

The 0 െ 1 Multiple Knapsack Problem

by

Hayat Abdullah Shamakhai

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science (MSc) in Computational Science

The Faculty of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

© Hayat Abdullah Shamakhai, 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by LU|ZONE|UL

https://core.ac.uk/display/222897299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE

Laurentian Université/Université Laurentienne

Faculty of Graduate Studies/Faculté des études supérieures

Title of Thesis

Titre de la thèse The 0-1 Multiple Knapsack Problem

Name of Candidate

Nom du candidat Shamakhai, Hayat

Degree

Diplôme Master of Science

Department/Program Date of Defence

Département/Programme Computational Sciences Date de la soutenance May 31, 2017

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Youssou Gningue

(Co-Supervisor/Co-directeur(trice) de thèse)

Dr. Hafida Boudjellaba

(Co-Supervisor/Co-directeur(trice) de thèse)

Dr. Haibin Zhu

(Committee member/Membre du comité)

Dr. Matthias Takouda

(Committee member/Membre du comité)

 Approved for the Faculty of Graduate Studies

 Approuvé pour la Faculté des études supérieures

 Dr. David Lesbarrères

 Monsieur David Lesbarrères

Dr. Oumar Mandione Guèye Dean, Faculty of Graduate Studies

(External Examiner/Examinateur externe) Doyen, Faculté des études supérieures

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Hayat Shamakhai, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive

and make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the

duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or

project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis,

dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in whole or in

part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that this copy is being made available in this form by the authority of the copyright

owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted

by the copyright laws without written authority from the copyright owner.

 iii

Abstract

In operation research, the Multiple Knapsack Problem (MKP) is classified as a

combinatorial optimization problem. It is a particular case of the Generalized Assignment

Problem. The MKP has been applied to many applications in naval as well as financial

management. There are several methods to solve the Knapsack Problem (KP) and

Multiple Knapsack Problem (MKP); in particular the Bound and Bound Algorithm

(B&B). The bound and bound method is a modification of the Branch and Bound

Algorithm which is defined as a particular tree-search technique for the integer linear

programming. It has been used to obtain an optimal solution. In this research, we provide

a new approach called the Adapted Transportation Algorithm (ATA) to solve the KP and

MKP. The solution results of these methods are presented in this thesis. The Adapted

Transportation Algorithm is applied to solve the Multiple Knapsack Problem where the

unit profit of the items is dependent on the knapsack. In addition, we will show the link

between the Multiple Knapsack Problem (MKP) and the multiple Assignment Problem

(MAP). These results open a new field of research in order to solve KP and MKP by

using the algorithms developed in transportation.

Keywords:

Generalized Assignment Problem, Assignment Problem, Knapsack problem, Multiple

Knapsack Problem, Branch and Bound Algorithm, Bound and Bound Algorithm,

Transportation Problem, Multiple Assignment Problem, Adapted Transportation

Problem, Vogel Approximation Method, Group Role Assignment problem.

 iv

Acknowledgements

All praise and thanks to Allah who made all the things possible and without his blessing

and guidance I’m not able to finish this thesis.

Then I would like to express my deepest gratitude and appreciation to my supervisor Dr.

Youssou Gningue who supports me throughout my thesis with his patience and

knowledge. His support, guidance, encouragement and suggestions helped me through

work and written of this thesis.

Also, I would like to extend my thanks to Dr. Hafida Boudjellaba to be my co-supervisor

and to my committee members Dr. Matthias Takouda and Dr. Haibin Zhu.

I am indebted to my lovely dad Abdullah and my lovely mom Mariam; I am where I am

today because of your love, support, prayers and encouragements.

Of course special thanks go to my sisters and brothers especially my dear brother Hassan

who has always supported me.

Also, I would like to thank my government of Saudi Arabia for giving this opportunity to

complete my master degree.

 v

Table of Contents

Abstract .. iii

Acknowledgements ... iv

Table of Contents ... v

List of Figures ... viii

List of Tables .. ix

Abbreviations .. x

Introduction ... 1

Chapter 1 ... 5

1 Generalized Assignment Problem .. 5

1.1 Introduction .. 5

1.2 Literature review of the Generalized Assignment Problem 6

1.3 The Mathematical Formulation of the GAP .. 12

1.4 Relaxation heuristic for the Generalized Assignment Problem 13

1.4.1 Lagrangian Relaxation ... 14

1.4.2 Surrogate Relaxation ... 14

1.5 Generalized Assignment Problem Application and Extensions 15

1.5.1 Multiple Resource Generalized Assignment Problem 16

1.5.2 Multilevel Generalized Assignment Problem .. 16

1.5.3 Dynamic Generalized Assignment Problem.. 17

1.5.4 Bottleneck Generalized Assignment Problem ... 17

1.5.5 GAP with Special Ordered Set .. 17

1.5.6 Stochastic Generalized Assignment Problem .. 18

1.5.7 Bi-Objective Generalized Assignment Problem.. 18

1.5.8 Generalized Multi-Assignment Problem ... 18

1.6 Conclusion ... 18

 vi

Chapter 2 ... 20

2 Knapsack Problem .. 20

2.1 Introduction .. 20

2.2 Mathematical Formulation of 0-1 KP ... 21

2.3 Concept of Branch and Bound Algorithm ... 22

2.4 The Branch and Bound Algorithm ... 23

2.5 Steps of Branch and Bound Algorithm .. 27

2.6 Example of illustration ... 28

2.7 Conclusion ... 33

Chapter 3 ... 36

3 The 0-1 Multiple Knapsack Problem .. 36

3.1 Introduction .. 36

3.2 The Formulation of the Multiple Knapsack Problem .. 37

3.3 Relaxations of the 0-1MKP ... 38

3.3.1 Surrogate Relaxation .. 39

3.3.2 Linear Programming Relaxation ... 40

3.3.3 Lagangian Relaxation ... 41

3.4 Branch and Bound Algorithm .. 45

3.5 Bound and Bound Algorithm ... 46

3.5.1 Example of illustration ... 47

3.6 Conclusion ... 50

Chapter 4 ... 51

4 Solving the 0-1 Knapsack Problem by an Adapted Transportation

 Algorithm .. 51

4.1 Introduction .. 51

4.2 Linear Transportation Problem .. 51

4.3 Linear Transportation Problem and Knapsack Problem .. 53

4.4 Adapted Transportation Algorithm .. 56

4.4.1 Vogel Approximation Method ... 56

 vii

4.4.2 Dual Variable and test of reduction.. 57

4.4.3 Adapted Transportation Algorithm .. 59

4.5 Example of illustration ... 65

4.6 Conclusion ... 74

Chapter 5 ... 75

5 Solving the 0-1 Multiple Knapsack Problem by an Adapted Transportation

Algorithm ... 75

5.1 Introduction .. 75

5.2 The Multiple Knapsack Problem Formulation .. 75

5.3 Linear Transportation Problem and Multiple Knapsack Problem 76

5.4 Adapted Transportation Algorithm .. 79

5.4.1 Vogel Approximation Method ... 79

5.4.2 Dual Variable and test of reduction ... 80

5.5 Example of illustration ... 82

5.5.1 Example 1 .. 82

5.5.2 Example 2 .. 94

5.6 Conclusion ... 106

Chapter 6 ... 108

6 Multiple Assignment Problem ... 108

6.1 Introduction .. 108

6.2 Mathematical Formulation of the MAP ... 108

6.3 Group Role Assignment Problem .. 111

6.4 Real world application of the GRAP ... 113

6.5 Classification Group Role Assignment Problem ... 118

6.6 Conclusion ... 119

Conclusion ... 120

References .. 122

 viii

List of Figures

Figure 1: Tree Representation ... 33

Figure 2: Tree representation [42] .. 50

Figure 3: Soccer Team [76] .. 114

Figure 4: Evaluation values of agents and roles and the assignment matrix [76] 116

Figure 5: Solution of Figure 3 [76]. .. 118

file:///E:/thesis/thesisFINAL-Hayat%20Shamakhai.docx%23_Toc481416089
file:///E:/thesis/thesisFINAL-Hayat%20Shamakhai.docx%23_Toc481416090
file:///E:/thesis/thesisFINAL-Hayat%20Shamakhai.docx%23_Toc481416091
file:///E:/thesis/thesisFINAL-Hayat%20Shamakhai.docx%23_Toc481416092
file:///E:/thesis/thesisFINAL-Hayat%20Shamakhai.docx%23_Toc481416093

 ix

List of Tables

Table 1: Comparisons among assignment strategies [76]... 117

file:///E:/thesis/thesisFINAL-Hayat%20Shamakhai.docx%23_Toc479954005

 x

Abbreviations

GAP Generalized Assignment Problem

VDSH Variable Depth Search Heuristic

HH Hybrid Heuristic

EC Ejection Chain

MSPEC Multi – Start Parallel Ejection Chain

CPEC Cooperative Parallel Ejection Chain

CGA Constructive Genetic Algorithm

GA Genetic Algorithm

GRASP Greedy Randomized Adaptive Search

AP Assignment Problem

TP Transportation Problem

MRGAP Multiple Resource Generalized Assignment Problem

MGAP Multiple Generalized Assignment Problem

DGAP Dynamic Generalized Assignment Problem

BGAP Bottleneck Generalized Assignment Problem

 xi

GAPSOS Generalized Assignment Problem with Special Ordered Set

SGAP Stochastic Generalized Assignment Problem

BIGAP Bi-Objective Generalized Assignment Problem

GMAP Generalized Multi – Assignment Problem

MKP Multiple Knapsack Problem

KP Knapsack Problem

B&B Branch and Bound Algorithm

B&B Bound and Bound Algorithm

MTM Martello and Toth Method

MAP Multiple Assignment Problem

GRAP Group Role Assignment Problem

LTP Linear Transportation Problem

VAM Vogel Approximation Method

ATA Adapted Transportation Algorithm

BKP Balanced Knapsack Problem

BMKP Balanced Multiple Knapsack Problem

MIN – BKP Minimization Balanced Knapsack Problem

 xii

MIN – BMKP Minimization Balanced Multiple Knapsack Problem

1

Introduction

Primarily, our research interest was the Generalized Assignment Problem (GAP). The

GAP is a generalization form of the classic assignment problem where a task can be

assigned to more than one agent. It consists in assigning 𝑛 tasks 𝑗 = 1, … , 𝑛 to 𝑚 agents

𝑖 = 1, … ,𝑚. A task 𝑗 can be performed by agent 𝑖 with weight 𝑤𝑖,𝑗 such that the sum of

weight will not exceed the capacity 𝑊𝑖. The assigned of task 𝑗 to agent 𝑖 induces a cost

𝑃𝑖,𝑗. If we consider the decision variable

𝑋𝑖,𝑗 = {
1 if task 𝑖 𝑖s assigned to 𝑗
0 else

The GAP can formulated as

𝐺𝐴𝑃

{

 min𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑤𝑖,𝑗

𝑛

𝑗=1

𝑋𝑖,𝑗 ≤ 𝑊𝑖 ; 𝑖 = 1,… ,𝑚

∑𝑋𝑖,𝑗 = 1 ; 𝑗 = 1,… , 𝑛

𝑚

𝑖=1

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1, … ,𝑚 ; 𝑗 = 1,… , 𝑛

The Generalized Assignment Problem is extensively studied, and many algorithms have

been proposed to solve it. The subject constitutes my first seminar presentation. This has

provided to me the opportunity to make a general review on the subject. From this, we

notice that the problem has a large range and collection a specific subject is very difficult

of the master thesis. Therefore, we decided to narrow the research on the GAP where the

 2

parameters 𝑤𝑖,𝑗 are uniform i.e. 𝑤𝑖,𝑗 = 1 and called Uniform Generalized Assignment

Problem (UGAP). The UGAP is formulated as

𝑈𝐺𝐴𝑃

{

 min 𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,𝑗

𝑛

𝑗=1

≤ 𝑊𝑖; 𝑖 = 1,… ,𝑚

∑𝑋𝑖,𝑗 = 1; 𝑗 = 1,… , 𝑛

𝑚

𝑖=1

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛

Our goal was to select some algorithms developed for the GAP in order to adapt it and

simplify it for the UGAP. We notice that the UGAP was fully studied when the

parameters 𝑊𝑖 are integers as the Group Role Assignment Problem (GRAP). Zhu et al

[76] had provided a very elegant approach to solve those problems. Therefore, we

decided to extend the research to a more general form where 𝑤𝑖,𝑗 = 𝑤𝑗 and the

coefficients of the objective 𝑃𝑖,𝑗 = 𝑃𝑗 . This provides the 0 − 1 minimization Multiple

Knapsack Problem. The minimization MKP is a special case of the GAP where the profit

and weight for each item are independent of the knapsack. It can be formulated as an

integer linear programming problem

𝑀𝐾𝑃

{

 min 𝑍 =∑∑𝑃𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑤𝑗

𝑛

𝑗=1

𝑋𝑖,𝑗 ≤ 𝑊𝑖; 𝑖 = 1,… ,𝑚

∑𝑋𝑖,𝑗 = 1; 𝑗 = 1,… , 𝑛

𝑚

𝑖=1

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛

 3

The MKP is a generalization of the 0 − 1 Knapsack Problem where there is a single

knapsack. The purpose is to provide a new approach for solving the MKP and its single

form. The idea of the approach begins by linking the KP and the Linear Transportation

Problem (LTP). After that, we solve the problem by using the Adapted Transportation

Algorithm (ATA). We also apply this algorithm for solving the MKP. The initial

solutions are obtained by using Vogel Approximation Method (VAM) which is a

heuristic method of solving the Transportation Problem (TP). After that, we improve the

initial solutions by using the dual variable and resulting reduced cost. The outline of this

thesis is organized as following:

In chapter 1, we present the Generalized Assignment Problem because it is a

generalization of the subject of this thesis. It is formulated as an integer linear

programming. In this chapter, we are also presented some applications and extensions of

the GAP.

In next chapter, we propose the 0 − 1 Knapsack Problem and also formulate it as an

integer linear programming. In addition, we focus on the Branch and Bound Algorithm

(B&B) as a method for solving the problem. We illustrate the result by an example.

The following chapter is about the 0 − 1 Multiple Knapsack Problem. In addition, we

introduce the Branch and Bound Algorithm and the Bound and Bound Algorithm. The

Bound and Bound algorithm is a modification method of the Branch and Bound

Algorithm. Therefore, we also provide an illustration example that has been solved by the

Bound and Bound Algorithm to obtain an optimal solution.

 In chapter 4, we begin by presenting the Transportation Problem which is also

formulated as an integer linear programming problem. After that, we show the link

 4

between the Knapsack Problem and the Linear Transportation Problem. The resulting

method is an adaptation of the transportation algorithm and provides an optimal solution.

We apply this algorithm to the same example that has been introduced in chapter 2.

In chapter 5, we present the Multiple Knapsack – Transportation Problem (MKTP). We

apply the Adapted Transportation Algorithm for solving the problem and also provide an

optimal solution. Actually, in this chapter, we present two different examples. In the first

the profit of each item 𝑗 are independent of knapsack 𝑖 while the second it is dependent of

the knapsack 𝑖.

The last chapter is about the Multiple Assignment Problem which is a generalization of

the classic Assignment Problem. Therefore, we introduce and formulate the problem as

an integer linear programming problem. We also present some cases of the MAP. One of

these cases is called Group Role Assignment Problem. In addition, we show that the

GRAP is indicated to the GAP and also can be a Multiple Knapsack Problem in particular

cases.

.

 5

Chapter 1

1 Generalized Assignment Problem

1.1 Introduction

The Generalized Assignment Problem (GAP) is a problem in combinatorial optimization.

It is known as a generalization form of a classic Assignment Problem (AP) when the

number of both task and agent are equal. However, for the Generalized Assignment

Problem (GAP), the number of agents assigned to each task could be different from one

to the other.

The objective of the Generalized Assignment problem is to minimize the obtained cost

without exceeding the capacity. In addition, it has been applied to many real - life

applications in governments and industries such as various routing problems and flexible

manufacturing systems.

Moreover, the GAP has been solved by many algorithms some of them give an optimal

solution, and others provide an approximate solution.

In this chapter, we will briefly present the Generalization Assignment Problem which is a

generalization of the subject of this thesis; the Multiple Knapsack Problem (MKP).

 6

1.2 Literature review of the Generalized Assignment

Problem

The GAP is known to be an NP- complete problem and cannot be solved by a polynomial

– time approximation algorithm. Therefore, there are several approximation algorithms

for GAP. This is due to the fact that these algorithms address a different setting where

available agent capacities are not fixed and the weighted sum of cost and available agent

capacity are minimized. All of these algorithms have feasible solutions; therefore, for

some of them the feasible solutions are required as an input.

Using an implicit enumerative procedure can help to obtain an optimal solution for GAP.

An implicit enumerative procedure has two methods: branch and bound scheme, and

branch and price scheme. The branch and bound has four procedures: an upper bounding

procedure, a lower bounding procedure, a branching strategy and a searching strategy. A

branch and price method is known to be similar to branch and bound method; however,

the bounds can be obtained by solving the LP – relaxations of the subproblems by

column generation.

Ross and Soland [61] suggested the first branch and bound algorithm for solving GAP.

The GAP is considered a minimization problem; therefore, Ross and Soland [61] achieve

the lower bounds by relaxing the capacity constraints. Martello and Toth [43] proposed

removing the semi – assignment constraints where the problem decomposes into a series

of knapsack problems. Chalmet and Gelders [10] introduced the Lagrangian relaxation

algorithm of the semi – assignment constraints. Fisher, Jalikumar and Wassenhove [18]

 7

used this technique with multipliers by heuristic adjustment methods to obtain the lower

bounds in the branch and bound procedure.

Guignard and Rusenwein [23] proposed a new algorithm which is Known as a branch and

bound algorithm. With an enhanced Lagrangian dual ascent procedure this algorithm

effectively solves GAP with up to 500 variables. This algorithm solves a Lagrangian dual

at each enumeration node and adds a surrogate constraint to Lagrangian relaxation model.

Drexl [15] introduced a hybrid branch and bound /dynamic program algorithm where the

upper bounds are obtained by an efficient Monte Carlo type heuristic. Nauss [51] presents

a branch and bound algorithm where linear programming cuts, Lagrangian relaxation,

and subgradient optimization are used for achieving good lower bounds. Furthermore,

Ronen [60] who proposes feasible – solution generators with heuristic uses them to

derive good upper bounds. Nauss [50] has also used similar techniques as Ronen in order

to solve the elastic generalized assignment problem.

For branch and price algorithm, Savelsbergh [64] proposed first branch and price

algorithm to solve the GAP. Martello and Toth [40] presented a combination of branch

and price algorithm.

Nasberg [28] introduced a knapsack problem by using the combination of the algorithm

to calculate the upper bound and pricing problem. Barnhart et al [4] developed the

formula of GAP via applying Dantzig – Wolfe decomposition to obtain a tighter LP

relaxation. A series of knapsack problem can solve the LP relaxation of reformulated

problem pricing. Pigatti et al [56] introduced a branch and cut – price algorithm with a

stabilization mechanism to speed up the pricing convergence. Ceselli and Righini [9]

 8

proposed a branch and price algorithm for multilevel generalized assignment problem

which is based on a decomposition and a pricing subproblem: a multiple – choice

knapsack problem. Since the GAP is considered as an NP – hard problem; therefore,

some instances of the GAP are computationally intractable. That reason requires finding

heuristic approaches. Since heuristic approaches can be used in two fold; they are used as

stand – alone algorithm to obtain a good solution within a reasonable time and attempt to

achieve the upper bounds in exact solution methods, for instance, the branch – and –

bound procedure. Although the variety of the heuristics is high, they mostly fall into one

of the following two categories: greedy heuristics and mate – heuristics.

Klastorin [30] suggests a two stages heuristic algorithm for solving GAP. In stage one,

the algorithm uses a modified subgradient algorithm to search for the optimal dual

solution and in stage two, a branch and bound algorithm searches about the neighborhood

of the similar solution that is found in stage one.

Cattrysse et al [8] used column generation techniques to obtain upper and lower bounds.

A Column is represented as a feasible assignment of a subset of tasks to a single agent.

The main problem is formulated as a set partitioning problem. New columns that have

been obtained will be added to the main problem by solving a knapsack problem for each

agent. A dual ascent procedure can be solved using LP relaxation of the set- partitioning

problem. Martello and Toth [42] proposed greedy heuristic where it helps to assign the

jobs to machines based on a desirability factor. This factor is known as the difference

between the largest and second – largest weight factors. This heuristic approach uses to

reduce a problem size by fixing variables to one or to zero. Lorena and Narciso [35]

 9

developed Relaxation heuristics for maximization version of GAP where a feasible

solution can be obtained by a subgradient search in a Lagrangian or surrogate relaxation.

Haddadi [24] introduces a substitution variable in a Lagrangian heuristic for GAP. This is

defined as the multiplication of the problem where resulted relaxation is divided into two

subproblems: the transportation problem and knapsack problem. Naricso and Lorena [49]

find a good feasible solution by using relaxation multipliers with efficient constructive

heuristics.

Haddadi and Ouzia [25] described a branch and bound algorithm; a standard subgradient

approach that uses each node of the decision tree to solve the Lagrangian dual and find an

upper bound.

There is a contribution that attempts to solve a GAP of smaller size by a new heuristic

that is applied to exploit solution of the relaxed problem. Romijh and Romero Morales

[59] applied the optimal value function from a probabilistic point of view and expanded a

class of greedy algorithms.

Variable depth search heuristic (VDSH) introduced by Amini and Racer [1] and used to

solve the GAP. VDSH is defined as a generalization of local search in which the size of

the neighborhood adaptively changes to traverse a larger search space. Amini and Racer

[2] expand a hybrid heuristic (HH) around the two heuristics called VDSH and HGAP.

There is another hybrid approach introduced by Lourenco and Serra [38] where a MAX –

MIN system (MMAS) are applied with GRASP for solving the GAP.

 10

Yagiura et al [73] suggest a new method for solving the GAP and is called a variable

depth search (VDS). The main idea of this method alternates between shift and swap

moves to explore the solution space. The main goal of this method is that infeasible

solutions are allowed to be considered.

Yagiura et al [72] developed VDS by incorporating branching search processes to

construct the neighborhoods. Yagiura et al present appropriate choices of branching

strategies, which subsequently help to develop the performance of VDS.

Lin et al [34] mention several observations on VDSH method by a sequence of

computational experiments. They propose six greedy strategies for generating the initial

feasible solution and created new simplified strategies. This is a positive change as the

purpose is to improve phase of the method.

Osman [52] expands a hybrid heuristic that incorporates simulated annealing and tabu –

search.

 Yagiura et al [70] suggest a tabu – search algorithm as a new heuristic for solving the

GAP, which uses an ejection chain approach where an ejection chain is defined as an

embedded neighborhood construction that compounds simple move to design several

complex and powerful moves. Yagiura et al [70] considered the chain to be a series of

shift moves where each two successive moves share a common agent.

Yagiura et al [71] develop their previous method by introducing a new approach called a

path relinking approach. A path relinking approach is a known mechanism for producing

new solutions by combining two or more reference solutions.

 11

Asahiro et al [3] improve two parallel heuristic algorithms based on the Ejection Chain

local search EC presented by Yagiura et al [70]. They proposed that EC has two parallels

multi – start and parallel EC (MSPEC) cooperative parallel EC (CPEC).

Diza and Fernadez [14] create a flexible tabu – search algorithm for solving the GAP.

The search allowed to research about an infeasible region and adaptively modifying the

objective function is the source of flexibility. The modification of the objective function

happens due to the dynamic adjustment of the weight of the penalty incurred for violating

feasibility. In this method with tabu – search method we can explore the infeasible region

and solution is qualitatively preferred to other of its structure.

Chu and Beasley [11] improve a genetic algorithm for solving the GAP. Since genetic

algorithm is defined to incorporate fitness – unfitness pair evaluation function as a

representation scheme. This algorithm is used as a heuristic that helps to improve the cost

and feasibility of GAP.

Feltl and Raidl [16] modify this algorithm by adding new features such us a modified

selection and replacement scheme for dealing with an infeasible solution more

appropriately and a heuristic mutation operator. Wilson [68] suggests another algorithm

for GAP, which operates in a dual sense. This algorithm has tried to genetically restore

feasibility to a set of near optimal solution.

Lorena et al [36] suggest a constructive genetic algorithm (CGA) for solving GAP. There

are some new features for CGA that can be compared to GA such us dynamic population

and population formation by schemata, etc...

 12

Lourenco and Serra [37] propose two metaheuristic algorithms for solving GAP. The first

is a MIN – MAX ant system and is combined with local search and tabu – search

heuristics. The second metaheuristic is a greedy randomized adaptive search heuristic

(GRASP), which is considered with several neighborhoods.

Monfared and Etemadi [47] apply a neural network as an approach for solving the GAP.

1.3 The Mathematical Formulation of the GAP

It consists of minimizing the cost of assigning 𝑛 tasks to 𝑚 agents, so each task should be

assigned to only one agent, subject to a capacity constraint for each agent.

The GAP can be formulated as an integer programming problem

𝐺𝐴𝑃

{

 min Z =∑∑𝑃𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑋𝑖,𝑗

∑𝑤𝑖,𝑗

𝑛

𝑗=1

𝑋𝑖,𝑗 ≤ 𝑊𝑖; 𝑖 = 1,… ,𝑚

∑𝑋𝑖,𝑗

𝑚

𝑖=1

= 1; 𝑗 = 1,… , 𝑛

𝑋𝑖,𝑗 ∈ {0,1}; 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛

The coefficient 𝑃𝑖,𝑗 are the cost of assigning task 𝑗 to agent 𝑖, 𝑤𝑖,𝑗 is the requirement

coefficients “weight” when task 𝑗 is assigned to agent 𝑖 and 𝑊𝑖 is the capacity that is

available for agent 𝑖. The objective function represents the total cost of assigning task 𝑗 to

agent 𝑖. The first set of constraints represents the total weight of assigning task 𝑗 to agent

𝑖 does not exceed the capacity 𝑊𝑖. For the third equation, it says each task 𝑗 is assigned to

exactly one agent. The final equation represents the binary conditions on the decision

 13

variables where 𝑋𝑖,𝑗 take on the value 1 when task 𝑗 is assigned to agent 𝑖 and 0

otherwise.

The Generalized Assignment Problem (GAP) usually has a large dimension and is a very

general problem which is constituted by some special cases of a problem.

The 0 − 1 Multiple Knapsack Problem is a special case of the Generalization Assignment

Problem (GAP) when item 𝑗 assigns to knapsack 𝑖 with weight 𝑤𝑗, profit 𝑝𝑗 and capacity

𝑊𝑖.

The classical Assignment Problem (AP) is also a special case of the Generalization

Assignment when 𝑤𝑖,𝑗 = 1 for all 𝑖 ∈ 𝑚, 𝑗 ∈ 𝑛 and 𝑚 = 𝑛.

Also, the Generalized Assignment Problem (GAP) can be interpreted as a specialized

Transportation Problem (TP) when the quantity demanded at each destination should be

supplied by a single origin and 𝑤𝑖,𝑗 is constant for each 𝑖.

In the next section, we introduce the relaxation of the Generalized Assignment Problem

(GAP).

1.4 Relaxation heuristic for the Generalized Assignment

Problem

In this section, we present two different types of relaxation heuristics for the GAP:

Lagrangian Relaxation and Surrogate Relaxation.

 14

1.4.1 Lagrangian Relaxation

Lagrangian relaxation has been introduced in many survey papers [61] [17] [35] and

books [55] [43]. It based on the relaxation of the capacity constraints. The GAP is

defined by using a positive vector (λ1, … , 𝜆𝑛) of multipliers and is formulated as

𝐿(𝐺𝐴𝑃, 𝜆)

{

 max𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗 −∑𝜆𝑗 (∑𝑋𝑖,𝑗

𝑚

𝑖=1

− 1)

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑤𝑖,𝑗 𝑋𝑖,𝑗 ≤ 𝑊𝑖

𝑛

𝑗=1

 ; 𝑖 = 1,… ,𝑚

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,… ,𝑚

Martello and Toth [43] proved the Lagrangian relaxation might be decomposed in 𝑚

independent 0 − 1 knapsack problem. Therefore, the optimal solution of 𝐿(𝐺𝐴𝑃, 𝜆) is

𝑧(𝐿(𝑀𝐾𝑃, 𝜆)) =∑𝑧𝑖 +∑𝜆𝑗

𝑛

𝑗=1

𝑚

𝑖=1

Lorena and Narciso [35] showed that the optimal value of the Lagrangian Relaxation

which is greater than or equal to the optimal value of the maximization version of the

Generalized Assignment Problem.

1.4.2 Surrogate Relaxation

Surrogate Relaxation was proposed by Glover [21]. For the Generalized Assignment

Problem, it defined a positive vector (𝜋1, … , 𝜋𝑛) of multipliers and is formulated as

 15

𝑆(𝐺𝐴𝑃, 𝜋)

{

 max Z =∑∑𝑃𝑖𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝜋𝑖 ∑𝑤𝑖,𝑗 𝑋𝑖,𝑗 ≤∑𝜋𝑖 𝑊𝑖

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,𝑗 = 1; 𝑗 = 1,… , 𝑛

𝑚

𝑖=1

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛

Lorena and Narciso [35] also present the optimal value of the Surrogate Relaxation which

is greater than or equal to the optimal value of the maximization version of the GAP.

 In addition, Lorena and Narciso [49] developed the previous relaxations by providing

Lagrangean/surrogate relaxation for the GAP.

In the following section, we present applications and extensions of the Generalized

Assignment Problem.

1.5 Generalized Assignment Problem Application and

Extensions

The Generalization Assignment Problem (GAP) has been used to describe various real –

world applications. Therefore, there are several extensions of the Generalization

Assignment Problem (GAP) such as the Multiple Resource Generalized Assignment

Problem (MRGAP), the Multilevel Generalized Assignment Problem (MGAP), the

Dynamics Generalized Assignment Problem (DGASP), the Bottleneck Generalized

 16

Assignment Problem (BGAP), the Generalized Assignment Problem with Special

Ordered Set (SOS), the Stochastic Generalized Assignment Problem (SGAP), the Bi-

Objective Generalized Assignment Problem (BiGAP), and the Generalized Multi-

Assignment Problem (GMAP). These applications and extensions are briefly presented in

order to show the diversity of the Generalization Assignment Problem. Most of these

extensions can also be applied to the Multiple Knapsack Problem as a particular case of

the Generalization Assignment Problem.

1.5.1 Multiple Resource Generalized Assignment Problem

Gavish and Pirkul [20] developed this assignment problem. It is considered as a special

case of the multi – resources weighted assignment model and was studied by Ross and

Zoltners [62]. MRGAP is defined to have a set of tasks and a set of agents, so a set of

tasks should be assigned to a set of multiple resources consumed by an agent. In MRGAP

each agent will consume diverse resources to perform tasks that have been assigned to the

agent. MRGAP in large models can deal with processors and database locations in a

distributed computer system [20]. The truck routing problem is an application that can be

modeled as multi – resources weighted assignment.

1.5.2 Multilevel Generalized Assignment Problem

Glover et al [22] proposed MGAP, which is known to process a GAP where the agents

can perform tasks at more than one level. The manufacturing problem is considered as an

application that can be formulated as MGAPs [53].

 17

1.5.3 Dynamic Generalized Assignment Problem

The DGAP purposes to track customer demand while assigning tasks to agents. Kogan et

al. [31] have been adding the impact of time to the GAP model assuming that each task

has a due date. They formulate an optimal control model for the problem where it

supplies a dynamic system by analytical properties of the optimal behaviour.

1.5.4 Bottleneck Generalized Assignment Problem

The Bottleneck Generalized Assignment Problem (BGAP) occurs when the maximum of

the individual cost are considered instead of the sum. Therefore, the problem becomes a

minimax problem [46]. It means all maximum penalty incurred by assigning each agent

to each task is minimized. It has applied to several applications such us in scheduling and

allocation problems [44].

1.5.5 GAP with Special Ordered Set

The Generalized Assignment Problem (GAP) with special order set (SOS) proposed by

Beale and Tomlin [5] includes some cases where each item can share via a pair of

adjacent knapsacks that can call the GAP with the special ordered set (SOS). The GAP

with SOS arises mainly in production scheduling and means to allocate each task to a

time- period as introduced by Farias et al [13].

 18

1.5.6 Stochastic Generalized Assignment Problem

Stochasticity can be seen in GAP because an available resource requests to process tasks

by the different agents could not be known in advance or the presence or absence of

individual tasks may be uncertain. In some cases, some tasks may or may not need to be

processed.

1.5.7 Bi-Objective Generalized Assignment Problem

Zhang and Ong [74] considered a GAP with a multi – objective and suggested an LP-

based heuristic for solving Bi-Objective Generalized Assignment Problem. It is noted that

each assignment has two objectives that have been already considered. It is applied in

production planning where these attributes could be the cost and the time caused by

assigning jobs to tasks.

1.5.8 Generalized Multi-Assignment Problem

Generalized Multi-Assignment Problem introduced by Park et al [54] is composed of

tasks that can be assigned to more than one agent.

1.6 Conclusion

In this chapter, we have introduced general information of the Generalization Assignment

Problem. It is known as an NP-complete problem and also is a large scale problem.

Because it is a larger problem, there are many problems that are considered as particular

 19

cases of Generalization Assignment Problem (GAP). The formulation of the classical

Assignment Problem (AP) appears as a particular problem of the Generalization

Assignment Problem (GAP) when 𝑛, number of tasks is equal to 𝑚, number of agents.

The Generalized Assignment Problem (GAP) is known as generalization form of the

Multiple Knapsack Problem (MKP) where the weight and profit of the items are

independent of the knapsack. In chapter 3, we are giving more details for the Multiple

Knapsack Problem (MKP).

 20

Chapter 2

2 Knapsack Problem

2.1 Introduction

The 0 - 1 knapsack problem (KP) is known as an NP combinatorial optimization

problem. It is considered as the simplest linear programming problem and appears in

many applications in industry and financial management [43]. Furthermore, many

algorithms such as Dynamic Programing, Branch and Bound algorithm and Genetic

algorithm have been used to solve the 0 − 1 knapsack problem. Actually, there are four

main classes of algorithms solving the 0 − 1 Knapsack Problem. Indeed, Bellman (1950)

introduced the first algorithm using dynamic programming which improved the

complexity to 𝑂(𝑛𝑊). In addition, there are many variants of knapsack problem have

been solved by using dynamic programming [43]. However, the capacity 𝑊 can be an

exponential function of 𝑛.

The second class of methods uses the Branch and Bound Algorithm (B&B) which is

firstly introduced by Kolesar (1967) [32]. Between 1970 and 1979 many types of branch

and bound algorithms were developed in order to solve KP with a high number of

variables [43]. The most well-known approach of this period is due to Horowitz and

Sahni [12]. Sahni [58] extended the result of Johnson (1974) and introduced the first

polynomial time algorithm for the 0 − 1 Knapsack Problem [43]. In 1980 Balas and

Zemel proposed a new algorithm to solve the KP by sorting a small subset of the

variables [43].

 21

The algorithms of these first two classes are all exact methods while the last two are

heuristics. The third class is constituted of algorithms which provide near optimal

solution. The most popular is the Greedy Algorithm introduced by Dantzig (1957). The

remaining class describes the evolutionary algorithm and particularly the Genetic

Algorithm [69] which behave very well applied to some types of knapsack problem.

2.2 Mathematical Formulation of 𝟎 − 𝟏 KP

Given a set of 𝑛 items 𝑗 = 1,… , 𝑛, each having a weight 𝑤𝑗 and inducing a unit profit 𝑃𝑗,

the knapsack problem consist in selecting some items to load a knapsack with a total

capacity of 𝑊 in order to maximize the total profit. The most common problem is called

the (0 − 1) Knapsack because it selects at most one of each type of item.

It can be formulated as

𝐾𝑃

{

 max𝑍 =∑𝑃𝑗𝑋𝑗

𝑛

𝑗=1

 ∑𝑤𝑗𝑋𝑗 ≤ 𝑊

𝑛

𝑗=1

𝑋𝑗 ∈ {0,1}; 𝑗 = 1,… , 𝑛

Where 𝑋𝑗 is a decision variable satisfying

𝑋𝑗 = {
1 if item 𝑗 is assigned to the knapsack
0 else

𝑗 = 1,… , 𝑛

Also, we consider the conditions for the KP

𝑃𝑗 , 𝑤𝑗 and 𝑊 are non-negative integers

 22

∑𝑤𝑗 > 𝑊

𝑛

𝑗=1

𝑤𝑗 ≤ 𝑊; 𝑗 = 1, … , 𝑛

By using the cost instead of the profit a minimization formulation can be used.

2.3 Concept of Branch and Bound Algorithm

The branch and bound algorithm is considered as one of many algorithms that find an

optimal solution for an integer programming problem. The main concept of the branch

and bound approach is to partition the solution set into subsets solutions and select one of

them having the highest value of the objective function. In addition, it consists of two

most important aspects: branching and bounding.

To have a better understanding about how the branching and bounding procedures work,

Kellerer et al [29] have described each procedure separately. First, they suppose a

function and want to solve it as a maximization problem

max
𝑦∈𝑌

𝑓(𝑦)

 In the branching procedure, suppose 𝑌 ̂is the subset of the solutions set 𝑌, and the

algorithm partitions to some smaller subsets such as 𝑌1, . . , 𝑌𝑛. Since the union of all these

subsets is given by 𝑌 ̂. In this procedure, it will repeat the partition till finding only one

feasible solution for each subset, and the best solution will be selected based on the

present objective value. Using the bound process will give us the upper and lower

bounds.

 23

The Branch and Bound algorithm has been represented as a tree, whose nodes refer to the

subsets solutions. In the branch process, the algorithm begins with a node that has not

been selected, called a terminal node. The terminal node should have the highest value of

the upper bound to be able to create two new nodes. The subset solution is represented as

a node having an item, and this item divides to three types: included, no included and

unassigned items. The included item means the solution of the set item is included in the

node and otherwise non-included. Third is called unassigned and means the solution does

not belong to the previous types [32].

After the branch operation starts with a node, the unassigned items will be selected; one

node becomes included and another becomes non-included. The algorithm in this

operation will work to check the feasibility of the solutions contained in the two new

nodes. When the subset of the solutions contained in a given node is feasible; therefore,

the upper bound will be obtained and the process continues, otherwise further branching

is conducted from when the node is eliminated [32]. An optimal solution can be found

when all items are sorted based on a decreasing order of the ratio
𝑃𝑗
𝑤𝑗⁄ and then the

algorithm starts by the first item and continues until the capacity 𝑊 is reached [43].

2.4 The Branch and Bound Algorithm

To find a good solution for the knapsack problem; it requires to consider ratio of the

profit to the weight ratio 𝑒𝑗 of each item which is named the efficiency of an item with:

𝑒𝑗 =
𝑃𝑗

𝑤𝑗

 24

Since we suppose the items to be sorted by their efficiency in decreasing order such that

𝑃1
𝑤1

≥
𝑃2
𝑤2

≥ ⋯ ≥
𝑃𝑛
𝑤𝑛

In addition, we should know the place to do the branch, which is represented by the point

where the branch technic occurs. We denote the branch point by 𝑠 and is called split item.

Where 𝑠 is

∑𝑤𝑗𝑋𝑗 > 𝑊

𝑠

𝑗=1

Next, finding the optimal solution of linear programming relaxation. Therefore, the

relaxation of knapsack problem obtained from “the Knapsack Problem formulation” by

removing the integrality constraint on 𝑋𝑗 [43].

𝐾𝑃

{

 max𝑍 =∑𝑃𝑗𝑋𝑗

𝑛

𝑗=1

 ∑𝑤𝑗𝑋𝑗 ≤ 𝑊

𝑛

𝑗=1

 0 ≤ 𝑋𝑗 ≤ 1; 𝑗 = 1,… , 𝑛

Its solution provides an upper bound 𝑧𝑢𝑏; the optimal solution of the relaxation of

knapsack problem is

𝑋𝑗 = 1, 𝑗 = 1,… , 𝑠 − 1,

𝑋𝑠 =
𝑊 −∑ 𝑤𝑗𝑋𝑗

𝑠−1
𝑗=1

𝑤𝑠

𝑋𝑗 = 0, 𝑗 = 𝑠 + 1,… , 𝑛

 25

The upper bound of knapsack problem is

𝑧𝑢𝑏 =∑𝑃𝑗 + 𝑃𝑠

𝑠−1

𝑗=1

𝑊 −∑ 𝑤𝑗𝑋𝑗
𝑠−1
𝑗=1

𝑤𝑠

In addition, to solve the knapsack problem by branch and bound algorithm; it needs to

find a lower bound 𝑧𝑙𝑏 . Therefore, the lower bound can be obtained by using the Greedy

heuristic. Where

𝑋𝑗 = 1; 𝑗 = 1,… , (𝑠 − 1)

and the set a value 𝑧𝑙𝑏 satisfying

𝑧𝑙𝑏 ≥∑𝑃𝑗

𝑠−1

𝑗=1

In addition, the optimal solution 𝑧∗ will be

∑𝑃𝑗 ≤ 𝑧𝑙𝑏 ≤ 𝑧∗ ≤ 𝑧𝑢𝑏 ≤∑𝑃𝑗

𝑠

𝑗=1

𝑠−1

𝑗=1

After that, start with initial node 𝑋𝑗 and for each node compute the upper bound if we

can, the remaining capacity 𝑆𝑗 and the solution 𝑧̅. Therefore, check if node belongs

𝑋𝑗 = 1; 𝑗 ∈ 𝑁1 , 𝑋𝑗 = 0; 𝑗 ∈ 𝑁0 and 𝐹 = {1,… , 𝑛} − 𝑁0 −𝑁1.

When 𝑋𝑗 = 1; 𝑗 ∈ 𝑁1 that implies the node is included the solution otherwise 𝑋𝑗 = 0; 𝑗 ∈

𝑁0. Moreover, when the node does not belongs to the previous sets that mean the node is

non-assigned. For each assigned node the remaining capacity 𝑆𝑗 should be calculated by

 26

𝑆𝑗 = 𝑊 −∑𝑤𝑗

𝑁1

𝑗=1

and 𝑧̅ represents the solution of the node using the evaluation function

𝑧̅ =∑𝑃𝑗

𝑁1

𝑗=1

After we find all the above, we consider the restricted problem

{

 max

𝑋
𝑍 =∑𝑃𝑗𝑋𝑗

𝑛

𝑗=1

 ∑𝑤𝑗𝑋𝑗 ≤ 𝑊̅

𝑛

𝑗=1

 𝑋𝑗 ≥ 0; 𝑗 = 1,… , 𝑛

In addition, when we find the solution 𝑧̅ for each node, we should compare between the

solutions 𝑧̅ and the upper of the restricted 𝑈𝑢𝑏𝑟. Therefore, if 𝑧̅ ≤ 𝑧𝑘 this node is called

probe that needs to perform backtracking. Since the backtracking consists of reversing

the search by considering the last node 𝑋𝑘 from which 𝑋𝑘 = 1. After that, we consider

the alternative by setting 𝑋𝑘 = 0. The backtracking is done when we reach the last node

of a branch or when the node is a probe and cannot be improved by going deeper.

In addition, when its weight 𝑤𝑗 > 𝑆𝑗, the node will equal 𝑥𝑗 = 0, and it becomes belong

𝑁0 and not belongs 𝐹. However if 𝑤𝑗 < 𝑆𝑗, the node will equal 𝑥𝑗 = 1, and it becomes

belong 𝑁1, not belongs 𝐹, its capacity is 𝑊 ≔𝑊 −𝑤𝑗 and its solution is 𝑧̅ ≔ 𝑧̅ + 𝑃𝑗 .

Finally, when the solution of the node 𝑧̅ > 𝑧𝑘 then 𝑧𝑘+1 = 𝑧̅ becomes the solution for the

node.

 27

2.5 Steps of Branch and Bound Algorithm

1. Verify if the problem is nontrivially feasible by testing at least one index 𝑗 =

1,2, … , 𝑛

𝑤𝑗 ≤ 𝑊

 When it is feasible, continue to next step otherwise stop.

2. Find the split item 𝑠 or is called branch point by

∑𝑤𝑗

𝑠

𝑗=1

≥ 𝑊

3. Calculate the upper bound of the problem using

𝑧𝑢𝑏 =∑𝑃𝑗 + 𝑃𝑠

𝑠−1

𝑗=1

𝑊 −∑ 𝑤𝑗𝑥𝑗
𝑠−1
𝑗=1

𝑤𝑠

4. Compute the lower bound of the problem and that the solution should be satisfied

the following

𝑧𝑙𝑏 ≥∑𝑃𝑗

𝑠−1

𝑗=1

5. Start with initial node 𝑋𝑗 and for each node compute the upper bound if we can, the

remaining capacity 𝑆𝑗, and the solution 𝑧𝑗.

6. Behind initial node we decide next node and written if belongs 𝑁1, 𝑁0, or have not

assigned yet i.e. belongs to 𝐹.

 28

7. Perform backtracking if the node is probe until reach the last node of branch or

when the node is probe and cannot be improved by going deeper.

2.6 Example of illustration

Consider the following problem with 𝑛 = 7 items. The unit profit, weight and capacity

are

 𝑃𝑗 = (70, 20, 39, 35, 7, 5, 9)

𝑤𝑗 = (31, 10, 20, 18, 4, 3, 6)

 𝑊 = 50

The knapsack problem is formulated as following:

{

max𝑍 = 70𝑋1 + 20𝑋2 + 39𝑋3 + 35𝑋4 + 7𝑋5 + 5𝑋6 + 9𝑋7
 31𝑋1 + 10𝑋2 + 20𝑋3 + 18𝑋4 + 4𝑋5 + 3𝑋6 + 6𝑋7 ≤ 50

𝑋𝑗 ∈ {0,1}; 𝑗 = 1, … ,7

First, we need to find the spilt items 𝑠 “branch point”. Therefore, the value of 𝑠 is 𝑠 = 3

because 𝑤1 + 𝑤2 + 𝑤3 = 61 > 50. Second, if we consider the solution problem, its

optimal solution is

𝑋1 = 1, 𝑋2 = 1, 𝑋3 =
50−31−10

20
=

9

20
 and 𝑋4 = 𝑋5 = 𝑋6 = 𝑋7 = 0.

It is not feasible for the knapsack problem. However, it provides the upper bound

𝑧𝑢𝑏 = 70 + 20 + 39 (
9

20
) = 107.55

 29

We can set the upper bound 𝑈 = 107.

Third, we evaluate the lower bound for considering any feasible solution for example

𝑋1 = 1, 𝑋2 = 1, 𝑋3 = 0, 𝑋4 = 0, 𝑋5 = 1, 𝑋6 = 1, 𝑋7 = 0.

The lower bound is 𝐿 = 102. We have the relation

𝐿 = 102 ≤ 𝑧∗ ≤ 107 = 𝑈.

Now, for each node we have to find the upper and lower bound beginning with an initial

node.

Iteration 1. We set 𝑋1 = 1 because if we consider 𝑋1 = 0 then the split item of the

restrained problem is 𝑠 = 5 and the upper bound becomes

𝑧𝑢𝑏 = 20 + 39 + 35 + 7 (
50 − 48

4
) = 97.5

We can set its upper bound 𝑈1 = 97. Since the largest value 𝑈1 = 97 < 102; therefore,

the branch 𝑥1 = 0 can be ignored. For that, the initial node is 𝑋1 = 1 which has 𝑧1 =

70 and 𝑆1 = 19. Since the remaining capacity is 𝑆1 = 19 then 𝑋3 = 0 because 𝑤3 =

20 > 𝑆1 = 19. Therefore, the nodes are

𝑁1 = {1}, 𝑁0 = {3} and 𝐹1 = {2, 4, 5, 6, 7}.

The associated node 𝑁1 is represented by 𝑧1 = 70 and 𝑆1 = 19.

Iteration 2. The smallest index of 𝐹1 = {2, 4, 5, 6, 7} is 𝑖 = 2 since 𝑤2 = 10 < 𝑆1 = 19

we set 𝑋2 = 1 and 𝑆2 = 9. Then the node becomes

 30

𝑧2 = 90, 𝑆2 = 9 with 𝑁1 = {1, 2}, 𝑁0 = {3} and 𝐹1 = {4, 5, 6, 7}.

Iteration 3. The smallest index of 𝐹1 = {4,5,6,7} is 𝑖 = 4 since 𝑤4 = 18 > 𝑆2 = 9 we

set 𝑋4 = 0. The node is represented by

𝑧2 = 90, 𝑆2 = 9 with 𝑁1 = {1, 2}, 𝑁0 = {3,4} and 𝐹1 = { 5, 6, 7}.

Iteration 4. The smallest index of 𝐹1 = {5,6,7} is 𝑖 = 5 since 𝑤5 = 4 < 𝑆2 = 9 we set

𝑋5 = 1. The node is represented by

𝑧3 = 97, 𝑆3 = 5 with 𝑁1 = {1, 2, 5}, 𝑁0 = {3,4} and 𝐹1 = {6, 7}.

Iteration 5. The smallest index of 𝐹1 = {6,7} is 𝑖 = 6 since 𝑤6 = 3 < 𝑆3 = 5 we set

𝑋6 = 1. The node is represented by

𝑧4 = 102 with 𝑆4 = 2, 𝑁1 = {1, 2, 5,6}, 𝑁0 = {3,4} and 𝐹1 = {7}.

Iteration 6. The smallest index of 𝐹1 = {7} is 𝑖 = 7 since 𝑤7 = 6 > 𝑆4 = 2 we set

𝑋7 = 0. The node is represented by

𝑧4 = 102, 𝑆4 = 2 with 𝑁1 = {1, 2, 5,6}, 𝑁0 = {3,4,7} and 𝐹1 = {∅}.

Iteration 7. Since 𝑛 = 7 we backtrack by considering the last assigned variable. This

provides

 𝑋6 = 1, and we set its alternatives 𝑋6 = 0. Therefore, the node becomes

𝑧3 = 97, 𝑆3 = 5 with 𝑁1 = {1, 2, 5}, 𝑁0 = {3,4,6} and 𝐹1 = { 7}.

 31

Iteration 8. The smallest index of 𝐹1 = {7} is 𝑖 = 7 since 𝑤7 = 6 > 𝑆3 = 5; therefore,

we set 𝑋7 = 0, and the node represented by 𝑧3 = 97 and 𝑆3 = 5.

Iteration 9. Since 𝑛 = 7 we backtrack by considering the last assigned variable. This

provides 𝑋5 = 1 and then we set its alternatives 𝑋5 = 0. Therefore, the node becomes

𝑧9 = 90, 𝑆9 = 9 with 𝑁1 = {1,2}, 𝑁0 = {3, 4, 5} and 𝐹1 = {6, 7}.

Iteration 10. The smallest index of 𝐹1 = {6, 7} is 𝑖 = 6 since 𝑤6 = 3 < 𝑆9 = 9;

therefore, we set 𝑋6 = 1, and the node becomes

𝑧10 = 95, 𝑆10 = 6 with 𝑁1 = {1, 2, 6}, 𝑁0 = {3, 4, 5} and 𝐹1 = {7}.

Iteration 11. The smallest index of 𝐹1 = {7} is 𝑖 = 7 since 𝑤7 = 6 ≤ 𝑆10 = 6; therefore,

we set 𝑋7 = 1 and then the node becomes

𝑧11 = 104, 𝑆11 = 0 with 𝑁1 = {1, 2, 6, 7}, 𝑁0 = {3, 4, 5} and 𝐹1 = {∅}.

Iteration 12. Since 𝑛 = 7 we backtrack by considering the last assigned variable. This

provides 𝑥7 = 1 then we set its alternative 𝑋7 = 0. Therefore, the node becomes

𝑧12 = 95, 𝑆12 = 6 with 𝑁1 = {1,2, 6}, 𝑁0 = {3, 4, 5, 7} and 𝐹1 = {∅}.

Iteration 13. Since 𝑛 = 7 we backtrack to 𝑋6 = 1 then we set 𝑋6 = 0. This implies the

node is 𝑧21 = 90, 𝑆13 = 9 and becomes probe 𝑈 = 99 < 𝐿 < 102.

Iteration 14. Since 𝑛 = 7 we backtrack by considering the last assigned variable. This

provides 𝑋2 = 1 then we set its alternative 𝑋2 = 0 and the node becomes

 32

𝑧14 = 95, 𝑆14 = 6 with 𝑁1 = {1}, 𝑁0 = {2, 3} and 𝐹1 = {4, 5, 6, 7}.

Iteration 15. The smallest index of 𝐹1 = {4, 5, 6, 7} is 𝑖 = 4 since 𝑤4 = 4 ≤ 𝑆15 = 6;

therefore, we set 𝑤4 = 1, and the node becomes

𝑧15 = 105, 𝑆15 = 1 with 𝑁0 = {1, 4}, 𝑁1 = {2, 3} and 𝐹1 = {5, 6, 7}.

Iteration 16, 17 and 18. Since 𝑤𝑗 = 𝑆15 = 1 and 𝑗 = 5, 6, 7 then iteration 16, 17, and 18

imply 𝑋5 = 𝑋6 = 𝑋7 = 0.

Iteration 19. Since 𝑛 = 7 we backtrack by considering the last assigned variable. This

provides 𝑋4 = 1 then we set its alternative 𝑋4 = 0 and 𝑆19 = 19. The node becomes

𝑧19 = 70, 𝑆19 = 19 and becomes probe 𝑈 = 91 < 𝐿 = 102.

Iteration 20. We backtrack by considering the last assigned variable. This provides

𝑋1 = 1 then the optimal solution is 𝑧∗ = 105 where

𝑋1 = 𝑋4 = 1; 𝑋2 = 𝑋3 = 𝑋5 = 𝑋6 = 𝑋7 = 0.

 Therefore, that achieves

𝐿 = 102 ≤ 105 ≤ 107 = 𝑈

 33

2.7 Conclusion

In this chapter, we have presented the 0 − 1 Knapsack Problem, which is a

combinatorial optimization problem. In addition, we introduced Branch and Bound

algorithm as a method to obtain the optimal solution for the problem. This method is also

applied to an illustration example. However, there are also two main types of approaches

developed to solve the Knapsack Problem. First, a Genetic Algorithm is considered as a

suitable algorithm for solving the problem because Genetic Algorithm optimizes the huge

number of solution that is available for solving the Knapsack Problem. For more

Figure 1: Tree Representation

 34

information, please refer to Najadat, F. A. [48]. Dynamic Programming Algorithm is also

considered as an efficient method to solve the problem [45] [43].

 35

 36

Chapter 3

3 The 𝟎 − 𝟏 Multiple Knapsack Problem

3.1 Introduction

The 0 − 1 Multiple Knapsack Problem (MKP) is known as a generalization of the 0 − 1

Knapsack Problem (KP) by considering more than one knapsack. It is also known as an

NP-complete implying that MKP cannot be solved by polynomial time algorithm. It

selects among 𝑛 items to load 𝑚 knapsacks in order to maximize the resulting total profit.

Obviously, for each knapsack, the total weight of the selected items should not exceed its

capacity. This problem has been solved by many algorithms such as Branch and Bound

(B&B) algorithm and Dynamic Programming (DP) approach.

 Ingargiola and Korsh [27] suggested a branch and bound approach which used a

reduction procedure based on dominance relationships between pairs of items. In 1987,

Hung and Fisk [26] introduced an approach based on Branch and Bound with depth –

first strategy as a journey. They computed the upper bound by Lagrangian relaxation,

with a reducing scheduling capacity 𝑊𝑖 [63]. They also developed the algorithm of

Martello and Toth [43]; therefore, they computed the upper bound by surrogate relaxation

and taking the minimum of the lagrangian upper bounds and surrogate relaxation method

[63]. Martello and Toth (1981) [42] developed their algorithm by proposing the Bound

and Bound Algorithm (B&B) to solve the Multiple Knapsack Problem (MKP). They also

called this algorithm Martello and Toth Method (MTM) and used to solve the problem

with Greedy heuristics, which involves solving a series of problems with 𝑚 single

 37

knapsack. Pisinger [57] proposed a new algorithm which is called Mulknap and based on

the algorithm (MTM). Funkunaga and Korf [18] proposed a new method called the bin –

completion method which is based on the Branch and Bound algorithm.

For Dynamic programming, Martello and Toth [43] clarify this approach is impractical to

solve the Multiple Knapsack problem (MKP).

In this chapter, we present the 0 − 1 Multiple Knapsack Problem and focus on the

Branch and Bound Algorithm (B&B) classes of methods.

3.2 The Formulation of the Multiple Knapsack Problem

The 0 − 1 Multiple Knapsack Problem is defined by selecting among 𝑛 items to load 𝑚

knapsacks in order to maximize the resulting total profit, while for each knapsack, the

sum of the weight 𝑤𝑗 of the selected items should not exceed its capacity 𝑊𝑖.

The Mathematical formulation is as following:

𝑀𝐾𝑃

{

 max𝑍 =∑ ∑𝑃𝑗

𝑛

𝑗=1

𝑋𝑖,𝑗

𝑚

𝑖=1

∑𝑤𝑗

𝑛

𝑗=1

𝑋𝑖,𝑗 ≤ 𝑊𝑖 ; 𝑖 = 1,… ,𝑚

∑𝑋𝑖,𝑗

𝑚

𝑖=1

≤ 1 ; 𝑗 = 1,… , 𝑛

𝑋𝑖,𝑗 ∈ {0, 1} ; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛

The decision variables 𝑋𝑖𝑗 are such that 𝑋𝑖,𝑗 = 1 when item 𝑗 is assigned to knapsack 𝑖

and 𝑋𝑖𝑗 = 0 otherwise. The first equation says the total profit of assigning the item to

 38

knapsack should be maximized. Second equation presents the total weight of item 𝑗

should not exceed the knapsack’s capacity. The last two equations show each item

assigns to only one knapsack or not. In addition, we can set without loss of generality the

following conditions for the MKP

𝑃𝑗 > 0 , 𝑤𝑗 > 0 and 𝑊𝑖 > 0 are integers 𝑗 = 1,… , 𝑛; 𝑖 = 1,… ,𝑚

𝑤𝑗 ≤ max {𝑊𝑖 ; 𝑖 = 1,… ,𝑚} ; 𝑗 = 1, … , 𝑛

𝑊𝑖 ≥ min {𝑤𝑗 ; 𝑗 = 1, . . . , 𝑛}; 𝑖 = 1,… ,𝑚

∑𝑤𝑗 >

𝑛

𝑗=1

𝑊𝑖 ; 𝑖 = 1,… ,𝑚

Furthermore, when 𝑚 = 1 that give us the 0 -1 knapsack problem (KP) which is

introduced in chapter 2. In addition, when each item 𝑗 belongs profit 𝑃𝑗 (instead of profit

𝑃𝑖,𝑗), the problem becomes a particular case of the Generalized Assignment Problem

where the weight of items are independent to the knapsack i.e. 𝑤𝑖,𝑗 = 𝑤𝑗 ; 𝑗 = 1,… , 𝑛 and

𝑃𝑖,𝑗 = 𝑃𝑗 ; 𝑗 = 1,… , 𝑛.

3.3 Relaxations of the (𝟎 − 𝟏) MKP

There are different techniques to compute upper bounds for the Multiple Knapsack

Problem: the Surrogate relaxation, the Lagrangian relaxation, and the linear programming

relaxation.

 39

3.3.1 Surrogate Relaxation

The Surrogate relaxation for the Multiple Knapsack Problem S(MKP, 𝜋) is defined to

have a nonnegative vector (𝜋𝑖, … , 𝜋𝑚) of multipliers, so the formulation becomes:

𝑆(𝑀𝐾𝑃, 𝜋)

{

 max𝑍 =∑∑𝑃𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝜋𝑖 ∑𝑤𝑗 𝑋𝑖,𝑗 ≤∑𝜋𝑖 𝑊𝑖

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,𝑗 ≤ 1; 𝑗 = 1, … , 𝑛

𝑚

𝑖=1

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛

The best choice of multipliers 𝜋𝑖 is based on those that produce the minimum value of

S(MKP, 𝜋) [57].

 Martello and Toth [43] have provided a proof for any instance of Multiple knapsack

Problem (MKP), the optimal choice of multipliers 𝜋𝑖 for 𝑖 = 1,… ,𝑚 is 𝜋𝑖 = 𝑘, where 𝑘

is a nonnegative constant. Therefore, the S(MKP, 𝜋) becomes as a single Knapsack

problem and its formula as following

{

 max𝑍 =∑𝑃𝑗𝑋𝑗

𝑛

𝑗=1

 ∑𝑤𝑗𝑋𝑗 ≤ 𝑊

𝑛

𝑗=1

 𝑋𝑗 ≥ 0; 𝑗 = 1,… , 𝑛

The capacity 𝑊 represents the sum of all the knapsacks’ capacities

 40

𝑊 =∑𝑊𝑖

𝑚

𝑖=1

3.3.2 Linear Programming Relaxation

The linear programming relaxation is used to compute the upper bound of Multiple

Knapsack Problem. The upper bound is obtained by relaxation the constraint

𝑋𝑖𝑗, ∈ {0, 1} ; 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛

0 ≤ 𝑋𝑖,𝑗 ≤ 1 ; 𝑖 = 1,… ,𝑚, 𝑗 = 1,… , 𝑛

In addition, Martello and Toth [43] have provided a proof that an optimal solution for the

Multiple Knapsack Problem using linear programming relaxation is equal to an optimal

solution to the linear relaxed SMKP. Therefore, the upper bound of the Multiple

Knapsack problem can be found using Dantzing’s bound of the corresponding single

Knapsack Problem [12] [57].

Let the items 𝑗 = 1, … , 𝑛 are stored according to decreasing profit to weight rations

𝑃1
𝑤1
 ≥

𝑃2
𝑤2
 ≥ ⋯ ≥

𝑃𝑛
𝑤𝑛

And 𝑠 represents as a split point and is defined by

𝑠 = min{ 𝑗: ∑𝑤𝑖 ≥ 𝑊

𝑗

𝑖=1

}

 41

where the capacity 𝑊 is equal

 𝑊 =∑ 𝑊𝑖

𝑚

𝑖=1

Therefore, the Dantzig upper bound [12] [57] is provided

𝑈𝑀𝐾𝑃 =∑𝑃𝑗 + [(W−∑𝑤𝑗

𝑠−1

𝑗=1

)
𝑃𝑠
𝑤𝑠⁄]

𝑠−1

𝑗=1

3.3.3 Lagangian Relaxation

The Lagrangian relaxation for the Multiple Knapsack Problem L(MKP, 𝜆) is defined

using a nonnegative vector (λ1, … , 𝜆𝑛) of multipliers [43], so the formulation of

𝐿1 (MKP, 𝜆) becomes:

{

 max𝑍 =∑∑𝑃𝑗 𝑋𝑖,𝑗 −∑𝜆𝑗 (∑𝑋𝑖,𝑗 − 1

𝑚

𝑖=1

)

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑤𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

≤ 𝑊𝑖; 𝑖 = 1,… ,𝑚

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,… ,𝑚 , 𝑗 = 1,… , 𝑛

Also, can be written as

max𝑍 = ∑∑𝑃̅𝑗 𝑋𝑖,𝑗 +∑𝜆𝑗

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

Where

𝑃̅𝑗 = 𝑃𝑗 − 𝜆𝑗; 𝑗 = 1,… , 𝑛

 42

Therefore, Martello and Toth [43] proved that the Lagrangian relaxation might be

decomposed into 𝑚 independent 0 − 1 Knapsack Problem (KP). Its formulation is

{

 max 𝑍𝑖 =∑∑𝑃̅𝑗𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑤𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

≤ 𝑊𝑖 ; 𝑖 = 1,… ,𝑚

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,… ,𝑚 , 𝑗 = 1,… , 𝑛

All the Lagrangian relaxation problems have the same profits and weights, so the

difference between these problems is just the capacity. And the optimal solution of

Lagrangian relaxation Multiple Knapsack Problem 𝑧(𝐿1(𝑀𝐾𝑃, 𝜆)) becomes

𝑧(𝐿1(𝑀𝐾𝑃, 𝜆)) =∑𝑧𝑖 +∑𝜆𝑗

𝑛

𝑗=1

𝑚

𝑖=1

 In addition, Martello and Toth [43] showed there is no optimal choice of the multipliers

𝜆, and an approximation of the optimal 𝜆 can be obtained by subgradient optimization

technique. However, using this technique make the bounds computationally expensive to

drive [57].

Hung and Fisk [24] used the complementary slackness conditions for 𝜆𝑗 given by

𝜆̅𝑗 = {
𝑃𝑗 − 𝑤𝑗

𝑃𝑠
𝑤𝑠
 if 𝑗 < 𝑠;

 0 if 𝑗 ≥ 𝑠

where 𝑠 is the split point of 𝑆(𝑀𝐾𝑃) and is defined in section 3.4.2. With the choice 𝜆𝑗,

we have

 43

{

𝑃̅𝑗
𝑤𝑗
⁄ =

𝑃𝑠
𝑤𝑠 ⁄ if 𝑗 ≤ 𝑠

𝑃̅𝑗
𝑤𝑗
⁄ =

𝑃𝑠
𝑤𝑠 ⁄ if 𝑗 > 𝑠

And then

𝑧 (𝐶 (𝐿1(𝑀𝐾𝑃, 𝜆̅))) =
𝑃𝑠
𝑤𝑠
∑𝑊𝑖

𝑚

𝑖=1

+∑𝜆̅𝑗

𝑛

𝑗=1

So we get

𝑧 (𝐶 (𝐿1(𝑀𝐾𝑃, 𝜆̅))) = 𝑧 (𝐶(𝑆(𝑀𝐾𝑃, 1))) = 𝑧(𝐶(𝑀𝐾𝑃))

i.e. 𝜆̅ which indicates to the best multipliers for 𝐶(𝐿1(𝑀𝐾𝑃, 𝜆)). Also, 𝐿1(𝑀𝐾𝑃, 𝜆̅) and

𝑆(𝑀𝐾𝑃, 1) dominate the continuous relaxation. Therefore, there is no dominance

between them [57].

Martello and Toth [43] show it is possible to find the second Lagrangian

relaxation 𝐿2(𝑀𝐾𝑃, 𝜆).

With using a nonnegative vector (λ1, … , 𝜆𝑛) of multipliers, so the formulation of

 𝐿2(𝑀𝐾𝑃, 𝜆)

{

 max𝑍 =∑∑𝑃𝑗 𝑋𝑖,𝑗 −∑𝜆𝑗 (∑𝑤𝑗𝑋𝑖,𝑗 −𝑊𝑖

𝑚

𝑖=1

)

𝑛

𝑗=1

𝑛

𝑗=1

𝑚

𝑖=1

∑ 𝑋𝑖,𝑗

𝑚

𝑖=1

≤ 1; 𝑗 = 1,… , 𝑛

𝑋𝑖𝑗, ∈ {0, 1}; 𝑖 = 1, … ,𝑚 , 𝑗 = 1,… , 𝑛

 44

However, 𝜆𝑗 > 0 that means not allow any multiplier to take the value zero. Because, if

𝜆𝑗 = 0, it produces a useless upper bound.

Also, can be written as

max 𝑍 =∑∑(𝑃𝑗 − 𝜆𝑗 𝑤𝑗) 𝑋𝑖,𝑗 −∑𝜆𝑗𝑊𝑖

𝑚

𝑖=1

𝑛

𝑗=1

𝑚

𝑖=1

Therefore, that presents the optimal solution can be obtained by selecting the knapsack 𝑖̂

with a minimum value of 𝜆𝑗 and all items be chosen with 𝑃𝑗 − 𝜆 𝑖̂ 𝑤𝑗 > 0 for the knapsack

𝑖̂. Since this is also the optimal solution of 𝐶(𝐿(𝑀𝐾𝑃, 𝜆)), i.e.

𝑧(𝐶(𝐿2(𝑀𝐾𝑃, 𝜆))) = 𝑧(𝐿2(𝑀𝐾𝑃, 𝜆))

we have

𝑧(𝐿2(𝑀𝐾𝑃, 𝜆)) ≥ 𝑧(𝐶(𝑀𝐾𝑃))

and so this Lagrangian relaxation cannot produce a bound tighter than the continuous

one.

However, Martello and Toth [43] showed the most natural polynomially – computable

upper bound for the Multiple Knapsack Problem (MKP) is

𝑈1 = [𝑧(𝐶(𝑀𝐾𝑃))] = [𝑧(𝐶(𝑆(𝑀𝐾𝑃)))] − [𝑧(𝐶 (𝐿(𝑀𝐾𝑃, 𝜆̅)))]

Also, they proved the worst-case performance of bound 𝑈1 is 𝑚 + 1, i.e.

𝑧(𝐶(𝑀𝐾𝑃)) ≤ (𝑚 + 1) 𝑧(𝑀𝐾𝑃)

 45

3.4 Branch and Bound Algorithm

A depth- first Branch and Bound algorithm has proposed by Hung and Fisk (1978) [26]

where using the Lgrangian Relaxation to obtain upper bounds, and branching was

performed for the items which in the relaxed problem had been selected in most

knapsacks.

At branching operation, each item assigned to the knapsacks in increasing index order,

and the knapsacks were ordering in decreasing order

𝑊1 ≥ 𝑊2 ≥ ⋯ ≥ 𝑊𝑚.

When all the knapsacks have been considered, the remained item was excluded from the

problem.

Martello and Toth (1980) [41] proposed a different Branch and Bound Algorithm, where

at each node, Multiple Knapsack Problem (MKP) was solved with constraint

∑ 𝑋𝑖,𝑗

𝑚

𝑖=1

≤ 1; 𝑗 = 1,… , 𝑛

dropped out, and the branching item was selected as an item which had been packed in

𝑚̂ > 1 knapsacks. 𝑚̂ nodes are generated during the branching process by assigning the

item to one of the corresponding 𝑚̂ − 1 knapsacks and by excluding it from these [43].

After that Martello and Toth have developed their algorithm, and they called it Bound

and Bound Algorithm.

 46

In the next section, we present the Bound and Bound Algorithm which is known as an

adjustment of the Branch and Bound Algorithm.

3.5 Bound and Bound Algorithm

The Bound and Bound algorithm has proposed by Martello and Toth [43] [42] which is

considered as a modification of the Branch and Bound method for Multiple Knapsack

Problem (MKP). At each node, not only can be obtained an upper bound, but also a lower

bound can be found.

In this algorithm the upper bounds are found by solving the surrogate-relaxed problem;

however, the lower bounds are obtained by solving 𝑚 individual knapsack problem as

follows: the first knapsack 𝑖 = 1 is filled optimally, the variables are selected will remove

from the problem, and then the next knapsack 𝑖 = 2 might be filled. This operation is

repeated until all the knapsacks 𝑚 have been filled [57].

The branching process follows this greedy solution as Martello and Toth showed that a

greedy solution is better to guide the branching scheme than individual choices at each

branching node.

Consequently, each node forks into two branching nodes, the first node assigning the next

item 𝑗 of a greedy solution to the chosen knapsack 𝑖, while the other branch excludes item

𝑗 form knapsack 𝑖. An example below has solved by the Bound and Bound Algorithm.

 47

3.5.1 Example of illustration

Consider the following problem with 𝑛 = 10 items to load 𝑚 = 2 knapsacks. Their

profits, weights and capacities are

𝑃𝑗 = (78, 35, 89, 36, 94, 75, 74, 79, 80, 16);

𝑤𝑗 = (18, 9, 23, 20, 59, 61, 70, 75, 76, 30);

𝑊𝑖 = (103, 156)

This example is solved by applying the Bound and Bound Algorithm which is Branch

and Bound method. First, to find the upper bound of the problem we are going to use the

Surrogate relaxation. Since the bound and bound algorithm solve the Multiple Knapsack

Problem to find the upper bound by the Surrogate relaxation as single Knapsack Problem.

This implies

{

 max𝑍 =∑𝑃𝑗𝑋𝑗

10

𝑗=1

 ∑𝑤𝑗𝑋𝑗 ≤ 𝑊

10

𝑗=1

 𝑋𝑗 ≥ 0; 𝑗 = 1,… , 𝑛

where

𝑊 =∑𝑊𝑖

2

𝑖=1

= 𝑊1 +𝑊2

= 103 + 156 = 256

 48

The optimal solution of that surrogate problem is

𝑋𝑗 = (1, 0, 1, 1, 1, 1, 0, 0, 1, 0)

The upper bound is

𝑧𝑢𝑏 = 78 + 89 + 36 + 94 + 75 + 80 = 452

We can set the upper bound 𝑈 = 452

Second, we compute the lower bound by solving 𝑚 individual knapsack problems

and a feasible solution is

(𝑋̅1,𝑗) = (1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0)

(𝑋̅2.𝑗) = (0, 1, 0, 0, 0, 1, 0, 0, 1, 0)

Therefore, the lower bound is 𝐿 = 451

Now, finding the upper bound and lower bound for each node we have. However, before

we find them, we need to begin with the initial node.

Iteration 1. We begin to set 𝑋1,1 = 1 for that, the initial node is 𝑋1,1 = 1 which has

𝑧 = 78 and 𝑊1 = 85 since the remaining capacity is 𝑊̅ = 85 then 𝑋1,2 = 0.

Iteration 2. The next node is 𝑋1,3 = 1 which has 𝑧 = 167 and 𝑊1 = 62 since the

remaining capacity is 𝑊1 = 62 then 𝑋1,4 = 0.

 49

Iteration 3. The next node is 𝑋1,5 = 1 which has 𝑧3 = 261 and 𝑊1 = 3 since the

remaining capacity is 𝑊1 = 3 then 𝑋1,6 = 0.

Iteration 4. Since 𝑛 = 10 we backtrack by considering the last assigned variable. This

provides 𝑋1,5 = 1 then we set its alternative 𝑋1,5 = 0 . Therefore, the node becomes

𝑧 = 167 and 𝑊1 = 62 and 𝑈 = 452 and 𝐿 = 428.

Iteration 5. The next node is 𝑥1,2 = 1which has 𝑧 = 202 and 𝑊1 = 53 and 𝑈 = 451

Iteration 6. Since 𝑛 = 10 we backtrack by considering the last assigned variable. This

provides 𝑋1,2 = 1 then we set 𝑥1,2 = 0.

Therefore, the node becomes 𝑧 = 167 and 𝑊1 = 62 and 𝑈 = 452 and 𝐿 = 452.

Iteration 7. Since 𝑛 = 10 we backtrack by considering the last assigned variable. This

provides 𝑋1,3 = 1 then we set 𝑋1,3 = 1. Therefore, the node becomes 𝑧 = 78 and

𝑊1 = 85.

Iteration 8. Since 𝑛 = 10 we backtrack by considering the last assigned variable. This

provides 𝑋1,1 = 1 then we set 𝑋1,1 = 0. Therefore the node becomes 𝑧 = 103 and

𝑊1 = 0.

 50

3.6 Conclusion

In this chapter, we have presented the 0 − 1 Multiple Knapsack Problem (MKP), which

is known as a special case of the (GAP). The Branch and Bound Algorithmis presented in

order to illustrate a method for solving the MKP. An example was then presented to

illustrate the Bound and Bound method. In addition, there are other methods for solving

the Multiple Knapsack Problem such as Genetic Algorithm and Dynamic Programming

[66]. In the next two chapters, we are going to propose a new algorithm to solve the

Knapsack Problem and Multiple Knapsack Problem.

Figure 2: Tree representation [42]

 51

Chapter 4

4 Solving the 𝟎 − 𝟏 Knapsack Problem by an Adapted

Transportation Algorithm

4.1 Introduction

In this chapter, we link the 0 − 1 Knapsack Problem to the Linear Transportation

Problem (LTP) then we solve the problem by using an adaptation of Transportation

Algorithm (TA). The Vogel Approximation Method is applied to find an initial solution.

It consists of assigning to each row and column a penalty which is the difference between

the two least costs. The largest penalty indicates the line to be allocated first. Then the

variable with least the cost on that line is assigned.

For the zero – one Knapsack Problem (KP) the Vogel Method is shown equivalent to the

Greedy Algorithm. The initial solution is then improved by using the dual variable and

resulting reduced cost. We prove that when no further reduction of the cost is possible,

then we obtain an optimal solution.

4.2 Linear Transportation Problem

The transportation problem is considered as a special type of Linear Programming (LP),

which is focused on studying the optimal transportation and allocation of resources [65].

The Linear Transportation Problem (LTP) is defined to ship a commodity from supply

centers, called sources, to receiving centers, called destinations, while minimizing the

 52

total distribution cost. Supposing that we have 𝑚 sources 𝑖 = 1,… ,𝑚 with 𝑊𝑖 being the

supply available to each source 𝑖 and 𝑛 destinations 𝑗 = 1,… , 𝑛 with 𝑤𝑗 being the demand

for each destination 𝑗. 𝑃𝑖𝑗 is the cost of shipping one unit of commodity from source 𝑖 to

destination 𝑗. The transportation problem can be formulated as

𝐿𝑇𝑃

{

 min𝑍 = ∑∑𝑃𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑋𝑖,𝑗

∑𝑋𝑖,𝑗

𝑛

𝑗=1

= 𝑊𝑖; 𝑖 = 1,… ,𝑚

∑𝑋𝑖,𝑗

𝑚

𝑖=1

= 𝑤𝑗; 𝑗 = 1,… , 𝑛

𝑋𝑖,𝑗 ≥ 0; 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛

It is a linear program with 𝑚 + 𝑛 constraints and 𝑚 × 𝑛 variables and 𝑋𝑖,𝑗 is a quantity

moved from 𝑖 to 𝑗.

The first equation represents the total cost of transporting a product from sources to

destinations and should be minimized. The second one says the sum of all shipments that

has shipping to a destination 𝑗 should be equal to the supply. Equation three means the

sum of all shipments that has shipping to a source 𝑖 should be equal to the demand.

The Linear Transportation Problem is a balanced problem if the total supply equals the

total demand.

∑𝑤𝑗 =∑𝑊𝑖

𝑚

𝑖=1

𝑛

𝑗=1

Otherwise, it becomes unbalanced problem

 53

∑𝑤𝑗 ≠∑𝑊𝑖

𝑚

𝑖=1

𝑛

𝑗=1

4.3 Linear Transportation Problem and Knapsack

Problem

The 0 − 1 knapsack problem can be formulated as

𝐾𝑃

{

 max𝑍 =∑𝑃𝑗𝑋𝑗

𝑛

𝑗=1

 ∑𝑤𝑗𝑋𝑗 ≤ 𝑊

𝑛

𝑗=1

 𝑋𝑗 = {0, 1} ; 𝑗 = 1,… , 𝑛

Now, to link the 0-1 Knapsack problem to Linear Transportation Problem, there are two

steps should follow.

First, the changing of variable 𝑌𝑗 = 𝑤𝑗𝑋𝑗 implies a transportation problem representing a

new formulation of Knapsack Problem

{

 max𝑍 =∑

𝑃𝑗

𝑤𝑗
 𝑌𝑗

𝑛

𝑗=1

∑ 𝑌𝑗 ≤ 𝑊

𝑛

𝑗=1

𝑌𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1 ; 𝑗 = 1,… , 𝑛

𝑌𝑗 = {
𝑤𝑗 when item 𝑗 assigned to knapsack 𝑖

0 else
 𝑗 = 1,… , 𝑛

 54

Second, the Knapsack Problem (KP) is not a balanced problem; therefore, we are going

to add a dummy knapsack 2 associated to the vector

(𝑌2,1; 𝑌2,2; … ; 𝑌2,𝑛)

Since we have 2 knapsacks, we also consider the vector of variables

(𝑌1,1; 𝑌1,2; … ; 𝑌1,𝑛)

associated the knapsack by redefining

𝑌𝑗 = 𝑌1,𝑗

We also add a surplus item 𝑛 + 1 associated to

(𝑌1,(𝑛+1),; 𝑌2,(𝑛+1))

Their coefficients in the maximization objective are equal to a zero value,

𝐾2,𝑗 = 0 ; 𝑗 = 1,… , 𝑛

which make the associated variables less attractive. Since the Knapsack Problem (KP) is

not balanced, we add the weight of the surplus item 𝑛 + 1 with zero coefficients and its

weight equal to an unknown buffer 𝐵 which is the non-allocated knapsack capacity i.e.

𝑤(𝑛+1) = 𝐵

The total capacities of the knapsack and the dummy knapsack 2 are equal

 55

𝑊1 = 𝑊 and 𝑊2 = 𝐵 +∑𝑤𝑗

𝑁

𝑗=1

−∑𝑊

𝑀

𝑖=1

The formulation of the balanced Knapsack Problem (BKP) becomes

𝐵𝐾𝑃

{

 max𝑍 =∑

𝑃𝑗

𝑤𝑗
 𝑌1,𝑗

𝑛

𝑗=1

∑𝑌1,𝑗 = 𝑊1

𝑛+1

𝑗=1

 and ∑ 𝑌2,𝑗

𝑛+1

𝑗=1

= 𝑊2

∑𝑌𝑖,𝑗 = 𝑤𝑗

2

𝑖=1

; 𝑗 = 1,… , (𝑛 + 1)

𝑌𝑖,𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1, 2 ; 𝑗 = 1,… , (𝑛 + 1)

We consider the largest efficiency rate

𝐾 = max
𝑗
{
𝑃𝑗

𝑤𝑗
}

Then we subtract all the coefficients from that largest value to obtain new coefficients

𝐾1,𝑗 = 𝐾 −
𝑃𝑗

𝑤𝑗
 and 𝐾2,𝑗 = 𝐾; 𝑗 = 1, … , 𝑛

This transforms the Knapsack Problem into a minimization transportation problem and

gets the new coefficient

 56

𝑀𝐼𝑁 − 𝐾𝑃

{

 min𝑍𝐿 = ∑∑𝐾𝑖,𝑗 𝑌𝑖,𝑗

𝑛+1

𝑗=1

2

𝑖=1

∑𝑌1,𝑗 = 𝑊1

𝑛+1

𝑗=1

 and ∑ 𝑌2,𝑗

𝑛+1

𝑗=1

= 𝑊2

∑𝑌𝑖,𝑗 = 𝑤𝑗

2

𝑖=1

; 𝑗 = 1,… , (𝑛 + 1)

𝑌𝑖,𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1, 2 ; 𝑗 = 1,… , (𝑛 + 1)

It can be solved by an adaptation of the Transportation Algorithm (TA) presented in the

next section.

4.4 Adapted Transportation Algorithm

4.4.1 Vogel Approximation Method

Vogel Approximation Method (VAM) is one of the bests heuristic method to find a initial

basic solution for the Transportation Problem. In 1958, Vogel Approximation Method

developed by William R. Vogel. It depends on the concept of computing penalty cost,

which is defined by finding the difference between the two minimum costs for each row

and column.

The steps below are given more explanations:

1. Compute the penalty cost for each row and column; which is given by the

difference between two minimums cost.

2. Determine the largest penalty of the line to be assigned.

3. Assign the variable having the lowest unit cost.

 57

4. Update the supply and demand.

If there is one line remaining fill it and end

Else continue

5. Cross out the assigned column or row with zero supply or demand and return to

step 1.

Remark 1. If the items are ordered such that the efficiency rate is decreasing, the

variable to be assigned is the first variable of the first column of the remaining table.

Remark 2. If the items are ordered such that the efficiency rate is decreasing, the initial

solution is equivalent to the greedy approximation solution (Dantzig, 1957).

4.4.2 Dual Variable and test of reduction

The dual variables 𝑢𝑖 and 𝑣𝑗 associated to the current solution are provided by the

following system of equations optimal

𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 = 0 ∀ 𝑌𝑖,𝑗 ∈ 𝐵

Since there are 𝑚 + 𝑛 unknown variables and 𝑚 + 𝑛 − 1 equations, by setting 𝑢1 = 0

then we determine a solution of dual variables and then the reduced cost of all non-basic

variables

𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 ; ∀ 𝑌𝑖,𝑗 ∉ 𝐵

 58

where 𝐵 is the set of basic variables

We can notice that the current solution is optimal if the reduced cost for all non-basic

variables is positive i.e.

 𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 ≥ 0.

Otherwise there exist at least one non-basic variables 𝑌𝑖,𝑗 such that

𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 < 0

In the case of the knapsack problem, the reduced cost of such variables satisfied

𝑌1,𝑗 = 0, 𝑌2,𝑗 > 0 and 𝐾̂1,𝑗 = 𝐾1,𝑗 − 𝐾 < 0

This indicates the possibility to decrease the total transportation cost. This will be tested

by considering the move from 𝑌2,𝑗 to 𝑌1,𝑗 called the 𝑗-move. That move decreases the

cost by

𝑅𝑗 = 𝐾̂1,𝑗 𝑌2,𝑗 < 0 .

Since the first constraint is limited by the Knapsack capacity 𝑊 the 𝑗-move yields the use

of the surplus and some minimal necessary moves of variables

𝑌1,𝜎(𝑡) to 𝑌2,𝜎(𝑡); 𝑡 = 1,… , 𝑇

where 𝑇 is represent a move of column. This implies an increase of the cost equal to

𝐼𝑗 = ∑𝐾̂2,𝜎(𝑡) ∙ 𝑌1,𝜎(𝑡)

𝑇

𝑡=1

> 0

 59

The value 𝑅𝑗 + 𝐼𝑗 represents the change of the cost function resulting in the 𝑗-move.

Therefore if 𝑅𝑗 + 𝐼𝑗 < 0 then the objective cost is reduced and the move retained.

Otherwise the 𝑗-move is discarded. The comparison of these successful move

progressively performed in order to retain the optimal one which is associated to the

optimal solution.

4.4.3 Adapted Transportation Algorithm

In this section, we propose the adapted transportation algorithm

Step 0. Ordering the items

Order the items such that the efficiency rate
𝑝𝑗
𝑤𝑗

 is decreasing

Set 𝐾 = 𝐾1,1 be the maximal efficiency rate

Update the coefficients to change the KP into minimization

𝐾𝑖,𝑗: = 𝐾 − 𝐾𝑖,𝑗; 𝑖 = 1,2 ; 𝑗 = 1, … , 𝑛

Step 1. Initial solution and reduced costs

Set 𝑆1 = 0 ; 𝑊̅̅̅̅ = 𝑊 and s=1

For 𝑗 = 1,… , 𝑛 do

 If 𝑤𝑗 ≤ 𝑊̅̅̅̅ then set 𝑌1,𝑗 = 𝑤𝑗,

 𝑆(𝑗+1) = 𝑆𝑗 + 𝑤𝑗 , 𝑊̅̅̅̅ = 𝑊 − 𝑆(𝑗+1) and 𝐾̂2,𝑗 = 𝐾 − 𝐾1,𝑗

 60

 Else set 𝑌2,𝑗 = 𝑤𝑗 , 𝐾̂1,𝑗 = 𝐾1,𝑗 − 𝐾,

 𝑇𝐶(𝑠) = 𝑗 and s:=s+1

 EndIf

Endfor

Set 𝑌1,(𝑛+1) = 𝑊̅̅̅̅ and 𝑌2,(𝑛+1) = 0

Step 2. First decreasing evaluation

Set 𝑁 = 𝑠 − 1

For 𝑘 = 1,… ,𝑁 do

Set 𝑗 = 𝑇𝐶(𝑘) and 𝑅𝑗 = 𝐾̂1,𝑗 ∙ 𝑋2,𝑗 < 0

 Find 𝜎(𝑡) ; 𝑡 = 1,… , 𝑇 which is the minimal necessary move of variables 𝑌1,𝜎(𝑡)

to 𝑌2,𝜎(𝑡); 𝑡 = 1, … , 𝑇 resulting from the move of 𝑌2,𝑗 to 𝑌1,𝑗 and set

𝐼𝑗 = ∑𝐾̂2,𝜎(𝑡) ∙ 𝑌1,𝜎(𝑡)

𝑇

𝑡=1

> 0

 Evaluate

𝑅𝑗 + 𝐼𝑗 = 𝐾̂1,𝑗 ∙ 𝑌2,𝑗 + ∑𝐾̂2,𝜎(𝑡) ∙ 𝑌1,𝜎(𝑡)

𝑇

𝑡=1

 61

 If 𝑅𝑗 + 𝐼𝑗 < 0 then retain the move as a possibility to decrease the

objective function

 Set 𝑘 = 𝑁 + 1

 Else discard the move

 EndFor

Step 3. Improving the initial solution

For 𝑙 = (𝑗 + 1),… ,𝑁 do

Set 𝑘 = 𝑇𝐶(𝑙)

If 𝑌2,𝑗 < 𝑌2,𝑘 then do

Set 𝑅𝑘 = 𝐾̂1,𝑘 ∙ 𝑌2,𝑘

If 𝐾̂1,𝑗 ∙ 𝑌2,𝑗 < 𝐾̂1,𝑘 ∙ 𝑌2,𝑘 then the 𝑘 − move is discarded

Else

 If 𝑌2,𝑘 − 𝑌2,𝑗 ≤ 𝑌1,(𝑛+1) then accept the 𝑘 − move and set 𝑘̅ = 𝑘

 Else

Find first 𝑟 such that

𝑌2,𝑡 ≤ 𝑌1,(𝑛+1) + 𝑌2,𝑡 + 𝑌2,(𝑡−1) +⋯+ 𝐾2,𝑟

 62

 Set 𝐼𝑘 = 𝐾̂2,𝑘−1 ∙ 𝑌1,𝑘−1 + ⋯+ 𝐾̂2,𝑟 ∙ 𝑌1,𝑟

 If 𝐼𝑘 + 𝑅𝑘 ≤ 𝐼𝑗 + 𝑅𝑗 then discard the 𝑘 − move

 Else

 Accept the 𝑘 − move and set 𝑘̅ = 𝑘

 EndIf

EndIf

EndIf

Else (𝑌2,𝑗 ≥ 𝑌2,𝑘)

 Then 𝐾̂1,𝑗 ∙ 𝑌2,𝑗 < 𝐾̂1,𝑘 ∙ 𝑌2,𝑘

If 𝑌2,𝑗 − 𝑌2,𝑘 ≤ 𝑌1,(𝑛+1) then discard the 𝑘 − move

 Else

Find first 𝑟 such that 𝑌2,𝑟 − 𝑌2,𝑘 ≤ 𝑌1,(𝑛+1)

 Set 𝐼𝑘 = 𝐼𝑗 − 𝐾̂2,𝑘−1 ∙ 𝑌1,𝑘−1 −⋯− 𝐾̂2,𝑟 ∙ 𝑌1,(𝑟−1)

 If 𝐼𝑘 + 𝑅𝑘 < 𝐼𝑗 + 𝑅𝑗

then accept the 𝑘 − move and set 𝑘̅ = 𝑘

 Else

 63

 Discard the 𝑘 − move

EndIf

EndIf

EndIf

EndIf

Step 4. Perform the optimal move

The optimal move is associated to 𝑘̅

Perform that optimal move which is from 𝑌2,𝑘̅ to 𝑋1,𝑘̅

Here are some propositions:

Proposition 1. If 𝑋1,𝑘 = 𝑤𝑘 > 𝑤𝑗 then the move of 𝑌1,𝑘 to 𝑌2,𝑘 is not included in the

improving 𝑗-move of the weight 𝑤𝑗 from the variable 𝑌2,𝑗 to 𝑌1,𝑗.

Proof. Since 𝑌1,𝑘 = 𝑤𝑘 > 𝑤𝑗 and 𝐾1,𝑗 > 𝐾1,𝑘 then

|𝐾̂1,𝑗| = 𝐾1,1 − 𝐾1,𝑗 < 𝐾̂2,𝑘 = 𝐾1,1 − 𝐾1,𝑘 and 𝐾̂2,𝑘 ∙ 𝑌1,𝑘 + 𝐾̂2,𝑗 ∙ 𝑌1,𝑗 ≥ 0

Therefore the move of 𝑌1,𝑘 to 𝑌2,𝑘 cannot be included in an improving and feasible 𝑗-

move.

Proposition 2. Let’s consider 𝑌1,𝑘 = 𝑤𝑘 and the move of 𝑤𝑘 from 𝑌1,𝑘 to 𝑌2,𝑘 such that

𝑅𝑗 + 𝐼𝑗 + (𝐾̂2,𝑘 ∙ 𝑌1,𝑘) ≥ 0.

 64

 Then that move cannot be included in the improving 𝑗-move.

Proof. If the move of 𝑌1,𝑘 to 𝑌2,𝑘is included then the 𝑗-move will increases the objective

because 𝑅𝑗 + 𝐼𝑗 + (𝐾̂2,𝑘 ∙ 𝑌1,𝑘) ≥ 0 and will not improve it.

Proposition 3. Let’s consider 𝑌1,𝑘 = 𝑤𝑘 such that

 𝑤𝑘 + 𝑉𝑗 ≥ 𝑤𝑗 and 𝑅𝑗 + 𝐼𝑗̅ + (𝐾̂2,𝑘 ∙ 𝑌1,𝑘) < 0.

 Then the 𝑗-move is accepted. Moreover if the 𝑗-move is such that

 𝑤𝑘 + 𝑉𝑗 − 𝑤𝑗 = 0

then the current solution yield by the 𝑗-move is optimal.

Proof. Since 𝑤𝑘 + 𝑉𝑗 ≥ 𝑤𝑗 then the move of the basic variables associated to 𝑉𝑗

provides a feasible 𝑗-move which yields an improved current solution. Therefore the 𝑗-

move is accepted.

With the second condition, all variables 𝑟 > 𝑗 are non-basic variables with negative

reduced cost i.e.

𝑌1,𝑟 = 0, 𝑌2,𝑟 = 𝑤𝑟 and 𝐾̂1,𝑟 = 𝐾1,𝑟 − 𝐾1,1 < 0

Therefore, any 𝑟-move will involve the move of a total weight at least equal to 𝑤𝑟 from

basic variables 𝑋1,𝑘; 𝑘 < 𝑗 to 𝑋2,𝑘. Since the minimal reduced cost associated to these

moves are higher to the absolute value of the negative reduced cost of any non-basic

variables 𝑟 > 𝑗 then the objective function can no longer be improved.

 65

Now, we provide an example to illustrate the algorithm.

4.5 Example of illustration

We are going to use the same example that has been solved by the Branch and Bound in

the previous chapter. The parameters of the Knapsack Problem are

𝑛 = 7, 𝑃𝑗 = (70, 20, 39, 35, 7, 5, 9)

𝑤𝑗 = (31, 10, 20, 18, 4, 3, 6) 𝑊 = 50

The mathematical formulation is

{

 max𝑍 =∑𝑃𝑗𝑋𝑗

7

𝑗=1

 ∑𝑤𝑗𝑋𝑗 ≤ 50

7

𝑗=1

 𝑋𝑗 = {0, 1}; 𝑗 = 1,… ,7

It can be represented by the following table:

70 20 39 35 7 5 9 50

31 10 20 18 4 3 6

Now, by the change of variable 𝑌𝑗 = 𝑤𝑗𝑋𝑗 the formulation of the problem becomes

 66

{

max 𝑍 =∑
𝑃𝑗

𝑤𝑗
 𝑌1,𝑗

7

𝑗=1

 ∑𝑌1,𝑗 = 50

8

𝑗=1

∑𝑌2,𝑗

8

𝑗=1

= 𝐵 + 42

∑𝑌𝑖,𝑗 = 𝑤𝑗

2

𝑖=1

; 𝑗 = 1,… ,8

𝑌𝑖,𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1,2 ; 𝑗 = 1, … ,8

The associated table representation is

70

31

20

10

39

20

35

18

7

4

5

3

3

2

50

31 10 20 18 4 3 6

The problem is not balanced because

𝑊 = 50 ≠∑𝑤𝑗

7

𝑗=1

= 92

To balance the problem, we need to add a dummy knapsack 2 and a surplus item 8.

The total demand of item 8 is equal to a buffer 𝐵 where 𝐵 is unknown value.

𝑤8 = 𝐵

The total supply of knapsack 2 is equal

 67

𝑊2 = 𝐵 +∑𝑤𝑗 −𝑊 = 𝐵 +

7

𝑗=1

92 − 50 = 𝐵 + 42

Now the problem becomes balanced because

𝑊1 +𝑊2 = 50 + (𝐵 + 92 − 50) = 𝐵 + 92 =∑𝑤𝑗

8

𝑗=1

The formulation of BKP becomes

𝐵𝐾𝑃

{

max 𝑍 =∑𝑃𝑗 𝑌1,𝑗

7

𝑗=1

 ∑𝑌1,𝑗 = 50

8

𝑗=1

∑𝑌2,𝑗

8

𝑗=1

= 𝐵 + 42

∑𝑌𝑖,𝑗 = 𝑤𝑗

2

𝑖=1

; 𝑗 = 1,… ,8

𝑌𝑖,𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1,2 ; 𝑗 = 1,… ,8

The coefficient associated to the dummy knapsack and dummy item are equal zero. The

table representation becomes

70 20 39 35 7 5 9 0 𝟓𝟎

0 0 0 0 0 0 0 0 𝑩+ 𝟒𝟐

𝟑𝟏 𝟏𝟎 𝟐𝟎 𝟏𝟖 𝟒 𝟑 𝟔 𝑩

 68

Now, changing the problem to minimization problem by considering the highest

efficiency
70

31
. The formulation becomes the minimization and yields to the following

transportation problem

{

min 𝑍𝐿 =∑(
70

31
−
𝑃𝑗

𝑤𝑗
) 𝑌1,𝑗

7

𝑗=1

 ∑𝑌1,𝑗 = 50

8

𝑗=1

;

∑𝑌2,𝑗

8

𝑗=1

= 𝐵 + 42;

∑𝑌𝑖,𝑗 = 𝑤𝑗

2

𝑖=1

𝑌𝑖,𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1,2 ; 𝑗 = 1,… ,8

This implies the following table

0 8

31

191

620

175

558

63

124

55

93

47

62

70

31

50

70

31

70

31

70

31

70

31

70

31

70

31

70

31

70

31

𝑩 + 𝟒𝟐

31 10 20 18 4 3 6 𝑩

By using the approximation of the coefficients the table becomes

0 2.26 0.308 0.314 0.51 0.59 0.76 2.258 𝟓𝟎

2.258 2.258 2.258 2.258 2.258 2.258 2.258 2.258 𝑩 + 𝟒𝟐

 69

31 10 20 18 4 3 6 𝑩

To solve the transportation problem, we first find an initial solution by using the Vogel

Approximation Method (VAM). It consists in assigning to each row and column a

penalty which is the difference of the two lowest cost of that line.

This leads to

𝑝1 = 0.26 ; 𝑝2 = 0; 𝑞1 = 2.258 ; 𝑞2 = 1.998 ; 𝑞3 = 1.95 ; 𝑞4 = 1.95 ; 𝑞5 = 1.75 ;

𝑞6 = 1.67; 𝑞7 = 1.5 and 𝑞8 = 0

 Assignment 1. Since the largest penalty is, 𝑞1 = 2.258 − 0 = 2.258, 𝑗 = 1, … ,8; the

variable to be assigned is

𝑌1,1 = 31 and 𝑆1 = 50 − 31 = 19

Then column 1 is crossed out from the table.

Assignment 2. Since the largest penalty is associated to a column and the efficiency rate

is decreasing; the next variable to be assigned is

𝑌1,2 = 10 and 𝑆2 = 19 − 10 = 9

Then column 2 is crossed out from the table.

Since the remaining supply is lower than the weight these variables cannot be assigned.

We set

𝑌2,3 = 20 and 𝑌2,4 = 18.

 70

Then we crossed out column 3 and 4 out from the table.

Assignment 3. Since the efficiency rate is decreasing, the next variable to be assigned is

𝑌1,5 = 4 and 𝑆3 = 9 − 4 = 5

Then column 5 is crossed out from the table.

Assignment 4. Since the efficiency rate is decreasing, the next variable to be assigned is

𝑌1,6 = 3 and 𝑆4 = 5 − 3 = 2

Then column 6 is crossed out from the table. Since 𝑆4 = 2 < 𝑤7 = 6 then the remaining

variable 𝑌17 cannot be assigned. We set 𝑌2,7 = 6 and fill the remaining variable by setting

𝑌1,8 = 2; 𝑌2,3 = 20; 𝑌2,4 = 18; 𝑌2,7 = 6; 𝑌2,8 = 0

The initial feasible solution is presented in the following table with the total profit begin

equal to

 𝑍 = 102 with the buffer 𝐵 = 2

To find the optimal solution, we need to find the dual variables 𝑢𝑖 𝑎𝑛𝑑 𝑣𝑗 for all basic

variables.

We set 𝑢1 = 0 and then we have

31 10 4 3 2

 20 18 6 0

 71

{

𝑢1+𝑣1 = 0 ⇒ 𝑣1 = 0
𝑢1 + 𝑣2 = 0.26 ⇒ 𝑣2 = 0.26
𝑢1 + 𝑣5 = 0.51 ⇒ 𝑣5 = 0.51
𝑢1 + 𝑣6 = 0.59 ⇒ 𝑣6 = 0.59
𝑢1 + 𝑣8 = 2.258 ⇒ 𝑣8 = 2.258

Since we know 𝑣8 = 2.258; therefore, we find 𝑢2 = 0. Also,

{

𝑣3 = 2.258
𝑣4 = 2.258
𝑣7 = 2.258

After that, we need to find the reduced cost of all non – basic variables

𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 ; ∀ 𝑌𝑖,𝑗 ∉ 𝐵

The costs for the non – basic variables in the first row are

𝐾̂1,3 = 𝐾1,3 − 𝑢1 − 𝑣3 ⇒ 0.308 − 2.258 = −1.95

𝐾̂1,4 = 𝐾1,4 − 𝑢1 − 𝑣4 ⇒ 0.314 − 2.258 = −1.94

𝐾̂1,7 = 𝐾1,7 − 𝑢1 − 𝑣7 ⇒ 0.76 − 2.258 = −1.5

For the second row

𝐾̂2,1 = 𝐾2,1 − 𝑢2 − 𝑣1 ⇒ 2.258 − 0 − 0 = 2.26

𝐾̂2,2 = 𝐾2,2 − 𝑢2 − 𝑣2 ⇒ 2.258 − 0 − 0.26 = 2

𝐾̂2,5 = 𝐾2,5 − 𝑢2 − 𝑣5 ⇒ 2.258 − 0 − 0.51 = 1.75

𝐾̂2,6 = 𝐾2,6 − 𝑢2 − 𝑣6 ⇒ 2.258 − 0 − 0.59 = 1.67

 72

The current solution with reduced cost is presented below

Since the most negative value is 𝐾̂1,3 = −1.952, then the move of 𝑌2,3 = 20 to 𝑌1,3 will

reduce the objective by

𝑅3 = 20 × (−1.95) = −39

This will force at least the move of 𝑌1,1 = 31 to 𝑌2,1 and the increasing

𝐼3 = 31 × 2.26 = 70.02

Since adding 𝑅3 + 𝐼3 = 31.02 > 0 then the move of 𝑌2,3 = 20 is not improving and is

discarded by setting 𝐶2,3 = 2.26 + 1 = 3.26.

Since the next least reduced cost is 𝐾̂1,4 = −1.94, then the move of 𝑌2,4 = 18 to 𝑌1,4 will

reduce the objective by

𝑅4 = 18 × (−1.94) = −35

This will force at least the move of 𝑌1,6 = 3, 𝑌15 = 4 and 𝑌1,2 = 10. This implies an

increase

𝐼4 = 10 × (2) + 4 × (1.75) + 3 × (1.67) = 32

Since adding 𝑅4 + 𝐼4 = −3 < 0 then the move of 𝑌2,4 = 18 is maintained.

𝟑𝟏 𝟏𝟎 −1.95 −1.94 𝟒 𝟑 −1.5 𝟐

2.26 2 𝟐𝟎 𝟏𝟖 1.75 1.67 𝟔 𝟎

 73

The last negative reduced cost 𝐾̂1,7 = −1.5 yields the move of 𝑌2,7 = 6 to 𝑌1,7 which

reduces the objective by

𝑅7 = 6 × (−1.5) = −9

This will force at least the move of 𝑌1,5 = 4 and then the increasing

𝐼7 = 4 × (1.75) = 7

Since adding 𝑅7+𝐼7 = −2 < 0 then the move of 𝑌2,7 = 6 is maintained.

By comparing these two feasible solutions, the largest reduction of the cost function is

provided by the move of 𝑌2,4 = 18 to 𝑌1,4 which is the selected one. We notice that the

move of any of the variables 𝑌2,6 = 6 to 𝑌2,5 = 4 and 𝑌2,2 = 10 will imply the pervious

situation which will not be an improvement and s discarded by setting 𝐶2,6 = 𝐶2,5 =

𝐶2,2 = 3.26. The move of 𝑌2,7 = 6 to 𝑌1,7 is already tested and compared by the selected

one. It will not provide improvement and is discarded by setting 𝐶1,7 = 3.26. Then the

optimal solution with the total profit begin 105 is represented in the following table

𝟑𝟏 + + 𝟏𝟖 + + + 𝟏 𝟓𝟎

2.26 𝟏𝟎 𝟐𝟎 1.946 𝟒 𝟑 𝟔 𝟏 𝑩+ 𝟒𝟐

 74

4.6 Conclusion

In this chapter, we have presented the Knapsack Problem (KP) as a Linear Transportation

Problem (LTP) and provide a new approach for solving 0 − 1 Knapsack Problem (KP).

To find the initial solution the Vogel Method (VAM) is used and shown to be equivalent

to the Greedy Algorithm for the knapsack problem. Then an Adapted Transportation

Algorithm (ATA) is applied to find an optimal solution. The approach can also be

extended to some variants of the knapsack problem such as the Subset – sum problem

(𝑃𝑗 = 𝑤𝑗) [7], the bound knapsack problem and the knapsack – like problems. It also can

be generalized to solve the Zero – One Multiple Knapsack Problem (MKP) and the

multiple Subset – sum problem. In next chapter, we will apply this method to solve the

0 − 1 Multiple Knapsack Problem (MKP).

 75

Chapter 5

5 Solving the 𝟎 − 𝟏 Multiple Knapsack Problem by an

Adapted Transportation Algorithm

5.1 Introduction

In this chapter, we link the 0 − 1 Multiple Knapsack Problem to the Linear

Transportation Problem (LTP). Then we solve the problem by using an Adaptation of

Transportation Algorithm. The Vogel Approximation Method is applied to find an initial

solution. It consists of assigning to each row and column a penalty which is the difference

between the two minimum costs. The largest penalty indicates the line to be allocated

first. Then the variable with minimum cost on that line is assigned. The initial solution is

then improved by using the dual variable and resulting reduced cost. We prove that when

no further reduction of the cost is possible, then we obtain an optimal solution.

5.2 The Multiple Knapsack Problem Formulation

It is defined by selecting among 𝑛 items to load 𝑚 knapsacks in order to maximize the

resulting total profit while for each knapsack, the sum of the weight 𝑤𝑗 of the selected

items should not exceed its capacity 𝑊𝑖. The Multiple Knapsack Problem (MKP) is

formulated as following:

 76

𝑀𝐾𝑃

{

 max Z =∑ ∑𝑃𝑗

𝑛

𝑗=1

𝑋𝑖,𝑗

𝑚

𝑖=1

∑𝑤𝑗

𝑛

𝑗=1

𝑋𝑖,𝑗 ≤ 𝑊𝑖; 𝑖 = 1, … , 𝑚

∑𝑋𝑖𝑗,

𝑚

𝑖=1

≤ 1; 𝑗 = 1, … , 𝑛

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1, … ,𝑚 ; 𝑗 = 1, … , 𝑛

We consider the following conditions [43] without a loss of generality.

𝑃𝑗 > 0 , 𝑤𝑗 > 0 and 𝑊𝑖 > 0 are integers 𝑗 = 1,… , 𝑛; 𝑖 = 1,… ,𝑚

𝑤𝑗 ≤ max {𝑊𝑖 ; 𝑖 = 1,… ,𝑚} ; 𝑗 = 1, … , 𝑛

𝑊𝑖 ≥ min {𝑤𝑗 ; 𝑗 = 1, . . . , 𝑛}; 𝑖 = 1,… ,𝑚

∑𝑤𝑗 >

𝑛

𝑗=1

𝑊𝑖 ; 𝑖 = 1,… ,𝑚

5.3 Linear Transportation Problem and Multiple

Knapsack Problem

In this section, we link the 0 − 1 Multiple Knapsack problem to Linear Transportation

Problem. It consists of presenting the MKP as Transportation Problem and having it

 77

balanced. To present it as a Transportation Problem we change the decision variable 𝑋𝑖,𝑗.

The changing of variable 𝑌𝑖,𝑗 = 𝑤𝑗𝑋𝑖,𝑗 implies

𝑌𝑖,𝑗 = {
𝑤𝑗 when item 𝑗 is assigned to knapsack 𝑖

0 else
 𝑗 = 1,… , 𝑛

Therefore, the new formulation of Multiple Knapsack – Transportation Problem is

𝑀𝐾𝑃

{

 max Z =∑ ∑

𝑃𝑗

𝑤𝑗

𝑛

𝑗=1

 𝑌𝑖,𝑗

𝑚

𝑖=1

 ∑𝑌𝑖,𝑗

𝑛

𝑗=1

≤ 𝑊𝑖; 𝑖 = 1, … ,𝑚

∑𝑌𝑖,𝑗

𝑚

𝑖=1

≤ 𝑤𝑗; 𝑗 = 1, … , 𝑛

𝑌𝑖,𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛

Since the problem is not usually balanced, we add a dummy knapsack (𝑚 + 1) and

associated to the variables

(𝑌(𝑚+1),1; 𝑌(𝑚+1),2; … ; 𝑌(𝑚+1),𝑛)

Also, we add a dummy item (𝑛 + 1) associated to the variables

(𝑌1,(𝑛+1); 𝑌2,(𝑛+1); … ; 𝑌𝑚,(𝑛+1))

Their coefficients in the objective function are equal to zero value, which make this

variable less attractive. The demand surplus of item (𝑛 + 1) is equal to an unknown

buffer 𝐵

𝑤(𝑛+1) = 𝐵

 78

The supply for dummy knapsack 𝑚 + 1 is equal

𝑊(𝑚+1) = 𝐵 +∑𝑊𝑖

𝑚

𝑖=1

−∑𝑤𝑗

𝑛

𝑗=1

The formulation of the balanced Multiple Knapsack Problem (BMKP) becomes

[BMKP]

{

 max Z = ∑ ∑

𝑃𝑗

𝑤𝑗

𝑛+1

𝑗=1

 𝑌𝑖,𝑗

𝑚+1

𝑖=1

 ∑𝑌𝑖𝑗,

𝑛+1

𝑗=1

= 𝑊𝑖; 𝑖 = 1,… , (𝑚 + 1)

∑ 𝑌𝑖,𝑗

𝑚+1

𝑖=1

= 𝑤𝑗; 𝑗 = 1,… , (𝑛 + 1)

𝑌𝑖,𝑗 ∈ {0, 𝑤𝑗}; 𝑖 = 1,… , (𝑚 + 1) ; 𝑗 = 1,… , (𝑛 + 1)

Now, we change the problem to a minimization problem becomes the MKP is usually

maximization. To change the BMKP can be presented it as a minimization by setting

𝐾 = max
𝑗
{
𝑃𝑗

𝑤𝑗
}

and subtracting the coefficients from 𝐾 to obtain all the coefficients 𝐾𝑖,𝑗

𝐾𝑚+1,𝑗 = 𝐾; 𝐾𝑖,𝑛+1 = 𝐾; 𝐾𝑖,𝑗 = 𝐾 −
𝑝𝑗

𝑤𝑗
 ; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1, … , 𝑛

The formulation of MIN – MKP becomes

 79

MIN −MKP

{

 min Z𝑚 = ∑ ∑𝐾𝑖,𝑗

𝑛+1

𝑗=1

𝑚+1

𝑖=1

𝑌𝑖,𝑗

 ∑𝑌𝑖,𝑗

𝑛+1

𝑗=1

= 𝑊𝑖; 𝑖 = 1, … ,𝑚

∑ 𝑌𝑖,𝑗

𝑚+1

𝑖=1

= 𝑤𝑗; 𝑗 = 1, … , 𝑛

𝑌𝑖,𝑗 ∈ {0,𝑤𝑗}; 𝑖 = 1, … ,𝑚 ; 𝑗 = 1,… , 𝑛

Since we get the formulation of the 0 − 1 multiple Knapsack Problem – Transportation

we present the Adapted Transportation Algorithm for solving the problem in the

following section.

5.4 Adapted Transportation Algorithm

5.4.1 Vogel Approximation Method

To find the initial solution we use the Vogel Approximation Method (VAM) described by

the following steps.

1. Compute the penalty cost for each row and column; however, for each row and

column, the penalty is the difference between two minimums cost.

2. Determine the largest penalty of the line to be assigned.

3. Assign the variable having the lowest unit cost.

4. Update the supply and demand.

If there is one line remaining fill it and end

 80

Else continue

5. Cross out the assigned column or row with zero supply or demand and return to

step 1.

Remark 1. If the items are ordered such that the efficiency rate is decreasing, the

variable to be assigned is the first variable of the first column of the remaining table.

Remark 2. If the items are ordered such that the efficiency rate is decreasing, the initial

solution is equivalent to the greedy approximation solution (Dantzig, 1957).

5.4.2 Dual Variable and test of reduction

The dual variables 𝑢𝑖 and 𝑣𝑗 associated to the current solution is provided by the

following system of equations

𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 = 0 ∀ 𝑌𝑖,𝑗 ∈ 𝐵

where 𝐵 is the set of basic variable. Since there are 𝑚 + 𝑛 unknown variables and

𝑚 + 𝑛 − 1 equations, by setting 𝑢1 = 0 then we determine a solution of dual variables

and then the reduced cost of all non-basic variables

𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 ; ∀ 𝑌𝑖,𝑗 ∉ 𝐵

We can notice that the current solution is optimal if the reduced cost for all non-basic

variables is positive i.e.

 𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 ≥ 0.

 81

Otherwise there exist at least one non-basic variable 𝑌𝑖,𝑗 such that

𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 < 0

In the case of the 0 − 1 Multiple knapsack problem since the profit of any item 𝑗

independent of the knapsack, the reduced cost of such variables verify for 𝑖 = 1, … ,𝑚

and 𝑗 = 1,… , 𝑛

𝑌𝑖,𝑗 = 0, 𝑌𝑚+1,𝑗 > 0 and 𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝐾 < 0;

This indicates the possibility to decrease the total transportation cost. This will be tested

by considering the move from 𝑌𝑚+1,𝑗 to 𝑌𝑖,𝑗; 𝑖 = 1,… ,𝑚 called the 𝑗-move to 𝑌𝑖,𝑗. That

move decreases the cost by

𝑅𝑗 = 𝐾̂𝑖,𝑗 𝑌𝑚+1,𝑗 < 0 ; 𝑖 = 1, … ,𝑚.

Since the first 𝑚 constraints are limited by the Knapsack capacity 𝑊𝑖 the 𝑗-move to

𝑌𝑖,𝑗 yields the use of the surplus and some minimal necessary moves of variables

𝑌𝑖,𝜎(𝑡) to 𝑌𝑚+1,𝜎(𝑡) ; 𝑡 = 1,… , 𝑇.

This implies an increase of the cost equal to

𝐼𝑗 = ∑𝐾̂𝑚+1,𝜎(𝑡) ∙ 𝑋𝑖,𝜎(𝑡)

𝑇

𝑡=1

> 0; 𝑖 = 1,… ,𝑚

The value 𝑅𝑗 + 𝐼𝑗 represents the change of the cost function resulting in the 𝑗-move.

Therefore if 𝑅𝑗 + 𝐼𝑗 < 0 then the objective cost is reduced and the move retained.

 82

Otherwise the 𝑗-move is discarded. The comparison of these successful moves

progressively performed in order to retain the optimal one that is associated to the

optimal solution.

In the next section, we provide illustration examples solved by using the Adapted

Transportation Algorithm. One of these examples has been solved in chapter 3 by Branch

and Bound Algorithm (B&B), and the second example is an illustration of the possibility

to consider dependent profit unit of the item to the knapsack.

5.5 Example of illustration

5.5.1 Example 1

Consider the following multiple knapsack problem with 𝑚 = 2 knapsacks and 𝑛 = 10

items. The profit and weight are

𝑃𝑗 = (78, 35, 89, 36, 94, 75, 74, 79, 80, 16)

𝑤𝑗 = (18, 9, 23, 20, 59, 61, 70, 75, 76, 30)

𝑊𝑖 = (103, 156)

The mathematical formulation of the multiple knapsack problem is

 83

{

 max Z =∑ ∑𝑃𝑗

10

𝑗=1

𝑋𝑖,𝑗

2

𝑖=1

∑𝑤𝑗

10

𝑗=1

𝑋𝑖,𝑗 ≤ 𝑊𝑖; 𝑖 = 1,2

∑𝑋𝑖,𝑗

2

𝑖=1

≤ 1; 𝑗 = 1,… , 10

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1, 2 ; 𝑗 = 1,… ,10

Its representation is provided by the following table

By the change of variable 𝑌𝑖,𝑗 = 𝑤𝑗𝑋𝑖,𝑗 the problem becomes as following maximum

transportation problem. Therefore, the following table provides the transportation

problem

78 35 89 36 94 75 74 79 80 16 𝟏𝟎𝟑

78 35 89 36 94 75 74 79 80 16 𝟏𝟓𝟔

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟓𝟗 𝟔𝟏 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟑𝟎

39

9

35

9

89

23

9

5

94

59

75

61

37

35

79

75

20

19

8

15

𝟏𝟎𝟑

 84

The problem is not balanced because

∑𝑤𝑗

10

𝑗=1

= 441 >∑𝑊𝑖

2

𝑖=1

= 259

To become a balanced problem, we need to add a dummy knapsack 𝑖 = 3 and a dummy

item 𝑛 = 11. The weight of the dummy item 11 is equal to an unknown buffer 𝐵.

𝑤11 = 𝐵

The total supply dummy of knapsack 3 is equal

𝑊3 = 𝐵 +∑𝑤𝑗

10

𝑗=1

−∑𝑊𝑖

2

𝑖=1

= 𝐵 + 441 − 259 = 𝐵 + 182

Now, the problem becomes balanced

∑𝑊𝑖

3

𝑖=1

= 103 + 156 + (𝐵 + 441 − 259) = 𝐵 + 441 =∑𝑤𝑗

11

𝑗=1

The cost for the dummy knapsack and surplus items are equal zero.

The associated table is

39

9

35

9

89

23

9

5

94

59

75

61

37

35

79

75

20

19

8

15

𝟏𝟓𝟔

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟓𝟗 𝟔𝟏 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟑𝟎

 85

39

9

35

9

89

23

9

5

94

59

75

61

37

35

79

75

20

19

8

15

0 𝟏𝟎𝟑

39

9

35

9

89

23

9

5

94

59

75

61

37

35

79

75

20

19

8

15

0 𝟏𝟓𝟔

0 0 0 0 0 0 0 0 0 0 0 𝑩 + 𝟏𝟖𝟐

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟓𝟗 𝟔𝟏 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟑𝟎 𝑩

By considering the highest efficiency
39

9
, we change the problem to a minimization

problem by subtracting the coefficients from
39

9
. This provides after approximation the

transportation problem

0 0.44 0.46 2.53 2.74 3.10 3.276 3.28 3.281 3.8 4.33 𝟏𝟎𝟑

0 0.44 0.46 2.53 2.74 3.10 3.276 3.28 3.281 3.8 4.33 𝟏𝟓𝟔

4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 𝑩+ 𝟏𝟖𝟐

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟓𝟗 𝟔𝟏 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟑𝟎 𝑩

To solve the transportation problem, we first find an initial solution by using the Vogel

Approximation Method (VAM). It consists in evaluating the penalties of assigning to

each row and column, a penalty which is the difference of the two lowest cost of that line.

This leads to

 86

𝑝1 = 𝑝2 = 0.44 ; 𝑝3 = 0 ; 𝑞𝑗 = 0; 𝑗 = 1,… , 11

Assignment 1.Since the largest penalties are 𝑃1 = 𝑃2 , 𝑞𝑗 = 0, 𝑗 = 1,… , 10 the variable

to be assigned is

𝑌1,1 = 18 and 𝑆1 = 103 − 18 = 85

The column 1 is crossed out from the table.

Assignment 2. Since the efficiency rate is increasing, the next variable to be assigned is

𝑌1,2 = 9 and 𝑆2 = 85 − 9 = 76

The column 2 is crossed out from the table.

Assignment 3. Then the next variable to be assigned is

𝑌1,3 = 23 and 𝑆3 = 76 − 23 = 53

The column 3 is crossed out from the table.

Assignment 4. Then the next variable to be assigned is

𝑌1,4 = 20 and 𝑆4 = 53 − 20 = 33

The column 4 is crossed out from the table.

Since the remaining supply is lower than the weight for 𝑌1,5; 𝑌1,6; 𝑌1,7; 𝑌1,8 and 𝑌1,9 then

we set their coefficients equal to the largest cost

𝐾1,5 = 𝐾1,6 = 𝐾1,7 = 𝐾1,8 = 𝐾1,9 = 4.33

 87

This implies the update of their penalties to

𝑞5 = 1.59 ; 𝑞6 = 1.23 ; 𝑞7 = 1.054 ; 𝑞8 = 1.05 ; 𝑞9 = 1.049 ; 𝑞10 = 0.53 ; 𝑞11 = 0

Assignment 5. The largest penalty is 𝑞5 = 1.59 and the variable to be assigned is

𝑌2,5 = 59 and 𝑆5 = 156 − 59 = 97

The column 5 is crossed out from the table.

Assignment 6. The largest penalty is 𝑞6 = 1.23 and then the variable to be assigned is

𝑌2,6 = 61 and 𝑆6 = 97 − 61 = 36

Since the remaining supply is lower than the weight for 𝑌2,7; 𝑌2,8 and 𝑌2,9 we set their

coefficients equal to the largest cost

𝐾2,7 = 𝐾2,8 = 𝐾2,9 = 4.33

The update of their penalties implies

𝑞7 = 𝑞8 = 𝑞9 = 0

Assignment 7. The largest penalty is 𝑝1 = 𝑝2 = 0.53 and then the variable to be

assigned is

𝑌1,10 = 30 and 𝑆7 = 33 − 30 = 3

The column 10 is crossed out from the table. Now, we fill the remaining column and row

by setting

 88

𝑌1,11 = 3; 𝑌2,11 = 36; 𝑌3,11 = 0; 𝑌3,7 = 70; 𝑌3,8 = 75; 𝑌3,9 = 76;

The initial feasible solution is

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟑𝟎 𝟑

 𝟓𝟗 𝟔𝟏 𝟑𝟔

 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟎

The total profit is

𝑍 = 423 with 𝐵 = 3 + 36 = 39

To find the optimal solution, we need to find the dual variables 𝑢𝑖 𝑎𝑛𝑑 𝑣𝑗 for all basic

variables. We set 𝑢1 = 0 and then we have

{

𝑢1+𝑣1 = 0 ⇒ 𝑣1 = 0
𝑢1 + 𝑣2 = 0.44 ⇒ 𝑣2 = 0.44
𝑢1 + 𝑣3 = 0.46 ⇒ 𝑣3 = 0.46
𝑢1 + 𝑣4 = 2.53 ⇒ 𝑣4 = 2.53
𝑢1 + 𝑣10 = 3.8 ⇒ 𝑣10 = 3.8
𝑢1 + 𝑣11 = 4.33 ⇒ 𝑣11 = 4.33

Since we know 𝑣11 = 4.33; therefore, we find 𝑢2 = 0. Also,

{
𝑣5 = 2.74
𝑣6 = 3.10

By using 𝑣11 = 4.33, and then 𝑢3 = 0. Also,

 89

{

𝑣7 = 4.33
𝑣8 = 4.33
𝑣9 = 4.33

After that, we need to find the cost of all non – basic variables

𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 ; ∀ 𝑌𝑖,𝑗 ∉ 𝐵

The reduced costs for the non – basic variables in the first row are

𝐾̂1,5 = 𝐾1,5 − 𝑢1 − 𝑣5 ⇒ 2.74 − 0 − 2.27 = 0.47

𝐾̂1,6 = 𝐾1,6 − 𝑢1 − 𝑣6 ⇒ 3.10 − 0 − 3.10 = 0

𝐾̂1,7 = 𝐾1,7 − 𝑢1 − 𝑣7 ⇒ 3.276 − 0 − 4.33 = −1.054

𝐾̂1,8 = 𝐾1,8 − 𝑢1 − 𝑣8 ⇒ 3.28 − 0 − 4.33 = −1.05

𝐾̂1,9 = 𝐾1,9 − 𝑢1 − 𝑣9 ⇒ 3.281 − 0 − 4.33 = −1.049

For the second row

𝐾̂2,1 = 𝐾2,1 − 𝑢2 − 𝑣1 ⇒ 0 − 0 − 0 = 0

𝐾̂2,2 = 𝐾2,2 − 𝑢2 − 𝑣2 ⇒ 0.44 − 0 − 0.44 = 0

𝐾̂2,3 = 𝐾2,3 − 𝑢2 − 𝑣3 ⇒ 0.46 − 0 − 0.46 = 0

𝐾̂2,4 = 𝐾2,4 − 𝑢2 − 𝑣4 ⇒ 2.53 − 0 − 2.53 = 0

𝐾̂2,7 = 𝐾2,7 − 𝑢2 − 𝑣7 ⇒ 3.276 − 0 − 4.33 = −1.054

 90

𝐾̂2,8 = 𝐾2,8 − 𝑢2 − 𝑣8 ⇒ 3.28 − 0 − 4.33 = −1.05

𝐾̂2,9 = 𝐾2,9 − 𝑢2 − 𝑣9 ⇒ 3.281 − 0 − 4.33 = −1.049

𝐾̂2,10 = 𝐾2,10 − 𝑢2 − 𝑣10 ⇒ 3.8 − 0 − 3.8 = 0

The reduced cost for the third row

𝐾̂3,1 = 𝐾3,1 − 𝑢3 − 𝑣1 ⇒ 4.33 − 0 − 0 = 4.33

𝐾̂3,2 = 𝐾3,2 − 𝑢3 − 𝑣2 ⇒ 4.33 − 0 − 0.44 = 3.89

𝐾̂3,3 = 𝐾3,3 − 𝑢3 − 𝑣3 ⇒ 4.33 − 0 − 0.46 = 3.87

𝐾̂3,4 = 𝐾3,4 − 𝑢3 − 𝑣4 ⇒ 4.33 − 0 − 2.53 = 1.8

𝐾̂3,5 = 𝐾3,5 − 𝑢3 − 𝑣5 ⇒ 4.33 − 0 − 2.74 = 1.59

𝐾̂36 = 𝐾3,6 − 𝑢3 − 𝑣6 ⇒ 4.33 − 0 − 3.10 = 1.23

𝐾̂3,10 = 𝐾3,10 − 𝑢3 − 𝑣10 ⇒ 4.33 − 0 − 3.8 = 0.53

The current solution with reduced cost is presented below

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 0.47 0 −1.054 −1.05 −1.049 𝟑𝟎 𝟑

0 0 0 0 𝟓𝟗 𝟔𝟏 −1.054 −1.05 −1.049 0 𝟑𝟔

4.33 3.89 3.87 1.8 1.59 1.23 𝟕𝟎 𝟕𝟓 𝟕𝟔 0.53 𝟎

 91

Since the least value is 𝐾̂2,7 = −1.054; therefore, it indicates a possibility of reducing the

cost. The variable 𝑌2,7 is reducing the basic. This implies the moving of 𝑌3,7 to 𝑌2,7. This

implies the reduction cost

𝑅7 = 70 × (−1.054) = −73.78

It also implies the move of the weight 𝑤6 = 61 to 𝑌3,6. This implies an increasing cost

𝐼7 = 61 × (1.23) = 75.03

It also implies the possible move of 𝑤6 = 61 to 𝑌1,6. This implies an increasing cost

𝐼7 = 9 × (3.89) + 30 × (0.53) = 50.91

By adding 𝑅7 + 𝐼7 “ the move of 𝑤6 = 61 to 𝑌3,6” the total becomes 1.25 > 0; therefore,

this moving from 𝑌3,6 to 𝑌2,6 is not acceptable to reduce the current cost 𝑧. By

adding 𝑅7 + 𝐼7 “ the move of 𝑤6 = 61 to 𝑌1,6” the total becomes −22.87 < 0 then the

move is maintained.

Next, the least value is 𝐾̂1,7 = −1.054; therefore, it indicates a possibility of reducing the

cost. The variable 𝑌1,7 is reducing the basic. This implies the moving of 𝑌3,7 to 𝑌1,7

This implies the reduction cost

𝑅7 = 70 × (−1.054) = −73.78

It also implies the moving of 𝑌1,4 and 𝑌1,10, to respectively 𝑋3,4and 𝑋3,10. This implies an

increasing cost

 92

𝐼7 = 20 × (1.8) + 30 × (0.53) = 51.9

By adding them the total becomes −21.88 < 0 then the move of 𝑌1,7 is maintained.

 The third least value is 𝐾̂2,8 = −1.05; therefore, it indicates a possibility of reducing the

cost. The variable 𝑋2,8 is reducing the basic. This implies the moving of 𝑌3,8to 𝑌2,8. This

implies the reduction cost

𝑅8 = 75 × (−1.05) = −78.75

It also implies the move of the weight 𝑤6 = 61 to 𝑌3,6. This implies an increasing cost

𝐼8 = 61 × (1.23) = 75.03

By adding them the result is decreasing −3.72 < 0 then the move is maintained.

It also implies the possible move of 𝑤6 = 61 to 𝑌1,6. This implies an increasing cost

𝐼8 = 9 × (3.89) + 30 × (0.53) = 50.91

By adding them the result is decreasing −27.84 < 0 then the move is maintained

Next, the least value is 𝐾̂1,8 = −1.05; therefore, it shows a possibility of reducing the

cost.

The variable 𝑌1,8 is reducing the basic. This implies the moving of 𝑌1,4 and 𝑌1,10 to

respectively 𝑌3,4 and 𝑌3,10. This implies the reduction cost 𝑅8 = −78.75.

It also implies an increasing cost

 93

𝐼8 = 20 × (1.8) + 30 × (0.53) = 51.9

By adding them, it is given a decreasing cost −26.85 < 0. That means the moving from

𝑌3,8 to 𝑌1,8 is maintained.

Since we still have negative values, so the least value is 𝐾̂2,9 = −1.049; therefore, there

is a possibility of reducing the cost. The variable 𝑌2,9 is reducing the basic. This implies

the moving of 𝑌3,9 to 𝑋2,9. This implies the reduction cost

𝑅9 = 76 × (−1.049) = −79.496

It also implies the move of the weight 𝑤6 = 61 to 𝑌3,6. This implies an increasing cost

𝐼9 = 61 × (1.23) = 75.03

By adding them, the result becomes decreasing −3.924 < 0 then the move is maintained.

It also implies the move of the weight 𝑤6 = 61 to 𝑌1,6. This implies an increasing cost

𝐼9 = 20 × (1.8) + 30 × (0.53) = 51.9

By adding them, the result becomes decreasing −28.814 < 0 then the move is

maintained.

The last least value is 𝐾̂1,9 = −1.049; therefore, it indicates a possibility of reducing the

cost. The variable 𝑌1,9 is reducing the basic. This implies the moving of 𝑌1,4 and 𝑌1,10 to

respectively 𝑌3,4 and 𝑌3,10. This implies the reduction cost 𝑅9 = −79.496.

It also implies an increasing cost

 94

𝐼9 = 20 × (1.8) + 30 × (0.53) = 51.9

By adding them the result is increasing −27.824 < 0 then the move is maintained.

Since we have some moves are maintained we choose the best move which is given more

reduced cost. Therefore, the best moving is form 𝑌39 to 𝑌29 because the reducing cost is

equal −28.814 < 0.

The current solution becomes

The total of maximum profit is equal 𝑧 = 452 with 𝐵 = 39

5.5.2 Example 2

Consider the following Multiple Knapsack Problem having

𝑚 = 2 knapsack and 𝑛 = 10 items. The unit profit and weight are

𝑃𝑖,𝑗 = (
78, 35, 89, 36, 94, 75, 74, 79, 80, 16

74, 32, 92, 34, 92, 78, 72, 80, 78, 20
)

𝑤𝑗 = (18, 09, 23, 20, 59, 61, 70, 75, 76, 30)

𝟏𝟖 + 𝟐𝟑 0 0 𝟔𝟏 + + 0 + 𝟏

0 + 0 𝟐𝟎 𝟓𝟗 0 + + 𝟕𝟔 + 𝟏

4.33 𝟗 3.87 1.8 1.59 1.23 𝟕𝟎 𝟕𝟓 1.049 𝟑𝟎 𝟑𝟕

 95

𝑊1 = 103,𝑊2 = 156

The multiple Knapsack Problem formulation is

{

 max𝑍 =∑∑𝑃𝑖,𝑗𝑋𝑖,𝑗

10

𝑗=1

2

𝑖=1

∑𝑤𝑗𝑋𝑖,𝑗 ≤ 𝑊𝑖

10

𝑗=1

; 𝑖 = 1,2

∑𝑋𝑖,𝑗 = 1

2

𝑖=1

; 𝑗 = 1,… ,10

𝑋𝑖,𝑗 ∈ {0, 1}; 𝑖 = 1,2 ; 𝑗 = 1, … ,10

The matrix costs are provided by the following table

78 35 89 32 94 75 74 79 80 16 𝟏𝟎𝟑

74 32 92 34 92 78 72 80 78 20 𝟏𝟓𝟔

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟓𝟗 𝟔𝟏 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟑𝟎

 By the change of variable 𝑌𝑖,𝑗 = 𝑤𝑗 𝑋𝑖,𝑗 the problem

The transportation problem is provided by the following table

39

9

35

9

89

23

8

5

94

59

75

61

37

35

79

75

20

19

8

15

𝟏𝟎𝟑

2

9

32

9

92

23

17

10

92

59

78

61

36

35

16

15

39

38

2

3

𝟏𝟓𝟔

18 9 23 20 59 61 70 75 76 30

 96

 The problem is not balanced because

∑𝑤𝑗

10

𝑗=1

= 441 >∑𝑊𝑖

2

𝑖=1

= 259

Since the problem is not balanced we need to add a dummy knapsack 𝑖 = 3 and a dummy

item 𝑗 = 11.

The weight of the dummy item 11 is equal to an unknown buffer 𝐵.

𝑤11 = 𝐵

The total supply of surplus knapsack 3 is equal

𝑊(𝑚+1) = 𝐵 +∑𝑤𝑗

𝑛

𝑗=1

−∑𝑊𝑖

𝑚

𝑖=1

= 𝐵 + 441 − 259 = 𝐵 + 182

Now, the problem becomes balanced because

∑𝑊𝑖

3

𝑖=1

= 103 + 156 + (𝐵 + 441 − 259) = 𝐵 + 441 =∑𝑤𝑗

11

𝑗=1

The cost for the dummy knapsack and dummy item are equal zero.

The associated table is

 97

78 35 89 32 94 75 74 79 80 16 0 𝟏𝟎𝟑

74 32 92 34 92 78 72 80 78 20 0 𝟏𝟓𝟔

0 0 0 0 0 0 0 0 0 0 0 𝑩 + 𝟏𝟖𝟐

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟓𝟗 𝟔𝟏 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟑𝟎 𝑩

By considering the highest efficiency
39

9
, we can change the problem a minimization by

subtracting the coefficients from
39

9
. This provides often approximation the transportation

problem

0 0.44 0.46 2.73 2.74 3.10 3.276 3.28 3.281 3.8 4.33 𝟏𝟎𝟑

0.22 0.77 0.33 2.63 2.77 3.055 3.305 3.27 3.307 3.67 4.33 𝟏𝟓𝟔

4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 4.33 𝟏𝟖𝟐 + 𝑩

𝟏𝟖 𝟗 𝟐𝟑 𝟐𝟎 𝟓𝟗 𝟔𝟏 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟑𝟎 B

To solve the transportation problem, we first find an initial solution by using the Vogel

Approximation Method (VAM). It consists in evaluating the penalties of assigning to

each row and column, a penalty which is the difference of the two lowest cost of that line.

This leads to

 98

𝑝1 = 0.44 ; 𝑝2 = 0.11 ; 𝑝3 = 0 ; 𝑞1 = 0.22 ; 𝑞2 = 0.33 ; 𝑞3 = 0.13 ; 𝑞4 = 0.1 ;

𝑞5 = 0.03 ; 𝑞6 = 0.045 ; 𝑞7 = 0.029 ; 𝑞8 = 0.01 ; 𝑞9 = 0.026 ; 𝑞10 = 0.13 and 𝑞11 = 0

Assignment 1. Since the largest penalty is 𝑃1 = 0.44 , 𝑞𝑗 = 0, 𝑗 = 1, … , 10, the variable

to be assigned is

𝑌1,1 = 18 and 𝑆1 = 103 − 18 = 85

The column 1 is crossed out from the table.

Assignment 2. Since the largest penalty is 𝑃2 = 0.44, 𝑞𝑗 = 0, 𝑗 = 1,… , 10 the variable

to be assigned is

𝑌2,3 = 23 and 𝑆2 = 156 − 23 = 133

The column 3 is crossed out from the table.

Assignment 3. Since the largest penalty is 𝑃2 = 2.29, 𝑞𝑗 = 0, 𝑗 = 1,… , 10; therefore,

the variable to be assigned is

𝑌1,2 = 9 and 𝑆3 = 85 − 9 = 76

The column 2 is crossed out from the table.

Assignment 4. Since the largest penalties are 𝑝2 = 0.14, 𝑗 = 1,… , 10 the variable to be

assigned is

𝑋2,4 = 20 and 𝑆4 = 133 − 20 = 113

The column 4 is crossed out from the table.

 99

Assignment 5. The largest penalty is 𝑝1 = 0.36 and the variable to be assigned is

𝑌1,5 = 59 and 𝑆5 = 76 − 59 = 17

The column 5 is crossed out from the table.

Since the remaining supply is lower than the weight for 𝑌1,6; 𝑌1,7; 𝑌1,8 ; 𝑌1,9 and 𝑌1,10

then we set their coefficients equal to the largest cost

𝐾1,6 = 4.33; 𝐾1,7 = 4.33; 𝐾1,8 = 4.33 ; 𝐾1,9 = 4.33; 𝐾1,10 = 4.33

This implies the update of their penalties to

𝑞6 = 1.275; 𝑞7 = 1.025; 𝑞8 = 1.06; 𝑞9 = 1.023; 𝑞10 = 0.66; and 𝑞11 = 0

Assignment 6. The largest penalty is 𝑞6 = 1.275 and then the variable to be assigned is

𝑌2,6 = 61 and 𝑆6 = 113 − 61 = 52

The column 6 is crossed out from the table.

Since the remaining supply is lower than the weight for 𝑌2,7; 𝑌2,8, and 𝑌2,9 then we set

their coefficients equal to the largest cost

𝐾2,7 = 4.33; 𝐾2,8 = 4.33; 𝐾2,9 = 4.33

The update of their penalties implies

𝑞7 = 𝑞8 = 𝑞9 = 0

Assignment 7. The largest penalty is 𝑃2 = 0.66 and then the variable to be assigned is

 100

𝑌2,10 = 30 𝑤10 = 0 and 𝑆7 = 52 − 30 = 22

The column 10 is crossed out from the table. Now, we fill the remaining column and row

by setting

𝑌1,11 = 17 ; 𝑌2,11 = 22; 𝑌3,11 = 0; 𝑌3,7 = 70; 𝑌3,8 = 75; 𝑌3,9 = 76

The table of initial solution is

𝟏𝟖 𝟗 𝟓𝟗 𝟏𝟕

 𝟐𝟑 𝟐𝟎 𝟔𝟏 𝟑𝟎 𝟐𝟐

 𝟕𝟎 𝟕𝟓 𝟕𝟔 𝟎

The total profit is

𝑍 = 431 with 𝐵 = 17 + 22 = 39

To find the optimal solution, we need to find the dual variables 𝑢𝑖 𝑎𝑛𝑑 𝑣𝑗 for all basic

variables.

We set 𝑢1 = 0 and then we have

{

𝑢1+𝑣1 = 0 ⇒ 𝑣1 = 0
 𝑢1+𝑣2 = 0.44 ⇒ 𝑣2 = 0.44
𝑢1 + 𝑣5 = 2.74 ⇒ 𝑣5 = 2.74
𝑢1 + 𝑣11 = 4.33 ⇒ 𝑣11 = 4.33

Since we know 𝑣11 = 4.33; therefore, we find 𝑢2 = 0. Also,

 101

{

𝑣3 = 0.33
𝑣4 = 2.63
𝑣6 = 3.055
𝑣10 = 3.67

By using 𝑣11 = 4.33 and then 𝑢3 = 0. Also,

{

𝑣7 = 4.33
𝑣8 = 4.33
𝑣9 = 4.33

After that, we need to find the reduced cost of all non – basic variables

𝐾̂𝑖,𝑗 = 𝐾𝑖,𝑗 − 𝑢𝑖 − 𝑣𝑗 ; ∀𝑌𝑖,𝑗 ∉ 𝐵

The reduced costs for the non – basic variables in the first row are

𝐾̂1,3 = 𝐾1,3 − 𝑢1 − 𝑣3 ⇒ 0.46 − 0 − 0.33 = 0.13

𝐾̂1,4 = 𝐾1,4 − 𝑢1 − 𝑣4 ⇒ 2.73 − 0 − 2.63 = 0.1

𝐾̂1,6 = 𝐾1,6 − 𝑢1 − 𝑣6 ⇒ 3.10 − 0 − 3.055 = 0.045

𝐾̂1,7 = 𝐾1,7 − 𝑢1 − 𝑣7 ⇒ 3.276 − 0 − 4.33 = −1.054

𝐾̂1,8 = 𝐾1,8 − 𝑢1 − 𝑣8 ⇒ 3.28 − 0 − 4.33 = −1.05

𝐾̂1,9 = 𝐾1,9 − 𝑢1 − 𝑣9 ⇒ 3.281 − 0 − 4.33 = −1.049

𝐾̂1,10 = 𝐾1,10 − 𝑢1 − 𝑣10 ⇒ 3.8 − 0 − 3.67 = 0.13

For the second row

 102

𝐾̂2,1 = 𝐾2,1 − 𝑢2 − 𝑣1 ⇒ 0.22 − 0 − 0 = 0.22

𝐾̂2,2 = 𝐾2,2 − 𝑢2 − 𝑣2 ⇒ 0.77 − 0 − 0.44 = 0.33

𝐾̂2,5 = 𝐾2,5 − 𝑢2 − 𝑣5 ⇒ 2.77 − 0 − 2.47 = 0.03

𝐾̂2,7 = 𝐾2,7 − 𝑢2 − 𝑣7 ⇒ 3.305 − 0 − 4.33 = −1.025

𝐾̂2,8 = 𝐾2,8 − 𝑢2 − 𝑣8 ⇒ 3.27 − 0 − 4.33 = −1.06

𝐾̂2,9 = 𝐾2,9 − 𝑢2 − 𝑣9 ⇒ 3.307 − 0 − 4.33 = −1.023

The reduced cost for the third row

𝐾̂3,1 = 𝐾3,1 − 𝑢3 − 𝑣1 ⇒ 4.33 − 0 − 0 = 4.33

𝐾̂3,2 = 𝐾3,2 − 𝑢3 − 𝑣2 ⇒ 4.33 − 0 − 0.44 = 3.89

𝐾̂3,3 = 𝐾3,3 − 𝑢3 − 𝑣3 ⇒ 4.33 − 0 − 0.33 = 4

𝐾̂3,4 = 𝐾3,4 − 𝑢3 − 𝑣4 ⇒ 4.33 − 0 − 2.63 = 1.7

𝐾̂3,5 = 𝐾3,5 − 𝑢3 − 𝑣5 ⇒ 4.33 − 0 − 2.74 = 1.59

𝐾̂36 = 𝐾3,6 − 𝑢3 − 𝑣6 ⇒ 4.33 − 0 − 3.055 = 1.275

𝐾̂3,10 = 𝐾3,10 − 𝑢3 − 𝑣10 ⇒ 4.33 − 0 − 3.67 = 0.66

The reduced cost for non-basic variables with current solution are represented by the

 103

following table:

Since the most negative value is 𝐾̂2,8 = −1.06, then the move of 𝑌3,8 = 75 to 𝑌2,8 will

reduce the objective by

𝑅8 = 75 × (−1.06) = −79.5

This will force at least the move of the weight 𝑤6 = 61 to 𝑌3,6

𝐼8 = 61 × (1.275) = 77.775

By adding them, the total becomes −1.725 < 0 then the move is maintained. It also

implies the possible move of the weight 𝑤6 = 61 to 𝑌1,6 and that will force at least the

move of 𝑌1,2 = 9 to 𝑌3,2 and 𝑌2,10 = 30 to 𝑌3,10. This implies an increasing

𝐼8 = 9 × (3.89) + 30 × (0.66) = 54.8

Since adding 𝑅8 and 𝐼8 the total is −24.69 < 0, then the move of 𝑌3,8 = 75 is

maintained.

Next the least negative value is 𝐾̂1,7 = −1.054, and then the move of 𝑌3,7 = 70 to 𝑌1,7

will reduce the objective by

𝑅7 = 70 × (−1.054) = −73.78

𝟏𝟖 𝟗 0.13 0.1 𝟓𝟗 0.045 −1.054 −1.05 −1.049 0.13 𝟏𝟕

0.22 0.33 𝟐𝟑 𝟐𝟎 0.03 𝟔𝟏 −1.025 −1.06 −1.023 𝟑𝟎 𝟐𝟐

4.33 3.89 4 1.7 1.59 1.275 𝟕𝟎 𝟕𝟓 𝟕𝟔 0.66 𝟎

 104

This will force at least the move of 𝑌2,4 = 20 to 𝑌3,4 and 𝑌2,10 = 30 to 𝑌3,11

𝐼7 = 20 × (1.7) + 30 × (0.66) = 53.8

By adding 𝑅7 and 𝐼7 the total becomes −19.98 < 0, then the move of 𝑌3,7 = 70 is

maintained.

Since the next least reduced cost is 𝐾̂1,8 = −1.05, then the move of 𝑌3,8 = 75 to 𝑌1,8 will

reduce the objective by

𝑅8 = 75 × (−1.05) = −78.75

This will force at least the move of 𝑌2,4 = 20 to 𝑌3,4 and 𝑌2,10 = 30 to 𝑌3,11

𝐼8 = 20 × (1.7) + 30 × (0.66) = 53.8

Since adding 𝑅8 and 𝐼8 the total is −24.95 < 0, then the move of 𝑌3,8 = 75 is

maintained.

Since the next least reduced cost is 𝐾̂1,9 = −1.049, then the move of 𝑌3,9 = 76 to 𝑌1,9

will reduce the objective by

𝑅9 = 76 × (−1.049) = −79.724

This will force at least the move of 𝑌2,4 = 20 to 𝑌3,4 and 𝑌2,10 = 30 to 𝑌3,11

𝐼9 = 20 × (1.7) + 30 × (0.66) = 53.8

Since adding 𝑅9 and 𝐼9 equal −25.924 < 0, then the move of 𝑌3,9 = 76 is maintained.

 105

Since the most negative value is 𝐾̂2,7 = −1.025, then the move of 𝑌3,7 = 70 to 𝑌2,7 which

reduce the objective by

𝑅7 = 70 × (−1.025) = −71.75

This will force at least the move of the weight 𝑤6 = 61 to 𝑌3,6

𝐼7 = 61 × (1.275) = 77.775

By adding them, the total becomes 6.025 > 0 then the move is not improving and is

discarded.

It also implies the possible move of the weight 𝑤6 = 61 to 𝑌1,6 and that will force at least

the move of 𝑌1,2 = 9 to 𝑌3,2 and 𝑌2,10 = 30 to 𝑌3,10. This implies an increasing

𝐼7 = 9 × (3.89) + 30 × (0.66) = 54.8

Since adding 𝑅7 and 𝐼7 the total is −17.95 < 0, then the move of 𝑌3,7 = 70 is

maintained.

Since the last least negative value is 𝐾̂2,9 = −1.023, then the move of 𝑌3,9 = 76 to 𝑌2,9

which reduce the objective by

𝑅9 = 76 × (−1.023) = −77.748

This will force at least the move of the weight 𝑤6 = 61 to 𝑌3,6

𝐼9 = 61 × (1.275) = 77.775

 106

By adding them, the total becomes 0.027 > 0 then the move is not improving and is

discarded.

It also implies the possible move of the weight 𝑤6 = 61 to 𝑌1,6 and that will force at least

the move of 𝑌1,2 = 9 to 𝑌3,2 and 𝑌2,10 = 30 to 𝑌3,10. This implies an increasing

𝐼9 = 9 × (3.89) + 30 × (0.66) = 54.8

Since adding 𝑅9 and 𝐼9 the total is −22.948 < 0, then the move of 𝑌3,9 = 76 is

maintained.

Since we have some moves are maintained we choose the best move which is given more

reduced cost. Therefore, the best moving is form 𝑌3,9 = 76 to 𝑌1,9 because the reducing

cost is equal −25.924 < 0.

The current solution becomes

𝟏𝟖 𝟗 0.13 + + 0.045 + + 𝟕𝟔 + 𝟎

0.22 0.33 𝟐𝟑 + 𝟓𝟗 𝟔𝟏 + + + + 𝟏𝟑

4.33 3.89 4 𝟐𝟎 + 1.275 𝟕𝟎 𝟕𝟓 + 𝟑𝟎 𝟐𝟔

The maximum profit is equal 𝑍 = 446 with 𝐵 = 39.

5.6 Conclusion

In this chapter, we have presented the Multiple Knapsack Problem (MKP) as a Linear

Transportation Problem and provide a new approach for solving 0 − 1 Multiple

 107

Knapsack Problem (MKP). To find an initial solution Vogel’s Approximation Method

(VAM) is used, and then an Adapted Transportation Algorithm (ATA) is applied to find

an optimal solution. We show that by providing two different examples: the first one, the

profit unit depends on the knapsack and second example, the profit unit depends on the

item to the knapsack. In addition, the approach can be extended to some variants of the

Multiple Knapsack Problem such as the multiple Subset-sum problem.

 108

Chapter 6

6 Multiple Assignment Problem

6.1 Introduction

The Multiple Assignment Problem (MAP) is defined to assign multiple tasks to a group

of agents so that all the capacity constraints should be satisfied, and the total cost is

minimized [67]. A task can be assigned to more than one agent, and one agent can have

more than one task assigned to him. Therefore, the MAP is a generalized of the

Assignment problem (AP). The MAP is a group-matching problem while the Assignment

Problem is a one to one matching problem.

6.2 Mathematical Formulation of the MAP

The Multiple Assignment Problem (MAP) consists in assigning among 𝑛 tasks to 𝑚

agents in order to minimize a resulting total cost. To formulate the Multiple Assignment

Problem, we consider the following parameters.

𝑃𝑖,𝑗: Cost of assigning task 𝑗 to agent 𝑖.

𝑊𝑖: Capacity of task to be assigned to agent 𝑖.

𝑉𝑗: Capacity of agent to be assigned to task 𝑗.

 109

The decision variables are

𝑋𝑖,𝑗 = {
1 if task 𝑖 𝑖s assigned to 𝑗
0 else

This implies the following formulation of the Multiple Assignment Problem (MAP)

𝑀𝐴𝑃

{

 min𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,𝑗 ≤ 𝑊𝑖

𝑛

𝑗=1

; 𝑖 = 1,… ,𝑚

∑𝑋𝑖,𝑗

𝑚

𝑖=1

≤ 𝑉𝑗; 𝑗 = 1, … , 𝑛

𝑋𝑖,𝑗 = {0, 1} ; 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛

The objective function represents the minimization of the total cost of assigning tasks to

agents. First set of constraints represents the sum of assigning task 𝑗 to agent should not

exceed the capacity 𝑊𝑖. For the third equation, it says the sum of assigning agent 𝑖 to task

should not exceed the capacity 𝑉𝑗.

The MAP was introduced by Walkup and MacLaren in 1964 on a more general aspect

[67] where the unit cost 𝑃𝑖,𝑗 were reduced for a qualification matrix. Since it does not

seem to attract more research. In addition, they provided three particular cases of the

Multiple Assignment Problem.

First, when 𝑚 = 𝑛, each task is assigned to only one agent, and each agent performs only

one task then the Multiple Assignment Problem (MAP) becomes an Assignment Problem

(AP).

 110

𝐴𝑃

{

 min 𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑛

𝑖=1

∑𝑋𝑖,𝑗

𝑛

𝑖=1

= 1; 𝑗 = 1,… , 𝑛

∑𝑋𝑖,𝑗 = 1

𝑛

𝑗=1

; 𝑖 = 1,… , 𝑛

𝑋𝑖,𝑗 = {0, 1}; 𝑖, 𝑗 = 1,… , 𝑛

Second case, when each agent performs only one task, the problem becomes as

{

 min𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,𝑗 ≤ 𝑉𝑗 ; 𝑗 = 1,… , 𝑛

𝑚

𝑖=1

∑𝑋𝑖,𝑗 = 1 ; 𝑖 = 1, … ,𝑚

𝑛

𝑗=1

𝑋𝑖,𝑗 = {0, 1}; 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛

Walkup and Maclaren [67] provided an example for this situation. The problem is to find

a best assignment of agent to prioritized tasks where task 𝑖 has a quota of agent. Finally,

when each task is assigned to only one agent, the problem becomes as

{

 min𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,𝑗

𝑚

𝑖=1

= 1 ; 𝑗 = 1,… , 𝑛

∑𝑋𝑖,𝑗 ≤ 𝑊𝑖

𝑛

𝑗=1

; 𝑖 = 1,… ,𝑚

𝑋𝑖,𝑗 = {0, 1} ; 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛

 111

Walkup and Maclaren [66] presented an example which is called a target – assignment

problem and introduced by Manne [39]. They showed that the target – assignment

problem is a special case of the Multiple Assignment problem (MAP). Moreover, the last

two cases are considered as special cases of the Generalized Assignment Problem with

𝑤𝑖,𝑗 = 1. They are related to the Group Role Assignment Problem (GRAP) introduced

with more details in the next section.

6.3 Group Role Assignment Problem

It is defined to select among 𝑛 roles to 𝑚 agents in order to maximize a resulting total

profit. The unit profit is represented by 𝑃𝑖,𝑗. The role can be assigned to more than one

agent and the agent can receive only one role, the formulation of (GRAP) is

𝐺𝑅𝐴𝑃

{

 max𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,𝑗 ≤ 𝑉𝑗; 𝑗 = 1,… , 𝑛

𝑚

𝑖=1

∑𝑋𝑖,𝑗 = 1; 𝑖 = 1,… ,𝑚

𝑛

𝑗=1

𝑋𝑖,𝑗 = {0, 1}; 𝑖 = 1,… ,𝑚; 𝑗 = 1,… , 𝑛

One difference is on the objective function indeed the Group Role Assignment Problem

is usually formulated as a maximization problem which can be early transformed as

minimization. So defined, the GRAP is a Multiple Knapsack Problem where the weight

𝑤𝑖 = 1 and 𝑃𝑖,𝑗 dependant of 𝑖 and 𝑗. For this reason, the GRAP is more indicated to the

GAP problem where the weights

 112

𝑤𝑖,𝑗 = 1 ; 𝑖 = 1,… ,𝑚 ; 𝑗 = 1,… , 𝑛

The weights are uniform for all the agents. In that meaning it is a Uniform Generalized

Assignment Problem. Since the group role assignment problem is known as a hard

problem because it needs advanced methodologies for example information

classification, data mining, pattern search and matching [76]

This problem has been proposed by Zhu, Zhou and Alkins (2012) and introduced an

efficient algorithm based on the Kuhn – Munkers (KM) Algorithm [76]. They worked to

show the Group Role Assignment Problem can be converted to the Generalized

Assignment Problem (GAP). In deed they prove that by providing a numerical example

and analyse the solution’ performances [76].

Role assignment (RA) is defined to be a scientific task in role-based collaboration [76].

Since it consists of three categories: agent evaluation, group role assignment and role

transfer, where the group role assignment is a time – consuming process [76].

Role Based Collaboration (RBC) is known as an emerging methodology to facilitate an

organization structure, to provide orderly system behaviour, and to consolidate system

security for both human and nonhuman entities that collaborate and coordinate their

activities with or within system [76] [75]. It consists to three main tasks: role negotiation,

assignment, and execution [75].

For that, the link between Role Assignment (RA) and Role – Based Collaboration (RBC)

is a Role Assignment critical aspect of Role – Based Collaboration since (RA) mostly

 113

affects the efficiency of collaboration and the degree of happiness among members

involved in the collaboration [76].

 As we said before role assignment has three steps: agent evaluation, group role

assignment, and role transfer. In addition, qualifications are the basic requirement for role

– related activities [6]. Agent evaluation relies on three indexes: capacities, experiences

and credits of agents based on role specifications [76].

It starts a group by assigning roles to agents to accomplish the highest achievement. Role

transfer is also can name dynamic role assignment and defines to transport agent role to

meet the demand of the system changes [76].

6.4 Real world application of the GRAP

The group role assignment has been applied to a real world problem. Since Zhu, Zhou

and Alkins [76] implement the Group Role Assignment Problem (GRAP) by a soccer

team. A soccer team consists of 20 players and are represented by (𝑎0 − 𝑎19) in total.

Moreover, they partition the team into four parts and the team consists of 11 players. The

team in the field plays as 4 − 3 − 3 and is represented by the roles 𝑟0, 𝑟1, 𝑟2 and 𝑟3 where

one goalkeeper (𝑟0), four backs (𝑟1), three midfields, and three forwards (𝑟3). Figure 1

represents the 20 players and the 4 roles.

 114

The first group is 𝑗 = 0 with 𝑉0 = 1 only one goalkeeper is necessary in a team.

The second group is 𝑗 = 1 with 𝑉1 = 4. The system of the team needs four defenders to

be selected. The third group is 𝑗 = 2 with 𝑉2 = 3. The system of the team needs three

middle players to be selected. The fourth group is 𝑗 = 3 with 𝑉3 = 3. The system of the

team needs three offensive players to be selected. The formulation of the group Role

Assignment problem becomes

Figure 3: Soccer Team [76]

 115

𝐺𝑅𝐴𝑃

{

 Max𝑍 =∑∑𝑃𝑖,𝑗 𝑋𝑖,𝑗

𝑛

𝑗=1

𝑚

𝑖=1

∑𝑋𝑖,0 = 1 ; (𝑗 = 0

𝑚

𝑖=1

)

∑𝑋𝑖,1 = 4 ; (𝑗 = 1

𝑚

𝑖=1

)

∑𝑋𝑖,2 = 3 ; (𝑗 = 2)

𝑚

𝑖=1

∑𝑋𝑖,3 = 3 ; (𝑗 = 3

𝑚

𝑖=1

)

∑𝑋𝑖,𝑗 ≤ 1 ; 𝑖 = 0,… , 19

𝑛

𝑗=1

𝑋𝑖,𝑗 = {0, 1}; 𝑖 = 0,… , 19; 𝑗 = 0,… , 3

The most critical task of the coach is to determine 11 players to be on the field.

 116

The data in figure 4 represents the evaluation values of players with respect to each role.

Since rows refer to the players and columns indicate to roles and these values reverse the

individual performance of each player related to a specific location. The aim of this

problem is to improve the whole team’s performance via preparing role assignment.

Therefore, to make this problem simple, they suppose the team performance as a simple

sum of the selected player’s performance on their roles. For that, the coach has used

several strategies to find an exact solution. For instance of the strategy is from 𝑟0 𝑡𝑜 𝑟3 to

740 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 3, MAY 2012

Fig. 1. Soccer team.

Fig. 2. Evaluation values of agents for roles and the assignment matrix.

states are affected by modes, emotions, health, fatigue, and past

performance.

Suppose that the coach has the data shown in Fig. 2(a)

to express the evaluation values of players with respect to

each role, where rows represent players and columns represent

roles. These values reflect the individual performance of each

player relevant to a specific position. The coach needs to make

role assignment to optimize the whole team’s performance.

To simplify this process, the team performance is assumed as

a simple sum of the selected players’ performance on their

designated roles. At this step, the coach still finds that it is

difficult to find an exact solution.

The coach tries the first strategy: from r 0 to r 3, select the best

players if they have not yet been selected, i.e., the underlined

numbers. The total sum is 9.23 in the first row of Table I.

The second strategy is the following: from r 3 to r 0, select the

best players if they have not yet been selected, i.e., the numbers

in the rectangles. The total sum is 8.91 in the last row of Table I.

Finally, we obtain all other permutations of the position

preferences, i.e., (r 0, r 1, r 3, r 2), (r 0, r 2, r 1, r 3), . . ., a total of

22 ways.

TABLE I
COMPARISONS AMONG ASSIGNMENT STRATEGIES

Fig. 3. Solution for Fig. 1.

Table I shows all the group performances based on 24 differ-

ent permutations. Among all of the 24 strategies, the optimum

one is (r 1, r 3, r 2, r 0), i.e., the bold row in Table I. The solution

is shown in Fig. 2(a) as circles, in Fig. 2(b) as an assignment

matrix, and in Fig. 3 as a graph. Please note that the solution

is not intuitive and needs enumerated optimization, e.g., the

most qualified player a12 is not assigned to the goalkeeper (r 0)

because he contributes more for the team when he plays a back

(r 1) than the goalkeeper. Based on this assignment, the coach

chooses the players to arrange their positions in the field. This

assignment obtains the best total group performance of 9.51.

III. CONDENSED E-CARGO MODEL

With the E-CARGO model [28]–[33], a tuple of agent a

and role r , i.e., ⟨a, r ⟩, is called a role assignment (also called

agent assignment). A role r is workable if it is assigned enough

(expressed by lower range l of range q of base B of role r in en-

vironment e of group g, i.e., g.e.B [r].q.l) current agents to play

it [30]. For example, the columns in Fig. 2(b) express workable

roles for the soccer team shown in Fig. 1 with a 4-3-3 formation.

Figure 4: Evaluation values of

agents and roles and the

assignment matrix [76]

 117

exclusive the best players where they have not chosen yet, i.e., he selects the underlined

digits. The total sum is 9.23 showing in the first row of the table below.

Figure 3 shows an Implementation all the strategies; they obtain all the other 22

permutations.

As it is showing in the Table 1, the optimum solution is (𝑟1, 𝑟3, 𝑟2, 𝑟0) and the total is 9.51.

The solution of this problem is showing as Finger 4 and Figure 5.

Table 1: Comparisons among assignment

strategies [76]

 118

740 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 42, NO. 3, MAY 2012

Fig. 1. Soccer team.

Fig. 2. Evaluation values of agents for roles and the assignment matrix.

states are affected by modes, emotions, health, fatigue, and past

performance.

Suppose that the coach has the data shown in Fig. 2(a)

to express the evaluation values of players with respect to

each role, where rows represent players and columns represent

roles. These values reflect the individual performance of each

player relevant to a specific position. The coach needs to make

role assignment to optimize the whole team’s performance.

To simplify this process, the team performance is assumed as

a simple sum of the selected players’ performance on their

designated roles. At this step, the coach still finds that it is

difficult to find an exact solution.

The coach tries the first strategy: from r0 to r 3, select the best

players if they have not yet been selected, i.e., the underlined

numbers. The total sum is 9.23 in the first row of Table I.

The second strategy is the following: from r 3 to r 0, select the

best players if they have not yet been selected, i.e., the numbers

in the rectangles. The total sum is 8.91 in the last row of Table I.

Finally, we obtain all other permutations of the position

preferences, i.e., (r 0, r 1, r 3, r 2), (r 0, r 2, r 1, r 3), . . ., a total of

22 ways.

TABLE I
COMPARISONS AMONG ASSIGNMENT STRATEGIES

Fig. 3. Solution for Fig. 1.

Table I shows all the group performances based on 24 differ-

ent permutations. Among all of the 24 strategies, the optimum

one is (r 1, r 3, r 2, r 0), i.e., the bold row in Table I. The solution

is shown in Fig. 2(a) as circles, in Fig. 2(b) as an assignment

matrix, and in Fig. 3 as a graph. Please note that the solution

is not intuitive and needs enumerated optimization, e.g., the

most qualified player a12 is not assigned to the goalkeeper (r0)

because he contributes more for the team when he plays a back

(r1) than the goalkeeper. Based on this assignment, the coach

chooses the players to arrange their positions in the field. This

assignment obtains the best total group performance of 9.51.

III. CONDENSED E-CARGO MODEL

With the E-CARGO model [28]–[33], a tuple of agent a

and role r , i.e., ⟨a, r ⟩, is called a role assignment (also called

agent assignment). A role r is workable if it is assigned enough

(expressed by lower range l of range q of base B of role r in en-

vironment e of group g, i.e., g.e.B [r].q.l) current agents to play

it [30]. For example, the columns in Fig. 2(b) express workable

roles for the soccer team shown in Fig. 1 with a 4-3-3 formation.

6.5 Classification Group Role Assignment Problem

The Group Role Assignment Problem can be classified into three types: Simple Role

Assignment (SGRAP), Rated Role Assignment (RGRAP), and Weighted Role

Assignment (WGRAP). Each one of these types has been defined and its objective

function also has been found. In addition, Zhu et al [76] have clarified that the GRAP can

transfer to a Generalized Assignment Problem by adjusting the number of agents and

role. And then the problem can be solved by K-M algorithm. Since K-M algorithm is

defined as a minimization algorithm for square matrices of GAPs created by Kuhn [33]

Therefore, they apply this algorithm to GRAP and show that the result of solving this

problem could not be a solution. For that, they provide some definitions and conditions to

avoid the incorrect optimal result. They also prove the second type of the GRAP which is

called RGRAP can be transformed into a Generalized Assignment Problem. They also

provide an algorithm to solve the Rated Role Assignment. For the third type which is

Weighted Role Assignment they prove it can be solved by the same algorithm that is used

for the RGRAP. Consequently, they show the Simple Role Assignment is a particular

Figure 5: Solution of Figure 3 [76].

 119

case of the RGRAP. The final part of their article [76] has included implementation,

performance analysis and case study by simulation.

6.6 Conclusion

In this chapter, we have shown the Multiple Assignment Problem (MAP) is a generalized

of the Assignment problem. We also introduced some particular situations of the MAP.

One of these is called Group Role Assignment Problem (GRAP). In addition, in some

cases, GRAP can be defined as a Multiple Knapsack Problem and indicates to the GAP.

We also provide an example of GRAP which has been proposed and solved by Zhu et al

[76].

 120

Conclusion

We have presented in this research the Multiple Knapsack Problem which is a

combinatorial optimization problem and known as an NP – hard problem. The MKP is a

particular case of the Generalized Assignment Problem that is defined of minimizing cost

or maximizing the profit of assigning tasks to only one agent while the sum of weight

does not exceed the capacity. Contrary to the GAP the weight 𝑤𝑗 of items 𝑗 are

independent to the Knapsack 𝑖. The (0 − 1) Multiple Knapsack Problem is a generalized

of the (0 − 1) Knapsack Problem which treats the case of one knapsack.

The MKP and KP are usually solved by using the Branch and Bound and Dynamic

Programming. However, for the MKP, Branch and Bound methods seem to behave better

than Dynamic Programming. In this research, we had proposed a new method called

Adapted Transportation Algorithm to solve the KP and its general form the MKP. It is

based on linking the Knapsack Problem and the Multiple Knapsack Problem to the Linear

Transportation Problem. Then an Adapted Transportation Algorithm is applied to find

optimal solution. We can also notice that the Adapted Transportation Algorithm allows

us to consider the situation where the profit unit for the items is dependent of the

knapsack. Therefore, we have a matrix of profit (𝑃𝑖,𝑗) instead of a vector 𝑃𝑗.

For the future study, we will need to study the complexity of the ATA algorithm. We also

need to implement it and test its robustness. That might allow us to compare it with the

 121

other existing methods. This approach can also be extended to solve some of the KP such

as the Subset-sum problem when weight is equal to profit, the bounded knapsack

problem, the knapsack-like problems, and 2-dimensional knapsack problem [29]. It also

can be extended to solve the multiple knapsack problem with assignment restrictions

when each item can only assign to a specified subset of the knapsacks [29] and the

multiple subset-sum problem.

 122

References

1. Amini, M. M., & Racer, M. (1994). A rigorous computational comparison of

alternative solution methods for the generalized assignment problem.

Management Science, 40(7), 868-890.

2. Amini, M. M., & Racer, M. (1995). A hybrid heuristic for the generalized

assignment problem. European Journal of Operational Research, 87(2), 343-348.

3. Asahiro, Y., Ishibashi, M., & Yamashita, M. (2003). Independentand cooperative

parallel search methods for the generalized assignment problem. Optimization

methods and Software, 18(2), 129-141.

4. Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P.

H. (1998). Branch-and-price: Column generation for solving huge integer

programs. Operations research, 46(3), 316-329.

5. Beale, E. M. L., & Tomlin, J. A. (1970). Special facilities in a general

mathematical programming system for non-convex problems using ordered sets

of variables. OR, 69(447-454), 99.

6. Black, J. S. (1988). Work role transitions: A study of American expatriate

managers in Japan. Journal of International Business Studies, 19(2), 277-294.

7. Caprara, A., Kellerer, H., & Pferschy, U. (2000). The multiple subset sum

problem. SIAM Journal on Optimization, 11(2), 308-319.

8. Cattrysse, D. G., Salomon, M., & Van Wassenhove, L. N. (1994). A set

partitioning heuristic for the generalized assignment problem. European Journal

of Operational Research, 72(1), 167-174.

 123

9. Ceselli, A., & Righini, G. (2006). A branch-and-price algorithm for the multilevel

generalized assignment problem. Operations research, 54(6), 1172-1184.

10. Chalmette L, Gelders L (1976) Lagrangian relaxation for a generalized

assignment type problem. In: Advances in OR. EURO, North Holland,

Amsterdam, pp 103–1.

11. Chu, P. C., & Beasley, J. E. (1997). A genetic algorithm for the generalised

assignment problem. Computers & Operations Research, 24(1), 17-23.

12. Dantzig, G. B. (1957). Discrete-variable extremum problems. Operations

research, 5(2), 266-288.

13. de Farias Jr, I. R., Johnson, E. L., & Nemhauser, G. L. (2000). A generalized

assignment problem with special ordered sets: a polyhedral approach.

Mathematical Programming, 89(1), 187-203.

14. Dıaz, J. A., & Fernández, E. (2001). A tabu search heuristic for the generalized

assignment problem. European Journal of Operational Research, 132(1), 22-38.

15. Drexl, A. (1991). Scheduling of project networks by job assignment. Management

Science, 37(12), 1590-1602.

16. Feltl H, Raidl GR (2004) An improved hybrid genetic algorithm for the

generalized assignment problem. In: SAC ’04; Proceedings of the 2004 ACM

symposium on Applied computing. ACM Press, New York, pp 990–995

17. Fisher, M. L. (1981). The Lagrangian relaxation method for solving integer

programming problems. Management science, 27(1), 1-18.

 124

18. Fisher, M. L., Jaikumar, R., & Van Wassenhove, L. N. (1986). A multiplier

adjustment method for the generalized assignment problem. Management Science,

32(9), 1095-1103.

19. Fukunaga, A. S., & Korf, R. E. (2007). Bin completion algorithms for

multicontainer packing, knapsack, and covering problems. Journal of Artificial

Intelligence Research, 28, 393-429.

20. Gavish, B., & Pirkul, H. (1991). Algorithms for the multi-resource generalized

assignment problem. Management science, 37(6), 695-713.

21. Glover, F. (1968). Surrogate constraints. Operations Research, 16(4), 741-749.

22. Glover, F., Hultz, J., & Klingman, D. (1978). Improved computer-based planning

techniques, Part 1. Interfaces, 8(4), 16-25.

23. Guignard, M., & Rosenwein, M. B. (1989). Technical Note—An Improved Dual

Based Algorithm for the Generalized Assignment Problem. Operations Research,

37(4), 658-663.

24. Haddadi S (1999) Lagrangian decomposition based heuris-   tic for the

generalized assignment problem. Inf Syst Oper   Res 37:392–402  

25. Haddadi, S., & Ouzia, H. (2004). Effective algorithm and heuristic for the

generalized assignment problem. European Journal of Operational Research,

153(1), 184-190.

26. Hung, M. S., & Fisk, J. C. (1978). An algorithm for 0‐ 1 multiple‐ knapsack

problems. Naval Research Logistics (NRL), 25(3), 571-579.

27. Ingargiola, G., & Korsh, J. F. (1975). An algorithm for the solution of 0-1

loading problems. Operations Research, 23(6), 1110-1119.

 125

28. Jörnsten, K., & Näsberg, M. (1986). A new Lagrangian relaxation approach to the

generalized assignment problem. European Journal of Operational Research,

27(3), 313-323.

29. Kellerer, H., Pferschy, U., & Pisinger, D. Knapsack problems. 2004.

30. Klastorin, T. D. (1979). Note-On the Maximal Covering Location Problem and

the Generalized Assignment Problem. Management Science, 25(1), 107-112.

31. Kogan, K., & Shtub, A. (1997). DGAP-the dynamic generalized assignment

problem. Annals of Operations Research, 69, 227-239.

32. Kolesar, P. J. (1967). A branch and bound algorithm for the knapsack problem.

Management science, 13(9), 723-735.

33. Kuhn, H. W. (2005). The Hungarian method for the assignment problem. Naval

Research Logistics (NRL), 52(1), 7-21.

34. Lin, B. M., Huang, Y. S., & Yu, H. K. (2001). On the variable-depth-search

heuristic for the linear-cost generalized assignment problem. International journal

of computer mathematics, 77(4), 535-544.

35. Lorena, L. A. N., & Narciso, M. G. (1996). Relaxation heuristics for a generalized

assignment problem. European Journal of Operational Research, 91(3), 600-610.

36. Lorena, L. A., Narciso, M. G., & Beasley, J. E. (2002). A constructive genetic

algorithm for the generalized assignment problem. Evolutionary Optimization, 5,

1-19.

37. Lourenço HR, Serra D (1998) Adaptive approach heuristics for the generalized

assignment problem. Technical Report 288, Department of Economics and

Business, Universitat Pompeu Fabra, Barcelona

 126

38. Lourenço HR, Serra D (2002) Adaptive search heuristics for the generalized

assignment problem. Mathw Soft Comput 9(2–3):209–234

39. Manne, A. S. (1958). A target-assignment problem. Operations Research, 6(3),

346-351.

40. Martello S, Toth P (1981) An algorithm for the general- ized assignment problem.

In: Brans JP (ed) Operational Re- search ’81, 9th IFORS Conference, North-

Holland, Amster- dam, pp 589–603

41. Martello, S., & Toth, P. (1980). Solution of the zero-one multiple knapsack

problem. European Journal of Operational Research, 4(4), 276-283.

42. Martello, S., & Toth, P. (1981). A bound and bound algorithm for the zero-one

multiple knapsack problem. Discrete Applied Mathematics, 3(4), 275-288.

43. Martello, S., & Toth, P. (1990). Knapsack problems: algorithms and computer

implementations. John Wiley & Sons, Inc..

44. Martello, S., & Toth, P. (1995). The bottleneck generalized assignment problem.

European journal of operational research, 83(3), 621-638.

45. Martello, S., Pisinger, D., & Toth, P. (1999). Dynamic programming and strong

bounds for the 0-1 knapsack problem. Management Science, 45(3), 414-424.

46. Mazzola, J. B., & Neebe, A. W. (1988). Bottleneck generalized assignment

problems. Engineering Costs and Production Economics, 14(1), 61-65.

47. Monfared, M. A. S., & Etemadi, M. (2006). The impact of energy function

structure on solving generalized assignment problem using Hopfield neural

network. European journal of operational research, 168(2), 645-654.

 127

48. Najadat, F. A., Kanaan, G. G., Kanaan, R. K., Aldabbas, O. S., & Al-Shalabi, R.

F. (2013). Genetic Algorithm Solution of the Knapsack Problem Used in Finding

Full Issues in the Holy Quran Based on the Number (19). Computer and

Information Science, 6(2), 18.

49. Narciso, M. G., & Lorena, L. A. N. (1999). Lagrangean/surrogate relaxation for

generalized assignment problems. European Journal of Operational Research,

114(1), 165-177.

50. Nauss RM (2005) The elastic generalized assignment prob- lem. J Oper Res Soc

55:1333–1341

51. Nauss, R. M. (2003). Solving the generalized assignment problem: An optimizing

and heuristic approach. INFORMS Journal on Computing, 15(3), 249-266.

52. Osman, I. H. (1995). Heuristics for the generalised assignment problem:

simulated annealing and tabu search approaches. Operations-Research-Spektrum,

17(4), 211-225.

53. Osorio, M. A., & Laguna, M. (2003). Logic cuts for multilevel generalized

assignment problems. European Journal of Operational Research, 151(1), 238-

246.

54. Park, J. S., Lim, B. H., & Lee, Y. (1998). A Lagrangian dual-based branch-and-

bound algorithm for the generalized multi-assignment problem. Management

Science, 44(12-part-2), S271-S282

55. Parker, R. G., & Rardin, R. L. (2014). Discrete optimization. Elsevier.

 128

56. Pigatti, A., De Aragão, M. P., & Uchoa, E. (2005). Stabilized branch-and-cut-and-

price for the generalized assignment problem. Electronic Notes in Discrete

Mathematics, 19, 389-395.

57. Pisinger, D. (1999). An exact algorithm for large multiple knapsack problems.

European Journal of Operational Research, 114(3), 528-541.

58. Pisinger, D. (1999). Linear time algorithms for knapsack problems with bounded

weights. Journal of Algorithms, 33(1), 1-14.

59. Romeijn, H. E., & Morales, D. R. (2000). A class of greedy algorithms for the

generalized assignment problem. Discrete Applied Mathematics, 103(1), 209-235.

60. Ronen, D. (1992). Allocation of trips to trucks operating from a single terminal.

Computers & operations research, 19(5), 445-451.

61. Ross, G. T., & Soland, R. M. (1975). A branch and bound algorithm for the

generalized assignment problem. Mathematical programming, 8(1), 91-103

62. Ross, G. T., & Zoltners, A. A. (1979). Weighted assignment models and their

application. Management Science, 25(7), 683-696.

63. Samir, B., Yacine, L., & Mohamed, B. (2015). Local Search Heuristic for

Multiple Knapsack Problem. International Journal of Intelligent Information

Systems, 4(2), 35-39.

64. Savelsbergh, M. (1997). A branch-and-price algorithm for the generalized

assignment problem. Operations research, 45(6), 831-841.

65. Singh, S. (2015). Note on Transportation Problem with new Method for

Resolution of Degeneracy. Universal Journal of Industrial and Business

Management, 3(1), 26-36.

 129

66. Ünal, A. N. (2013). A genetic algorithm for the multiple knapsack problem in

dynamic environment. In Proceedings of the World Congress on Engineering and

Computer Science (Vol. 2).

67. Walkup, D. W., & MacLaren, M. D. (1964). A multiple-assignment problem (No.

BOEING-MATH-347). BOEING SCIENTIFIC RESEARCH LABS

SEATTLEWA.

68. Wilson JM (1997) A genetic algorithm for the generalised   assignment problem.

J Oper Res Soc 48:804–809  

69. Yadav V. and S. Singh (2016), “Genetic Algorithms Based Approach to Solve

0-1 Knapsack Optimization Problem”, International Journal of Innovative

Research in Computer and Communication Engineering, Vol. 4, Issue 5.

70. Yagiura, M., Ibaraki, T., & Glover, F. (2004). An ejection chain approach for the

generalized assignment problem. INFORMS Journal on Computing, 16(2), 133-

151.

71. Yagiura, M., Ibaraki, T., & Glover, F. (2006). A path relinking approach with

ejection chains for the generalized assignment problem. European journal of

operational research, 169(2), 548-569.

72. Yagiura, M., Yamaguchi, T., & Ibaraki, T. (1998). A variable depth search

algorithm with branching search for the generalized assignment problem.

Optimization Methods and Software, 10(2), 419-441.

73. Yagiura, M., Yamaguchi, T., & Ibaraki, T. (1999). A variable depth search

algorithm for the generalized assignment problem. In Meta-heuristics (pp. 459-

471). Springer US.

 130

74. Zhang, C. W., & Ong, H. L. (2007). An efficient solution to biobjective

generalized assignment problem. Advances in Engineering Software, 38(1), 50-

58.

75. Zhu, H., & Zhou, M. (2006). Role-based collaboration and its kernel mechanisms.

IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews), 36(4), 578-589.

76. Zhu, H., Zhou, M., & Alkins, R. (2012). Group role assignment via a Kuhn–

Munkres algorithm-based solution. IEEE Transactions on Systems, Man, and

Cybernetics-Part A: Systems and Humans, 42(3), 739-750.

