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Abstract 

Literature examining the relationship between stress and eating behaviour reveals that while both 

decreased and increased eating are observed in response to stress, it is unclear what factors 

determine whether an individual will typically decrease or increase eating during stress.  The 

present study sought to explore whether decreased/increased eating in response to future 

stressors, could be elicited by prior associations between decreased/increased eating and the 

presentation of a stressor, through operant conditioning.  The “Conditioned Non-Eaters” (CNE) 

group received punishment training while the “Conditioned Eaters” (CE) group received 

negative reinforcement training in response to a noise stressor, and the Control group received no 

operant training.  Conditioning trials were followed by a series of five tests exposing subjects to 

no stress, the noise stimulus, threat of shock, restraint, and a tail-pinch. Results indicate that 

group differences in eating were observed during exposure to the noise stimulus following 

training, but not in the absence of stress, and consistent group differences to the noise stress were 

further observed during exposure to novel stressors. These findings suggest that past operant 

associations between eating and a specific stressor can generalize to other stressors, influencing 

individuals to respond to stress exposure in a way that has be reinforced in the past.  

 Keywords: stress, eating behaviour, operant conditioning  
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In human populations, it is recognized that individuals have a tendency to either overeat 

or undereat when experiencing stress, however reasons for this divergence in the population 

remain unexplained. In both human and animal populations, current literature relating to the 

effects of stress on feeding behaviour present various and contradictory findings (Greeno & 

Wing, 1994). Thus, it is widely accepted that aversive stimulation or stress interrupts normal 

feeding patterns and can have a bi-directional impact on the eating response of organisms, 

however, whether stress will cause an individual to increase or decrease their eating has not 

proven to be easily predictable (Greeno & Wing, 1994). In humans, it is suggested that 

approximately 40% of individuals report increased eating in response to stress, 40% report 

decreased eating, while the remaining 20% of individuals report no changes in eating behaviour 

during stress (Dallman, 2010).  

The present study seeks to examine a possible cause for this bi-directionality – 

specifically that differences in past learning may be a factor in determining which of these 

behaviours will be experienced by individuals in response to stress during future situations. In an 

attempt to support this theory, the present research explores the influence of individual 

differences in learning history on the feeding response of rats in response to stress, using an 

operant learning paradigm. By employing negative reinforcement and punishment training, the 

present study sought to condition subjects to increase or decrease their eating in the presence of a 

stressor (in this case an aversive noise stimulus). The study further tested the feeding response of 

individuals following conditioning, when presented with novel stressors (with which subjects 

had no prior exposure to), to determine whether learned changes in eating behaviour will 

generalize to other types of stressful stimuli.    
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Stress  

To understand how past associations between eating and stress may shape future eating 

behaviour, it is important to understand the biological changes involved in the stress response 

that include hormone and neurotransmitter changes that influence the feeding system in various 

ways. Furthermore, if learned associations between stress and changes in eating behaviour can 

generalize to future experiences of stress as predicted by the current model, an understanding of 

how stress affects the body and feeding system may contribute to identifying what properties of 

the stress response may be involved in becoming associated with these behaviours. A review of 

past literature reveals that researchers have been able to reach a collective understanding of what 

defines stress (Staal, 2004).  While proposed definitions range widely between authors and are 

often conflicting, they frequently relate to an organism’s perception of and ability to cope with 

threatening stimuli (Adam & Epel, 2007; Cohen, Janicki-Deverts, & Miller, 2007; Greeno & 

Wing, 1994; Pool, Brosch, Delplanque, & Sander, 2015; Staal, 2004). Stress has further been 

defined as a somato-psychic state that represents a deviation from the optimal level of the 

organism (Chrousos & Gold, 1992; Krebs, Macht, Weyers, Weijers, & Janke, 1996). 

Homeostatic mechanisms, in turn, motivate behaviour to return the organism to its optimal level 

of activation (Chrousos & Gold, 1992; Krebs et al., 1996).  

 Stress engages the “fight-or-flight” reaction, having evolved as a survival response 

allowing organisms to allocate their energy towards reacting to life-threatening stimuli or 

situations as first described by Walter Cannon in 1932.  When a stressor is presented, the 

amygdala communicates a distress signal to the hypothalamus, stimulating the adrenal glands to 

release epinephrine. This leads to an increase in various physiological responces controlled by 

the sympathetic nervous system, including heart rate, blood pressure, and breathing rate (Tsigos 
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& Chrousos, 2002).  The parasympathetic nervous system responds with a reduction of activity 

during stress, resulting in decreased blood flow to the digestive system, as digestion and other 

bodily processes are reduced allowing energy stores to be allocated towards responding to the 

threat or stressor (Petri & Govern, 2004). 

Activation of the hypothalamic-pituitary-axis (HPA) stress response is characterized by 

hypothalamic release of corticotropin-releasing hormone (CRH), which stimulates the release of 

adrenocorticotropic hormone (ACTH) from the anterior pituitary gland, further promoting the 

adrenal release of glucocorticoids to the bloodstream (Majzoub, 2006).  Cortisol release may 

continue for hours following a stressor and homeostasis returns following high blood 

concentrations of cortisol that stimulate negative feedback to the hypothalamus, reducing the 

release of CRH and consequently the release of ACTH from the pituitary, diminishing the HPA 

stress response (Majzoub, 2006). Increased intensity of a stressor can be evaluated by increased 

activation of the HPA axis, increased blood cortisol levels, and an increased post-stress recovery 

period for both rats (Samson, Sheeladevi, Ravindran, & Senthilvelan, 2007) and humans 

(Dickerson & Kemeny, 2004). Therefore, increased hypothalamic CRH, peripheral cortisol, and 

ACTH levels are all physiological markers of stress (Adam & Epel, 2007; Dickerson & Kemeny, 

2004; Maniam & Morris, 2012; Tsigos & Chrousos, 2002).  

The HPA response to stress has further been shown to persist even following chronic 

(long-term) exposure to a stressor (Samson et al., 2007). In this study, noise stress continued to 

result in increased release of corticosterone and norepinephrine in rats even following chronic 

exposure to the noise stressor (Samson et al., 2007). Adaptation of the HPA response to a 

specific stressor has however been demonstrated; in a study investigating the effects of stress on 

the response of anterior pituitary hormones in rats also subjected to chronic noise stress, rats 
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demonstrated a reduced corticosterone response when presented with the same noise stressor 

following the chronic stress, though this adaptation of the stress response was identified as 

specific to the noise stressor and did not generalize to a forced swim test (Armario, Lopez-

Calderon, Jolin, & Balasch, 1986). 

 Chronic stress may have long-term implications on physical and psychological health. 

Research reveals that repeated stress may contribute to future physical health problems such as 

high blood pressure and clogged arteries, and has also been implicated in psychological disorders 

such as anxiety, depression and addiction (Dallman, 2010; Parylak, Koob, & Zorrilla, 2011; 

Tsigos & Chrousos, 2006). It has further been proposed that stress may contribute to obesity 

directly, by causing changes in food intake patterns, or indirectly, by reducing rate of rest and 

exercise. Research on stress and obesity raise questions regarding the effects of stress on the 

feeding system, while research on stress, addiction, and the hedonic (pleasurable) properties of 

foods raise questions regarding the interactions between stress and neural reward pathways 

(Dallman, 2010; Dallman et al., 2006). Before delving into a review of past human and animal 

research investigating the effects of stress on feeding behaviour, it is important to review how the 

stress, feeding, and reward systems interact.  

Stress and the Feeding System 

The physiological mechanisms involved in eating motivation include both short-term and 

long-term hunger perception. When nutrient levels in the bloodstream are low, the hypothalamus 

relies on hunger signals from receptors in the liver, stomach, and small intestine for short-term 

hunger perception, while long-term mechanisms involve the hypothalamus monitoring reservoirs 

of fat in adipose tissues for the secretion of peptide hormones indicating that they are full (Petri 

& Govern, 2004). These hormones inhibit brain mechanisms involved in the control of eating 
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when they are high, causing the hypothalamus to be less sensitive to short-term hunger signals 

(Petri & Govern, 2004). 

While the mechanisms underlying hunger motivation are still not entirely understood, 

several hormones and neurotransmitters involved in the stress response have also been 

implicated as regulators of hunger motivation and feeding behaviour.  Cholecystokinin (CCK) is 

a hormone secreted by the upper intestine following eating and its receptors send satiety signals 

to the brain as a short-term regulator of food intake, inhibiting eating behaviour when levels are 

high (Petri & Govern, 2004). Further research has implicated CCK as involved in the experience 

of anxiety (Maniam & Morris, 2012). Another hormone, leptin, is released into the bloodstream 

by adipose cells to signal information about the amount of energy available in fat stores for long-

term hunger perception to the arcuate nucleus (ARC) of the hypothalamus (Cavagnini, Croci, 

Putignano, Petroni, & Invitti, 2000). Insulin levels in the blood further communicate information 

to the hypothalamus regarding blood glucose levels and energy available in fat stores to control 

long-term feeding behaviour (Petri & Govern, 2004). Both leptin and insulin levels increase 

when glucocorticoid levels are elevated during stress. Notably, in studies investigating elevated 

glucocorticoid activity in response to chronic stress have suggested that increased stress may 

result a reduction of hunger through this interaction (Adam & Epel, 2007).  

Furthermore, neuropeptide Y (NPY) is a neurotransmitter secreted by the ARC in 

response to low leptin and insulin levels; acting on the paraventricular nucleus (PVN) of the 

hypothalamus, it promotes feeding and reduces energy expenditure (Hanson & Dallman, 1995). 

Likewise, alpha-melanocyte-stimulating hormone (α-MSH) is secreted in response to high leptin 

and insulin levels and consequently reduces feeding behaviour (Fehm, Born, & Peters, 2004).  

NPY levels elevate with increased release of glucocorticoid released during stress, possibly 
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increasing hunger, while α-MSH is believed to be involved in the stress response as ARC 

neurons expressing this hormone project to the HPA axis, suggesting that increased eating during 

stress may be further mediated by the melanocortin system (Fehm et al., 2004).  

CRH also influences both the stress and feeding responses as it acts on two types of 

hypothalamic receptors to induce the stress response and to suppress feeding behaviour 

(Majzoub, 2006). Finally, ghrelin (GH) is a peptide secreted by the stomach believed to be 

involved in short-term regulation of hunger, as it binds to receptors in the hypothalamus to 

initiate feeding behaviour and is further known to inhibit leptin’s action on the hypothalamus 

(Seoane, Al-Massadi, Lage, Dieguez, & Casanueva, 2004). GH promotes feeding and GH may 

be a further mediator of the effects of stressor type on eating behaviour, as GH levels increase in 

response to various types of stressors but have also been shown to decrease in response to 

isolation stress (Lutter et al., 2008; Saegusa et al., 2011). Important to note is the role of the 

hypothalamus in initiating both feeding behaviour and the stress response; these two 

physiological responses share neural circuitry and can influence each other (Adam & Epel, 

2007). While the directional effects of stress on feeding behaviour are still not well understood, 

they are likely mediated through interactions between glucocorticoids with hormones and 

neurotransmitters known to affect feeding behaviour due to the overlapping neural biology of the 

stress and feeding systems. 

Stress and the Reward System 

Important to the present research is a discussion of the reward systems’ interaction with 

the stress response and its involvement in motivating feeding behaviour. The mesolimbic system 

is the brain’s reward pathway and is comprised of dopaminergic neurons projecting from the 

ventral tegmental area (VTA) to the nucleus accumbens (Petri & Govern, 2004). Dopamine 
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levels increase when this system is activated, signalling the value of a rewarding stimulus, 

making this system responsible for incentive-driven motivated behaviour (Cota, Tschöp, 

Horvath, & Levine, 2006). The reward system interacts with the amygdala and hippocampus to 

establish memories of rewarding stimuli and behaviours, increasing future motivation to obtain 

rewards such as the example of future drug-seeking behaviour in the case of addiction (Cota et 

al., 2006). 

 The stress and reward systems interact directly as CRH is released to the VTA in 

response to acute (short-term) stress, however, while CRH is known to suppress both feeding and 

stress responses, the reward system is known to interact specifically with responses to highly 

palatable foods (Cavagnini et al., 2000). High food palatability is frequently associated with food 

that is high in calories and fat, and that is sweet tasting, though palatability is determined 

primarily by the hedonic properties of a food (Yeomans, 1998). Researchers have compared the 

hedonic properties of highly palatable foods to drugs of dependency and support the idea that 

these foods may have properties that promote dependence by activating reward circuitry, 

promoting behavioural reinforcement for their increased consumption (Cota et al., 2006).  

The role of the opioid system in the rewarding aspect of highly palatable foods has been 

explored as opioid antagonists have been shown to decrease the consumption of foods with 

hedonic properties (Cota et al., 2006). The opioid antagonist naltrexone, has been found to 

decrease the rewarding properties of sucrose in both animal and human populations and 

naloxone has reduced stress-induced eating in rats, implying that this system is likely further 

involved in the rewarding aspects of palatable foods and may play a role in overeating behaviour 

(Cota et al., 2006; Morley, Levine, Gosnell, & Billington, 1984; Morley, Levine, Yim, & Lowy, 
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1983). Opioids have further been found to result in a decreased stress response (Drolet et al., 

2001). 

The endocannabinoid system is further believed to interact with the opioid system. 

Cannabinoids have previously been associated with increased consumption of palatable foods 

and in one study involving rats, opioid antagonists were found to reverse increased consumption 

of a palatable beverage that had been caused by previous administration of a cannabinoid agonist 

(Gallate, Saharov, Mallet, & McGregor, 1999). While research suggests that opioid and 

cannabinoid systems may be involved with increased or decreased eating, the role of the reward 

system in mediating the effects of stress and the consumption of palatable foods are still not well 

understood. 

The Effects of Stress on Feeding Behaviour 

 In rat studies, stress has been most often associated with decreases in food intake, though 

in some cases it has been associated with increased feeding behaviour (Greeno & Wing, 1994). 

Recent research has also suggested that stress is more likely to specifically increase the 

consumption of highly palatable foods, with the consumption of lard and high sucrose solutions 

leading to a reduced stress response in rats (la Fleur, Houshyar, Roy, & Dallman, 2005; 

Pecoraro, Reyes, Gomez, Bhargava, & Dallman, 2004).  The bi-directional effects of stress on 

eating behaviour in humans have also been widely studied, however the causes of overeating and 

undereating in response to stress are still not well understood (Adam & Epel, 2007; Greeno & 

Wing, 1994; Pool et al., 2015). Several theories have proposed explanations for both overeating 

and undereating by animals and humans during stress and it is clear that there are likely multiple 

factors that will determine an individual’s feeding in response to stress (Greeno & Wing, 1994). 
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The general effect model. Attempts to explore the bi-directionality of eating in response 

to stress have investigated a general effect model, one suggesting that aversive stimulation will 

have a unidirectional effect of decreasing eating behaviour (Greeno & Wing, 1994). The general 

effect model of reduced eating during stress is founded on increased HPA activation during 

stress. A purely physiological perspective would propose that appetite should be reduced during 

aversive stimulation due to a reduction of energy allocated to digestive processes (Greeno & 

Wing, 1994). However, attempts to support this theory have been unsuccessful as researchers 

exploring this model using various paradigms in animals and humans have reported conflicting 

data (Greeno & Wing, 1994). 

Animal research. The general effect model has been investigated in animals extensively 

in laboratory studies using various types of stressors. Restraint stress has resulted in decreased 

feeding behaviour in rats fairly consistently (Calvez et al., 2011; Martí, Martí, & Armario, 1994; 

Rybkin et al., 1997). Immobilization has had the same effect (Martí et al., 1994; Vallès, Martí, & 

Armario, 2003), as have forced swim tests (Calvez et al., 2011), while cold water swim tests 

have resulted in increased feeding behaviour (Vaswani, Tejwani, & Mousa, 1983). Social defeat 

has resulted in decreased (Solomon, Karom, & Huhman, 2007) and increased (Campbell Teskey, 

Kavaliers, & Hirst, 1984; Foster et al., 2009) feeding behaviour in different studies. Conflicting 

data has also been reported for the effects of mild tail-pinch stress as rats have demonstrated an 

increased feeding response to this stressor (Antelman & Szechtman, 1975; Dess, 1997; Levine & 

Morley, 1981, 1982; Rowland & Antelman, 1976), while in other research it has resulted in no 

effect on feeding behaviour (Meadows, Phillips, & Davey, 1988). Shock stressors have resulted 

in decreased feeding in animals (Solomon et al., 2007; Sterritt, n.d.; Tugendhat, 1960), increased 

feeding (Siegel & Brantley, 1951; Ullman, 1951, 1952), and they have also had no effect on 
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feeding responses (Sterritt, 1965; Strongman, 1965). Furthermore, the feeding response of rats 

has decreased in response to chronic noise (Alario, Gamallo, Beato, & Trancho, 1987) but 

increased following acute noise (Kupfkrmann, 1964). Chronic stress has further led to increased 

consumption of palatable foods in primates, where social subordinance was the examined 

stressor (Wilson et al., 2008). 

Inconsistencies in the effects of various stressor types on the feeding behaviour of 

animals have encouraged researchers to investigate what qualities of stress may predict how 

feeding behaviour will be affected, though these remain unclear. Comparisons between the 

effects of stressors varying in intensity have indicated a correlation between stressor intensity 

and the magnitude of changes in feeding behaviour observed, for example, in a comparison of 

chronic handling, restraint, and immobilization stress on the feeding behaviour of rats, 

immobilization resulted in the greatest reduction of feeding behaviour, followed by restraint and 

handling (Martí et al., 1994). Overall, there is a consensus that acute stress most often results in 

reduced eating by animals and most instances of increased eating in response to stress have been 

attributed to emotional stressors or have been selective to foods with hedonic (Maniam & 

Morris, 2012).  

Human research. Human investigations of the general effect model have less frequently 

examined laboratory-induced stressors and often rely on self-report of subjective stress 

experienced by participants. As with animal studies, a pattern of decreased eating during stress 

has been evidenced, with exceptions with regard to highly palatable foods though not all 

evidence supports this (Groesz et al., 2012). In one study, subjective daily records of stress and 

feeding behaviour were recorded and both within and between-subjects analyses indicated that 

individuals were more likely to eat less during increased stress and,furthermore, that the 
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likelihood of decreased eating correlated with increased stressor severity (Stone & Brownell, 

1994). Combat stress was associated with decreased eating in a survey of U.S. Marines (Popper, 

Smits, Meiselman, & Hirsch, 1989) and in another study, males were found to eat less in 

response to a mild laboratory stressor (ego threat) while no differences were observed for 

women, suggesting that gender may influence these effects (Grunberg & Straub, 1992).  

The general effect model is challenged by human studies as it is well-evidenced that 

some individuals self-report being stress non-eaters while others report being stress eaters or 

report no change in eating behaviour during stress (Dallman, 2010). While exam stress caused no 

significant effects on food intake in one study (Pollard, Steptoe, Canaan, Davies, & Wardle, 

1995) and produced inconsistent findings in another (Michaud et al., 1990), a study comparing 

exam stress between self-reported stress eaters and non-eaters revealed that increased feeding 

behaviour (weight gain) during stress was observed for the stress-eaters group (Epel et al., 2004). 

Human studies suggest that while stress may have bi-directional effects on feeding behaviour, 

individuals tend to respond consistently to stress resulting in distinct populations of stress eaters 

and stress non-eaters (Wardle, Steptoe, Oliver, & Lipsey, 2000). This is supported by evidence 

that individuals in these groups demonstrate further differences in their stress response, as stress 

eaters have been found to have higher nocturnal levels of insulin and cortisol during stress 

compared to stress non-eaters (Epel et al., 2004). 

Summary. While physiological implications of the stress response led to the hypothesis 

that activation of the stress response should lead to decreased feeding behaviour and digestive 

processes, this has not been evidenced consistently (Greeno & Wing, 1994). Stress can elicit 

overeating in some individuals while eliciting undereating in others, promoting further research 
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to investigate what other factors affecting the feeding and stress responses may be responsible 

for divergent populations of stress eaters and non-eaters. 

Individual differences. As a unidirectional model of the effects of stress on feeding 

behaviour has not been supported by research, it is important to consider that individual 

differences may be key to understanding the cause for different eating responses between 

individuals in response to identical stressors (Greeno & Wing, 1994). The individual differences 

model suggests that differences in past experiences, attitudes, or physiology may determine how 

stress will affect an individual’s feeding response to stress (Greeno & Wing, 1994). Individual 

differences between obese and normal weight individuals, between restrained and unrestrained 

eaters, and between individuals with high and low cortisol reactivity have been investigated, 

yielding further insight but also further inconsistent findings between studies of human and 

animal populations (Greeno & Wing, 1994) . 

Restrained versus unrestrained. Restrained eaters (individuals with a history of 

attempting to chronically restrain their eating) have been compared to unrestrained eaters 

(individuals without a history of dieting) with regard to how these populations differ in their 

feeding response to stress (Greeno & Wing, 1994). Despite some conflicting data, many 

researchers believe that a history of dieting is a causal factor of stress induced feeding behaviour.  

Restrained eaters have shown to be more likely to overeat when faced with stressful experiences 

causing an unpleasant emotional state and it is proposed that this may be due to the control they 

usually attempt to maintain over their eating being interrupted by unpleasant emotional states 

(Willenbring, Levine, & Morley, 1986). 

Animal and human research. Investigations of the influence of dietary restraint on the 

stress-eating relationship have been mostly provided by human studies. Baucom & Aiken (1981) 
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demonstrated that dieting subjects were more likely to increase feeding in the face of stressful 

conditions, while non-dieting subjects were more likely to decrease their eating response. Food 

intake of female restrained and unrestrained eaters has been assessed following various 

laboratory-induced stressors and restrained eaters have demonstrated increased eating following 

a reaction time stressor compared to decreased eating during a relaxation period (Lattimore & 

Caswell, 2004). Restrained eaters have further demonstrated increased feeding behaviours in 

response to stress induced by a film (Cools, Schotte, & McNally, 1992; Schotte, Cools, & 

McNally, 1990). 

Similarly, the influence of dietary restraint on eating in response to stress has been 

investigated outside of laboratory settings; restrained eaters are more likely than unrestrained 

eaters to report being stress eaters (Wardle et al., 2000). Furthermore, in a sample of adult 

employees of a department store, high work stress periods led to increased caloric intake of 

saturated fat and sugar, an effect that was significant only for restrained eaters (Wallis & 

Hetherington, 2009). Animal studies have also supported these findings as rats have 

demonstrated increased saccharine preference in response to shock, only when rats had been 

subjected to a history of dietary restriction.  Herman & Polivy (1975), identified a three-way 

interaction between reported anxiety, food deprivation, and dietary restraint; for food deprived, 

unrestrained eaters, anxiety suppressed hunger, while it increased eating for food-deprived 

restrained eaters.  

Contrary to support for stress-induced feeding promoted by a history of dietary 

restriction, there has been no observed interaction between dietary restraint and exam stress 

(Pollard et al., 1995) and in another study, an ego-threat task resulted in decreased consumption 

of low-fat foods by restrained eaters, while differences in eating behaviour were not found with 
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regard to the consumption of highly palatable foods (Wallis & Hetherington, 2009). Increased 

consumption of high-fat foods have also been correlated with emotional but not with restrained 

eating (Wardle et al., 2000). 

Obese versus normal-weight. Further investigation of individual differences in eating 

behaviour have compared the effects of stress on obese compared to normal weight individuals 

(Greeno & Wing, 1994). Obesity rates are increasing in our society and it has been proposed that 

increased feeding behaviour by obese individuals during stress compared to normal weight 

individuals may be a factor contributing to the development and maintenance of obesity 

(Dallman et al., 2006). Early research comparing obese and normal weight populations supported 

this, suggesting that overweight individuals are more likely than normal weight individuals to 

overeat when faced with environmental stressors (Stunkard, 1959). However again, animal and 

human studies have resulted in inconsistent findings with regard to this theory. 

Animal and human research. Research examining the effects of obesity on the stress-

eating relationship has again relied most frequently on human studies. Exam stress resulted in 

increased consumption of candy by obese individuals, with no change in eating behaviour 

reported for normal-weight individuals (Slochower, Kaplan, & Mann, 1981) and threat of shock 

has resulted in consistent findings for the consumption of peanuts, though weight was not 

corrected for in this study (Pine, 1985). There was no change in the consumption of chocolate for 

either group in an experiment where performance was linked to shock (Reznick & Balch, 1977), 

while another study found that obese individuals decreased their consumption of ice cream 

following an ego-threat stressor, with no change in feeding behaviour by normal weight 

individuals (Heatherton, Peter, & Polivy, 1991). 
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Animal studies have failed to investigate the influence of obesity on the stress-eating 

relationship, however stress-induced eating of palatable foods has resulted in weight gain by rats 

in some studies (Rowland & Antelman, 1976). These findings suggest that while the effects of 

obesity on the stress-eating relationship is unclear, stress-induced eating may contribute to 

weight gain and resulting obesity. 

It is likely that other variables may interact with obesity to affect feeding behaviour, for 

example, obese individuals with binge eating disorder may exhibit a different response to stress 

than obese individuals who do not have binge eating disorder and individuals with bulimia 

nervosa, demonstrated by an increased average eating rate caused by stress induced by the Trier 

Social Stress Test (Laessle & Schulz, 2009). Stress-induced eating also does not consistently 

result in weight gain in animals and weight gain may be dependent on the consumption of highly 

palatable foods (Levine & Morley, 1981). Gender differences may also be a factor, as normal-

weight males demonstrated increased feeding when calm compared to frightened and more when 

food deprived than not, however obese males did not alter their eating behaviour to these 

variables and demonstrated similar feeding behaviour whether or not they were frightened or 

food deprived (Schachter, Goldman, & Gordon, 1968). 

 High versus low stress reactivity. High stress reactivity has further been investigated as a 

possible cause of increased eating during stress (Adam & Epel, 2007; Newman, O’Connor, & 

Conner, 2007). Elevated cortisol levels during stress have resulted in increased caloric intake, as 

evidenced by individuals taking prednisone (Wanefried, Rimer, & Winer, 1997). Individuals 

with high cortisol reactivity have demonstrated increased caloric intake in response to stress in 

both human and animal research (Newman et al., 2007). Psychological stress reactivity has 
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therefore been identified as a possible psychobiological characteristic explaining divergent 

feeding responses to stressors. 

Animal and human research. Support for the effects of cortisol reactivity on the stress-

eating relationship is offered by both human and animal studies. In a laboratory study using ego 

threat as a stressor, women with high cortisol reactivity consumed more calories than women 

with low cortisol reactivity during stress, while eating similar amounts in the absence of stress 

(Epel, Lapidus, McEwen, & Brownell, 2001). Similar findings have been reproduced by other 

researchers as individuals with high trait anxiety have also reported increased consumption of 

palatable foods during stress, compared to controls (Rutters, Nieuwenhuizen, Lemmens, Born, & 

Westerterp-Plantenga, 2009). In naturalistic settings these effects have persisted as high cortisol 

reactors self-report increased consumption of snack foods during periods of increased daily stress 

(Newman et al., 2007). 

Support for the influence of individual cortisol reactivity on the stress-eating response is 

further offered by findings that individuals who self-identify as stress eaters display higher levels 

of cortisol in response to stress than stress non-eaters (Epel et al., 2004). Animal research has 

further revealed that increased corticosterone levels through the administration of 

glucocorticoids, has resulted in increased feeding behaviour in rats (Bhatnagar et al., 2000). 

Summary.  Investigations of the influence of individual differences on the stress-eating 

relationship have identified multiple factors that likely interact with the effects of stress on 

feeding behaviour.  While obesity has not consistently resulted in increased eating in response to 

stress, a history of dietary restraint and high cortisol reactivity may be significant factors 

involved in producing this response. However, it is important to note that increased feeding 

behaviour during stress has most often been observed with regard to highly palatable foods 
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specifically (Adam & Epel, 2007). This suggests that the hedonic properties of foods are likely a 

significant factor leading to increased eating in response to stress and as a result, the implications 

of food palatability on the stress-feeding interaction have been a focus of recent research. 

Implications of Food Palatability  

With highly palatable food being so readily accessible in our Western society, changes in 

eating behaviour, specifically with regard to highly palatable foods during stress, is a proposed 

reason for the high percentage of individuals who self-report being stress eaters (Adam & Epel, 

2007). As previously discussed, the general effect model for decreased eating in response to 

stress has been supported by many studies demonstrating stress-induced eating inhibition, though 

in experiments where highly palatable food is made available during stress, eating behaviour 

may alternatively increase (Adam & Epel, 2007; Dallman et al., 2006; Pecoraro et al., 2004; Pool 

et al., 2015; Tomiyama, Dallman, & Epel, 2011). Theories that stress may result in an increased 

willingness to consume sweet foods are supported by the fact that corticosterone replacement in 

adrenalectomized rats restores their willingness to drink sweet (saccharin) solutions (Bhatnagar 

et al., 2000; Dallman et al., 2006). Increased consumption of highly palatable foods during stress 

has been well evidenced in human and animal populations and has been attributed to attempts at 

emotional regulation and to activation of the brain’s reward circuitry (Pool et al., 2015). 

Emotional Regulation. A proposed explanation for increased consumption of highly 

palatable foods during stress is the aversive state reduction hypothesis, a theory proposing that 

the aversive emotional state experienced during stress is reduced following the consumption of 

highly palatable foods because their hedonic properties elicit an opposing pleasurable experience 

(Pool et al., 2015). Evidence of increased preference for palatable foods following emotional 

stress has been supported by research with evidence of the ability of palatable foods to result in a 
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reduced HPA response in animals and humans. Chronic stress is thought to increase expression 

of CRH in the amygdala due to chronically high levels of glucocorticoids. As elevated 

glucocorticoids promote the consumption of palatable foods, this promotes the ingestion of 

"comfort foods" to reduce the effects of chronic stress in the nucleus accumbens (Dallman et al., 

2003; Dallman, Pecoraro, & la Fleur, 2005; Drolet et al., 2001). In studies exploring this 

hypothesis, restraint stress in animals has been frequently equated to emotional stress 

experienced by humans with some researchers suggesting this is because of greater involvement 

of the amygdala during restraint stress compared to other stressors (Dayas, Buller, Crane, Xu, & 

Day, 2001). 

Animal research. The aversive state reduction hypothesis is supported by evidence that 

restraint stress increases preference for highly palatable foods and that access to these foods 

results in a reduced HPA response to both acute and chronic emotional stress in rats. In an early 

experiment, foot shock and restraint were used to compare physical and emotional stress in rats; 

while physical stress reduced saccharin preference, emotional stress increased its consumption 

compared to water (Alario et al., 1987). Physical stress has furthermore resulted in long-term 

decreased saccharin preference and decreased open field activity in an elevated plus maze, while 

emotional stress caused these behaviours to slightly increase (Pijlman, Wolterink, & Van Ree, 

2003).  

Reduced corticosterone release in response to restraint stress has further been 

demonstrated in rats receiving prior access to highly palatable foods (Kinzig, Hargrave, & 

Honors, 2008). However, in a study where rats were fed diets of either regular chow, a lard/chow 

mix, or a choice of lard and chow, a reduced HPA response  was only observed in response to 

restraint stress in the choice group, which may be relevant to understanding the increased 
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consumption of palatable foods by humans who generally have control over choice of the types 

of food they consume (la Fleur et al., 2005). In another study, acute restraint stress was found to 

have no effect on the consumption of a highly palatable food (fruit loops) while chronic restraint 

stress resulted in increased consumption of this food (Ely et al., 1997).  Furthermore, comparing 

chronically restrained rats to unstressed controls resulted in increased consumption of comfort 

foods by stressed rats and further demonstrated that CRH levels were reduced in both groups, 

while ACTH responses were diminished in restrained rats offered comfort foods (Pecoraro et al., 

2004). 

Human research. In humans, evidence of emotional regulation through feeding has been 

suggested by correlations between increased emotional stress and increased eating behaviour 

(Macht, Haupt, & Ellgring, 2005). Similar findings have been reported for highly palatable foods 

specifically; in one study, eating highly palatable chocolate was associated with emotional eating 

and was found to reduce negative mood for an immediate but short period of time, while having 

no effect on neutral or positive mood states (Macht & Mueller, 2007). Furthermore, a reported 

high-stress group of women reported more emotional eating and displayed higher mesenteric fat 

and BMIs than controls (Tomiyama et al., 2011). The same study provided evidence that HPA 

response may be diminished by the consumption of comfort foods as the high-stress group 

further demonstrated a diminished cortisol response following exposure to an acute laboratory 

stressor (Tomiyama et al., 2011). 

Summary. The aversive state reduction hypothesis has been supported by both animal 

and human studies demonstrating that emotional stress may lead to increased consumption of 

palatable foods and a reduced stress response. Contradictory findings have however been 

reported and this theory is criticized for failing to account for all examples of stress-induced 
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eating of palatable foods. It has further been criticized that stress inhibits the experience of 

hedonic pleasure as stress may reduce taste perception of sweet foods in humans and can reduce 

consumption of sweet foods in rats (Al’Absi, Nakajima, Hooker, Wittmers, & Cragin, 2012; 

Enkel, Spanagel, Vollmayr, & Schneider, 2010). Additionally, it is unclear what aspects of food 

palatability interact with the stress-response, as in one study involving rats, CRH levels increased 

following the consumption of sucrose but decreased following the consumption of a sucrose/lard 

mixture (Foster et al., 2009). Further investigations of stress-induced consumption of foods with 

hedonic properties have relied less on investigations of emotional eating and focussed on 

theories of addictive eating (Adam & Epel, 2007).  

Reward based model of stress eating. Researchers have proposed that increased 

consumption of palatable foods during stress and the reduction of stress that follows, may be due 

to the relationship between the stress, feeding, and reward systems (Adam & Epel, 2007). Like 

drugs of dependence, palatable foods activate dopaminergic, opioid, and endocannabinoid 

systems, resulting in strong behavioural reinforcement for the consumption of these foods (Adam 

& Epel, 2007; Cota et al., 2006). Following their consumption during stress, negative feedback 

of opioid release inhibits the release of CRH and decreases HPA activation, directly inhibiting 

the stress response in addition to reinforcing consumption of the food (Drolet et al., 2001). "Food 

addiction," has been explored in terms of sugar consumption resulting in the release of opioids 

and dopamine, inferring its addictive potential (Avena, Rada, & Hoebel, 2008). 

Animal research. Support for the interaction of the reward, feeding, and stress systems 

has been offered by rat research. The dopamine system was found to be critically involved with 

increased eating and related behaviours in response to a tail-pinch stressor (Antelman & 

Szechtman, 1975) and corticosteroids are known to affect dopaminergic reward pathways and 
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increase palatable feeding in rats (Dallman et al., 2006). Opioids have been found to be directly 

involved in palatable feeding, as corticosterone replacement increases the willingness of 

adrenalectimized rats to consume saccharin, suggesting that increased glucocorticoids may 

increase preference for palatable foods (Bell et al., 2002; Bhatnagar et al., 2000). Similarly, 

treatment with opioid antagonists has suppressed consumption of these foods (Lowy, Maikel, & 

Yim, 1980). 

Human research. The reward system has been related to palatable feeding in human 

studies, most notably through comparisons of highly palatable foods to addictive behaviours 

though these studies to not specifically address the interaction of the stress response with 

palatable feeding (Avena et al., 2008; Davis & Carter, 2009; Rogers, 2011). Studies previously 

attributing increased palatable feeding to emotional regulation (Macht & Mueller, 2007; 

Tomiyama et al., 2011) can be reconsidered under this theory as these studies reveal a reduction 

of stress following the consumption of highly palatable food but failed to consider the role of 

reward pathways in promoting this interaction (Adam & Epel, 2007). 

Summary. The hedonic properties of palatable foods activate dopaminergic, opioid, and 

endocannabinoid systems in the brain, reinforcing the consumption of these foods similarly to 

the reinforcement of drugs of dependence (Adam & Epel, 2007; Cota et al., 2006). This 

hypothesis cannot however account for all instances of increased eating in response to stress. 

Wyvell & Berridge (2000) found that changes in dopamine levels may increase the amount of 

effort rats will exert to obtain palatable food, without changing the palatability of the food. They 

concluded that dopamine levels in the nucleus accumbens mediated a change in motivation for 

conditioned responses to receive food ( frequency of pressing a lever), without changing the 

hedonic properties of the food reward (Wyvell & Berridge, 2000).  In another criticism of this 
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theory, fMRI has revealed that despite the choice of more palatable foods under stress, reward 

signalling was reduced during a stress condition as evidenced by decreased brain activation in 

reward areas including the amygdala and hippocampus (Born et al., 2010). Despite several 

proposed explanations for increased feeding in response to stress, it is clear that there must be 

multiple mechanisms at play in determining whether and individual will eat more or less in 

response to stress.  

The Learning History Model 

  The proposed model suggests that differences in past learned associations between stress 

and eating may be a cause for divergent feeding responses in the population. Learning models 

such as classical conditioning could potentially explain these differences as, for example, if an 

individual’s past exposures to stressful stimuli were followed repeatedly by episodes of 

overeating, cues associated with stressful conditions may become associated with physiological 

responses preparing the individual to receive food. 

Furthermore, an operant learning model would suggest that increased feeding in response 

to stress may be a consequence of past negative reinforcement, where increased eating has been 

repeatedly associated with a reduction of stress or aversive consequences. Therefore, existing 

learning models can be applied to suggest that overeating and undereating in response to stress 

may be causally related to differences in past, learned associations made between stress and food 

intake. However, the influence of past learning on future eating responses to stress represents a 

gap in the literature and an experimental investigation of the influence of past learning on future 

eating response to stress is purpose of the present study.  
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Operant Learning 

Operant conditioning involves a response (behaviour), a stimulus (a positive reinforcer or 

a negative punisher), and a contingency between the response and stimulus (Skinner, 1938). 

Learning through this model involves either increasing or decreasing the rate of the response of a 

behaviour through presentation or removal of a reinforcer or a punisher, respectively. Skinner 

described four response-stimulus (R-S) contingencies that characterize operant learning and the 

results of these contingencies can be categorized as either pleasant or unpleasant for the subject, 

promoting an increase or decrease in the rate of response of the behaviour (Skinner, 1938).  

Operant conditioning is divided into four categories: positive reinforcement; negative 

reinforcement punishment training; and omission training, each describing a different response-

stimulus contingency (Skinner, 1938).  Negative reinforcement and punishment training are 

particularly relevant to the present study as they involve the use of punishers and can therefore 

be used to reinforce behaviour contingent on the presentation or removal of a laboratory 

controlled stressor (Skinner, 1938). Negative reinforcement increases the rate of a response 

through the removal of a punisher following the desired response, while alternatively, 

punishment training decreases the rate of a response through the presentation of a punisher 

following an undesired behaviour (Skinner, 1938). Since the present study seeks to explore 

eating in response to the presentation of stressful stimuli (which can be considered punishers), 

these contingencies will be used to mimic the directions of learned overeating and undereating, 

respectively. 

Both classical and operant learning models have been previously used to alter feeding 

and stress response behaviours in animals. This is evident from the earliest experiments 

employing these learning models; Pavlov famously demonstrated classical conditioning of 
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salivation in dogs to the association of a bell (Pavlov & Anrep, 2003) and operant conditioning 

was used by Skinner to demonstrate that rats could learn to press a lever in order to receive food 

following repeated reinforcement of food presentation following the lever press (Skinner, 1938). 

This type of operant responding has been replicated in numerous studies and pressing a lever for 

intraoral administration of solutions varying in concentrations of high fructose corn syrup was 

recently conditioned in rats to provide a model for assessing the addictive/reinforcing properties 

of palatable foods (Levy et al., 2014). The previously discussed reward based model of stress 

eating further notes the potential relevance of operant learning in understanding increased 

palatable feeding, as this behaviour has been compared to drug addiction, widely understood to 

be promoted through positive reinforcement of the rewarding properties of drugs/palatable foods 

(Weiss, 2005).  

The Present Study 

The present study seeks to explore the influence of past learning on future eating 

responses to stress through the application of an operant learning model. To offer support for the 

proposed learning history model of divergent eating in response to stress, it must first be 

demonstrated that differences in past learned associations between stress and eating may be 

sufficient in creating populations with opposite feeding responses to stress. It must further be 

demonstrated that past associations between stress and eating can generalize to various types of 

stress, as populations of stress eaters and non-eaters respond consistently in their pattern of 

eating behaviour to stressors even when exposed to stressors they have not previously 

experienced and therefore could not have yet associated directly with a change in eating 

behaviour.  
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Rats were assigned to a Conditioned Eaters (CE), Conditioned Non-Eaters (CNE), or a 

Control group, and received respective operant learning that enforced a stimulus-response 

contingency between eating and the presentation or removal of a specific stressful stimulus (a 

noise stimulus, procedures that are discussed in more detail to follow). Following operant 

conditioning, groups were subjected to a test involving presentation of the noise stimulus  to 

determine whether training was effective in producing groups with divergent eating responses to 

future presentations of this stressor. Further testing sought to explore whether learned 

associations between increased or decreased eating in response to the noise would generalize to 

other stressors; in other words, it advised the question, “do divergent eating patterns exhibited by 

groups when exposed to the noise stimulus reflect a strict stimulus-response contingency 

between eating and the stressor specifically used in training, or has an association been made 

between eating and underlying physiological mechanisms activated by the noise stressor as well 

as by other types of stress?” 

Evidence that conditioned eating behaviours can generalize to novel types of stress would 

support the learning history model of divergent eating responses to stress, offering operant 

learning as a possible mechanism capable of promoting increased or decreased eating in response 

to future stress.  
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Methods 

Subjects 

Thirty 30-day-old, male Wistar albino rats (rattus norvegicus), weighing 250-290 g at the 

beginning of the experimental period were used as subjects in the present study. Rats were 

obtained from Charles River Laboratories in Montréal and were housed individually in plastic 

cages at the Laurentian University Animal Care Facility for the duration of the experiment. Rats 

were maintained under standard colony conditions on a 12-hour light/dark cycle and were 

allowed ad libitum access to food and water. For each testing session, rats were transported 

individually, approximately 20m away to an experimental room, weighed prior to testing, and 

returned individually to their home cages upon completion of testing. All testing sessions took 

place between 0800h and 1800h. Protocols were approved by the Laurentian University Animal 

Care Facility. 

Materials 

Testing equipment. The present study employed a standard operant conditioning box (30 

cm x 20 cm x 25 cm) equipped with a pellet dispenser, a stimulus light, and an electrified metal 

grid floor. Experimental contingencies were controlled by a computer interface program 

designed by Stanley Koren of Laurentian University. The program allowed for keyboard control 

over the release of pellets as well as over the on/off times for the noise and light stimuli used in 

training and testing.  Shock was controlled manually with a button on the side of the chamber 

and the experimenter’s movements to control its release were blocked from the view of subjects.   

Behavioural observations were also recorded by pressing keys assigned to behaviours of interest. 

The program recorded a timeline of keystrokes, summarizing their frequencies, and saving this 

information as a .txt file. The experimenter recorded this information, additionally recording 
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eating latency (latency to begin engaging in eating).. A manual stopwatch was used for timing 

purposes.  

Food. Sugar pellets were chosen to provide a desirable reinforcer for testing phases, as 

well as to allow subjects to differentiate it from the regular rat chow offered in their home cages. 

Dustless Precision Pellets (45 mg sugar) were obtained from Bio-serve Inc. as they are a 

desirable reinforcer and rats can consume a large number of these pellets during a short period of 

time. These pellets have a caloric value of 3.58kcal/mg and a nutritional profile demonstrating 

0% protein, 0% fat, 3.8% fiber, <10% moisture, 0% ash, and 89.5% carbohydrates. These pellets 

were also selected with consideration to the tendency of humans and animals to choose highly 

palatable foods when exhibiting increased eating in response to stress (Tomiyama et al., 2012).  

Stressors. The stressor used to condition subjects was a loud fragmented tone measured 

at 98 dB looping on and off at a rate of 100ms/500ms. Noise at this intensity was chosen as the 

training stimulus because both acute (short-term) and chronic (long-term) noise has been found 

to elicit stress at this intensity but is not considered harmful to the subjects (Krebs et al, 1996). 

The additional stressors chosen for further testing were a light-stimulus previously associated 

with shock, a restraint, and a tail-pinch. Foot-shock has been used in many experimental 

examples to elicit stress as previously discussed, and fear association with unconditioned stimuli 

and stressful stimuli has been further successful in eliciting the experience of stress (Feenstra, 

2000; Mineka & Oehlberg, 2008, Shors, Weiss, & Thompson 1992). Restraint and tail pinching 

have also both been used frequently as stressors in animal research examining effects on eating 

behaviour (Greeno & Wing, 1994). The stressor stimuli chosen allowed for all testing to occur 

within the environment of the operant chamber and allowed for investigation of the influence of 

stressors of varying qualities and intensities on the behaviours of interest. 
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Procedure 

Food Deprivation. Prior to all testing trials where food consumption was recorded, mild 

food deprivation schedules were followed where food was removed from the home cages 

overnight, allowing approximately 18 hours of deprivation, while subjects were allowed ad 

libitum access to water. Testing occurred on six days each week and three groups were always 

tested on separate days, so rats had at least two days of regular feeding between training and 

testing days. Rats were not food deprived prior to fear conditioning trials during which food 

consumption was not involved.  

Habituation training. Two weeks after arrival at the colony, rats were subjected to  

habituation training over 21 days, with each subject completing a total of seven habituation trials. 

This took place to allow the rats to familiarize themselves with the environment of the operant 

chamber as well as to introduce and familiarize them to the sugar pellets and provide a baseline 

measure of pellet consumption following food deprivation.  Following food deprivation, rats 

were transported individually to the experiment room where they were immediately weighed and 

placed in the operant chamber for one minute of orientation to their surroundings. Five sugar 

pellets were then released from the pellet dispenser and rats were allowed ad libitum access to 

these pellets with one released by the experimenter each time one was consumed, for 20 minutes. 

Total number of pellets consumed was recorded, and frequencies of observed urination (number 

of times urinating), defecation (number of boluses), freezing (>10sec), and excessive grooming 

(>10sec), as well as eating latency were all recorded by keystrokes and summarized by the 

experimenter. After 20 minutes, rats were returned to their home cages and were once again 

allowed ad libitum access to regular food and water until their next deprivation. 
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Group assignment. Following seven habituation trials, each subject’s mean eating rate 

for the final four trials was computed in order to determine their assignment to one of three 

training groups. Subjects were ordered by increasing pellet consumption and subjects with the 

closest means were grouped by three and each was then randomly assigned to either a 

Conditioned Eaters (CE) group, a Conditioned Non-Eaters (CNE) group, or to a Control group. 

The purpose of this method of assignment was to ensure randomization and equality between 

groups based on eating rate prior to conditioning. 

Conditioning trials. Nine conditioning trials were conducted over 4.5 weeks following 

the habituation phase, with each group receiving training twice each week. This timeline was 

designed to ensure that training could occur at approximately the same time of day for all groups 

and so that subjects would have two days of regular feeding between each food deprivation trial 

to minimize the stress experienced outside of testing. As with the habituation phase, rats were 

food deprived 18 hours prior to these trials and were transported to the experimental room 

individually where they were weighed and placed in the operant chamber. After one minute had 

passed, to give the rats time to orient themselves, five sugar pellets were released. All subjects 

had ad libitum access to pellets for the remainder of each 20 minute trial. During these trials, 

different experimental contingencies were applied to each group using the noise stimulus as the 

punisher for this training. Once again, for all trials, total pellets consumed, as well frequency of 

urination, defecation, freezing, excessive grooming, and eating latency were all recorded.   

The purpose of training trials was to employ an operant learning model to train groups to 

change their eating behaviour in response to a stressful stimulus, by associating increased or 

decreased eating with either the presentation or removal of a stressor (in this case the noise). The 

expected results of training is that when later presented with the noise, the CE group would 
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increase their eating compared to Control subjects due to learned, repeated associations between 

increased eating and the removal of the noise stressor in training, while the CNE group would 

comparatively decrease their eating behaviour due to repeated associations between decreased 

eating and the removal of the noise stress. The CE group received negative reinforcement 

training while the CNE group received punishment training, and the Control group received no 

operant training (procedures further described below).  

Negative reinforcement training: Conditioned eating (CE). For the CE group, a 

schedule of negative reinforcement training was followed and the tone was presented 

immediately following one-minute of orientation to their surroundings.  The tone was turned on 

at the beginning of each trial and remained on, being turned off when the subject began to eat. 

After the subject stopped eating for 30 seconds, the tone was presented again, and these 

contingencies lasted for the duration of each 20-minute trial. Therefore, as long as the CE rats 

continued to eat, the noise remained off. Subjects were exposed to the stressor whenever they 

stopped eating, with the intention being for rats to learn to associate increased eating with the 

removal of a stressor.  

 Punishment training: Conditioned non-eating (CNE). For the CNE group, a schedule 

of punishment training was followed. Following one-minute of orientation, the tone was left off 

and was turned on only when the subject began to eat. The tone was removed after 30 seconds of 

no eating and was presented again whenever the subject resumed eating. These contingencies 

again lasted for the duration of each 20-minute trial. Therefore, as long as the CNE rats did not 

eat, the noise remained off, exposing subjects to the stressor only when eating, with the intention 

being for rats to learn to associate decreased eating with the removal of a stressor.  
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Control group procedures. For the Control group, all other testing contingencies were 

followed and behaviours were recorded, however no stressor was presented by the experimenter 

during these trials. Prior to the noise test, the Control group therefore had no exposure to the 

noise stressor so that they would make no direct association between eating and any 

experimental stimulus. For the Control group, conditioning trials therefore followed identical 

procedures as  the habituation trials.  

Testing phases. Following habituation and training were five testing phases, with three 

additional training trials conducted following each test involving the presentation of a novel 

stressor (light, restraint, and pinch). These additional trials followed the same procedures as the 

original training received by each group. For all testing, procedures remained the same within the 

CE, CNE, and Control groups. Rats were again transported to the experimental room 

individually following food deprivation, they were then weighed and placed in the operant 

chamber for one minute of orientation. Pellet consumption as well frequency of urination, 

defecation, freezing, excessive grooming, and eating latency were all again all recorded.   

Test 1 – Noise test. The purpose of the noise test was to verify whether or not operant 

conditioning was effective in causing groups to eat different amounts when exposed 

continuously to the noise stimulus used in training.  During this test, orientation was followed by 

a 20-minute period during which the aversive tone (used in conditioning trials) was turned on for 

the entire duration of testing and rats were given ad libitum access to sugar pellets. If the CE 

group learned, from their history of negative reinforcement training, that  eating led to the 

removal of the stressful noise, we should expect that they would significantly increase their food 

intake compared to the Control group when presented with this stimulus. Furthermore, if the 

CNE group learned, from their history of punishment training, that eating led to presentation of 
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the noise, we would expect that they would significantly decrease their pellet consumption 

compared to the Control group during this test. 

Test 2 – No-stress test. The purpose of the no-stress test was to verify that significant 

differences in eating behaviour between groups were not present in the absence of stress, 

supporting that divergent group eating responses observed in other tests were a result of exposure 

to the experimental stressors being presented, and not a result of exposure to other stimuli 

present in the testing environment during both testing and training procedures. This time, 

orientation was followed by a 20-minute period during which the noise stressor used to condition 

subjects remained off (for the entire duration of testing), while rats were given ad libitum access 

to sugar pellets.  

Test 3 – Light test. The purpose of the following tests (Tests 3-5) was to examine 

whether or not changes to group eating behaviour observed during the noise test would 

generalize to exposure to other types of stressors. If obtained, significant differences in eating 

behaviour between groups during light, restraint, and tail-pinch tests, this would suggest that the 

effects of conditioning on group eating behaviour during the noise test were not caused by the 

presence of the noise-stressor specifically, but instead may have been the result of a 

generalizable association formed between eating behaviour and internal stress-cues elicited 

similarly by the noise-stressor and by other types of stress-inducing stimuli. In other words, these 

experiments sought to explore whether the learning history gained during training would 

generalize to other stressors, affecting the eating response of subjects when exposed to stressors 

they had no prior exposure to. 

The light test involved two stages: i) light/shock association (with each group receiving 

two association trials) and ii) a testing day for each group during which the light stimulus was 
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present for the duration of the test and subjects were not exposed to shock. By pairing a light 

stimulus (conditioned stimulus) and electric foot-shock (unconditioned stimulus), rats were 

expected to develop a conditioned fear (conditioned response) to the light due to its association 

with the shocks. Subsequent presentations of the light stimulus, without shock, were expected to 

elicit this fear response, producing a stressful experience for subjects. As food consumption was 

not involved in this stage of experimentation, animals were not food deprived prior to fear 

conditioning trials. During these trials, orientation was followed by turning on a light stimulus 

(1inch, round, yellow light) affixed to the wall of the operant chamber that would remain turned 

on for the duration of each 20minute association trial. During this time, electrical foot-shocks (63 

volts and lasting three seconds) were released through the metal grid floor of the operant 

chamber by the experimenter at 10 predetermined, randomized times. This protocol was 

followed for both fear-conditioning trials allowing multiple chances for each rat to form a 

potential association between the light and shock. Behavioural measures unrelated to food 

consumption were still recorded.   

Testing occurred three days after the second fear-conditioning trial; rats were food 

deprived according to their regular schedules and orientation was followed by a 20-minute 

period during which the stimulus light was turned on and remained on for the duration of the trial 

while rats were given ad libitum access to sugar pellets and received no shock. Pellet 

consumption and behavioural measures were once again recorded. 

Test 4 – Restraint test. The restraint test presented subjects with yet another form of stress, 

as they were secured in restraint tubes for 15 minutes prior to being released into the operant 

chamber where no other aversive stimuli were present during the test. Restraint tubes were 

3.5inches in diameter and 9 inches in length, made of white plastic and designed by 
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specifications for rats weighing 500-800g, suggested by Plas-Labs Inc. As in other tests, rats 

were given ad libitum access to sugar pellets, and pellet consumption and behavioural measures 

were again recorded.  

Test 5 – Pinch test.  Finally, the pinch test presented a third form of novel stress to subjects 

with the addition of a tail pinch. As in previous literature, a padded paperclip was used to pinch 

rats’ tails approximately two centimeters from the tip for the duration of testing for all groups 

(Stengard, 1994; Pei, Zetterstrom, & Fillenz, 1990; Chang, Liao, Lan, & Shen, 2000).  Paperclips 

were padded with two layers of electrical tape and were affixed with tape after being applied to 

subjects in order to avoid the clip falling off. This procedure was piloted on a rat not involved in 

this experiment, revealing the necessity to alter the operant box slightly for this testing phase; a 

sheet of clear plastic was affixed below the metal grid floor because the paperclip was likely to 

fall off during testing if it slipped between the bars of the operant chamber. The paperclip was 

applied immediately prior to placing the rat in the operant chamber for orientation. As in all 

other tests, pellet consumption and behavioural observations were recorded for the duration of 

the 20-minute trial. 

Follow up tests. 10 days after this first phase of training and testing, follow up tests were 

performed during which procedures for the noise test and no-stress test were repeated, this time 

with the no-stress test occurring first for each group to ensure that similar eating by groups 

observed in the first no-stress test was not promoted by potential extinction effects of the noise 

test having already occurred. Repeating these tests would further allow for analysis of whether 

eating behaviour during follow up tests differed from initial testing, perhaps because of subject 

weight gain or due to continued increased familiarization with the testing environment and 

stimuli presented, over time. All procedures remained the same as for the noise test and the no-
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stress test, but with the follow up no-stress test occurring in the days prior to the follow up noise 

test. 
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Results 

Habituation Analysis 

To verify that groups did not significantly differ in baseline pellet consumption prior to 

conditioning, a one-way analysis of variance (ANOVA) was conducted to verify that all three 

groups ate similar amounts based on the mean eating behaviour values used for group 

assignment. Mean pellet consumption for the final four habituation trials (used as grouping 

averages) were therefore compared by group and no significant differences were noted, 

F(2,27)=.014, p=.986. To further ensure that group differences in eating behaviour did not exist 

between groups prior to conditioning, a repeated-measures ANOVA was conducted, comparing 

eating during all habituation trials (H1-7), by retrospective group assignment. There was a main 

effect of trial (F=(2.88, 77.66)=48.423, p<.001, ηp
2
=.642) but neither a main effect of group nor 

a group by trial interaction were noted. For the main effect of trial, contrasts revealed a 

significant linear relationship (F(1,27)-211.083, p<.001, ηp
2
=.887). It is clear from a graph 

comparing group eating by habituation trials (Figure 1), that group differences were not present 

during any trial and that overall, groups increased eating as the habituation phase progressed. 

This main effect was an expected result of increased maturation of subjects and their continued 

familiarization with the sugar pellets and with the testing environment.  
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Figure 1. Mean eating behaviour during habituation trials by group s. 
Error bars indicate SEM. 

 

Conditioning Analysis 

 To examine how eating behaviour was affected as training progressed, a repeated-

measures ANOVA was conducted comparing group eating behaviour for the nine conditioning 

trials (C1-9). All effects were significant, with a main effect of group (F(2,27)=8.079, p=.002, 

ηp2=.374), a main effect of trial (F(4.87, 131.42)=13.853, p<.001, ηp2=.339), and a group by 

trial interaction (F(9.74, 131.42)=6.540, p<.001, ηp2=.362) reported.   

The main effect of trial revealed significant differences in eating between trials, 

demonstrating that eating rate during later trials was significantly increased compared to earlier 

trials. Most notably, corrected multiple comparisons revealed that subjects ate less during trial 

0

20

40

60

80

100

120

140

H1 H2 H3 H4 H5 H6 H7

M
ea

n
 #

 p
el

le
ts

 c
o

n
su

m
ed

 
CNE Control CE



 

 
38 

C1 than trials C3-C5 (p<.05) and C7-C9  (p<.001) and subjects ate significantly more during 

trials C7-C9 than during trials C2 and C5 ( both p<.05).  Post-hoc comparisons by group 

revealed that the CNE group ate less overall than the CE group (p=.001) as well as the control 

group (p<.05), however a significant effect of trial was not reported between the control and CE 

groups.  

Multiple comparisons of the group-by-trial interaction revealed no significant group 

differences for early trials (C1-C3), though as early as trial C4, group differences were 

significant and this pattern of eating behaviour persisted for trials C5-C9.  The CE and CNE 

groups demonstrated divergent eating behaviour as the CNE group reduced their pellet 

consumption compared to the CE and Control groups, and the CE group increased their eating 

significantly compared to the Control group as well. These trends are illustrated in Figure 2 and 

effects are summarized in Table 1. 

 Table 1 

Summary of group effects by condit ioning trials  

(*denotes significance at p<.05; **denotes significance at p<.001) 

 

Trial F(2,27) p-value ηp2 of significant 

effects 

Significant effects 

observed: 

C1 1.641 .212 -- -- 

 

C2 2.612 .092 -- -- 

 

C3 2.492 .102 -- -- 

 

C4 4.037 .029* .230 - CNE < CE 

 

C5 5.597 .009* .293 - CNE < CE 

- CNE < Control 

 

C6 4.957 .015* .269 - CNE < CE 

 

C7 10.354 <.001** .434 - CNE < CE  

- CNE < Control 
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C8 20.794 <.001** .606 - CNE < CE 

- Control < CE 

 

C9 17.902 <.001** .570 - CNE < CE 

- CNE < Control 

- Control < CE 

 

 
Figure 2. Mean eating behaviour by group for all conditioning trials.  

Error bars indicate SEM. 

 

Examining comparisons by-group further revealed no significant effect of trial for the 

CNE group but did reveal significant effects for the CE (F(8,20)=17.098, p<.001, ηp2=.872) and 

Control groups (F(8,20)=2.492, p<.05, ηp2=.499). The CE group ate more during trials C8 and 

C9 than during all other trials (p<.05) and further ate less during trial C1 than trials C3-C5 

(p<.05) and C7-C9 (p<.001). This pattern likely drove the previously reported main effect of 
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trial. The Control group further ate less during the first training trial (C1), than during trials C5, 

C7, and C9 (p<.05). 

Results indicate that as conditioning progressed, the eating behaviour of the CE and CNE 

groups differed from the Control group. Compared to the Control group, the CE group increased 

eating over time, while the CNE group demonstrated reduced eating compared to the Control 

group. For the CNE group, differences in eating compared to the Control group emerged earlier 

than for the CE group, possibly accounting for why significant differences in eating behaviour 

were not observed across trials within this group. Further, increased eating behaviour by the 

Control group across trials appeared to plateau by C4 when significant group differences were 

first reported. This could be explained by subjects eating more as they matured or because of 

continued familiarization with the testing environment. Results suggest that training methods 

were effective in producing group differences in eating behaviour, as the CE group learned to 

increase while the CNE group learned to reduce their eating compared to the Control group as a 

result of the repeated associations made between eating and contingent presentation and removal 

of the noise stressor during these trials. 

Evaluating the Effectiveness of Conditioning 

 Before examining the effects of multiple stressor-types on group eating behaviour, pellet 

consumption during the noise and no-stress tests were compared by group for both initial and 

follow-up tests. The purpose of this comparison was to determine whether operant conditioning 

had successfully caused the CE group to eat more and the CNE group to eat less than the Control 

group, when presented with the noise stimulus used in training. Furthermore, it was important to 

verify that group differences caused by training did not occur during the baseline eating 

behaviour of groups when no stressor was present but all other conditions remained the same. If 
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differences in eating between groups were still present in the absence of a stressor, it would 

indicate that differences in pellet consumption observed during exposure to stress were due to an 

overall change in eating behaviour that was not specifically elicited by the presence of the 

stressor.  

A repeated-measures ANOVA compared group by stressor-type (noise or no-stress) by 

time (initial testing or follow up testing). There were significant main effects for stressor-type 

(F(1,27)=9.794, p=.004, ηp2=.756) and group (F(2,27)=11.072, p<.001, ηp2=.451), and a 

significant group-by-time (F(2,27)=4.203, p<.05, ηp2=.483) and group-by-stressor 

(F(2,27)=41.909, p<.001, ηp2=.756) interactions were reported as well. There was neither a 

main effect of time nor interactions of time by stressor or time by stressor by group.  

Post-hoc tests revealed that overall eating was reduced for the CNE group compared to 

the CE group (p=.001) and the control group (p=.007) but overall differences between the CE 

and control groups were not significant.  The main effect of stressor-type revealed that all 

subjects significantly reduced eating when the noise stressor was present compared to when no 

stressor was present (p=.004). Corrected multiple comparisons of the time by group interaction 

revealed that groups ate significantly different amounts during both initial (F(2,27)=12.607, 

p<.001, ηp2=.483), and follow up (F(2,27)=8.781, p=.001, ηp2=.394), tests. During initial tests, 

the CNE group ate significantly less than the CE group (p<.001) and the control group (p<.05), 

and these significant trends persisted during follow up tests (at the same levels of significance). 

The time-by-group interaction was further significant only for the CNE group (F(1,27)=4.729, 

p<.05, ηp2=.149), eating more during follow up tests than during initial testing. Important to 

note, is that this interaction does not account for differences in stressor-type and that group 

differences were likely driven by significant differences during the initial and follow up noise 
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tests. The absence of a main effect for time, indicates that overall eating behaviour was not 

affected by time between tests nor by intermediate testing and training that took place. The 

significant effect of time for the CNE group (increased eating during the follow-up tests) could 

possibly reflect a decreased experience of stress due to continued familiarization with the noise 

stressor during intermediate training and testing.  

The group-by-stressor interaction was significant only for the noise tests 

(F(2,27)=30.506, p<.001, ηp2=.693), and group differences did not persist during the no-stress 

tests. During the noise tests, the CNE group ate less than the CE group (p<.001) as well as the 

Control group (p=.001), and the CE group ate more than the Control group (p=.004). These 

results support our prediction that operant training paradigms were effective in causing divergent 

group eating behaviour in response to exposure to the noise stimulus used to train them. As well, 

these results verify that changes in eating behaviour were dependent on exposure to a stressor, 

since group differences were not observed in the absence of stress. The group-by-stressor 

interaction further revealed significant differences in eating between groups, as when tested with 

the noise stressor compared to no-stress, the CE group increased eating (F(1,27)=23.927, p<.001, 

ηp2=.407), the CNE group decreased eating (F(1,27)=64.478, p<.001, ηp2=.705), the and the 

Control group also decreased their eating behaviour (F(1,27)=5.209, p<.05, ηp2=162). These 

trends are illustrated in Figure 3. 
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Figure 3. Mean eating behaviour by group for no-stress, noise, and follow-up tests. 

Error bars indicate SEM. 

 

Test Analysis 

To examine the effects of the light, restraint, and pinch stressors on group eating 

behaviour, a repeated-measures ANOVA was conducted comparing pellet consumption by group 

for all stressor-types (no-stress, noise, light, restraint, and pinch). All effects were significant, 

with main effects reported for group (F(2,23)=19.288, p<.001, ηp2=.626), and stressor-type 

(F(2,23)=16.828, p<.001, ηp2=.423), as well as a group-by-stressor interaction (F(8,92)=7.00, 

p<.001, ηp2=.378). For the main effect of group, post-hoc tests revealed that overall, the CNE 

group reduced eating compared to the CE (p<.001) and Control groups (p=.001). For the main 

effect of stressor-type, groups significantly reduced eating behaviour during the light (p<.001), 

restraint (p=.001), and pinch (p=.003) tests compared to during the no-stress test and 
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furthermore, groups ate less during the light test than the noise (p=.002), restraint (p=.009), and 

pinch tests (p=.003).  

The group-by-stressor interaction revealed that groups ate significantly different amounts 

during the noise (F(2,23)=22.909, p<.001, ηp2=.666), light (F(2,23)=23.154, p<.001, ηp2=.668), 

restraint (F(2,23)=5.431, p<.001, ηp2=.321), and pinch tests (F(2,23)=30.689, p<.001, 

ηp2=.727), but ate similar amounts during the no-stress test.  Corrected multiple comparisons 

revealed that within this interaction, the CNE group ate less than the CE (p<.001), and Control 

groups (p=.004), while the CE group ate more than the Control group during the noise, light, and 

pinch tests (all comparisons significant at p<.05). For the restraint test, the CNE group ate 

significantly less than the CE and Control groups (both p<.05) but significant differences were 

not observed between the CE and Control groups. These results infer that groups responded with 

similar patterns of behaviour during tests involving the presentation of new stressors, while 

displaying similar eating patterns when no stressor was present.    

The group-by-stressor interaction further revealed eating behaviour differed between 

stressor-types for the CE (F(4,20)=6.894, p=.001, ηp2=.570), CNE (F(4,20)=14.259, p<.001, 

ηp2=.740), and Control (F(4,20)=6.139, p=.002, ηp2=.551) groups. Compared to the no-stress 

test, the CNE group reduced their eating behaviour during the noise (p<.001), light(p<.001), 

restraint (p=.004), and pinch (p=.008), tests and further ate less during the light test than the 

restraint or pinch tests (both p<.05). The CE group increased eating during the noise test 

compared to the no-stress test (p<.001) and further ate more during the noise test than during the 

light(p=.005), restraint (p<.001), and pinch tests (p=.005). Finally, the control group ate 

significantly less during the light test than during the no-stress (p<.001), and restraint (p=.014) 

tests. These trends are illustrated in Figure 4. 
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 Figure 4. Mean eating behaviour by group for all stressor-types. 

Error bars indicate SEM. 

 

Behavioural Analysis 

Finally, a repeated-measures ANOVA compared behavioural measures for all groups and 

each test, in order to investigate how these behaviours were influenced by stressor-type. Five 

measures were included in the analysis; urination, defecation, freezing frequency, grooming, and 

eating latency were included.  Analysis of the Control group’s behaviours within this interaction 

were of particular interest as previous literature has investigated the effects of stress on these 

behaviours in normal populations with mixed results. A significant effect of test was reported for 

all variables, and a main effect of group, as well as a group-by-stressor interaction reported for 

freezing and eating latency. These effects are summarized in Table 2. 
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Table 2 

Results and significant effects of repeated measures ANOVA comparing behavioural 

measures by stressor-type and group. 

(*denotes significance at p<.05; **denotes significance at p<.001) 

 

  Results Significant Effects 

Main Effect: Stressor-type 

Urination F(4,108)= 2.723, p<.05, ηp2=.092 -- 

Defecation F(2.6, 69.4)= 18.121, p<.001, ηp2=.402 No-stress < Light** 

               < Restraint** 

Noise < Light* 

          < Restraint* 

Pinch < Restraint* 

Freezing F(2.3, 62.1)= 38.272, p<.001, ηp2-.586 No-stress < ALL* 

ALL < Light** 

Grooming F(4,108)=14.747, p<.001, ηp2=.353 No-stress > Light** 

                > Pinch* 

Noise > Light* 

Restraint > Light** 

                > Pinch* 

Latency F(2.7,72.2)= 4.134, p<.05, ηp2=.133 No-stress < Restraint* 

Main Effect: Group 

 

Freezing F(2,27)= 8.483, p=.001, ηp2=.386 CE < CNE** 

 

Latency F(2,27)= 9.018, p=.001, ηp2=.400 CE < CNE* 

 

Group x Stressor-type Interaction 

 

Freezing F(4.6,62.1)= 3.570, p<.05, ηp2=.209 

 
CNE 

No-stress < Noise* 

ALL < Light** 

Control 

No-Stress < Noise* 

                 < Light* 

Restraint < Light* 

Pinch < Light* 

 

Light: F(2,27)= 6.678, p<.05, ηp2=.331 CE < CNE* 

 

Latency F(5.4,72.2)=2.824, p<.05, ηp2=.173 

 
CNE 

ALL < Restraint* 

 

Restraint: F(2,27)= 8.154, p<.05, ηp2=.377 CE < CNE* 

Control < CNE* 
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 While significant results do not appear to represent consistent patterns of responding 

between behavioural measures of interest, freezing and eating latency demonstrated interactions 

between group and stressor-type worth noting. Freezing was of particular interest as main effects 

and interactions observed for this behaviour supported the hypothesis that tests involving the 

presentation of a stressor resulted in increased freezing overall compared to when no stressor was 

present, with freezing frequency further increased during the light test compared to all other 

tests. The main effect of group on freezing behaviour indicated that the CNE group froze more 

than the CE group and the interaction further indicated that these main effects were likely driven 

by effects of the light test and by behaviour of the CNE group.  

Increased freezing by the CNE group occurred during tests during which this group 

demonstrated decreased eating, supporting previous literature proposing that increased freezing 

behaviours are likely correlated with increased stress. Consistent with this, increased freezing 

was also observed in the Control group as they decreased eating during the light and noise tests 

compared to the no-stress test. Increased freezing and eating latency by the CNE group 

compared to the CE group, could perhaps reflect that stress-induced behaviours were observed 

less for the CE group due to more time being spent engaged in eating behaviours, or to an 

inhibition of the stress response experienced by this group due to increased consumption of sugar 

resulting in a decreased experience of stress. These results will be further discussed in relation to 

current literature in the following section. Not surprisingly, grooming demonstrated a pattern of 

results opposite to other behavioural responses, appearing to decrease in frequency during tests 

involving exposure to stress, suggesting that grooming may be more likely reduced during stress, 

though this pattern not consistently reported for all tests. Finally, the main effect of defecation 
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was generally consistent with increased defecation occurring during increased stress, 

significantly in light and restraint tests compared to the no-stress test as well as the noise test. 
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Discussion 

As discussed, previous research has yielded conflicting results with regard to the effects 

of stress on eating. While the current study presents findings that are consistent with the 

literature with regard to the notion that stress may cause some individuals to increase and others 

to decrease eating, what the present literature lacks is investigation into which individual factors 

may contribute to these divergent responses (Greeno & Wing, 1994). The present study was 

designed to investigate whether differences in past learning may play a significant role in 

determining whether individuals will eat more or less during stress. The influence of different 

operant learning histories on eating behaviour exhibited by rats exposed to stress was examined 

by employing two operant training paradigms: negative reinforcement and punishment training. 

A noise stressor was used as the punisher in this design and an animal model was used to 

determine firstly, whether repeated associations between the noise stressor and either increased 

or decreased eating, would result in groups demonstrating these feeding responses when exposed 

to the same stressor in future testing. 

 Results from the noise and no-stress tests indicate that training was effective in causing 

groups to respond by eating different amounts during later exposure to the noise stressor used for 

training. During the stress condition, the Conditioned Eaters (CE) group increased their food 

intake and the Conditioned Non-Eaters (CNE) group decreased their food intake significantly, 

compared to the Control group. During the no-stress tests, subjects were not exposed to any 

experimental stressors and all groups ate similar amounts, demonstrating that differences 

observed between groups during other tests involving stressors, must have been dependent on 

exposure to the stimuli presented during those tests. These stress-related differences in food 

intake were also observed when the rats were presented with novel stressors that groups had no 
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prior exposure to, suggesting that the contingencies of training generalized to future experiences 

of stress, induced similarly by different types of aversive stimuli. Before delving into the 

implications of present findings and their contribution to the literature investigating the stress-

eating relationship, explanations of eating patterns observed for groups during training and 

testing will be discussed as they relate to present hypotheses and current literature. 

Training. Prior to testing, the training phase functioned to condition groups through the 

implementation of negative reinforcement and punishment training. The CE group was expected 

to eat more as training progressed (associating eating with the cessation of the stressor), the CNE 

group was expected to eat less (associating eating with the commencement of the stressor), and 

the Control group was expected to eat similar amounts during these trials (no association 

between eating and the stressor The group by trial interaction indicated that group differences 

emerged by the fourth trial with the CNE group eating less than the CE group when the stressor 

was presented. By the fifth trial the CNE ate less than the Control group, and by the eighth trial 

the CE group ate more than the Control group when the stressor was presented. This interaction 

further revealed that the CE and Control groups ate more during later trials, while the CNE group 

demonstrated no change in eating behaviour between early and late trials. Possible explanations 

for increased feeding by the Control group during these trials, are continued habituation to the 

food and testing environment, as well as increased maturation of subjects over time.  Figure 4 

(p.46) illustrates that pellet consumption by the Control group did appear to plateau following 

the first trial, the only trial during which this group demonstrated decreased eating compared to 

other training trials. While the CNE group demonstrated no significant changes in eating from 

the first to final training trials, a pattern of decreased eating by the CNE group compared to the 

Control group emerged over training, earlier than differences emerged between the Control and 
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CE groups. That punishment training was effective sooner than negative reinforcement in this 

model, suggests that punishment training may have been more effective, though it is important to 

consider that these results may be influenced by a general effect of noise stress on eating 

behaviour in the absence of training.  

Noise and No-Stress Tests. While it was not the focus of this study, analysis of feeding 

behaviour by the Control group during tests involving exposure to stressors compared to during 

the no-stress test, allowed for insight into how the stressors used would affect feeding behaviour 

in the absence of training. Consistent with reports that stress most often leads to reduced feeding 

behaviour in rats (Greeno & Wing, 1994) exposure to the noise stressor caused the Control group 

to eat less than they did in the absence of stress. The noise test represented the Control group’s 

first exposure to the stimulus that other CE and CNE were exposed to in training, therefore 

decreased feeding by the Control group during this test demonstrates a general effect of 

decreased eating caused by exposure to the noise stressor in the absence of training. These results 

imply that exposure to the noise should cause subjects to eat less, and this being congruent with 

the desired effect of punishment training may account for training having had a sooner impact on 

the feeding behaviour of the CNE group than the CE group (Figure 4).  

While Control group behaviour during the noise and no-stress tests suggests a general 

effect of reduced eating caused by the noise, these tests were meant to examine the effects of 

operant conditioning on how groups would respond to the noise following training. Results of 

the noise test compared to the no-stress test support that training caused the CE group to increase 

and the CNE to decrease how much they ate when exposed to the noise, compared to the Control 

group and compared to when no stressor was present. When the noise stress was absent but all 

other testing conditions remained the consistent, groups ate similar amounts. These findings 
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suggest that differences in eating behaviour between groups were contingent on the presence of 

the noise stimulus rather than the environment of testing conditions, and were not the result of a 

permanent change of behaviour resulting from the experimental manipulations of training. These 

results were expected, as operant learning is an effective method of producing increased versus 

decreased responding of various behaviours using negative reinforcement and punishment 

training, respectively. In the present study, the noise stressor was considered a punisher that was 

associated with increased or decreased feeding behaviour in training through contingencies of 

operant learning, with results of the noise and no-stress tests supporting that this desired learning 

was achieved. The CE group learned to associate increased eating with the removal of the noise 

stress and responded by eating more, while the CNE group learned to associate decreased eating 

was associated with exposure to the noise stress and consequently responded by eating less 

during later exposure to the noise.  

Changes to the feeding behaviour of rats in response to stressors similar to those used in 

this study have been previously researched and the present experiment demonstrates results both 

consistent and inconsistent with previous literature. Chronic (long term) noise stress has been 

found to cause decreased feeding in rats (Alario et al., 1987), while acute (short-term) noise has 

previously resulted in increased feeding (Krebs, Macht, Weyers, Weijers, & Janke, 1996; Krebs, 

Weyers, Macht, Weijers, & Janke, 1997; Kupfkrmann, 1964). However, in the present 

experiment, acute noise stress led to decreased feeding by the control group during their first 

exposure to the noise stressor. A possible explanation for this contradiction to previous studies is 

that differences in stressor quality and intensity may have influenced results. The stressor used in 

this experiment was a fragmented tone measuring 96 dB that looped on and off at a rate of 100 

ms/500 ms, while previous studies used noise stressors defined as 95 dB white noise (Krebs et 
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al., 1996, 1997) as well as clicking/whistling sounds measuring 60-80 dB (Kupfkrmann, 1964), 

and it is further notable that general effect hypotheses have not been supported consistently in 

past investigations involving various types of stressors (Greeno & Wing, 1994).  

While results of the noise and no-stress tests were an expected result of operant learning, 

differences in eating between groups observed during the noise test that could be reproduced by 

exposure to other types of stressful stimuli, would suggest that group differences observed in the 

noise test did not simply reflect learned associations between feeding behaviour and the 

punishment of the noise stressor specifically, but instead reflected associations having been made 

between increased or decreased eating and the internal stress response that can be elicited 

similarly by the noise stimulus and by other types of stressful stimuli. To determine whether 

trained eating responses to the noise could generalize to other stressors, following tests 

investigated whether eating behaviour differences between groups observed in during the noise 

test, would persist when subjects experienced stress caused by novel stressors they had not 

previously been exposed to. 

Light Test. The light test used a light stimulus (CS+) as a stressor that signalled the 

threat of shock (US) following prior fear-conditioning trials received by all groups. During this 

test, patterns of behaviour observed during the noise test persisted, as the CE group increased 

feeding compared to the Control group while the CNE group decreased their feeding response. 

These effects were larger than for other tests involving novel stimuli, and light was the only 

stimulus aside from the noise stressor that caused the Control group to reduce their eating 

compared to when no stressor was present. While the effects of stress on the feeding behaviour 

of rats have not been previously examined using a light stimulus associated with shock as a 

stressor specifically, fear conditioning in rats involving context dependent association with a 



 

 
54 

single session of exposure to shock, has previously increased corticosterone levels in rats 

(Cordero, Venero, Kruyt, & Sandi, 2003). This is consistent with our behavioural measures 

suggesting that exposure to the light stimulus was effective in causing subjects to experience 

stress following fear conditioning (increased freezing during the light test compared to during the 

no-stress test and to other tests by the CNE and Control groups).  

While shock as a stressor has resulted in a range of effects on the feeding behaviour of 

rats (Siegel & Brantley, 1951; Solomon et al., 2007; Sterritt, 1965; Strongman, 1965; Tugendhat, 

1960; Ullman, 1951, 1952), it has been proposed that fear of shock may lead to decreased eating, 

as in one experiment where rats were exposed to unavoidable shock, rats increased eating while 

shocked,  but reduced eating compared to unstressed controls while in the same environment 

when the shock was off and subjects were conceivably stressed by the anticipation of being 

shocked (Sterritt, 1962). This is consistent with present results that the Control group 

significantly reduced their eating during the light test despite not receiving training involving 

associations between stress and reduced eating. Fear has also been used as a stressor resulting in 

decreased feeding by humans; one study showed that normal weight individuals reduced their 

eating when frightened compared to when calm (Schachter et al., 1968), and in a comparison of 

restrained and unrestrained eaters, anticipation of electric shock was considered a physical fear 

threat that resulted in significantly reduced eating by normal eaters (Heatherton et al., 1991). 

Behavioural results of the present study suggest that increased freezing indicative of stress was 

influenced more strongly during the light test than by other stressors tested. Results support that 

the light stimulus associated with shock was effective at causing rats to experience a stress 

response and that general effect of decreased feeding in response to this stressor was observed by 

Control subjects in response to this stimulus. 
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Restraint Test. Restraint stress has resulted in decreased eating by rats fairly consistently 

in past research (Calvez et al., 2011; Martí et al., 1994; Rybkin et al., 1997), however results 

from the present study suggest that our Control group did not change their eating behaviour 

during the restraint test compared to the no-stress test. This was also the only test during which 

increased feeding was not observed by the CE group compared to the Control group, though the 

CNE group reduced their eating compared to the Control group. It is possible that similar eating 

behaviour by the CE and Control groups, as well as similar eating by the Control group during 

the restraint and no-stress tests, may have been influenced by the timing of stimulus exposure, as 

subjects were exposed to the restraint stressor for 15 minutes prior to the testing period, while 

other stressors were presented continuously throughout the 20 minutes when feeding behaviour 

was observed. While the CNE group reduced eating compared to the Control group, the CNE 

group additionally had a longer eating latency during the restraint test compared to all other tests. 

This demonstrates a significant effect of training on feeding behaviour at the beginning of this 

test, immediately following release from the restraint stress, as subjects in the CNE group took 

longer to initiate feeding than the Control group.  

However, it is also possible that failure of the restraint stress to inhibit eating by the 

Control group could be explained by the aversive state reduction hypothesis, as restraint stress 

has been equated to emotional stress and has been found to increase preference for sweet foods 

like the sugar pellets that were used in this study (Alario, Gamallo, Beato, & Trancho, 1987). 

While this effect has not consistently been observed for acute restraint stress (Ely et al., 1997), 

this theory would support an explanation that significant differences between the CE and Control 

groups may have existed if sweet food had not been used as it is more likely to cause increased 

feeding in response to an emotional restraint stress specifically.  
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Tail-Pinch Test. Finally, while mild tail-pinches have had the general effect of causing 

increased feeding in several studies (Antelman & Szechtman, 1975; Dess, 1997; Levine & 

Morley, 1981, 1982; Rowland & Antelman, 1976), present results of Control group behaviour 

during this test were consistent with studies demonstrating no effect of tail-pinch stress on the 

feeding behaviour of rats (Meadows et al., 1988) as the Control group’s eating was not affected 

compared to when no stressor was present. Group differences in feeding behaviour were again 

reported for this test, following the pattern of behaviour observed by groups during the noise test, 

as the CNE group demonstrated reduced feeding compared to the Control group and the CNE 

group increased feeding compared to the Control group.  

Implications 

 Results for the restraint, light, and tail-pinch tests demonstrate that increased eating by 

the CE group and decreased eating by the CNE group observed during the noise test, persisted 

during exposure to novel stressors as well, suggesting that operant learning involving 

associations with one type of stressor can affect the eating behaviour of rats when exposed to 

other types of stressful stimuli as well.  Therefore, associations that were made between changes 

in feeding behaviour in response to the noise stressor, were extended to other stimuli activating a 

similar physiological stress response. The noise stimulus used for training, as well as the light, 

restraint, and tail-pinch stimuli, were presented to groups consistently in type, intensity, and 

frequency, though were found to produce different responses in the CE and CNE groups. Since 

both the CE and CNE groups were initially subjected to opposite schedules of operant 

reinforcement, we can conclude that the groups adapted their eating behaviour during exposure 

to these stressors according to how feeding had been associated with the noise stressor in the 

past. Pleasant past associations between eating and stress (i.e. the removal of a stressor as in 
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negative reinforcement training), resulted in increased eating during future stressful events, 

whereas unpleasant past associations between eating and stress (i.e., the presentation of a stressor 

as in punishment training) resulted in decreased eating. With the discussed results, the present 

study therefore contributes to literature examining the effects of various types of acute stressors 

on untrained rats through examination of Control group behaviour and CE and CNE behaviour 

further propose that learning history, specifically an operant learning model, can affect how rats 

will direct their eating behaviour during future stressful events.  

In light of recent research, the implications of food palatability are especially important to 

consider when interpreting results of this study due to the use of sugar pellets in training and 

testing. The aversive state reduction hypothesis and reward-based model of stress eating, each 

propose that access to sweet foods will more likely cause increased eating in response to stress 

and that consumption of these foods consequently reduces activation of the stress response 

(Adam & Epel, 2007; Pool et al., 2015). Therefore, rats who ate more while exposed to stressors 

in testing (expected by the CE group), may have consequently experienced a reduction of stress 

compared to rats who consumed less sugar pellets, meaning that groups may have experienced 

different levels of stress-severity during testing.  Although speculative, this could offer an 

explanation for why the CNE group demonstrated significantly reduced feeding behaviour by the 

fourth training trial, while divergent feeding behaviour between the CE and Control groups until 

later trials; if stress experienced by the CE group was reduced consequently following the 

consumption of sugar pellets during trials, the noise stress would be a less effective punisher in 

the context of negative reinforcement during punishment training received by the CE group. 

Results of the restraint test could also possibly be explained by aversive state reduction theories, 

as similar feeding between CE and Control groups during this emotional stressor could reflect 
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that increased sugar consumption by these groups consequently evoked a pleasurable experience 

for subjects, inhibiting the effect of increased feeding by the CE group following the restraint 

stress (Kinzig et al., 2008). 

These theories could also explain the apparent greater impact that training had on the 

CNE group compared to CE group feeding, as they suggest that higher consumption of sugar by 

the CE group should result in a reduction of the unpleasant stress experienced by this group 

during training and testing (Pool et al., 2015). However, this was not directly tested and 

measuring hormones and neurotransmitters involved in both stress and reward responses such as 

corticosterone and dopamine, could have further informed these theories and offered clarification 

for whether sugar consumption correlated an with an inhibited stress response, supporting the 

role of reward the reward system in these responses (Adam & Epel, 2007). The use of sugar 

pellets in training and testing, may therefore have influenced results due to the implications of 

food palatability increasing the likelihood of increased feeding during stress.   

Limitations and Future Directions 

 While this study successfully demonstrated that both increased and decreased feeding in 

response to stress can be learned by rats through operant conditioning, proposing this as a factor 

contributing to these effects observed within the human population, the present design had 

various limitations. The analysis of observed behaviours known to correlate with stress provided 

limited comparisons of stressor severity or intensity, as few significant differences were reported 

for these measures (Table 2) and physiological correlates of stress such as corticosterone levels 

were not obtained. The use of an animal model in a laboratory setting further limits what general 

conclusions can be drawn from results and to what extent they can be applied to understanding 

the eating behaviours of humans in a naturalistic setting. Finally, as discussed, implications of 
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food palatability are important to consider when interpreting results of this study due to the use 

of sugar pellets. It is therefore important to consider results in the context of past research and 

theories to understand the implications of these limitations and offer direction for future 

investigations. 

Analysis of freezing, urination, defecation, and grooming behaviours during exposure to 

stressors indicate that freezing frequency was the only measure consistently affected by exposure 

to all stress stimuli compared to the absence of stress. The main effect of stressor-type identified 

increased freezing during the noise, light, restraint, and pinch tests, compared to the no-stress 

test, and freezing was further increased during the light test compared to all other tests. 

Consistent with these results, the light was the only stressor to affect the feeding behaviour of the 

Control group and appeared to have the greatest impact on the feeding behaviour of CE and CNE 

groups aside from the noise stressor used to train them (Figure 4). The large effect of the noise 

test on CE and CNE group eating can be explained by direct associations made with the noise 

during training, while the magnitude of effect of the light stressor on feeding could imply that it 

was more effective than restraint and pinch stressors at inducing a stress response, or that the 

light stressor was perhaps more effective than restraint and tail-pinch stressors at causing rats to 

experience a stress response similar to that caused by the noise stress, resulting in more 

generalization of learned responses between the noise and light stimuli. Limited significant 

effects observed for other behavioural measures could have been influenced by the small sample 

size of groups as the repeated-measures ANOVA comparing behavioural measures by groups for 

all tests, had a low power and effects may have been observed if more subjects had been 

assigned to each group.  
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Though behavioural correlates of stress were not consistently observed, this study was 

further limited as it did not include measures of physiological correlates of stress such as 

corticosterone and other hormones and neurotransmitters involved in the stress response that may 

have allowed comparisons of the intensities of the stressors that were tested. As discussed, CRH, 

ACTH, and corticosterone levels, are all affected during stress (Adam & Epel, 2007; Dickerson 

& Kemeny, 2004; Maniam & Morris, 2012) but measures for these were not obtained. Due to 

these limitations, the stress-response of subjects during noise, light, restraint, and pinch tests 

cannot be quantified or compared. Previous research has however observed increased 

corticosterone levels and behavioural measures indicative of stress by rats in response to 

exposure to these types of stressors and have used similar stimuli as stressors in laboratory 

investigations. Though increased freezing frequency was the only significant observation 

supporting that testing stimuli were effective at causing stress, previously discussed literature 

further supports this assumption.   

In future research, different stressors could be investigated within the present paradigm 

with additional physiological measures to gain appropriate and necessary representation of 

typical response sets resulting from schedules of negative reinforcement and punishment 

training. This new training paradigm could be further used to explore the strength of training by 

testing how long differences in feeding behaviour would persist under stress and at what point 

these differences would extinguish from the subjects’ behavioural repertoires, past the 10 day 

period prefacing the present follow-up tests. Future studies should continue to investigate the 

influences of stressor type, intensity, and frequency on feeding responses discussed frequently in 

past literature, as they have been examined inconsistently between studies and it remains unclear 

what qualities of stressful stimuli will determine  how feeding will be affected (Greeno & Wing, 
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1994). While implications of stressor-type must further examined, implications of food-type 

should further be examined within the context of the proposed model due to the relevance of 

food palatability in recent investigations (Maniam & Morris, 2012). It is impossible to know 

without further investigation, whether operant training would have been effective if highly 

palatable food had not been selected to be used in training, nor is it clear whether learned feeding 

responses to stress would persist if a different food were offered than the sugar pellets used in 

training. Future research to investigate the effects of food palatability within the present design 

would contribute to understanding the implications of food palatability and learning history on 

feeding responses to stress.  

Finally, the use of a controlled animal model limits the extent to which conclusions 

drawn from this experiment can be applied to understanding human behaviour. The use of rats 

also prevents subjective reporting of stress experienced that could be obtained in a human study 

through self-report measures. Since physiological correlates of stress were not measured, 

behavioural observations were the only data collected to support whether stimuli were effective 

in causing stress to be experienced by subjects (with only freezing frequency demonstrating 

consistent significant effects). While this study demonstrates that operant learning can produce 

increased or decreased eating responses by rats exposed to stress, it is unclear exactly how this 

learning may manifest in naturalistic settings. Attempts to replicate this experiment in human 

subjects would be difficult because it would be impossible to maintain the same level of control 

over extraneous variables outside of testing and because human subjects may have already 

developed a stress eating or non-eating response to stress.  

Self-report by individuals who already demonstrate stress eating and non-eating 

responses may however allow for past experiences of associating stress and changes in feeding 
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behaviour to be identified retrospectively to support this theory in humans. Learning paradigms 

have been effective in producing changes in the feeding behaviour of individuals in human 

studies, notably, operant learning has been effective in treating anorexia nervosa in human 

subjects, though is most effective in short-term treatment to increase feeding and weight (Bemis, 

1987; Bhanji & Thompson, 1974; Touyz, Beumont, Glaun, Phillips, & Cowie, 1984). Recent 

research has further identified implications of learning theories on obesity, proposing that 

overeating by obese individuals promoted by behavioural and environmental cues associated 

with overeating in the past, may be consequently reduced through mechanisms that enhance 

extinction of these cues (Boutelle et al., 2015; Boutelle & Bouton, 2015). Considering these 

examples and the results of the present study, it may be possible to apply learning theory to 

developing programs aimed at changing individual’s existing eating patterns in response to 

stress, either through the conditioning of new associations between stress and feeding, or by 

encouraging the extinction of existing associations that have be reinforced in the past. These 

types of interventions could be beneficial in cases where eating behaviour changes during stress 

may contribute to health conditions such as obesity and eating disorders.  

Conclusion 

An issue in research in this domain will undoubtedly be associated with the need for the 

execution of strictly controlled human studies of the nature of the present study for the various 

findings related to stress eating and non-eating in rats to be applied to the human population. 

Still, the results of the present study along with the suggested improvements and described 

recommendations for future research, contribute to the domain of feeding research and contribute 

to the search for an accurate scientific explanation for changes in eating behaviour during 

exposure to stress, demonstrating for the first time that stress eating and stress non-eating may be 
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conditioned responses as these responses were found to be influenced by past operant learning. It 

is important to note that past research has investigated the effects of multiple variables on the 

stress-eating relationship, such as individual differences in weight and dieting history, as well as 

differences in food composition and stressor-type (Adam & Epel, 2007; Greeno & Wing, 1994). 

While research has not described consistent effects of these variables, there are clearly multiple 

factors influencing how stress will affect an individual’s eating during stress, and it is unlikely 

that a single theory will account for a full explanation of these effects. While many variables are 

likely involved in determining how an individual will direct their eating response during stress, 

operant learning produced divergent feeding responses to stress in a controlled study, suggesting 

that in a naturalistic setting, inadvertent associations made between increased stress and changes 

in feeding behaviour that occur repeatedly, may influence future responses of stress eating and 

non-eating. Considering that the high prevalence of reported stress by individuals that continue 

to escalate in this society (2007, American Psychological Association) along with the 

comorbidity of health problems associated with stress such as obesity, eating disorders, and risk 

of addictive behaviours (American Psychological Association, 2010), research in the domain of 

stress and eating behaviour may be important to our understanding of and in developing 

interventions to manage the implications of these behaviours on the health of individuals.  

 

 

 

 

 

 



 

 

APPENDIX A 

 

Time Line of Methods:  

 

 

 

 (Arrival to colony)                                                          (Group assignment)                    (3 day break) 

I 

Orientation 

- 10 days in home cages 

 

I 

Habituation 

- 7 trials; 10 subject 

trials/day (21days) 

 

I 

Conditioning 

- 9 trials/group (42days) 

 

I 

Noise test 

- 1 day/group (3days) 

 

I 

No-Stress test 

- 1 day/group (3days) 

 

 

 

 

I 

Reconditioning/ Light-Shock association trials 

- 3 reconditioning trials/group (9days) 

- Separated by 2 days of light-shock association for all 

groups (2days) 

 

I 

Light Test 

- 1 day/group (3days) 

 

I 

Reconditioning 

- 3 trials/ group (9days) 

 

I 

Restraint Test 

- 1 day/group (3days) 

 

   

                            (10 day break)                           (End) 

 

                                    

I 

Reconditioning 

- 3 trials/ group (9days) 

 

I 

Pinch Test 

- 1 day/group (3days) 

 

I 

Reconditioning 

- 3 trials/ group (9days) 

 

I 

Follow up No-Stress 

test 

- 1 day/group (3days) 

 

I 

Follow up Noise test 

- 1 day/group (3days) 
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