algorithms for the ratio 6:4. 

Overall, PCA either maintains the accuracy of all the four algorithms or increases the accuracy 

except for Random Forest at ratios of 7:3 and 6:4. 

For the leukemia dataset experiment, we observe from Table 0-6 that the highest accuracy is 

achieved for the training to test ratio of 9:1.  

In training to test ratio of 9:1, PCA increased the accuracy of KNN from 28.6% to 100% at the 

thresholds of 50%, 55% and 70%, an increase of 71.4% in accuracy. PCA increased the accuracy 

of Random Forest from 14.3% to 100% at threshold of 50%, 55%, 60%, 65%, 70%, 75%, an 

increase of 85.7% in accuracy. PCA increased the accuracy of Neural Network from 71.4% to 

100% at threshold of 50%, 55% and 70%, an increase of 28.6% in accuracy. PCA maintains the 

accuracy of SVM at 100% at a threshold of 50%, 60%, 65%, 70%, 85%, 90% and 95%.  

In training to test ratio of 8:2, PCA increased the accuracy of KNN from 35.7% to 100% at a 

threshold of 70%, an increase of 64.3% in accuracy. PCA increased the accuracy of Random 

Forest from 28.6% to 92.9% at threshold of 50%, 55%, 60% and 65%, an increase of 64.3% in 
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accuracy. PCA increased the accuracy of Neural Network from 42.9% to 100% at thresholds of 

50%, 55%, 60%, and 65%, an increase of 57% in accuracy. PCA maintains the accuracy of 

100% for SVM at a threshold of 95%. 

In training to test ratio of 7:3, PCA increased the accuracy of KNN from 54.5% to 95.5% at 

threshold of 65% and 70%, an increase of 41%. PCA increased the accuracy of Random Forest 

from 59% to 95.5% at thresholds of 50%, 55%, 60%, 65%, and 70%, an increase of 36.5% in 

accuracy. PCA increased the accuracy of Neural Network from 63.6% to 100% at thresholds of 

50%, 60%, and 65%, an increase of 36.4% in accuracy. PCA maintains the accuracy of SVM at 

100% at a threshold of 70%. 

In training to test ratio of 6:4, PCA increased the accuracy of KNN from 58.6% to 93% at a 

threshold of 70%, an increase of 34.4% in accuracy. PCA increased the accuracy of Random 

Forest from 55% to 96.5% at thresholds of 50% and 65%, an increase of 41.5% in accuracy. 

PCA increased the accuracy of Neural Network from 68.9% to 100% at thresholds of 50%, 55%, 

60% and 65%, an increase of 31% in accuracy. However, the accuracy of SVM decreased from 

100% to 96.5% at thresholds of 50%, 55%, 70% and 95%. 

From the two datasets that PCA increases the accuracy of the four classifiers at different 

thresholds. There are significant improvements in the accuracy for leukemia dataset. 

In this chapter, we applied the Principle Component Analysis (PCA) on colon dataset and the 

leukemia dataset and we compared the accuracy for four different classifiers. Support Vector 

Machine and Neural Network gave the best performance among the four methods. The 

experiments included 10-fold cross validation and different training to test ratios of 9:1, 8:2, 7:3 

and 6:4. 
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PCA increased the accuracy of the four classifiers for the colon and leukemia datasets. However, 

it was observed that there were significant improvements in the performance of most of the 

classifiers with 10-folds cross validation. The improvements were more significant for the 

leukemia dataset. In the case of different training to test ratios, PCA maintained the accuracy of 

the classifiers or increased the accuracy for the colon dataset. However, PCA increased the 

accuracy of the classifiers significantly for the leukemia dataset. 

PCA was selected as a feature selection method to test for increase in accuracy of classifiers on 

test datasets. The results were promising and it gives us further incentive to test the accuracy of 

the classifiers with other feature selection algorithms in future. 
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Chapter 6  

Improved Microarray Data Analysis using Feature Selection 

Methods with Machine Learning Methods 

The gene expression profiling techniques by DNA microarrays provide the analysis of large 

amount of genes [71].  The number of gene expression data of microarray has grown 

exponentially. Most of the gene expression dataset has hundreds of variables leading to data with 

very high dimensionality. This makes the job for classification more difficult. It is of great 

importance to find the key gene expressions which can best describe the phenotypic trait [72]. 

Feature selection methods become a possible solution for this problem. It gives us a way to 

reduce computing time as well as improving the performance of prediction and also provides us 

a better chance to understand the data in machine learning tasks [79].  

In this study, we use colon cancer dataset and leukemia cancer dataset for the experiment. We 

use discretization method combined with some well-known feature selection methods for the 

task of preprocessing. After that, we apply 10-folds cross validation with KNN, SVM, RF and 

NN classifiers on the dataset. The performance of the classifiers is based on accuracy and the 

AUC (area under the curve) values. 

The results demonstrate that mRMR is the best method for improving the performance of 

microarray data analysis and discretization method can greatly improve the performance of 
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mRMR method and MaxRel method. Also, the results give the best numbers for specific feature 

selection method and classifiers.  

In this chapter, we present the state of our experimental environment in Section 6.1.The Process 

of this experiment is explained in Section6.2. The discussion and analysis of the results are 

presented in Section 6.3. Section 6.4 presents the conclusions of this study and list some future 

perspective.  

 

6.1 Tools in this Experiment 

In this experiment, Weka is the main testing tools for 10-folds cross validation. The version we 

use in this experiment is 3-7-13-oracle-jvm and can be download on its official website. The 

platform we use in this experiment is Mac OS 10.11.1.  

The Weka KnowledgeFlow Environment presents a "data-flow" inspired interface to Weka. The 

user can select Weka components from a tool bar, place them on a layout canvas and connect 

them together in order to form a "knowledge flow" for processing and analyzing data. At present, 

all of Weka's classifiers and filters are available in the KnowledgeFlow along with some extra 

tools. 

We use Weka KnowledgeFlow for the 10-folds cross validation of different feature selection 

methods. The flow chart is showed in Figure 0-1.  

6.2 Process of Experiment 

The first step for our experiment is to generate the subsets of the data set. For each feature 

selection method, we run the algorithms on different platforms and different programs in order to 
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generate subsets. Most of the result are given as an attribute list ranked by score. An example 

listed in Figure 0-1. The columns represent to rank number, attribute number, attribute name, 

score respectively.   

1   14   gene14   0.349 
2   377   gene377   0.331 
3   493   gene493   0.321 
4   1917   gene1917   0.306 
5   765   gene765   0.295 
6   249   gene249   0.273 
7   625   gene625   0.273 
8   1771   gene1771   0.271 

… 

Figure 0-1: Format of an output results 

In our experiment, we choose 5,10,20,30,50,100,200 features, which means 5,10, 20, …, etc., 

features with higher scores are selected after we applied the feature selection methods. We use 

python to transform and gather subset from origin data set. Core code for this transformation is 

given in Appendix B: Codes (See Table 0-2 and Table 0-3). After we get all the subsets, we then 

apply 10-folds cross validation with SVM, KNN, NN and RF classification algorithms using 

Weka knowledge workflow.  

6.3 Discussion and Analysis 

Results are listed in Table 0-1 ~ Table 0-4, as we can see from Table 0-1, we record all the result 

by accuracy indicator. PLS shows the best results for all the four classifiers. It shows 0 error rate 

in SVM no matter how many features were selected. Next to PLS, the mRDD method gets a best 

performance in RF classifier. It reaches 95.1613 which is the same as PLS + RF.  

Not all the methods can reach a good performance such as higher than 90. With KNN and SVM 

and NN classifier, mRDD, mRDQ and PLS can perform higher than 90%. With RF classifier, all 

method can get higher than 90% except for MRC as well as QPFS. For KNN classifier, most 
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good results get when 20 or 30 features selected. For SVM and NN, most good results get when 

5, 10 feature selected. For RF, most good results get when 5, 50 feature selected. 

Table 0-2 shows the AUC part of the colon dataset. We notice that PLS still shows really good 

performance except for RF, and mRDD shows the best results. If we use 0.9 as a threshold for a 

“good result”, then we will find for KNN, mRDD, mRDQ, MRD and PLS get good results. For 

SVM, mRCQ, mRDD, mRDQ, MRC, MRD, QPFS and PLS get good results. For NN and RF, 

all the methods get good results. 

By compare which number of features selected within certain feature selection method, we can 

see that most good result get when 5, 10 or 30 features selected. 

Unlike Colon data set. Leukemia data set gave us different results in Table 0-3 and Table 0-4. 

PLS and other discretized methods all reach the peak of 100% accuracy. The discretized methods 

include mRDD, mRDQ, MRD.  When we compare that in accuracy, we can see that PLS+SVM 

and RF + mRDD get 100% accuracy all the time. For AUC, mRDD gets 1.0 AUC value all the 

time with SVM, NN, RF. If we compare the good results among all the methods and all the 

classifiers, we can see that QPFS gets all the worse “good result”. This means that on Leukemia 

data set, QPFS is not enough consistent and not enough strong for a feature selection method. 

mRDD, mRDQ, MRD, PLS reach the highest performance on 0 error rate when we select 

accuracy as the indicator. 

mRDD, mRDQ, MRD, PLS reach the highest performance on 1.0 AUC value when we select 

AUC as the indicator. 
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Table 0-1:Colon-Accuracy Results 

KNN 5 10 20 30 50 100 200 

FS_Methods          

mRCD 85.48 79.03 79.03 88.71 85.48 87.10 83.87 
mRCQ 83.87 85.48 82.26 82.26 88.71 87.10 83.87 
mRDD 91.94 93.55 91.94 95.16 91.94 87.10 85.48 
mRDQ 88.71 88.71 93.55 93.55 90.32 87.10 85.48 
MRC 87.10 83.87 87.10 82.26 85.48 88.71 85.48 
MRD 85.48 87.10 88.71 87.10 83.87 83.87 80.65 
QPFS 82.26 82.26 85.48 85.48 82.26 85.48 83.87 
PLS 100.00 98.39 80.65 79.03 74.19 75.81 72.58 

SVM          
mRCD 88.71 79.03 80.65 80.65 82.26 83.87 85.48 
mRCQ 85.48 83.87 87.10 85.48 83.87 83.87 85.48 
mRDD 88.71 91.94 87.10 87.10 87.10 85.48 85.48 
mRDQ 87.10 80.65 83.87 85.48 90.32 90.32 87.10 
MRC 88.71 80.65 80.65 87.10 79.03 82.26 87.10 
MRD 82.26 85.48 80.65 80.65 80.65 83.87 85.48 
QPFS 88.71 88.71 82.26 87.10 82.26 83.87 85.48 
PLS 100.00 100.00 100.00 100.00 100.00 100.00 100.00 
NN          

mRCD 85.48 82.26 80.65 83.87 83.87 85.48 87.10 
mRCQ 87.10 82.26 85.48 83.87 85.48 85.48 87.10 
mRDD 82.26 91.94 87.10 87.10 90.32 87.10 87.10 
mRDQ 87.10 85.48 90.32 90.32 90.32 87.10 87.10 
MRC 87.10 79.03 83.87 85.48 83.87 83.87 87.10 
MRD 83.87 82.26 83.87 83.87 82.26 85.48 82.26 
QPFS 88.71 80.65 77.42 83.87 87.10 83.87 85.48 
PLS 100.00 100.00 100.00 100.00 93.55 95.16 96.77 
RF          

mRCD 85.48 85.48 90.32 87.10 90.32 87.10 85.48 
mRCQ 82.26 88.71 87.10 87.10 88.71 90.32 88.71 
mRDD 95.16 91.94 91.94 88.71 91.94 91.94 88.71 
mRDQ 91.94 91.94 90.32 90.32 91.94 88.71 88.71 
MRC 87.10 85.48 87.10 87.10 88.71 87.10 87.10 
MRD 88.71 85.48 90.32 90.32 88.71 88.71 85.48 
QPFS 88.71 87.10 85.48 87.10 88.71 88.71 88.71 
PLS 93.55 95.16 91.94 83.87 70.97 83.87 77.42 
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Table 0-2:Colon-AUC results 

KNN 5 10 20 30 50 100 200 

FS_Methods          

mRCD 0.81 0.74 0.70 0.84 0.82 0.83 0.81 
mRCQ 0.84 0.86 0.78 0.79 0.87 0.83 0.81 

mRDD 0.97 0.97 0.95 0.95 0.96 0.89 0.82 

mRDQ 0.94 0.93 0.94 0.94 0.92 0.87 0.83 
MRC 0.85 0.77 0.82 0.78 0.79 0.87 0.83 

MRD 0.85 0.87 0.93 0.91 0.85 0.84 0.83 

QPFS 0.80 0.80 0.82 0.79 0.75 0.81 0.82 

PLS 1.00 1.00 0.79 0.81 0.67 0.69 0.65 
SVM          

mRCD 0.89 0.85 0.89 0.83 0.90 0.87 0.89 

mRCQ 0.88 0.88 0.91 0.92 0.87 0.87 0.90 
mRDD 0.94 0.95 0.92 0.92 0.92 0.93 0.93 

mRDQ 0.92 0.86 0.93 0.95 0.95 0.96 0.94 

MRC 0.90 0.87 0.85 0.90 0.85 0.88 0.93 
MRD 0.90 0.93 0.92 0.84 0.86 0.89 0.90 

QPFS 0.95 0.93 0.88 0.91 0.90 0.89 0.92 

PLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

NN          
mRCD 0.89 0.86 0.86 0.85 0.91 0.89 0.90 

mRCQ 0.84 0.93 0.92 0.90 0.90 0.89 0.90 

mRDD 0.93 0.94 0.94 0.94 0.94 0.93 0.93 
mRDQ 0.92 0.88 0.94 0.96 0.94 0.95 0.94 

MRC 0.90 0.80 0.90 0.90 0.85 0.88 0.92 

MRD 0.90 0.90 0.92 0.87 0.88 0.90 0.90 
QPFS 0.94 0.92 0.82 0.90 0.91 0.88 0.91 

PLS 1.00 1.00 1.00 1.00 0.97 0.99 1.00 

RF          

mRCD 0.92 0.91 0.91 0.92 0.93 0.93 0.93 
mRCQ 0.92 0.93 0.91 0.93 0.93 0.94 0.93 

mRDD 1.00 0.98 0.98 0.98 0.98 0.97 0.94 

mRDQ 0.98 0.99 0.97 0.98 0.99 0.97 0.96 
MRC 0.94 0.92 0.90 0.90 0.92 0.92 0.93 

MRD 0.91 0.93 0.94 0.95 0.94 0.94 0.94 

QPFS 0.94 0.93 0.93 0.94 0.92 0.93 0.91 
PLS 0.99 0.99 0.99 0.96 0.92 0.84 0.85 
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Table 0-3:Leukemia-Accuracy Results 

KNN 5 10 20 30 50 100 200 

FS_Methods          

mRCD 94.44 95.83 97.22 95.83 94.44 97.22 98.61 

mRCQ 94.44 98.61 97.22 97.22 98.61 95.83 98.61 
mRDD 100.00 98.61 97.22 100.00 98.61 98.61 97.22 

mRDQ 97.22 98.61 100.00 100.00 100.00 100.00 98.61 

MRC 94.44 90.28 97.22 94.44 95.83 95.83 97.22 
MRD 97.22 98.61 95.83 95.83 95.83 97.22 97.22 

QPFS 72.22 84.72 87.50 86.11 86.11 83.33 79.17 

PLS 98.61 93.06 86.11 81.94 58.33 47.22 51.39 

SVM          

mRCD 93.06 93.06 95.83 95.83 98.61 98.61 98.61 
mRCQ 93.06 93.06 94.44 97.22 98.61 98.61 98.61 

mRDD 100.00 100.00 100.00 100.00 100.00 98.61 98.61 

mRDQ 98.61 100.00 100.00 100.00 100.00 100.00 98.61 

MRC 94.44 93.06 95.83 94.44 98.61 98.61 98.61 

MRD 97.22 95.83 98.61 94.44 100.00 98.61 98.61 

QPFS 75.00 84.72 87.50 91.67 91.67 91.67 94.44 

PLS 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

NN          

mRCD 90.28 93.06 97.22 95.83 98.61 98.61 98.61 

mRCQ 91.67 93.06 97.22 98.61 98.61 98.61 98.61 

mRDD 98.61 100.00 100.00 100.00 100.00 100.00 100.00 

mRDQ 97.22 98.61 100.00 100.00 100.00 100.00 100.00 

MRC 95.83 93.06 97.22 97.22 97.22 97.22 98.61 

MRD 95.83 97.22 95.83 95.83 98.61 97.22 97.22 

QPFS 73.61 91.67 88.89 88.89 94.44 90.28 95.83 

PLS 100.00 100.00 100.00 100.00 97.22 94.44 93.06 

RF          

mRCD 94.44 91.67 93.06 94.44 95.83 97.22 98.61 

mRCQ 90.28 94.44 93.06 93.06 95.83 97.22 97.22 

mRDD 100.00 100.00 100.00 100.00 100.00 100.00 100.00 

mRDQ 93.06 98.61 100.00 100.00 100.00 100.00 100.00 

MRC 88.89 91.67 95.83 95.83 97.22 97.22 97.22 

MRD 97.22 100.00 98.61 100.00 100.00 100.00 98.61 

QPFS 75.00 93.06 95.83 93.06 95.83 93.06 91.67 

PLS 98.61 98.61 98.61 98.61 91.67 86.11 76.39 
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Table 0-4:Leukemia-AUC results 

KNN 5 10 20 30 50 100 200 

FS_Methods          

mRCD 0.93 0.94 0.96 0.93 0.90 0.95 0.98 

mRCQ 0.93 0.98 0.96 0.95 0.98 0.95 0.98 

mRDD 1.00 0.99 0.99 1.00 0.99 0.98 0.96 

mRDQ 0.98 1.00 1.00 1.00 1.00 1.00 0.99 

MRC 0.93 0.87 0.96 0.91 0.93 0.93 0.95 

MRD 1.00 0.99 0.97 0.98 0.97 0.97 0.96 

QPFS 0.72 0.83 0.87 0.85 0.87 0.78 0.75 

PLS 1.00 0.95 0.85 0.78 0.62 0.53 0.53 

SVM          

mRCD 0.98 0.98 1.00 1.00 1.00 1.00 1.00 

mRCQ 0.98 0.97 0.99 1.00 1.00 1.00 1.00 

mRDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

mRDQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MRC 0.98 0.98 0.99 1.00 1.00 1.00 1.00 

MRD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

QPFS 0.85 0.95 0.92 0.97 0.99 0.98 0.99 

PLS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

NN          

mRCD 0.97 0.98 1.00 1.00 1.00 1.00 1.00 

mRCQ 0.99 0.98 1.00 1.00 1.00 1.00 1.00 

mRDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

mRDQ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

MRC 0.99 0.97 1.00 1.00 1.00 1.00 1.00 

MRD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

QPFS 0.82 0.95 0.95 0.98 1.00 0.99 0.98 

PLS 1.00 1.00 1.00 1.00 1.00 0.99 0.99 

RF          

mRCD 0.99 0.99 0.99 0.99 1.00 1.00 1.00 

mRCQ 0.98 0.98 0.99 0.99 1.00 1.00 1.00 

mRDD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

mRDQ 0.99 1.00 1.00 1.00 1.00 1.00 1.00 

MRC 0.97 0.98 0.99 0.99 1.00 1.00 1.00 

MRD 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

QPFS 0.83 0.97 0.97 0.96 0.98 0.97 0.98 

PLS 1.00 1.00 1.00 1.00 1.00 0.95 0.89 
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Table 0-5:Summary of Best Accuracy 

C
la

ss
if

ie
r FS 

Method    

Colon Dataset Leukemia Dataset 

Best 
Accuracy 

# of 
Features 

Best 
Accuracy 

# of 
Feature
s 

K
N
N 

mRCD 88.71 30 98.61 200 

mRCQ 88.71 50 98.61 
10,50,
200 

mRDD 95.16 30 100 5,30 

mRDQ 93.55 20,30 100 20‐100 

MRC 88.71 100 97.22 20,200 

MRD 88.71 20 98.61 10 

QPFS 85.48 20,30,100 87.5 20 

PLS 100 5 98.61 5 

S
V
M 

mRCD 88.71 5 98.61 50‐200 

mRCQ 87.1 20 98.61 50‐200 

mRDD 91.94 10 100 5‐50 

mRDQ 90.32 50,100 100 10‐100 

MRC 88.71 5 98.61 50‐200 

MRD 85.48 10,200 100 50 

QPFS 88.71 5,10 94.44 200 

PLS 100 ALL 100 ALL 

N
N 

mRCD 87.1 200 98.61 50‐200 

mRCQ 87.1 5,200 98.61 30‐200 

mRDD 91.94 10 100 10‐200 

mRDQ 90.32 20‐50 100 20‐200 

MRC 87.1 5,200 98.61 200 

MRD 85.48 100 98.61 50 

QPFS 88.71 5 95.83 200 

PLS 100 5‐30 100 5‐30 

R
F 

mRCD 90.32 20,50 98.61 200 

mRCQ 
90.32 100 97.22 

100,
200 

mRDD 95.16 5 100 ALL 

mRDQ 91.94 5,10,50 100 20‐200 

MRC 88.71 50 97.22 50‐200 

MRD 90.32 20,30 100 
10,30‐
100 

QPFS 88.71 5,50‐200 95.83 20,50 

PLS 95.16 10 98.61 5‐30 
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Table 6-6:Summary of Best AUC 

C
la

ss
if

ie
r FS 

Method    

Colon Dataset Leukemia Dataset 

Best AUC # of 
Features 

Best AUC 
# of 
Feature
s 

K
N
N 

mRCD 0.84 30 0.98 200 

mRCQ 
0.87 50 0.98 

10,50,2
00 

mRDD 0.97 5 1.00 5,30 

mRDQ 0.94 20 1.00 10‐100 

MRC 0.87 100 0.96 20 

MRD 0.93 20 1.00 5 

QPFS 0.82 20 0.87 50 

PLS 1.00 5 1.00 5 

S
V
M 

mRCD 0.90 50 1.00 50‐200 

mRCQ 0.92 30 1.00 50 

mRDD 0.95 10 1.00 ALL 

mRDQ 0.96 100 1.00 10‐200 

MRC 0.93 200 1.00 50‐200 

MRD 0.93 10 1.00 50 

QPFS 0.95 5 0.99 50 

PLS 1.00 ALL 1.00 ALL 

N
N 

mRCD 0.91 50 1.00 30 

mRCQ 0.93 10 1.00 30 

mRDD 0.94 10 1.00 ALL 

mRDQ 0.96 30 1.00 10‐200 

MRC 0.92 200 1.00 20,30 

MRD 
0.92 20 1.00 

10,30,
50 

QPFS 0.94 5 1.00 50 

PLS 1.00 5‐30 1.00 5‐30 

R
F 

mRCD 0.93 50 1.00 50‐200 

mRCQ 0.94 100 1.00 200 

mRDD 1.00 5 1.00 All 

mRDQ 0.99 10,50 1.00 10‐200 

MRC 0.94 5 1.00 200 

MRD 0.95 30 1.00 10‐100 

QPFS 0.94 5 0.98 200 

PLS 0.99 5 1.00 10‐50 
  

TABLE 6-5 and TABLE 6-6 summarize the results. TABLE 6-5 shows the best accuracy of the 

four classifiers with the feature selection methods for the colon and leukemia datasets. TABLE 
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6-6 shows the best AUC of the four classifiers with the feature selections methods for the colon 

and leukemia datasets. We observe the following from TABLE 6-5.  

1. KNN with PLS gives 100% accuracy for colon dataset when 5 features are selected. 

2. KNN with mRDD gives 100% accuracy for leukemia dataset when 5 or 30 features 

are selected and mRDQ give 100% accuracy when 20 – 100 features are selected.  

3. SVM with PLS gives 100% accuracy for colon dataset irrespective of the number of 

features selected. 

4. SVM with mRDD give 100% accuracy for leukemia dataset when 5- 50 features are 

selected; mRDQ gives 100% accuracy when 10 – 100 features are selected; MRD 

gives 100% accuracy when 50 features are selected; and PLS gives 100% accuracy 

irrespective of the number of features selected. 

5. Neural Network with PLS gives 100% accuracy for colon dataset when 5 – 30 

features are selected. 

6. Neural Network with mRDD gives 100% accuracy for leukemia dataset when 10 – 

200 features are selected; mRDQ gives 100% accuracy when 20 – 200 features are 

selected; and PLS gives 100% accuracy when 5 – 30 features are selected. 

7. Random Forest with PLS gives the highest accuracy of 95.16% for colon dataset 

when 10 features are selected. 

8. Random Forest with mRDD give 100% accuracy for leukemia dataset irrespective of 

the number of features selected; mRDQ gives 100% accuracy when 20 – 200 features 

are selected; MRD gives 100% accuracy when 10 features or 30 – 100 features are 

selected. 
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The following results are observed from TABLE 6-6. 

1. KNN with PLS gives AUC value of 1.0 for the colon dataset when 5 features are 

selected. 

2. KNN with mRDD gives AUC value of 1.0 for the leukemia dataset when 5 or 30 

features are selected; mRDQ gives AUC value 1.0 when 10 – 100 features are 

selected; MRD and PLS give AUC value of 1.0 when 5 features are selected. 

3. SVM with PLS gives AUC value 1.0 for colon dataset irrespective of the number of 

features selected. 

4. SVM with all except QPFS (0.99) feature selection method give AUC value 1.0 for 

leukemia dataset for different number of features. 

5. Neural Network with PLS give AUC value 1.0 for colon dataset when 5 – 30 features 

are selected. 

6. Neural Network gives AUV value of 1.0 for all feature selection methods for the 

leukemia dataset. 

7. Random Forest with mRDD give AUC value 1.0 for colon dataset when 5 features 

are selected. 

8. Random Forest gives AUC value of 1.0 with all feature selection methods except 

PQFS (0.98) for the leukemia dataset.  
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6.4 Conclusion 

In this chapter, we compared 8 different ways of feature selection preprocess methods from 4 

different feature selection methods. The experiment shows that discretize can somehow improve 

performance of microarray data analysis. Out of eight feature selection methods, Peng’s mRMR 

has shown considerably good performance while PLS has achieved some competitive results 

when 5 features were selected. From Colon dataset and Leukemia dataset, we concluded some 

general results above in section 6.3, which can be used for other data set.  

In [8], one of the most important feature for QPFS is the computational complexity. We didn’t 

cover the computational time in this paper. That may be a future work.  

We didn’t apply the discretize method onto QPFS and PLS, this could also be a future work. 
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Chapter 7  

Conclusions and Future Work 

The main target of our experiment and this study is to determine which method (Feature 

Selection or Feature Extraction) give better performance in accuracy or AUC when we use SVM, 

RF, KNN or NN to classification. 

Thus, we compared the performance among these four classifiers by 10-folds cross validation 

and ratio comparison with Principle Component Analysis. We also compared the performance by 

10-folds cross validation with 8 different methods of feature selection. 

The result shows that both feature extraction method and feature selection method can somehow 

improve the classification results. Some suggestions rules are given in Chapter 6 for selection 

numbers of attributes. 

To conclude, the results in this study suggested that SVM has really good and stable performance 

by compare to KNN, RF and NN. PCA can give improve to classification tasks when using 10-

folds cross validation. For feature selection methods, some certain combinations can greatly 

improve the performance. 

However, there are some other aspects that we didn’t cover due to lack of time. For the four 

classifiers, we didn’t measure the computational complexity as well as the computational time 

consumptions. Few works we mentioned in our study (QPFS, PCA, PLS) can decrease the 

computing time. The improvement of computing speed allows us to discover more and do further 
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experiments for different parameters of certain classifiers. For instance, the selection of 

parameter  in KNN is arguable. Some studies [49] suggested to choose 3 and some suggested to 

1. More experiments can give us further suggestion of the selection. 

For feature selection methods, we didn’t discuss the comparison continuously. We chose the 

number of features fixed (5, 10, 20, 30, 50, 100, 200). The algorithm gives a rank for vary 

attributes and we choose the attributes by selecting the top rankings.  To compare and selection 

the top rankings continuously could also be a possible future work to discover the relationship 

and variation of features. 
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APPENDIX 

Appendix A: Matrix I2000 and Names of each Gene in Colon Dataset 

Matrix I2000 is available in http://genomics-pubs.princeton.edu/oncology/affydata/I2000.html 

The names of each gene expression is available in: 

 http://genomics-pubs.princeton.edu/oncology/affydata/names.html 

Below is an example for the first 4 genes. 

Hsa.3004 H55933 3' UTR 1 203417 H.sapiens mRNA for homologue to 

yeast ribosomal protein L41.                

Hsa.3004 

Hsa.13491 R39465 3' UTR 2a 23933 EUKARYOTIC INITIATION 

FACTOR 4A (Oryctolagus 

cuniculus)                                              

Hsa.13491 

Hsa.13491 R39465 3' UTR 2a 23933 EUKARYOTIC INITIATION 

FACTOR 4A (Oryctolagus 

cuniculus)                                              

Hsa.13491 

Hsa.37254 R85482 3' UTR 2a 180093 SERUM RESPONSE FACTOR 

(Homo sapiens)                                     

Hsa.37254 

… 
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Appendix B: Codes 

Table 0-1:Discritization using Python 

''' 
excel_discrete.py 
This program is to discrete the input csv file. 
p is the mean value and q is the standard deviation 
 
1: if the value in (p+q/2, + infinite) 
0: if the value in [p-q/2,p+q/2] 
-1: if the value in (-infinite, p-q/2) 
 
''' 
def readfile(filename,p,q): 
 import csv 

 
 with open(filename,'rb') as f: 

  reader = csv.reader(f) 
  rows = [row for row in reader] 

  n_column = len(rows[0]) 
  n_row =len(rows) 
  print rows[1][15] 
  print p+q/2 
  for i in range(1,n_column): 
   for j in range(1,n_row): 
    if float(rows[j][i])> (p+q/2): 

     rows[j][i]=1.0 
    elif float(rows[j][i]) < (p-q/2): 

     rows[j][i]=-1.0 
    else: 

     rows[j][i]=0.0 
  print rows[1][15] 
  print type(rows[1][15]) 

 f.close() 
 return rows 

 
 
def write_csv(filename, list_towrite): 
 import csv 
 with open(filename,'w') as f: 

  f_csv = csv.writer(f) 
  f_csv.writerows(list_towrite) 
 f.close() 
 
inputfile = "colon_class_front.csv" 
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# inputfile = "example.csv" 
outputfile = "c_dicreted_3t.csv" 
rows=readfile(inputfile,0.0,1.0) 
write_csv(outputfile, rows) 

 

Table 0-2:Transform format using Python 

# -*- coding: utf-8 -*-  
''' 
transform.py 
Input: mRMR output files. Format: 
1   3320   Attr3320   0.459 
2   6281   Attr6281   0.425 
3   804   Attr804   0.391 
4   6184   Attr6184   0.376 
5   1962   Attr1962   0.344 
6   1829   Attr1829   0.344 
7   2121   Attr2121   0.334 
8   1674   Attr1674   0.334 
9   6677   Attr6677   0.325 
10   2363   Attr2363   0.324 
11   4847   Attr4847   0.318 
12   2439   Attr2439   0.316 
13   1087   Attr1087   0.306 
... 
 
OUTPUT: Two files. Format: 
File1: MaxRel Feature selector 
 3320,6281,804, ... 
File2: mRMR Feature selector 
 3320,2363,1674, ... 
 
This program is use for preprocess file select.txt for excel_file.py. 
We use the output result grep filtered as the input file, we import the  
elements we need by order and output them separated by comma. 
 
''' 
 
def read_txt(filename): 

 contents = [] 
 with open(filename) as f: 
  for line in f: 
   content = line.split('\t') 

   contents.extend([content]) 
 f.close() 
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 return contents 

 
def write_txt(contents,filename_max,filename_mrmr,number): 
 import csv 

 maxRel="0," 
 mrmr="0," 
 for i in range(0,number): 

  maxRel += contents[i][1].strip()+ ',' 
 maxRel=maxRel[0:len(maxRel)-1] 
 for i in range(number,number<<1): 

  mrmr += contents[i][1].strip()+ ',' 
 mrmr=mrmr[0:len(mrmr)-1] 
 
 with open(filename_max,'w') as f: 

  f.write(maxRel) 
 f.close() 
 with open(filename_mrmr,'w') as f: 

  f.write(mrmr) 
 f.close() 
 
 
 
 
''' 
Main 
Change feature_number to the attribute you want to select. 
5,10,20,30,50,100,200 in this experiment. 
 
''' 
feature_number = 200 
# inputfile="example_trans.txt" 
inputfile_l="mRMR_algorithm_files/leu_con_MIQ" + str(feature_number) +".txt"
inputfile_c="mRMR_algorithm_files/colon_con_MIQ" + str(feature_number) 
+".txt" 
MaxRel_output_l = "MaxRel_select_l.txt" 
mRMR_output_l = "mRMR_select_l.txt" 
MaxRel_output_c = "MaxRel_select_c.txt" 
mRMR_output_c = "mRMR_select_c.txt" 
contents=read_txt(inputfile_l) 
write_txt(contents,MaxRel_output_l,mRMR_output_l,feature_number) 
contents=read_txt(inputfile_c) 
write_txt(contents,MaxRel_output_c,mRMR_output_c,feature_number) 
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Table 0-3:Subset Extraction using Python 

# -*- coding: utf-8 -*-  
''' 
excel_file.py 
This program is to select the sub-dataset from original dataset. 
We use select file and feature_number to control input. 
The variable feature_number need to be change manually. 
 
''' 
 
def readfile(filename): 
 import csv 

 
 with open(filename,'rb') as f: 

  reader = csv.reader(f) 
  rows = [row for row in reader] 

  lens = len(rows[0]) 
  columns = [] 
  column = [] 
  for i in range(0,lens): 
   column = [col[i] for col in rows] 

   columns.extend([column]) 
   # print column 
  # print '\n=====\n' 
 f.close() 
 return columns 

 
def read_select(filename): 
 with open(filename) as f: 
  for line in f: 

   nums = line.split(',') 
   nums = map(int, nums) 
   return nums 

 
def write_csv(filename, list_towrite): 
 import csv 
 with open(filename,'w') as f: 

  f_csv = csv.writer(f) 
  f_csv.writerows(list_towrite) 
 f.close() 
 
def select(datafile,outputfile,selector): 

 columns_toselect = read_select(selector) 
 columns_all = readfile(datafile) 
 new_set=[] 
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 for i in columns_toselect: 

  new_set.extend([columns_all[i]]) 
 zipped = zip(*new_set) 
 write_csv(outputfile,zipped) 
  
 
''' 
Main 
''' 
feature_number = 200 
inputfile1="colon_cf_tf.csv" 
inputfile2="leu_cf_tf.csv" 
outputfile1="datafiles/MaxRel_tf/colon_con_max_" + str(feature_number) 
+".csv" 
outputfile2="datafiles/mRMR_MIQ/colon_c_Q_" + str(feature_number) +".csv" 
outputfile3="datafiles/MaxRel_tf/leu_con_max_" + str(feature_number) +".csv"
outputfile4="datafiles/mRMR_MIQ/leu_c_Q_" + str(feature_number) +".csv" 
selectfile1="MaxRel_select_c.txt" 
selectfile2="mRMR_select_c.txt" 
selectfile3="MaxRel_select_l.txt" 
selectfile4="mRMR_select_l.txt" 
# print read_select("MaxRel_select.txt") 
select(inputfile1,outputfile1,selectfile1) 
select(inputfile1,outputfile2,selectfile2) 
select(inputfile2,outputfile3,selectfile3) 
select(inputfile2,outputfile4,selectfile4) 
 

 

 

 


