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Abstract 
 

This thesis examined how variable the effects of changes in cSOD activity were on 

phenotypes across genetic backgrounds and between sexes.  Analysis of variance 

(ANOVA), and the effect size partial eta squared (η2
p) were used to partition the amount 

of variation attributable to sex, cSOD activity, and genetic background across the distal 

and proximal phenotypes assayed.  The absence of cSOD activity results in pervasive 

changes in phenotypic expression, and these changes are only slightly modified by sex or 

genetic background.  Higher levels of cSOD activity generally result in phenotypic 

expression closer to wild-type levels, though phenotypes were more susceptible to 

modification depending on sex and genetic background when some cSOD activity was 

present.  Results here indicate that the cSOD-null syndrome is pervasive, and the 

significant influence of sex and genetic background across phenotypes supports the 

utilization of both sexes and multiple genetic backgrounds in genetic analyses. 
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Chapter 1 Introduction 

1.1 Overview 

 

 Phenotypes are not the function of alleles at one locus, but rather a combination of 

alleles, genotype across the rest of the genome (genetic background), and the 

environment (Chandler, et al, 2013, and Chari and Dworkin, 2013).  More complex 

biological networks are likely more susceptible to genetic background effects than simple 

networks (Chandler, et al, 2013, and Chari and Dworkin, 2013). The dynamic and 

complex nature of reactive oxygen species (ROS) metabolism presents a model system to 

use in the study of genetic background effects.  There are different types of ROS, 

including free radicals, molecules that contain an unpaired electron that makes them 

highly reactive to biological macromolecules with the degree of reactivity depending on 

the radical species (Dröge, 2001).  Superoxide is a free radical ROS generated as a by-

product of energy metabolism (Cadenas and Davies, 2000) and other cytosolic enzymatic 

reactions, including NADP(H) oxidases (NOX; Ozcan and Ogun, 2015).  It is well 

established that ROS can cause damage to cellular macromolecules, however they are 

also used in the maintenance of normal cell homeostasis (Ozcan and Ogun, 2015).  

Oxidative stress can result if there is an imbalance towards the production of ROS 

(Staveley et al., 1991).    

 Cytosolic superoxide dismutase (cSOD) is an antioxidant enzyme responsible for 

the detoxification of the superoxide radical, which functions as the initial step of the 

antioxidant enzyme defence network (Phillips et al., 1989).  In Drosophila melanogaster, 

flies lacking cSOD activity, cSOD-null homozygotes, exist in a state of chronic oxidative 

stress resulting from an inability to metabolize cytosolic superoxide (O2
-.; Phillips et al., 



 2 

1989).  Oxidative stress associated with the cSOD-null allele results in a series of 

pathological conditions, collectively known as the cSOD-null syndrome (Parkes et al., 

1998, and Phillips et al., 1989).  We hypothesized that differences in the ROS state 

between cSOD-null and wild-type (WT) flies may manifest in a difference in response to 

genetic background at the different levels of cSOD activity, with different genetic 

backgrounds potentially ameliorating or further impairing the phenotypes of the cSOD-

null syndrome. 

1.2 Free Radicals and the Generation of Free Radicals 

 

 Free radicals are molecules that contain one unpaired electron, and are present in 

biological systems (Halliwell, 1994, and McCord, 2000).  The unpaired electron in 

radicals makes these molecules reactive to biological macromolecules, with the level of 

reactivity dependent upon the radical species (Halliwell, 1994).  If two radicals meet, the 

unpaired electron on each radical can react to form a covalent bond, generating a non-

radical molecule (Halliwell, 1994).  Conversely, if a radical meets a non-radical, the 

radical's free electron can react with the non-radical and generate a new radical, 

potentially causing a chain of redox reactions, in which each successive reaction produces 

a free radical that triggers the next step in the chain (Buonocore, et al., 2010, and 

Halliwell, 1994).  The high reactivity of radicals can present a threat in biological 

systems, in which most molecules are non-radicals, by triggering reaction cascades within 

biological macromolecules, such as DNA or enzymes, which can prematurely trigger 

signal transduction pathways, such as those involved in apoptosis (Buonocore, et al., 

2010, and Halliwell, 1994).  Free radicals can be classified into different groups 

depending on their atomic composition, including reactive nitrogen species (RNS) and 
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reactive oxygen species (ROS; Dröge, 2001), though classifications are not necessarily 

mutually exclusive.  ROS are a biologically important class of molecules in living 

systems, as they are produced as natural metabolic products, and make up components of 

both cell signalling and homeostasis (Ozcan and Ogun, 2015). 

 The mitochondrial electron transport chain (ETC) is the largest producer of free 

radicals, primarily ROS, including superoxide, though ROS are also produced in the outer 

mitochondrial membrane independent of respiration (Cadenas and Davies, 2000).  

Electrons are transferred from electron carriers (i.e. NAD(H)) to the ETC, and passed 

step-wise down the series of enzyme complexes, alternating in oxidation and reduction 

reactions, ultimately converting the energy in the electrons into ATP (Cadenas and 

Davies, 2000 and Murphy, 2009).  The ETC protein complexes are bound with electron 

carriers, such as the flavin mono-nucleotide (FMN) cofactor, and the reaction of oxygen 

with these electron carriers, outside of normal ETC function, produces the partially 

reduced superoxide anion as a reaction by-product (Cadenas and Davies, 2000 and 

Murphy, 2009).  The first stage of the ETC transfers electrons from NADP(H) to the 

FMN cofactor in complex I, and this complex produces the majority of the superoxide 

anion generated by the ETC (Cadenas and Davies, 2000, Finkel and Holbrook, 2000, and 

Murphy, 2009).  ETC complex III, which channels electrons to cytochrome c, also 

produces superoxide anions via side reactions, however, it produces much less than 

complex I (Murphy, 2009).   

 Although the ETC is the primary producer of free radicals, cytosolic enzymes, 

such as NADP(H) oxidase (NOX), dihydrorotate dehydrogenase, aldehyde oxidase, and 

xanthine oxidase, are also large producers of the superoxide anion (Gandhi and Abramov, 
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2012, and Ozcan and Ogun, 2015).  NOX enzymes function as transmembrane electron 

transporters, transferring electrons from NADP(H) to molecular oxygen and thereby 

generating superoxide (Krause, 2006).  Other cellular pathways, such as those used by 

phagocytes as part of the immune response, can also produce targeted bursts of ROS 

(Ozcan and Ogun, 2015).  The overall cellular concentration of free radicals is 

determined by the balance of their rate of production (both by-product and not) to their 

rate of clearance by different antioxidant molecules (both enzymatic and not; Dröge, 

2001, and Finkel and Holbrook, 2000).  Balance is crucial; high concentrations of free 

radicals can cause cellular damage, while low or moderate levels of free radicals can have 

beneficial effects on cellular functions (Buonocore, et al., 2010). 

1.3 Reactive Oxygen Species (ROS) 

 

 There are two main potential effects of increasing the cellular concentration of 

oxidants: cellular component damage resulting from oxidative stress, or activation of 

specific cell signalling pathways (Finkel and Holbrook, 2000).  When ROS react with 

biological macromolecules such as lipids, proteins, and nucleic acids, the reaction can 

damage these molecules, potentially initiating degradative cellular processes, e.g. 

apoptosis (Cadenas and Davies, 2000).  Superoxide, one of the most commonly produced 

free radicals, is not a highly reactive free radical, however it is one of the more toxic ones 

because of its propensity to generate other radicals (McCord, 2000, and Ozcan and Ogun, 

2015).  Increased steady state concentrations of superoxide can reduce transition metals, 

which in turn can react with hydrogen peroxide (H2O2) to produce the hydroxyl radical 

(.OH; Turrens, 2003).  Additionally, superoxide can react with other free radicals, such as 

nitric oxide (NO.), and generate much more cytotoxic free radicals such as peroxynitrite 
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(ONOO-; Turrens, 2003).  Superoxide can also react with, and ultimately damage, major 

classes of biological molecules, including DNA (McCord, 2000, and Ozcan and Ogun, 

2015).  However, because superoxide does not readily pass though cell membranes it 

primarily produces local effects and is relatively short-lived in cells (Ozcan and Ogun, 

2015).  The relative toxicity of superoxide is increased by its capacity to be converted 

into other, more reactive, non-radical and radical species, such as singlet oxygen (1O2), 

hydroxyl radical, and peroxynitrite (Dröge, 2001).   

 Though the accumulation of ROS can cause oxidative stress, ROS are also 

necessary for the maintenance of normal cellular homeostasis.  ROS have been 

implicated in host defence mechanisms, regulation of the proliferative response, and they 

function as part of signalling pathways (Finkel and Holbrook, 2000).  In higher 

organisms, superoxide and nitric oxide are produced as ROS bursts by macrophages as 

part of the inflammatory response (Finkel and Holbrook, 2000 and Valko et al., 2007).  

While the above processes and functions are crucial and part of a healthy biological 

system, oxidative stress results when there is an imbalance between the production and 

elimination of ROS; such an imbalance has been implicated in a series of pathological 

conditions, as well as in the overall processes of ageing and senescence (Staveley et al., 

1991).    

1.4 Free Radical Defences 

 

 Aerobic organisms employ both enzymatic and non-enzymatic defences to 

scavenge free radicals in cellular systems (Parkes et al., 1998b).  Superoxide is detoxified 

primarily by the antioxidant enzyme superoxide dismutase (SOD; McCord and Fridovich, 

1969).  SOD functions as part of an antioxidant enzyme defence network, the first step of 
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which is the dismutation of superoxide into hydrogen peroxide by SOD; the hydrogen 

peroxide is then further reduced into water by catalase and peroxidases (Phillips et al., 

1989).  The cytotoxicity of the superoxide radical is largely credited to its ability to 

promote Fenton chemistry, which results in generation of the highly reactive hydroxyl 

radical, and other secondary ROS (Gutteridge, 1985).  The efficiency of superoxide 

scavenging by the antioxidant defence network reduces the concentration of superoxide 

available to generate more reactive radicals (e.g. hydroxyl radical; Gutteridge, 1985).  

 SOD is ubiquitous in organisms exposed to oxygen.  All SOD enzymes include a 

metal ion core that functions in electron transfer (Bafana et al., 2011) and four types of 

metal ion cores have been identified in isozymes of this enzyme: copper/zinc- (Cu,Zn-), 

manganese- (Mn-),  iron- (Fe), and nickel- (Ni-) SODs (Bafana et al., 2011, and Miller, 

2012). The Mn- and Fe- core SODs are often grouped in a single family due to their high 

amino acid sequence similarity, with Mn-SODs likely being derived from the more 

primitive Fe-SODS, or Fe/Mn-SODs that can substitute either Fe- or Mn- ions as their 

cores (Bafana et al., 2011, and Miller, 2012).  Ni-SOD has been identified in several 

prokaryotes, including cyanobacteria, however, overall this group of SODs is still poorly 

characterized (Bafana et al., 2011).  Cu,Zn-SOD and Fe/Mn-SODs evolved 

independently in prokaryotes several billion years ago (Bafana et al., 2011, Miller, 2012). 

Mn-SOD is both the prokaryotic SOD isozyme and the SOD isozyme located in the 

mitochondria of eukaryotes (mtSOD or SOD2; Bafana et al., 2011, and Miller, 2012).  

Two distinct forms of Cu,Zn-SOD exist in many eukaryotes, which are coded for by 

separate genes (Bafana et al., 2011).  One form of Cu,Zn-SOD is located in the cytosol, 

mitochondrial intermembrane space, lysosomes, and the nucleus (cSOD or SOD1; Bafana  
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et al., 2011, and Zelko et al., 2002); the other is located extracellularly (EC SOD or 

SOD3; Bafana et al., 2011).  cSOD dismutates superoxide via a stepwise reaction in 

which the copper ion gains and loses electrons from superoxide and hydrogen to 

ultimately convert superoxide into hydrogen peroxide (Franco et al., 2013, and Smirnov 

and Roth, 2006).  

1.  Cu2+ + O2
-. => Cu+ + O2    

2.  Cu+ + O2
-. + 2H+ => Cu2+ + H2O2  

The dismutation rate of SOD isozymes relies almost solely on the rate of diffusion of 

superoxide, as the electron transfer between the substrate and the active site is highly 

efficient (Bafana et al., 2011, and Smirnov and Roth, 2006).  Similar to other essential 

antioxidant enzymes, such as catalase, glutathione reductase, and glutathione peroxidase, 

the production of SOD isoforms is regulated by the transcription factor nuclear erythroid-

related factor 2 (Nrf2), which responds to variation in oxidative stress levels (Buonocore, 

et al., 2010).  This pattern of regulation is broadly distributed, in vertebrates and 

invertebrates, including D. melanogaster (Buonocore, et al., 2010, Lakhan, et al., 2009, 

and Sykiotis and Bohmann, 2008). 

1.5 Drosophila melanogaster cSOD 

 

 In Drosophila melanogaster, the locus for the cSOD enzyme is located on the left 

arm of the 3rd chromosome.  This gene codes for a 151 amino acid monomer (Sáez et al., 

2002), and the active cSOD enzyme is a homodimer comprised of two identical 

monomers bound together (Campbell et al., 1986).  In D. melanogaster, there are two 

known naturally occurring cSOD allozymes, cSod-fast and cSod-slow, and the allozymes 

differ biochemically, although they only differ compositionally by a single amino acid, 
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with the cSod-fast allele occurring at the much higher frequency in natural populations 

(Campbell et al., 1986 and Sáez et al., 2002).  The cSod null allele used in this thesis was 

generated from a cSod-fast allele (Campbell et al., 1986).   

 The cSodn108 null allele was generated via the process of ethyl methanesulfonate 

(EMS) mutagenesis (Campbell et al., 1986), and subsequently recombined onto a 3rd 

chromosome bearing the larval marker red, with Oregon R as the background strain, and 

the chromosome was re-classified as cSodn108, red (Campbell et al., 1986, Parkes et al., 

1998b, and Phillips et al., 1989).  The EMS-generated cSodn108 null allele results from a 

missense mutation that substitutes a serine for a glycine at the 49th amino acid position 

(Phillips et al., 1995).  There are two pairs of symmetric main-chain hydrogen bonds that 

form across the dimer interface, and the Gly -> Ser substitution breaks one of the 

symmetric pairs of main-chain hydrogen bonds, destabilizing the dimer assembly 

(Phillips et al., 1995).  Dimer destabilization is presumably the mechanism that leads to 

the loss of cSOD activity. 

 D. melanogaster that are homozygous for the cSod-null allele display a 

characteristic suite of phenotypes referred to as the cSOD-null syndrome. This syndrome 

includes: i) paraquat sensitivity in adults (Parkes et al., 1998b and Phillips et al., 1989), 

ii) sterility in males and semi-sterility in females (Parkes et al., 1998b and Phillips et al., 

1989), iii) reduced adult longevity (Parkes et al., 1998b and Phillips et al., 1989), iv) 

reduced egg-to-adult viability (Sun and Tower, 1999) v) accelerated age-related 

locomotor impairment (Jones and Grotewiel, 2011, and Martin, et al., 2009), vi) 

hyperoxia sensitivity in adults (Parkes et al., 1998b), vii) radiation sensitivity in larvae 

(Parkes et al., 1998b), viii) sensitivity to glutathione depletion during development 
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(Parkes et al., 1998b), ix) increased spontaneous mutation rate in somatic and germ line 

cells (Woodruff et al., 2004), as well as x) an 'enfeebled' phenotype that is variably 

expressed and includes bloated abdomens, and crinkled or incompletely expanded wings 

(Phillips et al., 1989).  Recent biochemical work on cSod-null Drosophila has added four 

more phenotypes to this list: xi) metabolomic differences between cSOD-null and cSOD+ 

flies (Knee et al., 2013), xii) differences in NADP(H) enzyme activity between cSOD-

null and cSOD+ males (Bernard et al., 2011), xiii) an increase in lipid concentration in 

cSOD-null compared to cSOD+ males (Bernard et al., 2011), and xiv) starvation 

resistance in cSOD-null compared to cSOD+ males (Bernard et al., 2011).  

1.6 cSOD-Null Mechanism 

 

 Overexpression of human cSOD in D. melanogaster motorneurons extends 

normal lifespan, as well as restoring the lifespan of the short lived cSOD-null mutant D. 

melanogaster to nearly WT (Parkes et al., 1998a).  The connection between cSOD 

activity and lifespan, and the influence of cSOD overexpression within a unique cell type, 

suggests that the overall lifespan of the entire organism is a function of the lifespans of 

some 'critical' cell types, i.e. motorneurons (Parkes et al., 1998a).  The free radical theory 

of aging hypothesizes that an accumulation of oxidative damage to cellular 

macromolecules results in the progressive decline, and eventual death, of cells (Harman, 

1956).  In this model, increased oxidative stress from the higher concentration of 

superoxide anion in motorneurons, of cSOD-null D. melanogaster, causes premature 

failure of the motorneurons and, ultimately, premature organism death (Parkes, et al., 

1999, and Phillips, et al., 2000).   
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 While ROS can cause intracellular damage, the ubiquitous presence of oxygen in 

aerobic organisms, and the resulting generation of ROS, has provided conditions where 

ROS can be exploited by organisms, as seen by their roles in signal transduction 

pathways, gene regulation during development, and differentiation, as well as overall cell 

homeostasis (Lin, et al., 1998, and Parkes, et al., 1999).  ROS are key factors mediating 

growth factor signalling using G-protein coupled receptors, as well as Notch and Wnt, 

which control downstream cascades for MAPK, JAK-STAT, FoxO, NF-kB, ERK, and 

PI3K/AKT (Buetler, et al., 2004, Owusu-Ansah and Banerjee, 2009, and Zhou et al., 

2012).  Specifically, ROS (including the superoxide anion and hydrogen peroxide) are 

involved in vascular formation (Buetler, et al., 2004, and Zhou et al., 2012), 

haematopoietic differentiation (Owusu-Ansah and Banerjee, 2009), cell growth and 

proliferation (Buetler, et al., 2004), insulin synthesis (Weidinger and Kozlov, 2015) and 

TOR signalling (Blagosklonny, 2008, and Patel and Tamanoi, 2006), as well as cell 

migration (Bloomfield and Pears, 2003).  Therefore, an alternate theory for the 

mechanism of the cSOD-null syndrome would be that the altered cellular ROS dynamic, 

in cSOD-null flies, influences cell and tissue physiology by altering signal transduction 

pathways, and ultimately manifesting in the suite of cSOD-null phenotypes (Parkes, et 

al., 1999, and Phillips, et al., 2000).  For example, cSOD-null flies have an increased 

concentration of the superoxide anion, which can react with nitric oxide to generate the 

free radical peroxynitrite (Weidinger and Kozlov, 2015).  Peroxynitrite is known to 

negatively influence a number pathways involving MAPK, STAT3, ERK, and PKC 

pathways, which control processes such as apoptosis and differentiation (Weidinger and 

Kozlov, 2015).  Similarly, cSOD activity changes over the course of organismal 
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development (Radyuk, et al., 2004), so changes in cell and tissue physiology as a result of 

the cSOD-null condition, may result in phenotypic changes over the course of fly 

development (i.e. the cSOD-null syndrome).    

1.7 Phenotypes 

 

 The cSOD-null syndrome is characterized by a suite of phenotypes that range 

from behaviour (i.e. changes in locomotor ability) and organism fitness, to metabolic and 

enzymatic differences.  The phenotypes encompassed by the cSOD-null syndrome can be 

classified into two broad categories: distal phenotypes and proximal phenotypes.  Broadly 

speaking, proximal phenotypes are changes “close” to the mutation, changes that are 

direct, or nearly direct, results of the mutation, and distal phenotypes are changes more 

“distant” from the mutation, phenotypes that result from changes across a network or 

pathway. Seven phenotypes were examined in this thesis that spanned both of these 

classifications.  

1.7.1 Distal Phenotypes 

 

 Distal phenotypes are the result of the downstream interactions of multiple genes 

(such as behaviour and IQ; Scriver, 1994 and Scriver, 1995), and can be modified by 

mutations across the underlying interacting genes.  For example, the distal phenotype 

triglyceride content, is correlated with changes in malic enzyme (Men) activity (Merritt, 

et al., 2005).  I examined four distal phenotypes that cover different aspects of 

Drosophila life history (genotypic viability, and longevity) and locomotion (negative 

geotaxis, and climbing ability), which are influenced by the lack of cSOD activity 
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(Martin, et al., 2009, Parkes et al., 1998b, Phillips et al., 1989, and Sun and Tower, 

1999). 

1.7.1.a Life History 

 

 Life history traits are a function of a series of genetic and environmental factors 

which influence an organism’s overall ability to survive and reproduce.  Two life history 

related phenotypes are longevity and viability.  Longevity, which examines how long-

lived organisms are, is influenced by multiple genetic loci, which are components of 

many genetic pathways (i.e. oxidative stress resistance pathways), and as such single 

gene mutations can influence longevity (Vijg and Suh, 2005).  Longevity in D. 

melanogaster is depressed in flies homozygous for the cSodn108,red allele, reflecting their 

state of chronic oxidative stress (Parkes et al., 1998b, and Phillips et al., 1989), and flies 

overexpressing cSOD in their motorneurons have increased longevity (Parkes, et al., 

1999).  These differences in longevity in cSOD-null, and cSOD overexpressed, flies 

suggest that longevity will also be influenced by intermediate levels of cSOD activity.  

 Viability, in essence, is the ability of an organism to survive, though overall, a 

number of different, but interrelated types of viability can be measured, and all contribute 

to life history.  Viability is expressed as an index (Keightley, 1994), with the components 

of the index varying depending on the type of viability measured.  Types of viability 

include egg-to-adult viability, which is the proportion of eggs that result in eclosed adults 

(Kern et al., 2001); larva-to-adult viability, which is the proportion of larva that result in 

eclosed adults (Kern et al., 2001); offspring viability, which encompasses egg hatching 

success and larva-to-adult survival (Kern et al., 2001); and relative genotypic viability, 

which is the relative ability of different genotypes to successfully eclose (Keightley, 
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1994, and Merritt et al., 2005).  cSOD-null Drosophila have reduced egg-to-adult 

viability compared to WT Drosophila (Sun and Tower, 1999).  Relative genotypic 

viability measures the differences in survivability of distinct genotypes (Keightley, 1994, 

and Merritt et al., 2005), and the reduced egg-to-adult viability in cSOD-null 

homozygotes, compared to WT viability, may suggest that the genotypic viability of 

cSOD-null homozygotes is also reduced compared to that of WT flies.  

1.7.1.b Locomotion 

 

 There are multiple locomotor phenotypes, and locomotion, in general, is 

influenced by multiple interacting loci, most with small individual effects, which are in 

turn influenced by environmental conditions (Jordan et al., 2007).  Negative geotaxis and 

climbing ability are two locomotor phenotypes that measure different, but related, aspects 

of locomotion.  Negative geotaxis is startle response against gravity, and it measures the 

immediate, reflexive, response of flies to a startle stimulation (Jordan et al., 2012).  

Climbing ability was measured by partitioning flies based on differing endurance 

responses to a startle stimulation (Benzer, 1967, and Petersen et al., 2013).  Accelerated 

age-related locomotor impairment in negative geotaxis has been observed in flies with 

low cSOD activity driven by a ubiquitously expressed RNAi construct (Martin,  et al., 

2009).  cSOD-null flies have not been previously tested on the countercurrent apparatus, 

so their locomotor ability on this assay is unknown, though other types of locomotion, 

including negative geotaxis, experience similar declines in locomotor performance with 

age (Jones and Grotewiel, 2011).  Although similar locomotor types (negative geotaxis 

and startle response) have similar overall responses, differences in the underlying genetic 
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mechanisms of the traits can result in variable locomotor sensitivities to factors such as 

genetic background and oxidative stress (Jordan et al., 2012).   

1.7.2 Proximal Phenotypes 

 

 Proximal phenotypes are the direct result of a change in a single gene (such as 

enzyme activity and metabolic phenotypes; Scriver, 1994, and Scriver, 1995), and can be 

modified by mutations in the single gene, or in closely related genes.  For example, the 

proximal phenotypes of enzyme activity (Vmax) and substrate binding affinity (Km) are 

influenced by single nucleotide polymorphisms in the Men gene, with the phenotypes 

varying depending on the nucleotide present (Merritt et al., 2005).  I examined three 

proximal phenotypes that cover the activities of three NADP(H) enzymes (Malic enzyme 

- Men, Isocitrate dehydrogenase - Idh, and Glucoe-6-phosphate dehydrogenase - G6PD), 

which have reduced activity in the absence of cSOD activity in male flies (Bernard,  et 

al., 2011). 

1.7.2.a NADP(H) Enzymes 

 

 The NADP(H)/NADP+ pools in cells are primarily maintained by four key 

cytosolic enzymes; MEN, IDH, G6PD, and 6-phosphogluconate dehydrogenase (6PGD), 

and significant interactions are present across the four (Merritt et al., 2005, 2009, 

Rzezniczak and Merritt, 2012).  However, NADP(H) enzyme activities are also 

influenced by the absence of cSOD activity (Bernard et al., 2011), likely because 

NADP(H) is required by catalase and glutathione-dependent antioxidants to scavenge 

hydrogen peroxide, produced as the product of SOD (Kanzok et al., 2001).  NADP(H) 

binds and stabilizes catalase to promote proper function (Kirkman et al., 1999), while 
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NADP(H) is used for redox cycling by glutathione reductase (Halliwell, 1994), and 

thioredoxin reductase (Kanzok et al., 2001), as well as by non-enzymatic antioxidants, 

such as vitamin C and E (Sies and Stahl, 1995), all of which function in antioxidant 

defences.  In cSOD-null male flies, MEN, IDH, and G6PD activities were significantly 

lower than in WT flies, with the magnitude of effect varying across the three enzymes 

(Bernard, et al., 2011).  Given this interaction, we hypothesized that intermediate levels 

of cSOD activity will similarly result in changes in NADP(H) enzyme activity. 

1.8 Sex 

 Organisms are categorized as male or female according to the occurrence of 

primary and secondary sexual characteristics; sex specific phenotypic variation is known 

as sexual dimorphism (Assis, et al., 2012, and Fairbairn and Roff, 2006).  Originally, 

sexual dimorphism only referred to differences in morphology; however, this term has 

been expanded to encompass sex specific differences in morphology, as well as in 

physiology and biochemistry, behaviour, and life history strategy (Assis, et al., 2012, and 

Fairbairn and Roff, 2006).  The occurrence of sexual dimorphism is ubiquitous among 

higher eukaryotes (Assis, et al., 2012, and Ranz et al., 2003), including Drosophila.  

Previous research in Drosophila has demonstrated sexual dimorphism in phenotypes such 

as longevity (Pasyukova et al., 2000, and Spencer et al., 2003), locomotion (Jordan et al., 

2007, and Yamamoto et al., 2009), and NADP(H) enzyme activity (Merritt et al., 2009) 

and expression (Gnad and Parsch, 2006).  Overall,  a large portion of the Drosophila 

transcriptome displays sex-specific regulation, though sex-biased transcription may not 

translate into functional genetic differentiation between sexes (Connallon and Clark, 

2011, and Ranz et al., 2003).  In D. melanogaster, genes that exhibit male- or female-
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biased expression seem to differ in their tissue specificity; male-biased genes are 

expressed in sex-specific tissues, while female-biased genes are more broadly expressed, 

and more pleiotropic in nature (Assis, et al., 2012).  

 Sex determination, or the hierarchy of events that results in the development of 

sexual characteristics in organisms, is broadly controlled by a few key genes (Clough and 

Oliver, 2012), in many organisms.  The underlying genomes in males and females are 

predominantly the same, so sex determination relies on the differential utilization of 

shared genes, through processes such as differential gene expression, and alternate gene 

splicing (Connallon and Clark, 2011, and Rhen, 2000).  For organisms possessing sex 

chromosomes, sex determination is initiated by genes on the sex chromosomes; however, 

responding genes are also distributed on the autosomes, such that phenotypic effects of 

sex-linked genes are often controlled via the regulation of autosomal gene expression 

(Fairbairn and Roff, 2006).  Sex differential gene expression in adults is controlled via 

two (known) mechanisms where gene regulation in adults is either actively regulated by 

the sex hierarchy, or gene expression in adult tissues is not actively regulated by the sex 

hierarchy, but follows regulatory patterns set down during development (Arbeitman et 

al., 2004). 

 Sex determination, controlled by the sex hierarchy, in D. melanogaster, is 

initiated by sex lethal (Sxl), which is differentially produced in males and females (Kopp 

et al., 2002).  The presence (females) or absence (males) of Sxl triggers production of the 

genes doublesex (dsx) and fruitless (fru), which undergo alternative splicing in males and 

females, with sex specific isoforms of each protein being generated (Clough et al., 2014, 

and Kopp et al., 2002); fru and dsx control different branches of sex determination 
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(Clough et al., 2014, and Heinrichs, et al., 1998).  In D. melanogaster the dsx gene is 

required for sexual dimorphism in morphology, physiology and biochemistry, and 

behaviour, though the full mechanism by which this occurs is not fully understood 

(Clough et al., 2014).  dsx regulation of loci with minor, but polygenic, effects on 

development and biochemistry, may contribute to genetic background induced variation 

in sex-related phenotypes (Clough et al., 2014).  

1.9 Genetic Background 

 

 Phenotypes are context dependent; the effects of a mutation on a gene of interest 

depend on the specific allele, the genetic background, as well as the external environment 

(Chandler, et al., 2013, and Chari and Dworkin, 2013).  Genetic background refers to the 

complete genetic context of an organism, or an organism's complete genotype (Chandler, 

et al., 2013).  Organisms that have similar overall phenotypes may vary dramatically at 

the genetic level, but differences are buffered under 'normal' conditions, such that the 

overall phenotypes are approximately the same (Chandler, et al., 2013, and Chari and 

Dworkin, 2013).  When environments, or genes are perturbed, then the ability of different 

genetic backgrounds to buffer against these perturbations may vary, resulting in 

phenotypic variation which doesn't exist under 'normal' conditions (Chandler, et al., 2013, 

Dworkin et al., 2008).  Genetic background specifically can influence expression of 

neomorphic (novel gene function or expression i.e DER-Ellipse; Polaczyk, et al., 1998), 

hypomorphic (reduced gene function or expression i.e. HSP90; Sangster et al., 2007), and 

amorphic (complete loss of gene function or expression i.e. EGFR; Threadgill et al., 

1995) mutant alleles, although the magnitude of the influence varies according to the 

genetic background present, the environmental factors, and likely the type of allele  
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(Chari and Dworkin, 2013).  Similarly, complex traits, which are the result of multiple 

interacting genes, are also influenced by genetic background  (e.g. longevity; Spencer et 

al., 2003; transvection Bing et al., 2014). 

 The cSOD-null phenotype is sensitive to genetic background, but the extent of the 

variation in phenotypes across backgrounds has not been quantified.  The cSOD-null 

allele was originally generated on a 3rd chromosome with the genotype cSodn108, sr, es, 

ca, and the cSOD-null related phenotypes identified with this chromosomal genotype 

included high death rate during metamorphosis, and subsequently very low adult 

viability, adult sterility, lifespan of 2-3 days, and no detectable cSOD activity (Campbell 

et al., 1986).  When the cSodn108 allele was subsequently recombined onto a 3rd 

chromosome carrying the larval marker red, cSOD activity was still undetectable, and 

larval development was slightly delayed, however, survivability to adulthood was 

improved as was adult lifespan, though not to WT levels (Phillips et al., 1989).  

Similarly, when recombinant lines were subsequently generated to remove the red 

marker, though the lines remained cSOD-null, several of the recombinant lines were 

more viable and fertile than the parent line (Hilliker, A.J., Parkes, T.L., Duyf, B., and 

Phillips, J.P., unpublished data).   

 Though much has been done to define the cSod-null syndrome of D. 

melanogaster, one limitation of this work is that much of it has been done using only the 

Oregon R genetic background in which the cSodn108 allele was generated (see Campbell 

et al., 1986, Parkes et al., 1998b, Phillips et al., 1989, Woodruff et al., 2004, Knee et al., 

2013, and Bernard et al., 2011), or cSOD-null organisms within isogenic genetic 

backgrounds (Parkes et al., 1998b, and Radyuk, et al., 2004), such that potential 



 19 

background effects could not be detected.  However, it is known that cSOD activity 

varies across lines, and although the cSOD gene is located on the 3rd chromosome, cSOD 

concentration and activity can be modified by elements found on the 2nd chromosome 

(Arking, 2001, Graf and Ayala, 1986, and Hernáandez et al.,  1988).  Furthermore, when 

the effect of overexpression of cSOD was examined across a series of wild-caught long-

lived genetic backgrounds, although lifespan increased on average, the magnitude of the 

effect was dependent on the genetic background as well as the sex of the fly (Spencer et 

al., 2003).  In addition, the Oregon-R line has been maintained in the laboratory since 

before 1925 (Bridges and Brehme, 1944) and has evolved to lab conditions resulting in 

altered phenotypes such as early fecundity and shortened longevity (Spencer et al., 2003), 

which may exacerbate the phenotypes of the cSOD-null syndrome. 

1.10 Project Outline 

 

 Understanding the translation of genotype to phenotype relies on understanding 

the complex interactions that occur between loci.  Some of the greatest challenges to 

defining the interactions that occur between loci are the limited conclusions that can be 

made using single isogenic backgrounds. Further, it can be difficult to accurately define 

and quantify appropriate phenotypes by which to assess background effects.  Our current 

understanding of genetic interactions between loci is largely based on the examination of 

the effects of mutant alleles on phenotypes in controlled genetic backgrounds and 

environments, which simplifies the way mutational effects are analyzed, but potentially 

biases how allelic effects are interpreted (reviewed in Chandler, et al., 2013).  Variation 

in genetic background contributes to phenotypic variation, even when examining the 

influence of a single mutant allele (e.g. Rzezniczak and Merritt, 2012 and Bing et al., 
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2014).  The acknowledgement of the limitations of studies examining interactions within 

relatively simple genetic systems has led to the realization of the need to improve our 

understanding of how genes function in complex, and biologically relevant, genetic 

systems.  Within this thesis, I have examined phenotypic variation, across a broad range 

of phenotypes, associated with changes in the level of a cytosolic antioxidant enzyme, 

superoxide dismutase (cSOD).  This thesis focused broadly on examining the influence of 

genetic background, sex, and cSOD activity on phenotypic variation, allowing the 

quantification of the influence of each factor on phenotype.  This research complements 

previous studies performed in the Merritt laboratory that demonstrated phenotypic 

variation associated with the cSOD locus (Bernard, et al., 2011), and biological 

complexity in the NADP(H)-enzyme network related to variation in 3rd chromosome 

genetic background (Rzezniczak and Merritt, 2013).   

 In the work presented here, I document the responses of seven phenotypes to two 

ranges of cSOD activity, sex, and eight genetic backgrounds, to define the relative 

influence of each factor on phenotypic variance.  I found that the absence of cSOD 

activity results in pervasive changes in phenotypic expression, relative to WT 

phenotypes, and these changes are only slightly enhanced or suppressed by sex or genetic 

background, although the degree does vary between phenotypes.  However, when cSOD 

activity varies across low and high ranges, higher levels of cSOD activity generally result 

in phenotypes closer to WT levels, though phenotypes were more susceptible to 

enhancement or suppression depending on sex and genetic background when some level 

of cSOD activity was present.    
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Chapter 2 Materials and Methods 

2.1 Fly Stocks and Lines 

 

 Chromosome substitution lines involve the replacement of one or more 

chromosomes, with chromosomes derived from a separate source via a crossing scheme 

(Mackay, 2009).  Second chromosome substitution lines were generated using marker-

assisted introgression, which uses marker loci to accelerate the introduction of a target 

gene (following Merritt et al., 2006) and a strategically selected subset of eight isofemale 

lines (derived from a single gravid female) from the Drosophila melanogaster Genetic 

Reference Panel (DGRP) established by the Mackay Lab (Suite of fully sequenced D. 

melanogaster inbred lines;  Mackay et al., 2012): 304, 307, 313, 324, 335, 517, 705, and 

820.  The cSOD-null syndrome is characterized by changes in many phenotypes, 

including longevity, fitness, paraquat sensitivity, and startle response, and the subset of 

DGRP lines were chosen to include a high expression and low expression line for each of 

the listed phenotypes, as indicated by available DGRP data (Mackay et al., 2012).  The 

eight 2nd chromosome extraction lines were genetic background replaced to make them 

isogenic except for the DGRP 2nd chromosome present: w1118; DGRPi/CyO; VT83 with 

“i” being the 2nd chromosome from one of the DGRP lines and VT83 being a 3rd 

chromosome isolated from the wild (Merritt et al., 2006).   

 The cSOD- and cSOD+ lines used in this study were the T0 (w+; T0/T0; 

csodn108,red/TM3, Sb) and T5 (w+; T5/T5; csodn108,red/csodn108,red) lines, respectively.  

The cSOD-null allele, csodn108, was generated by Campbell et al., (1986), via ethyl 

methanesulphonate (EMS) mutagenesis, and was subsequently introduced into the 

Oregon R strain and recombined with the 3rd chromosome larval marker red.  A cSOD-



 22 

null line was generated by introgressing a 2nd chromosome, lacking transgenes, into the 

original csodn108,red stock, creating the T0 stock (Parkes et al., 1998).  A parallel cSOD+ 

control line, the T5 stock, was generated by inserting a cSOD transgene under the control 

of the native cSOD promoter, into a 2nd chromosome matched to that in the T0 stock, 

which was then introgressed into the original csodn108,red stock, creating a whole 

organism transgenic rescue line (Parkes et al., 1998).  When homozygous, the transgene 

restores approximately 60-70% of wild type cSOD activity (Parkes et al., 1998) and 

T5/T5; cSODn108,red/SODn108,red flies have been phenotypically indistinguishable from 

WT cSOD+ flies in  all studies subsequent to their generation.   

 The T0 and T5 lines were crossed to the iso 2nd chromosome lines to quantify the 

average effects of cSOD activity, sex, and genetic background (line) on a series of 

phenotypes across two ranges of cSOD activity: 0% and 50%; 30% and 80%. Distinct 

schemes were necessary for the T0 (Figure 1.1) and T5 (Figure 1.2) derived lines because 

the T0 and T5 cSOD constructs involve different chromosomes (2nd for the transgene and 

3rd for the cSOD gene). The T0 crosses created progeny with either 0% or 50% of WT 

cSOD activity, while the T5 crosses created progeny with either 30% or 80% of WT 

cSOD activity.  The 0% (w+; T0/DGRPi; csodn108,red/ csodn108,red) and 50% (w+; T0/ 

DGRPi; csodn108,red/VT83) (Figure 1.1ci and 1.1cii) of WT cSOD activity flies that 

possess the same DGRPi chromosome only differ in genotype by one csodn108,red 

chromosome, as do the 30% (w+; T5/DGRPi; csodn108/ csodn108) and 80% (w+; 

T5/DGRPi; csodn108/VT83) (Figure 1.2ci and 1.2cii) of WT cSOD activity flies.  For each 

assay, five replicate crosses of each DGRP genetic background with both the T0 and T5 

lines, were used.   
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Figure 1:  Crossing schemes used to generate T0 (1) and T5 (2) derived flies.  In all crosses adults were 

placed on fresh cornmeal-yeast-agar media and allowed to mate and lay eggs for one week, then moved to 

fresh media for one week, and discarded.  Crosses a) and b) were set up using two male and two virgin 

female flies.  Single males were crossed to two virgin females in cross c) as male progeny from cross b) 

expressing the curly wing phenotype could have possessed one of two genotypes, only one of which was 
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desired for cross c).  Use of single males prevented mixing males with different genotypes, and allowed 

crosses that had been set up with the incorrect genotype to be discarded.  Cross 1c) generated i) 

w+;T0/DGRPi;csodn108/csodn108 (0% WT cSOD activity) and ii) w+; T0/DGRPi;csodn108/VT83 (50% WT 

cSOD activity).  Cross 1c) also produces w+;T0/CyO;csodn108/csodn108, w+;T0/CyO; csodn108/VT83, 

w+;T0/CyO; csodn108/TM3, ser, w+;T0/CyO; VT83/TM3, ser, w+;T0/DGRPi; csodn108/TM3, ser, and 

w+;T0/DGRPi; VT83/TM3, ser genotypes.  Cross 2c) generated i) w+;T5/DGRPi;csodn108/csodn108 (30% WT 

cSOD activity) and ii) w+; T5/DGRPi;csodn108/VT83 (80% WT cSOD activity).  Cross 2c) also produces 

w+;T5/CyO;csodn108/csodn108, and w+;T5/CyO; csodn108/VT83 progeny.  The four genotypes carrying the 

TM3, Sb third chromosome balancer, produced by 1c), are distinguished by a stubble bristles phenotype and 

have been removed from analysis as the four genotypes encompass two phenotypes which are visually 

indistinguishable and possess different levels of cSOD activity.  The genotypes carrying the CyO 

chromosome, produced in 1c) and 2c) have been excluded from the analyses as preliminary results 

suggested the balancer chromosome was falsely driving background differences. 

2.2 Genotypic Viability Assay 

 

 Genotypic viability, which measures the frequencies of survival of distinct 

genotypes, was assessed as described by Merritt et al., (2006) using progeny generated 

from crosses 1.1c and 1.2c (Figure 1 - Above).  Cross 1.1c quantified viability in flies 

possessing 0% or 50% WT cSOD activity.  Virgin female w+; T0/T0; cSodn108,red/ TM3, 

Ser were crossed with males derived from the eight DGRPi lines (w1118; DGRPi/CyO; 

cSodn108,red/VT83).  Cross 1.2c quantified viability in flies possessing 30% or 80% WT 

cSOD activity.  Virgin female w+; T5/T5; cSodn108,red/ cSodn108,red were crossed with 

males derived from the eight DGRPi lines (w1118; DGRPi/CyO; cSodn108,red/VT83).  

Adult progeny from each cross were counted from day 11 through day 16, and the 

frequencies of occurrence of each phenotype were calculated.  Statistical analyses were 

performed on the calculated frequencies. 

2.3 Longevity Assay 

 

 Longevity (lifespan) was measured as described by Parkes et al., (1998).  Adult 

male and female flies of each genotype were collected 48 hours post eclosion and 

transferred to standard shell vials containing cornmeal-yeast-agar media, with a 

maximum of 20 flies per vial.  Longevity was measured (based on genotype mortality) in 
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single sex and single genotype vials, and both sexes were assumed non-virgin.  

Approximately 100 flies per genotype were assayed overall, but the number varied 

slightly across the genotypes.  Vials were maintained at 25°C, 12hr light:dark, and 

mortality was recorded every two days.  Flies were transferred to fresh media every four 

days until no living flies remained.  Statistical analyses were performed on the recorded 

longevities. 

2.4 Negative Geotaxis Assay 

 

 Directional startle response of adult flies was measured using a negative geotaxis 

assay modified from Sofola et al., (2010), and Patel and Tamanoi, (2006).  Briefly, 

groups of 15 adult male and 15 adult female flies of each specific genotype were 

collected 48 hours post eclosion, and aged for three days on cornmeal-yeast-agar 

medium, in single sex, single genotype vials.  Following aging, the groups of flies were 

transferred into empty 25x95mm shell vials marked at a height of five centimetres, and 

allowed 30 seconds to recover.  Following recovery, flies were tapped down to the 

bottom of the vial and allowed 10 seconds to climb.  After 10 seconds, the number of 

flies above, and below, the five centimetre mark were quantified.  For each vial, three tap 

down trials were performed at one minute intervals and the mean number of flies above, 

and below, the line were calculated.  A performance index (PI), an estimate of the 

probability that a fly will respond to being startled, was calculated for each sex and 

genotype following Sofola et al., (2010).  PI ranges from zero to one; if the PI is close to 

one it indicates that flies have a high response to a startle stimulus, while if the PI is close 

to zero it indicates that flies have a poor response to a startle stimulus (Sofola et al., 

2010).  PI was calculated as PI = 1/2(nTOTAL+ nTOP - nBOTTOM / nTOTAL) where nTOTAL is the 
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total number of flies, nTOP is the number of flies above the five centimetre line, and 

nBOTTOM is the number of flies below the five centimetre line (Sofola et al., 2010).  

Statistical analyses were performed on the calculated PIs.   

2.5 Countercurrent Climbing Assay 

 

 

 

Figure 2:  Photo A) and schematic diagram B) showing the countercurrent apparatus as modified by 

Petersen et al., (2013).  Flies enter the apparatus at vial 1, in the bottom vial set, as indicated by the grey 

circles, and vial 8, in the top vial set, is inverted over vial 1 (Petersen et al., 2013).  The vials are tapped 

down and the flies are given one minute to climb (Petersen et al., 2013).  Following one minute the top set 

of vials was shifted over, and the flies were tapped down, and allowed to climb for one minute (Petersen et 

al., 2013).  This procedure was repeated a total of seven times, and vials that were not opposed by other 

vials were plugged to prevent flies from escaping (Petersen et al., 2013).  Fly climbing ability was 

designated poor, moderate, or good dependent on the vial the flies were in at the end of the assay (vial 

designations marked in B); Petersen et al., 2013). 

 

 Climbing ability of adult flies was measured using a countercurrent climbing 

assay as modified by Petersen et al., (2013).  While the negative geotaxis assay measures 

the immediate fly response to a startle stimulus, the countercurrent assay measures fly 

climbing endurance in response to startle stimuli.  The countercurrent apparatus consists 

of two sets of four shell vials that are taped together, with the bottom set labelled 1 to 4, 
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and the top set labelled 5 to 8 (Petersen et al., 2013) (Figure 2).  Adult male and adult 

female flies of each genotype were collected at 48 hours post eclosion, and aged for three 

days on cornmeal-yeast-agar medium in single sex, mixed genotype vials.  Aged flies 

were loaded into vial 1, in the bottom vial set, and vial 8, in the top vial set, was inverted 

over vial 1 (Figure 2B), the vials are then tapped down and the flies given one minute to 

climb.  Following one minute, the top set of vials was shifted over, and the flies were 

tapped down and allowed to climb for one minute (Figure 2B).  This process was 

repeated a total of seven times, and vials that were not opposed by other vials were 

plugged to prevent flies from escaping (Figure 2B).  Flies were classified by climbing 

ability based on the vials that they were located in at the end of the trial: poor = vial 1, 

moderate = vials 2-4, or good = vials 5-8 (Figure 2B).  A partition coefficient (CF), an 

estimate of the probability that a fly will climb out of their starting vial at each trial, was 

calculated for each sex and genotype, where 0 < CF < 1 (Kamikouchi et al., 2009).  A CF 

close to one indicates that flies tend to climb up, while a CF close to zero indicates that 

flies tend to not climb (Kamikouchi et al., 2009).  The partition coefficient was calculated 

as CF = ƩNk(k - 1)/(n - 1)ƩNk, where n = the number of climbing classes, Nk is the 

number of flies in the kth climbing class, and the climbing classes are assigned the k 

values poor (k = 1), moderate (k = 2), and good (k = 3; Kamikouchi et al., 2009).  

Statistical analyses were performed on the calculated CFs. 

2.6 Enzyme Activity Assays 

 

 For all enzyme assays, groups of adult male and adult female flies were collected 

48 hours post eclosion, aged for three days, and frozen at -80°C in single sex and single 

genotype groups of four flies prior to assaying.   
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2.6.1 MEN, IDH, and G6PD Enzyme Activity Assays 

 

 Assays were performed as described by Bernard et al., (2011), and Merritt et al., 

(2006).  Fly samples were weighed to the nearest 0.01mg with a microbalance (MX5 

Balance, Mettler Toledo AG, Greifensee, Switzerland) and then homogenized in 100μL 

of homogenizing buffer per fly (0.1M TRIS-HCL, pH 7.4, 0.01M NADP+), centrifuged at 

13 000 rpm for 12 minutes at 4°C, and the supernatant was collected.  Enzyme reactions 

were performed in a standard 96-well microtiter plate.  Within each well, the reaction 

used 10μL of the sample supernatant and 100μL of the assay solution (MEN - 0.1M 

TRIS-HCL, pH 7.4, 10mM malate, 5mM MnCl2, 0.34mM NADP+; IDH - 0.1M TRIS-

HCL, pH 8.6, 1.37mM isocitrate, 0.84mM MgSO4, 0.1mM NADP+; G6PD - 20mM 

TRIS-HCL, pH 7.4, 3.5mM G6P, 0.2mM NADP+).  NADP(H) produced was quantified 

as an increase in absorbance and was measured at 340nm with a spectrophotometer 

(SpectraMax Plus 384, Molecular Devices, Sunnyvale, CA, USA).  For the MEN and 

IDH reactions, absorbance was measured at 25°C every 9 seconds for three minutes, 

while for the G6PD reaction absorbance was measured at 25°C every 9 seconds for five 

minutes.  Three technical replicates were used to determine the enzyme activity of each 

biological sample, and statistical analyses were performed on the calculated activities for 

each biological sample. 

2.6.2 cSOD Enzyme Activity Assay 

 

 cSOD activity was quantified using a commercial assay kit (Cayman Chemical 

Superoxide Dismutase Assay Kit, Ann Arbor, MI, Product Number: 706002).  Prior to 

homogenization, fly samples were weighed to the nearest 0.01mg with a microbalance 

(MX5 Balance, Mettler Toledo AG, Greifensee, Switzerland).  Samples were 
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homogenized in chilled 20mM Hepes buffer (pH 7.4, 1mM EDTA, 210mM mannitol, 70 

mM sucrose) at a ratio of 100μL/fly, then diluted to a total ratio of 400μL/fly, 

homogenized flies were then centrifuged at 4°C for 10 minutes at 3 000 rpm, and the 

supernatant collected.  Prior to assaying, the supernatant was diluted to a ratio of 1:4 

supernatant with the assay kit sample buffer, as the SOD activity in the supernatant is too 

high to assay without being diluted.  Assay kit reaction solutions were prepared following 

the manufacturer's protocol, and the enzyme reactions were performed in a standard 96-

well microtiter plate.  For each trial, two distinct reactions were performed to determine 

cSOD activity.  The first reaction measures total SOD (Mitochondrial (manganese) SOD 

- MnSOD, and cSOD) activity, and within each well the reaction used 10μL of the diluted 

sample supernatant, 200μL of the radical detector, and 20μL of xanthine oxidase.  The 

second reaction measures MnSOD activity, and within each well the reaction used 10μL 

of the diluted sample supernatant, 190μL of the radical detector, 20μL of xanthine 

oxidase, and 10μL of 5mM of sodium cyanide.  All reactions were incubated at room 

temperature on the lab bench for 30 minutes prior to reading the absorbance.  Endpoint 

absorbance was measured at 25°C and 450nm with a spectrophotometer (SpectraMax 

Plus 384, Molecular Devices, Sunnyvale, CA, USA).  Each sample was assayed twice for 

each reaction (total SOD activity, and MnSOD activity) and SOD activities were 

calculated based on comparisons with the SOD standards.  The cSOD activity was 

calculated as the difference between the mean total SOD activity and the mean MnSOD 

activity.  Statistical analyses were performed on the calculated cSOD activities. 
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2.7 Total Protein Concentration 

 

 For each enzyme activity assay, total protein concentration was quantified with 

the bicinchoninic acid (BCA) assay using a commercial assay kit (Pierce, Thermo 

Scientific, Rockford, IL, Product Number 23225) with modifications as described by 

Rzezniczak and Merritt, (2012). In brief, the reactions were performed in a standard 96-

well microtiter plate, and within each well the reaction used 10μL of sample supernatant 

and 100μL of reagent.  The 96-well plates were then incubated at 37°C for 20 minutes, 

and allowed to cool prior to absorbance readings.  Endpoint absorbance was measured at 

562nm and at 25°C, and total protein concentrations were calculated based on 

comparisons with the standard curve generated with bovine serum albumen standards.  

The protein standard concentrations used were changed from those in the manufacturer's 

protocol to 1200μg/mL, 800μg/mL, 400μg/mL, and 100μg/mL (Rzezniczak and Merritt, 

2012).  Each sample was assayed three times and the mean protein concentration was  

determined.  Preliminary analyses standardizing enzyme activity by fly weight and mean 

protein concentration were similar, so protein concentration was used to standardize 

enzyme activities as it accounts for size differences between individuals, and as well as 

possible homogenization differences between samples. 

2.8 Statistical Analysis 

 

 The results of each assay were analyzed using analysis of variance (ANOVA), 

which allowed us to partition variation into phenotypic variation between sexes, 2nd 

chromosome genetic background, cSOD activity, as well as the sex-by-background 

interaction, the sex-by-cSOD activity interaction, the background-by-cSOD activity 

interaction, the sex-by-background-by-cSOD activity interaction, and the error variance  
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(Ayroles et al., 2009, and Leips and Mackay, 2000).  Post hoc comparisons were carried 

out using Tukey's HSD test.  Separate analyses were performed on data from the T0 (0% 

and 50% cSOD activity) and T5 (30% and 80% cSOD activity) crosses as flies from these 

crosses can differ by more than one chromosome, due to the locations of the cSOD 

transgene and the cSOD gene on the 2nd and 3rd chromosomes, respectively. 

 To calculate the amount of variation attributable to each factor and interaction, 

across levels of cSOD activity, the effect size measure partial eta squared (η2
p) was used.  

η2
p measures the proportion of variation that is attributable to a particular factor, while 

removing variance that is explained by other predictor variables, and it is calculated using 

the equation η2
p = SSFactor/SSFactor+SSError (Pierce, Block, and Aguinis, 2004).  η2

p was 

calculated for each factor, and interaction, for each analysis using the Sum of Squares 

(SS) values produced in the ANOVA output. 
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Chapter 3 Results 
 

 The primary purpose of this study was to examine how variable the effects of 

changes in cSOD activity were on phenotypes across genetic backgrounds and between 

sexes.  The use of multiple DGRPi genetic backgrounds, as well as male and female flies, 

allowed me to partition the amount of variation attributable to genetic background, sex, 

cSOD activity, and their interactions, for each phenotype.  The effect size partial eta 

squared (η2
p) was used to determine the proportion of variation attributable to each factor, 

and η2
p values and statistics are summarized in Figure 8. All η2

p values and their 

associated statistics can be found in the Appendices, Tables A1 to A7.  Specific line 

effects, maximum and minimum pooled cSOD activity measures, and maximum and 

minimum line measures, for each phenotype are illustrated in Table A8, Table A9, and 

Table A10 respectively. 

3.1 cSOD activity is primarily influenced by the transgenic and 
third chromosome genotypes, but it is not affected by DGRPi 
genetic background 

 

 Using two separate three-step crossing schemes (Figure 1) flies across a series of 

cSOD activity levels were generated; one scheme created 0% and 50% WT cSOD 

activity flies and the second created 30% and 80% WT cSOD activity flies.  The four 

levels of cSOD activity were generated using genetic constructs that differed at the 2nd 

and 3rd chromosomes, with large scale differences in cSOD activity resulting from the 

presence or absence of a knockout mutation on the 3rd chromosome, and the presence or 

absence of a cSOD transgene on the 2nd chromosome.  Comparisons were made within 

each range of cSOD activity (0% and 50% WT cSOD activity, or 30% and 80% WT 
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cSOD activity), not across the four levels of activity, as those genotypes differed by more 

than one chromosome. 

 The cSOD activity for each genotype was estimated according to the transgenic 

and 3rd chromosome genotypes: T0/ DGRPi; cSodn108,red/ cSodn108,red - 0% cSOD 

activity; T0/ DGRPi; cSodn108,red/ VT83 - 50% cSOD activity; T5/ DGRPi; cSodn108,red/ 

cSodn108,red - 30% cSOD activity; and T5/ DGRPi; cSodn108,red/ VT83 - 80% cSOD 

activity.  cSOD activity can, however, be influenced by 2nd chromosome genetic 

background (Graf and Ayala, 1986), so the actual cSOD activity may vary across the 

DGRPi genetic backgrounds.  To quantify this variation, I assayed the amount of cSOD 

activity across eight DGRPi genetic backgrounds, within each transgenic and 3rd 

chromosome genotype.  There was no significant variation across the backgrounds; large-

scale differences in cSOD activity are a function of the transgenic and 3rd chromosome 

genotype with only small, statistically insignificant variation across the DGRPi genetic 

backgrounds (Figure A1).  For the 0% cSOD activity flies and the 50% cSOD activity 

flies, variation in cSOD activity was due only to the differences in 3rd chromosome 

genotype (Figure 3A, Table A9), and cSOD activity was much lower, essentially absent 

to the level of detection of the assay, in the 0% cSOD activity flies, consistent with the 

genotype estimate.  Interestingly, while cSOD activity in the 30% cSOD activity flies and 

80% cSOD activity flies was primarily a function of the transgenic and 3rd chromosome 

genotype, there was also a significant sex effect (Figure 3B, Table A9); cSOD activity is 

lower in males than females in the 30% and 80% cSOD activity flies. Activities are 

corrected for protein content, so this difference does not simply reflect the larger size of 

females; males have proportionately, per unit protein, lower cSOD activity than females.  
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Given the results above showing no significant differences in cSOD activity across the 

DGRPi 2nd chromosome genetic backgrounds, the T0/ DGRPi; cSodn108,red/ cSodn108,red, 

T0/ DGRPi; cSodn108,red/ VT83, T5/ DGRPi; cSodn108,red/ cSodn108,red, and T5/ DGRPi; 

cSodn108,red/ VT83 flies will be defined according to their genotype derived activities - 

0%, 50%, 30%, and 80% cSOD activity respectively - as the measured activities of these 

genotypes are approximately equivalent to their estimated activities. 

  

 

Figure 3:  Mean ± SEM of the measured cSOD activities, standardized by protein concentration, (units/μg 

protein) for adult male and adult female flies pooled across the eight DGRPi genetic backgrounds within 

each genotype.  A) cSOD Activity - F1,127 = 84.1, p < 0.0001, ηp
2 = 0.40 B) cSOD Activity - F1,124 = 158, p 
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< 0.0001, ηp
2 = 0.56, Sex - F1,124 = 9.65, p = 0.0023, ηp

2 = 0.072.  Brackets enclose significantly different 

groups. 

3.2 Mean phenotypes were obtained by pooling responses 
across DGRPi genetic backgrounds within each third 
chromosome genotype   

 

 To test for phenotypic variation driven by large-scale differences in cSOD 

activity, phenotype data was pooled across DGRPi genetic backgrounds within each 

cSOD activity genotype.  The pooled data was then analyzed for differences across cSOD 

activities and between the sexes.   

3.2.1 Expression of distal phenotypes is proportional to the amount 
of cSOD activity   

 

 Across the four distal phenotypes examined (longevity, viability, negative 

geotaxis, and climbing ability) scores were lowest in 0% cSOD activity flies, and were 

higher in high cSOD activity flies, with scores being approximately equivalent between 

the 50% and 80% cSOD activity groups.  The effect of sex on phenotypic expression 

depended on the phenotype examined and the amount of cSOD activity present. 

 Viability was only affected by cSOD activity, across both cSOD activity 

comparisons (Figure 4, Table A9).  Viability was lower in low cSOD activity flies, but 

did not vary significantly between males and females.  Similar to viability, there was a 

significant cSOD effect on climbing ability across both comparisons (Figure 5, Table 

A9), however, in the high cSOD activity comparison, there was also a significant sex 

effect on countercurrent ability (Figure 5B).  Across both cSOD comparisons there was a 

trend with males having better countercurrent ability than females.  Conversely, there was 

a significant sex-by-cSOD activity interaction effect on longevity in the low cSOD 

activity comparison (Figure 6A, Table A9), where the level of sexual dimorphism varied 
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at the different cSOD activities.  In the high cSOD activity comparison there were 

significant sex and cSOD activity effects on longevity, but the interaction effect was not 

significant (Figure 6B, Table A9).  Across both cSOD activity comparisons females lived 

longer than males.  Similar to longevity, there were significant sex and cSOD activity 

effects on negative geotaxis, but the interaction effect was not significant in either 

comparison (Figure 7, Table A9).  Across both cSOD comparisons, males had better 

negative geotaxic ability than did females.   

 cSOD activity was a determining factor for all of the distal phenotypes observed, 

however, the relative importance of genetic background and sex varied.  In viability, 

longevity, negative geotaxis, and climbing ability, the effect size of cSOD activity was 

smaller in the high cSOD comparison (Figure 8); i.e. small differences at low levels of 

cSOD had the greatest effect on phenotype.  In the high cSOD comparison, cSOD was 

still the most important factor affecting viability and climbing ability.  In contrast, sex 

had the largest affect on longevity in the high cSOD comparison, while the sex-by-

genetic background interaction had the largest affect on negative geotaxis (Figure 8).  

The effect size of sex either remained approximately constant, or was higher in the high 

cSOD comparison, although its effect was not always significant (Figure 8).  

Interestingly, one sex did not perform consistently “better” than the other in the distal 

phenotypes; males showed “better” performance in some distal phenotypes, and females 

in others.  
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Figure 4:  Mean ± SEM of viability (frequency) for adult flies pooled across the eight DGRPi genetic 

backgrounds within each third chromosome genotype.  A) cSOD Activity - F1,143 = 107, p < 0.0001, ηp
2 = 

0.43 B) cSOD Activity - F1,148 = 11.2, p = 0.001, ηp
2 = 0.070.  Brackets enclose significantly different 

groups. 
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Figure 5:  Mean ± SEM of the climbing partition coefficient (CF) for adult male and female flies pooled 

across the eight DGRPi genetic backgrounds within each third chromosome genotype.   A) cSOD Activity - 

F1,269 = 501, p < 0.0001, ηp
2 = 0.65 B) cSOD Activity - F1,175 = 61.6, p < 0.0001, ηp

2 = 0.26, Sex - F1,175 = 

20.8, p < 0.0001, ηp
2 = 0.11.  Brackets enclose significantly different groups. 
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Figure 6:  Mean ± SEM longevity (days) for adult male and female flies pooled across the eight DGRPi 

genetic backgrounds within each third chromosome genotype.  A) Sex-by-cSOD Activity - F1,2227 = 35.2, p 

< 0.0001, ηp
2 = 0.016 B) cSOD Activity - F1,1673 = 64.9, p < 0.0001, ηp

2 = 0.038, Sex - F1,1673 = 66.1, p < 

0.0001, ηp
2 = 0.038.  Brackets enclose significantly different groups.   
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Figure 7:  Mean ± SEM of the negative geotaxis performance index (PI) for adult male and female flies 

pooled across the eight DGRPi genetic backgrounds within each genotype.  A) cSOD Activity - F1,156 = 

170, p < 0.0001, ηp
2 = 0.52, Sex - F1,156 = 4.83, p = 0.0294, ηp

2 = 0.030  B) cSOD Activity - F1,100 = 7.33, p 

= 0.008, ηp
2 = 0.068, Sex - F1,100 = 8.80, p = 0.0038, ηp

2 = 0.081.  Brackets enclose significantly different 

groups. 
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cSOD Factor Phenotype 

ηp
2 

Legend 

Activity   Longevity Viability 

Negative 

Geotaxis Climbing MEN IDH G6PD 

Largest 

ηp
2 

0% and Sex 0.050 NS 0.030 NS 0.093 NS 0.077 > .7 

50% Bkgd 0.011 NS 0.10 NS NS NS 0.20 0.3-0.6 

 cSOD 0.78 0.43 0.52 0.65 NS 0.17 0.25 0.08-0.2 

 Sex X Bkgd 0.023 NS 0.17 NS NS NS 0.065 0.06-0.07 

 Bkgd X cSOD  0.0097 NS 0.20 NS NS NS NS 0.04-0.05 

 Sex X cSOD 0.016 NS NS NS 0.11 0.088 0.069 0.02-0.03 

 Sex X Bkgd X cSOD 0.014 NS 0.18 NS NS NS 0.064 < = 0.01 

30% and Sex 0.038 NS 0.081 0.11 0.12 0.016 0.36 

Smallest 

ηp
2 

80% Bkgd 0.023 NS NS NS NS 0.088 0.095  

 cSOD 0.037 0.070 0.068 0.26 0.014 NS NS  

 Sex X Bkgd 0.012 NS 0.17 NS 0.074 0.055 NS  

 Bkgd X cSOD  0.025 NS NS NS 0.073 NS 0.062  

 Sex X cSOD NS NS NS NS 0.036 NS NS  

  Sex X Bkgd X cSOD NS NS NS NS NS NS NS  

 

Figure 8: Partial eta squared (ηp
2) for longevity, viability, negative geotaxis, countercurrent (climbing), 

malic enzyme (MEN), isocitrate dehydrogenase (IDH), and glucose-6-phosphate dehydrogenase (G6PD) 

calculated for each factor across cSOD activity conditions.  Larger values represent larger effects (Orange), 

and smaller values represent smaller effects (Purple).  NS, non-significant interactions. 

3.2.2 The magnitude of NADP(H) enzyme activity is modified by sex 
and cSOD activity  

 

 Enzyme activities are themselves proximal phenotypes and in the three enzymes 

surveyed (MEN, IDH, and G6PD) activity was strongly influenced by sex and cSOD 

activity (Figure 8).  In all three of these NADP+ reducing enzymes, there are significant 

sex-by-cSOD activity interaction effects in the 0% and 50% cSOD comparison (MEN - 

Figure 9A, IDH - Figure 10A, G6PD - Figure 11A; Table A9); the magnitude of 

difference in enzyme activity between males and females varied across cSOD activities.  

In the 30% and 80% cSOD comparison, the effect of cSOD activity on NADP(H) enzyme 

activities tended to be small, while the effect size of sex tended to be large (MEN - Figure 

9B, IDH - Figure 10B, G6PD - Figure 11B; Table A9).  In IDH and G6PD, the effect size 

of cSOD activity was smaller in the high cSOD comparison, while in MEN, the effect 

size of cSOD activity was larger in the high cSOD comparison (Figure 8).  NADP(H) 
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enzyme activities in males were lowest in the 0% cSOD activity flies and higher in the 

high cSOD activity flies, with NADP(H) enzyme activities being approximately 

equivalent between the 50% and 80% cSOD activity groups.  Conversely, female 

NADP(H) enzyme activities tended to be higher in the 0% cSOD activity flies, although 

there was less variation in NADP(H) enzyme activities in females, across cSOD 

activities, compared to males.  As long as some cSOD activity was present, male 

NADP(H) enzyme activity tended to be greater than that in females, and there was also a 

greater change in NADP(H) enzyme activity across cSOD activities in males compared to 

females.  Overall, the changes in effect size for sex and cSOD activity were much larger 

in IDH and G6PD activity, than in MEN activity.   
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Figure 9:  Mean ± SEM of MEN activity standardized by protein concentration (units/μg protein ) for adult 

male and female flies pooled across the eight DGRPi genetic backgrounds within each third chromosome 

genotype.  A) Sex-by-cSOD Activity - F1,265 = 31.8, p < 0.0001, ηp
2 = 0.11 B) Sex-by-cSOD Activity - F1,280 

= 10.5, p = 0.0013, ηp
2 = 0.036.  Brackets enclose significantly different groups.   
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Figure 10:  Mean ± SEM of the IDH activity standardized by protein concentration (units/μg protein) for 

adult male and female flies pooled across the eight DGRPi genetic backgrounds within each genotype.  A) 

Sex-by-cSOD Activity - F1,265 = 25.5, p < 0.0001, ηp
2 = 0.088 B) Sex - F1,280 = 4.58, p = 0.0333, ηp

2 = 0.016.  
Brackets enclose significantly different groups. 
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Figure 11:  Mean ± SEM of G6PD activity standardized by protein concentration (units/μg protein) for 

adult male and female flies pooled across the eight DGRPi genetic backgrounds within each third 

chromosome genotype.  A) Sex-by-cSOD Activity - F1,265 = 19.6, p < 0.0001, ηp
2 = 0.069 B) Sex - F1,280 = 

155, p < 0.0001, ηp
2 = 0.36.  Brackets enclose significantly different groups.   
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3.3 Phenotypic response to genetic background is modified by 
phenotype and cSOD activity 

 

 In addition to quantifying the average phenotypic effects across the eight DGRPi 

genetic backgrounds (above), I also quantified genetic background effects using analysis 

of variance (ANOVA) to partition variation between cSOD activity, sex, genetic 

background, and the interactions between each factor. The effect size η2
p was used to 

determine the changes in the proportion of variation attributable to each factor within 

each phenotype as cSOD activity changes. 

3.3.1 Longevity is sensitive to cSOD activity, sex, and genetic 
background, but the magnitude of the effect varies most significantly 
with cSOD activity  

 

 Longevity varied in the magnitude of sexual dimorphism across genetic 

backgrounds in the low cSOD comparison.  There was a significant sex-by-genetic 

background-by-cSOD activity interaction effect on longevity in the 0% and 50% cSOD 

comparison (Figure 12A).  Longevity in males and females was higher at 50% cSOD 

activity than at 0% cSOD activity across genetic backgrounds, and there was more 

variation in longevity, in males and females, at 50% cSOD activity than at 0% cSOD 

activity (Table A10).  The sex-by-genetic background-by-cSOD activity interaction effect 

was not significant in the high cSOD comparison, so longevity was primarily affected by 

this interaction in the low cSOD comparison (Table A8).   

 The effect of genetic background on longevity varied across cSOD comparisons, 

with larger effects in the high cSOD comparison (Figure 8).  There were significant sex-

by-genetic background interaction and genetic background-by-cSOD activity interaction  

effects on longevity across the cSOD comparisons, though the effect size of the former 
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was larger in the low cSOD comparison, while the effect size of the latter was larger in 

the high cSOD comparison (Figure 12B).  The differences in effect size for the 

interactions indicates that the magnitude of sexual dimorphism in longevity varies across 

cSOD activity comparisons and genetic background (Table A8).  Longevity in females 

was higher than that in males across the spectrum of cSOD activities and, at 50% and 

80% cSOD activity the variation in longevity in males and females was approximately 

equivalent (Table A10). 
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Figure 12:  Ratio of the mean ± SEM of low cSOD: high cSOD activity longevities for adult male and 

female flies across the eight DGRPi genetic backgrounds.  Values closer to 1 indicate more similar 

longevities at the levels of cSOD activity being compared , and confidence intervals are at 95% and 

represent the ratio of the low cSOD activity and high cSOD activity SEMs.  A) Sex-by-Genetic 
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Background-by-cSOD Activity - F7,2227 = 4.38, p < 0.0001, ηp
2 = 0.014  B) Sex-by-Genetic Background - 

F7,1673 = 2.91, p = 0.0049, ηp
2 = 0.012, Genetic Background-by-cSOD Activity - F7,1673 = 6.03, p < 0.0001, 

ηp
2 = 0.025. 

3.3.2 Viability is sensitive to changes in cSOD activity, but is not 
affected by sex or genetic background   

 

 Viability was not significantly affected by genetic background in either sex or at 

any cSOD activity (Figure 13).  Viability was only significantly influenced by cSOD 

activity (Figure 8); sex and genetic background had no significant effect (background 

specific differences can be seen in Tables A8, A10).   
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Figure 13:  Ratio of the mean ± SEM of the ratio of low cSOD: high cSOD activity viability (frequency) 

for adult male and female flies across the eight DGRPi genetic backgrounds.  Values closer to 1 indicate 

more similar PI values at the levels of cSOD activity being compared, and confidence intervals (CI) are at 

95% and represent the ratio of the low cSOD activity and high cSOD activity SEMs. A) cSOD Activity - 

F1,143 = 107, p < 0.0001, ηp
2 = 0.43 B) cSOD Activity - F1,148 = 11.2, p = 0.001, ηp

2 = 0.070. 

3.3.3 Sensitivity of negative geotaxis to cSOD activity and genetic 
background was highest in the low cSOD activity comparison   

 

 Across cSOD comparisons, negative geotaxis differed between males and 

females, and the magnitude of this sexual dimorphism varied across DGRPi genetic 

backgrounds.  There was a significant sex-by-genetic background-by-cSOD activity 

interaction effect on negative geotaxis in the 0% and 50% cSOD comparison (Figure 

14A).  Negative geotaxis was higher at 50% cSOD activity than at 0% cSOD activity 

across DGRPi genetic backgrounds in both sexes, but there was more variation in 

negative geotaxis at 0% cSOD activity than at 50% cSOD activity (Table A10).  The sex-

by-genetic background-by-cSOD activity interaction was not significant in the high 

cSOD comparison, so negative geotaxis was primarily influenced by this interaction in 

the low cSOD comparison (Table A8). 

 Negative geotaxis varied in the magnitude of sexual dimorphism across genetic 

backgrounds in the high cSOD comparison.  There was a significant sex-by-genetic 

background interaction effect on negative geotaxis across the spectrum of cSOD activities 

(Figure 14B), and the effect size was larger in the high cSOD comparison (Figure 8, 

Table A8).  Sex had a larger effect on negative geotaxis in the high cSOD activity 

comparison, though the magnitude of sexual dimorphism varied across genetic 

backgrounds (Figure 8).  Negative geotaxis was higher in male flies across cSOD 

activities, however, there was more variation in negative geotaxic ability in female flies 

in the 30% and 80% cSOD activity comparison (Table A10). 
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Figure 14:  Ratio of the mean ± SEM of the ratio of low cSOD: high cSOD activity negative geotaxis 

performance index (PI) values for adult male and female flies across the eight DGRPi genetic backgrounds.  

Values closer to 1 indicate more similar PI values at the levels of cSOD activity being compared, and 

confidence intervals (CI) are at 95% and represent the ratio of the low cSOD activity and high cSOD 

activity SEMs.  A) Sex-by-Genetic Background-by-cSOD Activity - F1,156 = 4.95, p < 0.0001, ηp
2 = 0.18 B) 

cSOD Activity - F1,100 = 7.33, p = 0.008, ηp
2 = 0.068, Sex-by-Genetic Background - F1,100 = 3.02, p = 

0.0064, ηp
2 = 0.17. 

3.3.4 Countercurrent locomotion is sensitive to cSOD activity across 
comparisons, and to sex in the high cSOD activity comparison  

 

 Low cSOD activity flies (i.e. 0% cSOD activity) are poor climbers and to improve 

detection of possible background effects in these flies I reduced the distance that the flies 

had to climb in the negative geotaxis assay. This change may, however, have reduced the 

7 
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sensitivity of the assay to detect differences in negative geotaxic ability in the high 

performance flies (i.e. possessing high cSOD activity).  The reduced scale of the assay 

may have resulted in apparently equivalent negative geotaxis in high cSOD activity flies 

across genetic backgrounds, potentially negatively driving down the discernible 

background effects.  Therefore, a second locomotor assay was performed to attempt to 

further resolve background effects at high cSOD activities.   

 Climbing ability responds differently in males and females in the high cSOD 

comparison, but there are no significant genetic background effects across cSOD 

comparisons (Figure 15).  Climbing ability was significantly influenced by cSOD 

activity, though the effect of cSOD activity was smaller in the high cSOD comparison 

(Figure 8).  Conversely, the effect of sex on climbing ability was larger than that of cSOD 

activity in the high cSOD comparison (Figure 8).  Genetic background did not have a 

significant effect on climbing ability in either cSOD comparison (background specific 

differences can be seen in Table A8 and A10).   
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Figure 15:  Ratio of the mean ± SEM of the ratio of low cSOD: high cSOD activity climbing ability 

partition coefficient (CF) for adult male and female flies across the eight DGRPi genetic backgrounds.  

Values closer to 1 indicate more similar PI values at the levels of cSOD activity being compared, and 

confidence intervals (CI) are at 95% and represent the ratio of the low cSOD activity and high cSOD 

activity SEMs. A) cSOD Activity - F1,269 = 501, p < 0.0001, ηp
2 = 0.65 B) Sex - F1,175 = 20.8, p < 0.0001, 

ηp
2 = 0.11, cSOD Activity - F1,175 = 61.6, p < 0.0001, ηp

2 = 0.26. 

3.3.5 Sensitivity of Malic enzyme activity to genetic background is 
higher in the high cSOD activity comparison  

 

 The response of MEN activity to cSOD activity differs between males and 

females across cSOD comparisons.  There was a significant sex-by-cSOD activity 
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interaction effect on MEN activity in the 0% and 50% cSOD comparison, and in 30% and 

80% cSOD comparison (Figure 16).  MEN activity in females is higher in 0% cSOD 

activity flies than 50% cSOD activity flies, while in males the opposite trend is observed 

(Table A10).  Furthermore, there is a trend for higher MEN activity in males compared to 

females in the 30%, 50%, and 80% cSOD activity flies (Table A10).  There were 

significant sex-by-cSOD activity interaction effects on MEN activity across cSOD 

comparisons, though the interaction effect was smaller in the high cSOD comparison 

(Figure 8). 

 MEN activity responds differently to genetic background in males and females in 

the high cSOD comparison.  There were significant sex-by-genetic background 

interaction and genetic background-by-cSOD activity interaction effects on MEN activity 

in the 30% and 80% cSOD comparison (Figure 16B).  MEN activity was higher in male 

30% and 80% cSOD activity flies across genetic backgrounds, though MEN activity in 

males is higher at 30% cSOD activity than at 80% cSOD activity, while the opposite 

trend is observed in females (Tables A8, A10).  Further, there was a greater amount of 

variation in the magnitude of MEN activity observed in males between 30% and 80% 

cSOD activity flies, than was observed in females.  The effect sizes for the genetic 

background interactions were not significant in the low cSOD comparison, indicating that 

more variation in MEN activity is attributable to genetic background in the high cSOD 

comparison (Figure 8). 
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Figure 16:  Ratio of the mean ± SEM of the ratio of low cSOD: high cSOD activity MEN activity 

standardized by protein concentration (units/μg protein) for adult male and female flies across the eight 

DGRPi genetic backgrounds.  Values closer to 1 indicate more similar PI values at the levels of cSOD 

activity being compared, and confidence intervals (CI) are at 95% and represent the ratio of the low cSOD 

activity and high cSOD activity SEMs. A) Sex-by-cSOD Activity - F1,265 = 32.8, p < 0.0001, ηp
2 = 0.11 B) 

Sex-by-Genetic Background - F7,280 = 3.18, p = 0.003, ηp
2 = 0.074, Genetic Background-by-cSOD Activity 

- F7,280 = 3.16, p = 0.0031, ηp
2 = 0.073, Sex-by-cSOD Activity - F1,280 = 10.5, p = 0.0013, ηp

2 = 0.036. 

3.3.6 Sensitivity of Isocitrate dehydrogenase activity to genetic 
background is higher in the high cSOD activity comparison  

 

 IDH activity is not affected by genetic background in the low cSOD comparison, 

though male and female response does differ.  There was a significant sex-by-cSOD 

activity interaction effect on IDH activity in the 0% and 50% cSOD comparison (Figure 
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17A).  IDH activity in males and females was higher in 0% cSOD activity flies than in 

50% cSOD activity flies, though IDH activity was lower in flies with 0% cSOD activity, 

compared to those with 50% cSOD activity (Figure A10).  However, there was a greater 

amount of variation in the magnitude of IDH activity observed in males in the 0% and 

50% cSOD activity comparison, than in females (Table A9).  The sex-by-cSOD activity 

interaction was not significant in the high cSOD comparison, indicating that variation in 

IDH activity is more attributable to this interaction in the low cSOD comparison (Figure 

8). 

 Sexual dimorphism in IDH activity varied across genetic backgrounds.  There was 

a significant sex-by-genetic background interaction effect on IDH activity in the 30% and 

80% cSOD comparison (Figure 17B).  IDH activity was higher in females than in males 

across genetic backgrounds, though there was more variation in the magnitude of IDH 

activity in males than in females across genetic backgrounds (Table S8, S9).  There was 

no significant effect of cSOD activity on IDH activity in the 30% and 80% cSOD 

comparison in either males or females (Table A8, A10).  The sex-by-genetic background 

interaction was not significant in the low cSOD comparison, indicating that more 

variation in IDH activity is attributable to genetic background in the high cSOD 

comparison (Figure 8). 
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Figure 17:  Ratio of the mean ± SEM of the ratio of low cSOD: high cSOD activity IDH activity 

standardized by protein concentration (units/μg protein) for adult male and female flies across the eight 

DGRPi genetic backgrounds.  Values closer to 1 indicate more similar PI values at the levels of cSOD 

activity being compared, and confidence intervals (CI) are at 95% and represent the ratio of the low cSOD 

activity and high cSOD activity SEMs.  A)  Sex-by-cSOD - F1,265 = 25.5, p < 0.0001, ηp
2 = 0.088 B) Sex-

by-Genetic Background - F7,280 = 2.31, p = 0.0263, ηp
2 = 0.055.  

3.3.7 Sensitivity of Glucose-6-phosphate dehydrogenase activity to 
genetic background is smaller in the high cSOD activity comparison, 
while sensitivity to sex is higher   

 

 The magnitude of sexual dimorphism in G6PD activity varies across genetic 

background in the low cSOD comparison.  There was a significant sex-by-genetic 
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background-by-cSOD activity interaction effect on G6PD activity in the 0% and 50% 

cSOD comparison (Figure 18A).  G6PD activity in male and female flies was higher at 

50% cSOD activity than at 0% cSOD activity across genetic backgrounds; furthermore, 

male and female G6PD activity was approximately equivalent in 0% cSOD activity flies, 

while at 50% cSOD activity G6PD activity was greater in male flies (Table A8, A10).  A 

greater amount of variation in the magnitude of G6PD activity was observed between 0% 

and 50% cSOD activity males, compared to females (Table A10).  The sex-by-genetic 

background-by-cSOD activity interaction effect was not significant in the high cSOD 

comparison, indicating that more variation in G6PD activity is attributable to this 

interaction in the low cSOD comparison (Figure 8). 

 The magnitude of variation in G6PD activity in the high cSOD comparison varied 

across DGRPi genetic background, in males and females. Sex, and the genetic 

background-by-cSOD activity interaction significantly affected G6PD activity in the 30% 

and 80% cSOD comparison (Figure 18B).  G6PD activity was higher in male 30% and 

80% cSOD activity flies than in female flies, and there was more variation in G6PD 

activity across genetic backgrounds in male than in female flies (Tables A8, A10).  The 

genetic background-by-cSOD activity interaction effect was only significant in the high 

cSOD comparison, however, sex had the largest effect of any factor, in the high cSOD 

comparison, indicating that most variation in G6PD activity in the high cSOD 

comparison is attributable to sex (Figure 8).   



 58 

   

 

Figure 18:  Ratio of the mean ± SEM of the ratio of low cSOD: high cSOD activity G6PD activity 

standardized by protein concentration (units/μg protein) values for adult male and female flies across the 

eight DGRPi genetic backgrounds.  Values closer to 1 indicate more similar PI values at the levels of cSOD 

activity being compared, and confidence intervals (CI) are at 95% and represent the ratio of the low cSOD 

activity and high cSOD activity SEMs.  A) Sex-by-Genetic Background-by-cSOD Activity - F7,265 = 2.57, p 

= 0.0142, ηp
2 = 0.063 B) Sex - F1,280 = 155, p < 0.0001, ηp

2 = 0.37, Genetic Background-by-cSOD Activity - 

F7,280 = 2.65, p = 0.0114, ηp
2 = 0.062. 
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Chapter 4 Discussion 

4.1 Magnitude of phenotypic expression varies with the 
influence of cSOD activity, genetic background, and sex 

 

 In D. melanogaster, the absence of cSOD activity leads to a characteristic suite of 

phenotypes, known as the cSOD-null syndrome (Parkes et al., 1998b).  Previous analyses 

demonstrate that the cSOD-null syndrome encompasses a broad array of characteristics, 

which include changes in a range of both proximal (phenotypes that respond directly to 

changes in the gene of interest i.e. enzyme activity) and distal (phenotypes that are a 

function of downstream genetic interactions i.e. longevity) phenotypes. While complete 

loss of cSOD results in this broad suite of effects, 50% of WT levels of cSOD activity has 

proven sufficient to fully ameliorate these phenotypes. (Bernard et al., 2011, Jones and 

Grotewiel, 2011, Knee et al., 2013, Parkes et al., 1998b, Phillips et al., 1989, Sun and 

Tower, 1999, and Woodruff et al., 2004).  Evidence suggests that the expression of 

proximal and distal phenotypes is influenced by their genetic context (Jordan et al., 2007, 

Laurie-Ahlberg et al., 1982, Pasyukova et al., 2000, and Yamamoto et al., 2009), but 

many of the defined phenotypic changes associated with cSOD activity have only been 

documented within single isogenic backgrounds (Bernard et al., 2011, Jordan et al., 2007, 

Knee et al., 2013, Laurie-Ahlberg et al., 1982, Parkes et al., 1998b, and Pasyukova et al., 

2000).  In the work presented here, I document the responses of seven phenotypes to two 

ranges of cSOD activity, sex, and eight genetic backgrounds, to define the relative 

influence of each factor on phenotypic variance. 

 The phenotypes observed were most significantly influenced by the amount of 

cSOD activity the flies possessed. Phenotypic expression tended to be most greatly 

modified by a complete lack of cSOD activity and was less sensitive to moderate changes 
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in cSOD, as some cSOD activity was still present, although these changes did have 

significant effects on specific phenotypes. In flies with low cSOD (i.e. 30% cSOD) 

activity, performance in assays of distal phenotypes (longevity, viability, negative 

geotaxis, climbing ability) was impaired relative to that in flies with 50% or 80% cSOD 

activity.  However, quantitative assessments of the proximal phenotypes (MEN, IDH, and 

G6PD activity) in flies with low cSOD (i.e. 30% cSOD) activity may be approximately 

equivalent to, or lower than, that in flies with 50% or 80% cSOD activity, although this 

effect was dependent on the sex of the fly.  This modification in phenotypic response to 

different cSOD activities indicates that the threshold of cSOD activity to generate WT 

phenotypes varies between proximal and distal phenotypes.  

 The absence of cSOD activity results in pervasive changes in phenotypic 

expression, relative to WT phenotypes, and these changes are only enhanced or 

suppressed by sex or genetic background, although the degree does vary between 

phenotypes.  When cSOD activity varies between the 0% and 50% cSOD, and 30% and 

80% cSOD, activity comparisons phenotypes also varied, with higher levels of cSOD 

activity resulting in phenotypes closer to WT levels in each case.  Phenotypes were more 

susceptible to enhancement or suppression by sex and genetic background as long as 

some cSOD activity was present, compared to phenotypes in the absence of cSOD 

activity.    

4.2 Phenotypes 

 

 Complex phenotypes are influenced by multiple genes. Study of these phenotypes 

using isogenic backgrounds may eliminate potential confounding epistatic effects, but 

likely oversimplifies the actual genetic interactions underlying phenotypes (Spencer et 
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al., 2003).  The cSOD-null condition influences a series of distal, as well as proximal, 

phenotypes in D. melanogaster, and many of these phenotypes are known to be 

influenced by genes on the 2nd and 3rd chromosomes (Jordan et al., 2007, Laurie-Ahlberg 

et al., 1982, Leips and Mackay, 2000, and Spencer et al., 2003).  Considering that distal 

phenotypes result from the downstream interactions of multiple genes, and that the 

combined physiological effects of even subtle changes in multiple proximal phenotypes 

might be manifested as dramatic changes in any particular distal phenotype, I expected 

that differences in cSOD activity, sex, and genetic background would have larger effects 

on distal phenotypes than on proximal phenotypes.  Though, the existence of 

redundancies in phenotypic mechanisms may conversely serve to buffer any dramatic 

responses to changes in genetic background.  Interestingly, cSOD activity, sex, and 

genetic background greatly influenced the expression of both the distal and proximal 

phenotypes, with the effect sizes for sex, cSOD activity, and genetic background 

generally following similar patterns of change across cSOD activity ranges.  Overall, the 

distal phenotypes were more sensitive to smaller differences in cSOD activity than the 

proximal phenotypes; the threshold of cSOD activity at which distal phenotypes were 

restored to near WT levels was higher than that for proximal phenotypes.  

4.2.1 Longevity and Genotypic Viability 

 

 Longevity and viability are two components of life history and both are 

influenced by cSOD activity.  Consistent with earlier work focused on the complete lack 

of cSOD activity (Parkes et al., 1998b, and Sun and Tower, 1999), longevity and 

genotypic viability were both significantly reduced in flies with lower amounts of cSOD 

activity, in a dose-dependent manner (Figure 19A and B).  Previous research has 
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demonstrated that longevity is significantly influenced by sex (Pasyukova et al., 2000, 

and Spencer et al., 2003) and second chromosome quantitative trait loci (QTL; 

Pasyukova et al., 2000) and results here indicate that sex and 2nd chromosome modifiers  

interact with cSOD levels to influence these characteristics (Figure 19A, 19C).  

Strikingly, there were no significant differences in longevity across genetic background 

or sex in the 0% cSOD activity flies, though there was an overall trend where females 

lived longer than males across cSOD activities (Figure 19C), similar to other studies in 

Drosophila (Bonduriansky  et al., 2008, and Spencer et al., 2003), possibly reflective of 

differing reproductive strategies between the sexes (i.e. increased hormone production in 

males stimulates the expression of secondary sex traits improving reproductive fitness, 

but reducing longevity; Bonduriansky et al., 2008).  The reduction in longevity observed 

in the absence of cSOD activity was not significantly suppressed or enhanced by sex or 

genetic background.  In contrast, when some cSOD activity is present (30% or higher in 

this study), sex and genetic background both significantly affect the magnitude of 

longevity.  Like longevity, viability was sensitive to levels of cSOD activity and higher 

cSOD activity resulted in higher viability. In contrast to longevity, across the range of 

cSOD activities viability was not sensitive to sex or genetic background; only cSOD 

activity had a significant effect on this phenotype (Figure 19B and D).  Viability, but not 

longevity, is robust to sex and to changes in second chromosome dominant modifiers.   

 Some life history traits have been observed to be robust to differences in genetic 

background (Fry, 2008), although genetic variation in basic life history traits is present 

(Fry et al., 1998).  Longevity and viability are both life history traits, but in this study, 

they differed in sensitivity to genetic background perturbation.  Longevity was heavily 
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influenced by sex and genetic background (Figure 8), whereas viability was more robust 

to these variables, suggesting that longevity is more sensitive to small changes in genetic 

variation.  If the underlying mechanism of viability contains independent, or redundant, 

components, then viability would be more robust to genetic background perturbations 

(Stcarns, et al., 1995), conceivably contributing to the low variation observed in viability, 

compared to longevity, which is known to be sensitive to perturbation (Spencer et al., 

2003).  Surprisingly, longevity and viability in the 80% cSOD activity male and female 

flies, is lower than that in the 50% cSOD activity flies (Figure 19A,B), possibly driven by 

the presence of the transgene in the 80% cSOD activity flies, as genetic background can 

influence the effect of different cSOD activities on some phenotypes (Seto et al., 1990).  

Phenotypes are recovered to WT levels at 50% cSOD activity (Phillips et al., 1989, 

Parkes et al., 1998b, and Bernard et al., 2011), so the presence of the transgene in a fly 

(in combination with the WT cSOD+ allele producing 50% cSOD activity) could effect 

phenotype expression if there is an interaction between the WT cSOD allele and the 

transgene.  Although the T5 transgene is under the control of the native cSOD promoter 

(Parkes et al., 1998b, and Seto et al., 1990), if transgene expression is driven 

indiscriminately in a particular tissue, the redox state of that tissue may be perturbed, 

compared to flies with just the WT cSOD+ allele, ultimately inhibiting tissue function.  

Flies with the combination of the cSOD transgene and the native cSOD+ allele (80% 

cSOD activity), may then have reduced longevity and viability, compared to flies 

possessing just the native cSOD+ allele (50% cSOD activity), based on the presence of 

the transgene.  Response to sex, genetic background, and cSOD activity followed similar 

pattern across both traits, though sensitivity to each factor varied (the change in sex effect 
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was smallest in both viability and longevity and was ~1.5x different; the difference in 

background effect in the two traits was ~2-3x different; while the change in the cSOD 

effect size was largest in the two traits at ~6-21x different from 0%-50% cSOD to 30%-

80% cSOD activity).  

 Viability and longevity differ in sensitivity to sex and genetic background, 

suggesting that related traits may be differentially maintained, i.e. more variation in one 

trait, may more negatively impact overall fitness.  High sensitivity of viability to sex 

would cause sex imbalances in populations, which could decrease overall population 

reproductive fitness.  Sexual dimorphism in longevity likely reflects differences in the 

reproductive strategies between the two sexes (Bonduriansky et al., 2008).  Variation in 

the level of redundancy, or the degree of allelic polymorphism, underlying the 

mechanisms of the two traits, likely underlies the differences in sensitivity of viability 

and longevity to genetic background. 
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Figure 19: Summary of the mean ± SEM data pooled across backgrounds for longevity A) and viability B) 
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across the four levels of cSOD activity surveyed showing the trend of phenotypic response to changes in 

cSOD activity.  Summary of the mean ± SEM background data for longevity C) and viability D) across the 

four levels of cSOD activity surveyed showing the trend of phenotypic response to changes in cSOD 

activity.  

4.2.2 Locomotion 

 

 Locomotion, measured using two complementary assays, was sensitive to 

variation in cSOD activity, and sex, but only one type of locomotion was sensitive to 

genetic background. Flies lacking cSOD activity had reduced performance in both 

negative geotaxis (Figure 20A and B), which evaluates the immediate startle response 

against gravity, and countercurrent locomotion, which evaluates the endurance of the 

adult climbing response following startle stimuli.  Locomotor performance is known to be 

sensitive to naturally segregating genetic variation, including sexual dimorphism and 

second chromosome genetic background (Jordan et al., 2007 and Yamamoto et al., 2009). 

The general poor performance in locomotion at 0% cSOD activity is consistent with 

previous reports that cSOD-nulls exhibit an accelerated rate of age-related locomotor 

impairment (Jones and Grotewiel, 2011).  Performance in the negative geotaxis assay was 

affected by genetic background, sex, and cSOD activity (Figure 20C).  Unlike longevity, 

which showed no variation attributable to sex and genetic background at 0% cSOD 

activity, negative geotaxis was influenced by both factors in the cSOD-null flies.  

Negative geotaxis was significantly influenced by sex across the spectrum of cSOD 

activities, but there was less variation in negative geotaxis across genetic background at 

high levels of cSOD activity compared to at low levels.  The reduced variation observed 

may, however, reflect the nature of the negative geotaxis assay (see below).  Consistent 

with negative geotaxis, flies with higher levels of cSOD activity had greater climbing 

ability, and males had greater ability than did females across both assessments of 
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locomotion. In contrast to negative geotaxis, however, although climbing ability did 

change with cSOD activity levels it was robust to variation in genetic background across 

the range of cSOD activities (Figure 20D).  Also in contrast to negative geotaxis, 

climbing ability was only different in male and female flies in the high cSOD comparison 

(Figure 20D).   

 I found that the two locomotor assays responded in similar, but distinct, ways to 

variation in sex, genetic background, and cSOD activity. These results are consistent with 

previous research on two similar but distinct reactive locomotor phenotypes, startle 

response and negative geotaxis, in which similarities and differences between the 

phenotypes, and different genetic mechanisms for each phenotype, were established 

(Jordan et al., 2007, 2012).  The genetic mechanisms underlying locomotion are poorly 

understood overall, but locomotor behaviour in D. melanogaster has been found to be 

underlain by genetic components including neurotransmitter secretion, neural 

development, nervous system and muscle development, signal transduction, chromosome 

segregation, and copulation (Jordan et al., 2007, and Jordan et al., 2012).  If the 

underlying genetic mechanisms for negative geotaxis and climbing ability are different as 

well, which seems reasonable as selection for modification of one component of 

locomotion is not constant across locomotor types (Jordan et al., 2007, and Jordan et al., 

2012), then it is likely that the different sensitivities to genetic background that were 

observed between these phenotypes result from different responses to 2nd chromosome 

dominant modifiers.  Genes located on the second chromosome, such as muscleblind, and 

Ken and Barbie, as well as a block of SNPs on the 2nd chromosome, have been implicated 
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with variation in locomotor reactivity (Jordan et al., 2007), and negative geotaxic ability 

(Jordan et al., 2012), respectively. 

The negative geotaxis assay was modified to improve the ability to detect small 

differences in performance of low cSOD activity flies, however, this modification may 

have limited the ability of the assay to detect small differences in performance due to sex 

or genetic background in the high cSOD comparison. Consistent with this idea, the 

negative geotaxis assay detected a smaller effect of genetic background in the high cSOD 

comparison, compared to that in the low cSOD comparison. Interestingly, the 

countercurrent assay did not detect significant variation by sex or genetic background in 

the low cSOD comparison.  The lack of detection of modifying effects could reflect the 

endurance nature of the countercurrent assay (Jones and Grotewiel, 2011) in combination 

with the impaired locomotor performance in cSOD-null flies.  However, as there were no 

significant background effects at either the low or high range of cSOD activity in 

climbing ability, this suggests the pattern reflects a real difference between the locomotor 

phenotypes and not a technical limitation of the countercurrent assay.  In general, the 

locomotor assays responded differently to variation in sex and genetic background, where 

sensitivity of the locomotor assays to each factor varied, though the direction of change in 

the effect size (from low to high cSOD activity ranges) for each factor was consistent (the 

change in sex effect in the two traits was ~3-10x different; the change in background 

effect was smallest in the two traits and was ~1.5x different; the change in cSOD effect in 

the two traits was ~3-8x different).  

 Two complementary locomotor assays were performed in an attempt to more fully 

define the genetic background effects in locomotor ability.  Climbing ability and negative 
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geotaxis differed in sensitivity to genetic background, consistent with previous studies 

finding differences exist in the genetic mechanisms underlying similar locomotor traits 

(Jordan et al., 2007, and Jordan et al., 2012).  Both climbing ability and negative 

geotaxis, in this study, had a reactive component, but they differed in the duration (i.e. 

sprint versus endurance) of locomotion measured.  Variation in sensitivity to 2nd 

chromosome dominant modifiers supports the hypothesis that these locomotor 

phenotypes have different genetic mechanisms, though similar responses to different 

levels of cSOD activity and sex, may suggest that some components are shared between 

the traits. 
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Figure 20: Summary of the mean ± SEM data pooled across backgrounds for negative geotaxis A) and 

climbing ability B) across the four levels of cSOD activity surveyed showing the trend of phenotypic 

response to changes in cSOD activity.  Summary of the mean ± SEM background data for negative geotaxis 

C) and climbing ability D) across the four levels of cSOD activity surveyed showing the trend of 

phenotypic response to changes in cSOD activity.    

4.2.3 NADP(H) Enzyme Activity 

 

 The NADP(H)/NADP+ pools in cells are maintained by four key cytosolic 

enzymes; MEN, IDH, G6PD, and 6PGD and significant interactions are present across 

the four (Merritt et al., 2005, 2009, Rzezniczak and Merritt, 2012) and between these 

enzymes and cSOD activity (Bernard et al., 2011).  This last interaction is likely because 

NADP(H) is used by catalase and glutathione-dependent antioxidants to support 

scavenging of hydrogen peroxide produced by SOD (Kanzok et al., 2001).  Consistent 

with Bernard et al. (2011), similar significant interactions were observed between cSOD 

activity and IDH and G6PD activity; an absence of cSOD activity was associated with 

reduced enzyme activity (Figure 21B and C).  In contrast to this study, however, the 

absence of cSOD activity alone did not produce a significant difference in MEN activity, 

although there was a significant sex-by-cSOD activity interaction (Figure 21A), possibly 

reflecting the different genotypes employed here.  

 In both males and females, the activity of the NADP(H) enzymes responded to 

differences in cSOD activity, but responses differed according to sex.  Similar sex-

specific enzyme responses have been observed across the NADP(H) enzymes in which 

males seem to be more sensitive to differences in NADP(H) enzyme genotypes than do 

females (Merritt et al., 2009); there is also a male expression bias in MEN, IDH, and 

G6PD (Gnad and Parsch, 2006).  The complete absence of cSOD activity is associated 

with changes in the activity of IDH and G6PD, but there were no differences in the 

activities of either of the enzymes in the 30% and 80% cSOD comparison (Figure 21B 
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and C), though there was a difference in MEN activity in the 30% and 80% cSOD 

comparison (Figure 21A).  Even small amounts of cSOD activity (30%) appear to restore 

WT activity in the proximal phenotypes.  This recovery is in contrast with results from 

the distal phenotypes above (longevity, viability and locomotion), in which ~50% cSOD 

activity was necessary to recover WT phenotypes.  That different phenotypes would have 

different thresholds of sensitivity is completely expected, but the sensitivity of the 

proximal phenotypes to changes in cSOD activity and the different combinations of sex 

and genetic background, complicates the original expectation that distal phenotypes 

would be more sensitive to genetic factors than the proximal phenotypes.  Observations 

from the NADP(H) pathway illustrating the interactions between MEN, IDH, G6PD, and 

6PGD (Merritt et al., 2009, Rzezniczak and Merritt, 2012), as well as the interactions 

between the NADP(H) enzymes and cSOD observed in Bernard et al., (2011), and in this 

study suggests that the ties between cSOD and the NADP(H) enzymes may not be 

"simple" as expected and instead proximal phenotypes are more complex than initially 

expected. 

 Activity of the NADP(H) enzymes differed across genetic backgrounds, but 

responses varied between the NADP(H) enzymes and across levels of cSOD activity.  

G6PD was sensitive to genetic background across cSOD comparisons (Figure 21F), while 

MEN and IDH were only influenced by genetic background in the high cSOD 

comparison (Figure 21D and E).  G6PD has been observed to be a major source of 

NADP(H) under conditions of oxidative stress (Rzezniczak and Merritt, 2012), so 

sensitivity of G6PD to genetic background in the low cSOD comparison may be a factor 

of the increased role of G6PD under conditions of stress.  The differences in the 
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magnitude of the fold changes of the factor effects across cSOD activities for the 

NADP(H) enzymes, compared to the trends observed in the life history traits, and the 

locomotor traits, were likely related to the fact that the NADP(H) network may only be 

peripherally related to cSOD activity (see last section), and reflect single enzyme 

responses, rather than the overall response of complex mechanisms which underlie the 

distal traits. 

 MEN, IDH, and G6PD are part of an interconnected network, with changes in  the 

activity of one enzyme, resulting in corresponding changes in the activities of the other 

enzymes, though the magnitudes of change vary depending on conditions (Merritt et al., 

2005, 2009, Rzezniczak and Merritt, 2012).  MEN, IDH, and G6PD all have decreased 

activities in the absence of cSOD activity (Bernard et al., 2011); however, this trend only 

applies with males, with sexual dimorphism in NADP(H) enzyme activity across cSOD 

activities.  The differential sensitivities of MEN, IDH, and G6PD to genetic background 

at different levels of cSOD activity, and sex, indicates that while proximal phenotypes are 

more "simple" than distal phenotypes, they are still complex and can be affected by 

interactions with genetic background and sex. 
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Figure 21: Summary of the mean ± SEM data pooled across backgrounds for MEN activity A) IDH 

activity B) and G6PD activity C) across the four levels of cSOD activity surveyed showing the trend of 

phenotypic response to changes in cSOD activity.  Summary of the mean ± SEM background data for MEN 

activity (units/μg protein) D) IDH activity (units/μg protein) E) and G6PD activity (units/μg protein) F) 

across the four levels of cSOD activity surveyed showing the trend of phenotypic response to changes in 

cSOD activity.    

4.3 The absence of cSOD activity had the largest effect on 
phenotypes, distal and proximal 

 cSOD-null D. melanogaster have been observed to have altered phenotypic 

expression, though these changes are recovered in flies possessing 50-60% cSOD activity 
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(Parkes et al., 1998b).  cSOD activity was the most important factor controlling 

phenotypic magnitude when cSOD activity was low, potentially as a result of overarching 

metabolic changes caused by the loss-of-function of a key antioxidant defence enzyme.  

Using a series of phenotypes I observed that phenotypes were generally most altered in 

0% cSOD activity flies, with cSOD activity greater than 50% ameliorating these 

phenotypes to WT levels.  The magnitudes of response varied according to phenotype, 

though there are predominantly large fold changes in effect size for cSOD activity, with 

larger phenotype effects in the low cSOD comparison.   

 At 50% cSOD activity, distal phenotypes were recovered to WT levels, however, 

across proximal phenotypes 30% cSOD activity was sufficient to recover phenotypes to 

WT levels (Figure 19,20,21).  The differential response of the proximal and distal 

phenotypes assayed suggests that different threshold concentrations of cSOD activity are 

required to produce WT phenotypes, potentially due to different mechanisms of 

interaction of the phenotypes with cSOD.  Multiple genes interact to generate the four 

distal phenotypes observed (Jones and Grotewiel, 2011, Pasyukova et al., 2000, and 

Spencer et al., 2003), and if cSOD is directly involved in these interactions, changes in 

cSOD activity could influence phenotypic magnitude by altering the interactions that 

occur, with 50% cSOD representing enough cSOD activity to recover WT interactions.  

The NADP(H) network is at least peripherally related to cSOD function, as NADP(H) is  

heavily relied upon to support virtually all aspects of the antioxidant defence network 

downstream of cSOD (Phillips et al., 1989).  MEN, IDH, and G6PD activity were defined 

as proximal phenotypes, as enzyme activities were not considered to fall under the 

categorization of distal phenotypes, which result from complex downstream gene 
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interactions (Chari and Dworkin, 2013).  However, MEN, IDH, and G6PD are part of an 

interconnected network, so changes in activity of one enzyme results in changes in the 

activities of the other enzymes (Merritt et al., 2009, Rzezniczak and Merritt, 2012).  

Similarly, MEN, IDH, and G6PD activities have also been shown to change in response 

to the absence of cSOD activity (Bernard et al., 2011).  The responses of the three 

NADP(H) enzymes to changes in cSOD activity, and to changes in the activity of other 

enzymes in the NADP(H) network, suggests that the phenotypes I originally classified as 

(and chose to study as representative examples of) proximal phenotypes are still complex 

as phenotypes.  Clearly, their activities are influenced by multiple genes, and possibly 

only indirectly by cSOD, as the results here demonstrate that NADP(H) enzyme activity 

is restored to WT levels with fairly low cSOD activity.  My observations here suggest 

that the phenotypes defined as proximal are less "simple" than expected.  Different cSOD 

activity thresholds for the defined proximal and distal phenotypes are likely the result of 

differences in the underlying mechanisms (i.e the degree of network redundancy or, level 

of allelic polymorphism) governing the traits, and their differing relationships to cSOD 

activity.   

 The absence of cSOD activity results in overarching changes in phenotypes, 

proximal and distal, affirming that the cSOD-null syndrome is pervasive across genetic 

backgrounds.  Examination of phenotypic variation across the four cSOD activities 

demonstrated that the proximal and distal phenotypes, used in this study, have different 

thresholds of cSOD activity required to restore WT phenotypes; different phenotypes 

interact with cSOD to different degrees.  Overall, variation in cSOD activity causes 

pervasive changes in phenotypes of both sexes. 
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4.4 Genetic background effects depend on interactions with 
other factors and the phenotypes being examined 

 

 Eight genetic backgrounds were selected from the DGRP lines according to the 

performance of the parent lines in longevity, fitness, paraquat resistance, and startle 

response (Mackay et al., 2012), and 2nd chromosomes were extracted from these lines for 

use as genetic backgrounds in this study.  I hypothesized that unique alleles of enhancer 

or suppressor loci present on the extracted 2nd chromosomes would modify expression in 

the observed phenotypes.  However, even though the DGRP lines used were specifically 

selected, there was no guarantee that the phenotypes would be a function of 2nd 

chromosome dominant modifiers.  Viability and climbing ability were not significantly 

affected by genetic background, while negative geotaxis and longevity were.  The 

proximal phenotypes (NADP(H) enzyme activities) were influenced by genetic 

background variably depending on cSOD activity and the particular NADP(H) enzyme.     

 Intriguingly, the lines selected for high and low performance in startle response 

and longevity, did not have the same effect in the derived lines as in the parent lines. 

Differential phenotypic responses of the derived lines compared to the parental lines 

suggests the effect of the 2nd chromosome modifiers depends on whole organism 

genotype.  The health and potential to generate damaged proteins varies within each 

parent DGRP line (Huang et al., 2014), and overall line health is dependent on total 

organism genotype.  Extracting "high" and "low" line chromosomes from the parent lines 

alters their genetic context, and exposes them to different modifiers in the progeny than in 

the parent lines, presumably altering the epistatic interactions which occur.  Phenotypes 

result from the interactions of multiple genes (Chandler, Chari, and Dworkin, 2013, and 

Chari and Dworkin, 2013), therefore, changing the genetic elements present alters the 
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interactions that may be manifest in the resultant phenotypic expression.  As second 

chromosome heterozygotes were used I could only determine the effects of dominant 

modifiers, so the insensitivity of viability and climbing ability to background observed in 

this study may indicate that these phenotypes are insensitive to second chromosome 

dominant modifiers, rather than to genetic background effects overall.  However, if 

viability and climbing ability are canalized traits, and there is low variation in the loci 

influencing their underlying genetic mechanisms, the phenotypes would be robust to 

minor changes in genetic background.  Similarly, significant background effects have 

been observed across activity mutants from amorphs to hypermorphs (Chari and 

Dworkin, 2013).  The lack of response to genetic background observed in some of the 

phenotypes in the absence of cSOD (amorph), or in the other genotypes (all 

hypomorphs), further supports the idea that response of phenotypes to genetic 

background is phenotype dependent.   

 None of the selected backgrounds demonstrated consistent ability to strengthen or 

weaken effects of the cSOD-null genotype, regardless of the phenotype they were chosen 

for (Table A8).  Genetic backgrounds tended to perform more similarly across the 

proximal than the distal phenotypes, however there was no common trend of suppression 

or enhancement in background performance across sex and cSOD activities.  Even 

though the genetic backgrounds did not perform as hypothesized, according to parental 

performance, possibly due to trade-offs (Spencer et al., 2003) in chromosome 

performance resulting from extraction, it was unexpected that none of the backgrounds 

showed consistent ability to enhance or suppress any of the cSOD-null phenotypes.  Only 

eight genetic backgrounds were used in this study, and all of the parent DGRP lines were 
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derived from the same initial population in North Carolina (Mackay et al., 2012), so the 

number of genetic variants present in this study may have been too low for such a large 

effect modifier to be present.  Similarly, the genetic composition of the second 

chromosome likely played a role in the lack of a pervasive enhancer or suppressor effects 

detected.  For example, antioxidant enzymes might reasonably be hypothesized to 

suppress the effects of the cSOD-null syndrome, as these flies are under chronic oxidative 

stress; however, many of the major antioxidants cSOD (Flybase, 2016c), catalase 

(Flybase, 2016a), glutathione peroxidase (Flybase, 2016b), and thioredoxin (Flybase, 

2016e), are not located on the second chromosome.  Similarly, antioxidant enzymes that 

are present on the second chromosome, for example MnSod (Flybase, 2016d), may 

localize to different areas of the cell (Bafana et al., 2011, and Miller, 2012), or profound 

suppressor and enhancer effects may simply not have been detectable by dominant 

modifier screens.   

 Genetic background had a significant effect on most phenotypes; however, its 

effect varied with interactions with cSOD activity, and sex.  The absence of pervasive 

directional modification of the phenotypes, in any of the genetic backgrounds, may be a 

consequence of the 'small' (single chromosome) genetic background used; however, as  

significant background effects were detected in many of the phenotypes surveyed, this 

seems unlikely.  Variation in response of similar phenotypes to genetic background, and 

the absence of any one background with strong directional effects, likely reflects different 

degrees of redundancy, and allelic polymorphism in the phenotypic mechanisms.  

Response of phenotypes to the same genetic background is likely influenced by the 

differing fitness consequences for variation in each trait. 
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4.5 Sex had the largest effect on phenotypes, distal and 
proximal, in the high cSOD activity comparison 

 

 Changes in phenotypic expression associated with cSOD activity have been 

previously documented primarily in males (Bernard et al., 2011, Knee et al., 2013, and 

Parkes et al., 1998b), however sex-specific differences have been documented across 

various D. melanogaster phenotypes, including biochemical phenotypes (Jordan et al., 

2007, Merritt et al., 2009, and Spencer et al., 2003).  Consistent with this literature 

(Jordan et al., 2007, Merritt et al., 2009, and Pasyukova et al., 2000) I observed sexual 

dimorphism in longevity, negative geotaxis, climbing ability, and NADPH enzyme 

activity, but not in viability.  In the distal phenotypes the magnitude of male and female 

response varied, but direction was constant, while in the proximal phenotypes male and 

female response varied in magnitude and direction.  

 Sex had the largest effect on phenotypes in the 30%-80% cSOD comparison 

(Figure 8).  Males and females have the same cSOD activity in the 0%-50% cSOD flies, 

but have significantly different cSOD activity in the 30%-80% cSOD comparison, 

although the relative difference in activity was fairly consistent between males and 

females.  One interpretation of these results is that the sex dimorphism in phenotypes 

observed at high cSOD activity was driven by differences in cSOD activity between 

males and females.  Sex dimorphism in longevity has been previously noted in flies over-

expressing cSOD, and one hypothesis for this phenomenon was the existence of different 

levels of cSOD activity between males and females (Spencer et al., 2003). While the 

measured cSOD activities for the 30%-80% cSOD comparison are consistent with the 

existence of sex dimorphism in cSOD activity, this trend was not observed in the 0%-

50% cSOD comparison.  Sex dimorphism was observed in longevity, negative geotaxis, 
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MEN activity, and G6PD activity in the 0%-50% cSOD comparison but there was no 

significant sex dimorphism in the actual levels of cSOD activity. There was also no sex 

dimorphism observed in viability at any level of cSOD activity.   

 An alternate hypothesis for the sexual dimorphism in cSOD activity observed in 

the 30%-80% cSOD comparison, but not the 0%-50% cSOD comparison, may be 

differential expression of the cSod transgene between male and female flies; for example, 

if female expression of the cSod transgene is greater than that in males (i.e. sex biased 

transgene expression/activity in the females).  Sex differentiation between males and 

females, simplistically, entails the activation and suppression of different genes, as well 

as sex-influenced epistasis (Rhen, 2000); studies of gene expression in males and females 

have demonstrated that a substantial portion of the D. melanogaster transcriptome 

demonstrates sex-dependent regulation (Ranz et al., 2003).  Differences in cSod 

transgene regulation between sexes would explain both the higher female cSOD activity 

in the 30% and 80% cSOD comparison, as well as the relatively consistent difference in 

30% and 80% cSOD activity between males and females.  Differential expression of the 

cSod transgene would also explain the lack of sexual dimorphism in cSOD activity in the 

0%-50% cSOD comparison, as they do not possess the transgene.  Consistent with the 

hypothesis of transgene driven sex dimorphism in cSOD activity, no sex bias in 

expression has been observed in D. melanogaster at the cSOD locus (Gnad and Parsch, 

2006).  Different levels of sex dimorphism across phenotypes, in the presence and 

absence of the cSod transgene, suggests that while sex dimorphism in actual levels of 

cSOD activity may exist, sensitivity to cSOD activity is likely not the only contributing 

factor to the sex dimorphism observed in phenotypes (Kopp et al., 2003).   
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 Sexual dimorphism in morphology, physiology and biochemistry, and behaviour 

in D. melanogaster is thought to primarily be directed by the dsx controlled branch of sex 

differentiation (Clough et al., 2014).  It is hypothesized that polygenic genes, which 

subtly influence development and physiology, are regulated by dsx, which may explain 

the genetic background effects on some sex-related phenotypes (Clough et al., 2014).  

Life history traits, including viability and longevity (Bonduriansky et al., 2008), as well 

as locomotor ability (Long and Rice, 2007) contribute to the reproductive success of adult 

D. melanogaster; and longevity (Spencer et al., 2003, and Pasyukova et al., 2000), and 

locomotion (Jordan et al., 2007 and Yamamoto et al., 2009) are influenced by genetic 

background.  While the complete mechanism(s) by which dsx controls sexually 

dimorphic phenotypes are not fully understood, slight differences in patterns of dsx 

regulation due to the genetic variation present across the genetic backgrounds, as well as  

the variation in cSOD activity, could have culminated in the variation in sexual 

dimorphism observed across phenotypes.   

 cSOD activity was the most important factor in determining phenotypic 

magnitude in the 0% and 50% cSOD activity comparison; however, sex was among the 

most important factors in the 30% and 80% cSOD comparison.  The large effect of sex on 

phenotypes, and the novel female sex response observed in NADP(H) enzyme activity in 

females across cSOD activities, demonstrates the importance of including males and 

females in genetic analyses, as complete understanding of the genetic basis of phenotypes 

requires analysis of the genetic mechanisms in both sexes. 
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4.6 Conclusion 

 

 In the current study I provided evidence that across sex and genetic background, 

the absence of cSOD activity causes large responses across phenotypes, consistent with 

established features of the cSOD-null syndrome.  Novel NADP(H) enzyme responses to 

the cSOD-null syndrome were also observed in female flies.  My results indicate that 

different levels of cSOD activity influence phenotypic magnitude, though the threshold 

amount of cSOD activity required to revert a phenotype to what is considered the WT 

level differs in the proximal and distal phenotypes assessed.  I provided evidence that 

sensitivity to genetic background depends on the phenotype being examined, and what 

might be perceived as similar phenotypes are not equally sensitive to genetic background, 

with the overall effect size of genetic background depending on interactions with other 

factors.  Moreover, no genetic backgrounds were found that represented overarching 

phenotypic enhancers or suppressors of SOD-dependent phenotypes across genetic 

conditions.  These results have shown that male and female flies can drastically differ in 

their phenotypic responses to the same factors, supporting the notion that utilization of 

both male and female animals should be encouraged in studies of 

biochemical/physiological processes in Drosophila.  Overall, the results demonstrate that 

the cSOD-null syndrome is pervasive across genetic background and sex.  However, as 

long as some cSOD activity is present most of the established cSOD-dependent 

phenotypes are influenced by sex and genetic background, suggesting that genetic 

interactions cannot be conclusively identified if they are examined in limited genetic 

contexts.  
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Chapter 5 General Conclusions and Future Work 

5.1 General Conclusions 

 

 I assessed the influence of three factors; cSOD activity, sex, and second 

chromosome genetic background, on a range of phenotypes which have been identified as 

part of the cSOD-null syndrome in Drosophila.  I found that two of the factors, cSOD 

activity and sex, followed consistent, and converse, trends of influence across 

phenotypes, with low levels of cSOD activity having the greatest influence on 

phenotypes, while at high cSOD activity, sex tended to have the largest influence on 

phenotypes.  In contrast, I found that the genetic background effect was more 

phenotypically dependent than were the effects of cSOD activity and sex; i.e. whether or 

not genetic background had an effect varied across the phenotypes.  My results 

demonstrate that while there is some variation in the phenotypes at 0% cSOD activity, the 

defined cSOD-null syndrome is pervasive and in no genetic background is this syndrome 

substantially reduced.  Further, with the assessment of phenotypes in both male and 

female flies my research expands the defined cSOD-null syndrome and identifies sex-

specific differences; e.g. that changes in NADPH enzyme activity across levels of cSOD 

activity differ in female and male flies.  Similarly, the assessment of two locomotor 

phenotypes, negative geotaxis and climbing ability, demonstrates that phenotypes that 

seem similar do not necessarily have similar sensitivities to different factors.   

 Up to now, all of the cSOD studies performed in the Merritt lab, and most studies 

from other groups examining cSOD in Drosophila, have been performed using the same 

cSOD-null allele, cSodn108.  However, the absence of a matched cSod+ control allele for 

the cSodn108 allele, limits the type of genetic background analyses that can be performed 
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using these lines.  Similarly, the predominant use of a single null allele to define the 

cSOD-null syndrome does not take into account the possibility that some of the 

phenotypic differences may be a quirk of the structure of the cSodn108 allele.  

Consequently, the phenotypes observed in Chapters 3 and 4 may reflect specific epistatic 

interactions with the cSodn108 allele, or they may be reflective of the lack of cSOD activity 

overall.  Potential future projects examining cSOD should include the generation and 

characterization of new cSod+/- matched alleles, or stocks, and further analysis of cSOD 

phenotypes, including chromosomal substitution, and genome-wide association studies 

(GWAS).   

5.2 Project 1: Generation of cSod-/+ Alleles 

 

 Future work in the Merritt lab will aim to generate a new series of cSod- alleles 

which will have matched controls with 100% cSOD activity in the parent lines, allowing 

direct phenotypic comparisons to be made across a full range of cSOD activities (0%-

100% activity).  The absence of the requirement for the cSod transgene on the 2nd 

chromosome would also allow future studies to expand on the genetic background 

analyses that can be performed on cSOD.  Null alleles can be generated using a number 

of different mutagenic techniques, which vary in their effectiveness for specific gene 

targeting. 

 Forward genetic screens, such as ethyl methanesulfonate mutagenesis (EMS), 

generate mutations at random, and the genes that have been mutated are identified 

through phenotype and sequence analysis (Lin, et al., 2014).  Forward genetic approaches 

have done a great deal for genetic studies, however, these types of approaches are 

untargeted, so specific genes cannot be chosen a priori for mutagenesis, and 
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identification of the sites that are mutated can be labour intensive and time consuming 

(Bellés, 2010, and Lin, et al., 2014).  Chromosomal sites may also be differentially 

sensitive to mutagens, which can limit the genes that are affected by forward genetic 

screens (Bellés, 2010, and Lin, et al., 2014).   

 The cSodn108 allele was generated using EMS, and possesses a point mutation that 

causes a missense mutation, ultimately generating a non-functional (null) enzyme 

(Phillips et al., 1995).  The cSodn108 allele does not have a matched cSod+ allele, as the 

original EMS mutated chromosome was lost subsequent to the generation of the null 

allele.  Since the generation of the cSodn108 allele by Campbell, Hilliker, and Phillips, 

(1986) via EMS, gene editing technologies have advanced.  Reverse genetic screens, 

allow specific genes to be targeted for mutagenesis, meaning that new cSOD-null alleles, 

or cSOD null activity lines can be generated via specific gene editing.   

 A widespread reverse genetic screening method is RNA interference (RNAi), 

which takes advantage of a natural cellular process that targets messenger RNA (mRNA) 

for degradation (Bellés, 2010, and Hannon, 2002).  In RNAi, specific sequences can be 

generated to target the gene of interest, and these sequence fragments bind the target 

mRNA  to block and degrade it (Bellés, 2010, and Hannon, 2002).  As the target 

sequences are short fragments they can potentially target multiple genes if their mRNAs 

share segments of uninterrupted sequences (Sharp, 2001), suggesting sequence specificity 

is required for targeted knock down generation.  Organisms are differentially susceptible 

to RNAi, with less derived (closer to their 'natural' condition i.e. less lab evolved) 

organisms generally more sensitive to RNAi; as such, D. melanogaster, a highly derived 

model organism, can be poorly sensitive to RNAi (Bellés, 2010).  However, cSOD 
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(Martin, et al., 2009) and MnSOD (Kirby et al., 2002) knockdown flies have been 

generated via RNAi, and mutant phenotypes in the two RNAi induced SOD lines have 

been identified, suggesting that RNAi can be successfully used to generate cSOD activity 

mutants.  It should also be noted that as RNAi knocks down activity by binding to the 

mRNA of the gene of interest (Matzke, et al., 2001), enzyme activity in not completely 

knocked down by this process, so true "knockouts" are not being generated.  As genes 

themselves are not being altered, the "knocked-out" enzyme activity is not necessarily 

heritable. 

 Clustered regularly interspaced short palindromic repeat (CRISPR) is an alternate 

method of reverse genetic screening, which was derived from a bacterial defence system, 

but has been used in Drosophila for targeted mutagenesis (Bassett and Liu, 2013).  

Specific genome sequences are edited, in the CRISPR system, by targeting a Cas9 

complex to a specific DNA sequence to generate double strand breaks, which, when 

inefficiently repaired by DNA repair processes, such as non-homologous end joining 

(NHEJ), result in mutations that can be transmitted through the Drosophila germ-line 

(Bassett and Liu, 2013, and Bassett et al., 2013).  CRISPR can be targeted to protein 

forming genes, as well as functional sites, so changes in gene activity and gene regulation 

can both be examined (Bassett et al., 2013).  CRISPR induced mutagenesis can have a 

very low mutagenic rate in flies (i.e. ~5.9%; Bassett and Liu, 2013), though different 

methods of delivering the CRISPR components, such as injection of components (Bassett 

et al., 2013), or crossing of transgenic parents expressing the different components 

(Kondo and Ueda, 2013) can improve the mutagenic rate.  Specific genome sequences 

can be targeted, according to the design of the sgRNA (synthetic guide RNA), but target 
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specificity may be low as the sgRNA recognition site is fairly small, though the small 

genome size in Drosophila means low specificity is less of an issue (Bassett and Liu, 

2013).  MnSOD activity has been successfully knocked down via CRISPR/Cas9 in the 

human HEK293T cell line (Cramer-Morales et al., 2015), suggesting that it should be 

possible to generate cSOD mutants in Drosophila.   

 SOD alleles have been successfully edited via both RNAi and CRISPR, indicating 

that both methods could potentially be used to generate new cSOD+/- flies.  As RNAi does 

not truly generate new "alleles", CRISPR may be a better method for long term 

applications, however, RNAi can be used to examine tissue specific activity knock-down.  

The DGRP lines are a suite of approximately 200 fully sequenced D. melanogaster lines, 

which show phenotypic variation (Mackay et al., 2012), allowing the line cSod sequences 

to be analyzed, and new cSod alleles to be potentially generated in multiple WT cSod 

alleles.  Generation of the cSod- alleles using multiple existing WT alleles from the 

separate DGRP lines, will allow the evaluation of the influence of allele structure on 

cSOD phenotypes, but will also allow the expansion of genetic background analyses on 

cSOD related phenotypes.  

5.3 Project 2: Expansion of Genetic Background Influence on 
cSOD Phenotypes 

 

 Future work in the Merritt lab will also work to characterize the cSod+/- alleles 

generated using the DGRP lines, as well as re-characterizing the cSOD-null syndrome 

with the new alleles to determine whether the syndrome is consistent across disparate, 

'natural', D. melanogaster genetic backgrounds.  Chromosomal substitution lines can also 
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be generated using the DGRP cSod+/- alleles to analyze the influence of zygosity on 

cSOD phenotypes.   

  Phenotypes are context dependent, meaning that genetic and environmental 

components influence the final expression of phenotypes (Chandler et al., 2013).  The 

analyses performed in this study only screened for the influence of 2nd chromosome 

dominant modifiers, and the effect of 2nd chromosome genetic background was dependent 

on the phenotypes examined.  Some phenotypes (e.g. viability, cSOD activity), were 

insensitive to changes in genetic background, while other phenotypes (e.g. longevity, 

G6PD activity), were sensitive to genetic background. These results, however, only 

indicate sensitivity to 2nd chromosome dominant modifiers, not to genetic background 

overall or to recessive mutations.  With the T0 and T5 lines, the presence of the cSod 

transgene on the 2nd chromosome and the cSod gene on the  3rd chromosome, combined 

with the lack of a true cSod+ control, restricts the genetic background analyses that can be 

performed via chromosomal substitution using these lines.   

 Chromosomal substitution is the replacement of one or more chromosomes with 

chromosomes derived from a separate source (i.e. individual, line), via a crossing scheme 

(Mackay, 2009).  In this study I generated chromosomal substitution lines across 2nd 

chromosome genetic backgrounds; however, these chromosomes were introgressed into 

lab line derived genotypes that were essentially isogenic.  cSOD activity is known to be 

influenced by genetic modifiers on the 2nd chromosome, as well as on the 3rd 

chromosome, where the structural cSOD gene is located (Graf and Ayala, 1985).  This is 

contrary to the results from this study that indicate that cSOD activity was not influenced 
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by 2nd chromosome genetic background, though this insensitivity may have been due to 

the isogenic nature of the genotypes other than the 2nd chromosome.     

 The cSod+ and cSod- alleles generated in the DGRP lines (previous section) could 

be used to generate chromosomal substitutions that would vary not only in the zygosity of 

the allele (i.e. homozygous recessive, heterozygous, homozygous dominant) but also in 

the zygosity of the cSod allele present (i.e. cSod1+/1+, cSod1+/2+, or cSod2+/2+), as well as 

in the zygosity for the chromosomes present (i.e. X1/X1 ; 21/22 ; 32/32).  These substitution 

lines can then be used to explore a range of questions including to what degree the 

phenotypes in the introgressed line(s) differ from the parental lines, how the cSOD-null 

syndrome is influenced when the substitution line is heterozygous for null alleles (i.e. the 

alleles are derived from different DGRP lines), as well as identifying the distribution of 

the phenotypic modifiers across the X, 2nd and 3rd chromosomes.  

 As a model system, D. melanogaster is highly amenable to studies of 

chromosomal substitution, since there are only three chromosome pairs to track during 

genetic crosses.  Generation of large scale cSOD substitution lines, and subsequent 

phenotypic analysis of these lines will further knowledge towards not only defining a 

comprehensive cSOD-null syndrome, but will also contribute towards establishing which 

types of phenotypes are canalized, and as such are robust to genetic background.  Aside 

from contributing towards defining existing variation in phenotypes, cSOD chromosome 

substitution lines will also allow epistatic interactions to be mapped via fine scale genetic 

mapping techniques, such as GWAS. 
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5.4 Project 3: GWAS on cSOD Phenotypes  

 

 Future work in the Merritt lab could also use the cSod+/- alleles generated in the 

DGRP lines, as well as the derived chromosome substitution lines, to determine the 

genetic locations contributing to epistatic effects at different levels of cSOD activity, and 

how they vary across DGRPi backgrounds.  Mapping epistatic interactions associated 

with cSOD will contribute to existing knowledge on the genetic regions that cSOD is 

known to interact with, as well as providing novel information on how epistatic effects 

vary across levels of cSOD activity in D. melanogaster.   

 GWAS are a statistical method used to connect phenotypes to genotypes by 

examining the complete genomes of the sample organisms and identifying genetic 

variants that contribute to the phenotypes, including genetic loci and regulatory regions 

(Flint, 2013, and Nuzhdin, et al., 2012).  GWAS primarily relate single nucleotide 

polymorphisms (SNPs) to the phenotype or condition being analyzed (Pearson and 

Manolio, 2008).   GWAS are usually untargeted studies as specific regions of the genome 

are not targeted for exploration; rather, this method is used to identify genetic variants 

contributing to a trait regardless of where they occur (Flint, 2013).  Disease phenotypes 

are among the most common types of phenotypes analyzed using GWAS, but they can 

also be used to analyze variation contributing to quantitative traits (polygenic traits with 

quantifiable variation e.g. longevity; Flint, 2013, and Pearson and Manolio, 2008).  

GWAS are better able to detect when common genetic variants contribute to phenotypes, 

so they are limited in their ability to detect rare genetic variants that contribute the 

majority of variation in the phenotype of interest (Flint, 2013).  Similarly, samples that 

vary greatly in their haplotype structure (i.e. derived from vastly different populations), 
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can confound variant detection by GWAS (Flint, 2013), as different haplotype 

architectures will not share the same "common" genetic variants.  However, the option to 

input variables (Pearson and Manolio, 2008), such as sex, age, and geographic 

background in GWAS can help to prevent confounding results by controlling for their 

cause.  

 The nature of the DGRP lines makes them amenable to GWAS for several 

reasons.  First, as the lines were all derived from the same natural population of D. 

melanogaster in North Carolina, the haplotype structure of the population should be 

relatively consistent, which reduces confounding effects during the analyses (Mackay et 

al., 2012).  Similarly, the DGPR line genomes are fully sequenced, with the sequences 

and phenotypic data available online (Huang et al., 2014, and Mackay et al., 2012), 

which increases the power of detection in GWAS as the data from the DGRP lines not 

used directly in the study can still contribute to the reference database, improving the 

power of the analyses.   

 The chromosomal substitution lines developed for the previous project (previous 

section), localising phenotype modifiers to the different chromosomes, can similarly be 

used in GWAS to specifically map enhancers and suppressors of cSOD phenotypes, and 

how they vary, or not, across genetic backgrounds.  GWAS on the cSod+/- substitution 

lines could also be used to corroborate, or oppose, results from the literature which link 

cSOD with loci such as Wwox (O'Keefe et al., 2011), MnSod (Lim et al., 2014), and Trxr-

1 (Missirlis, Phillips, and Jäckle, 2001), as well as exploring differences in epistatic 

effects between the cSod allozymes. 
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 As discussed in the introduction, the cSod gene has two allozymes, cSod-fast and 

cSod-slow, and cSOD studies examining cSOD-null phenotypes have been performed 

predominantly with the cSod-fast allozyme (Bernard et al., 2011, Knee et al., 2013, 

Martin, Jones, and Grotewiel, 2009, Parkes et al., 1998b, Phillips et al., 1995, Phillips et 

al., 1989, Sun and Tower, 1999, and Woodruff et al., 2004) as it was the allozyme the 

cSodn108 null allele was generated from (Campbell et al., 1986), and is the more common 

allozyme (Ayala, et al., 2002).  Due to the predominant use of the cSod-fast allozyme in 

cSOD studies, or the failure to clarify the allozyme used, there is less information on how 

the cSod-slow and cSod-fast allozymes differ in phenotypes related to the cSOD-null 

syndrome, and epistatically.  GWAS comparing the two cSod allozymes would work to 

elucidate epistatic differences between them. 

 Previous GWAS studies in the DGRP lines have examined phenotypes such as 

sensitivity to chronic oxidative stress (Jordan et al., 2012), resistance to ROS-induced 

locomotor decline (Jordan et al., 2012), and longevity (Ivanov et al., 2015) and variation 

has been found in the DGRP lines for these traits.  Sensitivity to chronic oxidative stress, 

locomotor decline, and longevity are all phenotypes which can also be influenced by 

changes in cSOD activity (Martin, et al., 2009 and , Phillips et al., 1995).  Although 

variation in Sod was not found to influence all the traits examined by GWAS (Jordan et 

al., 2012), this may simply be indicative of a lack of variation in the Sod loci in the 

DGRP lines, or the presence of rare alleles.  However, as the traits to be examined are 

related to the cSod+/- state, variation in Sod that is introduced as part of the phenotype, 

which will circumvent this potential limitation. 
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5.5 Conclusions 

 

 The results from my research describe the variable effects of changes in cSOD 

activity on phenotypes across genetic backgrounds and between sexes.  My results 

suggest that the defined cSOD-null syndrome is pervasive, even across genetic 

backgrounds.  Interestingly, my results also suggest that at higher cSOD activity more 

variation in phenotypes is attributable to sex and genetic background.  Novel sex specific 

responses to different genetic backgrounds and cSOD activities demonstrate that male 

and female response can vary not only in the magnitude of the response, but also in the 

direction of the response.  However, results from this study were limited by the genetic 

architecture of the T0 and T5 lines, which restricted genetic background analyses to 2nd 

chromosome dominant modifiers.  Generation of novel cSod+/- alleles in the DGRP lines 

would create matched cSOD-null and cSOD control lines for use in further analyses, 

including corroborating the defined cSOD-null syndrome with novel cSod- alleles, as well 

as expanding cSOD genetic background analyses on phenotypes and identification of 

genetic variants interacting with the cSod locus under various genetic conditions. 
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Appendices 

 

 
Figure A1: Summary of the mean ± SEM background responses for cSOD activity showing the trend of 

cSOD activity response to changes in genotype, with cSOD activity measured standardized by protein 

concentration (units/μg protein).  0% and 50% cSOD Activity: cSOD Activity - F1,127 = 84.1, p < 0.0001, 

ηp
2 = 0.40.  30% and 80% cSOD Activity: cSOD Activity - F1,124 = 158, p < 0.0001, ηp

2 = 0.56; Sex - F1,124 

= 9.65, p = 0.0023, ηp
2 = 0.072 

. 
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Table A1:  Raw longevity ANOVA outputs indicating significance of factors and their interactions, as well 

as the effect sizes of individual factors and interactions.  Bolded values denote significant factors in 

longevity determination. 

Source  d.f. MS F P ηp
2 

T0 - 0% and 50% cSOD Activity Cross   

Sex 1 20926.2 116 <.0001 0.0497 

Background 7 645.0571 3.59 0.0008 0.0111 

cSOD Activity 1 1446024 8040 <.0001 0.783 

Sex X Background 7 1317.286 7.33 <.0001 0.0225 

Background X cSOD Activity 7 561.4857 3.12 0.0028 0.00972 

Sex X cSOD Activity 1 6330 35.2 <.0001 0.0156 

Sex X Background X cSOD Activity 7 788.1 4.38 <.0001 0.0136 

Error 2227 179.8    

      

T5 - 30% and 80% cSOD Activity Cross  

Sex 1 20660.74 66.1 <.0001 0.0380 

Background 7 1768.072 5.66 <.0001 0.0231 

cSOD Activity 1 20267.86 64.9 <.0001 0.0373 

Sex X Background 7 910.6223 2.91 0.0049 0.0120 

Background X cSOD Activity 7 1884.536 6.03 <.0001 0.0246 

Sex X cSOD Activity 1 23.43 0.0750 0.784 4.48E-05 

Sex X Background X cSOD Activity 7 399.7026 1.28 0.257 0.00533 

Error 1673 312.41    

 

Table A2:  Raw viability ANOVA outputs indicating significance of factors and their interactions, as well 

as the effect sizes of individual factors and interactions.  Bolded values denote significant factors in 

viability determination. 

Source  d.f. MS F P ηp
2 

T0 - 0% and 50% cSOD Activity Cross   

Sex 1 0.00566827 0.856 0.356 0.00595 

Background 7 0.001510739 0.228 0.978 0.0110 

cSOD Activity 1 0.70608036 107 <.0001 0.427 

Sex X Background 7 0.003158474 0.477 0.850 0.0228 

Background X cSOD Activity 7 0.012290796 1.86 0.081 0.0833 

Sex X cSOD Activity 1 0.00008999 0.0136 0.907 9.51E-05 

Sex X Background X cSOD Activity 7 0.008188177 1.24 0.286 0.0571 

Error 143 0.006619    

      

T5 - 30% and 80% cSOD Activity Cross  

Sex 1 0.02009631 1.40 0.238 0.00938 

Background 7 0.010275356 0.717 0.658 0.0328 

cSOD Activity 1 0.16066292 11.2 0.001 0.0704 

Sex X Background 7 0.002961606 0.207 0.984 0.00967 

Background X cSOD Activity 7 0.010056117 0.701 0.671 0.0321 

Sex X cSOD Activity 1 0.00034346 0.0240 0.877 0.000162 

Sex X Background X cSOD Activity 7 0.005488663 0.383 0.911 0.0178 

Error 148 0.014339       
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Table A3:  Raw negative geotaxis ANOVA outputs indicating significance of factors and their interactions, 

as well as the effect sizes of individual factors and interactions.  Bolded values denote significant factors in 

negative geotaxis determination. 

Source  d.f. MS F P ηp
2 

T0 - 0% and 50% cSOD Activity Cross   

Sex 1 0.198889 4.83 0.0294 0.0301 

Background 7 0.103298 2.51 0.0179 0.101 

cSOD Activity 1 6.977126 170 <.0001 0.521 

Sex X Background 7 0.184849 4.49 0.0001 0.168 

Background X cSOD Activity 7 0.231956 5.64 <.0001 0.202 

Sex X cSOD Activity 1 0.094502 2.30 0.132 0.0145 

Sex X Background X cSOD Activity 7 0.203628 4.95 <.0001 0.182 

Error 156 0.041138    

      

T5 - 30% and 80% cSOD Activity Cross  

Sex 1 0.434153 8.80 0.0038 0.0809 

Background 7 0.082013 1.66 0.127 0.104 

cSOD Activity 1 0.361305 7.33 0.008 0.0683 

Sex X Background 7 0.14886 3.02 0.0064 0.174 

Background X cSOD Activity 7 0.07907 1.60 0.143 0.101 

Sex X cSOD Activity 1 0.088575 1.80 0.183 0.0176 

Sex X Background X cSOD Activity 7 0.100123 2.03 0.0585 0.124 

Error 100 0.049318       

 

Table A4:  Raw countercurrent ANOVA outputs indicating significance of factors and their interactions, as 

well as the effect sizes of individual factors and interactions.  Bolded values denote significant factors in 

climbing ability determination. 

Source  d.f. MS F P ηp
2 

T0 - 0% and 50% cSOD Activity Cross   

Sex 1 0.204442 3.55 0.0606 0.0130 

Background 7 0.045908 0.797 0.590 0.0203 

cSOD Activity 1 28.84678 501 <.0001 0.651 

Sex X Background 7 0.025527 0.443 0.874 0.0114 

Background X cSOD Activity 7 0.026691 0.464 0.860 0.0119 

Sex X cSOD Activity 1 0.000381 0.00660 0.935 2.46E-05 

Sex X Background X cSOD Activity 7 0.038725 0.673 0.695 0.0172 

Error 269 0.05758    

      

T5 - 30% and 80% cSOD Activity Cross  

Sex 1 1.596702 20.8 <.0001 0.106 

Background 7 0.069567 0.906 0.503 0.0350 

cSOD Activity 1 4.728976 61.6 <.0001 0.260 

Sex X Background 7 0.123302 1.61 0.136 0.0604 

Background X cSOD Activity 7 0.028009 0.365 0.922 0.0144 

Sex X cSOD Activity 1 0.274622 3.58 0.0602 0.0200 

Sex X Background X cSOD Activity 7 0.128282 1.67 0.119 0.0627 

Error 175 0.076765       
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Table A5:  Raw MEN activity ANOVA outputs indicating significance of factors and their interactions, as 

well as the effect sizes of individual factors and interactions.  Bolded values denote significant factors in 

MEN activity determination. 

Source  d.f. MS F P ηp
2 

T0 - 0% and 50% cSOD Activity Cross 

Sex 1 0.000433 27.2 <.0001 0.0929 

Background 7 2.81E-05 1.76 0.0946 0.0445 

cSOD Activity 1 3.62E-05 2.27 0.133 0.00850 

Sex X Background 7 1.27E-05 0.795 0.592 0.0206 

Background X cSOD Activity 7 1.9E-05 1.19 0.308 0.0305 

Sex X cSOD Activity 1 0.000523 32.8 <.0001 0.110 

Sex X Background X cSOD Activity 7 1.55E-05 0.973 0.452 0.0250 

Error 265 0.000016    

      

T5 - 30% and 80% cSOD Activity Cross 

Sex 1 0.001063 38.0 <.0001 0.119 

Background 7 4.86E-05 1.74 0.101 0.0416 

cSOD Activity 1 0.000112 4.01 0.0461 0.0141 

Sex X Background 7 8.9E-05 3.18 0.003 0.0736 

Background X cSOD Activity 7 8.85E-05 3.16 0.0031 0.0733 

Sex X cSOD Activity 1 0.000295 10.5 0.0013 0.0363 

Sex X Background X cSOD Activity 7 9.68E-06 0.346 0.932 0.00857 

Error 280 0.000028       

 

Table A6:  Raw IDH activity ANOVA outputs indicating significance of factors and their interactions, as 

well as the effect sizes of individual factors and interactions.  Bolded values denote significant factors in 

IDH activity determination. 

Source  d.f. MS F P ηp
2 

T0 - 0% and 50% cSOD Activity Cross 

Sex 1 9.3E-07 0.271 0.603 0.00102 

Background 7 4.98E-06 1.44 0.188 0.0368 

cSOD Activity 1 0.000193 56.0 <.0001 0.174 

Sex X Background 7 4.06E-06 1.18 0.315 0.0302 

Background X cSOD Activity 7 4.49E-06 1.30 0.250 0.0332 

Sex X cSOD Activity 1 8.81E-05 25.5 <.0001 0.0879 

Sex X Background X cSOD Activity 7 2.97E-06 0.861 0.538 0.0222 

Error 265 3.45E-06    

      

T5 - 30% and 80% cSOD Activity Cross 

Sex 1 3E-05 4.58 0.0333 0.0161 

Background 7 2.51E-05 3.83 0.0005 0.0875 

cSOD Activity 1 7.2E-07 0.109 0.741 0.000393 

Sex X Background 7 1.51E-05 2.31 0.0263 0.0547 

Background X cSOD Activity 7 1.14E-05 1.75 0.098 0.0419 

Sex X cSOD Activity 1 4.1E-06 0.626 0.429 0.00223 

Sex X Background X cSOD Activity 7 4.48E-06 0.685 0.685 0.0168 

Error 280 6.55E-06       
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Table A7:  Raw G6PD activity ANOVA outputs indicating significance of factors and their interactions, as 

well as the effect sizes of individual factors and interactions.  Bolded values denote significant factors in 

G6PD activity determination. 

Source  d.f. MS F P ηp
2 

T0 - 0% and 50% cSOD Activity Cross 

Sex 1 2.03E-05 22.0 <.0001 0.0766 

Background 7 8.63E-06 9.36 <.0001 0.199 

cSOD Activity 1 8.17E-05 88.6 <.0001 0.250 

Sex X Background 7 2.44E-06 2.65 0.0117 0.0653 

Background X cSOD Activity 7 1.39E-06 1.51 0.164 0.0383 

Sex X cSOD Activity 1 1.81E-05 19.6 <.0001 0.0690 

Sex X Background X cSOD Activity 7 2.37E-06 2.57 0.0142 0.0635 

Error 265 9.23E-07    

      

T5 - 30% and 80% cSOD Activity Cross 

Sex 1 0.00037 155 <.0001 0.357 

Background 7 1E-05 4.20 0.0002 0.0951 

cSOD Activity 1 4.7E-06 1.97 0.161 0.00700 

Sex X Background 7 3.97E-06 1.67 0.117 0.0400 

Background X cSOD Activity 7 6.31E-06 2.65 0.0114 0.0621 

Sex X cSOD Activity 1 9.4E-07 0.394 0.531 0.00141 

Sex X Background X cSOD Activity 7 3.87E-06 1.62 0.128 0.0390 

Error 280 2.38E-06    
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Table A8:  Line effects for longevity, viability, negative geotaxis, countercurrent (climbing ability), malic enzyme (MEN), isocitrate dehydrogenase (IDH), and 

glucise-6-phosphate dehydrogenase (G6PD).  Bolded lines reflect phenotypes that demonstrated significant line effects. 

cSOD   Longevity Viability Negative  Climbing MEN IDH G6PD 

Activity Sex Status   Geotaxis Ability Activity Activity Activity 

0% Male High Line 313 335 307 517 517 820 313 

 Male Low Line 335 313 705 313 307 705 307 

 Female High Line 820 324 313 820 307 820 517 

  Female Low Line 304 705 517 517 313 705 324 

50% Male High Line 705 705 517 307 705 517 517 

 Male Low Line 307 304 307 705 304 304 307 

 Female High Line 820 705 517 307 705 324 324 

  Female Low Line 517 335 304 313 517 335 307 

30% Male High Line 705 517 307 335 517 304 517 

 Male Low Line 304 304 335 304 705 705 307 

 Female High Line 335 517 307 517 304 304 304 

  Female Low Line 304 324 304 335 324 705 324 

80% Male High Line 705 820 820 335 307 517 517 

 Male Low Line 820 335 335 324 335 313 335 

 Female High Line 324 517 307 307 307 304 705 

  Female Low Line 820 335 820 324 324 313 324 
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Table A9:  Maximum and minimum values, pooled across genetic background, for longevity, viability, negative geotaxis, countercurrent (climbing ability), 

malic enzyme (MEN), isocitrate dehydrogenase (IDH), and glucise-6-phosphate dehydrogenase (G6PD).  Bolded lines reflect phenotypes that did not 

demonstrate significant cSOD activity effects. 

    cSOD  Longevity Viability Negative Climbing MEN IDH  G6PD 

cSOD  Activity (Days) (Frequency) Geotaxis Ability Activity Activity  Activity 

Activity Sex Units/ug     (PI) (CF) Units/ug Units/ug Units/ug 

0% Male 0.000192±0.000048 5.7±0.1 0.211±0.012 0.41±0.05 0.30±0.03 0.0231±0.0004 0.00706±0.00015 0.00501±0.00011 

 Female 0.000106±0.000016 8.5±0.2 0.195±0.014 0.38±0.05 0.23±0.03 0.0234±0.0006 0.00827±0.00024 0.00503±0.00012 

50% Male 0.000875±0.00010 57.1±0.5 0.339±0.012 0.84±0.02 0.93±0.02 0.0252±0.0004 0.00974±0.00024 0.00659±0.00015 

  Female 0.000883±0.00012 66.6±0.8 0.330±0.012 0.73±0.03 0.88±0.03 0.0200±0.0004 0.00874±0.00022 0.00555±0.00011 

30% Male 0.000408±0.000045 48.2±0.7 0.237±0.014 0.79±0.06 0.69±0.05 0.0278±0.0005 0.00976±0.00025 0.00846±0.00019 

 Female 0.000546±0.000069 55.9±0.8 0.261±0.017 0.63±0.06 0.47±0.05 0.0214±0.0007 0.00915±0.00034 0.00601±0.00017 

80% Male 0.00184±0.00015 54.4±0.8 0.299±0.017 0.86±0.03 0.95±0.01 0.0245±0.0005 0.01017±0.00035 0.00810±0.00022 

  Female 0.00253±0.00021 61.7±1.1 0.318±0.020 0.79±0.03 0.85±0.04 0.0227±0.0007 0.00923±0.00027 0.00595±0.00016 
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Table A10:  Maximum and minimum line values for longevity, viability, negative geotaxis, countercurrent (climbing ability), malic enzyme (MEN), isocitrate 

dehydrogenase (IDH), and glucise-6-phosphate dehydrogenase (G6PD).  Bolded lines reflect phenotypes that demonstrated significant line effects. 

      Longevity Viability Negative Climbing MEN IDH  G6PD 

cSOD   (Days) (Frequency) Geotaxis Ability Activity Activity  Activity 

Activity Sex Status      (PI) (CF) Units/ug Units/ug Units/ug 

0% Male Low Line 4.75±0.22 0.186±0.046 0 0.151±0.069 0.0218±0.0015 0.00600±0.00037 0.00393±0.00031 

 Male High Line 8.38±0.53 0.245±0.025 0.778±0.062 0.391±0.11 0.0241±0.0011 0.00797±0.00062 0.00568±0.00048 

 Female Low Line 6.58±0.38 0.126±0.029 0.175±0.094 0.153±0.059 0.0214±0.0017 0.00741±0.00043 0.00456±0.00047 

 Female High Line 13.4±0.62 0.266±0.054 0.702±0.098 0.317±0.21 0.0250±0.0015 0.00896±0.00071 0.00551±0.00030 

50% Male Low Line 50.8±2.3 0.306±0.039 0.772±0.052 0.867±0.11 0.0213±0.00096 0.00835±0.00026 0.00518±0.00019 

 Male High Line 64.5±1.2 0.389±0.025 0.905±0.030 0.990±0.010 0.0277±0.0016 0.0110±0.00073 0.00840±0.00043 

 Female Low Line 58.7±1.8 0.293±0.015 0.507±0.074 0.798±0.097 0.0184±0.0011 0.00801±0.00045 0.00483±0.00039 

  Female High Line 74.4±2.1 0.366±0.022 0.846±0.050 0.950±0.050 0.0225±0.00070 0.0104±0.00074 0.00637±0.00038 

30% Male Low Line 42.4±4.2 0.189±0.052 0.500±0.29 0.463±0.20 0.0252±0.0014 0.00830±0.00033 0.00758±0.00065 

 Male High Line 54.8±1.4 0.307±0.044 1 0.902±0.077 0.0301±0.00072 0.0109±0.0010 0.00922±0.00036 

 Female Low Line 41.7±3.3 0.207±0.029 0.125±0.12 0.206±0.15 0.0164±0.00069 0.00692±0.00042 0.00508±0.00038 

 Female High Line 60.8±1.5 0.304±0.053 0.938±0.063 0.740±0.080 0.0269±0.0042 0.0115±0.0024 0.00728±0.0010 

80% Male Low Line 41.4±3.0 0.236±0.035 0.724±0.12 0.900±0.10 0.0215±0.0016 0.00822±0.00076 0.00662±0.00047 

 Male High Line 62.4±2.1 0.337±0.060 0.957±0.043 1 0.0273±0.0016 0.0127±0.00092 0.00971±0.00060 

 Female Low Line 55.9±4.0 0.272±0.047 0.698±0.026 0.667±0.23 0.0194±0.0022 0.00843±0.00045 0.00541±0.00036 

  Female High Line 65.1±2.8 0.362±0.010 0.892±0.10 0.984±0.016 0.0249±0.0021 0.00993±0.00088 0.00724±0.00055 
 




