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Abstract 

Radiotherapy is a critical part of cancer treatment. With the recent medical advancements 

and increased survival rate of cancer patients, there is also an increased risk of radiation-

related tissue damage and toxicity which could lead to severe organ damage or even organ 

failure. Medications that could be used as prophylaxis or treatment provide a better quality 

of life for cancer patients. In the present study, we evaluated the radio-protective potential of 

multiple dietary supplement (MDS) in an animal model by looking at the gene expression 

levels of the renin-angiotensin system. In mice receiving 5 Gy radiation, MDS administration 

as prophylaxis or treatment was able to decrease the expression levels of angiotensinogen 

which suggested the lower activity of RAS in irradiated kidney tissue. This finding indicates 

MDS potential for tissue radioprotection. Study of expression levels of kidney antioxidant 

enzymes also suggested benefits of MDS in protecting kidney tissue from radiation-induced 

reactive oxygen species evidenced by the lack of upregulation in expression levels of genes 

such as GPX1, NOS3 and SOD2 in mice receiving MDS as prophylaxis. Also, systemic 

effects of MDS to protect the body from radiation-induced physiological stress was studied 

by evaluating genes involved in catecholamine biosynthesis pathway in adrenal. Data from 

expression levels of phenylethanolamine N-methyltransferase (PNMT) suggests MDS 

protected the animal from radiation-induced physiological stress. MDS was useful both for 

prophylaxis and treatment. Further examination was also conducted to determine MDS 

effects on radiation-induced antioxidant and DNA damage and repair response and also 

changes in expression levels of DNA methyltransferases. Collectively our results suggested 

MDS has the potential to protect the mice tissue from radiation induced tissue damage, 

oxidative stress and physiological stress.   
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1.0 Introduction 

1.1 Ionizing Radiation and Its Effects on Biological Systems  

In the last century, ionizing radiation has been used for a variety of reasons ranging from 

weapons of war, fuel for the nuclear reactor to diagnostic radiography and cancer therapy. 

Our exposure to radiation is not limited to these sources as we are exposed to radiation 

through the natural background radiation, radiation in workplaces and accidental radiation 

exposures due to disasters caused by damages to nuclear centers. Exposure to radiation leads 

to two main classes of effects, deterministic and stochastic. Deterministic effects happen 

above a threshold and occur due to cell killing effects of radiation which could lead to tissue 

damage and organ failure. The second main class is the stochastic effects of radiation. These 

effects are not dose dependent and result from radiation-induced nuclear damage which leads 

to mutation or cancer (1). Radiation-induced deoxyribonucleic acid (DNA) damage may lead 

to cancer progression (2). Cancer is one of the major consequences of radiation exposure. 

Radiation therapy could also lead to secondary cancer in patients. Carcinogenesis is a 

multistep and multifactor process. Radiation’s direct effect can cause mutation in the DNA 

as its major target. Moreover, radiation also causes excessive production of reactive oxygen 

species (ROS). If cell's antioxidant system can not neutralize ROS, it causes altered gene 

expression by affecting genetic and epigenetic pathways (3). If cells are unable to repair the 

damage from radiation or any other insult, they undergo apoptosis. Cancer results when 

damaged cells fail to die by apoptosis and contain mutations that could cause increased cell 

growth rate (oncogenes) or damage pathways which suppress the cell growth (tumor 

suppressor genes) (4).   
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1.2 Physical Properties of Ionizing Radiation 

Ionizing radiation refers to radiation waves which carry enough energy so after 

interaction with an atom it can dissociate electrons from the orbit and cause the atom to 

become charged or ionized. Types of ionizing radiation include alpha particles, beta particles, 

neutrons, gamma rays and x-rays. Alpha radiation or alpha particle is a mass of two protons 

and two neutrons and positively charged. Due to its relatively high mass and charge, alpha 

radiation’s kinetic energy is lost rapidly and is readily absorbed by materials. Beta radiation 

is high energy electron formed by nucleus decay and has more power to penetrate and ionize 

materials compared to alpha radiation. Gamma and x-ray radiation are very high energy 

massless photons and are highly penetrating in the human body. X-ray is powered by the 

acceleration of the electron in an electrical device whereas gamma rays are emitted due to 

nuclear decay in radioactive isotopes.  The last type of ionizing radiation is neutron radiation 

which is produced by ejection of neutrons from nucleases undergoing fission. Materials like 

water which is abundant in hydrogen atoms can absorb neutron radiation. 

Ionizing radiation carries energy and upon exposure to other materials, energy is absorbed 

(dose). Absorbed dose is determined by the energy in joule deposited in 1 kg of material. 

This unit is equivalent to 1 Gray. Radiation affects biological systems differently, depend on 

radiation and tissue type. To get a better understanding of doses of radiation which convey 

similar degree of harm in biological systems, equivalent dose is generated by multiplying 

radiation weighting factor by absorbed dose. Equivalent dose is expressed in a measure called 

Sievert (Sv) (5).  
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To show how radiation can pose danger to overall health, considering the difference in 

tissue sensitivity to radiation, effective dose was developed by multiplying equivalent dose 

by tissue weighing factor (WT) (6) .   

 

1.3 Sources of Ionizing Radiation 

1.3.1 Natural Sources of Radiation or Background Radiation 

Background radiation is the constant and low dose radiation humans receive from the 

environment on a daily basis. There are four major sources of background radiation that 

include cosmic radiation, terrestrial radiation, or radiation from inhalation and ingestion of 

radioactive elements. 

Terrestrial radiation consists of a low dose (average 0.5 mSv/y) of ionizing radiation 

released during the natural decay of elements such as uranium, thorium and potassium. These 

elements are found abundantly in the earth’s crust.   

Cosmic radiation is another source of high energy rays which mostly consist of protons 

originated from sources like the sun and other stars which enter the earth’s atmosphere. 

Ozone absorbs some of this radiation and the rest passes through the atmosphere and could 

be absorbed by the human body. The amount of cosmic radiation varies greatly by location 

and altitude. For instance, locations at sea level like British Colombia receive 0.30 mSv/y 

cosmic radiation whereas this amount almost triples at Yukon with an altitude of 2000 m 

from sea level.   

Inhalation is another source of background radiation (1.2 mSv/y). Radioactive gasses 

such as radon are produced by the decay of a radioactive uranium which is readily present in 

bedrocks and soil. Thus, there is a high level of the radioactive gas in uranium mines. The 
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accumulated gas is hazardous to miners as well as people who reside in such regions due to 

the accumulation of radon in homes.  

Mammals are also naturally exposed to ionizing radiation through food and drinking 

water (0.3 mSv/y). Soil and water contaminated with radioactive isotopes include potassium-

40 and carbon-14 and ultimately affects humans through the food chain.  

 

1.3.2 Artificial Sources of Radiation 

There is a variety of usage for radiation. For instance in medical diagnostic imaging, x-

ray imaging (chest x-ray 0.1 mSv) and Chest CT scan (7 mSv) are routinely used for 

diagnosis. Another important application of radiation is as radiotherapy which can be given 

as monotherapy or with surgery and systemic therapy in cancer treatment. Radiation 

palliative treatment is given when disease is incurable. Different sources of ionizing radiation 

used for cancer treatment including x-ray, gamma rays, electron, proton and neutron particles. 

The duration of treatment can range from a single treatment up to eight weeks of daily 

irradiation (between 40-60 Gy). 

Another modern use of radioactive materials is in industries, nuclear power plants (1 

mSv/y) and also their use in weapons all contribute to human radiation exposure. 

 

1.4 Radiation Interaction in Biological Systems 

1.4.1 Direct Effects of Radiation  

Cellular components absorb radiation energy. Direct effects occur when absorbed energy 

damages and breaks chemical bonds in DNA, membrane lipids and proteins. DNA is a major 

target for radiation as radiation biological effects are mainly due to the damage to the DNA 
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(Figure 1) DNA breaks can be base damage, single-strand breaks (SSBs) or double-strand 

breaks (DSBs). Number of these breaks depends on the radiation dose delivered. In biological 

systems, SSBs damages are detected and corrected by using the opposite strand very quickly 

after the damage occurs and biologically not important in the case of radiation’s cell killing 

effects. DSBs are responsible for the most important biological effects of radiation and 

consists of breaks in both strands of DNA located at opposite side of the DNA or just a few 

nucleotides apart. Two basic mechanisms are responsible for DSBs repair in eukaryotes. 

Type of repair depends majorly on the availability of an undamaged homologous 

chromatid/chromosome to be used as a template. Homologous recombination repair (HRR) 

happens when a homologous chromosome is available (when damage happens in S/G2 phase) 

and non-homologous end-joining (NHEJ) occurs in the G1(7).  

 

Figure 1 Direct and indirect effects of radiation on cell (16) 
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1.4.2 Indirect Effects of Radiation  

Radiation can also indirectly alter cellular components through ROS. Cells are composed 

of 80% water. When water absorbs radiation, free ion radicals carrying unpaired electrons 

are produced (Figure 1). Ion radicals (charged particles) have a very short lifetime (10-10 s) 

so it decays and leads to the production of free radicals (contains an unpaired electron in the 

outer shell). Reactive free radicals react with other water molecules resulting in the 

production of reactive hydroxyl radicals (•OH). This reactive species can diffuse throughout 

the cell and disrupt the DNA. Almost two third of x-ray damage to DNA is due to hydroxyl 

radicals (7).  

 

1.5 Radiation-Induced Tissue Damage  

To effectively use radiation in treating tumors, inevitably some of the normal tissue 

surrounding the tumor might be irradiated. Radiation’s side effects on the tissue might appear 

clinically weeks or months after treatment, whereas pathological process leading to it has 

begun immediately after exposure. To reduce the damage tolerated dose for different organs 

has been identified and considered as a dose-limiting factor in designing the radiation 

treatment. 

 

1.5.1 Acute Effects of Radiation    

Acute effects of radiation appear shortly after exposure and includes damage to the skin 

and gut tissue, inflammation and erythema in skin and pneumonia (8, 9).These effects may 

take days or weeks to start and is observed predominantly in tissues with high cell turnover 

and cell division. Clinical symptoms appear due to the loss of cells as functional units of the 
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tissue. In cases like epithelial tissue, the proliferation of stem cells substitute for the lost cells 

and recovery follows soon after (10).  

 

1.5.2 Radiation-induced late Effects 

Late effects of radiation appear months to years after tissue exposure. These symptoms 

are prominent in tissues with low cell turnover such as cells located in the nervous system, 

kidney, muscle, etc. Pathology seen in late tissue damage includes fibrosis, necrosis, atrophy 

and vascular damage. In conclusion, radiation-induced late tissue injury is the manifestation 

of normal healing process affected by radiation. Disruption of normal healing process results 

in the failure of tissue to recover and establish its function efficiently (11).      

 

1.5.3 Consequential late effects 

As a result of more aggressive radiation treatment regimens, severe cases of acute tissue 

damage might fail to heal properly and develop to the continuation of early effects which is 

known as consequential late effects. Skin, mucosal, intestinal and urinary tissue are more 

prone to show this type of damage. For instance, acute oral mucositis forms in head and neck 

cancer patients which may result in non-healing ulcers and necrosis (10, 12)  

 

1.6 Inflammation and Radiation-Induced Tissue Damage  

Radiation induces production of pro-inflammatory, pre-fibrotic cytokines and vascular 

injury. These changes are important in radiation-induced acute as well as late effects. 

Radiation-induced late effects have been proposed to be partly due to activation of pro-

inflammatory processes. Radiation-induced inflammation is dose dependent and involves 
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activation of proinflammatory cytokines. In a normal inflammatory process, the 

inflammation subsides by activation of anti-inflammatory cytokines. However, radiation-

induced inflammation does not mitigate sufficiently by time and could accumulate in the 

tissue. The overproduction of inflammatory cytokines in the irradiated tissue results in 

fibrosis (13).  

 

1.7 Radiation-Induced Oxidative Stress and Cellular Damage 

Ionizing radiation absorption by cellular molecules causes the production of free radicals, 

but due to the abundance of water (80%) in cells, water radiolysis generates a vast quantity 

of reactive oxygen species and free radicals, such as hydrogen free radical (H•), OH•, 

superoxide (O2-) and H2O2 (14). 

Radiation also causes the production of vast quantity of nitric oxide (NO•) free radicals 

by affecting the inducible nitric oxide synthase (iNOS). Although NO•  reacts with 

superoxide anion with a rate constant higher than enzymes such as superoxide dismutase 

(SOD) which catalyzes the conversion of superoxide to hydrogen peroxide (15, 16). 

Radiation-induced cellular damage can affect different components and organelles in cells 

and may be reversible or irreversible. For instance, radiation-induced DNA damage, if not 

properly repaired leads to cell death within few cell divisions after exposure. In the following 

section, we discuss few of these radiation damage targets including membrane and 

mitochondria in more details.  
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1.7.1 Membrane Disruption 

Ionizing radiation can affect cell membrane directly or indirectly through the action of 

free radicals. Non-lethal doses of ionizing radiation induce reversible changes in the cell 

membrane. Radiation-induced cell membrane damage is manifested mainly in decreased 

content and distribution of negatively charged components of glycocalyx including sialic 

acid, lectin, calcium binding sites, changes in cell surface morphology (rounding up or blebs) 

and altered cellular communication. Glycocalyx is a carbohydrate coat on the outer surface 

of the cell membrane which is composed of carbohydrate components (oligosaccharides) of 

glycolipids (combination of oligosaccharides and lipids covalently bind together) and 

transmembrane glycoproteins content of cell membrane (17). 

 

1.7.2 Radiation-induced effect on the mitochondria 

Mitochondria produces the majority of energy needed for cellular function by 

metabolizing carbohydrates, fatty acids and amino acids through oxidative phosphorylation 

of tricarboxylic acid (TCA) cycle in the mitochondrial matrix. Mitochondria is a natural 

source of ROS. ROS is produced during adenosine triphosphate (ATP) synthesis in the inner 

mitochondrial membrane or due to the premature leakage of electrons majorly from complex 

I and III (II to a very limited extent). Radiation exposure further increases the ROS production 

in mitochondria by increasing the electron leakage from electron transport chain (ETC) and 

production of superoxide anions. Excessive ROS in mitochondria causes mitochondrial DNA 

damage or mutation, change in mitochondrial DNA copy number, and alters or damages gene 

expression and induces nucleus DNA damage (16).   
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1.8 Local Renal Renin-Angiotensin System and Radiation-Induced Tissue Damage 

Although we do not have a clear understanding of the role of renin-angiotensin system 

(RAS) in radiation-induced tissue damage medications such as angiotensin converting 

enzyme inhibitors (ACEIs) and angiotensin type 1 receptor antagonists (AT1R antagonists) 

are being used to treat or prevent radiation-induced tissue damage. These medications affect 

the local tissue RAS, which is present in a variety of tissues. Study of local renal RAS 

provides further information which might help improve our understanding of radiation-

induced renal damage.  

 

1.8.1 Renin-Angiotensin System      

The systemic renin-angiotensin system is a complex blood borne hormonal system that 

has a major role in the regulation of blood pressure. In response to low blood pressure, 

baroreceptors in the juxtaglomerular system in afferent arterioles of the kidneys release renin. 

Renin cleaves angiotensinogen which is produced and secreted by liver and converts it into 

angiotensin I (Ang I). Angiotensin I is then cleaved and converted to the active peptide 

angiotensin II (Ang II) through the action of angiotensin converting enzyme (ACE).  Four 

types of angiotensin II receptors have been discovered. Functions of angiotensin II type 1 

(AT1) receptor and angiotensin II type II (AT2) receptor are well studied. AT2 receptors are 

more abundant in fetal life and decreases after birth and only present in healthy adults in 

certain organs like adrenal medulla, uterus and ovaries (18, 19). AT1 receptors are 

responsible for most of the known physiologic effects of Angiotensin II on a variety of 

organs; Ang II effects mediated via AT2 receptors in brain includes influencing blood 

pressure, fluid intake (drinking and salt appetite) and vasopressin secretion. It also affects 
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cardiovascular system via increasing blood pressure by direct vasoconstriction, stimulation 

of sympathoadrenal system (centrally and peripherally) and inhibition of vagus nerve effects 

on the heart. In the kidney, AT1 receptors conduct other effects of Ang II including an 

increase in the reabsorption of sodium in proximal tubules and induces vasoconstriction (20). 

It also stimulates the production of aldosterone from adrenal cortex (21).  

Aldosterone has a major role in regulating sodium and water reabsorption (potassium 

excretion) by activating epithelial sodium channels (ENaC) in kidney’s distal tubules thus 

controlling extracellular volume (18).  

Besides the systemic RAS, local RAS is found in different organs such as lung, brain and 

kidney. Although the local RAS system functions are not fully known, research suggests that 

angiotensin-converting enzyme inhibitors (ACEIs) can clinically attenuate radiation related 

fibrosis in lungs (22), and cognitive impairment (23, 24) by blocking the renin-angiotensin 

system. Specifically, administration of ACEIs and AT1 receptor antagonists  (AT1RAs) in 

kidneys prevents radiation nephropathy (25). Studies demonstrate that radiation generally 

does not affect the renin or Ang II levels (26). Ang II is a potent activator of vascular 

nicotinamide adenosine dinucleotide phosphate (NADPH) which is a major source for 

production of reactive oxygen species (ROS) in the vascular system. Local inhibition of 

renin-angiotensin system (RAS) in kidney which lowers the oxidative stress caused by 

activity of renin angiotensin system seems to be the underlying cause for the benefits of 

ACEIs (27).  
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1.8.2 Kidney  

The structural and functional units of kidneys are nephrons. Each nephron consists of two 

parts. The first part is the renal capsules which are located in the cortex of the kidney. Renal 

capsule consists of the Bowman’s capsule which is a cluster of capillaries (glomerulus) 

located inside the capsule. Blood is filtered in the glomerulus capillaries to the Bowman’s 

capsule due to the blood pressure. Renal tubule starts from the proximal convoluted tubule 

(PCT) which is highly coiled and becomes the descending limb of nephron loop. This part of 

the nephron is followed by ascending limb of the nephron loop and distal coiled convoluted 

tubule (DTC) which empties into collecting tubes.  

There are two types of nephrons: cortical nephrons which consist of 85% of the total renal 

nephrons and located in the nephron cortex, and juxtaglomerular nephrons. In 

juxtaglomerular nephrons, Bowman’s capsule located at the border of renal cortex and 

medulla. Their function is important in concentrating urine. 

Blood filtration through the Bowman’s capsule is passive and depends on the size of the 

filtrate. Tubular reabsorption of some substances like water, glucose and amino acids are 

passive and almost complete. Reabsorption of ions are selective and excess ions are allowed 

to be excreted in urine which has a role in pH adjustment. Tubular secretion actively secrets 

ions like hydrogen, potassium and nitrogen waste products which also helps in pH regulation 

and disposal of drugs.    

 

1.8.3 Radiation-Induced Kidney Damage  

In recent years, improvements in cancer therapy and significantly higher survival of 

patients with most types of cancer led to more cases of patients with the long-term adverse 
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effects of radiation treatment. Kidney is exposed to radiation as a result of different types of 

radiation treatment like local or whole body radiation. The kidney is highly sensitive to 

radiation treatment leading to the development of nephropathy at accumulative doses higher 

than 30 Gy (28).  

Radiation nephropathy is a chronic progressive renal dysfunction and may occur within 

months to years after radiation therapy. Due to its progressive nature, it could be fatal if left 

untreated. Changes like glomerulosclerosis and tubulointerstitial fibrosis occur due to 

radiation nephropathy (29).  

 

1.8.4 Radiation Effects on Renin-Angiotensin System 

Although it has been reported in some studies (26) that radiation exposure does not affect 

the expression levels of genes such as angiotensinogen or rennin, genes such as NF-kappaB 

(NF-κB) is upregulated as the result of radiation exposure (30) and can positively increase 

the production of angiotensinogen. On the other hand, angiotensin II can stimulate the 

production of different pro-inflammatory and pro-fibrotic cytokines including activation of 

NF-κB (31). Therefore, according to preclinical studies treatments such as ACEIs and anti-

inflammatory medications can break this cycle and stop the over-activation of RAS and as a 

result, prevent radiation-induced tissue damage.  

 

1.9 Radiation Impact on Hypothalamic–Pituitary–Adrenal Axis 

To our knowledge up to this point, not much information was found on acute effects of 

radiation on activation of hypothalamic–pituitary–adrenal axis (HPA). The importance of the 
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HPA axis function in body homeostasis and also great indication of radiotherapy in cancer 

treatment suggest a great potential for research in this area.  

 

1.9.1 Physiology of Hypothalamic-Pituitary-Adrenal Axis 

The nervous system and endocrine system work together to integrate stimuli from the 

environment and produce proper physiological responses. The nervous system imposes a 

rapid control via neurotransmitters whereas endocrine system reacts more slowly via 

secreting and releasing hormones. Hypothalamic-Pituitary-adrenal axis (HPA axis) has a 

vital role in body’s response to stress. Hypothalamus has an important part in regulating 

body’s homeostasis through controlling factors such as fluid volume, temperature and 

appetite. Hypothalamus is connected to various important parts of the brain; directly to the 

hippocampus, amygdala and indirectly to brain cortex. In response to different stimuli 

received by the hypothalamus, it secrets a collection of releasing hormones that reach the 

anterior pituitary gland through the hypophyseal portal system.  

In response to stress, hypophysiotropic neurons localized in the paraventricular nucleus 

of the hypothalamus (PVN) synthesize and secrete corticotropin-releasing factor (CRF). CRF 

is a major regulator of HPA axis. It stimulates secretion of adrenocorticotropic hormone 

(ACTH) from the anterior pituitary gland. ACTH reaches adrenal cortex via systemic blood 

circulation and stimulates adrenal cortex to synthesize and secrete corticosteroids like cortisol 

(32). The physiological effects of cortisol include but not limited to metabolism (stimulating 

gluconeogenesis and consequently increase in blood glucose levels), maintenance and 

development of normal immunity, anti-inflammatory, increase blood pressure, vascular tone 

and activation of the central nervous system, and the critical role of cortisol in stressful 
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condition and body’s survival (33). In addition to all these effects, cortisol also causes the 

release of catecholamine from adrenal medulla (34).   

 

1.9.2 Adrenal Gland  

Adrenal glands are located above the kidneys. Central and cortical parts of the adrenal 

gland have different origins and secrete different hormones. The adrenal medulla is in the 

center of the adrenal gland and originated from neural crest tissue. Secretion of hormones in 

adrenal medulla is directly controlled by the sympathetic nervous system. In fight or flight 

response to stressors, the adrenal medulla secretes epinephrine. Adrenal cortex has three 

layers that secrets three hormones two of which are in significant levels. Aldosterone is a 

mineralocorticoid secreted from adrenal cortex (Zona glomerulosa) through effects of 

angiotensin II mediated via AT1 receptors (35). Aldosterone increases epithelial sodium 

channels by increasing its gene expression in distal tubes. As a result, water and sodium 

reabsorption increases while potassium is secreted into urine. These changes collectively 

increase the blood pressure. Zona fasciculata in adrenal cortex is responsible for secreting 

glucocorticoids such as cortisone which increases the blood glucose levels in response to 

stress through glycogenolysis (glycogen breakdown and production of glucose in liver and 

muscles) and gluconeogenesis (generation of glucose by degradation of proteins in the liver). 

 

1.9.3 Catecholamine Synthesis Pathway 

At the first step of biosynthesis of norepinephrine and epinephrine L-tyrosine is converted 

to L-dopa by a hydroxyl group added to meta position on tyrosine through the action of 

tyrosine hydroxylase (TH).  Tyrosine hydroxylase is a mixed-function oxidase that adds a 
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hydroxyl group by using molecular oxygen. Next, DOPA decarboxylase (DDC) converts L-

dopa to dopamine. Dopamine β-hydroxylase (DBH) is another mixed-function oxidase which 

then adds a hydroxyl group to the side chain of dopamine leading to the production of 

norepinephrine (Figure 2). Epinephrine is synthesized by the methyl group transfer from S-

adenosylmethionine to norepinephrine through the action of phenylethanolamine N-

methyltransferase (PNMT) (36). Increased PNMT expression level is proceeded by increase 

in transcription factors like Egr-1 (Early growth response 1) and Sp1 (specificity protein 1) 

in the nucleus. Moreover, stress can induce PNMT levels by transcription factors like 

glucocorticoid receptor (GR) and Egr-1(37).  

 

Figure 2 Catecholamine Biosynthesis Pathway (36) 

http://www.ncbi.nlm.nih.gov/books/n/bnchm/A3974/def-item/A4430/
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1.10 Antioxidants and Radioprotection 

Radioprotection is useful in reducing radiation’s toxicity in the tissue after radiotherapy 

or in accidental exposures such as workplace exposure, war or terrorism (38). Radiation 

induces a burst of free radicals in the exposed tissue which is responsible for a range of 

defects. Antioxidants are capable of scavenging those radicals, reducing the DNA damage, 

cell death and protecting cellular components such as the nucleus, membrane and 

mitochondria (39).  

Multiple dietary supplement (MDS) as showed by Lemon et al. 2003 was developed 

based on previous studies from a variety of antioxidants and components with scientifically 

proven efficacy targeting oxidative stress, inflammatory processes, insulin resistance, 

mitochondrial dysfunction and membrane integrity. Due to these properties MDS was 

initially developed and proved to be effective in amelioration of age-related cognitive decline 

(40). It was also proved to be effective in increasing longevity in aging mice model (41), 

preventing radiation DNA damage by scavenging free radicals (42), improvement in 

mitochondrial function and ATP production in the brain tissue of aging and mouse model 

(43). 

 

1.11 Hypothesis 

Primary aim of our study was to evaluate the radiation-induced damage. Two organs, 

kidney and adrenal were selected to address different aspects of radiation-induced effects. 

We hypothesised that multiple dietary supplement (MDS) which benefits oxidative stress and 

mitochondrial dysfunction, could attenuate radiation-induced damage. In an animal model 

(mice) which was chosen to provide a more accurate evaluation of radiation-induced damage 
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and radioprotective properties of the multiple dietary supplement (MDS) we chose kidney 

and adrenal tissue to be evaluated. 

Considering kidney’s vital role in body homeostasis and presence of renal RAS, kidney 

was selected to be assessed for the radiation induced kidney damage and radioprotective 

effects of MDS. 

We also hypothesized that total body radiation (TBR) may stimulate a response in 

hypothalamus-pituitary-adrenal (HPA) axis. Adrenal tissue was selected to investigate the 

radiation-induced stress response and MDS protection against radiation-induced 

physiological stress by evaluating genes involved in catecholamine biosynthesis pathway. 

 

1.12 Objectives 

1 Study Kidney tissue to assess: 

1. a  Antioxidant response to the radiation-induced oxidative stress and MDS protective 

effects against radiation-induced oxidative stress. 

1. b Radiation-induced DNA damage and cell cycle arrest and MDS protection against 

radiation-induced DNA damage. 

1. c  Radiation-induced physiological stress (glucocorticoid release) and MDS protection 

against radiation-induced physiological stress (glucocorticoid release). 

1. d Radiation-induced effects on DNA methyltransferase enzymes and MDS protective 

effects. 

1. e  Radiation-induced changes in the renin-angiotensin system activity level and MDS 

modifying effects on the renin-angiotensin system response to radiation. 
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2 Study of adrenal tissue to assess: 

2. a  Antioxidant system response to the radiation-induced oxidative stress and MDS 

protective effects against radiation-induced oxidative stress. 

2. b Radiation-induced DNA damage and cell cycle arrest and MDS protection against 

radiation-induced DNA damage. 

2. c  Radiation-induced physiological stress (glucocorticoid release) and MDS protection 

against radiation-induced physiological stress (glucocorticoid release). 

2. d Radiation-induced effects on DNA methyltransferase enzymes and MDS protective 

effects. 

2. e     Radiation-induced stress and activation of HPA axis, and MDS protective effects 

against radiation-induced stress and activation of HPA axis. 

 

1.13 Project Rationale  

Studies have shown that dietary supplement can significantly affect five pathways. Since 

radiation has some similar targets such as mitochondrial function, ROS production, 

inflammation and membrane disruption MDS could be beneficial in protecting against 

radiation-induced tissue damage. Since theoretically diet can be effective on some important 

radiation damage targets we theorized that diet could potentially be used in preventing or 

treating radiation-induced cellular damage. To provide an accurate view of MDS potential 

mouse model was chosen. 
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2.0 Materials and Methods 

2.1 Animals 

Animal work was done by Dr. J. Lemon at Department of Medical Physics and Applied 

Radiation Sciences, McMaster University. In this study C57Bl/6J, male mice were used. Care 

was provided for animals according to the Animal Utilization Protocol as approved by 

Animal Research Ethics Board. Mice were housed individually and had free access to food 

and water. They were periodically exposed to a 12 hour light and 12 hour darkness.   

 

2.2 Dietary Supplement  

A complex dietary supplement consisting of a variety of vitamins, minerals, herbs and 

other compounds was previously developed (44). Diet was designed to target major factors 

in the aging process including oxidative stress, inflammatory processes, insulin resistance 

and mitochondrial dysfunction. Different elements in the diet were chosen with sufficient 

scientific evidence of effectiveness on at least one these pathways and the ability to be 

administered orally. A summary of this information is provided in Table 1. 
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Table 1: Components of multiple dietary supplement and their respective cellular targets 

 

2.3 Feeding 

 Doses of dietary supplement for mice was determined by human recommended dosage. 

Mice received ten times of recommended dose of supplement for their weight to compensate 

for higher metabolism rate in mice compared to humans. Dietary supplement was soaked into 

bagel bits. It was made sure that entire bagel bits were consumed each time. However, any 

left pieces were recorded during the feeding process. Dietary supplement was fed on regular 

basis pre and post-radiation according to the groups assigned. To maintain a healthy and 

Dietary supplement components and their target pathways in cells 

Component Target in cell

Vitamin B1 Insulin sensitivity, anti inflammatory

Vitamin B3 Insulin sensitivity, anti inflammatory

Vitamin B6 Insulin sensitivity, anti inflammatory, scavenge O2

Vitamin B12 Insulin sensitivity, anti inflammatory

Vitamin C Antioxidant in ctosol, scavenge O2,H2O2

Vitamin D Antioxidant in lipid membrane

Vitamin E Antioxidant in lipid membrane, scavenge o2,H2O2

Acetyl L-carnitine Mitochondrial suppport,antioxidant in mitochondria, insulin sensitivity

Alpha lipoic acid Mitochondrial suppport,antioxidant in mitochondria, insulin sensitivity

ASA Anti-inflammatory, scavenge NO-

Beta carotene Antioxidant in lipid membrane, scavenge O2,H2O2

Bioflavonoids Antioxidant in cytosol and nucleus, scavenge OH-,O2, metal chelator

Chromium Insulin sensitivity, scavenge H2O2

CoEnzyme Q10 Mitochondrial suppport,antioxidant in mitochondria

Curcumin Anti infammatory

Folic acid Antioxidant, maintains glutathione levels, endothelial support

Garlic Antioxidant in lipid membrane, scavenge O2,H2O2

Ginger Antioxidant in cytosol and nucleus, scavenge OH-,O2, ONOO-

Ginko biloba Antioxodant in cytosole, scavenges NO-

Ginseng Antioxidant in cytosol and nucleus, scavenge OH-,O2, ONOO-

Green tea extract Antioxodant in cytosole, scavengeS H2O2, OH-

L-glutathione Enzymatic antioxidant support, antioxidant in cytosol

Magnesium Insulin sensitivity, cellular support

Melatonin Antioxidant in cytosol and nucleus, scavenges OH-,H2O2,O-,NO,ONOO-

N-acetyl cycteine Mitochondrial support, antioxidant in mitochondria

Potassium Insulin sensitivity, cellular support

Quercitin Anti-inflammatory

Rutin Antioxidant in lipid membrane, scavenge OH-,O2, metal chelator

Selenium Scavenges H2O2, enzymatic antioxidant support, insulin sensitivity
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sufficient diet and avoid the risk of malnourishment mice body weight were recorded twice 

a week.  

 

2.4 Irradiation  

Awake animals were immobilized in a polyvinyl chloride (PVC) tubes 30 minutes before 

irradiation. Treatment groups including radiation received 5 Gy whole body radiation from a 

cesium 137 (energy 662 KeV) source (Taylor cesium source) as they were immobilized in 

plastic tubes and had rotation around the coronal/sagittal planes but not transverse plane.  

Mice in the control group were subjected to the same condition but they were shielded from 

radiation by custom build lead shielding which was used to protect the body from irradiation.  

 

2.5 Treatment Groups  

Mice were divided randomly into five different groups. Animal’s age was between 9 to 

11 weeks old and they received radiation a month after study initiation. To accurately 

compare different treatments, five groups were considered as it is shown in Table 2. The 

control group did not receive any supplement and underwent sham radiation. They were 

placed in proper tubes, kept in the same radiation chamber for the same amount of time as 

radiation-treated mice without receiving any radiation. The second group (MDS) received 

the dietary supplement for the duration of study starting from a month before radiation date. 

The third group (5 Gy) consists of animals receiving 5 Gy radiation from a cesium source. 

Last two groups were assigned to determine the effectiveness of multiple dietary supplement 

to prevent the radiation-induced tissue damage. Supplement+ whole body 5 Gy irradiation 

(MDS-5 Gy-MDS) group received daily supplements for 30 days before radiation and 
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continued to receive the supplement daily until the end of the study. 5 Gy whole body 

irradiation+ supplement (5 Gy-MDS) group started to receive daily supplement after 

receiving 5 Gy radiation. From now on the short-forms mentioned above will be used. 

Animals were sacrificed 2, 30 and 120 days after 5 Gy radiation treatment. Organs were 

harvested and flash frozen for further analysis. 

 

Table 2: Study’s treatment groups and associated information 

 

2.6 mRNA Extraction 

Approximately 50 mg of flash frozen tissue was weighed and placed in round bottom 

autoclaved Eppendorf microcentrifuge tubes. 1 ml TRIzol (TRI reagent, Sigma®) was added 

to each tube with one Diethylpyrocarbonate (DEPC, Amersco®) treated stainless steel bead. 

Tubes were placed in Tissue lyser for 2 cycles at 30 Hz for 2 min. The homogenized tissue 

was transferred to another tube and centrifuged at 12,000 x g for 10 min at 4˚C. The 

supernatant was then transferred to a fresh tube. 200 µl of chloroform per 1 ml of TRI reagent 

was added to the sample and mixed well.  The samples were incubated at room temperature 

for 10 min. 

2 d 30 d 120 d

I Control (no treatment) 1 – 5 6 – 10 11 – 15

II
Supplement only (MDS)
-supplement fed for duration of study 

-sham irradiated 30d after start of supplement
1 – 5 6 – 10 11 – 15

III 5 Gy whole body irradiation (5 Gy) 1 – 5 6 – 10 11 – 15

IV
Supplement+5 Gy whole body irradiation (MDS+5 Gy+MDS)
-supplement fed for duration of study 

-Irradiated 30d after start of supplement
1 – 5 6 – 10 11 – 15

V
5 Gy whole body irradiation + supplement (5 Gy+MDS)
-fed supplement for the duration of study after irradiation 1 – 5 6 – 10 11 – 15

Mice ID#
(Tissues harvested 2d/30d/120d post-irradiation)TreatmentsGroup ID
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Tubes then were centrifuged at 12,000 x g for 10 min at 4˚C. After centrifugation, the 

aqueous phase which contains the RNA (ribonucleic acid) was transferred to a fresh tube 

while the DNA and protein found in the interphase and lower phase were discarded. 500 µl 

of isopropanol was added per 1 ml of TRI reagent, and each tube was vortexed for 10-15 sec 

and incubated at room temperature for 10 min. The tubes were then centrifuged at 12,000 x 

g for 8 min at 4 ̊C and supernatant was discarded afterwards. The pellet was suspended in 1 

ml of 70% ethanol per tube by flicking the tube. The tubes were then centrifuged at 7,500 x 

g for 5 min and the ethanol was removed. Pellets containing purified RNA were subsequently 

air dried briefly and dissolved in DEPC-treated water (30 µl) by incubating the tubes for 10 

min at 37 ˚C. For long term storage RNA samples were stored at -80˚C. The RNA samples 

were analysed using NanoDrop (ND-1000 spectrophotometer) to measure content and purity 

of RNA which was evaluate by the ratio of absorbance at 260 nm and 280 nm (2 or higher is 

pure for RNA) and 260 nm and 230 nm (2-2.2 is pure for nucleic acid). 

 

2.6.1 RNA Integrity 

1% agarose gel was prepared by adding 1 g agarose to 100 ml of 1X Tris-borate (1.08 g 

Tris-base, 0.55 g boric acid, 0.4 ml of 0.5 M EDTA pH 8.0) electrophoresis buffer. The 

mixture was microwaved until agarose was completely dissolved. 10mg/ml ethidium 

bromide (EtBr) was added to the cooled 1% agarose gel solution. The mixture was poured 

into a prepared tray and was allowed to solidify for an hour. RNA samples were prepared by 

mixing 500 ng of total RNA with 2 µl of 6X gel loading dye (30% Glycerole,0.25% 

Bromophenol Blue) and nuclease-free water to a total volume of 12 µl. 1 kb ladder 

(Invitrogen®) was used for reference. Gel was run at 90 V until band separation was achieved. 
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To visualize the RNA bands, Bio-Rad agarose gel imaging Chemi-Doc (software: Quantity 

One) was used.  

 

2.7 Generation of cDNA from mRNA  

2.7.1 DNase Treatment 

2 µl 10X DNase reaction buffer (DNase kit from Sigma®) and 2 µl DNase I (1 u/ µl) were 

added to tubes containing 2 µg of RNA sample. The final volume of the reaction was adjusted 

to 20 µl with DEPC-treated water. Tubes then incubated at room temperature for 15 min. 2 

µl of stop solution (Sigma®) was immediately added to the reaction and heated at 70 ˚C for 

10 min. The samples were then chilled on ice. 

 

2.7.2 Reverse Transcription  

1 µg (1 µl) of random primers was added (0.5 µg of primers per 1 µg of mRNA) to the 

DNase-treated RNA samples. Tubes were then sealed, flicked, spun down and immediately 

chilled on ice. 27 µl of the Master Mix containing (12.5 µl DEPC water, 10 µl M-MuLV 5X 

buffer (Promega®), 2.5 µl mixed dNTPs and 2 µl M-MuLV reverse transcriptase (Promega®) 

was then added to the tubes. For the preparation of control negatives samples, master mix 

was prepared without M-MuLV reverse transcriptase. Tubes were sealed, flicked, spun down 

and incubated for 60 min at 37 ˚C.  
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2.8 Quantitative PCR (qPCR) 

2.8.1 Primers Design 

To design primers for each gene first, the sequence of the target gene was obtained from 

NCBI. Primer3 software was used to design primers. Messenger RNA (mRNA) sequence 

was uploaded in the software. Software’s criteria to select primers from numerous other 

possibilities included primer length between 18 – 22 base pairs, optimal GC content between 

40%-60% (to optimize the melting temperature), melting temperature between 57-63 degrees 

and checking primers sequence for the possibility of RNA secondary structures like hairpins 

and dimers. The software also checked for other non-specific PCR products. List of primers 

that has been used in this study is provided in Table 3.   

We also obtained some of the primer’s sequences from the primer bank. For this database, 

NCBI Gene ID was used. GenBank provided a list of primers which had been tested 

extensively by qPCR experiments for specificity and efficiency. 
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Table 3: Primer sequence of targeted genes in kidney and adrenal tissue and their respective 

efficiency. 

 

2.8.2 Primer Validation 

To validate primers for qPCR analysis, a serial dilution of cDNA samples containing 30, 

10, 3, 1, 0.3, 0.1, 0.03 and 0.01 ng cDNA was prepared. To prepare the final mixture 10 µl 

Quanta mix, 2.6 µl ddH2O, 1.2 µl 600 nM forward and 1.2 µl 600 nM reverse primer was 

added to 5 µl of cDNA with concentrations mentioned above. qPCR machine determined the 

initial complementary DNA (cDNA) level in samples by providing cycle threshold (Ct) 

value. Ct value or cycle threshold is the number of polymerase chain reaction (PCR) cycles 

needed for fluorescence level to cross the threshold of the machine. The higher Ct value, the 

lower initial cDNA level in the sample.  

Gene name Efficiency Gene name Efficiency 

TCTCCTTTACCACAACAAGAGCA GACCTGGGAGGGGACAAGAG

CTTCTCATTCACAGGGGAGGT AGACACCAGAGTGCAAGAC

CTCTCTGGGCACTCTTGTTGC GAAAGGATGGACACGGTGGG

GGGAGGTAAGATTGGTCAAGGA GGGTCTACGTTGAGCAGC

AGGTTGGGCTACTCCAGGAC GCCTCTCAGGAGTACTGAGGG

GGTGAGTTGTTGTCTGGCTTC CCCGAAGTGGCTCAGCTCTTT

AACAGCTTGGTGGTGATCGTC ACAAGAAGGCCAAGGGGAAGG

CATAGCGGTATAGACAGCCCA GGCTCTCACTGGACATTAGCAG

CAGACCTGAAGCACGCTACAG ACCGAGTACGTCATGGCTCCCACCGAGTACGTCATGGCTCCCACCGAGTACGTCATGGCTCCC

TAGTTGTTGCGGAGATAGGCG CTTGGCTTCGGGCTCCAGCTCTTGGCTTCGGGCTCCAGCTCTTGGCTTCGGGCTCCAGCT

GCCGTCTCAGAGCAGGATAC CAGCACATCCAGACAGACACCA

AGCATTTCCATCCCTCTCCT TGGGAATGTCTCTGCCAAAAGCT

AATCTGCAGCCTTTGCCTAA CCTGACATGGTCTGGGAC

AGGAGGAGGAGGGTCTGAAG CCATAGCCATTCATGTGCCG

GACGAGTTATCCCAGCCAAA GGTGCTGCTCATTGAGAATGTCG

GGCAGAGGAAGACGATGAAG GGGAAACCGAGCACCACCAG

TCATGGATCTGGTGGTGATGGG TTTGCTGCCCTTGGCCTGCG

GCTCTTCCCTCACTGTCTTTGC CTCTGAACTCATGTACCAGCCG

CAATGAGCAAGTGGCAAGAA CGGATGAAGAGAGGCATGTTGGA

AGGGCCTCGGTGAGATAGTT CAATGATGGAATGCTCTCCTGAG

ACATGGCCAAGTCCAAGAAC TTACGACTATGGCGCGCTGGA

TGCATCTTCTTCAGGCCTTT TCGTGGTACTTCTCCTCGGTG

GGCTGTATTCCCCTCCATCG GGCCTGTGGCTCTGTCACC

CCAGTTGGTAACAATGCCATGT CCTATCTTCTCAACCAGGTCAAG

GAAGAGTTCAGACCAGAAATGCT AAGAATGGTGTTGTCTACCGAC

GAAGAGTTCAGACCAGAAATGCT CATCCAGGTTGCTCCCCTTG

AGGCCGCTCAGTGTTTTCTA GAGGGAACTGAGACCCCAC

TACAGCTTCCACACGTCAGC CTGGAAGGTGAGTCTTGGCA

AGCGGGTATGAGGAGTGCAT

GGGAGCATCCTTCGTGTCTG

GR

CDKN1A

Per2 

NRF2 

NOS3 

Catalase 

SOD1 

SOD2 

SOD3 

GPx1 

HSD11β1 

Beta Actin

ACE

AgtR1A

Angiotensinogen

Renin

103.60%

105.56%

94.85%

111.30%

105.58%

94.26%

98.63%

96.96%

DNMT3A

DNMT3B

DNMT1

89.10%

95.90%

104.60%

94.29%

95.68%

110.73

100.25%

103.37%

93.54%

97.81%

94.92%

91.57%

90.64%

99.79%

89.57%

102.60%

108.30%

100.40%

94.33%

GADD45A  

 Primer sequence

RPL29

DDB2

102.50%

105.80%

Sp-1

 Primer sequence

PNMT

TH

DBH

Egr-1

γH2AX 

Ap-2
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Standard curves were generated in Excel by blotting log cDNA concentration on x-axis 

and Ct values on Y-axis. According to the properties of the curve including determining the 

R2 (coefficient of correlation) and efficiency value were evaluated. Efficiency considered 

desirable between 90%-110%. Melting temperature was also evaluated for each primer to 

determine whether primer generated a single PCR product. In case a primer did not meet the 

criteria other primers had been designed and tested in the same manner to provide same 

quality assay for every gene screened. 

 

2.8.3 qPCR 

Frozen cDNA samples were thawed and diluted by DEPC treated RNase-free water to 2 

ng/ µl concentration. Each reaction contained 5 µl of cDNA sample and 15 µl of a master 

mix containing target gene’s primers (600 nm), Quanta q-PCR mix and DEPC treated water 

to the total volume of reaction 20 µl. Accumulation of fluorescence signals from CYBR green 

(PerfeCta®SYBR® Green FastMix®, Quanta Biosience®) incorporated into double strand 

DNA during PCR was detected and analyzed by BIO-RAD Chromo4 Real PCR machine.  

For q-PCR, BIO-RAD Chromo4 Real PCR machine was used (Software: Option Monitor 

3). qPCR settings: q-PCR microtubes were placed in the machine. Following setting was used 

to run each experiment. Starting at 95˚C for 2 min, at 95 ˚C for 30 seconds (DNA 

denaturation), at 59 ˚C for 30 seconds (annealing temperature is specific for each primer set), 

at 72 ˚C for 30 sec (extension), plate read and then cycles starting from incubation at 95 ˚C 

for 30 sec repeated for 40 times.  

 



 

 

 

29 

 

2.9 qPCR Data Analysis 

Machine recorded Ct value as a cycle number that fluorescence intensity of qPCR 

reaction reached the pre-set threshold (0.01). This information was plotted as Ct on x-axis 

and Fluorescence intensity on the y-axis. CYBR green in Quanta mix was used as a source 

of fluorescence detectable by qPCR machine. The dye gets attached to double strand DNA.  

To compare the initial amount of DNA in each sample as an indicator of mRNA level, Ct 

values were evaluated for each sample, initial for two internal reference genes and then for 

each target gene. After each q-PCR, all data was collected using Ct threshold of 0.01 and 

copied in the Excel for further analysis 

The ∆ct mathematical model was applied for qPCR data analysis. Two reference genes 

including β actin and RPL29 were analyzed for each sample. GEOMEAN of these two values 

were used in calculations. To analyze the data first ∆Ct (=Ct sample-Ct reference) for each sample, 

an average of ∆Ct for all samples and Standard Error of Means (SEM) were calculated.  

The ∆ct average was converted to 2-∆Ct average.  To plot the final data, up and down errors needed 

to be individually calculated as follow; Error-Up (2-[∆Ct average-SEM])- 2-∆Ct average and Error-

Down (2-∆Ct average-(2-[∆Ct average+S.E.M]). The 2-∆ct average was plotted with Error-Up and Error-

Down (45). 

 

2.10 Statistical Analysis 

SPSS version 18 was used for data analysis. For data analysis, One-way ANOVA with 

Tuckey’s post-hoc was utilized.  Differences considered significant if post-hoc Tukey 

test<0.05.   
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3.0 Kidney 

3.1.1 Introduction 

Exposure of biological systems to ionizing radiation causes tissue and ultimately organ 

damage. Involvement of local RAS system in radiation injury has been previously established 

in tissues like kidney and brain (46, 47). Although according to literature RAS is not 

upregulated its physiological function aggravates the oxidative stress caused by radiation 

(31). We hypothesized that MDS protects the tissue from radiation-induced tissue damage 

due to its protective effects on mitochondria, genome and free radical scavenging properties. 

To address this hypothesis important genes in RAS, antioxidant enzymes, physiological 

stress response, markers of DNA damage and DNA repair and DNA methyltransferase 

enzymes were selected. 

 

3.1.2 Objectives 

To assess kidney for: 

A) Radiation-induced changes in expression level of genes involved in the cellular 

antioxidant system, DNA repair, cell cycle progression, DNA methyltransferase enzymes 

and markers of physiological stress and the renin-angiotensin system. 

B) The expression level of the above genes in groups receiving MDS in combination with 

radiation. 
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3.2 Results 

The results from the genes studied in kidney tissue including cellular antioxidant system, 

DNA damage repair, cell cycle progression, RAS, markers of cellular physiological stress 

response and DNA methyltransferase family, are summarized in Table 4. 

 

Table 4 Kidney mRNA expression Analysis Summary. mRNA Expression Changes Compared to Control (Group#1), ↔=no 

change; ↓=decrease; ↑=increase 

 

3.2.1 Kidney Local Renin-Angiotensin System 

The renin-angiotensin system is a major contributor to radiation-induced oxidative tissue 

damage. Irradiation-induced changes in RAS system at 2, 30 and 120 days post-irradiation 

in kidney tissue were analyzed by measuring mRNA transcript levels. Angiotensinogen is 

the primary precursor for the production of Ang II which has a significant role in radiation-

induced tissue injury by producing reactive oxygen species via NADPH-oxidase enzyme 

activity. 5 Gy whole body radiation did not cause any significant change in the expression 
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NRF2 - nuclear factor 2 ↔ ↑ ↑ ↔ ↔ ↔

Catalase ↔ ↑ ↑ ↔ ↔ ↔

GPX1-glutathione peroxidase 1 ↔ ↑ ↔ ↔ ↑ ↔

NOS3 - endothelial nitric oxide synthase ↔ ↑ ↔ ↔ ↔ ↔

SOD1 – superoxide dismutase 1 ↔ ↔ ↓ ↓ ↓ ↓

SOD2 – superoxide dismutase 2 ↔ ↔ ↓ ↔ ↑ ↔

SOD3 – superoxide dismutase 3 ↔ ↔ ↔ ↔ ↑ ↑

CDKN1A – cyclin-dependent kinase inhibitor 1 ↔ ↑ ↑ ↔ ↑ ↑

GADD45 – Growth arrest and DNA-damage-inducible protein ↔ ↔ ↔ ↔ ↑ ↔

H2AX – H2A histone family, member X ↑ ↑ ↔ ↑ ↑ ↑

PER2 –period circadian clock 2 ↔ ↑ ↔ ↔ ↔ ↔

Agt – angiotensinogen ↔ ↔ ↓ ↓ ↔ ↔ ↓ ↓ ↔ ↔ ↓ ↓

ACE-angiotensin converting enzyme ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↑ ↔ ↔ ↔ ↔

Ren1-renin 1 ↔ ↓ ↓ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

AgtR1A-angiotensin II receptor 1 A ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

Sp1-trans-acting transcription factor ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔

HSD11β1 – 11β-hydroxysteroid dehydrogenase type 1 ↔ ↓ ↓ ↔ ↔ ↔

Nrc1-glucocorticoid receptor ↔ ↔ ↔ ↔ ↔ ↓

DNMT1-DNA methyltransferases ↔ ↔ ↔ ↔ ↑ ↔ ↔ ↔ ↑ ↔ ↔ ↔

DNMT3A-DNA methyltransferases ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

DNMT3B-DNA methyltransferases ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↔ ↔ ↔

                                       mRNA Expression Changes Compared to Control 

2 Day 30 Day 120 Day

DNA methyl-

transferase

Cellular                

anti-oxidant system

DNA damage 

repair/ cell cycle 

progression

RAS system

Physiological stress
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level of angiotensinogen in the kidney tissue compared to the control group. However, in the 

MDS-5 Gy-MDS group, the angiotensinogen expression levels decreased to 1.4, 1.47 and 

3.2-fold compared to the control, 2, 30 and 120 days post-radiation exposure. In addition, in 

the 5 Gy-MDS group the angiotensinogen expression level also significantly decreased by 

1.17, 2.44 and 2.6-fold compared to the control at 2, 30 and 120 days post-radiation. MDS 

demonstrated the ability to decrease angiotensinogen expression level in MDS-5 Gy-MDS 

and 5 Gy-MDS groups. Decreased angiotensinogen expression level potentially lead to a 

decrease in the production of angiotensin II, the decreased activity level of local renal RAS 

and consequently lowers production of ROS (Figure 3A). 

Angiotensin-converting enzyme (ACE) converts Ang I to Ang II. mRNA expression 

analysis of ACE showed no change in expression level due to 5 Gy whole body radiation at 

2, 30 and 120 days post-radiation. In MDS-5 Gy-MDS group, ACE expression level showed 

an initial decrease (2 days) of 1.7-fold compared to the control. Moreover, 5 Gy-MDS group 

showed a significant increase in the expression level of ACE to 1.3-fold of the control group 

at 30 days post-radiation (Figure 3B). 

Renin is a proteolytic enzyme responsible for converting angiotensinogen to Ang I. 5 Gy 

whole body radiation caused a significant decrease in renin mRNA expression to 1.4-fold of 

the control group 2 post-radiation. However, renin expression level did not show any 

significant changes compared to control at other time points. MDS-5 Gy-MDS also showed 

a significant 2.24 -fold decrease in renin expression level compared to the control 2 post-

radiation (Figure 3C).  
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AgtR1A codes for Ang II receptor type 1, which mediates the Ang II biological effects 

via the function of NADPH oxidase enzyme and production of ROS as a signaling messenger. 

5 Gy whole body radiation did not change the expression level of AgtR1A in kidney tissue. 

MDS-5Gy-MDS group also showed no significant change compared to the control. However, 

AgtR1A expression level was significantly downregulated in 5 Gy-MDS group to 1.7-fold 

compared to the control group 30 days post-radiation. MDS potential to lower the expression 

level of AgtR1A at 30 days post-radiation, could potentially lead to decreased ability of 

angiotensin II to produce its biological effects (Figure 3D).  

Sp1 (specificity protein 1) transcription factor is important in the regulation of renin 

expression levels. mRNA expression analysis of Sp1 demonstrated that 5 Gy whole body 

radiation caused no change in expression level if Sp1 compared to the control at any time 

point. On the other hand, 5Gy-MDS group demonstrated a significant 1.45-fold decrease in 

expression level of Sp1 compared to the control group 30 days post-radiation (Figure 3E). 

Taken together, the data from mRNA expression levels suggest MDS potential, to reduce 

the renin-angiotensin system function, mainly by persistent downregulation of 

angiotensinogen gene as the precursor through the time points and also by downregulation 

of ACE, renin, AgTR1A and SP1 at some of the time points. This finding supports MDS 

potential to be used in preventing or treating radiation tissue damage in kidney tissue.  
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Figure 3 RT-qPCR mRNA expression analysis of markers of Renin-Angiotensin system in 2, 30 

and 120 days post-irradiation (or sham-irradiated) kidney tissue. mRNA expression of 

Angiotensinogen (panel A), angiotensin converting enzyme (ACE, panel B), Renin (panel C) ), 

Angiotensin II Receptor type 1 (AgtR1A, panel D), trans-acting transcription factor (Sp1; panel E) 

were determined relative to β-actin and ribosomal protein L29 reference genes. Each group consisted 

of 5 animals. Statistical significance was determined at p < 0.05 using one-way ANOVA. 
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3.2.2 Oxidative Stress and Antioxidant Enzymes 

Irradiation-induced oxidative stress in kidney was assessed by measuring the changes in 

transcription levels of antioxidant enzymes. Nuclear factor like-2 (NRF2) encodes an 

important transcription factor for regulating transcription of antioxidant genes. RT-qPCR 

analysis showed a significant 2.6-fold increase in expression levels of NRF2 in 5 Gy radiation 

group compared to the control 2 days post-radiation. In the MDS-5 Gy-MDS group 

expression level of NRF2 was elevated to 2.8-fold compared to the control group 2 days post-

radiation. NRF2 expression levels returned to the control level by 30 days post-radiation in 

both groups (Figure 4A). NRF2 upregulation was induced by 5 Gy radiation-induced 

oxidative stress and in the MDS-5 Gy-MDS group, MDS did not change the tissues response.  

Catalase and glutathione peroxidase 1 (GPX1) were studied to evaluate the cellular 

response to increased levels of hydrogen peroxide. RT-qPCR analysis of catalase gene in the 

5 Gy and MDS-5 Gy-MDS groups, demonstrated a similar trend of upregulation of the 

catalase gene expression by 2.25 and 2.3-fold compared to the control respectively 2 days 

post-radiation (Figure 4B). Catalase expression levels were sensitive to 5 Gy radiation in 

kidney tissue and MDS did change this response. 

RT-qPCR analysis of GPX1 gene in kidney demonstrated a distinct pattern of expression 

between 5 Gy and MDS-5 Gy-MDS groups. In the 5 Gy irradiation group, GPX1 expression 

levels raised significantly to 2.3 and 1.4-fold compared to the control group, 2 and 30 days 

post-radiation. However, in MDS-5 Gy-MDS, MDS protected kidney tissue from the 

irradiation-induced oxidative stress as GPX1 expression levels showed no significant 

increased compared to the control (Figure 4C). 



 

 

 

36 

 

NOS3 catalyzes the production of NO in the cytoplasm and due to NO uncoupling causes 

cellular damage. RT-qPCR analysis of NOS3 gene in kidney tissue showed significant 1.7-

fold increase in enzyme expression level in the 5 Gy group compared to the control 2 days 

post-radiation. MDS effectively protected the kidney tissue from radiation-induced oxidative 

stress in such a way that no upregulation in NOS3 expression level as observed in the MDS-

5 Gy-MDS group 2 and days post-radiation (Figure 4D).   

Kidney tissue analysis for SOD1 gene showed in the 5 Gy group SOD1 expression levels 

remained unchanged compared to the control 2 days post-radiation, but it was significantly 

decreased to 1.3-fold of the control, 30 days post-radiation. In MDS-5 Gy-MDS group SOD1 

expression levels significantly decreased to 1.5 and 1.6-fold of the control in 2 and 30 days 

post-radiation. Also, MDS was able to reduce SOD1 expression levels significantly by 30 

days post-radiation (Figure 4E). Collectively it is suggested that SOD1 expression level is 

regulated according to superoxide levels in MDS and MDS-5 Gy-MDS group which 

indirectly indicate that kidney was protected by MDS from radiation-induced cytoplasmic 

superoxide.  

RT-qPCR analysis showed that 5 Gy radiation resulted in increased expression levels of 

SOD2 at 30 days post-radiation. On the other hand, the MDS-5Gy-MDS group showed 

decreased expression levels of SOD2 to 1.25-fold of the control group 2 days post-radiation 

(Figure 4F). Data from the SOD2 mRNA expression level indirectly suggest that MDS 

protected the mitochondria of the kidney tissue from radiation-induced superoxide 

production. SOD3 expression levels were also evaluated but due to very low expression 

levels the results have not been presented. 
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Taken together data suggest that MDS-5Gy-MDS group was protected from radiation-

induced oxidative stress and consequently upregulation of GPX1, NOS3 and SOD2 did not 

happen. 

 

 

 

Figure 4RT-qPCR mRNA expression analysis of markers of endogenous antioxidants system at 

2 and 30 days post-irradiation (or sham-irradiated) kidney tissue. mRNA expression of nuclear factor-

like 2 (NRF2; panel A), catalase (panel B), glutathione peroxidase 1 (GP X1; panel C), endothelial 

nitric oxide synthase (NOS3, panel D), superoxide dismutase 1 (SOD1; panel E), superoxide 

dismutase 2 (SOD2; panel F), were determined relative to β-actin and ribosomal protein L29 reference 

genes. Each group consisted of 5 animals. Statistical significance was determined at p < 0.05 using 

one-way ANOVA followed by Tukey’s post-hoc (73) analysis. (*; significant data compared to 

control). 
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3.2.3 Cell Cycle Progression and DNA Repair Enzymes   

To determine MDS’s radioprotective effects on DNA genes listed below has been studies. 

CDKN1a (cyclin-Dependent Kinase Inhibitor 1A) encoded a protein that inhibits the function 

of cyclin-CDK2 in response to a variety of stress stimuli which causes G1 phase arrest and 

also regulates DNA repair. 5 Gy radiation caused a 9-fold increase in CDKN1a expression 

levels compared to the control 2 days post-radiation. CDKN1a expression levels remained 

elevated by 4.6-fold compared to the control 30 days post-radiation. Elevated expression 

levels of CDKN1a in kidney tissue suggested cell cycle arrest due to 5 Gy radiation. 

Similarly, the MDS-5 Gy-MDS group showed 8.2 and 3.8-fold increase in CDKN1A 

expression levels compared to the control 2 and 30 days post-radiation respectively. MDS 

did not protect the kidney tissue from irradiation-induced cell cycle arrest (Figure 5A).   

GADD45 (Growth Arrest and DNA Damage) protein is induced by stress-induced growth 

arrest and DNA damage and it is important in DNA base damage repair. 5Gy irradiation 

resulted in a 2-fold increase in GADD45 mRNA expression levels compared to the control 

30 days post-radiation. No significant change in expression levels of GADD45 was observed 

in MDS-5Gy-MDS group compared to the control (Figure 5B). Study of gene expression 

levels suggested that MDS protected the DNA in kidney tissue from radiation-induced DNA 

damage.   

H2AX is a member of the family of histone proteins which is very important in signaling 

DNA damage and DNA repair. Phosphorylation on a specific serine at the C-terminal of 

H2AX, which causes activation of protein is considered to be a major sign of DNA damage. 

RT-qPCR analysis of kidney tissue 2 and 30 days after post-radiation showed 5 Gy whole 
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body radiation resulted in a 2 and 3.8-fold increase compared to the control group. MDS 

increased the basic expression levels of H2AX expression levels in MDS group by 2 and 2.5-

fold compared to the control group. MDS also modified the kidney cellular response to 5 Gy 

radiation as MDS-5 Gy-MDS group did not show any significant increase in H2AX 

expression levels at 2 days which was followed by 2.3-fold increase compared to the control 

30 days post-radiation (Figure 5C).  

Period circadian clock 2 (PER2) belongs to a family of genes which regulates DNA 

damage response including DNA repair. mRNA expression analysis of PER2 demonstrated 

3.3-fold increase 2 days post-radiation in kidney tissue compared to the control. This finding 

illustrates a significant activation of cellular DNA damage response after 5 Gy whole body 

radiation. The MDS-5 Gy-MDS group, however, demonstrated no change in PER2 

expression levels compared to the control (Figure 5D). MDS successfully protected DNA 

from 5 Gy radiation-induced DNA damage. 

Collectively MDS demonstrated the ability to protect kidney tissue from radiation-

induced DNA damage as it was demonstrated by the lack of upregulation of DNA repair 

markers such as GADD45A and PER2.  
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Figure 5 RT-qPCR mRNA expression analysis of markers of DNA damage/repair and cell cycle 

progression in 2 and 30 days post-irradiation (or sham-irradiated) kidney tissue. mRNA expression 

of cyclin-dependent kinase inhibitor 1 (CDKN1A; panel A), Growth arrest and DNA-damage-

inducible protein (GADD45; panel B), H2A histone family (H2AX; panel C), period circadian protein 

2 (PER2; panel D), and were determined relative to β-actin and ribosomal protein L29 reference 

genes. Each group consisted of 5 animals. Statistical significance was determined at p < 0.05 using 

one-way ANOVA allowed by Tukey’s post-hoc analysis. (*; significant data compared to control). 
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3.2.4 Physiological Stress Response  

Glucocorticoids are secreted in response to stressors and distribute in the body tissues. At 

the cellular level, their level of action is determined by factors such as HSD11B1 (11β 

hydroxysteroid dehydrogenase) and glucocorticoid receptors (GR). HSD11B1 act as a 

reductase enzyme which causes intracellular metabolism of glucocorticoids and converts the 

inert cortisone to active cortisol. Therefore expression levels of HSD11B1 and GR were 

studied to evaluate cellular utilization of glucocorticoids and activation of stress signaling in 

animals following 5 Gy radiation. RT-qPCR analysis of HSD11B1 demonstrated a 2-fold 

decrease in the 5 Gy group compared to the control at 2 days post-radiation. MDS-5 Gy-

MDS group also showed a significant 8-fold decrease in HSD11B1 expression levels 

compared to the control group (Figure 6A).  

5 Gy whole body radiation did not cause any change in GR (Glucocorticoid receptor) 

expression levels compared to the control. However, MDS-5 Gy-MDS group showed a 

significant 1.4-fold decrease in GR expression levels compared to the control (Figure 6B).  
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Figure 6 RT-qPCR mRNA expression analysis of markers of physiological stress response in 2 

and 30 days post-irradiation (or sham-irradiated) kidney tissue. mRNA expression of 11β-

hydroxysteroid dehydrogenase type 1 (HSD11B1; panel A), nuclear receptor subfamily 3, group C, 

member 1 or Glucocorticoid receptor (NR3C1; panel B) were determined relative to β-actin and 

ribosomal protein L29 reference genes. Each group consisted of 5 animals. Statistical significance 

was determined at p < 0.05 using one-way ANOVA followed by Tukey’s post-hoc analysis. (*; 

significant data compared to control). 
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3.2.5 DNMT Family 

mRNA expression levels of DNA methyltransferase family (DNMTs) genes which code 

for three important enzymes responsible for maintenance and de novo DNA methylation have 

been studied. 5 Gy whole body radiation caused no significant change in mRNA expression 

levels of DNMT1 (DNA methyltransferase 1) in kidney tissue 2, 30 and 120 days post-

radiation. Interestingly, MDS group demonstrated a significant 1.5 and 1.27-fold increase in 

DNMT1 expression levels compared to the control 30 and 120 days post-radiation (Figure 

7A).  

mRNA expression levels of DNA methyltransferase 3A (DNMT3A) demonstrated no 

significant change compared to the control caused by 5Gy whole body radiation. Similarly, 

MDS, did not affect the DNMT3A expression levels in any of the groups receiving MDS, 

alone or in combination with 5 Gy whole body radiation (Figure 7B).   

Study of mRNA expression levels of DNA methyltransferase 3B (DNMT3B) which is 

known for de novo DNA methylation (creation of new methylation marks on the DNA) 

showed that 5 Gy whole body radiation caused a significant 5.7-fold decrease in mRNA level 

compared to the control group 30 days post-irradiation. In MDS-5Gy-MDS and 5Gy-MDS, 

however, MDS protected the kidney tissue from radiation-induced downregulation of 

DNMT3B, which was demonstrated by the lack of any significant change in DNMT3B 

expression levels compared to the control (Figure 7C).  
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Figure 7 RT-qPCR mRNA expression analysis of markers of DNA methylation in 2,30 and 120 days 

post-irradiation (or sham-irradiated) kidney tissue. DNA (cytosine-5-)-methyltransferase 1 (DNMT1; 

panel A1,2,3), DNA (cytosine-5-)-methyltransferase 3 alpha (DNMT3A; pan B1,2,3), DNA 

(cytosine-5-)-methyltransferase 3 beta (DNMT3B, panel C1,2,3). Each group consisted of 5 animals. 

Statistical significance was determined at p < 0.05 using one-way ANOVA followed by Tukey’s post-

hoc analysis. (*; significant data compared to control, ▲; significant data compared to 5 Gy radiation 

group). 
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3.3 Discussion 

3.3.1 Kidney Renin-Angiotensin System 

Mechanism of radiation-induced tissue damage is not clear, however, studies showed the 

efficacy of ACEIs (angiotensin converting enzyme inhibitors) in preventing or alleviating 

radiation-induced tissue injury in organs such as kidney, lung (46) and brain (47).  

This study did not show any change caused by 5 Gy radiation in angiotensinogen, ACE, 

AgtR1A and SP1 expression levels. There is no evidence of radiation-induced activation or 

upregulation of systemic or intrarenal RAS (26). However, the efficacy of ACEIs and 

AT1RA in preventing or reducing radiation-induced injury suggests an ongoing interaction 

between radiation and Ang II (48). It is suggested that even RAS, the normal function may 

be deleterious in an irradiated kidney (26). Ionizing radiation and RAS similarly induce their 

effects via ROS production. Collins et al. 2008 showed ionizing radiation activates NADPH 

oxidase which significantly contribute to radiation-induced ROS production in cells (49). 

Our data did not show radiation-induced activation of local renal RAS. 

MDS-5Gy-MDS and 5 Gy-MDS group demonstrated significantly lower expression 

levels of angiotensinogen at all three time points. Sporadic lower expression levels of ACE, 

renin, AgtR1A and SP1 were also observed. To understand the reason behind these 

observations, we must examine the biological regulation and function of angiotensinogen. 

In this study, it is shown that kidney tissue from the MDS-5Gy-MDS is protected from 

radiation-induced upregulation of eNOS. Possibly lower expression level of eNOS leads to 

less ONOO- production. In the 5 Gy group overexpression of eNOS could over activate the 

cycle between AT1R, NADPH oxidase and mitochondria (Figure 8). In the MDS-5 Gy-MDS 

group eNOS was not elevated and by potentially lesser ROS feedback to NADPH oxidase 
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enzyme, AT1R is also less activated. Considering the positive feedback control of AT1R 

activation on the expression level of angiotensinogen, the relatively lower signal causes 

reduced expression levels of angiotensinogen in MDS-5GY-MDS and 5 Gy-MDS compared 

to the control.  

Decreased angiotensinogen expression levels in MDS-5 Gy-MDS group (Figure 3A), 

suggested that RAS system compensates the reduced signaling by elevated levels of ACE 

and renin since in the face of elevated levels of Ang II, ACE and renin are downregulated 

(50). However, ACE and renin expression levels were initially decreased, probably because 

although angiotensinogen expression level is significantly lower than control, radiation-

induced oxidative stress is sufficient to maintain the cellular ROS level high enough to mimic 

a normal level of AngII and activation of NADPH oxidase. 

At 30 days post-radiation, decreased angiotensinogen expression levels in 5Gy-MDS 

group is accompanied by elevated ACE expression level (potentially increase the production 

of AngII) and reduction in Ang II receptor.  AGTR1A expression level is controlled by SP1 

transcription factor (51) and both genes showed down-regulation.  

Lower expression levels of angiotensinogen in MDS-5 Gy-MDS and 5 Gy-MDS group 

suggests a lower activity level of RAS and production of reactive oxygen species via function 

of NADPH-oxidase enzyme. Considering Ang II cellular signaling and role of NADPH 

oxidase, It is speculated that radiation-induced ROS production is lower in MDS-5 Gy-MDS 

and 5 Gy-MDS compared to 5 Gy group. Collectively data suggest MDS has the potential to 

protect the kidney from radiation-induced tissue damage. According to RAS-related genes 

expression levels throughout the experiment, MDS can protect the tissue not just from initial 

irradiation induced tissue damage but also from radiation-induced long term oxidative stress.  
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Figure 8 Signaling network between AngII, NADPH oxidase and mitochondria (59) 

 

3.3.2 Cellular Antioxidant System  

In the present study, NRF2 transcription levels were raised in response to 5 Gy whole 

body radiation in the absence or presence of MDS (2 and 30 days post-radiation). NRF2 gene 

expression in cells is constitutive and protein has a short half-life of 15 minutes. In response 

to oxidative damage, NRF2 becomes activated via its release from Keap1, which causes 

constitutive NRF2 degradation in the proteasome. After release from Keap1, NRF2 

translocates from the cytoplasm to nucleus (52). This study showed a significant induction at 

the mRNA expression levels of NRF2 due to radiation-induced oxidative stress in kidney 

tissue which was reported previously (53). 

Hydrogen peroxide is one the main reactive oxygen species produced by radiation in 

cells. Hydrogen peroxide is produced as a result of water radiolysis and catalysis of 

superoxide by SODs. In cells, hydroxyl radicals generated from hydrogen peroxide causes 

damage to DNA, proteins and lipids. GPX1 and catalase are two main enzymes responsible 

for detoxification of hydrogen peroxide. Catalase has a high reaction and turnover rate which 

means it is very valuable in detoxification of higher concentrations of hydrogen peroxide. 
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Cells depend on catalase activity to eliminate oxidative stress. The reaction of catalase and 

hydrogen peroxide converts active catalase to inactive enzyme forms. Catalase expression is 

elevated due to oxidative stress and for the system to sustain the activity of catalase, GPX1 

levels are increased as well (54). In 5 Gy group, GPX1-catalase cooperativity provides the 

cell with H2O2 protection. On the other hand, in MDS-5 Gy-MDS group, MDS provided 

protection against radiation-induced ROS so although catalase expression levels were 

elevated there was no elevation in expression levels of GPX1.  

Radiation-induced activation of DNA damage sensors initiates signal transduction 

pathway that activates calcium-dependent NOS. In this study expression level of eNOS was 

elevated in response to 5 Gy radiation although the enzymes are reported to be constitutively 

expressed and not easily induced by stimuli (55). Mitochondria is the main source for 

production of reactive oxygen species in cells and is the main target for NO. Cytoplasmic 

localized eNOS overexpression contributes to the production of ONOO- (peroxynitrite) since 

NO diffusion is very rapid in the cytoplasm (56). Radiation-induced superoxide anion 

production causes overactivation of eNOS consequently increases NOS uncoupling which 

elevates production of ONOO- and causes cytoplasmic damage. MDS-5 Gy-MDS group on 

the other hand did not show any increase in NOS3 expression levels. Collectively, besides 

the reported MDS potential to reduce nutritive stress in mitochondria (57) we showed it can 

protect the kidney tissue from radiation-induced elevated eNOS expression levels in the 

cytoplasm.   

Elevated eNOS expression levels in the irradiated group may cause higher production 

levels of NO. NO radical has high affinity to react with superoxide free radical and production 

of ONOO-.This free radical is highly active and damages DNA, causes protein nitration and 
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deactivation and also activates NF-κB (55). Also ONOO- causes an overproduction of 

superoxide anion in mitochondria and consequence elevation in production cytoplasmic 

hydrogen peroxide. Another important aspect of increased ONOO-levels in 5 Gy radiated 

group is deactivation of SOD2, which is a vital part of the cellular defense against oxidative 

stress in mitochondria (58). We speculate that MDS reduced the radiation-induced ROS and 

therefore no significant change was seen in NOS3 expression levels compared to the control 

group. This may well preserve the functionality of SOD2 enzyme compared to the recipients 

of 5 Gy whole body radiation and disrupt the cellular circle which leads to overproduction of 

ROS in cells.   

In 5 Gy group at 2 days post-radiation radiation-induced superoxide is catalyzed by SOD1 

or reacts with NO. It is suggested that by 30 days post-radiation, there is a higher 

concentration of ROS due to the effects of initial radiation-induced ROS on mitochondria 

and NDAPH oxidase (part of Ang II signaling pathway) which activates a circle of events 

between NADPH oxidase and mitochondria which eventually produces a high level of ROS. 

In this condition greater portion of superoxide is engaged in eNOS uncoupling and less is 

catalyzed with SOD1 which all together led to downregulation of SOD1 gene. It is suggested 

that SOD1 expression levels are lower in the MDS-5 Gy-MDS group due to lower 

cytoplasmic superoxide.  

SOD2 or mitochondrial SOD regulates the redox homeostasis in mitochondria by 

converting mitochondrial superoxide to hydrogen peroxide. Overexpression of SOD2 in 

mitochondrial oxidative stress, protects mitochondria’s function, membrane potential and 

ATP production (59). Radiation oxidative stress affects mitochondria in the long term by 

decreasing the activity of mitochondrial complex I and III. (60). SOD2 expression level was 
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elevated in 5 Gy group by 30 days. This finding could be explained as follow. In the 5 Gy 

group as a result of positive feedback between NADPH oxidase and mitochondria, ROS 

levels increased by time and caused an imbalance in mitochondrial oxidative state 30 days 

post-radiation. As a consequence of this possible higher oxidative stress, the expression level 

of SOD2 was elevated in 5 Gy group. However, the expression level of SOD2 did not change 

in MDS-5 Gy-MDS group which might indicate that MDS protected kidney tissue from 

radiation-induced ROS formation in mitochondria. 

MDS increases the activity of mitochondrial complex III and IV and as a result, causes 

increased ATP production, preservation of mitochondrial function and at the same time 

reduces the free radical production related to complex III in aging mice (61). In MDS treated 

animals (MDS-5 Gy-MDS) SOD2 gene expression was downregulated suggesting MDS 

effects on decreasing the need for cells to induce SOD2 expression levels to neutralize the 

radiation-induced ROS in mitochondria.  

 

3.3.3 DNA Damage Repair and Cell Cycle Progression  

Study of kidney tissue after exposure to ionizing radiation showed an evidence of cell 

cycle arrest as it was indicated by elevated expression levels of CDKN1A in 5 Gy and MDS-

5Gy-MDS group. This observation was fully known as CDKN1A is inducible by a variety 

of stimuli like ionizing radiation. It was suggested that in irradiated kidney tissue (5 Gy) 

mitochondrial oxidative stress increases by time (SOD2 gene upregulation-30 days post-

radiation). Increased oxidative stress in mitochondria increases the hydrogen peroxide levels 

in the cytoplasm and ultimately causes DNA damage in the nucleus. Hydrogen peroxide 

causes DNA strand break (62) and base damage (63). Upregulated GADD45A suggests 
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higher DNA damage compared to the control 30 days post-radiation. This hypothesis is 

further supported by an elevated PER2 expression level in 5 Gy group, as PER2 is engaged 

in the regulation of nucleotide excision repair which is needed for all base lesion repair (64). 

In conclusion, 5 Gy group demonstrated evidence of radiation-induced DNA damage. 

On the other hand, it was suggested that MDS protects the mitochondria from radiation-

induced chronic oxidative damage and DNA damage by evidence from expression levels of 

PER2 and GADD45A which did not indicate any outstanding DNA damage compared to the 

control.   

H2AX phosphorylation happens in response to DNA double-strand breaks (DSBs). The 

phosphorylated form or γH2AX is important in initiation and assembly of DNA repair 

proteins at the site of damage and activation of checkpoint proteins. In this study, we 

measured the transcription levels of H2AX and we did not study the phosphorylated form.  

Radiation-induced DNA damage repair is completed within hours. However, expression 

levels of H2AX in 5 Gy group is persistently high at 2 and 30 days post-radiation. This 

evidence could reflect the response to DNA damage (65). Previous studies showed MDS’s 

potential in the reduction of basic and induced DNA damage (42). In the present study, MDS 

group H2AX expression level was interestingly increased compared to the control even 

though no external source of DNA damage was introduced. Having this in mind, MDS-5 GY-

MDS group showed no change in H2AX expression level 2 days post-radiation. This 

observation could further be investigated to show a connection between H2AX expression 

levels and MDS function in the cell.  
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3.3.4 Physiological Stress Response 

Utilization of glucocorticoids at cellular level depends on the function of HSD11B1 

(converts the cortisol to active cortisone) and glucocorticoid receptor (GR). HSD11B1 

expression levels are affected by a variety of factors including glucocorticoids levels which 

increases HSD11B1 expression. Cortisol serum levels increase significantly 4-6 hours after 

the stress and utilization of cortisol happen in correlation with cortisol’s release time. Data 

from HSD11B1 (significant decrease compared to the control) and GR (no change compared 

to the control) expression levels 2 days post-irradiation is uninformative and cannot be 

interpreted as radiation-induced cellular physiological stress. But the data is explainable as 

follow. Stress causes release of glucocorticoid from the adrenal gland. Adrenal gland has a 

low hormone level afterward that will be replenished within few days post-stress by 

activation of hormone synthesis. 2 days post-radiation HSD11B1 expression level is low in 

the kidney tissue since systemic glucocorticoid level is not back to the normal levels. This 

suggestion is supported by considering the activation of catecholamine biosynthesis pathway 

in adrenal by 2 days post-radiation (chapter 4.2.3) which suggest a prior higher levels of 

glucocorticoid release from adrenal gland.  

 

On the other hand, MDS-5Gy-MDS appear to further decrease the HSD11B1 expression 

levels accompanied by lower cellular expression levels of GR 30 days post-irradiation. 

Considering lack of activation of catecholamine biosynthesis pathway in MDS-5 Gy-MDS 

post radiation (chapter 4.2.3) lower levels of HSD11B1 is due to the protection of MDS 

against radiation-induced stress and release of glucocorticoid from the adrenal. GR 
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expression level was decreased compared to control even though higher GR level was 

expected due to the lower glucocorticoid level (66).  

 

3.3.5 DNA Methyltransferase Family 

Radiation is a genotoxic agent that affects the genome integrity and instability. DNA 

global methylation was specifically interesting due to its possible long-term effects such as 

carcinogenesis. Presentation of DNA hypomethylation in a tissue depends on a variety of 

specific factors such as radiation dose and course of delivery (acute delivery causes 

hypomethylation), sex and organ (radiation induced hypomethylation in liver, lack of it in 

the brain) (67). Sex is important as female animals are more prone to radiation-induced 

hypomethylation (68). Radiation-induced DNA hypomethylation is also believed to be 

related to DNA damage and DNA repair (68). DNA methyltransferase activity was indirectly 

studied via expression levels of important maintenance (DNMT1) and de novo DNA 

methyltransferases (DNMT3A&3B). Among DNMTs genes 5 Gy radiation caused an 

aberration in the normal pattern of DNMT3B expression (30 days post-radiation). DNMT3B 

downregulation could lead to DNA hypomethylation. MDS-5 Gy-MDS and 5 Gy-MDS 

tissue were protected from radiation-induced decreased DNMT3B expression level and the 

expression levels of the enzyme remained unchanged compared to the control. Higher 

expression levels of DNMT1 was observed in the MDS group at 30 and 120 days post-

radiation which could be explained since DNMT1 is recognized to be responsible for DNA 

methylation after replication and a higher level of DNA synthesis  in cells could be 

accompanied by higher levels of DNMT1 (69).  
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4.0 Adrenal 

4.1.1 Introduction 

According to MDS’s function as antioxidant and free radical scavenger, mitochondrial 

support and DNA protector we hypothesized that MDS protects the adrenal tissue from the 

radiation-induced production of free radicals and DNA damage. We also hypothesized that 

MDS could mitigate the radiation-induced systemic stress and activation of HPA axis.  

 

4.1.2 Objectives 

To assess adrenal tissue for: 

A) Radiation-induced changes in expression level of genes involved in the cellular 

antioxidant system, DNA repair, cell cycle progression, DNA methyltransferase enzymes 

and markers of physiological stress and HPA axis. 

B) Expression level of the above genes in groups receiving MDS in combination with 

radiation. 
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4.2 Results 

Results from the genes studied in adrenal tissue including cellular antioxidant system, 

DNA damage repair, cell cycle progression, catecholamine biosynthesis pathway, markers of 

cellular physiological stress response and DNA methyltransferase family, are summarized in 

Table 5. 

 

Table 5 Adrenal mRNA expression Analysis Summary. mRNA Expression Changes Compared to Control (Group#1), 

↔=no change; ↓=decrease; ↑=increase 

 

4.2.1 Adrenal Cellular Antioxidant System 

5 Gy radiation-induced changes, in the cellular antioxidant system in adrenal tissue, was 

analyzed by measuring mRNA levels of the main antioxidant genes. mRNA expression 

analysis demonstrated a 2.3-fold increase in NRF2 mRNA levels in 5 Gy group compared to 

the control 2 days post-radiation. NRF2 expression level was increased by 2.2-fold compared 
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NRF2 - nuclear factor 2 ↔ ↑ ↑

Catalase ↔ ↑ ↑

GPX1-glutathione peroxidase 1 ↔ ↑ ↔

NOS3 - endothelial nitric oxide synthase ↔ ↔ ↔

SOD1 – superoxide dismutase 1 ↔ ↔ ↔

SOD2 – superoxide dismutase 2 ↔ ↔ ↓

SOD3 – superoxide dismutase 3 ↔ ↔ ↔

CDKN1A – cyclin-dependent kinase inhibitor 1 ↔ ↑ ↑

GADD45 – Growth arrest and DNA-damage-inducible protein ↔ ↔ ↔

H2AX – H2A histone family, member X ↔ ↔ ↔

PER2 –period circadian clock 2 ↔ ↑ ↑

PNMT – phenylethanolamine-N methyltransferase ↔ ↑ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↔

DBH – dopamine beta hydroxylase ↔ ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↓ ↓ ↓ ↔

TH – tyrosine hydroxylase ↔ ↔ ↔ ↔ ↔ ↔ ↓ ↔ ↔ ↔ ↓ ↔

EGR1 – early growth response 1 ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

Sp1 – trans-acting transcription factor ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

AP2 – transcription factor AP-2, alpha ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

HSD11β1 – 11β-hydroxysteroid dehydrogenase type 1 ↔ ↔ ↔

Nr3c1 – glucocorticoid receptor ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

DNMT1-DNA methyltransferases ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

DNMT3A-DNA methyltransferases ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↓ ↔

DNMT3B-DNA methyltransferases ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔

                                       mRNA Expression Changes Compared to Control 

Physiological stress

HPA axis

DNA methyl-

transferase

Cellular                

anti-oxidant system

DNA damage 

repair/ cell cycle 

progression

2 Day 30 Day 120 Day
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to the control in MDS-5 Gy-MDS group and MDS did not modify radiation-induced NRF2 

upregulation (Figure 9A).  

Study of mRNA expression levels of catalase in adrenal tissue showed a 2.4-fold increase 

in 5 Gy group compared to the control group 2 days post-radiation. Catalase expression level 

in MDS-5 Gy-MDS was increased by 1.6-fold compared to the control (Figure 9B). 

Study of GPX1 expression levels in adrenal tissue showed a 2.13-fold increase compared 

to the control in 5 Gy group. In MDS-5 Gy-MDS group MDS protected the kidney tissue 

from radiation-induced oxidative stress in a way that GPX1 (Figure 9C) expression levels 

did not change compared to the control. Study of NOS3 (Figure 9D) and SOD1 (Figure 9E) 

expression levels in adrenal tissue, 2 days post-irradiation showed no significant change 

compared to the control group due to 5 Gy whole body radiation. In MDS-5 Gy-MDS group 

MDS did not modify the adrenal response to radiation. 

5 Gy whole body radiation caused no significant change in expression levels of SOD2 

compared to the control 2 days post-radiation. However, in MDS-5 Gy-MDS group SOD2 

mRNA levels decreased to 3-fold of the control group (Figure 9F).  

Taken together mRNA expression levels of antioxidant genes, suggest MDS 

administration in the MDS-5 Gy-MDS group protected adrenal tissue from 5 Gy whole body 

radiation-induced oxidative stress in cytoplasm and mitochondria.  



 

 

 

57 

 

 

Figure 9 RT-qPCR mRNA expression analysis of markers of endogenous antioxidants system in 

adrenal 2 days post-irradiation (or sham-irradiated) adrenal tissue. mRNA expression of nuclear 

factor-like 2 (NRF2; panel A), catalase (panel B), glutathione peroxidase 1 (GPX1; panel C), nitric 

oxide synthase 3 (NOS3; panel D), superoxide dismutase 1 (SOD1; panel E), superoxide dismutase 

2 (SOD2; panel F) were determined relative to β-actin and ribosomal protein L29 reference genes. 

Each group consisted of 5 animals. Statistical significance was determined at p < 0.05 using one-way 

ANOVA followed by Tukey’s post-hoc analysis. (*; significant data compared to control). 
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4.2.2 DNA Damage and Cell Cycle Progression 

RT-qPCR analysis of the adrenal gland 2 days post-radiation demonstrated that 5 Gy 

whole body radiation resulted in a 10.7-fold elevation in CDKN1A mRNA levels compared 

to the control. Similarly, the expression level of CDKN1A in MDS-5 Gy-MDS group showed 

a 10.7-fold increase compared to the control (Figure 10A). The robust increase in cdkn1a 

mRNA levels in both groups suggest induction of cell cycle arrest after radiation exposure.  

mRNA expression analysis of GADD45 and H2AX 2 days post-radiation demonstrated 

no significant change in the expression levels compared to the control caused by 5 Gy whole 

body irradiation. MDS administration as in MDS-5 Gy-MDS did not modify GADD45 and 

H2AX expression levels compared to the control in adrenal tissue (Figure 10B&C). 

mRNA expression analysis of PER2 in the adrenal tissue 2 days post-radiation showed a 

2.6-fold increase in PER2 expression levels in 5 Gy group compared to the control. MDS-5 

Gy-MDS group also showed the same trend and PER2 expression levels raised to 2.7-fold 

compared to the control (Figure 10D).  
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Figure 10 RT-qPCR mRNA expression analysis of markers of cell cycle regulation 2 days post-

radiation (or sham-irradiation) in adrenal tissue. mRNA expression of cyclin-dependent kinase 

inhibitor 1 (CDKN1A; panel A), Growth arrest and DNA-damage-inducible protein (GADD45; panel 

B), H2A histone family (H2AX; panel C), period circadian protein 2 (PER2; panel D) were 

determined relative to β-actin and ribosomal protein L29 reference genes. Each group consisted of 5 

animals. Statistical significance was determined at p < 0.05 using one-way ANOVA followed by 

Tukey’s post-hoc analysis. (*; significant data compared to control). 
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4.2.3 Catecholamine Biosynthesis Pathway 

Irradiation-induced changes in catecholamine biosynthesis in the adrenal gland was 

assessed by measuring the transcription levels of genes involved in catecholamine 

biosynthesis pathway. Phenylethanolamine-N-methyltransferase (PNMT) catalyzes the 

conversion of norepinephrine to epinephrine. mRNA expression analysis of PNMT in the 

adrenal tissue showed a 1.7-fold increase compared to the control group due to 5 Gy whole 

body radiation at 2 days post-radiation. At 30 and 120 days post-radiation PNMT expression 

levels were not significantly different from the control. mRNA expression level analysis also 

showed the ability of MDS to modify the radiation-induced increase in PNMT expression 

levels as it is demonstrated by significantly lower expression levels of PNMT in MDS-5 Gy-

MDS and 5 Gy-MDS groups compared to the 5 Gy radiation at 2 days post-radiation. 

Although PNMT expression level in MDS-5 Gy-MDS group was not significantly different 

from the control group 2 days post-radiation, it was significantly decreased by 1.8 and 2.1-

fold compared to the control group 30 and 120 days post-radiation. Early increase in PNMT 

expression level in 5 Gy whole body radiation showed activation of catecholamine 

biosynthesis due to radiation induced stress (Figure 11A). PNMT expression levels in MDS-

5 Gy-MDS and 5Gy-MDS groups, on the other hand, demonstrated MDS potential to protect 

the body from radiation-induced physiological stress and need to synthesize and secrete 

epinephrine.  

Dopamine beta hydroxylase (DBH) catalyzes the conversion of dopamine to 

norepinephrine in the catecholamine biosynthesis pathway. RT-qPCR analysis of the adrenal 

gland demonstrated that 5 Gy whole body irradiation did not result in any significant change 
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in the cellular expression level of DBH at 2, 30 days post-radiation. However, 120 days post-

irradiation DBH mRNA level decreased by 1.4-fold compared to the control in the adrenal 

tissue. Study of DBH expression levels showed that the MDS-5Gy-MDS demonstrated a 

significant reduction in DBH expression levels by 1.5 and 2.5-fold compared to the control 

group 30 and 120 days post-radiation. MDS group also showed a significantly lower DBH 

expression level compared to the control at 120 days post-radiation (Figure 11B). MDS-5 

Gy-MDS group showed to have lower DBH expression level potentially due to lower stress 

after 5 Gy whole body radiation and lower catecholamine release.  

Tyrosine hydroxylase (TH) catalyzes the conversion of L-tyrosine to L-dopa, 5 Gy whole 

body radiation did not result in any significant changes in enzymes expression levels at any 

of 2, 30 or 120 days post-radiation. Although MDS-5 Gy-MDS group did not show any 

significant changes in TH expression levels compared to the control group 2 days post-

radiation, enzyme expression levels were significantly decreased to 1.5 and 2.5-fold 

compared to the control at 30 and 120 days post-radiation (Figure 11C).    

Important transcription factors in regulating gene expression in catecholamine 

biosynthesis pathway including, early growth response 1 (EGR1) and trans-acting 

transcription factor (Sp1), AP-2 alpha and glucocorticoid receptor (GR) were studied to 

determine the effect of 5 Gy whole body radiation and MDS on the activity of catecholamine 

biosynthesis pathway. RT-qPCR analysis of adrenal tissue demonstrated no change in GR 

expression levels due to 5 Gy whole body radiation in either of the time point. Although no 

significant changes in GR expression levels were seen in MDS-5 Gy-MDS group, GR 
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expression levels were increased significantly in 5 Gy-MDS group compared to the control 

120 days post-radiation (Figure 11D).  

Study of the effect of 5 Gy whole body radiation on SP1, AP2 and Egr-1 mRNA levels 

revealed no significant changes due to radiation at any of the 2, 30 and 120 days post-

radiation. Moreover, MDS administration did not change the expression levels of these 

transcription factors in any of the MDS, MDS-5 Gy-MDS and 5 Gy-MDS groups (Figure 

11E, F&G). In general, MDS protected the body from radiation-induced stress and activation 

of HPA axis as it was demonstrated by the lack of activation of catecholamine biosynthesis 

pathway.  
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Figure 11 RT-qPCR mRNA expression analysis of markers of catecholamine synthesis in 2 days 

post-irradiation (or sham-irradiated) in adrenal. mRNA expression of phenylethanolamine-N-

methyltransferase (PNMT; panel A), dopamine beta hydroxylase (DBH; panel B), tyrosine 

hydroxylase (TH; panel C),  glucocorticoid receptor (GR; panel D), trans-acting transcription factor 

(Sp1; panel E), transcription factor AP-2, alpha (AP2; panel F), early growth response 1 (Egr-1; panel 

G),  were determined relative to β-actin and ribosomal protein L29 reference genes were determined 

relative to β-actin and ribosomal protein L29 reference genes. Each group consisted of 5 animals. 

Statistical significance was determined at p < 0.05 using one-way ANOVA followed by Tukey’s post-
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hoc analysis. (*; significant data compared to control, ▲; significant data compared to 5 Gy radiation 

group). 

 

 

4.2.4 Physiological Stress Response  

RT-qPCR analysis of markers of physiological stress response in adrenal gland 

demonstrated 5 Gy whole body radiation had no effect on the expression level of HSD11B1 

at 2 days post-radiation. On the other hand, MDS-5 Gy-MDS showed a significant 2.5-fold 

decrease in cellular expression levels of HSD11B1 compared to the control group (Figure 

12A).  

Study of GR mRNA expression levels in adrenal gland did not demonstrate any 

significant changes due to 5 Gy whole body radiation two days post-radiation. Moreover, 

MDS-5 Gy-MDS group did not change the cellular GR expression levels compared to the 

control group (Figure 12B).   
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Figure 12 RT-qPCR mRNA expression analysis of markers of physiological stress response in 2 days 

post-irradiation (or sham-irradiated) adrenal tissue. mRNA expression of 11β-hydroxysteroid 

dehydrogenase type 1 (HSD11B1; panel A), nuclear receptor subfamily 3, , group C, member 1 or 

Glucocorticoid receptor (NR3C1; panel B) were determined relative to β-actin and ribosomal protein 

L29 reference genes. Each group consisted of 5 animals. Statistical significance was determined at p 

< 0.05 using one-way ANOVA followed by Tukey’s post-hoc analysis. (*; significant data compared 

to control). 

 

 

4.2.5 DNA Methyltransferase Family 

mRNA expression levels of DNA methyltransferase enzymes which control the DNA 

methylation in adrenal tissue has shown that 5 Gy whole body radiation did not cause any 

significant change in the expression level of DNMT1 enzyme compared to control group. 

MDS-5Gy-MDS and 5 Gy-MDS group also did not demonstrate any significant changes in 

DNMT1 expression levels compared to the control group (Figure 13A).  

Study of DNMT3A expression levels in adrenal tissue showed that 5 Gy whole body 

radiation did not cause any changes in enzymes expression levels. However, expression level 

of DNMT3A in MDS-5 Gy-MDS group showed a significant decrease by 2-fold compared 

to the control group 120 days post-radiation (Figure 13B). 

Study of DNMT3B expression levels in adrenal tissue did not demonstrate any changes 

due to 5 Gy whole body radiation. MDS did not cause any change in enzyme’s expression 

level in any of the time points (Figure 13C).  
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Figure 13 RT-qPCR mRNA expression analysis of markers of DNA methylation in 2,30 and 120 

days post-irradiation (or sham-irradiation) adrenal tissue. DNA (cytosine-5-)-methyltransferase 1 

(DNMT1; panel A1,2,3), DNA (cytosine-5-)-methyltransferase 3 alpha (DNMT3A; panel B1,2,3), 

DNA (cytosine-5-)-methyltransferase 3 beta (DNMT3B, panel C1,2,3). Each group consisted of 5 

animals. Statistical significance was determined at p < 0.05 using one-way ANOVA followed by 

Tukey’s post-hoc analysis. (*; significant data compared to control). 
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4.3 Discussion 

4.3.1 Cellular Antioxidant System  

NRF2 expression levels were induced by 5 Gy radiation in the 5 Gy and MDS-5 Gy-MDS 

groups. Radiation oxidative stress in cytoplasm causes elevated catalase levels accompanied 

by GPX1 upregulation which protects the catalase from being damaged and deactivated by 

hydrogen peroxide. The 5 Gy group demonstrated significantly higher catalase and GPX1 

levels which suggest higher levels of superoxide in the tissue. Presuming in the MDS-5Gy-

MDS group, MDS reduces the production of superoxide by NADPH oxidase and hydrogen 

peroxide from mitochondria. If true in this group catalase expression seems to be directly 

controlled with upregulation in NRF2 but due to the lower possible cytoplasmic oxidative 

stress GPX1 expression levels did not change.  

The cellular antioxidant defense has tissue-specific properties. Adrenal tissue shows 

highly specific features including a very high level of non-enzymatic antioxidants like 

vitamin C, E and glutathione. Antioxidant enzymes like SOD1, SOD2 and GPX are very 

active in the adrenal. However, catalase has a very low activity level. Expression levels of 

these enzymes correspond well with their activity levels as SOD1,2 and GPX1 mRNA is 

abundant but catalase mRNA levels are very low (70). In this study, it was suggested that 

higher expression levels and activity of antioxidant enzymes and also the considerable non-

enzymatic antioxidant capacity of adrenal tissue seems to relatively protect the tissue from 

radiation-induced oxidative stress in short-term (2 days) as it is evidenced by the lack of 

change in the expression levels of NOS3 and SOD2.  

 MDS may further protect the adrenal tissue from radiation-induced ROS production 

considering evidences such as lack of radiation-induced GPX1 upregulation and also 
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downregulation of SOD2 at 2 days post-radiation which reflects lower mitochondrial 

oxidative stress.  

 

4.3.2 DNA Damage Repair and Cell Cycle Progression  

The study showed a strong indicator of cell cycle arrest in 5 Gy and MDS-5Gy-MDS 

group in adrenal tissue 2 days post-radiation as it was demonstrated by elevated expression 

levels of CDKN1A. Activation of DNA repair mechanism which was predicted by elevated 

PER2 expression level was also activated in both MDS-5 Gy-MDS and 5 Gy groups. In 

adrenal tissue, the MDS-5 Gy-MDS data suggest that MDS did not provide any benefit to 

protect the DNA in adrenal tissue from radiation-induced DNA damage at 2 days post-

radiation.  

 

4.3.3 Catecholamine Biosynthesis Pathway  

Stress causes activation of HPA axis. ACTH (Adrenocorticotropic hormone) is released 

from the pituitary gland and causes synthesis and release of glucocorticoids from the adrenal 

cortex. Glucocorticoids then directly affect adrenal medulla and in return, Epinephrine is 

synthesized and released. Its worthy to mention stressor’s type, and duration of stress 

influence the transcriptional changes which affect the catecholamine biosynthesis (71). 

Unfortunately, no similar study was available that evaluated the radiation as a stressor.  

Epinephrine and glucocorticoid synthesize compensate for the hormone released due to 

the stress. PNMT regulation is specifically responsive to hormonal regulation by 

glucocorticoids as corticosteroids binds to corticoid receptors and activates PNMT promoter 

(34). Elevation in PNMT expression levels in 5 Gy whole body radiation was sustained for 2 
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days post-radiation. Although prolonged increase in PNMT expression levels has been 

reported in stress with longer periods (immobilization for 2 hours) (71), in acute stress on the 

other hand, PNMT (peaked 6-8 hours) is reported to be transient and resolve and restored to 

normal levels within 24 hours (72). Evaluation of TH and DBH expression levels in 5 Gy 

group showed no similar elevation which could be due to importance of the neural input in 

their expression level (73) and their faster response to stress. Rise in the TH and DBH levels 

could be detected at earlier time (less than 24 hours) (74). More long-term effect of radiation 

on catecholamine biosynthesis pathway appeared as DBH downregulation in the 5Gy group, 

120 days post-radiation. The expression levels of transcription factors such as EGR-1, SP1, 

AP2 and GR 2 days post-radiation showed no significant changes. Data could be explained 

considering transcription factors fast response to the stress (within hours post-stress) (72) 

which means a change in the expression level of transcription factors is detectable at an 

earlier time points. Collectively data suggest radiation induced stress in the 5 Gy group which 

was demostrated by significant increase in expression levels of PNMT.  

Data suggests that MDS protected irradiated animals from radiation-induced stress and 

activation of HPA axis. The protection was achieved by both MDS-5Gy-MDS and 5G-MDS 

groups as PNMT expression levels were not induced 2 days post-radiation. MDS-5Gy-MDS 

group also demonstrated significantly lower expression levels of PNMT, DBH and TH 

compared to the control 30 and 120 days post-radiation. This finding is explainable regarding 

this idea that AngII induces the catecholamine release (75) and biosynthesis (76). Lower 

expression levels of angiotensinogen (as in MDS-5Gy-MDS group) is followed by lower 

synthesis and release of catecholamine from adrenal. Although the angiotensinogen 

expression level was also lower in the 5 Gy-MDS group, the PNMT, DBH and TH expression 
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levels were not affected at 30 and 120 days post-radiation. These changes in enzymes 

expression levels were not accompanied by changes in the expression levels of SP1, AP2 and 

EGR1. This finding could be justifiable by the considering a lag time between the increase 

in expression level of the transcription factor and the target gene or by the fact that post-

translational activation of the transcription factor happened without any changes in 

expression level.     

Collectively, data from mRNA expression levels suggest MDS has the potential to protect 

the mice from radiation-induced physiological stress and as a result demonstrated lower HPA 

axis activity. 

MDS demonstrated an ability to protect the kidney tissue from radiation-induced stress 

and could be used as prophylaxis (MDS-5Gy-MDS) or treatment (5Gy-MDS). However, the 

consequence of these diets are varied through the time. In the MDS-5 Gy-MDS group, 

catecholamine biosynthesis is predictably lower as it is suggested by lower expression levels 

of PNMT, DBH and TH at 30 and 120 days post-radiation. 
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4.3.4 Physiological Stress Response  

Regarding the fact that cortisol is released shortly after the stress, mRNA expression 

levels of HSD11B1 and GR should have been studied at a much shorter time to reflect the 

glucocorticoid release due to the radiation-induced stress.  

Considering the positive effect of glucocorticoids on the regulation of HSD11B1 (77), 

Data in the adrenal tissue suggests the presence of normal levels of glucocorticoid 2 days 

after radiation exposure since HSD11B1 expression is unchanged compared to the control 

group.  

The data suggests that glucocorticoid level in MDS-5 Gy-MDS was substantially low at 

2 days post-radiation, and it reflected in significantly lower HSD11B1 expression level which 

further support the protective effects of MDS on radiation-induced stress.  

 

4.3.5 DNA Methyltransferase Family 

It has been shown that radiation exposure could cause DNA hypomethylation. However, 

this effect is tissue and dose specific (78). In this study, adrenal tissue did not demonstrate 

any significant change in the expression levels of DNMT1,3A and 3B after 5Gy whole body 

radiation which could suggest a lower sensitivity of the adrenal tissue to radiation-induced 

changes in the expression levels of DNMTs (in the kidney tissue 5 Gy radiation caused 

significantly lower expression levels of DNMT3B). 

 Although 5Gy-MDS did not show any deviation from the expression pattern of the 

control group, MDS-5Gy-MDS demonstrated downregulation of DNMT3A by 120 days 

post-radiation. Previous studies provided positive effects of MDS on decreased baseline and 
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radiation-induced DNA damage shortly after radiation exposure (4 hour). However, not much 

data is available on MDS effects on DNMTs or DNA global methylation.  
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5.0 Conclusion and Future Directions 

5.1 Overall Conclusion 

Study of kidney tissue showed no radiation-induced change in RAS in the kidney tissue. On 

the other hand, data suggested presence of elevated levels of ROS considering the changes 

in expression levels of antioxidant enzymes such as GPX1, NOS3, and SOD2 in 5 Gy 

radiation group. MDS administration in combination with 5Gy radiation protects the kidney 

tissue from radiation-induced tissue damage by affecting two main targets: first, effectively 

reducing the activity of renin-angiotensin system (79) as it was predicted mainly by lower 

expression levels of angiotensinogen. MDS proved to be effective as prophylaxis (MDS-

5Gy-MDS) or treatment (5Gy-MDS). Second, lowering the radiation-induced mitochondrial 

oxidative stress which was suggested by the study of NOS3, SOD1 and SOD2 expression 

patterns.  

Radiation-induced physiological stress was manifested by elevated expression levels of 

PNMT, 2 days post-radiation in 5 Gy group. MDS was able to protect the mice from 

radiation-induced stress whether it was administered as prophylaxis or treatment. The 

activation of catecholamine biosynthesis response which was induced by radiation (2 days) 

was absent in animals treated by MDS. To provide more information on the diet’s effects, 

systemic cortisol and epinephrine level could be studied. Looking at expression levels of 

genes in catecholamine biosynthesis pathway, 5 Gy-MDS group demonstrated a protection 

against radiation-induced physiological stress but in the long term showed no decrease in 

catecholamine biosynthesis pathway activity. On the other hand, considering the data 

suggesting lower expression levels of PNMT, DBH and TH in the MDS-5 Gy-MDS group 

in 30 and 120 days post-radiation if the lower catecholamine biosynthesis pathway activity 
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is in fact correlated with lower cortisone levels, it could provide patients with extra benefits 

(80).  
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5.2 Future Directions 

To further investigate the data from current study and better interpret results from cellular 

mRNA levels I propose following experiments:  

1- Study of protein levels and their active forms for the genes we already studied.  

2- To address factors such as physiological stress closer time points (4-6 hours post-

radiation) is suggested. In addition to mRNA levels, study of serum levels of cortisol and 

epinephrine by radioimmuneassay is also recommended.  

3- To further investigate the DNA protection beside the proper time point (4 hours) tissue 

immunoassay is valuable to detect colonization of γH2AX to clarify and compare the DNA 

damage pattern in treatment groups.  

4- Study ROS levels to provide further evidence for MDS protective effects against 

radiation-induced oxidative damage. Fluorogenic probes are used to study total ROS levels 

in an animal model cell lysate, serum or urine. 

5- Study of organ specific RAS in tissues like brain and evaluation of MDS efficacy in 

protection against radiation-induced injury regarding local RAS function. 

6- Study of proinflammatory and profibrotic cytokines at the said time points plus longer 

periods of time. Since inflammation is important in radiation-induced late effects study of 

these factors increases our knowledge on radioprotective effects of MDS. 
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5.3 Implication of current study in radiation field 

Given the result from the current study and potential benefits of MDS in the protection 

of Tissue against cellular oxidative stress and physiological stress it is plausible that MDS 

could be utilized as a radiation protective agent in nuclear power workers or holders of any 

occupation with the possibility of incidental exposure to ionizing radiation like soldiers, 

pilots and astronauts. MDS has the potential to protect cellular function due to coverage of 

multiple targets in cells. Having that in mind MDS has a potential to be used in human 

diseases caused by oxidative stress like hypertension, diabetes, and cardiovascular diseases. 

It is also suggestible that MDS could be used to protect tissue from radiation injury as it 

happens due to cancer radiation therapy. However, a close study of MDS protective effects 

is needed to recognize whether MDS could selectively protect the normal tissue and not 

tumor cells.  
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