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Abstract 

 Human altered landscapes contribute to direct and indirect threats on wildlife 

populations. Chronically high stress, an indirect threat, has been associated with 

decreased fitness. I examined chronic stress in Midland Painted Turtles (Chrysemys picta 

marginata), Snapping Turtles (Chelydra serpentina), and Blanding's Turtles (Emydoidea 

blandingii) in areas with varying densities of anthropogenic structures in Muskoka, 

Ontario. Enzyme immunoassays were run, in partnership with Dr. Gabriela 

Mastromonaco (Toronto Zoo), on turtle claws to obtain concentrations of corticosterone 

(CORT). Most Snapping Turtles had above-minimum CORT, and male Midland Painted 

Turtles and Blanding's Turtles had relatively high CORT levels. Anthropogenic density 

did not seem to affect CORT levels, but more research needs to be done to understand the 

complex relationships. I also determined the rate and pattern of nest depredation, a direct 

threat, throughout egg incubation in areas of varying anthropogenic densities. Nest 

depredation occurred throughout egg incubation and relative nest mesopredator 

abundance did not differ among sites with varying anthropogenic densities. Contrary to 

some nest caging protocols, my findings suggest that nest cages should be kept on nests 

until the turtles hatch and priority should be given to caging nests in low road density 

areas to help increase population recruitment. Understanding indirect and direct threats to 

turtles can help inform mitigation strategies to improve their fitness. 
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General Introduction 

 Vertebrates use many different specialized habitats seasonally and throughout 

their life. Those areas can be close to or within areas of varying anthropogenic densities, 

or densities of anthropogenic structures, such as roads and buildings. High anthropogenic 

density can fragment habitats, making dispersal and survival difficult (Sanderson et al., 

2002) and negatively affecting wildlife populations (Butchart et al., 2010; Hoffman et al., 

2010). Conservation programs need to meet the animals' requirements regardless of the 

density of anthropogenic structures or economic interests (of an area (Lambeck, 1997; 

Naughton-Treves, 1998; Hoare and Du Toit, 1999). Conservation planning, therefore, 

needs to be done on a landscape scale (Noss, 1983). 

 Turtles are, globally, one of the most at risk taxa (Gibbons et al., 2000). They 

have a “bet hedging” life history, characterized by high adult survivorship, long lifespans, 

delayed maturity, iteroparity, and low offspring survivorship (Stearns, 1976; Congdon 

and Tinkle, 1982). This life history is part of the reason why turtle populations are 

susceptible to direct and indirect threats that especially impact adult survivorship. Indirect 

threats affect individual physiology, such as stress, by re-directing resources from 

production to maintenance, while direct threats cause immediate mortality. Indirect 

threats include habitat destruction and fragmentation (Klemens, 2000), pollution 

(Gibbons et al., 2000), and climate change (Gibbons et al., 2000). Direct threats include 

poaching (Gibbons et al., 2000; Velo-Anton et al., 2010), subsidized mesopredators 

(Snow, 1982; Oehler and Litvaitis, 1996; Prugh et al., 2009) that depredate nests (Oddie 

et al., 2014), and road mortality (Ashley and Robinson, 1996; Baxter-Gilbert et al., 
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2015). 

 

Chronic Stress 

 Stress, an indirect threat, is a vertebrate's physiological response to a negative 

stimulus, or stressor, such as noise (Blickley et al., 2012), predation risk (Sapolsky, 

1990), or habitat destruction (Reeder and Kramer, 2005; Leshyk et al., 2012). Elevated 

levels of stress hormones increase a vertebrate's heart rate, breathing rate, and blood 

pressure (Axelrod and Reisine, 1984; Sapolsky, 1990; Dobson and Smith, 2000; Reeder 

and Kramer, 2005; Sherrif et al., 2011). This acute response is useful to react to 

immediate unpredictable stressors by triggering the “fight or flight” response (Sapolsky, 

1990), and subsequently quickly returning to homeostasis (Axelrod and Reisine, 1984; 

Reeder and Kramer, 2005; Sherrif et al., 2011). However, if the stress response is chronic, 

a higher risk of infection due to reduced immunity and reduced fitness can result 

(Axelrod and Reisine, 1984; Sapolsky, 1990; Dobson and Smith, 2000; Reeder and 

Kramer, 2005; Sherrif et al., 2011). 

 A vertebrate's physiological stress response can be summarized as the activation 

of the sympathetic nervous system to secrete adrenaline, and the hypothalmic-pituitary-

adrenal (HPA) axis in terrestrial vertebrates (Sheriff et al., 2011) or hypothalmic-

pituatary-inter-renal (HPI) axis in fish (Bonga, 1997) to secrete glucocorticoids (GCs; 

Bonga, 1997; Reeder and Kramer, 2005; Ashley et al., 2011; Sheriff et al., 2011). Usually 

the hippocampus inhibits the HPA or HPI axis through a negative feedback system 

(Reeder and Kramer, 2005; Ashley et al., 2011; Sheriff et al., 2011). When a vertebrate is 
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exposed to a stressor, the hypothalamus releases corticotropin-releasing hormone (CRH) 

to the pituitary (Reeder and Kramer, 2005; Ashley et al., 2011; Sheriff et al., 2011). The 

pituitary makes and releases adrenocorticotropin hormone (ACTH) to the blood stream, 

which then stimulates the adrenal cortex to secrete an excess of GCs to the blood stream 

(Reeder and Kramer, 2005; Sheriff et al., 2011), which in turn, increase a vertebrate's 

ability to escape a dangerous situation (Sheriff et al., 2011). The negative feedback 

system then stops the production of more GCs, helping the vertebrate to return to 

homeostasis (Reeder and Kramer, 2005; Sheriff et al., 2011). The negative feedback 

signals are weaker for a chronic stress response than an acute stress response such that 

under chronic stress, the system stays active and disrupts long term functions like growth 

and reproduction for a longer period of time (Reeder and Kramer, 2005; Sheriff et al., 

2011). 

 A common way to quantify the level of stress a vertebrate is experiencing is by 

measuring the amount of GCs that are produced (Reeder and Kramer, 2005; Ashley et al., 

2011; Dantzer et al., 2011; Sheriff et al., 2011; Leshyk et al., 2012). Because GCs are 

released into the bloodstream, most studies quantifying the level of GCs have sampled 

blood from vertebrates (Sheriff et al., 2011). This technique is fairly invasive and the 

blood needs to be collected within the first couple of minutes after the vertebrate is 

caught to ensure GC levels measured are baseline (i.e. not elevated as a result of the 

stress of capture and handling: Sheriff et al., 2011). Moreover, blood samples can be 

difficult to maintain when working in remote field sites as they need to be kept at -20°C 

(Sheriff et al., 2011).  Saliva is another medium that GCs enter (from the bloodstream) 
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and is less invasive to collect and easier to store than blood, but still provides a short term 

measure of stress levels (Sheriff et al., 2011). GC metabolites can be found in feces 

(Malakoff, 1997) and urine and can be used to measure stress hormones on a scale of 

hours or days, depending on the species' metabolic rates (Sheriff et al., 2011). Should the 

feces and urine become mixed, the specific metabolite concentration can become difficult 

to measure (Sheriff et al., 2011). A species-specific proportion of GCs exits the blood 

stream and gets deposited in tissues (Rosner, 1990), such as hair (Ashley et al., 2011), 

feathers (Sheriff et al., 2011), and keratinized structures such as nails and claws (Baxter-

Gilbert et al., 2014). GCs in these tissues provide a measure of long-term stress levels 

(Sheriff et al., 2011). My study will examine chronic stress levels of turtles by sampling 

and analyzing their claws. 

 

Threats to Freshwater Turtle Populations 

 Habitat fragmentation can come in many forms, including, draining of wetlands 

and building of roads, buildings, and trails (Gibbons et al., 2000). Climate change may 

make currently protected habitat unsuitable for turtles pushing them into surrounding 

fragmented habitats (Gibbons et al., 2000). Female turtles often lay eggs in the gravel 

shoulders of roads, putting them at an increased risk of road mortality, thus shortening 

their reproductive years, and the nests and hatchlings are susceptible to mortality from 

substrate impaction and vehicle collisions. Climate change could alter the sex ratios of 

turtles with temperature-dependent sex determination (where the sex of the turtle is based 

on the temperature of the eggs during incubation; Janzen, 1994), if female turtles do not 
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evolve to use different nest sites (Gibbons et al., 2000). 

 Turtle eggs are especially at risk from pollution (Gibbons et al., 2000), which 

could decrease their already low survival rates to unsustainable levels (Stearns, 1976; 

Congdon and Tinkle, 1982). For example, turtle eggs are adversely affected by endocrine-

disrupting chemicals (Guillette and Crain, 1996) and PCBs (polychlorinated biphenyls; 

Bergeron et al., 1994; Bishop et al., 1994; Guillette et al., 1995; Cobb and Wood 1997). 

 Hunting and bycatch are serious threat to turtles because population persistence 

relies on individuals surviving for long periods of time to continue to reproduce (Stearns, 

1976; Congdon and Tinkle, 1982). In North America, Alligator Snapping Turtles 

(Macroclemys teminckii) have been negatively affected by hunting for food (Roman et 

al., 1999), whereas Box Turtles (Terrapene carolina; Lieberman, 1994) and Bog Turtles 

(Glyptemys muhlenbergii; Copeyon 1997) by collection for the pet trade. In Ontario, the 

Snapping Turtle (Chelydra serpentina) is listed as a game species under the Fish and 

Wildlife Conservation Act (FWCA, 1997), while also being listed as a species of special 

concern under the Species at Risk Act (SARA, 2003). 

 Abundance of mammals that predate turtle eggs, a direct threat, is higher where 

anthropogenic sources of food (Oehler and Litvaitis, 1996) and decreases in populations 

of top predators (Prugh, 2009) subsidize an ideal environment for middle-sized 

mesopredators to flourish. Raccoons (Procyon lotor) and red foxes (Vulpes vulpes) are 

both well-known turtle nest predators (Snow, 1982) and have increased population sizes 

near anthropogenic structures (Oehler and Litvaitis, 1996; Prugh et al., 2009). A number 

of studies have found that the highest predation risk to turtle nests is within the first week 
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after the eggs are laid (Tinkle et al., 1981; Congdon et al., 1983; Christens and Bider, 

1987; Congdon et al., 1987; Robinson and Bider, 1988; Holcomb and Carr 2013), 

although this is not necessarily a consistent pattern, as other studies have found that 

depredation of turtle nests occurs throughout the incubation period (Burger, 1977; Snow, 

1982; Brooks et al., 1992; Gillingwater, 2002; Riley and Litzgus, 2014). The 

inconsistencies seen in turtle nest predation patterns may be attributed to the large variety 

of species that depredate turtle nests and cues available to potential predators. 

 There are a number of nest cues predators could use to find turtle nests throughout 

the incubation period. Predators may be able to smell oviposition fluid early in the season 

(Legler 1954; Congdon et al., 1983; Spencer 2002), rotten eggs throughout incubation, 

and embryonic fluids when the hatchlings hatch (Riley and Litzgus, 2014). Predators may 

see turtles laying eggs (Congdon et al., 1987; Eckrich and Owens 1995) or the soil 

disturbed (Strickland et al., 2010; Spencer 2002) during nesting season, and emerged 

hatchlings (Riley and Litzgus, 2014) during hatching season. Oddie et al. (2015) found 

that predators were more likely to depredate nests that had tactile cues, such as soft soil 

resulting from maternal digging and covering. Predators may also hear hatchlings inside 

their nest cavity after they hatch (Ferrara et al., 2013). Canines and other mammals seem 

to be the most common nest predators later during incubation (Burger, 1977; Brooks et 

al., 1992; Spotila, 2011; Riley and Litzgus, 2014). 

 

Study Area, Species, and Objectives 

  The objective of my study is to investigate the indirect and direct impacts of 
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human development on freshwater turtles by examining chronic stress levels (Chapter 1) 

and rate and patterns of nest predation (Chapter 2) in areas of varying anthropogenic 

densities. 

 My thesis focuses on the effects of habitat fragmentation, in the form of road and 

building densities, on chronic turtle stress and nest predation patterns in central Ontario. 

The study area (roughly 44N 40' to 45N 20' latitude and -79W 50' to -79W 10' longitude; 

see Figure 1) covers southern portions of the Parry Sound and Muskoka districts and 

borders the southern boundary of the Boreal Shield Ecozone and the northern boundary 

of the Mixedwood Plains Ecozone, within the Great Lakes Watershed (Crins et al., 2009). 

There are many wetlands and lakes among rock barren outcrops and mixed forests (Crins 

et al., 2009), that provide ideal habitat for the diverse herpetofauna that live in this area 

(Hecnar et al., 2002). This region of Ontario experiences a humid continental temperate 

climate, with four distinct seasons (Baldwin, et al., 2000).  

 Southern Muskoka is an ideal study area for my project because there is a wide 

range of anthropogenic densities, from very low anthropogenic density, in conservation 

reserves and Crown land, to high anthropogenic density, in small town centers 

(Gravenhurst, Bala, etc). Moderately impacted areas include locations with few gravel 

roads and low building density. Southern Muskoka also simplifies a calculation of 

anthropogenic density because there are few agriculture and logging practices present 

(personal observation). In addition, the Muskoka area is home to a diversity of turtle 

species at risk (SAR; Species at Risk Act; SARA, 2003; Committee on the Status of 

Endangered Wildlife in Canada; COSEWIC, 2011). 
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 My study focuses on three species of turtles: Midland Painted Turtles (Chrysemys 

picta marginata), Snapping Turtles, and Blanding's Turtles (Emydoidea blandingii). 

Midland Painted Turtles and Snapping Turtles occupy different habitat niches (Ernst and 

Lovich, 2009), which allowed me to compare and make predictions about the effects of 

anthropogenic density among species. Midland Painted Turtles are small-bodied habitat 

generalists that spend a significant portion of time basking (Ernst and Lovich, 2009), 

unlike Snapping Turtles who are large-bodied habitat generalists that spend a significant 

portion of time underwater (Paterson et al., 2012). Blanding's Turtles, a threatened 

species in Ontario (COSEWIC, 2005) are more terrestrial than Midland Painted and 

Snapping Turtles (Ernst and Lovich, 2009). I was able to compare the large sample sizes 

of data from Midland Painted and Snapping Turtles to small sample sizes of data from 

Blanding's Turtles. 
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Figure 

Figure 1: The star represents the study area within Ontario for this thesis. North is toward 

the top of the page. Due to the potential for illegal collection of turtles, specific location 

information is not disclosed.  
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Table 

 

Table 0.1: Turtle species that occur in relative abundance in South Muskoka, Ontario, and 

their federal and provincial conservation status designations. The federal conservation 

status is determined by the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC) and Canada's Species At Risk Act (SARA). The provincial conservation 

status is determined by the Committee on the Status of Species at Risk in Ontario 

(COSSARO) and Ontario's Endangered Species Act (ESA). 

Turtle Species Federal and Provincial Conservation Statuses 

Midland Painted Turtle  

(Chrysemys picta marginata) 

Not Assessed 

Snapping Turtle  

(Chelydra serpentina) 

Special Concern 

Blanding's Turtle  

(Emydoidea blandingii) 

Threatened 
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Abstract 
 

 Wildlife near human altered landscapes can exhibit high levels of stress 

hormones. However, vertebrates can also adapt to chronic high stress situations such that 

their stress hormone levels readjust to new baseline levels. Chronically high stress 

hormone levels have been associated with decreased fitness in some reptile and 

amphibian species. Yet, very little research has been completed on stress hormone levels 

in reptiles and especially on turtles. Because turtles are long-lived, a measure of chronic 

stress will help inform long-term conservation efforts in ways that measures of acute 

stress cannot. I examined chronic stress hormone levels in Midland Painted Turtles 

(Chrysemys picta marginata), Snapping Turtles (Chelydra serpentina), and Blanding's 

Turtles (Emydoidea blandingii) in areas with varying densities of anthropogenic 

structures. Enzyme immunoassays were run on claws sampled from turtles to obtain a 

concentration of corticosterone (CORT). Male Snapping Turtles were most likely to have 

above-minimum CORT and male Midland Painted Turtles and male Blanding's Turtles 

were more likely than females. However, for turtles that had above-minimum CORT, 

Midland Painted Turtles had the highest relative above-minimum CORT and male 

Snapping Turtles and male Blanding's Turtles had relatively higher above-minimum 

CORT levels than females. Surprisingly, anthropogenic density did not seem to affect 

CORT levels, although variation in the date turtles were captured and the date enzyme 

immunoassays were run complicated my interpretations. CORT is a byproduct of more 

than a stress response, and more research needs to be done to understand the complex 

relationships between vertebrates, anthropogenic influences, and stress. Globally, turtles 
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are among the most at-risk species and understanding turtle stress physiology can help 

inform mitigation strategies to improve their fitness. 

Introduction 

 

 Globally, wildlife populations are in decline and habitat alteration due to human 

activities is largely the cause (Butchart et al., 2010; Hoffmann et al., 2010). Road 

mortality is a large contributing factor in global population declines of various animals 

(Butchart et al., 2010; Hoffmann et al., 2010), but roads and other anthropogenic 

structures may also be indirectly affecting wildlife populations via stress on individuals. 

Roads can interrupt migration routes of certain species by acting as barriers to their 

movement, which could decrease genetic diversity and isolate populations, such as was 

observed in Timber Rattlesnakes (Crotalus horridus; Clark et al., 2010). Gaddy and 

Kohlsaat (1987) recorded that the presence of man-made trails and roads decreased 

reptile and amphibian species richness and density. Wildlife near human altered 

landscapes can exhibit high levels of stress hormones (Brearley et al., 2012), but 

vertebrates can also adapt to chronic high stress situations such that stress hormone levels 

readjust to new baseline levels in a process termed adrenocortical modulation (Wingfield 

and Ramenofsky, 1999). Chronically high stress hormone levels, over a few days or 

more, have been associated with decreased fitness in some reptile and amphibian species 

(Moore and Jessop, 2002). For example, male American Alligators (Alligator 

mississippiensis) secreted less testosterone (Lance and Elsey, 1986), and a species of 

skink (Mabuya carinata) showed impaired spermatogenesis (Yajurvedi and Menon, 

2005), when stressed over the course of a couple days. Studying potential stressors, such 
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as density of anthropogenic structures, which could lead to chronic stress can help inform 

long-term conservation efforts, such as road mitigation, for species at risk (Busch and 

Hayward, 2009). 

 The major glucocorticoid (GC) stress hormone measured in reptiles is 

corticosterone (CORT; Sandor, 1972). Studies have measured CORT in the blood of tree 

lizards (Urosaurus ornatus; French et al., 2008) and in fecal samples from Green Iguanas 

(Iguana iguana; Kalliokoski et al., 2012), which both represent measures of acute stress. 

In turtles, urine and feces are mixed, making GC analysis of both samples difficult, and 

infrequent (Sheriff et al., 2011). Because turtles are long-lived, a measure of chronic 

stress hormone levels will help inform long term conservation efforts, such as 

effectiveness of road mitigation. CORT responses are species-specific, so conservation 

efforts can be more effective if they can target benefits for specific species. CORT, 

accumulated over a series of weeks to months (chronic CORT), has been measured in 

keratinized structures, such as hair or fur of mammals (Ashley et al., 2011), feathers of 

birds (Sheriff et al., 2011), and shed snake skins (Berkvens et al., 2013). A successful 

pilot study was completed on a newly developed non-invasive technique for measuring 

CORT from turtle claw samples using enzyme immunoassays (Baxter-Gilbert et al., 

2014). Claws can be collected easily from wild-caught turtles with minimal handling, and 

may be able to indicate a record of long-term stress hormone levels (Baxter-Gilbert et al., 

2014). My research expands on this pilot study to increase my understanding of 

physiological stress in turtles. Studies have quantified the impact of land-use on turtle 

population structure (Marchand and Litvaitis 2004) and ecological features (Failey et al., 
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2007). Few studies have quantified the impacts of several anthropogenic factors 

simultaneously (Gaddy and Kohlsaat, 1987; Crowley, 2006; Dorland et al., 2014), such 

as road and building densities, especially in low anthropogenic density areas. 

 Little research has been completed on stress physiology in reptiles (Sheriff et al., 

2011). By acquiring most of their energy from the environment, reptiles have different 

physiologies than mammals. My research furthers our understanding of chronic CORT in 

a type of reptile. I examined chronic CORT in Midland Painted Turtles (Chrysemys picta 

marginata), Snapping Turtles (Chelydra serpentina), and Blanding's Turtles (Emydoidea 

blandingii) in areas varying in anthropogenic density to determine what characteristics 

influence chronic CORT variability. If turtles living near human structures have 

acclimated to human presence, and have thus undergone adrenocortical modulation to 

new baseline levels (Wingfield and Ramenofsky, 1999), then I predicted that turtles from 

low anthropogenic density sites (more pristine) with infrequent human presence will have 

higher CORT concentrations in their claws than turtles from higher anthropogenic density 

sites with frequent human presence and vehicles. Alternatively, if turtles have not 

acclimated to human presence, then turtles from low anthropogenic density sites will 

have lower CORT concentrations in their claws than turtles from higher anthropogenic 

density sites. 

Methods 

 

Study Area 

 The study area covers southern portions of the Parry Sound and Muskoka 

districts, in Central Ontario. The study area (roughly 44N 40' to 45N 20' latitude and -
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79W 50' to -79W 10' longitude) borders the southern boundary of the Boreal Shield 

Ecozone and the northern boundary of the Mixedwood Plains Ecozone, within the Great 

Lakes Watershed (Crins et al., 2009). It extends across the Ecodistricts 551 and 552 in the 

Lake Simcoe-Rideau Ecoregion (6E) and Ecodistrict 413 in the Georgian Bay Ecoregion 

(5E; Crins et al., 2009). There are many wetlands and lakes among rock barren outcrops 

and mixed forests (Crins et al., 2009), which provide ideal habitat for the diverse 

herpetofauna that live in this area (Hecnar et al., 2002). This region of Ontario 

experiences a humid continental temperate climate, with four distinct seasons (Baldwin, 

et al., 2000).  

 

Anthropogenic Density 

             I quantified anthropogenic density using QuantumGIS (QGIS) to calculate the 

density of buildings, roads, and railways in my study area. Muskoka is an ideal study area 

because there is a wide range of anthropogenic density, from low anthropogenic density, 

in conservation reserves and crown land, to high anthropogenic density, in small town 

centers (e.g Gravenhurst and Bala). Moderately impacted areas include locations with 

few gravel roads and low building density. This region also simplifies a calculation of 

anthropogenic density because there are few agricultural and logging practices present 

(personal observation).  

           Some studies have focused on vertebrate responses to one measure of density or 

human influence (Gaddy and Kohlsaat, 1987; Crowley, 2006; Dorland et al., 2014). In 

contrast, I calculated a number of anthropogenic density measures within 1 km of each 
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turtle (Table 1.1) at the time it was captured and its claws were clipped. I based this 1 km 

radius around the capture location on known movements of turtles in central Ontario. 

Snapping and Blanding's Turtle home range sizes in central Ontario were ~45 ha (0.45 

km2) and dispersal distance (square root of an animal's home range size; Bissonette and 

Adair, 2008) was ~700 m (Baxter-Gilbert, 2015). Roads were classified based on the 

National Road Network road layer categories (and used as a rough approximation of road 

quality): Gravel Road, Recreation/Resource Road, Local Streets, Arterial Roads, and 

Highway. I calculated the length (m) of roads within 1 km of turtles using the 'Sum Line 

Lengths' function in QGIS. I used the building layer from the Muskoka Web Map and 

manually added points for buildings in the north part of my study area using the Bing 

Aerial Layer plugin for QGIS. The types of buildings in the Muskoka Web Map layer was 

not available and I could not determine types from the Bing Aerial Layer images. I 

calculated the number of buildings within 1 km of turtles using the 'Points within 

Polygon' function in QGIS. I examined which combination of anthropogenic density 

variables best described the variation in chronic CORT of turtles. 

 

Field Data Collection and Study Species 

 Data were collected over two field seasons; from April to October in both 2014 

and 2015 by up to 6 teams of START project technicians. Turtles were captured by hand, 

with Frabill landing nets, or in 'Memphis Net and Twine' hoop traps. For each capture, we 

recorded species, sex and age (if possible), body mass, size (carapace height, length and 

width, and plastron length), and reproductive condition for females. Body masses were 
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measured with 300 g, 2500 g, and 2000 g Pesola spring scales (Medioline, Schindellegi, 

Switzerland) with an accuracy of 1 g, 10 g, or 100 g, respectively. Size measurements 

were taken with 15 cm vernier calipers (± 0.01 cm; Scherr-Tumico, Minnesota, USA) and 

40 cm calipers (± 0.1 cm; Haglöf Mantax, Sweden). Turtles were individually marked by 

filing, with a triangular file, a unique combination of notches into their marginal scutes 

(Cagle, 1939) to prevent resampling. Turtles were released at their capture sites within 

five hours of initial capture. 

 The turtle species and sample sizes analyzed in my study are listed in Table 1.2, 

and their associated federal and provincial conservation status designations can be found 

in Table 0.1. Due to the potential for illegal collection of turtles, specific location 

information is not disclosed.  

  Turtle claws were analyzed to quantify chronic, or long term accumulation of, 

CORT hormone concentration levels. I clipped the turtle claws with ConairPRO small 

dog nail clippers (Figure 1.1). Female turtles use their hind limbs to dig holes to lay their 

eggs (dulling some claws), so we clipped whatever claws were longest of female turtles 

of all species. Male Midland Painted Turtles use their foreclaws during courtship displays 

(Ernst, 1971), thus we did not clip front claws of male Midland Painted Turtles. We 

clipped 1-2 mm lengths of claws, ensuring we did not clip the quick thus avoiding blood 

loss from the turtle. We focused on collecting at least six claws from each Midland 

Painted Turtle and at least two claws from each Snapping Turtle because they are the 

most abundant turtle species and yielded large sample sizes for robust statistical analyses 

that could be made applicable to turtle species at risk that are captured in lower numbers 
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(Riley and Litzgus, 2013).  

 Midland Painted Turtles and Snapping Turtles represent different habitat niches 

(Ernst and Lovich, 2009), allowing me to compare and make predictions about the effects 

of anthropogenic density among species. Midland Painted Turtles are small-bodied 

habitat generalists that spend a significant portion of time basking (Ernst and Lovich, 

2009), whereas Snapping Turtles are large-bodied habitat generalists that spend a 

significant portion of time underwater (Paterson et al., 2012). We opportunistically 

caught and clipped at least eight claws from each Blanding's Turtle, a threatened species 

in Ontario (Committee on the Status of Endangered Wildlife in Canada; COSEWIC, 

2005) that is more terrestrial than Midland Painted Turtles and Snapping Turtles (Ernst 

and Lovich, 2009). All claws clipped from an individual turtle were stored together in a 7 

mL glass scintillation vial (VWR, Mississauga, ON, Canada) at room temperature, 

similar to hair analysis protocols (Mastromonaco et al., 2014), until analysis (2-11 

months after collection). All field work involving animals adhered to the Canadian 

Council on Animal Care guidelines and an approved Laurentian University Animal Care 

Committee protocol (AUP# 2014-03-01). 

 

Labratory Analyses 

 Enzyme immunoassays were run on the claws at the Endocrinology Lab at the 

Toronto Zoo to quantify the concentration of corticosterone (CORT), that had 

accumulated in the claws as they grew, in each turtle sample (Baxter-Gilbert et al., 2014). 

Claws from 152 turtles of the three species (Table 1.2) caught in the summer of 2014 



28 

were washed and crushed in December 2014 and enzyme immunoassays were run in 

April 2015. Claws from 216 turtles of the three species (Table 1.2) caught in the summer 

of 2015 were washed and crushed in October 2015 and enzyme immunoassays were run 

in November 2015.  

 To avoid contamination with other biological fluids that could artificially elevate 

cortisol levels, all claw samples were washed multiple times. Samples were first washed 

under a fume hood with 1 mL of distilled water and then washed twice in 1 mL of 100% 

methanol and vortexed in their 7 ml glass scintillation vial (VWR, Mississauga, ON, 

Canada) for 10 s. Between washings, all the liquid was removed using a pipette. Samples 

were left to dry under the fume hood for 12 to 24 hours until the vials were completely 

dry. Midland Painted Turtle and Snapping Turtle claws were crushed using methods from 

Baxter-Gilbert et al. (2014). Claws were put into 2.0 mL cryovials (Corning Inc., 

Corning, NY, USA) and placed in a liquid nitrogen dry shipper (Taylor- Wharton, 

Theodore, AL, USA) at −196°C for a minimum of ten minutes. Frozen samples were 

placed in a steel cylinder and smashed with a steel pestle to homogenize the claw 

sections. Blanding's Turtle claw samples were smaller, so instead of risking claw pieces 

getting lost in the smashing process, I cut Blanding's Turtle claws into pieces with a 

scalpel.  

 Cutting and crushing claws can be time intensive, especially when it may not be 

necessary. Claws have a hard keratin unguis and subunguis outer protective sheath that 

protects the inner portion and quick of the claws from dirt and debris in the environment 

(Feldhamer et al., 2007; Homberger et al., 2009). This sheath may be more permeable to 
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methanol, but other studies crush the claws or nails before extracting the stress hormones 

(Warnock et al., 2010; Baxter-Gilbert et al., 2014). It takes 5-10 minutes per sample to do 

the freezing and smashing method described above (Method 1) and 15-30 minutes to do 

the cutting method described above (Method 2), but the freezing method has a greater 

chance of losing claw material in the smashing process. Ideally, I would like to use the 

method that saves the most time while providing a reliable amount of CORT from the 

extraction process. Excess quantities of claws from six Snapping Turtles collected in 

2014 were used in a test of tissue preparation methods. Claws from each turtle were split 

into three groups to ensure that claws from each turtle were used in each preparation 

method before the extraction process. One group was used as a control group and the 

claws were left whole before extracting CORT from them; the claws from the second 

group were frozen and smashed (Method 1); and claws from the third group were cut 

with a scalpel (Method 2). The concentration of CORT extracted from claws was 

compared between preparation methods. 

 The crushed/cut claw pieces were weighed using a Mettler Toledo balance (model 

AB54-S; ±0.0001 g; Mettler Toledo International, Inc., Columbus, OH, USA) and 

transferred to 7 ml glass scintillation vials (VWR, Mississauga, ON, Canada). At a ratio 

of 0.005 g/ml, 100% methanol was added to extract corticosterone from claws and mixed 

for 24 hrs on an orbital shaker (MBI Orbital Shaker; Montreal Biotechnologies Inc., 

Montreal, QC, Canada) at 200 rpm. After 24 hrs, the vials were centrifuged for 10 min at 

2300 rpm. The supernatants were pipetted off into clean glass vials and dried down under 

air in a fume hood. The dried extracts were stored at −20°C until immunoassay analysis. 
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Samples were removed from the freezer and brought to room temperature on the 

laboratory bench prior to analysis. Reconstitution of the dried-down extracts was done by 

adding 150 μl enzyme immunoassay buffer solution (0.1 mm sodium phosphate buffer, 

pH 7.0, containing 9 g of NaCl and 1 g of bovine serum albumin per litre), resulting in a 

1.13- to 16.53-fold concentration, and sonicating for 20 s in an Elmasonic waterbath 

(Elma GmbH & Co. KG, Singen, BW, Germany). Samples were loaded and incubated on 

microtitre plates based on methods from Terwissen et al. (2013). 

 Claw CORT values were quantified using modifications of an enzyme 

immunoassay described previously (Metrione and Harder, 2011; Watson et al., 2013). 

Antisera were diluted as follows: goat anti-rabbit IgG (GARG) polyclonal antibody 

(Sigma-Aldrich, Mississauga, ON, Canada), 0.25 μg/well; and CORT polyclonal 

antibody (CJM006; C. Munro, University of California, Davis, CA, USA),  

1:200 000. The cross-reactivities of the antisera have been described previously (GARG 

and CORT; Metrione and Harder, 2011; Watson et al., 2013). Corticosterone–horseradish 

peroxidase conjugate (C. Munro, University of California, Davis, CA, USA) was diluted 

in assay buffer at 1:1 000 000. Standard solutions used were created with synthetic CORT 

(Steraloids Q1550; 39–10 000 pg/ ml). The control consisted of a laboratory stock of 

pooled fecal extracts obtained from spotted-necked otters (Hydrictis maculicollis) that 

was run at 65% binding. Results are presented as standardized nanograms of 

corticosterone per gram of claw (ng/g). 
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Data Handling and Statistical Analyses 

 CORT concentration levels for the claw preparation methods test were not 

normally distributed, therefore I performed a non-parametric Friedman Test to determine 

if there was a difference in CORT among the three methods used to prepare the claws for 

the enzyme immunoassay, while controlling for the individual turtles. All statistical 

analyses were performed with R (R version 2.0.3; R Core Team 2013). 

 Because high levels of variation in stress hormone concentration levels occur 

among individuals (Mastromonaco et al., 2014), I considered turtles in a 

group/population more important for describing trends in CORT than individual turtle 

CORT concentration levels. Using QGIS, I created 96 site polygons around varying 

numbers of turtles in roughly geographically isolated areas based on the landscape and 

known turtle movements. I tested the null hypothesis that there were no differences in 

claw CORT concentration levels among turtle populations from varying anthropogenic 

density sites using the lme4 (Bates et al., 2013) and mgcv (Woods, 2016) packages in R.  

 Not all captured turtles could be included in all analyses. One Snapping Turtle and 

one Blanding's Turtle were removed as CORT outliers, and one Midland Painted Turtle 

and one Blanding's Turtle were removed as number of buildings outliers, determined by 

an adjusted boxplot (Hubert and Vandervieren, 2008) using the “adjboxplot” function in 

R for skewed data in the robustbase package (Maechler, 2015). In 2014, one Snapping 

Turtle and three Blanding's Turtles, and in 2015, one Midland Painted Turtle, had 

repeated measures, so a mean of their CORT concentration levels was calculated, after 

the outliers were removed, and used in analyses. Sex was difficult to determine in 
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Snapping Turtles that did not show their penis or were not laying eggs. The ratio of the 

length from the end of the plastron to the cloacal (pre cloacal length), to the length from 

the middle of the plastron to the end of the plastron (post plastral length) was used to 

estimate the sex of Snapping Turtles with unknown sex. A ratio less than 86% indicated a 

female Snapping Turtle and a ratio greater than 86% indicated a male Snapping Turtle 

(Mosimann and Bider, 1960). Three Snapping Turtles had ratios close to 86%, so were 

excluded from the analyses because they had unknown sex. Two Snapping Turtles, two 

Blanding’s Turtles, and seventeen Midland Painted Turtles did not have body size or mass 

measurements, so were not included in the analyses. The final sample sizes used in 

analyses are found in Table 1.2. 

  Body condition has been related to stress in wildlife (Rogovin et al., 2003; Raouf 

et al., 2006; Waye and Mason, 2008; Williams et al., 2008), so I calculated a body 

condition index (BCI), based on size and body mass for each turtle, as a proxy of health. 

There are a number of methods that can be used to calculate body condition indices, 

based on body size, body mass, and the strength of different regressions (Peig and Green, 

2009). For each turtle, I performed a regression of each morphometric measure (Table 

1.3) on its mass. For Midland Painted Turtles and Blanding's Turtles, I ran two principal 

components analyses (PCA) of three morphometric measurements to create a linear 

combination as an index of the average body size of each turtle (Table 1.3). We did not 

measure carapace height in Snapping Turtles because their reduced plastron makes their 

body too flexible to get an accurate measurement. Thus, for Snapping Turtles, I ran three 

Principal Components Analyses (PCA) of two or three morphometric measurements to 



33 

create a linear combination as an index of the average body size of each turtle (Table 1.3). 

I regressed the most representative principal component of body size on the mass of each 

turtle and used the strongest of the four regressions, based on adjust R2 values 

representing the amount of explained variation, in the final calculation of BCI values. The 

residuals of the strongest regression represented the BCI of each turtle. Turtles with 

negative BCIs were considered to be in relatively poor body condition and turtles with 

positive BCIs were in relatively good body condition. Percentiles of BCI were taken per 

species to standardize the BCI for statistical models.  

 A large proportion of CORT concentrations were below the minimum detection 

limit for the enzyme immunoassays (or below the assay sensitivity), so that minimum 

was used as a reference point to separate turtles with minimum chronic CORT from 

turtles with above-minimum chronic CORT. CORT concentrations were generally left-

skewed, or zero- or minimum-inflated, so a two-part gamma hurdle model (Zuur et al., 

2009; Anderson, 2014) was used to test the effects of the independent variables. First, a 

binomial generalized additive mixed-effect model (similar to a multiple logistic 

regression) was run to determine the probability of a turtle's CORT being above-

minimum, given certain predictive independent variables. CORT values were coded as 

either 0 (minimum) or 1 (above-minimum) for the binomial generalized linear mixed-

effects model. Second, only turtles with CORT values above the minimum 'hurdle' were 

used in a gamma generalized additive mixed-effect model, to determine what explanatory 

independent variables affect the magnitude of the CORT value once it passes the 

minimum 'hurdle'. The above-minimum CORT concentrations were standardized by 
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subtracting the minimum CORT concentration from the actual CORT concentration for 

each species and/or year group. I used Akaike's Information Criterion (AIC) to evaluate 

the support of potential additive and additive mixed effects models, and chose models 

with high support (ΔAIC<2: Zuur et al., 2009). The candidate independent fixed 

variables are shown in Table 1.1. A number of variables did not have a linear relationship 

with CORT concentration levels, so I fit them to the models as additive variables (Table 

1.1). The additive variable, weeks from the time the claws were collected until the CORT 

was extracted from the claws (capture to time of extraction; CATE), was much longer in 

2014 than 2015, so was used as a proxy for year. Due to the large study area and 

opportunistic turtle capture and claw collection method, there were 96 sites with 1 – 31 

turtles per site. Site was included as a random independent factor. The dependent variable 

was CORT concentration. The 'anova' command in R was used to summarize the 

significance of each explanatory variable and is considered an approximate estimator for 

P values for generalized additive models, so significance was set at α <0.01 (Zuur et al., 

2009). 

 

Results 

 
 

 The method used to prepare claws for enzyme immunoassay did not affect the 

CORT concentration extracted; there were no differences in CORT measured among the 

three methods tested (control, freezing and smashing, cutting; χ2(2) = 1.13, p = 0.57). 

 Inter-assay coefficients of variation (CV between plates) were 17.6% and 22.1%, 

at 25% and 65% binding, respectively. Intra-assay CV (within plates) for the CORT EIA 
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was 5.6% at 50% binding. Only data from duplicates with <10% CV were used in 

analysis. Midland Painted Turtles had CORT concentrations ranging from 3.50 ng/g to 

26.32 ng/g (mean 7.53 ng/g +/- 0.02 ng/g SE). Blanding's Turtles had CORT 

concentrations ranging from 2.00 ng/g to 10.58 ng/g (mean 3.53 ng/g +/- 0.03 ng/g SE). 

Snapping Turtles had CORT concentrations ranging from 1.20 ng/g to 8.26 ng/g (mean 

2.75 ng/g +/- 0.01 ng/g SE). 

 For Midland Painted Turtles, individual scores from the first principal component 

(PC) of the PCA with plastron max length, carapace max width, and carapace max height 

were used to calculate BCI values (Table 1.4). For Blanding’s Turtles, individual scores 

from the first PC of the PCA with carapace max length, carapace max width, and 

carapace max height were used to calculate BCI values (Table 1.5). For Snapping Turtles, 

individual scores from the first PC of the PCA with carapace max width, and carapace 

max length were used to calculate BCI values (Table 1.6). 

  Sex, BCI, species, time from capture to extraction (CATE), Julian date of turtle 

capture (JDAY), and site were strong predictive and explanatory variables for CORT 

values in both binomial and gamma models (Tables 1.7, 1.9). Length of paved roads 

within 1 km of the turtle (pave) and length of unpaved roads within 1 km of the turtle 

(unp) were also strong predictive variables for minimum vs. above-minimum CORT 

values in the binomial model (Table 1.7). The interaction between sex and species was 

also a strong explanatory variable for above-minimum CORT values in the gamma model 

(Table 1.9).  
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 Male turtles were more likely to have above-minimum CORT than female turtles 

(χ2(2) = 25.6,   p = <0.001; Table 1.8, Figure 1.2). Male Snapping Turtles were most 

likely to have above-minimum CORT (χ2(2)=24.05,  p = <0.001; Table 1.8, Figure 1.2) 

and most Snapping Turtles caught in 2015 had above-minimum CORT. CATE (χ2(9) = 

39.27,  p = <0.001; Table 1.8) and site (χ2(16) = 23.15,  p = 0.03; Table 1.8) explained a 

large amount of variation in the probability of a turtle having above-minimum CORT, but 

showed non-linear relationships with CORT that did not seem to show a pattern (Table 

1.8). 

 Within turtles that had above-minimum CORT, Midland Painted Turtles had 

higher CORT than Blanding's and Snapping Turtles (F(2,243) = 12.86, p = <0.001; Table 

1.10; Figure 1.3). Male Snapping and Blanding's Turtles had higher above-minimum 

CORT than female Snapping and Blanding's Turtles (F(1,243) = 5.02, p = 0.03; Table 

1.10; Figure 1.3), but there was an interaction between species and sex (F(2,243) = 4.92, 

p = 0.008; Table 1.10; Figure 1.3). There was no difference in above-minimum CORT 

between male and female Painted Turtles (F(2,243) = 4.92, p = 0.008; Table 1.10; Figure 

1.3). CATE (F(1,243) = 29.28,  p = <0.001; Table 1.10) and JDAY (F(1,243) = 26.45, p = 

<0.001; Table 1.10) seemed to complement one another to account for a large amount of 

variation in above-minimum CORT, while having a weak positive trend with above-

minimum CORT (Table 1.10). Site (F(4,243) = 0.15,  p = 0.003; Table 1.10) accounted 

for a large amount of variation in above-minimum CORT, but showed a non-linear 

relationship with CORT that did not seem to show a pattern (Table 1.10). 
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Discussion 

 

 Anthropogenic densities did not affect the probability of Midland Painted Turtles 

and Blanding’s Turtles having above-minimum chronic (or long-term) CORT, nor did it 

help explain the CORT concentrations once they were above-minimum. This suggests 

that turtles in my study are not experiencing chronic stress due to the factors I tested. 

These findings support my hypothesis that turtles living near human structures have 

acclimated to human presence. The turtles may have undergone adrenocortical 

modulation, adapting to chronic high stress situations and stress hormone levels by 

readjusting to new baseline levels (Wingfield and Ramenofsky, 1999). Similarly, road 

density did not affect Red-eared Slider (Trachemys scripta elegans) population 

demographics in Texas (Mali et al., 2013), and Dorland et al. (2014) found that relative 

abundance of Painted Turtle populations did not seem to differ based on proximity to 

high traffic volume roads. Even though I sampled turtles much farther from roads than 

Dorland et al. (2014), giving us a larger representative sample of low anthropogenic 

density, my findings seem to be similar. Some studies have found that wildlife near 

human altered landscapes exhibit high levels of stress hormones (Brearley et al., 2012), 

but my results indicate that there may not be negative indirect effects of roads on turtles. 

   Snapping Turtles were most likely to have above-minimum CORT, especially in 

2015, but no other variables seemed to linearly explain their variation in CORT 

concentrations. Snapping Turtles often get fed fish and/or hooks (by accident or 

intentionally) by fishermen (Borkowski, 1997; Ernst and Lovich, 2009), including in my 
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study area, and this may be one anthropogenic variable that I did not measure that could 

increase chronic CORT. There is likely a complex relationship between chronic CORT 

and anthropogenic density. Snapping Turtles have higher variation in body size, by a 

magnitude of 10-100 times the BCI of Midland Painted Turtles and Blanding's Turtles, 

which may complicate interpretation of their BCI relationships with stress. Calculating 

the home range sizes of turtles would give a more accurate representation of the 

anthropogenic densities a turtle experiences (Schoener, 1981), which may have a greater 

effect on their chronic CORT levels than the anthropogenic densities at the capture 

location. Unfortunately, turtles do die from vehicle collisions and other human impacts, 

such as fishing nets and boat collisions (Pappas et al., 2001; Ersnt and Lovich, 2009; 

Paterson et al., 2012), so turtles readjusting their CORT baseline levels may not always 

be beneficial. 

 Future studies should investigate other potential sources of stress, such as land 

use, vehicle encounters, sound, light and chemical pollution, and natural disasters (White, 

1979; Hopkins et al., 1997; Longcore and Rich, 2004). Different forms of pollution have 

been studied in other species (Hopkins et al., 1997; Blickley et al., 2012). Southern Toads 

(Anaxyrus terrestris) had high CORT circulating in their blood in polluted study areas 

(Hopkins et al., 1997). My study area is in a relatively pristine part of Ontario (Crins et 

al., 2009), so environmental pollution is unlikely to affect chronic stress in turtles. Fecal 

CORT metabolites in Greater Sage-Grouse (Centrocercus urophasianus) were higher 

when exposed to prolonged noise playback or noise pollution (Blickley et al., 2012), 

although birds have more sensitive hearing than reptiles (Fay, 1988). Midland Painted 
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Turtles bask more than Blanding's Turtles and Snapping Turtles (Ernst and Lovich, 2009), 

so may react more to prolonged sound pollution near roads by increasing their CORT 

levels.  

 Male Midland Painted Turtles and Blanding’s Turtles tended to have higher 

chronic CORT than females. Baxter-Gilbert et al. (2014) also found that chronic CORT 

was higher in male Midland Painted Turtles than females, regardless of whether turtles 

were captured near roads. Increased CORT in male Marine Iguanas (Amblyrhynchus 

cristatus) helped with beneficial reproductive behaviours, such as orientation, 

territoriality, and courtship (Berger et al., 2005). Midland Painted Turtle males have 

elaborate courtship displays (Moldowan, 2014) and Blanding's Turtles have coercive 

mating tactics (Baker and Gillingham, 1983) that may benefit from increased CORT 

levels, but no studies have tested this relationship. Little is known about Snapping Turtle 

mating behaviours, but males may defend territories or home ranges (Galbraith et al., 

1987), which could raise CORT levels (Sheriff et al., 2011). Because male Snapping 

Turtles do not seem to defend strict territories (Galbraith et al., 1987), their CORT may 

only show a few acute spikes when they encounter and fight another male. The Southern 

Toads with high CORT circulating in their blood in polluted study areas were male and 

also had high testosterone circulation in their blood (Hopkins et al., 1997). Paitz et al. 

(2014) found that female Red-Eared Sliders did not seem to have increased CORT 

circulating in their blood during nesting season, or over any other time in their active 

season, which is contrary to most mammals (Sheriff et al., 2011). Midland Painted Turtle 

and Blanding's Turtle females in my study area, which did not show elevated CORT, may 
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have been similar to Red-Eared Sliders in their response to reproduction. Cash et al. 

(1997) found no difference in CORT between male and female Red-eared Sliders. Some 

reptiles have shown differences in CORT levels based on sex [Watersnakes (Nerodia 

sipedon), Sykes and Klukowski, 2009; Common Wall Lizards (Podarcis muralis), 

Galeotti et al., 2010], but others have not [Freshwater Crocodiles (Crocodylus johnstoni), 

Jessop et al., 2003; Hawksbill Turtles (Eretmochelys imbricata), Jessop et al., 2004; Tree 

Lizards (Urosaurus ornatus), French et al., 2008].  

 CORT and other glucocorticoids are associated with processes in the body that are 

not solely due to stress, such as reproductive status, season, and disease (Sheriff et al., 

2011; Sapolsky, 1990). Many of these relationships are understood in other taxonomic 

groups, but not in reptiles (Sheriff et al., 2011). In my study, the JDAY of turtle capture 

and claw collection was a significant explanatory variable for above-minimum CORT 

values, but the relationship between Julian date and CORT was non-linear and weakly 

positive. The effect of Julian date may represent a seasonal effect on CORT level, with 

CORT increasing slightly as the summer progresses. My study was short term, and 

logistical challenges prevented me from pursuing some areas of investigation. Research is 

still required, in the form of adrenocorticotropic hormone (ACTH) challenges 

(Mastromonaco et al., 2014), comparing CORT in blood to CORT in claws to determine 

if a strong relationship exists (Berkvens et al., 2013). ACTH challenges would be 

difficult to perform on turtles because they have slow metabolic rates compared to 

mammals on which ACTH challenges have previously been performed before (Sheriff et 

al., 2011). Claw growth rates should be measured for individual claws of each species to 
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determine the amount of time represented in the claw samples (Baxter-Gilbert et al., 

2014). For example, human hair grows approximately 1 cm/month (Wennig, 2000). 

CATE was a strong explanatory variable in both models in my study, but the relationship 

between CATE and CORT was non-linear and weakly positive. This could suggest that 

the CORT may be degrading in the claws over the length of time that they are stored. It 

could also suggest that CORT may degrade over time while the claw is still attached to 

the animal because claws are not vascularized (Feldhamer et al., 2007; Homberger et al., 

2009). Bortolotti et al. (2009) found significantly higher CORT levels in Great Horned 

Owl (Bubo virginianus) feathers that were twenty-five years old, than samples less than 

one year old, but Bortolotti et al. (2009) did not find a significant difference between 

recent and historic CORT levels in feathers of twelve other bird species. Webb et al. 

(2010) successfully extracted cortisol from archaeological hair of humans living 550-

1500 AD. No studies have directly tested the effect of storage time on the level of CORT 

or cortisol on keratin structures (Sheriff et al., 2011), but future studies should extract 

CORT from samples within a similar time frame after capture. CORT was extracted from 

turtle claws after many more weeks in 2014 than 2015, which likely contributed to the 

significance of CATE in both models in my study. 

 Although BCI was an explanatory variable in the top AIC ranked models in my 

study, it was not a significant predictor of CORT levels. Immunocompetence was 

measured in Marine Iguanas and was decreased when their CORT levels were high after 

experimentally stressful events were created (Berger et al. (2005). Immune function may 

be more directly related to CORT than a body condition index and future studies should 
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further explore the relationships. Stress responses were species-specific in other studies 

(Sheriff et al., 2011) as well as my own, and an enzyme immunoassay validation has only 

been run on Midland Painted Turtles (Baxter-Gilbert et al., 2014). Caution must be taken 

when interpreting chronic CORT levels before more is understood about CORT in turtles. 

            My study increased understanding of CORT relationships in turtles and provides a 

basis for future research directions. Conservation management plans could include 

measuring the indirect effects of anthropogenic disturbance as well as the direct effects. 

Conservation projects are often limited in time and funding (Wilson et al., 2006; 

McDonald-Madden et al., 2008). To increase sampling efficiency in future projects, 

researchers can save up to thirty minutes per claw sample by leaving the claws intact 

before extracting the CORT, thus reducing analytical expenses. An increased number of 

samples can be processed in less time, thus improving sample sizes and accuracy of 

future studies. Turtles do not seem to have higher chronic CORT around roads or 

buildings, but they are still subject to road mortality. So, mitigating road effects will also 

benefit the species. Road mitigation projects need to take into account that snapping 

turtles can climb chain-link fences and hatchling turtles are small enough to pass through 

many gauges of fencing. There were species-specific differences in chronic CORT 

response, but Midland Painted Turtles and Blanding's Turtles were similar in that CORT 

was higher in males. Because I caught more than twice as many Midland Painted Turtles 

as Blanding's Turtles, my statistical power was much higher for Midland Painted Turtles. 

Most turtle species in Ontario are species at risk (Species at Risk Act; SARA, 2003) and 

some projects may not be able to catch a large number of rare at risk turtles for strong 
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statistical analyses. The more common Midland Painted Turtles may have chronic CORT 

concentrations that can be made applicable to Blanding's Turtles in the same habitat. 

Understanding different levels of stress hormones, with non-invasive methods, can 

further inform and help to evaluate mitigation strategies to improve reproduction and 

survival, rather than impede it (Busch and Hayward, 2009).  
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Figure 1.1: Clipping Painted Turtle claws into 7 mL scintillation vials to store before 

running enzyme immunoassays to obtain a concentration of corticosterone. 
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Figure 1.2: Differences between species and sex in probability of chronic CORT being 

above-minimum. Letters indicate significant differences. Errors bars are +/- SE. 

Male turtles are more likely to have above-minimum chronic CORT than female 

turtles. Male Snapping Turtles are most likely to have above-minimum chronic 

CORT. 
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Figure 1.3: Differences between species and sex in level of above-minimum chronic 

CORT. Letters indicate significant differences. Errors bars are +/- SE. Male 

Blanding's Turtles and Snapping Turtles have higher relative above-minimum 

chronic CORT than female Blanding's Turtles and Snapping Turtles. Painted 

Turtles have the highest relative above-minimum chronic CORT. 
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Tables 

 

 

Table 1.1: Independent variables used in two-part gamma hurdel model selection with the 

codes used in the results. Anthropogenic Structures are the categories used to calculate 

anthropogenic densities within 1 km of turtles. QGIS was used to calculate the number of 

buildings and length (m) of roads within 1 km of turtles. ' * ' indicate an additive (non-

linear) variable. ' “ ' indicates a random variable. 

Anthropogenic 

Structure 

Code Non-Anthropogenic Variables Code 

Buildings build Sex sex 

Railway tracks rt Species species 

Unpaved roads unp Body Condition Index (BCI) BCI 

Paved roads pave Weeks from the time the claws were collected 

until the CORT was extracted from the claws* 

CATE 

Recreational roads 

and trails 

rec Julian date of the claw collection* JDAY 

Local roads local Site*” site 

Arterial roads art   

Highways high   

All roads allrd   

All linear features 

(roads and railway 

tracks) 

rdrt   
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Table 1.2: The turtle species that were analyzed for this study and their sample sizes in 

each year of the study. 

Turtle Species Individuals Sampled in 2014 Individuals 

Sampled in 2015 

Midland Painted Turtle  

(Chrysemys picta marginata) 

55 117 

Snapping Turtle  

(Chelydra serpentina) 

65 64 

Blanding's Turtle  

(Emydoidea blandingii) 

32 35 
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Table 1.3: Individual and PCA measurement variables (max=maximum) regressed against 

body mass to determine the strongest regression. The residuals of the strongest regression 

represented the body condition index (BCI) of each turtle. A mean of measurements taken 

more than once throughout the season was used, where applicable. 

Blanding's Turtles (Emydoidea 

blandingii) and Midland Painted 

Turtles (Chrysemys picta marginata) 

Snapping Turtles (Chelydra serpentina) 

Plastron max length Plastron max length 

Carapace max length Carapace max width 

Carapace max width Carapace max length 

Carapace max height Plastron max length, carapace max width PCA 

Plastron max length, carapace max 

width, carapace max height PCA 

Carapace max length, carapace max width 

PCA 

Carapace max length, carapace max 

width, carapace max height PCA 

Plastron max length, carapace max width, 

carapace max length PCA 
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Table 1.4: Midland Painted Turtle (Chrysemys picta marginata) principle components 

analyses (PCA) and regressions of morphometric measures with body mass. The 

morphometric regression model (P values and adjusted R2 values reported) that described 

the most variation in the data (highest adjusted R2 value) is in bold and was used to 

calculate the body condition index (BCI) of each turtle. Loading of each morphometric 

measurement on the first principal component of the PCA is in brackets after each 

morphometric measure. 

Measurement Variable Regressed 

Against Mass 

Variance Explained by 

First Principal 

Component (PC) (%) 

P value Adjusted R2 

Plastron max length NA <0.0001 0.861 

Carapace max length NA <0.0001 0.840 

Carapace max width NA <0.0001 0.863 

Carapace max height NA <0.0001 0.836 

Plastron max length (0.59), carapace 

max width (0.58), carapace max height 

(0.57) PCA 

92 <0.0001 0.915 

Carapace max length (-0.58), carapace 

max width     (-0.58), carapace max 

height (-0.57) PCA 

92 <0.0001 0.913 

 

 



61 

Table 1.5: Blanding’s Turtle (Emydoidea blandingii) principal components analyses 

(PCA) and regressions of morphometric measures with body mass. The morphometric 

regression model (P values and adjusted R2 values reported) that described the most 

variation in the data (highest adjusted R2 value) is in bold and was used to calculate the 

body condition index (BCI) of each turtle. Loading of each morphometric measurement 

on the first principal component of the PCA is in brackets after each morphometric 

measure. 

Measurement Variable Regressed 

Against Mass 

Variance Explained by 

First Principal 

Component (PC) (%) 

P value Adjusted R2 

Plastron max length NA <0.0001 0.763 

Carapace max length NA <0.0001 0.849 

Carapace max width NA <0.0001 0.834 

Carapace max height NA <0.0001 0.539 

PC1: plastron max length (-0.60), 

carapace max width (-0.56), carapace 

max height (-0.57) PCA 

84.4 <0.0001 0.825 

PC1: carapace max length (-0.60), 

carapace max width (-0.60), carapace 

max height (-0.53) PCA 

86.1 <0.0001 0.879 
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Table 1.6: Snapping Turtle (Chelydra serpentina) principle components analyses (PCA) 

and regressions of morphometric measures with body mass. The morphometric 

regression model (P values and adjusted R2 values reported) that described the most 

variation in the data (highest adjusted R2 value) is in bold and was used to calculate the 

body condition index (BCI) of each turtle. Loading of each morphometric measurement 

on the first principal component of the PCA is in brackets after each morphometric 

measure. 

Measurement Variable Regressed 

Against Mass 

Variance Explained by 

First Principal 

Component (PC) (%) 

P value Adjusted R2 

Plastron max length NA <0.0001 0.761 

Carapace max width NA <0.0001 0.856 

Carapace max length NA <0.0001 0.887 

Plastron max length (0.71), carapace 

max width (0.71) PCA 

93 <0.0001 0.872 

Carapace max length (0.71), carapace 

max width (0.71) PCA 

96 <0.0001 0.905 

Plastron max length (0.57), carapace 

max width (0.58), carapace max length 

(0.58) PCA 

93 <0.0001 0.903 
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Table 1.7: Akaike's Information Criterion (AIC) for selection of best binomial models. 

Abbreviations of independent variables are defined in the Methods in Table 1.1. '*' 

indicates an additive term. ':' indicates an interaction term. 

Model Number of 

estimated 

parameters (K) 

AIC ΔAIC Akaike 

weight 

(wi) 

 

sex+species+BCI+site*+CATE*+unp 29 384.46 0.00 0.27  

sex+species+BCI+site*+CATE*+unp+pave+

JDAY* 

26 384.80 0.34 0.22  

sex+species+BCI+site*+CATE* 31 384.89 0.43 0.21  

sex+species+BCI+site*+CATE*+unp+pave 26 384.91 0.45 0.21  

sex+species+BCI+site*+CATE*+unp+ 

sex:species 

30 386.45 1.99 0.10  
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Table 1.8: Influence of effects of top binomial Akaike's Information Criterion (AIC) 

model on turtle claw corticosterone concentration levels. 'edf' is the effective degrees of 

freedom. 'df' is the degrees of freedom. Significant effects are shown as bold P values. 

Abbreviations of independent variables are defined in the Methods in Table 1.1. 

Parameter Effect edf df χ2 P values 

Claw corticosterone sex  1 25.6 <0.001 

species  2 24.05 <0.001 

bci  1 0.05 0.83 

 unp  1 2.68 0.10 

 CATE 8.45  37.55 <0.001 

 site 15.83  23.15 0.03 
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Table 1.9: Akaike's Information Criterion (AIC) for selection of best gamma models. '*' 

indicates an additive term. ':' indicates an interaction term. Abbreviations of independent 

variables are defined in the Methods in Table 1.1. 

Model Number of 

estimated 

parameters (K) 

AIC ΔAIC Akaike 

weight (wi) 

sex+species+BCI+CATE*+JDAY*+ 

sex:species+site* 

14 988.66 0.00 0.92 

sex+species+BCI+CATE*+JDAY*+ 

sex:species 

10 993.48 4.82 0.08 
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Table 1.10: Influence of top Akaike's Information Criterion (lowest AIC) model on turtle 

claw corticosterone concentration levels. Significant effects are shown as bold P Values. 

':' indicates an interaction term. Abbreviations of independent variables are defined in the 

Methods in Table 1.1. 

Parameter Effect edf df F P Value 

Claw corticosterone sex  1 5.02 0.03 

species  2 12.86 <0.001 

Sex:species  2 4.92 0.008 

BCI  1 1.72 0.19 

 JDAY  1 26.45 <0.001 

 CATE 1  29.28 <0.001 

 site 4  0.15 0.003 
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Do Anthropogenic Structure Densities Affect Rates and Patterns of Nest 

Predation on Freshwater Turtles? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

Abstract 

 
 Abundances of mammals that predate turtle eggs are higher where anthropogenic 

sources of food and decreases in populations of top predators allow middle-sized 

mesopredators to flourish. Many studies have found that the highest predation risk to 

turtle nests is within the first week after the eggs are laid. However, other studies have 

found that depredation of turtle nests occurs throughout the incubation period. I 

hypothesized that if human presence increases mesopredator abundance, then the 

frequency of depredation events on turtle nests will be greater and will occur over a 

longer period of time at field sites with higher anthropogenic structures than at more 

pristine field sites. I monitored three road transects and one remote site in Ontario that 

connect high road and building density areas to low density areas and one remote 

location, for three species of nesting turtles in June; Midland Painted Turtles (Chrysemys 

picta marginata), Snapping Turtles (Chelydra serpentina), and Blanding's Turtles 

(Emydoidea blandingii). I determined the rate and pattern of nest depredation throughout 

incubation. The distribution of the percentage of predator interactions with nests that 

occurred weekly (PRED) was different than the expected PRED based on published 

studies; nest depredation was not restricted to the early days of egg incubation. Using a 

non-parametric product-limit survival analysis, I found that the nests of all three turtle 

species had similar probabilities of survival. Predator exclusion nest cages and higher 

road densities close to a turtle nest increased the nests' survival. Relative nest 

mesopredator abundance indices, calculated from trail camera photos, did not differ 

among sites with varying ADA, but were highest during the nesting season. Of the two 
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major nest mesopredators in my study area, raccoons were more abundant than foxes. 

Contrary to some nest caging protocols, nest cages should be kept on nests until the 

turtles hatch and priority should be given to caging nests in low road density areas to help 

increase population recruitment. 

 

Introduction 

 

 Habitat alteration due to human activities has largely caused global declines in 

wildlife populations (Butchart et al., 2010; Hoffmann et al., 2010). Road mortality is a 

direct cause of global population declines of various animals such as turtles (Gibbons et 

al., 2000; Butchart et al., 2010; Hoffmann et al., 2010), but roads and other 

anthropogenic structures may also have indirect effects on turtle ecology, such as the 

predation patterns of turtle nests. The egg life stage is one of the most vulnerable periods 

of time for turtles (Tinkle et al., 1981; Congdon et al., 1983; Riley and Litzgus, 2013). In 

some areas, predators depredate all of the turtle nests (Fordham et al., 2008), and if more 

than half of the turtle nests in a population are depredated each year, turtle populations 

decline at increasing rates (Reed, 2009). Abundance of mammals that depredate turtle 

eggs is higher where anthropogenic sources of food (Oehler and Litvaitis, 1996) and 

decreases in populations of top predators (Prugh, 2009) subsidize an ideal environment 

for middle-sized mesopredators to flourish. Raccoons (Procyon lotor) and red foxes 

(Vulpes vulpes) are both well-known subsidized turtle nest predators (Snow, 1982) that 

display increased population sizes near human-altered landscapes (Oehler and Litvaitis, 



70 

1996; Prugh et al., 2009). Abundance of mesopredators varies throughout the year 

(Kaufmann, 1982). 

 A number of studies have found that the highest predation risk to Blanding's 

Turtle (Emydoidea blandingii; Congdon et al., 1983), Snapping Turtle (Chelydra 

serpentina; Congdon et al., 1987; Robinson and Bider, 1988), and Alligator Snapping 

Turtle (Macrochelys temminckii, Holcomb and Carr 2013) eggs is within the first week 

after the eggs are laid (Tinkle et al., 1981; Christens and Bider, 1987). Studies that tried 

to identify cues that mesopredators use to find nests monitored turtle nests for only two 

weeks (Marchand and Livaitis, 2004), two days (Strickland et al., 2010), or up to one 

month (Rollinson and Brook, 2007) after the eggs were laid, which may have been too 

short a time period. Although high levels of predation occurs in the first week post-

oviposition, other studies have found that depredation also occurs later in incubation for 

Painted Turtles (Chrysemys picta; Snow, 1982; Riley and Litzgus, 2014), Wood Turtles 

(Glyptemys insculpta; Brooks et al., 1992), Diamonback Terrapins (Malaclemys terrapin; 

Burger, 1977), Northern Map Turtles (Graptemys geographica; Gillingwater, 2002), and 

Snapping Turtles (Riley and Litzgus, 2014). Congdon et al. (1983) found that a majority 

of Blanding's Turtle nest depredation occurred within the first week post-oviposition, and 

also observed a small spike of ~5% of Blanding's Turtle nests being depredated during 

hatchling emergence. The differences seen in turtle nest predation patterns may be 

attributed to the large variety of species that depredate turtle nests and cues available to 

potential mesopredators. 
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 There are a number of nest cues mesopredators could use to find turtle nests 

throughout the incubation period. Mammal mesopredators may be able to smell 

oviposition fluid early in the season (Legler 1954; Congdon et al. 1983; Spencer 2002), 

rotten eggs throughout incubation, or embryonic fluids when the hatchlings hatch (Riley 

and Litzgus, 2014). Mesopredators may see turtles laying eggs (Congdon et al., 1987; 

Eckrich and Owens 1995) or disturbed soil (Strickland et al., 2010; Spencer 2002) during 

nesting season, and emerged hatchlings (Riley and Litzgus, 2014) during hatching 

season. Oddie et al. (2015) found that raccoons were more likely to depredate nests that 

had tactile cues, such as soft soil resulting from maternal digging and covering. 

Mesopredators may also hear hatchlings inside their nest cavity after they hatch (Ferrara 

et al., 2013). Canines and other mammals seem to be the most common nest 

mesopredators in the later stages of incubation (Burger, 1977; Brooks et al., 1992; 

Spotilla, 2011; Riley and Litzgus, 2014).  

 Globally, turtles are one of the most at risk taxa, and a contributing factor to 

population declines is unnaturally high levels of nest predation (Gibbons et al., 2000). 

One rescue method that could be used would be to excavate eggs and incubate them 

indoors away from mesopredators, but this is time consuming, expensive, and requires 

specialized permits and trained technicians to handle turtle eggs (Kurtz et al., 2011). A 

common conservation tool, used by trained technicians as well as informed members of 

the public, to protect turtle nests from mesopredators is a predator-exclusion nest cage 

(Riley and Litzgus, 2013). Unfortunately, this can become a learned visual cue for 

mesopredators, such as raccoons (Mroziak et al., 2000) and Corvus sp. (Rollinson and 
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Brooks, 2007), to find nests. Some nest caging protocols recommend removing nest 

cages in the middle of the incubation period, but predation spikes have been observed in 

freshwater turtle (Rahman and Burke 2010) and sea turtle (Engeman et al., 2006) nests 

after the cages were removed. One of my objectives is to identify a protocol that will be 

most beneficial to turtle egg survival thus helping to form a consensus on nest caging 

protocols. 

 Female turtles choose nesting sites based on environmental variables that aid in 

the successful development of hatchlings (Wilson 1998; Refsnider and Janzen 2010), but 

they may not have adapted their nest-site selections to account for subsidized 

mesopredators. Large numbers of turtles lay eggs in the gravel shoulder of roads in my 

study area, and roads connect human structures that can subsidize mesopredator 

populations (Prugh et al., 2009). I monitored three roads in the South Muskoka area of 

Ontario in 2014 and 2015 that connected high anthropogenic densities to low 

anthropogenic densities and one remote location, for nesting turtles and nests monitored 

throughout incubation in order to determine the rate and pattern of nest depredation. To 

my knowledge, no studies have quantified nest depredation rates across an anthropogenic 

density gradient. I hypothesized that if human presence increases mesopredator 

abundance, then the frequency of depredation events on turtle nests will be greater and 

will occur over a longer period of time at field sites with a higher density of 

anthropogenic structures than at sites in more pristine habitats. 
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Methods 

Study Area 

 The study area covers southern portions of the Parry Sound and Muskoka 

districts, in Central Ontario. The study area (roughly 44N 40' to 45N 20' latitude and -

79W 50' to -79W 10' longitude) borders the southern boundary of the Boreal Shield 

Ecozone and the northern boundary of the Mixedwood Plains Ecozone, within the Great 

Lakes Watershed (Crins et al., 2009). It extends across the Ecodistricts 551 and 552 in the 

Lake Simcoe-Rideau Ecoregion (6E) and Ecodistrict 413 in the Georgian Bay Ecoregion 

(5E; Crins et al., 2009). There are many wetlands and lakes among rock barren outcrops 

and mixed forests (Crins et al., 2009), which provide ideal habitat for the diverse 

herpetofauna that live in this area (Hecnar et al., 2002). This region of Ontario 

experiences a humid continental temperate climate, with four distinct seasons (Baldwin, 

et al., 2000).  

 

Anthropogenic Density 

 I quantified anthropogenic density using QuantumGIS (QGIS) to calculate the 

density of buildings, roads, and railways in my study area. Southern Muskoka is an ideal 

study area because there is a wide range of anthropogenic densities, from low 

anthropogenic density, in conservation reserves and Crown land, to high anthropogenic 

density, in small town centers (e.g Gravenhurst and Bala). Moderately impacted areas 

include locations with few gravel roads and low building density. Southern Muskoka also 

simplifies a calculation of anthropogenic density because there are few agricultural and 



74 

logging practices present (personal observation).  

 Some studies have focused on animal responses to one measure of density or 

human influence (Gaddy and Kohlsaat, 1987; Crowley, 2006; Dorland et al., 2014). In 

contrast, I calculated a number of anthropogenic density measures within 1 km of each 

nest (Table 2.1). This 1 km radius/diameter was based on the home range size of 

raccoons, known turtle nest predators (Snow, 1982) in rural eastern Ontario (0.78 km2 +/- 

0.46 km2; Totton et al., 2004). Roads were classified based on the National Road 

Network road layer categories (and used as a rough approximation of road quality): 

Gravel Road, Recreation/Resource Road, Local Streets, Arterial Roads, and Highway. I 

calculated the length (m) of roads within 1 km of turtles, including the road transects that 

were driven, using the 'Sum Line Lengths' function in QGIS. I used the building layer 

from the Muskoka Web Map and manually added points for buildings in the north part of 

my study area using the Bing Aerial Layer plugin for QGIS. The types of buildings in the 

Muskoka Web Map layer was not available and I could not determine types from the 

Bing Aerial Layer images. I calculated the number of buildings within 1 km of nests 

using the 'Points within Polygon' function in QGIS. I examined which combination of 

anthropogenic density variables best described the variation in nest predation patterns. 

  

Field Data Collection and Study Species 

 Three road transects that spanned a range of anthropogenic densities were 

surveyed for nesting turtles. One remote site, without roads or buildings, was also 

surveyed and represented the lowest levels of anthropogenic densities. Turtle nests found 
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on gravel roads, gravel shoulders of paved roads, in moss and soil on rock outcrops 

beside roads, or on rock outcrops without roads, were used to compare nest predation 

patterns. 

 Captured female turtles were palpated to determine if they were gravid (had 

shelled eggs) and nest searching by researchers started once nesting behaviour was 

observed (2 June in 2014, 27 May in 2015). Nest searching by researchers ended after 

three consecutive days passed with no observed nesting behaviour (30 June in 2014 and 

2015). Nests were marked with popsicle sticks and flagging tape after the female turtle 

finished nesting (Figure 2.1; a). Nests were monitored weekly throughout incubation to 

determine if the hatchlings emerged from the nest, the nest failed, or the nest was 

depredated (Figure 2.1: b). I did not excavate nests for egg measurements in my study, 

thus minimizing the effects of nest disturbance on the behaviour of predators (Riley and 

Litzgus, 2014). Wooden-sided and above-ground wire nest cages with hatchling escape 

holes (Figure 2.2; Riley and Litzgus, 2013) were opportunistically placed on top of 

Midland Painted Turtle and Snapping Turtle nests and placed on all Blanding's Turtle 

nests as soon as the female turtle had completed laying her eggs and covering her nest. 

Nest mesopredators learned that these type of markers indicate turtle nests over a number 

of years in some areas (Burke et al., 2005; Rollinson and Brooks 2007; Spotila, 2011), 

but not in others (Mroziak et al., 2000; Burke et al., 2005; Strickland et al., 2010; Kurz et 

al., 2011). My study was two years in duration, so it is unlikely that mesopredators 

learned that nest cages indicated a food source (Riley and Litzgus, 2014). No Midland 

Painted Turtle nests and a number of Snapping Turtle nests were not caged as control 
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nests representing natural predator interactions. 

 The turtle species and sample sizes monitored in my study are listed in Table 2.2 

and their associated federal and provincial conservation status designations can be found 

in Table 0.1. Due to the potential for illegal collection of turtles, specific location 

information is not disclosed.  

 Because of their difference in body size and nesting ecology (Ernst and Lovich, 

2009; Riley and Litzgus, 2014), studying Midland Painted Turtles (Chrysemys picta 

marginata) and Snapping Turtles allowed me to compare and make predictions about the 

effects of anthropogenic density and mesopredator interactions applicable to multiple 

turtle species. Midland Painted Turtles dig relatively shallow nest cavities, with an 

average depth of 9.6 +/- 0.1 cm (Riley and Litzgus, 2013), and lay small clutch sizes, 

with a mean of eight eggs (Congdon et al., 1981; Ernst and Lovich, 2009); Snapping 

Turtles dig relatively deep nest cavities, with an average depth of 20.7 +/- 0.4 cm (Riley 

and Litzgus, 2013), and lay large clutch sizes, with a mean of twenty-eight eggs 

(Congdon et al., 1987; Ernst and Lovich, 2009); and Blanding's Turtles dig intermediate 

depth nest cavities and lay intermediate clutch sizes, with a mean of ten eggs (Congdon et 

al., 1983; Ernst and Lovich, 2009). Snapping Turtle nests yielded the largest sample sizes 

for robust statistical analyses that could be made applicable to other turtle species at risk 

(Riley and Litzgus, 2013).  

 Thirty-two Camera traps in twenty-seven unique sites, including one at the remote 

site in 2014, were opportunistically set up at nesting sites to determine nest predation 

rates and species of mesopredators. Cameras were inspected weekly or biweekly, and 
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memory cards and batteries exchanged as needed. Nests were checked weekly, to 

determine mesopredator interactions (Riley and Litzgus, 2014) and to check for nest 

mesopredator tracks and scat, until October – when all viable hatchlings should have 

emerged (Ernst and Lovich, 2009). Predation attempts (e.g. holes dug close to nest 

chambers, disturbed soil, mesopredator scat) were recorded and any disturbed soil was 

replaced so that multiple interactions with each nest could be recorded. If a small hole in 

the soil was found in the location of the nest after 3-4 months, then it was concluded that 

the hatchlings had emerged (Ernst and Lovich, 2009) and the nests were excavated to 

count remaining egg shells and hatchlings. Nests were no longer checked if all the eggs 

had been predated, or all the hatchlings had emerged. Nests were excavated in October if 

the hatchlings had not emerged and the species' hatchlings could not overwinter in the 

nest (i.e Snapping Turtles; Ernst and Lovich, 2009).  

 

Data Handling and Statistical Analyses 

 Because the same individual mesopredator could depredate all the nests in one 

location, I created a nesting site variable to help control for the clustering of nests. Using 

QGIS, I created 128 nesting site polygons around varying numbers of turtle nests in 

roughly geographically isolated areas. 

 Not all nests were included in all analyses. I found 494 nests, but not all were 

monitored. I either knew the date they were laid, their fate, or both. Unknown fates 

included Midland Painted turtle nests that had hatchlings that presumably overwintered in 

the nest cavity, or nests that were lost (often when a road-side grader removed nest 
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markers). The nests with known dates laid and fates were considered the most valuable to 

my analysis (see Table 2.2 for sample sizes); the nests with unknown dates laid and 

known fates were the second most valuable (see Table 2.2 for sample sizes). The nests 

with unknown fates were the least valuable (see Table 2.2 for sample sizes). I used only 

the most valuable data in statistical analyses. All statistical analyses were performed with 

R (R version 2.0.3; R Core Team 2013). Certain outliers were determined by an adjusted 

boxplot (Hubert and Vandervieren, 2008) using the “adjboxplot” function in R for 

skewed data in the robustbase package (Maechler, 2015). 

 I monitored predator behaviours and nest survival. Mesopredator interactions 

were defined as either the first depredation attempts on caged nests or successful 

depredations. It is assumed that the nest cages were protecting the nests from a successful 

depredation, so a depredation attempt on a caged nest was considered a successful 

depredation for analysis and no subsequent depredation attempts on that nest were 

included in analyses. Subsequent depredation attempts were still recorded and used to 

create a monthly summary of predator sign. 

 I performed a non-parametric product-limit survival analysis (Kaplan and Meir, 

1958; Engeman et al., 2006), with the “survfit” function in R in the survival package 

(Therneau and Lumley, 2015) to create a survival curve for all the turtle nests with known 

dates laid and fates. The survival time was days from oviposition to mesopredator 

interaction. Nests were censored (removed from analysis without being depredated) if 

they had hatchlings emerge, failed to complete incubation, or were still intact on their last 

nest check. I used cox-proportional hazards regression modeling (similar to linear mixed 
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effects modeling), using the “coxph” function in R in the survival package (Therneau and 

Lumley, 2015), and model selection to compare the survival curves of nests between 

candidate independent fixed variables (Table 2.1).  I used Akaike's Information Criterion 

(AIC) to evaluate the support of potential cox-proportional hazards models, and chose 

models with high support (ΔAIC<2: Zuur et al., 2009). Due to the large study area, there 

were forty nesting sites with 1 - 14 nests with known dates and fates per site. Site was 

included as a random independent factor (or frailty term; Therneau and Lumley, 2015). 

The dependent variable was the survival curve object from the “survfit” function that was 

a mathematical representation of survival time until the nest it was either predated or 

censored (Therneau and Lumley, 2015) . 

 I compared the percent of mesopredator interactions that occurred per week post-

oviposition in my study to the average percent of mesopredator interactions expected 

based on previous studies (Table 2.4 adapted from Table 1 in Riley and Litzgus, 2014), 

using the “ks.test” function in the dgof R package (Arnold et al., 2015). Most 

mesopredator interactions occurred on Snapping Turtle nests and the frequencies of 

interactions with nests of the other two species were highly variable, so data for all 

species were pooled to compare distributions (5 on Blanding's Turtle nests, 8 on Painted 

Turtle nests, and 62 on Snapping Turtle nests). I also ran a generalized linear mixed 

effects model using the “glmer” function in the lme4 R package (Bates et al., 2013) to 

compare the mesopredator interactions between candidate independent variables (Table 

2.1). Species were not pooled for this model Site was included as a random independent 

factor. The dependent variable was week post-oviposition of mesopredator interaction. 
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 I examined the relationships among anthropogenic density, predator abundance, 

and seasonal patterns in nest predation using trail cameras. I recorded the date of each 

trail camera photo of each mesopredator species per month of the field season (May, 

June, July, August, and September) to determine if nest mesopredators were more 

abundant in higher anthropogenic densities. I recorded the number of days at least one 

photo was taken of any mesopredator species and the number of days at least one photo 

was taken per mesopredator species. If more than one species of mesopredator was 

recorded on the same date, it was recorded as one count of “any mesopredator species”. 

Because I was comparing relative rates of photos among anthropogenic densities, the 

time between independent photos was more valuable than unique identification of each 

individual mesopredator (Jenks et al., 2011). The length of time each trail camera was on, 

functioning properly, and taking photos without anything obscuring the camera's view 

was calculated for each trail camera. I used generalized linear mixed effects modeling in 

the poisson family(for count data), using the “glmer” function in the lme4 R package 

(Bates et al., 2013), and model selection to compare relative abundances of 

mesopredators between candidate independent variables (Table 2.3), for each month. I 

used AIC to evaluate the support of potential linear and linear mixed effects models, and 

chose models with high support (ΔAIC<2: Zuur et al., 2009). The candidate independent 

fixed variables are shown in Table 2.3. Site was included as a random independent factor. 

The length of time, in weeks, that each trail camera was functioning was included as an 

offset (or number of trials) variable to ensure that data represented a relative 

mesopredator abundance rather than a static number of photos of mesopredators. The 
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offset creates a relative abundance by taking the time the trail camera was functioning 

into account. The dependent variable (or number of successes) was the number of photos 

per month. 

 Tracks or scat were found at some depredation attempts and successful 

depredations. The presence of tracks or scat does not necessarily mean that they represent 

the species that first dug up the nest (Larviviere, 1999), but they do give a general 

indication of mesopredator activity. The number of nests disturbed by each mesopredator 

species, based on successful depredations and all depredation attempts (including those 

after the initial interaction), were summarized per month. The potential temporal patterns 

of mesopredator presence were qualitatively compared to the relative abundance of nest 

mesopredators per month and the patterns of mesopredator interactions. 

 

Results 

 

 More than half (65.3%) of the uncaged monitored nests were depredated. The 

majority (80.4%) of the nests with predator exclusion cages survived the full incubation 

period, regardless of predation attempts that affected 28.6% of those nests. The year the 

nest was laid, presence of a cage, length of paved roads within 1 km of each nest, site, 

number of buildings with 1 km of each nest, and length of railway tracks with 1 km of 

each nest, were strong explanatory variables for the probability of survival of turtle nests 

(Table 2.5, Figure 2.3). There was no difference in probability of survival of turtle nests 

between turtle species (Table 2.5). Nests without predator-exclusion cages were 69.7% 
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more at risk of being depredated than nests with cages (χ2(1) = 15.63, p <0.001; Table 

2.6). Nests in 2015 were 123.4% more at risk of being depredated than nests in 2014 

(χ2(1) = 4.64, p = 0.03; Table 2.6). Nests were 0.3% less at risk of predation with each 

kilometre of all roads within 1 km of the nest (χ2(1) = 3.83, p <0.05; Table 2.6). 

 The percent of mesopredator interactions that occurred per week post-oviposition 

in my study was significantly different than the average expected based on previous 

studies (D = 0.56, p <0.01; Figure 2.4). The majority of nests were depredated in the first 

week post-oviposition and there were small spikes in depredation in the second, fifth, and 

sixteenth weeks post-oviposition. Mesopredator interactions were concentrated on the 

egg laying and hatching periods of incubation. Site, the presence of a cage, the turtle 

species, and the interaction between the turtle species and the presence of a cage were 

strong explanatory variables for the week of mesopredator interaction (Table 2.7), but no 

significant relationships were found. There was no pattern shown in relation to the site.  

 Foxes and raccoons were the most common and only confirmed nest 

mesopredators in my study area (Figure 2.5). Therefore, they were the two types of 

species used in the relative mesopredator abundance analysis. None of the anthropogenic 

density variables were strong explanatory variables of relative mesopredator abundance 

(Table 2.8). The species of nest mesopredator, the month the trail camera was on, the 

length of time in weeks the trail camera was on, site, and year were strong explanatory 

variables for relative mesopredator abundance (Table 2.8). More mesopredators were 

observed in June compared to any other month based on trail cameras (χ2(4) = 62.17, p 

<0.001; Table 2.9) and sign (Figure 2.5). There is a spike in mesopredator sign found in 
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September that coincides with the spike in mesopredator interactions in the final months 

of incubation (Figure 2.5). More raccoons than foxes were observed based on trail 

camera photos (χ2(2) = 22.72, p <0.001; Table 2.9) and sign (Figure 2.5). The species of 

bird that punctured turtle eggs was never determined (Figure 2.5). 

 

Discussion 

 

 Turtle nests seemed to have a greater chance of survival near more roads in 

Muskoka, but I did not find a difference in relative nest mesopredator abundance based 

on close proximity to roads. Also, I did not find a difference in either based on close 

proximity to buildings in Muskoka. These findings contradict my predictions that higher 

anthropogenic density areas will have higher mesopredator abundance and higher rates of 

nest predation. Marchand and Litvaitis (2004) also found that simulated turtle nests close 

to roads were less likely to get depredated. Predators in Muskoka that survive near larger 

road densities may have learned that roads are dangerous and should be avoided, while 

predators near smaller road densities may be less familiar with them and get run over 

more frequently. It was very difficult to find nests in remote areas with very low road 

densities and the vast majority of the nests found in my study in Muskoka were found in 

the gravel shoulder of a road. Future studies should target more remote nesting locations 

to determine nest survival away from roads. In contrast to my study, other studies have 

found that mesopredator abundance is higher closer to higher anthropogenic density 

areas, especially near agricultural fields (Oehler and Litvaitis, 1996; Fordham et al., 
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2008; Prugh, 2009). 

 In my study a nest was considered 'depredated' if a mesopredator dug at the side 

of a nest cage (in reality, a predation attempt). I assumed that the mesopredator would 

have eaten the eggs if the cage was not protecting the nest. Taking 'depredation' into 

consideration, the nest cage still increased the chances of a nest surviving. Many of the 

caged nests that were coded as 'depredated' were in fact subject to a predation attempt, 

but survived to have the eggs hatch. My results indicate that mesopredators were less 

likely to investigate a nest if there was a cage over the nest. Nests in the second year of 

my study were more at risk of being depredated than nests in the first year, but there was 

no difference in relative mesopredator abundance between the years. Mesopredators in 

some areas of my study area may have started to learn that a nest cage meant a turtle nest 

(i.e food source) was underneath (Mroziak et al., 2000; Rollinson and Brooks, 2007), but 

that was not enough to remove the benefit a nest cage provided on nest survival. 

Raccoons and foxes were the most common nest mesopredator in my study and previous 

studies have found that they use tactile cues, such as soft soil, to investigate potential 

turtle nests (Oddie et al., 2015; Dawson et al., 2014). Putting a nest cage on a nest 

removes the tactile cue and may prevent a predator from gaining access to the nest 

chamber, which may explain why nest cages increased the chances of survival of the 

nests in my study. 

 Like Riley and Litzgus (2014), but in contrast to many other studies (Snow, 1982; 

Congdon et al., 1983; Burke et al., 2005; Geller, 2012; Wirsing et al., 2012), I found that 

nest depredation was not restricted to the early days of egg incubation. A high percentage 
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of nests were indeed depredated in the first week post-oviposition, but there also seemed 

to be spikes in depredation later in incubation. These spikes indicate that if increased 

recruitment is a target of recovery actions, then turtle nests should be protected until the 

hatchlings emerge from the nest, not only for two weeks post-oviposition, as some 

protocols recommend (Moriarty and Linck, 1994; Endangered Species Environmental 

Review Coordinator, 2008; Turtles for Tomorrow, 2011). Protecting the nests with cages 

for the full incubation period can also prevent predation spikes like those that occurred in 

freshwater turtles (Rahman and Burke 2010), sea turtles (Engeman et al., 2006), and 

anecdotally in freshwater turtles in South Muskoka, Ontario, in 2014, after the cages were 

removed (personal communication). Future studies determining nest survival and 

mesopredator interactions should monitor nests for the full incubation period rather than a 

short period of time at the beginning of incubation. Researchers should not assume that 

they can identify depredation patterns by only monitoring nests at the beginning of 

incubation. 

 The highest overall relative mesopredator abundance was in June, the peak month 

of turtle nesting season (Ernst and Lovich, 2009), as indicated by the highest percent of 

mesopredator interactions and the largest amount of mesopredator sign. The main 

predators appeared to be raccoons. The timing of mesopredator interactions did not differ 

among turtle species or anthropogenic density, indicating that the mesopredators may be 

cuing to nest characteristics that I did not measure. There are four types of cues 

mesopredators can use to find a nest: tactile, chemical, auditory, and visual (Congdon et 

al., 1987; Oddie et al., 2015). Raccoons largely use tactile cues to find nests (Oddie et al., 
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2015), so the presence of strong tactile cues may be an important predictor of nest 

survival. Spikes in the percent of mesopredator interactions during egg laying and 

hatching could indicate that the mesopredators are cuing into characteristics similar to 

both events. Mesopredators, especially mammals, could be using chemosensory cues, 

such as musk or water from the wetland from which the female travelled to nest (Oddie et 

al., 2015), the smell of female fluids when laying (Legler 1954; Congdon et al., 1983; 

Spencer 2002) or embryonic fluid when hatching (Riley and Litzgus, 2014). Rotten eggs 

may emit a stronger smell closer to nests hatching than being laid (Riley and Litzgus, 

2014). Mesopredators could be using the visual cues of seeing the mother laying 

(Congdon et al., 1987; Eckrich and Owens 1995) and disturbing soil (Strickland et al., 

2010; Spencer 2002) or of hatchlings emerging (Riley and Litzgus, 2014) and disturbing 

soil. Mesopredators could also be using auditory cues from the noises of hatchlings 

hatching (Ferrara et al., 2013) and digging out of the nest (Oddie et al., 2015). 

 The majority of turtle nests get predated in a given year in many turtle populations 

(Congdon et al., 1983, 1987; Fordham et al., 2008), which reduces population 

recruitment (Reed, 2009). Installing cages over nests helps prevent depredation (Kurz et 

al., 2011; Riley and Litzgus, 2013). Nest mesopredators are present and depredate nests 

throughout the egg incubation period, so nest cages should be kept on nests until the eggs 

hatch. Because nest caging and conservation projects are constrained by time and 

financial resources (Wilson et al., 2006; McDonald-Madden et al., 2008), according to 

my findings, prioritizing the installation of nest cages in low road density areas may be 

more beneficial than in high road density areas to improve the survival of turtle nests. 
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a)                                                             b) 

 

Figure 2.1: Intact (a) and depredated (b) nests. 
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a)                                                         b)                                                                                                            

 

Figure 2.2: Predator exclusion cages used to protect nests with known dates laid; 

wooden-sided (a) and wire (b). 

 

 



98 

Figure 2.3: Survival curve (solid line) of turtle nests over two years of monitoring over 

the incubation period in central Ontario. Vertical tick marks represent when a nest 

hatched and was “censored” from analysis. Dashed lines represent 95% confidence 

intervals. 

 



99 

 

Figure 2.4: Observed percent of mesopredator interactions per week post-oviposition on 

turtle nests in Muskoka were significantly different than those expected based on 

previous studies (D = 0.56, p <0.01; see Table 2.4 for list of studies). 
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Figure 2.5: Number of nests with mesopredator interactions by species of mesopredator 

by month of incubation. Mesopredators were identified by tracks or scat at turtle nests. 
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Tables 

 

Table 2.1: Independent variables used in cox-proportional hazards and linear mixed 

effects model selection with the codes used in the results. Anthropogenic Structures are 

the categories used to calculate anthropogenic densities within 1 km of turtles. QGIS was 

used to calculate the number of buildings and length (m) of roads within 1 km of turtles. ' 

* ' indicates a random variable. The site variable was created to help control for the 

clustering of nests. 

Anthropogenic Structure Code Non-Anthropogenic Variables Code 

Buildings build Turtle Species tspecies 

Railway tracks rt Year (2014 or 2015) year 

Unpaved roads unp Nest Cage Installed (yes or no) cage 

Paved roads pave Julian Date Nest Laid start 

Recreational roads and trails rec Site* site 

Local roads local   

Arterial roads art   

Highways high   

All roads allrd   

All linear features (roads and railway 

tracks) 

rdrt   
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Table 2.2: Sample sizes of turtle species nests that were found in South Muskoka, Ontario 

and used in non-parametric product-limit survival analysis. 

Turtle Species Known Dates Laid 

and Fates 

Unknown Dates 

Laid and Known 

Fates 

Known Dates Laid 

and Unknown Fates 

Midland Painted Turtle  

(Chrysemys picta 

marginata) 

10 26 11 

Snapping Turtle  

(Chelydra serpentina) 

111 209 17 

Blanding's Turtle  

(Emydoidea blandingii) 

7 10 0 

Unknown Species 0 73 0 
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Table 2.3: Independent variables used in linear mixed effects model selection with the 

codes used in the results. Anthropogenic Structures are the categories used to calculate 

anthropogenic densities within 1 km of turtle nests. QGIS was used to calculate the 

number of buildings and length (m) of roads within 1 km of turtle nests. ' * ' indicates a 

random variable. The site variable was created to help control for the clustering of nests. 

Anthropogenic Structure Code Non-Anthropogenic Variables Code 

Buildings build Mesopredator Species mspecies 

Railway tracks rt Year (2014 or 2015) year 

Unpaved roads unp Month (May, June, July, August, September) month 

Paved roads pave Site* site 

Recreational roads and 

trails 

rec   

Local roads local   

Arterial roads art   

Highways high   

All roads allrd   

All linear features (roads 

and railway tracks) 

rdrt   



104 

Table 2.4: Percent depredation interactions per week post-oviposition. The distribution of the average expected percent depredation 

interactions per week post-oviposition was used in a Kolmogoroc-Smimov goodness-of-fit test to compare to the percent depredation 

interactions per week post-oviposition in this study. The mean percent depredation interactions per week post-oviposition were estimated for 

weeks 4+ in the first 6 studies because they did not distinguish between each week. 

  Percent depredation interaction per week (%) 

Study Species 1 2 3 4  (+) 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

Congdon et al., 1983 Blanding's Turtle 87.0 5.0 4.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Christens and Bider 1987 Painted Turtle 86.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

Burke et al., 2005 Diamond-backed 

Terrapin 

100.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Wirsing et al., 2012 Snapping Turtle 98.0 1.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 Painted Turtle 98.0 1.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

Geller 2012 Map Turtle spp. 90.0 7.0 0.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Snow 1982 Painted Turtle 64.0 21.0 12.0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

Riley and Litzgus 2014 Painted Turtle 14.3 3.6 17.9 17.9 3.6 0.0 7.1 3.6 0.0 0.0 14.3 7.1 0.0 3.6 3.6 3.6 0.0 0.0 

 Snapping Turtle 17.2 0.0 0.0 0.0 3.5 6.9 3.5 3.5 3.5 10.3 13.8 10.3 17.2 3.5 6.9 0.0 0.0 0.0 

Mean expected 

distribution used in 

Kolmogorov-Smirnov test 

  

72.7 

 

4.3 

 

3.8 

 

2.2 

 

1.0 

 

1.0 

 

1.4 

 

1.0 

 

0.6 

 

1.4 

 

3.3 

 

2.1 

 

2.1 

 

1.0 

 

1.4 

 

0.6 

 

0.2 

 

0.2 
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Table 2.5: Akaike's Information Criterion (AIC) for selection of best cox-proportional hazard 

regression models for explaining turtle nest survival. Abbreviations of independent variables are 

defined in the Methods and in Table 2.1. 

Model Number of 

estimated 

parameters (K) 

AIC ΔAIC Akaike 

weight (wi) 

 

cage+year+site+pave 3 573.43 0.00 0.56  

cage+year+site+build 3 575.13 1.70 0.24  

cage+year+site+build+rt 4 575.35 1.92 0.21  
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Table 2.6: Influence of effects of top Akaike's Information Criterion (AIC) model on survival of turtle 

nests. 'df' is the degrees of freedom. Significant effects are shown as bold P values. Abbreviations of 

independent variables are defined in the Methods in Table 2.1. 

Parameter Effect df χ2 p values 

Survival cage 1 15.63 <0.001 

year 1 4.64 0.03 

pave 1 3.83 0.05 

 site 19.9 38.37 0.008 
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Table 2.7: Akaike's Information Criterion (AIC) for selection of best linear mixed effects model for 

week of mesopredator interaction. Abbreviations of independent variables are defined in the Methods 

in Table 2.1. ':' indicates an interaction term. 

Model Number of 

estimated 

parameters (K) 

AIC ΔAIC Akaike 

weight (wi) 

 

site 3 208.56 0.00 0.31  

site+cage 4 208.60 0.03 0.31  

site+cage+tspecies 6 209.32 0.76 0.21  

site+cage+tspecies+tspecies:cage 7 209.85 1.29 0.16  
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Table 2.8: Akaike's Information Criterion (AIC) for selection of best linear mixed effects model for 

relative mesopredator abundance. Abbreviations of independent variables are defined in the Methods in 

Table 2.1. 

Model Number of 

estimated 

parameters (K) 

AIC ΔAIC Akaike 

weight (wi) 

 

mspecies+month+site 8 642.57 0 0.52  

mspecies+month+site+year 9 642.75 0.18 0.48  
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Table 2.9: Influence of effects of top Akaike's Information Criterion (AIC) model on relative 

mesopredator abundance based on trail camera photos. 'df' is the degrees of freedom. Significant effects 

are shown as bold P values. Abbreviations of independent variables are defined in the Methods in Table 

2.1. 

Parameter Effect df χ2 P values 

Relative mesopredator abundance mspecies 2 22.72 <0.001 

 month 4 62.17 <0.001 
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General Conclusion 
 
 

 I investigated the indirect impacts of human development on freshwater turtles by examining 

chronic stress levels (Chapter 1) in areas of varying anthropogenic densities. Snapping Turtles 

(Chelydra serpentina) were more likely to have above-minimum CORT than Midland Painted Turtles 

(Chrysemys picta marginata) or Blanding's Turtles (Emydoidea blandingii); however, for turtles that 

had above-minimum CORT, male Midland Painted Turtles and Blanding's Turtles had relatively high 

CORT levels. Surprisingly, anthropogenic density did not seem to affect CORT levels, although 

variation in the date turtles were captured and the date enzyme immunoassays were run complicated 

my interpretations.  

 I investigated the indirect and direct impacts of human development on freshwater turtles by 

examining rate and patterns of nest predation (Chapter 2) in areas of varying anthropogenic densities. 

Nest depredation was not restricted to the early days of egg incubation, but occurred late in incubation 

when eggs were hatching as well. Predator exclusion nest cages and higher road densities close to a 

turtle nest increased the nests' survival. Relative nest mesopredator abundance indices did not differ 

among sites with varying anthropogenic densities, but were highest during the nesting season. Of the 

two major nest mesopredators in my study area, raccoons were more abundant than foxes. 

 I found that male Midland Painted Turtles and Blanding's Turtles had higher chronic CORT than 

females. Corticosterone is associated with processes in the body that are not solely due to stress, such 

as reproductive status, season, and disease (Sheriff et al., 2011; Sapolsky, 1990). Many of these 

relationships are understood in other taxonomic groups, but not in reptiles (Sheriff et al., 2011). 

Immune function may be more directly related to CORT than a body condition index and future studies 

should further explore the relationships (Sheriff et al., 2011). Research is still required, in the form of 

adrenocorticotropic hormone (ACTH) challenges (Mastromonaco et al., 2014), comparing CORT in 
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blood to CORT in claws to determine if a strong relationship exists (Berkvens et al., 2013). Claw 

growth rates should be measured for individual claws of each species to determine the amount of time 

represented in the claw samples (Baxter-Gilbert et al., 2014). Stress responses are species-specific and 

it would be beneficial to study and validate enzyme immunoassay methods for claws in more turtle 

species with more detail to help understand the stress response in turtles. Future studies should also 

investigate other potential sources of stress, such as land use, vehicle encounters, sound, light and 

chemical pollution, and natural disasters (White, 1979; Hopkins et al., 1997; Longcore and Rich, 

2004). Caution must be taken when interpreting chronic CORT levels before more is understood about 

CORT in turtles. 

 My study indicated that turtles do not seem to have higher chronic CORT around roads or 

buildings, but they are still subject to road mortality, so mitigating road effects will still benefit 

populations. Road ecology is the study of the interactions between wildlife and roads (Forman and 

Alexander, 1998; Fahrig and Rytwinski, 2009; vander Ree et al., 2011). Up to 98-100% of individual 

turtles can be killed when they first cross a road (Aresco, 2005) and mitigation structures help reduce 

the negative effects of roads on wildlife (Huijser et al., 2007). Mitigation structures can be placed in 

two general categories: exclusion structures (e.g fencing, gravity walls) and connectivity structures (e.g 

ecopassages, bridges; Dodd et al., 2004; Aresco, 2005). The effectiveness of mitigation structures 

should be assessed with a Before-After-Control-Impact experimental design (Forman et al., 2003; 

Baxter-Gilbert et al., 2015). Contractors need to understand how and why particular fencing needs to 

be installed, while taking the likelihood of flooding into account (Baxter-Gilbert et al., 2015), and 

ecopassages should let in light to encourage turtles to use them (Woltz et al., 2008). Road mitigation 

projects need to take into account that snapping turtles can climb chain-link fences and hatchling turtles 

are small enough to pass through many gauges of fencing. 
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 Gravid females are at an increased risk of road mortality when travelling to nesting sites and 

while laying their eggs (Ashley and Robinson, 1996; Paterson et al., 2013), but I found that nests had a 

better chance of survival when they were near larger densities of roads. Mitigation structures, including 

underpasses, overpasses, and fencing (Ashley and Robinson, 1996; Baxter-Gilbert et al., 2015) should 

be built to facilitate turtle movements around roads, while preventing them from walking on the road 

surface. Because fencing cannot be placed close to the paved portion of a road, artificial nesting 

mounds could be placed outside fencing in the most likely path females would take to travel to nesting 

sites (Paterson et al., 2013). 

 The majority of turtle nests we found were in the gravel shoulders on the sides of roads. Future 

studies should target more remote nesting locations to determine nest survival away from roads. Future 

studies should also select smaller and fewer independent sites along a specific gradient of road density 

to patrol in more detail than we were able to in this project. Traffic volume may be a better indicator of 

the type of road than density of roads based on a particular category. Future studies should incorporate 

measures of agricultural practices, logging activities, and building use. Mesopredators depredated most 

nests while turtles were laying eggs and others while the eggs were hatching, as found by Riley and 

Litzgus (2014), but in contrast to the findings of many other studies (Snow, 1982; Congdon et al., 

1983; Burke et al., 2005; Geller, 2012; Wirsing et al., 2012). The abundance of mesopredators did not 

differ among locations with varying densities of roads or buildings, and we did not determine what 

cues mesopredators were using to find nests. Future studies should investigate tactile, chemical, and 

auditory cues that predators use to find nests (Oddie et al., 2015), and determine if these cues are 

impacted by anthropogenic density. 

 Conservation, government, and private groups should concentrate on protecting more key 

habitats (like nesting sites, hibernacula, and summer wetland complexes) that are important to all life 

stages of turtles in parks and conservation reserves (Gibbons et al., 2000). Predator exclusion nest 
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cages should be kept on nests until the turtles hatch and priority should be given to caging nests in low 

road density areas to help increase population recruitment. Experts also need to engage the public in 

outreach and conservation activities to improve political and societal attitudes and awareness toward 

turtles in order to improve their conservation status and population recruitment (Gibbons et al., 2000).  
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