

i

Somewhat Homomorphic Encryption Scheme for Secure Range Query

Process in a Cloud Environment

BY

Shaobo Wei

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science (M.Sc.) in Computational Sciences

The Faculty of Graduate Studies

Laurentian University

Sudbury, Ontario, Canada

○C Shaobo Wei, 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by LU|ZONE|UL

https://core.ac.uk/display/222897173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

THESIS DEFENCE COMMITTEE/COMITÉ DE SOUTENANCE DE THÈSE

Laurentian Université/Université Laurentienne

Faculty of Graduate Studies/Faculté des études supérieures

Title of Thesis

Titre de la thèse Somewhat Homomorphic Encryption Scheme for Secure Range Query Process in a

Cloud Environment

Name of Candidate

Nom du candidat Wei, Shaobo

Degree

Diplôme Master of Science

Department/Program Date of Defence

Département/Programme Computational Sciences Date de la soutenance June 04, 2015

APPROVED/APPROUVÉ

Thesis Examiners/Examinateurs de thèse:

Dr. Kalpdrum Passi

(Supervisor/Directeur de thèse)

Dr. Julia Johnson

(Committee member/Membre du comité)

Dr. Ratvinder Grewal

(Committee member/Membre du comité)

 Approved for the Faculty of Graduate Studies

 Approuvé pour la Faculté des études supérieures

 Dr. David Lesbarrères

 M. David Lesbarrères

Dr. Sanjay Madria Acting Dean, Faculty of Graduate Studies

(External Examiner/Examinateur externe) Doyen intérimaire, Faculté des études supérieures

ACCESSIBILITY CLAUSE AND PERMISSION TO USE

I, Shaobo Wei, hereby grant to Laurentian University and/or its agents the non-exclusive license to archive and

make accessible my thesis, dissertation, or project report in whole or in part in all forms of media, now or for the

duration of my copyright ownership. I retain all other ownership rights to the copyright of the thesis, dissertation or

project report. I also reserve the right to use in future works (such as articles or books) all or part of this thesis,

dissertation, or project report. I further agree that permission for copying of this thesis in any manner, in whole or in

part, for scholarly purposes may be granted by the professor or professors who supervised my thesis work or, in their

absence, by the Head of the Department in which my thesis work was done. It is understood that any copying or

publication or use of this thesis or parts thereof for financial gain shall not be allowed without my written

permission. It is also understood that this copy is being made available in this form by the authority of the copyright

owner solely for the purpose of private study and research and may not be copied or reproduced except as permitted

by the copyright laws without written authority from the copyright owner.

ii

Abstract
With the development of the cloud computing, recently, many service models have

appeared which are based on the cloud computing, such as infrastructure as a service

(IaaS), platform as a service (PaaS), software as a service (SaaS), and database as a

service (DaaS). For DaaS, there exist many security issues. Especially, the database as a

service cannot be fully secured because of some security problems. This research area of

cloud computing is called as cloud security. One of the problems is that it is difficult to

execute queries on encrypted data in cloud database without any information leakage.

This thesis proposes a secure range query process which is based on a somewhat

homomorphic encryption scheme to improve secure database functionalities. There is no

sensitive information leakage in the secure range query process. The data that are stored

in the cloud database are the integers which are encrypted with their binary forms by bits.

A homomorphic “greater-than” algorithm is used in the process to compare two integers.

Efficiency, security, and the maximum noise that can be controlled in the process are

covered in the security and efficiency analysis. Parameter setting analysis of the process

will also be discussed. Results of the proposed method have been analyzed through some

experiments to test the secure range query process for its practicability with some

relatively practical parameter settings.

Keywords

DaaS, Cloud Security, Somewhat Homomorphic Encryption, Secure Range query

iii

Acknowledgements
I would like to acknowledge my supervisor Dr. Kalpdrum Passi. He worked together with

me on my thesis. I found the research area, topic, and problem with his suggestions. He

guided me with my study, and supplied me many research papers and academic resources

in this area. He arranged a lot of meetings with me to discuss about my thesis and give

me much helpful advice. When I wanted to execute some experiments, he also supplied

me a SHARCNET account to let me use the computing ability of that website to finish

my experiments. I cannot finish this thesis without his help.

iv

Table of Contents
Abstract··ii

Acknowledgements ··· iii

Table of Contents ··· iv

List of Tables ·· vi

List of Figures ·· vii

Abbreviations ··· viii

1 Introduction ·· 1

1.1 Cloud Database ··· 3

1.2 Cloud Security ·· 6

1.3 Problem Definition ·· 8

1.4 Contributions ··· 10

1.5 Outline ··· 11

2 Related Work ·· 13

2.1 Homomorphic Encryption Schemes ··· 13

2.2 Secure Database Queries ··· 20

3 Preliminaries ··· 26

3.1 Somewhat Homomorphic Encryption Scheme ·· 27

3.2 Basic Operator Algorithms ·· 29

3.3 Greater-Than Algorithm ··· 33

3.4 Java Class - BigInteger ··· 35

4 Secure Range Query ·· 37

4.1 Secure Range Query Application ··· 38

4.2 Bit-Length Hiding ··· 44

4.3 User Access Control ··· 46

4.4 Correctness ·· 48

4.5 Security Analysis ··· 56

v

4.6 Controlling the Parameters ·· 63

4.6.1 Security Parameter ·· 64

4.6.2 Secret Key Generation·· 67

4.6.3 Bit-Length Hiding ··· 69

4.6.4 Balance between Efficiency and Security··· 70

5 Secure Range Query Process ··· 72

5.1 Comparison with PPRQ ·· 72

5.1.1 Encryption Process ·· 74

5.1.2 Query Process ·· 79

5.1.3 Decryption Process ·· 84

5.1.4 Comparison between PPRQ and SRQ ·· 85

5.2 Experiments & Results ··· 87

6 Conclusions ·· 106

6.1 Future Work ··· 107

References ·· 108

Appendix A ·· 113

Appendix B ·· 117

Appendix C ·· 120

Appendix D ·· 125

Appendix E ·· 127

vi

List of Tables
Table 1: Four Basic Homomorphic Bit Operators and Their Results 33

Table 2: Security Parameters for First Secret Key Generation 89

Table 3: Security Parameters for Second Secret Key Generation 90

Table 4: Security Parameters for Third Secret Key Generation 91

Table 5： Experimental Results of Running Time for First Secret Key Generation97

Table 6: Experimental Results of Transmitted File Sizes for First Secret Key

Generation .. 99

Table 7: Experimental Results of Running Time for Second Secret Key Generation

.. 100

Table 8: Experimental Results of Transmitted File Sizes for Second Secret Key

Generation .. 102

vii

List of Figures
Figure 1: Cloud Environment Model .. 9

Figure 2: Greater-Than Algorithm .. 34

Figure 3: Data Outsourcing Process .. 41

Figure 4: Secure Range Query Process ... 42

Figure 5: Inside Activities in SRQ ... 43

Figure 6: User Authorization Control Process ... 48

Figure 7: Increment of the Noise in SRQ .. 56

Figure 8: Experimental Program Structure ... 94

viii

Abbreviations
DaaS Database as a Service

FHE Fully Homomorphic Encryption

SHE Somewhat Homomorphic Encryption

SRQ Secure Range Queries

PPRQ Privacy-Preserving Range Queries

SBD Secure Bit Decomposition

SC Secure Comparison

1

Chapter 1

Introduction

1 Introduction

With the development of the times, human beings’ activities are much more relying on

computing ability. These days, the word “Cloud Computing” is frequently being

mentioned in the area of computational science. Cloud computing is based on distributed

computing technology which can supply much more powerful computing ability. There

are many advantages of cloud computing that are mentioned in [1, 2]. A very important

advantage is flexibility of cloud computing. The cloud service provider can establish a

cloud with one or more kinds of services in the local domain and supply different,

customizable, and flexible services to the users at the far-end. Except for computing

ability, cloud also can supply many other kinds of resources as services, such as storage,

software, platforms, and even information technology infrastructures. From this, many

cloud service models are summarized, such as Software as a Service (SaaS), Platform as

a Service (PaaS), and Infrastructure as a Service (IaaS). The users can use directly these

services from different functional clouds which are supplied by the cloud providers.

These service models which are based on cloud computing can reduce drastically the

costs of information technology for the users. Also, due to flexibility of cloud computing,

2

the waste of computing resources is much more reduced, too. The high utilization rate of

information technology resources is enabled through cloud computing, that is mentioned

in [1, 2, 3].

According to different positions that cloud is located in, clouds can be classified into

three categories, which are public cloud, private cloud, and hybrid cloud. Private cloud is

a kind of cloud which is established by the organization itself in its local domain, and

used by the members inside the organization. Since private cloud is established inside the

organization, this kind of cloud has relatively high security. However the costs of this

kind of cloud are relatively high to the organization. In this thesis, the clouds, which is

discussed, means public clouds. The features which are mentioned above are also all

about public cloud which have more details in [4]. Public cloud is provided by the cloud

provider which contains many kinds of functional services. The IT infrastructures of

public cloud are set up on the side of the cloud provider, so the users just need to buy the

usage rights of those services. This means the users’ organizations do not need to

establish any IT infrastructures locally to use those IT resources, and reduce the IT costs.

There are some advantages are pointed in [1, 4], such like that public cloud has great

elasticity, and high IT resource utilization rate. The last kind of cloud is called as hybrid

cloud which combines the features of private cloud and public cloud.

The applications of cloud computing are also widely used in business world. The

prospect of cloud computing in business is also anticipated. Many companies and

3

enterprises all have the demands to use cloud services. However, if they want to apply for

cloud services veritably and comprehensively into the aspects of business system, there

are still many practical problems that need to be solved [1, 2, 3, 5]. There are three

different business models of cloud computing from [1, 3, 5], which can be summarized as

infrastructures in the cloud, platforms in the cloud, and applications in the cloud.

Different service models and different users’ requirements should work with different

business models. This still is a problem which needs to be studied. Cloud computing is

also playing a very important role in academic world. The probability of using cloud

computing for science is discussed in [6]. Through IaaS, researchers can execute the

experiments which need a lot of computing ability. The cloud can provide this computing

ability by providing the function of its infrastructures. Also, through SaaS, researchers

can use some large software from the cloud without installing it on their local machines.

1.1 Cloud Database

This thesis will focus on one kind of service model, which is the cloud database service

that is provided by the cloud service provider that is also called as Database as a Service

(DaaS). There are two main models of the cloud database services which are provided by

the cloud provider. The first one is that the cloud service provider supplies the platforms

and virtual machines to the users to run their own databases. The second one is that the

users can directly use the databases which are provided by the cloud service provider.

Therefore, the users can store, manage, and access their data on the side of the cloud to

4

enable the functionalities of a database system without installing a database locally. There

are some features of cloud database service from [7, 8], such as multi-tenancy, scalability,

and encrypted data. Generally speaking, the users can set their databases with a

web-based console, such as setting security provisions and configuring the databases. For

enabling the management process of the cloud database for the user, the cloud provider

need to design an application programming interface (API) to enable the users to manage

and control their data in the cloud database. The cloud provider need to ensure all the

software which is used by the cloud database is visible to the user, including the

operating system, the database software, and the third party software for database

accessing and management. Therefore, the user can ensure there is no security and

privacy threat. The cloud database provider should also do the maintenance and upgrades

to the software to ensure proper running and performance of the database. The scalability

and high availability of the database are also the features which the cloud provider should

ensure. There are three main problems that are unsolved [7]. The first one is the security

and privacy problem. The second one is the performance problem. Since the

communication of the information between the user and the cloud database, and the use

of the database are all based on the network, the efficiency of a cloud database service

depends on the efficiency of the network data transmission between the user and the

cloud provider. The third is the operating interface of the cloud database. The cloud

provider should design an easy-to-use and powerful operating interface for the user to use.

Although DaaS has many advantages, there still is a very important functionality of

5

normal databases that it cannot enable completely, which is query process. It is known

that enabling complete query process in a cloud database is still a challenging problem

for the researchers in this area [9]. The difficult part is how to enable query process

without any information leakage, in other words, how to run queries on completely

encrypted data.

Nowadays, there exit many cloud service providers in this industry such as Amazon EC2,

Microsoft Azure, Google Cloud, IBM DB2, and so on. The cloud database services that

are provided by these cloud providers have their own features [7, 10]. Users need to

choose suitable services from a suitable cloud provider. There are three main levels for

the basic architecture of the cloud services [7, 10, 11]. They are central services, service

management, and user accessing interface. Central services level is to treat infrastructures,

platforms, and software as services. Central services should have reliability, high

availability, and flexibility to satisfy different requirements of the users. Service

management level is to support central services level to ensure the abilities that central

services should have and the security. User accessing interface is to ensure the user can

access the database on the cloud. Performance is also an indicator to evaluate cloud

database services of the cloud providers. In [12], the researchers evaluate the

performance of a cloud database service which is based on Amazon EC2. They find that

the performance of EC2 cloud computing services are still not efficient for scientific

computing with large data, but they still can provide temporary computing resources for

6

the scientists.

1.2 Cloud Security

This thesis will focus on a very important sub domain of cloud computing area which is

called as cloud security. These days, this cloud security area has become a very hot

research area. Since cloud security problems may affect the scope and level of the

applications of cloud computing, the research in this area can benefit the development of

practical applications of cloud services.

According to the different objectives of the cloud security issues, these issues can be

classified into two categories. They are the issues which are faced by the cloud service

providers, and the issues which are faced by the cloud service users. Some cloud security

problems faced by the cloud service providers and cloud service users are as follows [13,

14, 15, 16]:

1. User Privilege Control – In the process of the cloud services, the cloud service

provider needs to control and authenticate the user’s privileges for users from

different organizations as well as the users in the same organization but with

different privileges;

2. Information Leakage Prevention – In a cloud service process, the information

leakage is mainly to three parties. The first one is that the information is leaked to

a third party except for the cloud service provider and the cloud service user. The

7

second one is that the information is leaked to the staff inside the cloud service

provider but who do not have the privilege to access this information. The third

one is that the information is leaked to the user who is in the authorized

organization but without the privilege to access this information;

3. Data Loss Prevention and Recovery – The cloud service provider should ensure

that the data of the users will not be damaged due to some physical or technical

reasons, and cannot be accessed any more. When the data loss happens for real,

the cloud service provider should implement some methods to recover it;

4. Known Attacks Protection – In the process of the cloud services, the cloud

provider should have safeguard procedures to deal with the known attacks from

the outside to ensure the security of the users’ data;

5. Long-Term Availability – A cloud service, especially the cloud database service,

should have long-term availability, because the time of the first-time data

outsourcing could be long, and the process needs to involve some professionals;

6. Complete Database Functionalities – Since most companies and enterprises

encrypt their data before outsourcing to the cloud due to some requirements of

privacy and confidentiality, some database functionalities cannot be realized on

encrypted data without any information leakage;

7. Building Reputation of Trust for Cloud Providers – This is a relatively new

problem. The cloud service provider should make the users to believe that their

8

cloud services are reliable because of their security and technology, and then the

user will choose the cloud services from this cloud provider.

This thesis addresses how to realize secure query process with encrypted data. Query

functionalities are very important for a database. They can directly affect the performance

of a database. As mentioned above, the data which is stored in the cloud is encrypted, so

normal data query process cannot be realized on encrypted data. Only secure data query

process can be realized. However, there could be information leakage in the process of

secure queries [17, 18]. It is very important to distinguish what information is usable, and

can threaten the security of the cloud database and the privacy of the user, and what

information is worthless. There should be no usable information leakage in the

applications. In [17], the researchers proposed a method that let the users with different

authentication levels access the data with different sensitive levels without violating the

security of the database. In [18], the researchers proposed a secure data query framework

which is based on an information dispersal algorithm to ensure the security and efficiency

in the process of secure data queries. This thesis addresses a secure range query process

which is used a lot in practical applications.

1.3 Problem Definition

The central content of this thesis is to use a somewhat homomorphic encryption scheme

to enable a secure range query process in a cloud environment. As shown in Figure 1, a

cloud service environment consists of three parties, which are the data owner, the users,

9

and the cloud service provider. The data owner can be an organization, company, or

enterprise. First, the data owner encrypts the data that he wants to outsource to the cloud,

and then sends the data and some related files to the cloud. These related files can be the

public key, and the authorizing files for the users. This process is called as “data

outsourcing”. When a user in the organization wants to access some data in the cloud

database, first he needs to send a request message to the cloud, and then, the cloud has to

verify the authority of this user to see if he has the right to access the data that he is

requesting. If the user is authorized, the request will be executed. Otherwise, it will be

sent back with a rejecting message.

Users Data Owner

Cloud Database

Authorize Users

A
cc

es
s

D
at

a

Figure 1: Cloud Environment Model

The request message contains the range query request and the user’s authorization

10

information. The range query request in the request message should have two parts. The

first part is a set which contains the indexes of the attributes in the database that the user

wants to query. Denote this set as H. The second part is the lower and upper boundaries

of the range in the query. Denote the lower boundary as L, and upper boundary as U. If

after the verification by the cloud, the user has the authority to access the data in the

query, the cloud should send all the data in the range (L, U) with the attributes in H as the

results of the query. The reason that this process is called “secure” range query is that

there is no useful information leakage in the process.

1.4 Contributions

The main contribution of this thesis is that a somewhat homomorphic encryption is used

to enable a secure range query process, since there is a previous study that realizes a

secure range query process by involving another cloud service provider into the cloud

environment. This may lead some unknown security problems because that secure range

query process is under an assumption that the collusion between the two cloud service

providers is negligible. In the secure range query process in this thesis, there is only one

cloud that is involved in the process, since the process is based on a somewhat

homomorphic encryption scheme, and the other process is based on some multi-party

computation method.

Another contribution of this thesis is that some parameters are analyzed that are involved

in the secure range query process. These parameters are the security parameter, the

11

default range for generating the secret key, and the number of the fake bits that are

appended behind the encrypted binary bits of the integers. These parameters can affect

the efficiency, security, and the maximum noise that can be controlled in the process. The

analysis is about how these parameters exactly affect the secure range query process. Two

parameter settings are found that can handle the 220 and 264 integers to fit the needs of the

practical applications. A way is proposed that changing the default range for generating

the secret key to increase the maximum noise that can be controlled in the process for

handling larger integers in the process.

1.5 Outline

The rest of the thesis contains the following contents:

Chapter 2 shows some previous works about homomorphic encryption schemes, and

some secure database query processes. Both of them are closely related to the secure

range query process.

Chapter 3 introduces some methods that are used in the secure range query process. It

includes the somewhat homomorphic encryption scheme that is used in the process, some

basic homomorphic operations algorithms, and the homomorphic greater-than algorithm

that is built based on those basic operators.

Chapter 4 presents the whole secure range query process, the security analysis, and the

parameter setting analysis.

12

Chapter 5 compares the secure range query process to the privacy-preserving range

query process from [35], and shows the results of the experiments and their analysis.

Chapter 6 is about the conclusion of the thesis and the future work.

13

Chapter 2

Literature Review

2 Related Work

This section introduces some research achievements that are in cloud security. They are

all requisite foundational methods for the secure range query processing problem.

Homomorphic encryption schemes are the most important part for the realization of a

secure range query process. There also are some methods and problems that are

associated with the realization of the secure database functionalities, such as the famous

millionaires’ problem, and the secure comparison algorithms with encrypted data.

2.1 Homomorphic Encryption Schemes

First of all, the homomorphic encryption schemes will be introduced. Secure range query

(SRQ) process is used to execute the range query on encrypted data, and there is no

information leakage in the process. Since the process is implemented on encrypted data,

the features of the encryption scheme that is used, at the first place, to encrypt the data

has a strong influence on what methods should be used to realize the secure range query

process, and the performance of the secure range query process. Another important

requirement is that the encryption scheme which is used at the first place must have

14

homomorphic properties.

Homomorphic properties mean that if an operation is applied on several encrypted values

(ciphertext), and the decryption process is applied on the result, the plaintext that is

obtained should equal the result of the same operation that is applied on the

corresponding values without encryption (plaintext). Through the homomorphic

properties, some operations can be applied on the encrypted values as can be done on the

corresponding values without encryption to obtain the same results. This kind of

encryption schemes has a great possibility to complete the cloud database functionalities.

Therefore, the importance of this kind of encryption system to cloud computing and its

services is obvious.

There are two basic homomorphic operators – addition and multiplication. Let a, b be two

integers. Addition of these integers in an encrypted form is the homomorphic addition.

Similarly, multiplication of these integers in encrypted form is the homomorphic

multiplication.

Homomorphic Addition - ⊕:

Decrypt �sk, �Encrypt(pk, a) ⊕ Encrypt(pk, b)�� = a + b;

Homomorphic Multiplication - ⊗:

Decrypt �sk, �Encrypt(pk, a) ⊗ Encrypt(pk, b)�� = a × b,

15

where pk is the public key, sk is the secret key, Encrypt() is a function to encrypt values,

and Decrypt() is a function to decrypt values.

This kind of encryption schemes can be classified into two categories according to their

different encrypted objects, which are encrypting the integers directly and encrypting the

bits in the binary forms of the integers. The one which encrypts the integers directly is

called as the encryption schemes which have the homomorphic properties. The one which

encrypts the bits in the binary forms of the integers is called as the homomorphic

encryption schemes. In this thesis, a homomorphic encryption scheme is used, since the

secure range query process is realized mainly relying on the homomorphic operations.

Normally, homomorphic encryption schemes are asymmetric encryption systems, so

there is a public key (pk), and a secret key (sk). The public key is generated based on the

secret key, so these two keys are arithmetically related. The secret key is used to execute

the decryption process and the public key is mainly used to execute the encryption

process. Specially, for homomorphic encryption schemes, the public key is also used in

the process of executing operations on the encrypted bits. The reason that homomorphic

encryption schemes have homomorphic properties is the odd-even properties of integers,

and the homomorphic properties are realized by that the modulus operation. Therefore,

although in [21, 22, 23, 24, 25] the key generating processes and the encryption

algorithms are different, but the decryption algorithms are the same. The decryption of an

encrypted binary digit c is given by the following relation:

16

m = (c mod sk) mod 2,

where m ∈ {0,1}, c is the encrypted form of m, sk is the secret key, and mod is the

modulus operator.

The one that is put great hope on in the homomorphic encryption schemes is the fully

homomorphic encryption scheme. The first fully homomorphic encryption scheme was

proposed by Craig Gentry in his PhD thesis [21]. Craig Gentry presented the first true

fully homomorphic encryption scheme which theoretically can execute any operations on

encrypted values. At the first, he proposed a somewhat homomorphic encryption scheme,

and then, through the recursive self-embedding method, and the bootstrappable

encryption method, he converted the somewhat homomorphic encryption scheme to a

fully homomorphic encryption scheme. However, the full homomorphic encryption

scheme is quite complicated, so in [22], the researchers use Gentry’s method to convert a

somewhat homomorphic encryption scheme to a fully homomorphic encryption scheme,

but without working with ideal lattices over a polynomial ring, and only involving the

homomorphic addition and the homomorphic multiplication. This work is much simpler

than Gentry’s. In [23], Dianhua Tang et al. presented another somewhat homomorphic

encryption scheme which has a smaller public key and is more efficient. All these three

works are to encrypt the bits in the binary forms of the integers.

However, there are still some unsolved problems for using fully homomorphic encryption

17

scheme in the practical applications. Two main problems are the noise control problem,

and the efficiency problem. In fully and somewhat homomorphic encryption schemes, the

operations on encrypted bits are executed through some circuits [21, 22, 23]. One kind of

operations is corresponding to a circuit. Let C be a set which contains all the circuits that

a homomorphic encryption scheme Ɛ can handle. If for any existing circuit, it can be

found in the set C, then the homomorphic encryption scheme Ɛ is fully homomorphic. A

method called Evaluate() can be used to execute the homomorphic operations on

encrypted bits which needs to use the public key in the process. If the homomorphic

encryption scheme Ɛ can handle a circuit, then this homomorphic encryption scheme Ɛ

can execute the homomorphic operation that is contained in this circuit, and the

correctness of the decrypted result of this operation is also guaranteed. The homomorphic

encryption schemes encrypt the bits in the binary forms of the integers, and in most of the

time, the homomorphic operations are also executed on the encrypted bits. However, the

values of the integers will be changed at the end of the homomorphic operations, since

the bits in the binary forms of these integers are changed.

Another important problem of homomorphic encryption schemes is to control the noise.

In the execution of the homomorphic operations, there is some noise will be generated

because of the execution of the basic homomorphic addition or homomorphic

multiplication. Basically, one time of the execution of the homomorphic addition will

double the volume of the noise, and one time of the execution of the homomorphic

18

multiplication will square the volume of the noise. With the increase of the times that the

two basic homomorphic operations are executed, the volume of the noise of the result

also increases. When the volume of the noise hits some boundary which could be the

value of the secret key sk, or some value that is arithmetically related to sk, and the

encrypted result is decrypted, the true result may not be obtained. Therefore, the

correctness of this homomorphic encryption scheme will not be guaranteed. This is a

basic reason that homomorphic encryption schemes cannot be fully used in practical

applications. Researchers seem to have a dilemma here. On one hand, when the size of

the secret key is small, the encryption scheme could lose correctness. On the other hand,

when the size of the secret key is large, the encryption scheme could lose efficiency. In

Gentry’s work [21], and also in [22, 23], they use a method called bootstrappable

encryption method to control the noise.

Except for the homomorphic encryption schemes, there are also some other encryption

schemes with homomorphic properties, which encrypt the integers directly instead of

encrypting the bits in the binary forms of the integers. This is the first category that is

mentioned before. A relatively early encryption scheme with homomorphic properties is

RSA encryption scheme. This encryption scheme has already been used for a long time in

practical applications. This encryption scheme was proposed for the first time by Ron

Rivest, Adi Shamir, and Lenonard Adleman in 1977 [24]. The letters “RSA” are the first

letters in their surnames. In their encryption scheme, the key for encryption is public, and

19

the key for decryption is private. The private key holders can sign a piece of message,

and anyone who is holding the corresponding public key can verify this signature. The

signer cannot forge, or deny the validity of his signature. At the first, this encryption

scheme was used for electronic email and electronic fund transfer systems. Another

famous encryption scheme with homomorphic properties, which also encrypts the

integers directly, is Paillier cryptosystem [25]. Through Composite Residuosity Class

Problem, Paillier proposed a public-key based asymmetric encryption scheme. They

proposed a new trapdoor mechanism, and derived three encryption schemes from this:

one trapdoor permutation, and two homomorphic probabilistic encryption schemes. They

only used the basic modulus operation in their scheme, and proved their scheme is secure

under some appropriate assumptions. Paillier cryptosystem has two homomorphic

properties which are homomorphic addition and homomorphic multiplication. Another

encryption scheme with homomorphic properties is shown in [26]. They present a

different trapdoor technique comparing to RSA, and proposed a new probabilistic

encryption scheme. This encryption scheme has homomorphic addition properties. Since

these encryption schemes do not encrypt the bits in the binary forms of the integers, but

encrypt the integers directly, for efficiency and simplicity, they have advantages over the

fully and somewhat homomorphic encryption schemes. However, because of the

limitation of their homomorphic properties, they can only execute some homomorphic

operations on encrypted data, only homomorphic addition, or homomorphic

multiplication, or both to be exact. Theoretically, fully homomorphic encryption schemes

20

can execute all the homomorphic operations on encrypted bits, so fully homomorphic

encryption scheme is still a research area which is worth to study.

In the academic circles, there exit some papers about trying to use fully or somewhat

homomorphic encryption schemes to realize some practical applications. However, there

are still some serious limitations in all these papers, such as the maximum value of the

integers that these applications can handle is too small, or the efficiency of these

applications is too low. A possible reason for these limitations probably is the limitation

of security parameter choices. In [27], the author discusses the possibility of using

homomorphic encryption schemes in practical applications. If somewhat homomorphic

encryption schemes are enough, or the value of the security parameter is not too large, or

a true fully homomorphic encryption scheme appears, then the homomorphic encryption

schemes can truly be used in practical applications. There is some research in this area. In

[28], the researchers proposed an application on a private video streaming service with a

somewhat homomorphic encryption scheme. In [29], the researchers presented an

application which is receipt-free voting based on a homomorphic encryption scheme.

This thesis is also about using homomorphic encryption scheme to enable an application,

which is a secure range query process.

2.2 Secure Database Queries

Although some cloud service providers provide some secure cloud databases as services,

these cloud database services do not have complete database functionalities compare to

21

general databases. Therefore, how to enable database functionalities fully in cloud

database services is still an open problem for researchers. An important one of the

database functionalities is querying the database in the cloud. Since the data that is stored

in the cloud database is encrypted, this is quite a challenging problem to solve. In [30],

the researchers proposed a distributed architecture that can let the organization outsource

his data to two untrusted servers, but in the process, the organization can still keep his

privacy. In their work, they show how these two untrusted parties work together

efficiently and securely, and there is no information leakage to these two parties, or

outsiders. The researchers also show how to enable secure query processing in this

distributed architecture. However, there is a problem that the architecture cannot handle

the collusion between the two untrusted parties. This work is realized under an

assumption that the collusion between the two servers is quite impossible. In [31], the

researchers present an algebraic framework which can split the query jobs to reduce the

computational costs of the client side.

If fully or somewhat homomorphic encryption schemes are not used to encrypt the data at

the first, and some encryption schemes with homomorphic properties are used to encrypt

the data at the first, multi-party computation problem (MPC) should be used to enable the

secure data query processing. This means the user and the cloud need to communicate

with each other without any information leakage to each other to work out the results that

they both want together. The multi-party computation problem was presented firstly by

22

Andrew C. Yao [32] in 1982 through a famous question that is called as the millionaires’

problem. The millionaires’ problem is that there are two millionaires, and they both want

to know who is richer between them, but they do not want each other to know how much

money they have. Therefore, they communicate with each other in a way that will not

expose their own secrets, which is how much money they have, to work out a result

together they both want to know, which is who is richer between them. A formal

expression is given as:

f(𝑠1, … , 𝑠𝑛) =< 𝑟1, … , 𝑟𝑏 >,

where ri is the output result that the party Pi wants, and si is the secret that party Pi wants

to keep.

Multi-party computation (MPC) is very important to the realization of the secure query

processing, if fully or somewhat homomorphic encryption schemes are not used to

encrypt the data at the first [33, 35].

Except for the original cloud service provider, involving one or more cloud service

providers in the environment seems to be an available way to solve the secure query

processing problem. In [33], the researchers proposed a federation of cloud computing

that can enable secure query processing, and have fine-grained access control of the users’

authorities to the encrypted data in the cloud. As mentioned in [32], the researchers let

two clouds communicate with each other securely to work together for the results of the

23

queries. The primary cloud randomizes the encrypted data that the user requests a query

on, and then sends the randomized encrypted data to the secondary cloud. The secondary

cloud has the secret key, and uses it to decrypt the randomized data. After the decryption,

the secondary cloud executes the query and gets the results, but these results still have the

randomization. The secondary cloud encrypts the results and sends these back to the

primary cloud. The primary cloud then removes the randomization of the encrypted

results, and sends them to the user. At the end, the user can decrypt the results to gain the

true results of his query. In this process, both these clouds cannot know each other’s, the

data owner’s, or the user’s secrets. The primary cloud uses randomization to keep its

secrets, and the secondary cloud uses the secret key to keep its secrets. This research is

also under the assumption that the collusion between the two clouds is negligible. If there

is collusion between the two clouds, the data will be totally exposed to them, because

they have the encrypted data, and the secret key for decryption.

A key technique to realize secure range query processing is secure comparison (SC)

algorithm [34]. Generally speaking, there are two main ways to realize a secure

comparison process. The first one is to use fully or somewhat homomorphic encryption

schemes to encrypt the bits in the binary forms of the integers, and then compare two

encrypted arrays which are the binary encrypted forms of two integers to gain the final

result of the comparison between the two integers. The second one is to use the

encryption schemes with homomorphic properties to encrypt the decimal integers directly

24

instead of using fully or somewhat homomorphic encryption schemes to encrypt the bits

in the binary forms of the integers. Then, use secure bit decomposition (SBD) to convert

the encrypted integers to the encrypted binary forms of them. Again, use secure

comparison to compare the two arrays which are the encrypted binary forms of two

integers bit by bit to gain the final result of the comparison between two integers [35].

In [35], the researchers proposed a framework using secure bit decomposition, secure

comparison, and multi-party computation to realize a secure range query processing

called Privacy-Preserving Range Queries (PPRQ). They use Paillier cryptosystem to

encrypt the integers directly, and then use secure bit decomposition to convert the

encrypted integers to the encrypted binary forms so that an encrypted integer is an array

of encrypted bits. Then, they use the secure comparison algorithm from [34] to execute

the secure comparison process. Two cloud service providers are involved as it needs two

parties to communicate with each other securely to finish the secure comparison process

in a multi-party computation way.

Since the privacy-preserving range queries (PPRQ) method from [35] involves two

clouds, there probably are some unexpected security problems, like the collusion between

the two clouds. Therefore, this thesis uses a somewhat homomorphic encryption scheme

to solve the secure range query problem involving just one cloud service provider in the

cloud environment. Information leakage has to be prevented on two fronts. The first one

is to prevent the information leakage from the outsiders. Basically, the cloud service

25

provider will guarantee the security of this. The second one is to protect the sensitive

information from the insiders of the cloud service provider. This depends on the

somewhat homomorphic encryption scheme that is used, and the way that the secure

range query process is realized.

26

Chapter 3

Preliminaries

3 Preliminaries

This chapter introduces some existing techniques that are used in the thesis. First, a

somewhat homomorphic encryption scheme is presented that is used in the thesis. Since

fully homomorphic encryption scheme cannot be used in practical applications, a

somewhat homomorphic encryption scheme is used to realize secure range queries

instead of using a fully homomorphic encryption scheme. Second, four basic

homomorphic operators are introduced which will be used to build the greater-than

algorithm. All these operators are executed on the encrypted bits in the binary forms of

the integers. Two original ones are homomorphic addition and homomorphic

multiplication from the nature of the somewhat homomorphic encryption scheme. Other

two are built from the two original ones. Then, it shows how to use these basic

homomorphic operators to build a homomorphic greater-than algorithm that is used in the

secure range query process. At the end of the chapter, a Java class is introduced from the

Java library that is called BigInteger that is used to program the experiments.

27

3.1 Somewhat Homomorphic Encryption Scheme

The somewhat homomorphic encryption scheme is to encrypt the bits in the binary forms

of the integers [22]. The data that is involved in the secure range query process is integer

data. First, these integers in the dataset will be converted to binary form. Then, these

binary forms of the integers are encrypted.

Parameters Definition:

λ: security parameter; the value of this parameter can affect the security of the somewhat

homomorphic encryption scheme and the controllable noise boundary;

η: the bit-length of the secret key; the value of this parameter decides the size of the

secret key and furthermore, affects the security of the somewhat homomorphic

encryption scheme and the controllable noise boundary;

γ: the bit-length of the public key; the value of this parameter decides the size of the

public key and furthermore, affects the security of the somewhat homomorphic

encryption scheme.

Let η = λ2 and γ = λ5. Yet the relationship between the values of these two parameters and

the value of security parameter λ is indeterminate, since this relationship need to be

changed sometimes to balance the security and the efficiency of the application.

Then the somewhat homomorphic encryption scheme is defined as follows.

28

skGen(): the method to generate the secret key p. p can be used to generate the public

key, and decrypt the encrypted bits to obtain the integers again. In this method, choose an

odd integer p from the range [2η-1, 2 η) as the secret key;

pkGen(): the method to generate the public key N. The public key is usually associated

arithmetically with the secret key, and can be used to encrypt the bits in the binary forms

of the integers. In this method, choose an integer q from the range [2γ-1, 2 γ), and then, let

N = pq. N is the value of the public key;

Encrypt(N, m): the method Encrypt(N, m) takes the public key N and a bit m in the

binary form of an integer as the inputs, and returns an encrypted form of the bit m as the

output. For m ϵ {0, 1}, let c be the encrypted form of m. Then c can be computed as:

c = m + 2r + N,

where r is a random integer which is chosen from the range [2λ-1, 2 λ);

Decrypt(p, c): the method Decrypt(p, c) takes the secret key p and an encrypted value c

as the inputs, and returns the decrypted value of c which is a true bit m as the output.

Then m can be computed as:

m = (c mod p) mod 2,

where mod is the modulus operator.

29

Since this somewhat homomorphic encryption scheme is to encrypt the bits of the binary

forms of the integers in the dataset, one single bit after the encryption process is a single

encrypted value. For each encrypted integer in some column of the dataset, let 𝑐𝑖 ∈

{𝑐1, … , 𝑐𝑛}, where c1, …, cn are all the encrypted integers in the column, and n is the total

number of the integers in the column. Since the integers are encrypted by encrypting

individual bits of their binary forms, each encrypted integer is an array of encrypted bits.

An encrypted integer ci will consist of an array of encrypted bits {𝑐𝑖1, … , 𝑐𝑖𝑖}, where b is

the bit-length of the binary form of the integer ci.

In the somewhat homomorphic encryption scheme, the 2r generated in the process of the

encryption is the noise. The volume of the noise will increase with the increase in the

number of times the operations are executed, since in a certain sense, every time an

operation is executed the result is encrypted one more time. Only when the volume of the

noise is less than the value of the secret key p, the correctness of the decryption process

can be guaranteed. The somewhat homomorphic encryption scheme has four basic

operators, the homomorphic addition, homomorphic multiplication, NOT and OR

operations. The NOT and OR homomorphic operations can be constructed from the

homomorphic addition and homomorphic multiplication operators.

3.2 Basic Operator Algorithms

In [36], researchers build more complicated homomorphic operators from the

homomorphic addition and homomorphic multiplication operators. The four basic

30

homomorphic operators are defined on encrypted bits, that is, encrypted 0 and encrypted

1 in their execution. Since these four operators are executed on individual encrypted bits,

the decrypted results of these homomorphic operators do not have any carry bits. These

operators are not exactly like the binary arithmetic operators but like the logical operators

on 0 and 1. Therefore, these four basic homomorphic operators can be defined as

EXCLUSIVE OR, AND, NOT, and OR where EXCLUSIVE OR represents the

homomorphic addition, AND represents the homomorphic multiplication.

Basic homomorphic operators:

EXCLUSIVE OR: is the homomorphic addition operator on encrypted bits c1 and c2 and

is denoted as XOR. It can be expressed as follows:

𝑐1 ⊕ 𝑐2 = 𝑐,

where c is the result of the addition of the two encrypted bits.

The homomorphic property of this operator is given by:

Decrypt(p, c) = m = m1 + m2,

where m1 and m2 are the corresponding true bits of the encrypted bits c1 and c2, m is the

addition of the two true bits, p is the secret key, and Decrypt() is the decryption function.

AND: is the homomorphic multiplication operator on encrypted bits c1 and c2. It can be

31

expressed as follows:

𝑐1 ⊗ 𝑐2 = 𝑐,

where c is the result of the homomorphic multiplication of the two encrypted bits.

The homomorphic property of this operator is given by:

Decrypt(p, c) = m = m1 × m2,

where m1 and m2 are the corresponding true bits of the encrypted bits c1 and c2, m is the

multiplication of the two true bits, p is the secret key, and Decrypt() is the decryption

function.

NOT: is the homomorphic addition of an encrypted bit c1 and an encrypted 1. It can be

expressed as follows:

𝑁𝑁𝑁(𝑐1) = 𝑐1 ⊕ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸(𝑁, 1) = 𝑐,

where c is the result of the homomorphic addition of the encrypted bit c1 and an

encrypted 1, N is the public key, and Encrypt() is the encryption function.

The homomorphic property of this operator is given by:

Decrypt(p, c) = m = NOT(m1),

where m1 is the corresponding true bit of the encrypted bit c1, m is the decrypted form of

32

c, p is the secret key, and Decrypt() is the decryption function. NOT(m1) can be

computed by adding m1 and 1 in binary arithmetic without bit carrying.

OR: is derived from the three previous homomorphic operators:

c1 OR c2 = (c1 ⊗ c2) ⊕ �(NOT(c1) ⊗ c2) ⊕ �c1 ⊗ NOT(c2)�� = c,

where c1 and c2 are two encrypted bits, and c is the result of the OR operation on the two

encrypted bits.

The homomorphic property of this operator is given by:

Decrypt(p, c) = m = m1 OR m2,

where m1 and m2 are the corresponding true bits of the encrypted bits c1 and c2, m is the

decrypted form of c, p is the secret key, and Decrypt() is the decryption function.

m1 OR m2 = (m1 x m2) + ((NOT(m1) x m2) + (m1 x NOT(m2)))

Table 1 gives all the possible results of the four basic homomorphic operators. Let an

encrypted bit m be denoted in a form as ENC(m).

33

Table 1: Four Basic Homomorphic Bit Operators and Their Results

c1 c2 XOR ⊕ AND ⊗ NOT OR

ENC(0) ENC(0) ENC(0) ENC(0) ENC(1) ENC(0)

ENC(0) ENC(1) ENC(1) ENC(0) ENC(1) ENC(1)

ENC(1) ENC(0) ENC(1) ENC(0) ENC(0) ENC(1)

ENC(1) ENC(1) ENC(0) ENC(1) ENC(0) ENC(1)

3.3 Greater-Than Algorithm

The greater-than algorithm [36] is required for secure range query processing. The

greater-than algorithm is defined by the function GreaterThan(). This function takes two

encrypted integers which are two arrays of encrypted bits as the inputs. By execution of a

combination of the four basic homomorphic operators on the encrypted bits of the two

encrypted integers, an encrypted result of the comparison of the two encrypted integers to

find the greater of the two integers can be generated. The decryption of the encrypted

result will give the comparison of the true values of the two integers.

Let c and c’ be two encrypted integers, and m and m’ be the corresponding true values of

the two integers.

34

If m > m’, then

GreaterThan(c, c’) = Encrypted 1 and

Decrypt(p, GreaterThan(c, c’)) = 1, which means m > m’ is true.

If m < m’, then

GreaterThan(c, c’) = Encrypted 0 and

Decrypt(p, GreaterThan(c, c’)) = 0, which means m > m’ is false.

It should be noted that Encrypted 1 and Encrypted 0 include the noise accumulated

through multiple encryption operations. Since the greater-than algorithm is derived from

the four basic homomorphic operators, if the volume of noise is under a controllable

boundary, the greater-than algorithm should also be homomorphic. The greater-than

algorithm is given in Figure 2.

GreaterThan(c, c’)

Input: two encrypted integers c and c’, where c = {c1, …, cn} and c’ = {c’1, …, c’n}
Output: an encrypted 0 or 1
Initialize

result = Encrypt(N, 0);
done = Encrypt(N, 0);

For i = 1, …, n (n is the bit length)
 t1 = ci ⊗ NOT(c’i);
 t2 = c’i ⊗ NOT(ci);
 result = (done ⊗ result) ⊕ (NOT(done) ⊗ t1);
 done = done ⊕ (NOT(done) ⊗ (t1 OR t2));
return result

Figure 2: Greater-Than Algorithm

35

3.4 Java Class - BigInteger

To perform some experiments in this thesis to test the practicability of the secure range

query framework, a test program is required to realize the secure range query process. In

this thesis, Java programming language is used to realize the secure range query process.

Since there are some large integers involved in the somewhat homomorphic encryption

scheme, such as in pkGen(), q is chosen from the range [2γ-1, 2 γ). There are some

integers which are beyond the boundaries of the primitive integer data types in Java.

Therefore, a Java class which is called as BigInteger [37] is used from the Java library to

handle the large integers in the process.

This class is designed specifically to handle the problems that involve large integers. The

BigInteger class can provide all the operations of the primitive integer data types in Java,

and all the operations from java.lang.Math. Additionally, this class also provides modulus

related operations, GCD calculation, primality testing, prime generation, and other

complicated methods.

It is worth to mention the methods to generate big random integers in the BigInteger class.

Since in the somewhat homomorphic encryption scheme, some random large integers

need to be chosen from some default ranges, the methods for generating random big

integers are given next. The methods are as follows (assume that rndSrc provides an

equitable random source):

36

BigInteger(int, int, Random):

returns a random large integer (probably be prime) with the given bit-length;

BigInteger(int, Random):

returns a random integer from the range [0, 2numBits - 1].

37

Chapter 4

Secure Range Query Using Somewhat
Homomorphic Encryption

4 Secure Range Query

The query objects of the secure range query are the encrypted integer data by the

somewhat homomorphic encryption scheme. Since this range query process is secure, the

data and every result of every execution of greater-than algorithm is encrypted.

Additionally, there is no sensitive or useful information leakage to any party that does not

have the authority to access this information except for the user who requests the query.

This section first introduces the framework of the secure range query, and then, for some

security reasons, shows how to hide the real bit-length of each encrypted integer in the

data set. In this way, the attackers or other untrusted parties can be prevented to

conjecture the approximate value range of the data set. Next part shows how to realize the

user access control, since there probably are some users who have no privileges to access

some data. Then, the correctness and the security of the secure range query process are

analyzed. At the end, the influence and the setting of some important parameters is

illustrated which are involved in the secure range query process.

38

4.1 Secure Range Query Application

The form of the data set used in the process is in row-column form. Let the lower-case

letter s to represent the number of the columns in the data set. As mentioned earlier, if the

user wants to execute a range query process, he needs to send a request message to the

cloud service provider. The message includes two encrypted integers and one array. The

two integers are encrypted by the somewhat homomorphic encryption scheme which are

the lower boundary and the upper boundary of the range in the range query. Let U

represent the upper boundary of the range and L represent the lower boundary of the

range. Let 𝓊 denote the encrypted value of U and let ℓ be the encrypted value of L.

Since ℓ and 𝓊 are also encrypted integers, they are two arrays which contain some

encrypted bits. The array contains the indexes of the columns of the data set that the user

wants to query on, denoted as H. Then, the cloud service provider can execute the secure

range query on some columns. Then a request message to the cloud will be represented

as:

Query Request Message: {H, 𝓊, ℓ}.

Choose an encrypted integer ci from the set {c1, …, cn}, where c1, …, cn are n encrypted

integers of the integers m1, …, mn in some column. Further, ci consists of an array ci1, …,

cib of encrypted bits of the integer with b as the bit-length of the integer.

Let mi, mj ∈ {m1, …, mn}.

39

If mi > mj, then GreaterThan(ci, cj) = Encrypted 1;

If mi < mj, then GreaterThan(ci, cj) = Encrypted 0.

For each ci ∈ {c1, …, cn}, we compute GreaterThan(ci, ℓ) and GreaterThan(ci, 𝓊).

If mi > U, we will get

GreaterThan(ci, ℓ) = Encrypted 1 and

GreaterThan(ci, 𝓊) = Encrypted 1;

If mi < L, we will get

GreaterThan(ci, ℓ) = Encrypted 0 and

GreaterThan(ci, 𝓊) = Encrypted 0;

If L < mi < U, we will have

GreaterThan(ci, ℓ) = Encrypted 1 and

GreaterThan(ci, 𝓊) = Encrypted 0.

If we do the homomorphic addition (XOR) operator on the two results in each condition

from the above, only the condition that mi is in the range (L, U) will give us the result

which is an encrypted 1, and other two will give us the results which are all encrypted 0s.

Then, we compute

40

for i = 1 to n

 for j = 1 to b

 cij = cij ⊗ (GreaterThan(ci, ℓ) ⊕ GreaterThan(ci, 𝓊)).

When mi is in the range (L, U), the result of GreaterThan(ci, ℓ) ⊕ GreaterThan(ci, 𝓊)

will be an encrypted 1 and in this case the true value of cij in the above computation will

remain unchanged as its true value is multiplied by 1. Consequently, the true value of ci

will not change if mi is in the range (L, U).

When mi is not in the range (L, U), the result of GreaterThan(ci, ℓ) ⊕ GreaterThan(ci,

𝓊) will be an encrypted 0 and in this case the true value of cij in the above computation

will be changed to 0 as its true value is multiplied by 0. Consequently, the true value of ci

will change to 0 if mi is not in the range (L, U).

The data owner will encrypt the data and in the encryption process, and a public key and

a secret key will be generated. Then, the data owner will send the encrypted data to the

cloud service provider for storage, and also send the public key to the cloud service

provider for using in the future. The data owner will send the secret key to the users

inside the organization to let them decrypt results. Figure 3 shows the data outsourcing

process.

41

Data Owner

CloudUsers

Figure 3: Data Outsourcing Process

After the data outsourcing process, the users inside the organization can request range

queries to the cloud service provider. As shown in Figure 4, the user generates the request

message and then sends the request message to the cloud service provider. When the

cloud service provider receives the request message, after the user authority

authentication, the cloud service provider will execute the above secure range query

process on all the encrypted integers in the columns that are requested to query on.

Then, the cloud service provider sends all the encrypted results to the user. At the end, the

user decrypts all the encrypted results, and removes the useless 0s to obtain the real

results of the range query.

42

User

Cloud

Re
qu

es
t M

es
sa

ge

En
cr

yp
te

d
Re

su
lts

Figure 4: Secure Range Query Process

Figure 5 shows the activities that are done by the three parties, which are the data owner,

the cloud, and the user, in the secure range query process.

43

Data Owner

User

Cloud

User

Encrypts the Data

Every Data Record

Generates Request Message

for Every Columns of a1, …, as

Every Bit, Does

c = c x (GreaterThan(c, L) + GreaterThan(c, U))

Decrypts Encrypted Results & Removes 0s

Gains Real Results

Figure 5: Inside Activities in SRQ

44

4.2 Bit-Length Hiding

In this subsection, another important technique that is used in the secure range query

process to enhance the security and protect the privacy of the data owner is explained. In

the above secure range query process, a hidden security problem is that the number of the

bits in the binary forms of the integers from the data owner is exposed to the cloud

service provider. By knowing the numbers of bits in the binary forms of the integers from

the data owner, the cloud service provider can deduce some relatively smaller ranges of

the encrypted integers, and, furthermore, can deduce some relatively small ranges for

each attribute in the database. Because of this, some sensitive information of the data

owner will be exposed to the cloud service provider, which the data owner does not want

to be exposed to an untrusted party. Therefore, hiding the real bit-length of the encrypted

integers in the database is a very important part of ensuring security and the privacy

protection in the secure range query process.

The process of bit-length hiding is as follows.

First, let ci = {ci1, ci2, …, cin}, where ci is an encrypted integer, and ci1, ci2, …, cin are ci’s

encrypted bits. There are n bits in the binary form of the true value of ci.

In the keys generation part, we generate another key which is called as the bit-length

hiding key, which is sent to the user by the data owner. We defined it as h.

Then, we can build a new value

45

m0 = {0, …, 0}
encryption
�⎯⎯⎯⎯⎯⎯� c0 = {c01, c02, …, c0h},

where m0 is a number 0 (zero) but is expressed with h 0s in its binary form, and c0 is the

encrypted form of m0.

Append c0 to ci to gain

ci + c0 = {ci1, …, cin, c01, …, c0h}.

Then, we can let ci + c0 hide the real bit-length of ci, and send ci + c0 instead of ci to the

cloud service provider to store.

In the secure range query process, we have

GreaterThan(ci, x) = GreaterThan(ci + c0, x + c0),

where x is an encrypted integer for comparison.

Since in the greater-than algorithm, we compare two encrypted integers based on their

encrypted binary forms through all their encrypted bits, the above equality is tenable.

Therefore, this bit-length hiding method will not affect the results of the greater-than

algorithm, and consequently will not affect the results of the secure range query process.

After the secure range query process, the cloud service provider sends the results back to

the user. The user decrypts the results, and removes the extra 0s based on the value of h,

that is the bit-length hiding key that is kept by the user, through the logic shift method, or

46

the arithmetic shift method to gain the real results of the range query.

Since the number of the extra 0s is another key which is kept by the user, in order not to

increase the costs of the computation and storage on the user’s side, the same number of

extra 0s is used for all the integers. This means the same number of 0s is appended to

each encrypted integer. However, this bit-length hiding key for every encrypted integer

must be large enough to prevent the detective attacks. However, if the bit-length hiding

key is too large, it will have the risk to lose efficiency. The bit-length hiding key is

regarded as a parameter in the secure range query process. Details for setting this

parameter are given in Section 4.6.

4.3 User Access Control

Another important function in the secure range query process is to control the user’s

authority to access the data in the database inside the organization. Since the users in the

organization may be from different departments, or at different levels, they may have

different access authorizations to the different attributes of the data in the database. For

example, only a few users may have the authorities to access some very sensitive data in

the organization, and the users from different departments may not have the authorities to

access the data from other departments. Therefore, we need to control the authorizations

of the users in the secure range query process.

In the user authorization controlling method, each user has a unique user ID to verify

47

their access authorization for the attributes in the database. Each user ID has a

corresponding verification file. The file contains the indexes of the attributes that the user

has the authorization to access. These verification files are generated by the data owner at

the first place, and outsourced to the cloud service provider with the encrypted data and

the public key.

In the secure range query process, before the user wants to execute a range query, he

needs to generate a request message. In addition to the content that should be covered in

the request message, the ID of the user should also be covered in the request message.

Once the cloud service provider receives the request message, he first checks the

verification file of the user based on the user ID in the request message. The cloud service

provider needs to find the intersection between the requested attributes in the request

message and the authorized attributes in the verification file of the user. The attributes in

the intersection are the attributes that the cloud service provider will execute the range

query on. Figure 7 shows the user authorization controlling process.

48

Cloud

User

Checks the User Verification File
according to the User ID

Finds the Intersection between the
File and the Request Message

Covers the User ID in the Request
Message

Figure 6: User Authorization Control Process

4.4 Correctness

This section illustrates how to ensure the correctness of the final true results of the secure

range query process after the decryption process. Since the homomorphic encryption

scheme that is used in the secure range query process is a somewhat homomorphic

encryption scheme, it cannot handle all the homomorphic operations with any depth.

When the depth of the executed homomorphic operation is increased, the noise that is

generated in this process also increases. When the volume of noise in the final encrypted

results is more than the maximum volume of the noise that the somewhat homomorphic

encryption scheme can handle, the correctness cannot be ensured. This means that the

user cannot obtain the correct final results of the secure range query after the decryption

process. Therefore, in this section, the factors that affect the maximum volume of noise

49

that a somewhat homomorphic encryption scheme can handle, the arithmetic relations

between these factors and the volume of noise, and how to guarantee the correctness of

the decryption process of the somewhat homomorphic encryption scheme when it is used

in the secure range query process will be discussed.

First, what the noise that is generated in the process of the homomorphic operations

execution in a somewhat homomorphic encryption scheme is will be explained.

The encryption process is as follows:

c = m + 2r + N,

where m is a true bit, r is a random integer which is chosen from the range [0, 2λ), N is

the public key, and c is the encrypted form of m.

The decryption process is as follows:

m = (c mod p) mod 2,

where p is the secret key.

Since N = pq, in the decryption process, the decryption expression can be changed to

m = ((m + 2r + pq) mod p) mod 2,

 that is

50

m = ((m + 2r) mod p) mod 2 + (pq mod p) mod 2.

Since pq mod p = 0, and 0 mod 2 = 0, the only part that will affect the results of the

decryption process is

((m + 2r) mod p) mod 2.

Therefore, the part m + 2r is the noise that is generated in the homomorphic operations

process.

Next, the noise that is generated by the four basic homomorphic operators XOR, AND,

NOT, and OR, and the upper boundary for the volumes of the noise that is generated by

these four basic homomorphic operators will be shown.

Since r ∈ [0, 2λ), and m ∈ {0, 1}, there is

m + 2r < 2λ + 1 + 1.

For the homomorphic operator XOR, there is

c1 ⊕ c2 = (m1 + 2r1 + pq) + (m2 + 2r2 + pq)

 = (m1 + 2r1) + (m2 + 2r2) + 2pq.

Since

(2pq mod p) mod 2 = 0,

51

the noise of this basic homomorphic operator is

(m1 + 2r1) + (m2 + 2r2).

Since

m + 2r < 2λ + 1 + 1,

there is

(m1 + 2r1) + (m2 + 2r2) < 2(2λ + 1 + 1) = 2λ + 2 + 2.

Therefore, the volume of the noise that is generated the homomorphic operator XOR

must be less than 2λ + 2 + 2.

For the homomorphic multiplication operator AND, there is

c1 ⊗ c2 = (m1 + 2r1 + pq)(m2 + 2r2 + pq)

 = (m1 + 2r1)(m2 + 2r2) + (m1 + 2r1 + m2 + 2r2 + pq)pq.

Since

(((m1 + 2r1 + m2 + 2r2 + pq)pq) mod p) mod 2 = 0,

the noise of this basic homomorphic operator is

(m1 + 2r1)(m2 + 2r2).

52

Since

m + 2r < 2λ + 1 + 1,

there is

(m1 + 2r1)(m2 + 2r2) < (2λ + 1 + 1)2 = 22λ + 2 + 2λ + 2 + 1.

Therefore, the volume of noise that is generated by the homomorphic operator AND must

be less than 22λ + 2 + 2λ + 2 + 1.

For the homomorphic operator NOT, there is

NOT(c) = c ⊕ Encrypt(N, 1)

 = (m + 2r + pq) + (m1 + 2r1 + pq)

 = (m + 2r) + (m1 + 2r1) + 2pq,

where Encrypt() is the encryption function, N is the public key, and Encrypt(N, 1) is an

encrypted 1.

Since

(2pq mod p) mod 2 = 0,

the noise of this basic homomorphic operator is

(m + 2r) + (m1 + 2r1).

53

Since

m + 2r < 2λ + 1 + 1,

there is

(m + 2r) + (m1 + 2r1) < 2(2λ + 1 + 1) = 2λ + 2 + 2.

Therefore, the volume of the noise that is generated by the homomorphic logic operator

NOT must be less than 2λ + 2 + 2.

For the homomorphic operator OR, there is

c1 OR c2 = (c1 ⊗ c2) ⊕ ((NOT(c1) ⊗ c2) ⊕ (c1 ⊗ NOT(c2))).

After simplification, the noise of this basic homomorphic operator is

3(m1 + 2r1)(m2 + 2r2) +(m1 + 2r1)(m11 + 2r11) + (m2 + 2r2)(m11 + 2r11),

where m11 is 1, and r11 is the random integer which is generated in the encryption

process for this 1.

Since

m + 2r < 2λ + 1 + 1,

there is

3(m1 + 2r1)(m2 + 2r2) +(m1 + 2r1)(m11 + 2r11) + (m2 + 2r2)(m11 + 2r11) < 5(22λ + 2 + 2λ

54

+ 2 + 1).

Therefore, the volume of the noise that is generated by the homomorphic operator OR

must be less than 5(22λ + 2 + 2λ + 2 + 1).

Since the deepest homomorphic operator in the secure range query is the homomorphic

greater-than algorithm, ensuring that the noise that is generated by this operator is

important.

In the greater-than algorithm, three values are definite in every loop in the algorithm.

They are t1, t2, and t1 OR t2, since these three variables are assigned with the new

encrypted bits.

Then, according to volume of the noise that is generated by the four basic homomorphic

operators from the above, there is

Noise(t1) < 2(2λ + 1 + 1)2 = 22λ + 3 + 2λ + 3 + 2,

Noise(t2) < 2(2λ + 1 + 1)2 = 22λ + 3 + 2λ + 3 + 2,

and

Noise(t1 OR t2) < 12(2λ + 1 + 1)4 + 4(2λ + 1 + 1)3.

Since the values of the variables changes in every loop, and the values from the last loop

are used in the current loop, it is very difficult to find the relations between the number of

55

the bits of the encrypted integers and the noise of the final result.

Therefore, a Java program is used to calculate the noise values for the bit-length from 1

to b in the greater-than algorithm. In addition, the noise that is generated in the following

process should be taken into account,

cij = cij ⊗ (GreaterThan(ci, L) ⊕ GreaterThan(ci, U)).

Figure 7 shows the volume of the noise that is generated in the secure range query

process for bit-lengths from 1 to b in the greater-than algorithm. Here, the security

parameter λ = 3, and the bit-length of the integers is 10, so that b = 10. Since the volume

of the noise could be very large, so when b = 10, the trend of the curve can be observed,

and for different security parameter λ, the curve is shown in Figure 7. As shown in Figure

7, with the increase of b, the volume of the noise in the final result increases drastically

from b = 9 to b = 10. The reason that the noise level in the curve for b from 1 to 9 is not

obvious is that when b = 10 the volume of the noise is much larger than the volume of

noise for b= 1 to 9.

56

Figure 7: Increment of the Noise in SRQ

4.5 Security Analysis

First of all, the cloud service provider should guarantee the security of the encrypted data

which belongs to the data owner that is stored in the cloud. The cloud service provider

should not let anyone who does not have the access authorization to the encrypted data to

access the encrypted data in any ways. Except for the leakage of the data, the cloud

service provider should ensure that the encrypted data that is stored in the cloud from the

data owner is not damaged or lost. In the event that the data is damaged or lost, the cloud

service provider should have some measures to recover the damaged or lost data.

Additionally, there should be some secure channels among the three parties in the cloud

environment, which are the cloud service provider, the data owner, and the user, to ensure

-通用格式

-通用格式

-通用格式

-通用格式

-通用格式

-通用格式

-通用格式

1 2 3 4 5 6 7 8 9 10

Vo
lu

m
e

of
 N

oi
se

Bit-Length

Increment of the Noise in SRQ

57

the communication activities and data exchange among these three parties are secure.

However, all the points from above are not the main parts in this security analysis section

because the design of the secure range query process hardly can affect the security of

these parts. Therefore, the next analysis is done under two assumptions. The first

assumption is that there is no physical data leakage, damage or loss of the encrypted data

in the cloud. The second assumption is that when the three parties communicate or

exchange data with each other, there is a secure channel to ensure their communication

activities and data exchanges are secure.

The next part of the security analysis is mainly about the secure range query process.

There are two main parts in the security analysis of the secure range query process. First,

the decryption attacks from the insiders or the outsiders will be shown. These attacks try

to obtain the secret key based on some ciphertext and the public key. Once the true secret

key is obtained by the attackers, the data owner will lose all the secrets of the encrypted

data that is stored in the cloud. Since defending the attacks from the insiders or outsiders

mainly rely on the encryption scheme that is used in the process, the first part of the

security analysis is to analyze the security of the somewhat homomorphic encryption

scheme that is used in the secure range query process. In the second part, the security of

the secure range query process is analyzed. In this part, if there is no useful information

leakage to the attackers from inside or outside the cloud service provider and from the

users who do not have the authority to access the data will be analyzed.

58

For the security analysis of the somewhat homomorphic encryption scheme that is used

in the secure range query process, the problem is reduced to another problem which is

called as the approximate greatest common divisors problem (ACDP) [38]. Before giving

the definition of the approximate greatest common divisors problem, the normal greatest

common divisors problem will be explained. If there are two given integers a and b, then

their greatest common divisor can be found in polynomial time. This is the greatest

common divisors problem. A more formal expression is

d = gcd(a, b),

where gcd() is a method to find the greatest common divisor of two input integers.

When the value of d is very large, the inputs a and b may have some error. In this case

also, their greatest common divisor can be found in polynomial time. This is the

approximate greatest common divisors problem. A more formal expression is

d = Agcd(a + a0, b + b0),

where Agcd() is a method to approximately find the greatest common divisor of two

input integers that have some additive error. a0 and b0 are the additive error, and there are

|a0| < A, and |b0| < B, where A and B are the boundaries of the additive error that this

approximate greatest common divisors problem can handle. Their values should be small

enough compared to the values of a, b, and d. Generally speaking, the costs and

complexity of the approximate greatest common divisors problem should be relatively

59

higher than the regular greatest common divisors problem.

There is a kind of deformation of the approximate greatest common divisors problem that

is called as the partially approximate greatest common divisors problem (PACDP). When

only one of the two input values has the additive error, the greatest common divisor d still

can be found. This problem is the partially approximate greatest common divisors

problem. A more formal expression is

d = PAgcd(a + a0, b),

where PAgcd() is a method to partially approximately find the greatest common divisor

of two input integers where only one of them has some additive error. In the expression

above, only the input value a has the additive error a0, and the input value b is accurate.

Theoretically, the costs and complexity of the partially approximate greatest common

divisors problem should be between the approximate greatest common divisors problem

and the regular greatest common divisors problem.

The reason to reduce the security analysis of the somewhat homomorphic encryption

scheme to the approximate greatest common divisors problem is that the process that the

attacker uses to recover the secret key of the somewhat homomorphic encryption scheme

is the process of the approximate greatest common divisors problem. Assume that the

information that is held by the attacker is some ciphertext, then he can execute the

following process to recover the secret key of the somewhat homomorphic encryption

60

scheme

p = Agcd(c1, c2),

where p is the secret key of the somewhat homomorphic encryption scheme, and c1 and

c2 are two ciphertext. This attack process exactly is the process of the approximate

greatest common divisors problem.

Assume that the information that is held by the attacker is some ciphertext and the public

key, then he can execute the following process to recover the secret key of the somewhat

homomorphic encryption scheme.

p = PAgcd(c, N),

where p is the secret key and N is the public key of the somewhat homomorphic

encryption scheme, and c is a ciphertext. This attack process exactly is the process of the

partially approximate greatest common divisors problem. Once the attacker obtains the

secret key p, all the data that belongs to the data owner will be leaked to the attacker.

As shown above, the difficulty of the approximate greatest common divisors problem

completely reflects the security of a somewhat homomorphic encryption scheme. If the

difficulty of solving the approximate greatest common divisors problem is higher, then

the security of the somewhat homomorphic encryption scheme is higher. In the

approximate greatest common divisors problem, if the gap between the greatest common

61

divisor d and the two input values a and b is larger, then the difficulty of solving the

approximate greatest common divisors problem is higher. Since N = pq, and the value

that the attacker wants to recover is the secret key p, q affects the gap from the secret key

p to the public key N. Therefore, when the value of q is large enough that means the gap

from the secret key p to the public key N is large enough, the somewhat homomorphic

encryption scheme that is used in the secure range query process is secure, and it is hard

to recover the secret key p from some given ciphertext and the public key N. About the

specific parameter setting to ensure that q is large enough to ensure the security of the

somewhat homomorphic encryption scheme, more details are given in the section 4.6.

Next, if there is no information leakage to the parties who do not have the authority to

access the data of the data owner will be analyzed. First of all, in the data outsourcing

process, since the data that the data owner sends to the cloud service provider is

encrypted, and the bit-lengths of the integers in the database are hidden, the cloud service

provider or the outside attacker cannot gain any useful information that can threaten the

security of the data of the data owner in this process.

After the data outsourcing process, if there is information leakage in the secure range

query process will be analyzed. First, the user who wants to request a range query on the

encrypted data needs to send a request message to the cloud service provider. As

mentioned above, this request message contains the lower and upper boundaries of the

range in the range query, the attributes of the data on which the query is made, and the

62

user ID. Now, assume that this request message is intercepted by the outside attacker. The

lower and upper boundaries of the range in the range query are two integers, and they are

encrypted with their binary forms bit by bit, and the bit-length is hidden. Therefore, this

information is useless to the outside attacker. The attributes of the data on which the

query is made is also useless to the outside attacker. The only possibly useful information

is the user ID. If the outside attacker intercepts and captures this request message, and

sends it to the cloud service provider camouflaging as the user, then once the cloud

service provider finishes the secure range query process, and send the results to the

outside attacker, the outside attacker still cannot get any useful information, since the

results are encrypted with their binary forms bit by bit. Additionally, the cloud service

provider can also examine the IP address of the party who sends the query request

message. Similarly, the request message is also useless for the cloud service provider to

discover the data owner’s secrets.

In the secure range query process that is executed by the cloud service provider, all the

operations are executed on the encrypted data, and the result of the greater-than algorithm

which is produced every time is also encrypted. Therefore, the cloud service provider just

executes the secure range query process, and all the middle results are encrypted. The

cloud service provider cannot gain any useful information from this process.

After the cloud service provider finishes the secure range query process, he will send the

query results back to the user. If these results are intercepted and captured by the outside

63

attacker, as mentioned above that the outside attacker impersonates the user to send the

request message to the cloud service provider, the outside attacker cannot do anything

with these encrypted results to threaten the security of the data of the data owner.

The user who wants to query some data from the cloud needs to put his user ID into the

request message for the authentication from the cloud service provider. After the

authentication, the cloud service provider will not execute the secure range query process

on the attributes that the user has no authority to access. Therefore, the user cannot access

the data that he has no authority to access.

4.6 Controlling the Parameters

There are some parameter settings involved in the secure range query process. These

parameters will directly affect the value of the secret key, the value of the public key, the

values of the encrypted bits, the volume of the noise that is generated by the

homomorphic operations, and the boundaries of the noise that the secure range query

process can handle to ensure the correctness of the decryption process. All these parts

will affect the efficiency and security of the secure range query process. This section will

discuss how to set these parameters, and how these settings will affect the secure range

query process. There are three parameters that affect the efficiency and security of the

secure range query. They are the security parameter, the range of the secret key

generation, and the number of the fake bits that is appended behind each encrypted

integer. At the end, how to set these parameters to balance the efficiency and security of

64

the secure range query process will be discussed.

4.6.1 Security Parameter

The security parameter is a parameter in the somewhat homomorphic encryption scheme,

and it is also very important for the secure range query process. It is usually denoted with

the Greek letter λ. In the somewhat homomorphic encryption scheme, some randomly

generated integers from some default ranges are usually used to execute the

cryptographic process, such as the generation of the public key, the generation of the

secret key, and the generation of the random integer r in the encryption process. This

randomness, in some sense, provides much more security for the encryption scheme.

Those default ranges for the randomly generations is decided by the security parameter λ.

In the somewhat homomorphic encryption scheme that is used in the secure range query

process, three integers will be generated randomly from some default ranges. The first

one is

p ∈ [2η-1, 2 η),

where p is the secret key, and η = λ2. This default range is to generate the secret key p,

and it can decide the bit-length of the secret key. From the above, η is the bit-length of

the secret key, and η = λ2. Therefore, the bit-length of the secret key p is λ2. Therefore,

the security parameter λ decides the bit-length of the secret key, which means the value of

p.

65

The second one is

q ∈ [2γ-1, 2 γ),

where the public key N is q times of the secret key p, since N = pq, and γ = λ5. This

default range is to generate q which is the times from the secret key p to the public key N,

and it can decide the bit-length of q. From the above, γ is the bit-length of q, and γ = λ5.

Therefore, the bit-length of q is λ5. Therefore, the security parameter λ decides the

bit-length of q, which means the times from the secret key p to the public key N. Since N

= pq, the value of q will affect the value of the public key N partially.

The third one is

r ∈ [0, 2λ),

where r is the random integer which is used in the encryption process. This default range

is to generate r which is the random integer that is used in the encryption process. From

the above, λ is the bit-length of the upper boundary for the value of the random integer r.

Therefore, the security parameter λ decides, in some sense, the value of the random

integer r. Since m + 2r is defined as the noise for each encrypted bit, 2r is almost the

whole part of the noise. Therefore, we can say that the security parameter λ will affect the

volume of the noise in the secure range query process.

Therefore, the value of the security parameter λ can affect the value of the secret key p,

66

the value of q which is the times from the secret key p to the public key N, the value of

the public key N, the value of the random integer r, and then the volume of the noise in

the secure range query process. If the value of the security parameter λ increases, then the

values from the above will increase relatively. If the value of q increases, then the times

from the secret key p to the public key N will increase. This will increase the difficulty of

the decryption attack by the outside attacker as mentioned in the security analysis part.

Therefore, the security of the somewhat homomorphic encryption scheme will increase.

Additionally, the increase in the value of the random integer r also will increase the

security of the somewhat homomorphic encryption scheme. However, if the value of the

secret key p, the value of the public key N, and the value of the random integer r increase,

the value of each encrypted bit will also increases. Thus, the operations in the encryption

process, the decryption process, and the secure range query process will have more costs.

Sometimes, these operations cannot be done in an efficient time on most computers. This

will lower the efficiency of the secure range query process. There is another effect which

is on the noise. When the value of the security parameter λ increases, although the

volume of the noise will increase, the value of the secret key p will also increase. Due to

the gap between the two ranges for generating the secret key p and the random integer r,

to be specific, λ and λ2, the gap between the secret key p and the random integer r will

also increases. Therefore, the increase in the value of the security parameter λ will enable

the somewhat homomorphic encryption scheme to handle much more volume of the

noise.

67

4.6.2 Secret Key Generation

Another part which is very important to the secure range query process is the default

range for generating the secret key p in the somewhat homomorphic encryption scheme.

The default range usually is

p ∈ [2η-1, 2 η).

As mentioned before, η is the bit-length of the secret key p which is generated within the

range above randomly. In general case, η = λ2 that means λ2 is the bit-length of the secret

key p.

However, when the bit-length of the secret key p is λ2, sometimes the noise which is

generated in the secure range query process probably cannot be handled. As mentioned

before, the volume of the noise usually is decided by two parts. The first one is the

number of the homomorphic operations that are executed in the secure range query

process. The second one is the default range for generating the random integer r in the

encryption process. The range, which is [0, 2λ) generally, is default and usually not

changeable. Therefore, the only part that will affect the volume of the noise is the number

of homomorphic operations that are executed in the secure range query process. If, in the

secure range query process, there are too many homomorphic operations, probably

because the integers in the database are too large which implies that the binary forms of

the integers have too many bits, too much noise may be generated in the process and will

68

be beyond the maximum noise that the secure range query process can handle. Due to this,

the correctness of the decryption process may be lost. However, the volume of noise is

hard to decrease, no matter decreasing the range for generating the random integer r, or

decreasing the number of homomorphic operations in the secure range query process.

Therefore, there is a way that can increase the maximum volume of noise that can be

handled in the secure range query process. Changing the default range for generating the

secret key p is a way to increase the maximum volume of noise that can be handled in the

secure range query process.

Increasing the bit-length of the secret key p can increase the maximum volume of noise

that can be handled in the secure range query process. The bit-length of the secret key p

is usually λ2, and the default range for generating the random integer r in the encryption

process is [0, 2λ). When the secure range query process is running, more and more

homomorphic operations are executed, and then more and more different values of r are

accumulated to generate the noise. The association between the bit-length of the secret

key p and the security parameter λ can be changed, instead of just increasing the security

parameter. If the bit-length of the secret key p is changed to λ3, then the value of the

secret key is increased with the same value of the security parameter λ. Yet, the default

range for generating the random integer r in the encryption process is still [0, 2λ). This

illustrates that the gap between the secret key p and the value of r which can generate the

noise is increased. At this time, if the value of the security parameter λ is increased, more

69

noise can be handled without losing relatively too much efficiency. However, this way

will lose some security. Not only the bit-length of the secret key p can be changed to λ3, it

can also be changed to other powers of λ. Details will be given in Section 5.2.

4.6.3 Bit-Length Hiding

Another security arrangement which is a very important parameter in the secure range

query process is the number of the fake bits appended behind the encrypted binary forms

of the integers. As mentioned before, there are some encrypted 0s that are appended

behind the encrypted binary forms of the integers to hide the real bit-length of the

integers in the database to avoid the detective attacks from the outsiders.

However, although these fake bits can improve the security of the secure range query

process, they also increase the costs and the noise. Recalling the secure greater-than

algorithm presented before, when the bit-length of two integers is increased, the volume

of noise that is generated by the algorithm will also increase. For every single increase of

one bit, the volume of noise will increase greatly. Assume that although the volume of the

noise increases a lot, the noise still can be handled with some pretty good parameter

settings. However, the increase of the volume of noise will lead much larger values for

the homomorphic operations, and much larger final results of the secure range query. This

will have a big loss for the computational efficiency and the communication efficiency of

the secure range query process. Therefore, the number of the fake bits appended behind

70

the encrypted binary forms of the integers is quite a difficult decision to make. In Section

5.2, the specific value settings for this parameter will be discussed.

4.6.4 Balance between Efficiency and Security

In this part, the balance between the efficiency and the security of the secure range query

process will be discussed. This discussion is under an assumption that the noise that is

generated in the secure range query process can be handled, since if the volume of noise

is beyond the maximum volume that the secure range query process can handle, the final

results will not be correct in the decryption process. The efficiency and the security of the

secure range query process will lose their meaning.

The efficiency and the security of the secure range query process have an opposite

relationship. Generally speaking, if the efficiency increases, the security will decreases

and vice versa with some changings of the parameters. In the security parameter part, if

the security parameter λ increases, the value of q will increase, and then the times from

the secret key p to the public key N will also increase. At the end, the security will

increase. However, if the value of the secret key p and the value of the public key N

increase, the value of each encrypted bit will also increases and decreases the efficiency.

Therefore, the practical situations need to be considered, like the values of the integers in

the database, and the settings of other parameters, to decide the value of the security

parameter λ.

71

Then, the default range for generating the secret key p is discussed. Although increasing

the bit-length of the secret key p (not increase the value of λ directly) will increase the

maximum volume of noise that can be handled in the secure range query process, the

security will be lost, since the times from the secret key p to the public key N is

decreased. This also is an important parameter setting that need to be balanced.

At the end, the effect that the number of fake bits which are appended behind the

encrypted binary forms of the integers to the secure range query process is illustrated.

This is a relatively simple problem, since the more fake bits being appended will give

more security to the secure range query but lose efficiency. Therefore, a boundary of the

number of fake bits need to be decided to ensure greatest security but not to lose

unacceptable efficiency in the secure range query process. The parameters which will

affect the secure range query process are discussed and how these parameters affect the

efficiency and the security of the secure range query process. The specific parameter

setting will be given in Section 5.2.

72

Chapter 5

Implementation and Results

5 Secure Range Query Process

In this chapter, firstly, the secure range query process is compared to the

privacy-preserving range query process (PPRQ) from [35] to analyze their computational

costs, data transmission costs, communication complexity, and summarize their

advantages and disadvantages with each other. Finally, the contributions of the secure

range query process can be shown. Then, the implementation of the secure range query is

presented. The structure of the program for realizing the secure range query process is

shown. Some experiments are designed to study the security and efficiency of the secure

range query process with different parameter settings to find some relatively practical

parameter settings.

5.1 Comparison with PPRQ

In this section, every sub process of the privacy-preserving range query process and the

secure range query process to will be compared. The two processes are compared in three

aspects. The first aspect is computational costs. The number of the basic operations on

large integers in these two processes is count, which are basically addition, subtraction,

73

multiplication, and division. The results are compared to find out which one has

relatively less computational costs than the other. Thus, if the programming environment

is the same, the one that has less computational costs will be the one that has a high

computational efficiency between these two processes.

The second part in the comparison is the data transmission costs. The size of the data that

is transmitted in each communication round among the three parties, which are the cloud

service provider, the data owner, and the user, in the cloud environment are compared. If,

with the same network data transmission rate, the one that has the less size of the total

transmitted data in all the communication rounds will be the process that has a higher

data transmission efficiency between the two processes.

The third part is the comparison of the communication complexity of the two processes.

In this part, the number of communication rounds around the three parties in the cloud

environment will be counted. If the communication activities are frequent and it is hard to

determine if the data that is transmitted in each communication round will affect the

security of the process, reducing the number of the communication rounds is a good way

to prevent the sensitive information leakage. This part is mainly for the

privacy-preserving range query process, since the communication complexity of the

secure range query process is simplest.

The privacy-preserving range query process and the secure range query process are

74

divided into three processes for comparison. The first process is the encryption process.

In this process, the computational costs in the encryption process and the size of the data

after the encryption process are compared. The second process is the query process. In

this process, the computational costs in the process, the sizes of the final encrypted results,

and the communication round complexity are compared. The third process is the

decryption process. In this process, the computational costs in the decryption process are

compared. At the end, the advantages and disadvantages of the secure range query

process compared to the privacy-preserving range query process are finally summarized.

For the convenience of the calculations, let there be n integers in a column in the

database, the average bit-length of these integers be b, so the average true value of an

integer m is given by

m = 2b−1+2b

2
= 3 × 2b−2.

Let the number of the fake bits that are appended behind the encrypted binary forms of

the integers in the secure range query process be h, and the security parameter be λ.

5.1.1 Encryption Process

The encryption process and data outsourcing process for the privacy-preserving range

query process and the secure range query process will be compared in three parts,

which are computational efficiency, data transmission efficiency, and communication

round complexity.

75

The encryption scheme that is used in the secure range query process is the somewhat

homomorphic encryption scheme, but the encryption scheme that is used in the

privacy-preserving range query process is the Paillier cryptosystem, which is an

encryption scheme that has some homomorphic properties. The Paillier [25]

cryptosystem is as follows:

Key Generation:

N = pq,

where p and q are two large random prime integers;

λ′ = lcm(p − 1, q − 1) = (p−1)(q−1)
gcd (p−1,q−1)

,

g ∈ ZN2
∗ ,

where ZN2
∗ is the set of nonzero integers modulo N2;

L(x) = x−1
N

,

µ = (L(gλ′modN2))−1modN;

Encryption:

c = gmrNmodN2,

where m is an integer, and r ∈ ZN∗ that is the set of nonzero integers modulo N;

76

Decryption:

m = L(cλ′modN2)µmodN.

For the security reason, the bit-length of the parameter N usually is 1024, which means

21023 ≤ N < 21024,

so let

N = 21023+21024

2
= 3 × 21022.

For the computational costs, since the average size of the parameter N in Paillier

cryptosystem is very large, the basic operations in the encryption process are all on large

integers that is the same with the encryption process of the somewhat homomorphic

encryption scheme. The computational costs of encrypting a whole column will be

calculated including the keys generation costs. There are n integers in the column.

From the above, the computational costs of the keys generation part approximately are

λ′ + Ogcd(p − 1, q − 1),

where Ogcd(p − 1, q − 1) is the number of the operations that are executed in gcd(p – 1,

q - 1).

The computational costs of the encryption part approximately are

77

(3 × 2b−2 + 3 × 21022)n.

Therefore, the computational costs of the Paillier cryptosystem in this process are

�3 × 2b−2 + 3 × 21022�n + λ′ + Ogcd(p − 1, q − 1).

The computational costs of the somewhat homomorphic encryption scheme in this

process approximately are

3(b + h).

From the above results, it is obvious to see that the computational costs of the Paillier

cryptosystem is far more than the computational costs of the somewhat homomorphic

encryption scheme in the encryption process.

For the data transmission costs, since g ∈ ZN2
∗ , and g is a nonzero integer,

1 ≤ g ≤ 𝑁2 − 1.

Therefore, according to the average value of N, the average value of g is given as

g = 𝑁2−1+1
2

= 3×21023

2
= 3 × 21022.

Since the average value of m is 3 × 2b−2, the average value of gm is

𝑔𝑚 = (3 × 21022)3×2b−2.

Since r ∈ ZN∗ , and r is a nonzero integer,

78

1 ≤ r ≤ N − 1.

Therefore, according to the average value of N, the average value of r is given as

r = 𝑁−1+1
2

= 3×21022

2
= 3 × 21021, and

the average value of rN is

𝑟𝑁 = (3 × 21021)3×21022.

Therefore, the size of one encrypted integer in the encryption process of the Paillier

cryptosystem is calculated. The size of the encrypted integer is

(3 × 21022)3×2b−2(3 × 21021)3×21022mod(3 × 21023).

Since the somewhat homomorphic encryption scheme in the secure range query process

is to encrypt the bits in the binary forms of the integers, for one encrypted integer, the

sizes of all its encrypted bits should be the size of this integer after encryption. According

to the default ranges for generating the secret key p, q, and r, the average value of N and

2r are

N = 2𝜆
4−1

+2𝜆
4
−1

2
× 2𝜆

5−1
+2𝜆

5
−1

2
≈ 2𝜆5+𝜆4−1 + 2𝜆5+𝜆4−4, and

2r = 2 2𝜆−1+2𝜆−1
2

≈ 2𝜆 + 2𝜆−1.

The formula m + 2r + N is to compute one encrypted bit, and there are b bits in an

encrypted integer. Therefore, the size of one encrypted integer in the encryption process

79

of the somewhat homomorphic encryption scheme is

�2𝜆5+𝜆4−1 + 2𝜆5+𝜆4−4 + 2𝜆 + 2𝜆−1�b.

where the secret key p is randomly generated from the default range [2𝜆4−1, 2𝜆4) because

this secret key generation can be practical for some real data.

Due to the uncertainty of the security parameter and the secret key generation, a program

is written to compare the sizes of the two single encrypted integers which are encrypted

by these two encryption schemes. The results show that no matter what parameter

settings are, the size of one encrypted integer from the somewhat homomorphic

encryption scheme is always larger than the size of one encrypted integer from the

Paillier cryptosystem. This illustrates that the data transmission cost of the secure range

query process is more than the data transmission costs of the privacy-preserving range

query process in the data outsourcing process.

Since there is only one communication activity that happens in the encryption process

which is the data outsourcing for both range query processes, it is not necessary to

compare the communication round complexity in this part.

5.1.2 Query Process

The first step to compare the two secure range query processes is to analyze the query

generating process on the user’s side. Since the only communication activity in this

80

process is that the user sends the query request message to the cloud service provider, the

two range query processes are the same with respect to the communication complexity.

Therefore, only the computational costs and the data transmission costs will be analyzed.

The computational costs in the query generating process are just the costs of encrypting

two integers which are the lower and upper boundaries of the range in the query.

Since the computational costs for encrypting one integer of the encryption part in the

privacy-preserving range query process approximately are

3 × 2b−2 + 3 × 21022.

Therefore, the computational costs of the query generating process for the

privacy-preserving range query process approximately are

3 × 2b−1 + 3 × 21023.

The computational costs for the secure range query process in the query generating

process are

6(b + h).

From the above results, the computational costs of the privacy-preserving range query

process is far more than the computational costs of the secure range query process in the

query generating process.

81

In the comparison of the encryption and data outsourcing process, for each encrypted

integer, the secure range query process generates the encrypted data files with larger sizes

than the privacy-preserving range query process. Therefore, in the query generating

process, the secure range query process generates the query files with larger sizes than the

privacy-preserving range query process, since the main parts of the query files are the

two encrypted integer boundaries of the range in the query. The data transmission costs of

the privacy-preserving range query process are less than the data transmission costs of the

secure range query process in the query generating process.

Compared to the secure range query process, the privacy-preserving range query process

is much more complicated. There are three sub processes in the query process of the

privacy-preserving range query process. They are the secure bit decomposition process,

secure comparison process, and the privacy-preserving range query process. The total

costs for the privacy-preserving range query process consists of the sum of the

computational costs and the data transmission costs of the three sub processes.

In the cloud environment of the privacy-preserving range query process, there are two

cloud service providers. The first one is the primary cloud service provider, and the

second one is the secondary cloud service provider. The primary cloud finishes the secure

bit decomposition process by communicating with the secondary cloud. Since the parties

that should be cared most is the user and the data owner, the data transmission costs of

the communication rounds between the two clouds will not be counted.

82

In the secure bit decomposition process of the privacy-preserving range query process,

the two clouds work together to convert the encrypted integers to the encrypted binary

forms wit encrypted bits through communicating with each other securely. The

communication details between the two clouds are quite complicated, and can be found in

[35]. Based on the secure bit decomposition process, the computational costs of the

primary cloud are

(2λ′ + 3 × 21023 + 26)b(n + 2), and

the computational costs of the secondary cloud are

�3 × 2𝑏−1 + 9 × 21023 + 3 × 21020 + 18 + 3
2
� b(n + 2).

The secure comparison process and the range query process are considered together. In

this part, there is no need to count the computational costs, since just the other

computational cost is already much larger than the computational costs of the query

process of the secure range query process. Denote the computational costs of the primary

cloud as A1, and the computational costs of the secondary cloud as A2 in this part.

Therefore, the total computational costs of the primary cloud in the query process are

(2λ′ + 3 × 21023 + 26)b(n + 2) + A1, and

the total computational costs of the secondary cloud in the query process are

83

�3 × 2b−1 + 9 × 21023 + 3 × 21020 + 18 + 3
2
�b(n + 2) + A2.

The computational costs of the secure range query process in the query process are

36(b + bk)2n + 2(b + h)n.

Form the above results, it is obvious that no matter the computational costs of the primary

cloud or the secondary cloud, they are all far more than the computational costs of the

secure range query process in the query process.

In the comparison of the encryption and data outsourcing process, for each encrypted

integer, the secure range query process generates the encrypted data files with larger sizes

than the privacy-preserving range query process. Also, the encrypted query results in the

secure range query process are equivalent to encrypt the integers more times, so the sizes

of them will also increase more times, but in the privacy-preserving range query process,

the encrypted query results are just equivalent to encrypt the integers one time.

Therefore, for the data transmission costs, it is obvious that the data transmission costs of

the privacy-preserving range query process is less than the data transmission costs of the

secure range query process in the query process.

Since there is no communication round in the query process of the secure range query

process, and there are some communication rounds between the primary cloud and the

secondary cloud in the secure comparison process of the privacy-preserving range query

84

process, the secure range query process has less communication round complexity than

the privacy-preserving range query process.

5.1.3 Decryption Process

In the decryption process, only the computational costs of the privacy preserving range

query process and the secure range query process will be considered, since all the

decrypting operations happens on the user’s side, there is no data transmission and

communication round in this process.

Assume that there are R encrypted values in the results of the range query. For the

privacy-preserving range query process, the computational costs of the decryption

process are

(λ′ + 9)R.

For the secure range query process, the computational costs of the decryption process are

6(b + h)R.

Since the parameter λ’ = lcm(p – 1, q - 1), and p and q are two large prime integers in the

Paillier cryptosystem, the computational costs of the privacy-preserving range query

process is far more than the computational costs of the secure range query process in the

decryption process.

85

5.1.4 Comparison between PPRQ and SRQ

After all the comparisons in the previous subsections, the advantages and disadvantages

of the secure range query process compared to the privacy-preserving range query

process will be summarized and listed.

Advantages:

1. The computational efficiency of the secure range query process is higher than that

of the privacy-preserving range query process in the encryption process;

2. There is only one cloud service provider that is involved in the cloud environment

in the secure range query process. Therefore, there is no any communication

round complexity in the secure range query process compared to the

privacy-preserving range query process;

3. The computational efficiency of the secure range query process is higher than that

of the privacy-preserving range query process in the query generating process;

4. Fake bits are not appended behind the encrypted integers to hide the real

bit-length of the integers in the privacy-preserving range query process, since the

Paillier cryptosystem encrypts the integers directly. Therefore, the secure range

query process is more secure than the privacy-preserving range query process in

this part;

86

5. The computational efficiency of the secure range query process is higher than that

of the privacy-preserving range query process in the decryption process;

6. In the secure range query process, no middle results will be known by the cloud

service provider in the query process. The primary cloud in the privacy-preserving

range query process knows all the middle results of the query process. Therefore,

the secure range query process is securer than the privacy-preserving range query

process in this part;

7. The computational efficiency of the secure range query process is higher than that

of the privacy-preserving range query process in the query process.

Disadvantages:

1. The original encrypted data in the secure range query process is larger than the

original encrypted data in the privacy-preserving range query process;

2. The query request file in the secure range query process is larger than the query

request file in the privacy-preserving range query process;

3. For the purpose of controlling the noise, the bit-length of the secret key p is

increased, not just increase the value of the security parameter λ, but change the

mathematical relation between the parameter η and λ in the somewhat

homomorphic encryption scheme. This will decrease the gap between the secret

key p and the public key N, which leads the loss in the security of the process.

There is no such problem in the privacy-preserving range query process, since it

87

uses a very large parameter N in the encryption process of the Paillier

cryptosystem;

4. Since the cloud service provider does not know the middle results in the query

process, the final query results can be quite large. This loses some data

transmission efficiency compared to the privacy-preserving range query process.

In conclusion, the secure range query process is faster, but generates larger files. However,

the privacy-preserving range query process is slower, but generates smaller files.

5.2 Experiments & Results

In this section, some experiments are designed to test the practicability of the secure

range query process, and the results of the experiments are illustrated. First, some tables

are presented to show the security parameter λ that can enable the secure range query

process for different values of the integers in the database with the different secret key

generations. Then, some relatively practical parameter settings are chosen to run the

secure range query process with some datasets whose values are practical. Finally, the

practicability of the secure range query process is discussed.

In [35], if the maximum value of the integers that the secure data range query process can

handle is 220, then this secure range query can be used in most practical applications. For

covering more practical applications, the largest integer in the tables is set to be 264.

Although some practical applications may involve the integers whose values are 2128, but

88

this value is too large to handle by the secure range query process, since it will lose

efficiency. The ability to handle integers whose values are 264 is enough for the secure

range query process to have a considerable degree of practicability. Tables 2 to 4 show

the settings of the security parameters for three different secret key generations with

p ∈ [2𝜆4−1, 2𝜆4), p ∈ �2𝜆5−1, 2𝜆5�, and p ∈ [2𝜆6−1, 2𝜆6). Since it is hard to calculate all

the security parameters for the integers from 2 to 264 with different secret key generations,

the following tables are generated by a computer program.

89

Table 2: Security Parameters for First Secret Key Generation

bit-length λ bit-length λ bit-length λ bit-length λ bit-length λ bit-length λ

1 3 12 8 23 11 34 14 45 17 56 19

2 3 13 8 24 11 35 15 46 17 57 20

3 4 14 8 25 12 36 15 47 17 58 20

4 4 15 9 26 12 37 15 48 18 59 20

5 5 16 9 27 12 38 15 49 18 60 20

6 5 17 9 28 13 39 16 50 18 61 21

7 6 18 10 29 13 40 16 51 18 62 21

8 6 19 10 30 13 41 16 52 19 63 21

9 6 20 10 31 13 42 16 53 19 64 21

10 7 21 11 32 14 43 16 54 19

11 7 22 11 33 14 44 17 55 19

Table 2 shows the security parameters λ for the integers from 2 to 264 for the secret key

generation p ∈ [2𝜆4−1, 2𝜆4).

90

Table 3: Security Parameters for Second Secret Key Generation

bit-length λ bit-length λ bit-length λ bit-length λ bit-length λ bit-length λ

1 2 12 5 23 7 34 8 45 9 56 10

2 3 13 5 24 7 35 8 46 9 57 10

3 3 14 5 25 7 36 8 47 9 58 10

4 3 15 5 26 7 37 8 48 9 59 10

5 3 16 6 27 7 38 8 49 9 60 10

6 4 17 6 28 7 39 8 50 9 61 10

7 4 18 6 29 7 40 8 51 9 62 10

8 4 19 6 30 7 41 9 52 9 63 10

9 4 20 6 31 8 42 9 53 10 64 10

10 5 21 6 32 8 43 9 54 10

11 5 22 6 33 8 44 9 55 10

Table 3 shows the security parameters λ for the integers from 2 to 264 for the secret key

generation of p ∈ [2𝜆5−1, 2𝜆5).

91

Table 4: Security Parameters for Third Secret Key Generation

bit-length λ bit-length λ bit-length λ bit-length λ bit-length λ bit-length λ

1 2 12 4 23 5 34 6 45 6 56 7

2 2 13 4 24 5 35 6 46 6 57 7

3 3 14 4 25 5 36 6 47 6 58 7

4 3 15 4 26 5 37 6 48 6 59 7

5 3 16 4 27 5 38 6 49 6 60 7

6 3 17 4 28 5 39 6 50 6 61 7

7 3 18 4 29 5 40 6 51 6 62 7

8 3 19 5 30 5 41 6 52 6 63 7

9 4 20 5 31 5 42 6 53 6 64 7

10 4 21 5 32 5 43 6 54 6

11 4 22 5 33 5 44 6 55 7

Table 4 shows the security parameters λ for the integers from 2 to 264 for the secret key

generation of p ∈ [2𝜆6−1, 2𝜆6).

92

In Table 2, when p ∈ [2𝜆4−1, 2𝜆4), if the maximum value of the integers in the database

is 264 and the secure range query process for this size integers need to be enabled, the

value of the security parameter λ should be 21. That will generate really large encrypted

data and middle results in the encryption process and the query process. Therefore, the

secret key generation p ∈ [2𝜆4−1, 2𝜆4) is not practical for the integers that large like 264

because it will not be efficient. However, for the integers whose values are 220, the value

of the security parameter λ is just 10, which will be enough to handle the noise problem

in the secure range query process, and will also be pretty efficient.

When p ∈ [2𝜆5−1, 2𝜆5) , the most exciting results are obtained. In Table 3, if the

maximum value of the integers in the database is 264, and the secure range query process

with integers that are large like this need to be enabled, the value of the security

parameter λ should be 10. This is quite less than the value in Table 2, since each addition

of the security parameter will increase a lot of costs. This parameter setting has already

been pretty practical. For the integers whose values are 220, the value of the security

parameter λ should only be 6 that will be enough to handle the noise problem in the

secure range query process and will also be pretty efficient.

When p ∈ [2𝜆6−1, 2𝜆6), much security will be lost, since the value of p is more than the

value of q. This will be not secure for the outside attacks. In Table 4, if the maximum

value of the integers in the database is 264, and the secure range query process need to be

enabled with the integers that are large like this, the value of the security parameter λ

93

should only be 7. This is a lot less than the value in Tables 2 and 3. This parameter setting

is very practical, if the security loss is not considered. For the integers whose values are

220, the value of the security parameter λ should only be 5 that will be enough to handle

the noise problem in the secure range query process, and be very efficient. For the

problem that the value of p is more than the value of q, it is not useful to increase the

value of q to solve it because this will decrease the efficiency again. Therefore, this

parameter setting is not practical in security.

After the comparison among the three tables, if the integers whose values are 220 need to

be handled, the secret key generation should in Table 2 be used. If the integers whose

values are 264 need to be handled, the secret key generation in Table 3 should be used,

since the value of the parameter can balance the efficiency and security well in the secure

range query process. This setting will also lose some security, but it will gain more

benefits in efficiency to make the secure range query to be practical.

Now, some experiments will be presented. Two experiments are executed with two

different parameter settings. The two values of the integers in the database that is most

practical to handle are 220 and 264, since 220 can fit most applications in the practical

world, and 264 can handle almost all the practical applications, but will sacrifice some

security. Therefore, these two most practical parameter settings will be chosen that can

separately handle the 220 integers and 264 integers to do the experiments. In the practical

applications, the data owner can choose these two parameter settings based on the

94

features of their databases and their needs.

The experimental programs are written in Java programming language. Since in the

secure range query process, there are a lot of operations that are with big integers, a Java

class which is called as BigInteger is used from the Java library to handle large integers

involved in the process. The structure of the program is given in Figure 8

DataGenerator.java SHEenc.java

QueryGenerator.java

SRQ.java

UserIDGenerator.java

dec.java

Generates some random
integers from a default
experimental range.

data.txt
Generates keys and
encrypts the random data. cData.txt

pk.txt

sk.txt
bk.txt

Generates upper and lower
boundaries of the range
query and ecrypts them.

Puts the encrypted
boundaries, user ID, and
attribute indexes in the
request message.

query.txt

Executes range query
process.

Generates user IDs.

userID.txt

cResults.txt Decrypts the encrypted
results to get the real
results.

results.txt

Figure 8: Experimental Program Structure

95

In the experiments, a cloud environment is simulated. Since most operations that need to

be done on the side of the cloud service provide, a cloud service provider is chosen who

can supply more powerful computational ability than the local computer as the cloud in

the experiments. The cloud service provider that is chosen is SHARCNET.

SHARCNET [39] is a consortium of Canadian academic institutions who share a network

of high performance computers to support worldwide academic researches with its high

computational ability. This is a perfect place for the experiments. goblin.sharcnet.ca is

used which is a contributed gigabit Ethernet cluster from the SHARCNET. A system with

an Intel Xeon CPU 2.53 GHz 16 cores processor and 12GB memory is used in the

experiments. PuTTY, which is a free terminal emulator, serial console and network file

transfer application is used to control the operations on cloud’s side from the local side,

and WinSCP which is a free SFTP, SCP and FTP client for Microsoft Windows is used to

organize the files on the cloud’s side from the local side. The command line that is used

to run the program on the cloud’s side is “sqsub –r 15h –o results.txt java –Xmx512m

NAME”. The systems in SHARCNET totally support the Java programs [40].

For the sides of the data owner and the user, a laptop iss used with an Intel(R) Core(TM)

i7-3610QM CPU @ 2.30GHz and 4GB RAM in Microsoft Windows 8.1 operating

system. This laptop is used as both the data owner and the user, since the data

transmission costs between these two parties can be ignored.

96

Two parameter settings for the experiments are used. For the first experiment, the secret

key generation is set to be p ∈ [2𝜆4−1, 2𝜆4), since this generation can handle the 220

integers without too large security parameter λ. Since this setting is for the first

experiment that is with the 220 integers, the integers that are generated randomly are all

from [219, 220]. The security parameter λ is set as 10 since this is the least value to handle

the 220 integers with p ∈ [2𝜆4−1, 2𝜆4) . For the second experiment, the secret key

generation was set to be p ∈ [2𝜆5−1, 2𝜆5), since this generation is to handle the relatively

largest data set which is the 264 integers also without too large security parameter λ.

Since this setting is for the second experiment with 264 integers, the integers that are

generated randomly are all from [263, 264]. The security parameter λ was set as 10 since

this is the least value to handle 264 integers with p ∈ [2𝜆5−1, 2𝜆5). There are also some

other settings for the experiments. There are 1000 integers in the experimental database,

which contains ten attributes, and each attribute having 100 integers. In the experimental

range query process, 5 attributes are randomly selected to query, so that 500 integers

could be queried.

In the experiments, the results of the computational time and the size of the files that are

transmitted in each communication round are separately recorded. To be specific, for the

computational time, the encryption time, the query generating time, the secure range

query process time, and the decryption time are recorded and analyzed separately. For the

size of files that are transmitted in each communication round, the encrypted database for

97

data outsourcing, the request message that is sent to the cloud service provider to request

a range query, the encrypted results that are sent back to the user are recorded and

analyzed separately.

Table 5： Experimental Results of Running Time for First Secret Key Generation

Encryption Time Query Generating Time SRQ Time Decryption Time

5107.77s 5.55ms 186.56m 221.58s

5216.69s 5.64ms 181.64m 213.46s

5172.5s 5.65ms 193.54m 218.46s

5106.03s 5.51ms 191.42m 224.23s

5120.09s 5.38ms 185.41m 214.26s

4946.51s 5.59ms 193.84m 225.34s

5205.27s 5.39ms 185.81m 227.13s

5118.45s 5.54ms 189.12m 226.11s

5217.14s 5.52ms 187.84m 224.71s

5191.65s 5.62ms 192.88m 224.89s

98

4956.65s 5.61ms 183.21m 221.58s

5013.49s 5.65ms 184.74m 226.05s

5108.51s 5.64ms 184.23m 224.46s

5040.51s 5.74ms 191.95m 217.48s

5113.57s 5.47ms 184.74m 228.05s

5194.49s 5.58ms 190.24m 223.8s

5305.49s 5.6ms 191.48m 215.05s

4997.79s 5.55ms 192.85m 224.27s

4950.84s 5.74ms 189.28m 222.62s

5005.25s 5.69ms 191.17m 229.55s

99

Table 6: Experimental Results of Transmitted File Sizes for First Secret Key Generation

Encrypted Data Request Message Query Results

645.18mb 1320kb 1.74gb

667.94mb 1318kb 1.7gb

664.04mb 1355kb 1.73gb

662.38mb 1328kb 1.8gb

644.52mb 1267kb 1.74gb

639.21mb 1294kb 1.68gb

653.51mb 1341kb 1.77gb

663.08mb 1357kb 1.7gb

634.44mb 1358kb 1.73gb

654.78mb 1312kb 1.76gb

625.58mb 1328kb 1.71gb

656.14mb 1364kb 1.79gb

633.71mb 1337kb 1.73gb

100

621.91mb 1339kb 1.72gb

664.52mb 1288kb 1.75gb

654.53mb 1360kb 1.74gb

650.44mb 1304kb 1.8gb

633.37mb 1341kb 1.68gb

630.98mb 1366kb 1.76gb

642.37mb 1314kb 1.76gb

Table 7: Experimental Results of Running Time for Second Secret Key Generation

Encryption Time Query Generating Time SRQ Time Decryption Time

6823.14s 177.04ms 633.98m 649.35s

6760.82s 172.97ms 651.29m 656.57s

6698.66s 181.85ms 623.21m 652.93s

6914.91s 182.55ms 608.86m 649.86s

6849.26s 170.41ms 626.33m 632.02s

101

6718.06s 180.58ms 623.68m 629.25s

6796.38s 178.78ms 643.41m 664.61s

7013.53s 177.16ms 650.74m 664.31s

6892.76s 175.69ms 627.98m 638.27s

6720.48s 180.97ms 636.71m 673.06s

7077.81s 180.92ms 625.75m 625.36s

6599.13s 177.31ms 611.54m 659.27s

6952.6s 172.11ms 609.92m 659.25s

6555.34s 179.07ms 619.36m 672.1s

6764.65s 178.46ms 630.74m 648.01s

6900.83s 178.69ms 618.93m 626.62s

6630.51s 180.19ms 652.5m 627.72s

6822.08s 181.95ms 644.96m 657.89s

6695.62s 173.82ms 657.63m 667.57s

6783.45s 174.73ms 650.45m 665.7s

102

Table 8: Experimental Results of Transmitted File Sizes for Second Secret Key Generation

Encrypted Data Request Message Query Results

3375.05mb 6912kb 10.13gb

3246.57mb 6989kb 10.33gb

3273.86mb 6963kb 9.92gb

3449.43mb 6749kb 9.85gb

3311.59mb 7025kb 9.76gb

3247.79mb 6673kb 9.8gb

3480.62mb 7126kb 10.14gb

3457.75mb 6866kb 9.82gb

3504.05mb 6664kb 10.41gb

3290.44mb 6925kb 10.45gb

3465.48mb 6720kb 9.73gb

3462.19mb 6950kb 10.38gb

103

3438.18mb 6747kb 9.94gb

3345.21mb 6867kb 10.34gb

3380.74mb 6725kb 9.94gb

3470.17mb 6815kb 9.8gb

3354.28mb 6654kb 10.52gb

3256.56mb 6715kb 9.92gb

3403.15mb 6822kb 10.18gb

3318.17mb 6712kb 9.83gb

For the computational time analysis, from Table 5, the encryption time is around 5100s.

The keys generation process takes the most of this time, especially the public key

generation process. Once the keys generation process is finished, the encryption process

does not take much time. This is also the reason why the query generating time is so little

that is just around 5.5ms because the query generating process is the process to encrypt

two boundaries of the range query. The time of the secure range query process is

relatively long that is around 185 minutes, but it happens on the cloud’s side. Therefore, it

is still practical for using, since the decryption time is just around 220s. Thus, it is still

efficient for the user, since the part that should be cared about most is the data owner and

104

the user. From Table 7, the results for p ∈ [2𝜆5−1, 2𝜆5) are very similar. The encryption

time is around 6800s. Since this is a one-time process, it is acceptable, and this is for the

264 integers. Still, the keys generation process takes the most of this time, especially the

public key generation process. The query generating time is just around 170ms. The time

of the secure range query process is relatively long that is around 630m, and the

decryption time is around 650s. In general, for the integer data that is as large as 264, the

efficiency of the secure range query process is still acceptable.

For the data transmission costs analysis, from Table 6, the size of the whole encrypted

data is around 650 MB. The size of the request message is very small which is around

1300 KB. The size of the encrypted query results is pretty large which is around 1.7 GB.

Although this size is large, with a good network that has a high data transmission rate,

this size still can work. From Table 8, the results for p ∈ [2𝜆5−1, 2𝜆5) are larger. The size

of the whole encrypted data is around 3350 MB. The size of the request message is larger

which is around 6900 KB, but it is still not very large, so it does not affect the process.

The size of the encrypted query results is pretty large which is around 10 GB. This size is

very large. However, the values of the integer data in the experiment are around 264, so

this is necessary to sacrifice some efficiency and security for handling larger integers in

the secure range query process.

For setting the number of fake bits that are appended to the encrypted binary forms of the

integers, the value of one-half of the average bit-length of the integers in the dataset is a

105

very secure way. However, this will lead much more costs. This number is set with one

third, one fourth, or even some smaller proportion of the average bit-length of the

integers in the dataset. This needs to be decided by the data owner and according to his

practical security requirements.

In conclusion, when the secure range query process is with 220 integers, it is already

practical for most applications. Although, with the 264 integers, the secure range query

process seems to be slow and generate large result files, it is still successful to handle the

larger numbers. No matter the p ∈ [2𝜆4−1, 2𝜆4) or p ∈ [2𝜆5−1, 2𝜆5), they all sacrifice

some security to trade for some efficiency when the loss of the security is acceptable and

worth for. Actually, when the data owner companies or enterprises have more

computational power and higher data transmission rate, they can try to use even smaller

secret key generations with some larger security parameter that can enable the secure

range query process, and ensure the efficiency and security.

106

Chapter 6

Conclusions and Future Work

6 Conclusions

In this thesis, a secure range query process was proposed which is based on a somewhat

homomorphic encryption scheme for a cloud environment. This encryption scheme can

supply the homomorphic properties on some operations with binary encrypted integers. If

there is an effective way to control the noise that is generated in the process, this

encryption scheme can handle all the homomorphic operations, and it will turn to a fully

homomorphic encryption scheme. All the integers are encrypted in their binary forms bit

by bit. Then, a greater-than algorithm is used to compare two encrypted integers through

all their bits. The results of the greater-than algorithm are not revealed to the cloud

service provider. Different parameter settings are discussed and some settings that can

make the secure range query process to be used in practical applications are found. The

secure range query process is compared to the privacy-preserving range query process

which is proposed in [35], and the advantages and disadvantages of the secure range

query process compared to the privacy-preserving range query process are enumerated. In

the experiments, two relatively practical parameter settings are proposed for 220 and 264

107

size integers. From the results of the experiments, if sacrifice some efficiency or security,

or both, the secure range query process can be more functional.

6.1 Future Work

One of the future works of this thesis is to find a better secure comparison method as the

results of the query are still very large. Another improvable part is that the user access

control in this thesis cannot prevent the collusion between two users with different data

access authorization. Some methods that are used in the secure range query process are

also probably useful for some other kinds of query processes. This will contribute

towards realizing the fully database as a service (DAAS) in a cloud environment.

However, further researches about the fully homomorphic encryption scheme still will

continue, since the fully homomorphic encryption scheme indeed is a powerful way to

realize fully database as a service in a cloud environment.

108

References
[1] Armbrust M, Fox A, Griffith R, et al. A view of cloud computing[J].

Communications of the ACM, 2010, 53(4): 50-58.

[2] Buyya R, Yeo C S, Venugopal S, et al. Cloud computing and emerging IT platforms:

Vision, hype, and reality for delivering computing as the 5th utility[J]. Future

Generation computer systems, 2009, 25(6): 599-616.

[3] Marston S, Li Z, Bandyopadhyay S, et al. Cloud computing—The business

perspective[J]. Decision Support Systems, 2011, 51(1): 176-189.

[4] Hofmann P, Woods D. Cloud computing: the limits of public clouds for business

applications[J]. Internet Computing, IEEE, 2010, 14(6): 90-93.

[5] Weinhardt C, Anandasivam D I W A, Blau B, et al. Cloud computing–a classification,

business models, and research directions[J]. Business & Information Systems

Engineering, 2009, 1(5): 391-399.

[6] Keahey K. Cloud Computing for Science[C]. SSDBM. 2009: 478.

[7] Hacigumus H, Iyer B, Mehrotra S. Providing database as a service[C]. Data

Engineering, 2002. Proceedings. 18th International Conference on. IEEE, 2002:

29-38.

[8] Curino C, Jones E P C, Popa R A, et al. Relational cloud: A database-as-a-service f or

the cloud[J]. 2011.

[9] Mykletun E, Tsudik G. Aggregation queries in the database-as-a-service model[M].

Data and Applications Security XX. Springer Berlin Heidelberg, 2006: 89-103.

109

[10] Junzhou Luo, Jiahui Jin, Aibo Song, Cloud Computing: Architecture and Key

Technology[J]. Journal on Communications, 2011, 32(7): 3-21.

[11] Tsai W T, Sun X, Balasooriya J. Service-oriented cloud computing architecture[C].

Information Technology: New Generations (ITNG), 2010 Seventh International

Conference on. IEEE, 2010: 684-689.

[12] Ostermann S, Iosup A, Yigitbasi N, et al. A performance analysis of EC2 cloud

computing services for scientific computing[M]. Cloud computing. Springer Berlin

Heidelberg, 2010: 115-131.

[13] Kandukuri B R, Paturi V R, Rakshit A. Cloud security issues[C]. Services

Computing, 2009. SCC'09. IEEE International Conference on. IEEE, 2009:

517-520.

[14] Ramgovind S, Eloff M M, Smith E. The management of security in cloud

computing[C]. Information Security for South Africa (ISSA), 2010. IEEE, 2010:

1-7.

[15] Bisong A, Rahman M. An overview of the security concerns in enterprise cloud

computing[J]. arXiv preprint arXiv:1101.5613, 2011.

[16] Chen Y, Paxson V, Katz R H. What’s new about cloud computing security[J].

University of California, Berkeley Report No. UCB/EECS-2010-5 January, 2010,

20(2010): 2010-5.

[17] Keefe T F, Thuraisingham M B, Tsai W T. Secure query-processing strategies[J].

Computer, 1989, 22(3): 63-70.

110

[18] Wang S, Agrawal D, El Abbadi A. A comprehensive framework for secure query

processing on relational data in the cloud[M]. Secure Data Management. Springer

Berlin Heidelberg, 2011: 52-69.

[19] Takabi H, Joshi J B D, Ahn G J. Security and privacy challenges in cloud

computing environments[J]. IEEE Security and Privacy, 2010, 8(6): 24-31.

[20] Shi E, Bethencourt J, Chan T H H, et al. Multi-dimensional range query over

encrypted data[C]. Security and Privacy, 2007. SP'07. IEEE Symposium on. IEEE,

2007: 350-364.

[21] Gentry C. A fully homomorphic encryption scheme[D]. Stanford University, 2009.

[22] Van Dijk M, Gentry C, Halevi S, et al. Fully homomorphic encryption over the

integers[M]. Advances in cryptology–EUROCRYPT 2010. Springer Berlin

Heidelberg, 2010: 24-43.

[23] Dianhua Tang, Shixiong Zhu, Yunfei Cao. A Fast Fully Homomorphic Encryption

Scheme over Integers[J]. Computer Engineering and Application, 2012, 48(28):

117-122.

[24] Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatures and

public-key cryptosystems[J]. Communications of the ACM, 1978, 21(2): 120-126.

[25] Paillier P. Public-key cryptosystems based on composite degree residuosity

classes[C]. Advances in cryptology—EUROCRYPT’99. Springer Berlin

Heidelberg, 1999: 223-238.

[26] Okamoto T, Uchiyama S. A new public-key cryptosystem as secure as factoring[M].

111

Advances in Cryptology—EUROCRYPT'98. Springer Berlin Heidelberg, 1998:

308-318.

[27] Naehrig M, Lauter K, Vaikuntanathan V. Can homomorphic encryption be

practical?[C]. Proceedings of the 3rd ACM workshop on Cloud computing security

workshop. ACM, 2011: 113-124.

[28] Yacine Ichibane, Youssef Gahi, Zouhair Guennoun, Mouhcine Guennoun. Private

Video Streaming Service Using Leveled Somewhat Homomorphic Encryption.

School of Electrical Engineering and Computer Science University of Ottawa,

2014.

[29] Hirt M, Sako K. Efficient receipt-free voting based on homomorphic encryption[C].

Advances in Cryptology—EUROCRYPT 2000. Springer Berlin Heidelberg, 2000:

539-556.

[30] Aggarwal G, Bawa M, Ganesan P, et al. Two can keep a secret: A distributed

architecture for secure database services[J]. CIDR 2005, 2005.

[31] Hacigümüş H, Iyer B, Li C, et al. Executing SQL over encrypted data in the

database-service-provider model[C]. Proceedings of the 2002 ACM SIGMOD

international conference on Management of data. ACM, 2002: 216-227.

[32] Yao A C. Protocols for secure computations[C]. 2013 IEEE 54th Annual

Symposium on Foundations of Computer Science. IEEE, 1982: 160-164.

[33] Samanthula B K, Elmehdwi Y, Howser G, et al. A secure data sharing and query

processing framework via federation of cloud computing[J]. Information Systems,

112

2015, 48: 196-212.

[34] Blake I F, Kolesnikov V. One-round secure comparison of integers[J]. Journal of

Mathematical Cryptology, 2009, 3(1): 37-68.

[35] Samanthula B K, Jiang W. Efficient privacy-preserving range queries over

encrypted data in cloud computing[C]. Cloud Computing (CLOUD), 2013 IEEE

Sixth International Conference on. IEEE, 2013: 51-58.

[36] Mani M, Shah K, Gunda M. Enabling secure database as a service using fully

homomorphic encryption: Challenges and opportunities[J]. arXiv preprint

arXiv:1302.2654, 2013.

[37] http://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html

[38] Howgrave-Graham N. Approximate integer common divisors[M]. Cryptography

and Lattices. Springer Berlin Heidelberg, 2001: 51-66.

[39] https://www.sharcnet.ca/help/index.php/Getting_Started_with_SHARCNET

[40] https://www.sharcnet.ca/help/index.php/OPENJDK

http://docs.oracle.com/javase/7/docs/api/java/math/BigInteger.html
https://www.sharcnet.ca/help/index.php/Getting_Started_with_SHARCNET
https://www.sharcnet.ca/help/index.php/OPENJDK

113

Appendix A
Somewhat Homomorphic Encryption Scheme

import java.math.BigInteger;
import java.util.Random;
import java.util.Scanner;
import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;

public class SHEenc
{
 public static int sp = 7;
 public static int skr = sp * sp * sp * sp * sp;
 public static int sp5 = sp * sp * sp * sp * sp;
 public static int bk = 10;
 public static int n = 100;
 public static int an = 10;
 public static Random rnd = new Random();
 public static BigInteger two = BigInteger.valueOf(2);

 public static BigInteger skGen()
 {
 BigInteger p = BigInteger.ZERO;
 for (int i = 0; i < skr; i++)
 {
 if (i == (skr - 1))
 {
 BigInteger head = BigInteger.ONE;
 for (int j = 0; j < i; j++)
 {
 head = head.multiply(BigInteger.valueOf(2));
 }
 p = p.add(head);
 }
 else
 {
 BigInteger body = new BigInteger(1, rnd);
 for (int j = 0; j < i; j++)

114

 {
 body = body.multiply(BigInteger.valueOf(2));
 }
 p = p.add(body);
 }
 }
 return p;
 }

 public static BigInteger pkGen(BigInteger p)
 {
 BigInteger q = BigInteger.ZERO;
 for (int i = 0; i < sp5; i++)
 {
 if (i == (sp5 - 1))
 {
 BigInteger head = BigInteger.ONE;
 for (int j = 0; j < i; j++)
 {
 head = head.multiply(BigInteger.valueOf(2));
 }
 q = q.add(head);
 }
 else
 {
 BigInteger body = new BigInteger(1, rnd);
 for (int j = 0; j < i; j++)
 {
 body = body.multiply(BigInteger.valueOf(2));
 }
 q = q.add(body);
 }
 }
 return p.multiply(q);
 }

 public static BigInteger enc(BigInteger N, String m)
 {
 BigInteger M = new BigInteger(m);
 BigInteger r = new BigInteger(sp, rnd);
 BigInteger c = ((two.multiply(r)).add(M)).add(N);

115

 return c;
 }

 public static String dec(BigInteger p, BigInteger c)
 {
 BigInteger M = (c.mod(p)).mod(two);
 String m = M.toString();
 return m;
 }

 public static void main(String[] args) throws IOException
 {
 String tData[][] = new String[an][n];
 long data[][] = new long[an][n];
 String bData[][] = new String[an][n];
 for (int i = 0; i < an; i++)
 {
 Scanner in = new Scanner(new File("data/" + i + ".txt"));
 int index = 0;
 while (in.hasNextLine())
 {
 tData[i][index] = in.nextLine();
 data[i][index] = Long.parseLong(tData[i][index]);
 bData[i][index] = Long.toBinaryString(data[i][index]);
 index++;
 }
 in.close();
 }
 File file = new File("cData");
 file.mkdirs();
 PrintWriter out1 = new PrintWriter("sk.txt");
 PrintWriter out2 = new PrintWriter("pk.txt");
 PrintWriter out3 = new PrintWriter("cData/pk.txt");
 PrintWriter out4 = new PrintWriter("bk.txt");
 BigInteger p = skGen();
 out1.println(p);
 BigInteger N = pkGen(p);
 out2.println(N);
 out3.println(N);
 out4.println(bk);
 out1.close();

116

 out2.close();
 out3.close();
 out4.close();
 for (int k = 0; k < an; k++)
 {
 File file1 = new File("cData/" + k);
 file1.mkdirs();
 BigInteger cData[][] = new BigInteger[n][];
 for (int i = 0; i < n; i++)
 {
 File file2 = new File("cData/" + k + "/" + i);
 file2.mkdirs();
 cData[i] = new BigInteger[bData[k][i].length() + bk];
 for (int j = 0; j < cData[i].length; j++)
 {
 PrintWriter out = new PrintWriter("cData/" + k + "/" + i + "/" + j +
".txt");
 if (j < bData[k][i].length())
 {
 cData[i][j] = enc(N, bData[k][i].substring(j, j+1));
 }
 else
 {
 cData[i][j] = enc(N, "0");
 }
 out.println(cData[i][j]);
 out.close();
 }
 }
 }
 }
}

117

Appendix B
Query Generator

import java.math.BigInteger;
import java.util.Random;
import java.util.Scanner;
import java.io.File;
import java.io.PrintWriter;
import java.io.FileNotFoundException;

public class QueryGenerator
{
 public static int sp = 12;
 public static long lower = (long)((Math.pow(2, 62) - 1) / 3);
 public static long upper = lower * 2;
 public static int userID = 7;
 public static int an = 10;
 public static Random rnd = new Random();
 public static BigInteger two = BigInteger.valueOf(2);

 public static BigInteger enc(BigInteger N, String m)
 {
 BigInteger M = new BigInteger(m);
 BigInteger r = new BigInteger(sp, rnd);
 BigInteger c = ((two.multiply(r)).add(M)).add(N);
 return c;
 }

 public static void main(String[] args) throws FileNotFoundException
 {
 Scanner in1 = new Scanner(new File("pk.txt"));
 Scanner in2 = new Scanner(new File("bk.txt"));
 Scanner in3 = new Scanner(new File("userID/" + userID + ".txt"));
 PrintWriter out = new PrintWriter("querySenderA.txt");
 String pq = "";
 while (in1.hasNextLine())
 {
 pq = pq + in1.nextLine();
 }

118

 String sbk = in2.nextLine();
 int bk = Integer.parseInt(sbk);
 BigInteger N = new BigInteger(pq);
 String sQU = Long.toBinaryString(upper);
 String sQL = Long.toBinaryString(lower);
 BigInteger cQU[] = new BigInteger[sQU.length() + bk];
 BigInteger cQL[] = new BigInteger[sQL.length() + bk];
 File file = new File("query");
 file.mkdirs();
 File file1 = new File("query/upper");
 file1.mkdirs();
 for (int i = 0; i < cQU.length; i++)
 {
 PrintWriter out1 = new PrintWriter("query/upper/" + i + ".txt");
 if (i < sQU.length())
 {
 cQU[i] = enc(N, sQU.substring(i, i + 1));
 out1.println(cQU[i]);
 out1.close();
 }
 else
 {
 cQU[i] = enc(N, "0");
 out1.println(cQU[i]);
 out1.close();
 }
 }
 File file2 = new File("query/lower");
 file2.mkdirs();
 for (int i = 0; i < cQL.length; i++)
 {
 PrintWriter out2 = new PrintWriter("query/lower/" + i + ".txt");
 if (i < sQL.length())
 {
 cQL[i] = enc(N, sQL.substring(i, i + 1));
 out2.println(cQL[i]);
 out2.close();
 }
 else
 {
 cQL[i] = enc(N, "0");

119

 out2.println(cQL[i]);
 out2.close();
 }
 }
 String queryA[] = new String[an];
 int index = 0;
 while (in3.hasNextLine())
 {
 queryA[index] = in3.nextLine();
 index++;
 }
 out.println(userID);
 out.println("=");
 for (int i = 0; i < index; i++)
 {
 out.println(queryA[i]);
 }
 in1.close();
 in2.close();
 in3.close();
 out.close();
 }
}

120

Appendix C
Secure Range Query Process

import java.math.BigInteger;
import java.util.Random;
import java.util.Scanner;
import java.io.File;
import java.io.PrintWriter;
import java.io.IOException;

public class SRQ
{
 public static int sp = 12;
 public static int n = 100;
 public static int an = 10;
 public static Random rnd = new Random();
 public static BigInteger two = BigInteger.valueOf(2);

 public static BigInteger xor(BigInteger c1, BigInteger c2)
 {
 BigInteger c = c1.add(c2);
 return c;
 }

 public static BigInteger and(BigInteger c1, BigInteger c2)
 {
 BigInteger c = c1.multiply(c2);
 return c;
 }

 public static BigInteger not(BigInteger c0, BigInteger N)
 {
 BigInteger encOne = enc(N, "1");
 BigInteger c = c0.add(encOne);
 return c;
 }

 public static BigInteger or(BigInteger c1, BigInteger c2, BigInteger N)
 {

121

 BigInteger c = xor(and(c1, c2), xor(and(not(c1, N), c2), and(c1, not(c2, N))));
 return c;
 }

 public static BigInteger gt(BigInteger cNum1[], BigInteger cNum2[], BigInteger N)
 {
 BigInteger result = enc(N, "0");
 BigInteger done = enc(N, "0");
 if(cNum1.length > cNum2.length)
 {
 return result = enc(N, "1");
 }
 else if(cNum1.length < cNum2.length)
 {
 return result;
 }
 else
 {
 for(int i = 0; i < cNum1.length; i++)
 {
 BigInteger t1 = and(cNum1[i], not(cNum2[i], N));
 BigInteger t2 = and(not(cNum1[i], N), cNum2[i]);
 result = xor(and(done, result), and(not(done, N), t1));
 done = xor(done, and(not(done, N), or(t1, t2, N)));
 }
 return result;
 }
 }

 public static BigInteger enc(BigInteger N, String m)
 {
 BigInteger M = new BigInteger(m);
 BigInteger r = new BigInteger(sp, rnd);
 BigInteger c = ((two.multiply(r)).add(M)).add(N);
 return c;
 }

 public static void main(String[] args) throws IOException
 {
 Scanner in1 = new Scanner(new File("pk.txt"));
 String pq = in1.nextLine();

122

 BigInteger N = new BigInteger(pq);
 in1.close();
 String sUL[][] = new String[2][];
 File file1 = new File("query/upper");
 File list1[] = file1.listFiles();
 sUL[0] = new String[list1.length];
 for (int i = 0; i < list1.length; i++)
 {
 Scanner in2 = new Scanner(new File("query/upper/" + i + ".txt"));
 sUL[0][i] = in2.nextLine();
 in2.close();
 }
 File file2 = new File("query/lower");
 File list2[] = file2.listFiles();
 sUL[1] = new String[list2.length];
 for (int i = 0; i < list2.length; i++)
 {
 Scanner in3 = new Scanner(new File("query/lower/" + i + ".txt"));
 sUL[1][i] = in3.nextLine();
 in3.close();
 }
 BigInteger cU[] = new BigInteger[list1.length];
 BigInteger cL[] = new BigInteger[list2.length];
 for (int i = 0; i < cU.length; i++)
 {
 cU[i] = new BigInteger(sUL[0][i]);
 }
 for (int i = 0; i < cL.length; i++)
 {
 cL[i] = new BigInteger(sUL[1][i]);
 }
 Scanner in4 = new Scanner(new File("querySenderA.txt"));
 String userIDs = in4.nextLine();
 int userID = Integer.parseInt(userIDs);
 in4.nextLine();
 String queryAs[] = new String[an];
 int QIndex = 0;
 while (in4.hasNextLine())
 {
 queryAs[QIndex] = in4.nextLine();
 QIndex++;

123

 }
 int queryA[] = new int[QIndex];
 for (int i = 0; i < queryA.length; i++)
 {
 queryA[i] = Integer.parseInt(queryAs[i]);
 }
 in4.close();
 Scanner in5 = new Scanner(new File("userID/" + userID + ".txt"));
 String aqueryAs[] = new String[an];
 int aQIndex = 0;
 while (in5.hasNextLine())
 {
 aqueryAs[aQIndex] = in5.nextLine();
 aQIndex++;
 }
 int aqueryA[] = new int[aQIndex];
 for (int i = 0; i< aqueryA.length; i++)
 {
 aqueryA[i] = Integer.parseInt(aqueryAs[i]);
 }
 in5.close();
 int fqueryAt[] = new int[an];
 int fQIndex = 0;
 for (int i = 0; i < QIndex; i++)
 {
 for (int j = 0; j < aQIndex; j++)
 {
 if (queryA[i] == aqueryA[j])
 {
 fqueryAt[fQIndex] = queryA[i];
 fQIndex++;
 }
 }
 }
 int fqueryA[] = new int[fQIndex];
 for (int i = 0; i < fqueryA.length; i++)
 {
 fqueryA[i] = fqueryAt[i];
 }
 File file4 = new File("cResults");
 file4.mkdirs();

124

 File subList3[][] = new File[fqueryA.length][];
 for (int i = 0; i < fqueryA.length; i++)
 {
 File subFile4 = new File("cResults/" + fqueryA[i]);
 subFile4.mkdirs();
 File subFile3 = new File("cData/" + fqueryA[i]);
 subList3[i] = subFile3.listFiles();
 File subsubList3[][] = new File[subList3[i].length][];
 String scData[][] = new String[subList3[i].length][];
 BigInteger cData[][] = new BigInteger[subList3[i].length][];
 BigInteger crData[][] = new BigInteger[subList3[i].length][];
 for (int j = 0; j < subList3[i].length; j++)
 {
 File subsubFile4 = new File("cResults/" + fqueryA[i] + "/" + j);
 subsubFile4.mkdirs();
 File subsubFile3 = new File("cData/" + fqueryA[i] + "/" + j);
 subsubList3[j] = subsubFile3.listFiles();
 scData[j] = new String[subsubList3[j].length];
 cData[j] = new BigInteger[subsubList3[j].length];
 crData[j] = new BigInteger[subsubList3[j].length];
 for (int k = 0; k < subsubList3[j].length; k++)
 {
 Scanner in = new Scanner(new File("cData/" + fqueryA[i] + "/" + j
+ "/" + k + ".txt"));
 scData[j][k] = in.nextLine();
 cData[j][k] = new BigInteger(scData[j][k]);
 in.close();
 }
 for (int k = 0; k < subsubList3[j].length; k++)
 {
 crData[j][k] = and(cData[j][k], xor(gt(cData[j], cL, N), gt(cData[j],
cU, N)));
 PrintWriter out = new PrintWriter("cResults/" + fqueryA[i] + "/" + j
+ "/" + k + ".txt");
 out.println(crData[j][k]);
 out.close();
 }
 }
 }
 }
}

125

Appendix D
Security Parameter Calculator for Different

Bit-Lengths
import java.math.BigInteger;
import java.io.PrintWriter;
import java.io.FileNotFoundException;

public class blANDspRelations
{
 public static BigInteger two = BigInteger.valueOf(2);

 public static void main(String[] args) throws FileNotFoundException
 {
 PrintWriter out = new PrintWriter("blANDspRelations.txt");
 for (int i = 1; i < 193; i++)
 {
 int sp = 2;
 BigInteger result;
 BigInteger done;
 int temp;
 do
 {
 BigInteger r2 = two.pow(sp + 1);
 BigInteger t1 = two.pow(2 * sp + 3);
 BigInteger t1ort2 = (two.pow(4 * sp + 7).add(two.pow(4 * sp +
6))).add(two.pow(3 * sp + 5));
 BigInteger p = two.pow(sp * sp * sp * sp * sp - 1);
 result = two.pow(sp + 1);
 done = two.pow(sp + 1);
 for (int j = 1; j <= i; j++)
 {
 result = (done.multiply(result)).add((done.add(r2)).multiply(t1));
 done = done.add((done.add(r2)).multiply(t1ort2));
 }
 result = (result.add(result)).multiply(r2);
 temp = result.compareTo(p);
 sp++;

126

 } while (temp == 1);
 System.out.println(sp - 1);
 out.println(sp - 1);
 }
 out.close();
 }
}

127

Appendix E
Comparator of Sizes of Encrypted Query Results

import java.math.BigInteger;
import java.io.PrintWriter;
import java.io.FileNotFoundException;

public class cDataComparator
{
 public static int sp = 10;
 public static int n = 10;
 public static BigInteger two = BigInteger.valueOf(2);
 public static BigInteger three = BigInteger.valueOf(3);

 public static void main(String[] args) throws FileNotFoundException
 {
 PrintWriter out = new PrintWriter("comparisonResults.txt");
 BigInteger temp1 = BigInteger.valueOf((int)(3 * Math.pow(2, n - 2)));
 BigInteger temp2 = three.multiply(two.pow(1022));
 BigInteger PPRQ = temp2.modPow(temp1.add(temp2),
three.multiply(two.pow(1023)));
 int temp3 = (int)(Math.pow(sp, 5) + Math.pow(sp, 4));
 BigInteger temp4 = BigInteger.valueOf(n);
 BigInteger SRQ = ((two.pow(temp3)).add(two.pow(sp + 1))).multiply(temp4);
 out.println(PPRQ.subtract(SRQ));//the deviation is about 2^temp1
 out.close();
 }
}

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Cloud Database
	1.2 Cloud Security
	1.3 Problem Definition
	1.4 Contributions
	1.5 Outline

	2 Related Work
	2.1 Homomorphic Encryption Schemes
	2.2 Secure Database Queries

	3 Preliminaries
	3.1 Somewhat Homomorphic Encryption Scheme
	3.2 Basic Operator Algorithms
	3.3 Greater-Than Algorithm
	3.4 Java Class - BigInteger

	4 Secure Range Query
	4.1 Secure Range Query Application
	4.2 Bit-Length Hiding
	4.3 User Access Control
	4.4 Correctness
	4.5 Security Analysis
	4.6 Controlling the Parameters
	4.6.1 Security Parameter
	4.6.2 Secret Key Generation
	4.6.3 Bit-Length Hiding
	4.6.4 Balance between Efficiency and Security

	5 Secure Range Query Process
	5.1 Comparison with PPRQ
	5.1.1 Encryption Process
	5.1.2 Query Process
	5.1.3 Decryption Process
	5.1.4 Comparison between PPRQ and SRQ

	5.2 Experiments & Results

	6 Conclusions
	6.1 Future Work

	References
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E

