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Abstract 

When a hockey game is being played, its data comes continuously. Therefore, it is possible 

to use the stream mining method to estimate the win probability (WP) of a team once the 

game begins. Based on 8 seasons’ data of NHL from 2003-2014, we provide three methods 

to estimate the win probability in a hockey game. Win probability calculation method based 

on statistics is the first model, which is built based on the summary of the historical data. 

Win probability calculation method based on data mining classification technique is the 

second model. In this model, we implemented some data classification algorithms on our 

data and compared the results, then chose the best algorithm to build the win probability 

model. Naive Bayes, SVM, VFDT, and Random Tree data classification methods have 

been compared in this thesis on the hockey dataset. We used stream mining technique in 

our last model, which is a real time prediction model, which can be interpreted as a training-

update-training model. Every 20 events in a hockey game are split as a window. We use 

the last window as the training data set to get decision tree rules used for classifying the 

current window. Then a parameter can be calculated by the rules trained by these two 

windows. This parameter can tell us which rule is better than another to train the next 

window. In our models the variables time, leadsize, number of shots, number of misses, 

number of penalties are combined to calculate the win probability. Our WP estimates can 
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provide useful evaluations of plays, prediction of game result and in some cases, guidance 

for coach decisions. 

Keywords 

Hockey, NHL, Stream mining, Naive Bayes, SVM, VFDT, Random Tree, Win Probability 
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Chapter 1 

 

Introduction 

 

1 Introduction 

Win probability is an indicator that suggests a sports team's chances of winning at any 

given point in a game. Win probability is widely used in hockey, baseball, football, and 

basketball games to evaluate the performance of a particular team’s performance 

[1][2][3][4][5]. Win probability estimates in American football often include variables 

such as whether a team is home or visitor, the down and distance, score difference, time 

remaining, and field position. Win probability estimates in baseball often include whether 

a team is home or visitor, innings, number of outs, which bases are occupied, and the score 

difference. Because baseball proceeds batter by batter, each new batter introduces a 

discrete state. There are a limited number of possible states, and so baseball win probability 

tools usually have enough data to make an informed estimate [6]. However, decisive 

variables for the hockey win probability are limited. In all our models, whether a team is 

home or visitor, time, leadsize, number of shots, number of goal misses, and number of 

penalties are extracted as variables. 
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In this thesis, three methodologies are proposed to estimate the win probability in a 

hockey game. First one is based on the statistics measure of the history data. Second one 

is based on the data classification algorithms. Stream mining technique is used in the last 

scheme. These methodologies can also be used in other major sport games. 

1.1 National Hockey League 

The National Hockey League (NHL) is a professional ice hockey league composed of 30 

member clubs: 23 in the United States and 7 in Canada. Headquartered in New York City, 

the NHL is considered to be the premier professional ice hockey league in the world, and 

one of the major professional sports leagues in the United States and Canada. The Stanley 

Cup, the oldest professional sports trophy in North America, is awarded annually to the 

league playoff champion at the end of each season [7]. 

Since the 1995-1996 season, each team in the NHL plays 82 regular season games, 41 each 

as home and visitor. In all, 1,230 regular games are scheduled each season [7]. After the 

regular games every year, the 16 teams with the best performances play the playoff games.  

Before the 2013-2014 seasons, the 30 teams were divided into two 15-team conferences, 

each of which was subdivided into three five-team divisions. The top eight teams from 

each conference advanced to the playoffs. In the playoffs, pairs of teams play a series 

games up to a maximum of seven games. The first team to win four games advances to 

the next round of the playoffs. The top team from each Conference plays in the final 

https://en.wikipedia.org/wiki/Ice_hockey
https://en.wikipedia.org/wiki/Sports_league
https://en.wikipedia.org/wiki/New_York_City
https://en.wikipedia.org/wiki/Major_professional_sports_leagues_in_the_United_States_and_Canada
https://en.wikipedia.org/wiki/Stanley_Cup
https://en.wikipedia.org/wiki/Stanley_Cup
https://en.wikipedia.org/wiki/Season_(sports)
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series, and the winning team is awarded the Stanley Cup. Since the 2013-2014 season, 

the two conferences have been realigned with 16 and 14 teams and two divisions each. 

In one NHL game, there are 3 regular periods with 20 minutes in each period. If it is a tie 

at the end of third period, one 5-minute period of 3 on 3 is added. Then if it still is a tie, the 

game moves to shootout. For the reason that one team’s condition in the playoff games and 

in the overtime are different from its condition in the regular games in the regular time, in 

this thesis, we only use the NHL regular games’ data as the experiment data (and in which 

the game finished during the regular period). 

1.2 Hockey Game 

There are three periods in a hockey game. Every period is 20 minutes with an intermission 

between each period. When the last period ends, the team with the higher score wins the 

game. If it is a tie at the end of the third period, there is an extra period. In this thesis, all 

the data we analyzed excluded the extra periods. Only the data in which one team won the 

game during the regular three periods are considered.  

Every team could have 6 players on the ice: center, left winger, right winger, left 

defenseman, right defenseman and the goaltender. 



 
 

4 
 

 

Figure 1 Positions of different duty in a hockey team[8] 

In the original data, the information is recorded when the game events occurred. There are 

11 types of events in the game: Block (one player blocks the opponent’s shot), Change 

(The control of the puck is changed from one team to another), Face (one player faces 

another after a stoppage of play), Give (someone gives the puck to an opponent), Hit 

(someone hits an opponent), Miss (someone’s shot missed the net), Pend (the end of a 

period), Penalty (someone commits a foul), Shot (a shot on the net), Take (someone takes 

the puck from an opponent), Goal (if someone scores). 

Some of the event types obviously have no influence to change the win probability. In our 

model, we only extract the events which can change the win probability. The details are 

illustrated in Chapter 3. 
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1.3 Win Probability 

Win probability (WP), also winning probability, is used for estimating a sports team's 

chances of winning at any time in a game by using statistic and mathematics methods. The 

idea of WP is widely used in major sports such as basketball, football, baseball, and 

hockey[1][2][3][4]. 

It is useful to know the WP of a team in-game. WP can not only provide the evaluations of 

plays, but also help the coaches in decisions. In this thesis, three methodologies are 

proposed and discussed to set up the WP models in a hockey game. The first model is built 

by using statistics measure and is introduced in Chapter 4. The second one is estimated by 

using the data classification techniques, and is discussed in Chapter 5. The last one is a real 

time model, which uses stream mining technique and is introduced in Chapter 6. 

In this thesis, Naive Bayes, Support Vector Machines (SVM), Hoeffding Tree, Random 

Tree, and Stream Mining algorithms are compared during the process to build the WP 

model. R, Excel, Stata, JAVA, JXL, Weka, and MOA tools were used for building the WP 

model, processing the data, executing the program, figuring out the results, and evaluating 

the experiment results. 

1.4 Contributions 

The main contribution of this thesis is that the stream mining technique can be used in 

estimating the win probability in a hockey game. Stream mining model is a training-update-
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training, real time model, which highly increased the classification accuracy in prediction. 

Also, several popular classification algorithms’ accuracies are compared by executing them 

on our hockey data set. It can provide a reference of the efficiency by choosing the data 

classification algorithms in the win probability set up in a hockey game. In addition, two 

other schemes for calculating the win probability are introduced in this thesis. One is using 

the historical statistics to define how much change is observed in different variables. In 

another method, historical data is used to train a decision rule, then a program was written 

based on the rule to calculate the win probability for a new game. Moreover, several win 

probability calculation methods based on the classification results were designed. 

1.5 Outline 

The rest of the thesis contains the following contents: 

Chapter 2 shows some related works about win probability calculation in major sports 

games. 

Chapter 3 introduces the original data, and the process to extract the variables. Some tools 

for data preprocessing are also presented in this chapter. 

Chapter 4 shows the process of how the win probability model is built based on the 

statistics measure, and the algorithm designed for this scheme is discussed. 

Chapter 5 introduces the data mining technology, and compares the accuracy of some 

popular data classification algorithms. According to the results of the accuracy comparison 
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of these algorithms, the algorithm with the highest performance is used for the 

classification experiments, and the experiment results are illustrated. Also, in this chapter, 

two WP calculation methods are discussed. 

Chapter 6 presents the stream mining methodology used for designing the win probability 

model in a hockey game. Furthermore, a stream mining tool is also introduced in this 

chapter. 

Chapter 7 is about the conclusion of the thesis and the future work. 
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Chapter 2 

 

Literature Review 

 

2 Related Work 

2.1 Win Probability Estimation in Sports Games 

The idea of WP estimation for major sports is not new. Early uses of win probability were 

primarily in Major League Baseball but have existed since the beginning of the 1960s [9]. 

Recent books on baseball analytics dedicate entire sections or chapters to the topic of win 

probability [10]. Nowadays, WP is widely used in basketball (NBA), football (NFL), and 

ice hockey (NHL). For NBA and NFL examples, see [2] and [3], respectively. The new 

research on the win probability models in hockey game are given in [4] [5].  
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2.2 Win Probability Model Estimation in Hockey Games 

Previous work of win probability estimation in a hockey game mainly includes three 

approaches. The first one is modeling the scoring rates, in which Poisson process, Bernoulli 

process is simulated [11]. Also, in some cases, Markov chain is a good model [6]. For 

instance, one approach to estimate the win probability in a hockey game is based on a 

Poisson scoring distribution. Teams score an average of 2.79 goals per 60 minutes of 

regular time, which is equal to 0.0465 goals per minute. A Poisson distribution based on 

that per-minute scoring rate and the time remaining in the game yields the probabilities of 

each team scoring a number of possible goals by the end of the game. Summing up all the 

probabilities of all the possible combinations of final scores gives the game’s win 

probability [12]. 

Predicting the game results before the game begins is possible if we have enough 

information of the factors which impact the play of the game. The second approach is to 

summarize reports of the players’ conditions, coach reviews, and fans responses, 

combining the historical game results between the two teams in this situation. Win 

probability in this method is a fixed value. This method can be used for any competitive 

sport games. Combined with all the above factors, we can calculate a weighted grade for 

each team. Based on the result of the grade for each team, we can estimate the win 

probability for each team. One instance of using this approach is given in [3]. In their model, 

every factor is presented as a tree. Random forests generate predictions by combining 

predicted values from a set of trees. Each individual tree provides a prediction of the 

response as a function of predictor variable values.  
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The third approach is based on the data mining models. Data mining techniques have been 

developed to take large data analysis. In recent researches, some papers use the analysis of 

individual players in a team to model the win probability. In this model, they take ice 

hockey statistics as an input and score each player’s contribution to their team [13][14]. 

Other papers focus on the team work [15][16]. They take multiple players’ statistics into 

account to quantify how effective multiple players are together. They try to find the social 

network between the player combos in attacking and defending. For example, one network 

model defines players as nodes and ball movements as links. Network properties of degree 

of centrality, clustering, entropy, and flow centrality across teams and positions, are 

analyzed to characterize the game from a network perspective and to determine whether 

we can assess differences in team offensive strategy by their network properties. The 

compiled network structure across teams reflected a fundamental attribute of strategy [15]. 

More information is given in the review of social network of team sports [16]. In addition, 

some papers build their models based on the whole team’s data. More hockey models are 

given in[12].   

2.3 Approach used in this thesis 

When a hockey game is being played, its data comes continuously. Therefore, it is possible 

to use the stream mining method to estimate the win probability of a team once the game 

starts. Data stream mining technique is widely used in computer network traffic, phone 

conversations, ATM transactions, web searches, and sensor data [18]. One application used 

stream mining in diabetes therapy management [19]. One article about increasing the 
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accuracy of decision tree rules in stream mining is given in [20]. Using stream mining 

technique to improve the accuracy of classification results for the hockey game data is a 

new attempt. 

If we want to know a real time win probability of a team in a live hockey game, data mining 

technique is a good choice. In the data mining models, Cross-validation is usually used. 

The main idea of data mining model is using the historical data to train the classification 

rules for the predictable data. In this thesis, our WP model set-up mainly used the data 

mining approach, the data mining classification method. Moreover, stream mining 

technique is a new attempt introduced in this thesis. Besides, another method for win 

probability estimation in a hockey game based on statistics is introduced. 

Decision tree learning is one of the most important classification techniques in data mining. 

The technique has been successfully applied in many areas, such as business 

intelligence[21], healthcare[22], biomedicine[23], and so forth. The traditional approach to 

building a decision tree, powered by Greedy Search, loads a full set of data into memory 

and partitions the data into a hierarchy of nodes and leaves. However, the tree cannot be 

changed when new data are acquired unless the whole model is rebuilt by reloading the 

complete set of historical data together with the new data. Incremental decision tree is used 

for unbounded input data such as data streams, in which new data continuously flow in 

without end. One incremental decision tree model used Hoeffding Bound in [20]. In their 

model, they present a novel node-splitting approach that replaces the traditional Hoeffding 

Bound with a new measure. The new measure is derived from a loss function applied in a 

cache-based classifier within a sliding window during incremental decision tree learning. 

Replacing the use of Hoeffding Bound with this new bound is proposed for growing a 
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Hoeffding decision tree that adapts to concept drifts detected in the data stream, thus 

improving the accuracy of prediction. 

In this thesis, our models are built only using the objective variables of the teams’ data to 

estimate the win probability in a hockey game. We pay attention to the variables such as 

whether a team is home or visiting, the home team score, the visiting team score, numbers 

of shots of the both teams, numbers of misses of both teams, numbers of penalties of both 

teams, and how much time is left in the game. 

 

  



 
 

13 
 

Chapter 3 

 

Data Preprocessing 

3 Data Set 

Our original data is downloaded by using a R package, ‘nhlscrapr’. A.C. Thomas is one of 

the programmers who built the ‘nhlscrapr’ [24]. The purpose to build this package was to 

help other researchers get the pre-processed data set of NHL. Thus, the author already did 

some preprocessing work on the data.  

By using ‘nhlscrapr’, NHL data can be downloaded season by season [25]. For our 

experiments, we downloaded 8 seasons of data for the years 2003 to 2014 (season 2005-

2006, season 2006-2007, and season 2010-2011 were not available from that package).  

In one season, there are 1230 normal games which include about 470,000 events. On 

average there are almost 400 events in one game. In one game, the data are sorted by the 

game time and game event. There are more than ten event types in the data such as goal, 

miss, block, and shot. Once a game event occurs, some information such as, team name 

responsible for the event, time, and scores of both teams are recorded. Then these events 

are listed by the time from the beginning of game to the end of the game. 
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R Programming Language 

R is a language and environment for statistical computing and graphics. It is a GNU 

project which is similar to the S language and environment which was developed at Bell 

Laboratories (formerly AT&T, now Lucent Technologies) by John Chambers and 

colleagues. R can be considered as a different implementation of S. There are some 

important differences, but much code written for S runs unaltered under R) [26]. Polls, 

surveys of data miners, and studies of scholarly literature databases show that R's 

popularity has increased substantially in recent years [27]. The biggest advantage of R is 

that it is open source. Thus, it contains almost all the popular algorithms’ packages in 

statistics and data analysis domain. 

Figure 2 shows the commands of ‘nhlscrapr’ for downloading one season’s NHL data 

based on RStudio console. Examples of the original data are given in Appendix A. 



 
 

15 
 

 

Figure 2 Commands of ‘nhlscrapr’ for downloading one season’s NHL data 
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3.1 Data Preprocessing  

Data preprocessing is the first step of data mining. The main task of data preprocessing 

includes data cleaning, data integration, data reduction, data transformation, and data 

discretization [28]. In our model, we extracted the variables which indicate the different 

performance measures between the home team and the visiting team from the original data. 

Thus, data reduction and data transformation were applied on the hockey data. 

3.2 Variables 

In order to build our model to calculate the win probability of the home team, we need to 

do some calculations, as shown below, to create the variables which will illustrate the 

difference in the performance of both the teams. The following variables have been defined: 

leadsize, home/visitor, miss, shot, penalty, and elapsed time (in seconds) at each game 

event. 

3.2.1 Leadsize 

In our model, leadsize is the most important variable to calculate the win probability of one 

game. The value of leadsize indicates how many points the home team is ahead of the 

visiting team. Thus,  

𝐿𝑆𝑖 = 𝐻𝑆𝑖 − 𝑉𝑆𝑖 
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where 𝐿𝑆𝑖 represents the value of leadsize at event i, 𝐻𝑆𝑖 is the score of the home team at 

event i, and 𝑉𝑆𝑖 is the score of the visiting team at event i. 

3.2.2  Home/visitor 

Almost in all sport games, home team has a greater probability than the visitor team to win 

the game [29]. However, in some sports, it has a huge influence. In a hockey game, its 

impact is quite significant. From season 2007 to season 2014, we found that home team 

averagely won 55% games as shown in Table 1. The columns “home wins” and “visitor 

wins” show the number of games won by the home team and the visiting team, respectively. 

In this research, all the win probabilities discussed are the home teams’ win probabilities. 

Thus, at the beginning of the game (at 0 seconds), the home team’s win probability is taken 

as 55%. 

Table 1 Percent of wins by Home Team and Visiting Team   

 

 

3.2.3  Time remaining (in seconds)  

Time is another important variable in our model. In a hockey game, the winning probability 

of a team that is leading by 2 points is very different in period 1, period 2, and period 3. If 

season home wins visitor wins total games home percentage visitor percentage

2013-2014 696 590 1286 54.1% 45.9%

2012-2013 720 588 1308 55.0% 45.0%

2011-2012 468 338 805 58.1% 42.0%

2009-2010 726 577 1303 55.7% 44.3%

2008-2009 737 576 1313 56.1% 43.9%

2007-2008 707 600 1309 54.0% 45.8%

average 4054 3269 7324 55.4% 44.6%
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the team has leadsize of 2 points in period 1, it is not a big advantage. The opponent has a 

higher probability to equalize the score in the remaining time. However, if the team has 

leadsize of 2 points in period 3, it must be a big advantage. Unless there is a miracle, the 

other team cannot equalize the score as the time is not enough to win the game. Similarly, 

a team has a big advantage if it is 3 points ahead in period 2. In Table 2, the rows in red 

color support the above arguments.  

Table 2 shows statistics of all the situations of the home team with different leadsizes in 

period 1, period 2, and period 3 respectively in whole season 2013-2014. The columns are 

defined as follows: 

Leadsize  score of the home team minus score of the visiting team 

Period  period in which the home team is leading 

Win number  the number of games won in the given period 

Lose number  the number of games lost in the given period 

Total  sum of the win number and lose number 
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Table 2 Leadsize Statistics of the Home Team at Different Periods for Season 2013-2014 

 

Row 2 in Table 2 shows that in 41 games when the home team was 3 goals behind the 

visiting team in period 1, and the home team won in 5 of the 41 games, i.e. 12.2%. The 

row with blue color shows that when the game just started (leadsize = 0, period = 1), the 

home team won 55% of the games finally, which prove the results of Table 1. 

In order to find the relationship between time remaining and leadsize we observe the 

following from Table 2. Based on the statistics (first row), we find that if the home team 

leadsize period win number lose number total percentage

<=-4 / 0 24 24 0.0%

-3 1 5 36 41 12.2%

-3 2 5 97 102 4.9%

-3 3 1 166 167 0.6%

-2 1 30 137 167 18.0%

-2 2 41 211 252 16.3%

-2 3 12 270 282 4.3%

-1 1 218 368 586 37.2%

-1 2 133 453 586 22.7%

-1 3 61 525 586 10.4%

0 1 187 153 340 55.0%

0 2 274 239 513 53.4%

0 3 220 208 428 51.4%

1 1 475 192 667 71.2%

1 2 356 116 472 75.4%

1 3 329 51 380 86.6%

2 1 156 33 189 82.5%

2 2 297 35 332 89.5%

2 3 321 8 329 97.6%

3 1 36 4 40 90.0%

3 2 137 8 145 94.5%

3 3 226 2 228 99.1%

>=4 / 36 0 36 100.0%
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was 4 or more goals behind the visiting team, the home team did not win the game finally. 

On the contrary, if the home team was 4 or more goals ahead of the visiting team (last row), 

the home team won the game finally. Also, the percentage of wins of the home team, no 

matter the leadsize in period 3, is higher than the percentage of wins of the home team with 

the same leadsize in period 2. The percentage of wins of the home team, no matter the 

leadsize in period 2, is higher than the percentage of wins of the home team with the same 

leadsize in period 1.  

To find the relationship between leadsize and time, we fix the value of leadsize and observe 

the percentage of wins of the home team in different periods. 

Based on Table 2, we construct Figure 3 and Figure 4. Figure 3 shows that the home teams 

won 70% of the games in which the leadsize was 1 in period 1; home teams won 76% of 

the games in which the leadsize was 1 in period 2, and the home teams won 85% of the 

games in which the leadsize was 1 in period 3. We observe the following relationship: 

70 ∗ 1.1 = 77 ≈ 76 

70 ∗ 1.2 = 84 ≈ 85 

i.e. 76 is approximately 1.1 times 70 and 85 is 1.2 times 70. The percentage of wins in 

games that had a leadsize of 1 in period 2 equals 1.1 times the percentage of wins in games 

that had a leadsize of 1 in period 1.  Also, the percentage of wins in games that had a 

leadsize of 1 in period 3 is 1.2 times the percentage of wins in games that had a leadsize of 

1 in period 1. 
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Figure 3 Percentage of wins of the teams in different periods with leadsize 1 

Figure 4 shows that the home teams won 82% of the games when they had a leadsize of 2 

in period 1, home teams won 88% of the games when they had a leadsize of 2 in period 2, 

and the teams won 96% of the games when they had a leadsize of 2 in period 3. We observe 

the following relationship: 

82 ∗ 1.1 = 90.2 ≈ 88 

82 ∗ 1.2 = 98.4 ≈ 96 

i.e. 88 is approximately 1.1 times 82 and 96 is 1.2 times 82. That is the percentage of wins 

in games that had a leadsize of 2 in period 2 approximately equals 1.1 times the percentage 

of wins in games that had a leadsize of 2 in period 1. Also, the percentage of wins in games 
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that had a leadsize of 2 in period 3 is approximately 1.2 times the percentage of wins in 

games that had a leadsize of 2 in period 1. 

 

Figure 4 Percentage of wins of the teams in different periods with leadsize 2 

Based on the statistics shown in Figure 3 and Figure 4, we assume that the variable time 

improves the impact of variable leadsize. The less time remaining, the more influence of 

leadsize there is. Thus, based on how much time remained, we multiply a weight to leadsize. 

For example,  

𝐿𝑝2 = 1.1 ∗ 𝐿𝑝1  

where L is the value of leadsize, 𝐿𝑝2 represents leadsize in period 2 and 𝐿𝑝1 represents 

leadsize in period 1. Here, we set the weight=1.1. 
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3.2.4  Shot, Penalty, and Miss 

Shot, penalty, and miss are other three variables in our model. But compared with the above 

variables, they have minimal impact on the results.  

The value of Shot indicates how many shots the home team hit more than the visiting team. 

Thus,  

𝑆𝑖 = 𝑆ℎ𝑖 − 𝑆𝑣𝑖  

where 𝑆𝑖 represents the value of Shot at event i, 𝑆ℎ𝑖 is the number of shots of the home 

team before event i, and 𝑆𝑣𝑖 is the number of shots of the visiting team before event i. 

The value of Penalty indicates how many more penalties the home team committed than 

the visiting team. Thus,  

𝑃𝑖 = 𝑃ℎ𝑖 − 𝑃𝑣𝑖  

where 𝑃𝑖 represents the value of Penalty at event i, 𝑃ℎ𝑖 is the number of penalties of the 

home team at event i, and 𝑃𝑣𝑖 is the number of penalties of the visiting team already did 

before event i. 

The value of Miss indicates how many more missed shots the home team had than the 

visiting team. Thus,  

𝑀𝑖 = 𝑀ℎ𝑖 − 𝑀𝑣𝑖  

where 𝑀𝑖 represents the value of Miss at event i, 𝑀ℎ𝑖 is the number of misses of the home 

team before event i, and 𝑀𝑣𝑖 is the number of misses of the visiting team before event i. 
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Table 3 and Table 4 show the statistics for penalty and shot in season 2013-2014. We find 

that the penalty and shot indeed have little influence on the game result. For example, in 

most of the situations, the variable penalty is in the interval [-4,4], in which, the percentage 

of the games home won is around 50%. Therefore, their effects are calculated in different 

algorithms as different values case by case. 

Table 3 Statistics of Penalty in Season 2013-2014 

 

penalty no.of win no.of lose total win/total

<=-8 89 0 89 100.00%

-7 102 105 207 49.28%

-6 290 69 359 76.68%

-5 947 210 1157 77.75%

-4 2837 2599 5436 48.09%

-3 9343 7255 16598 52.19%

-2 23310 20708 44018 48.86%

-1 53379 45890 99269 49.67%

0 95005 79964 174969 50.20%

1 47445 42694 90139 48.54%

2 19112 16464 35576 49.62%

3 6350 4387 10737 55.04%

4 1046 838 1884 51.42%

5 89 186 275 28.26%

6 1 162 163 0.61%

7 0 22 22 0.00%

>=8 0 31 31 0.00%
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Table 4 Statistics of Shot in Season 2013-2014 

 

3.2.5 Data format after preprocessing 

After all the data preprocessing work is completed, we obtain the data format shown in 

Table 5. It shows a part of the game data of the match between Toronto Maple Leafs and 

Montreal Canadians. Column 1 is the game code in this season. Column 2 and 3 are the 

periods and time (in seconds) respectively. Column 4 is the event type. Column 5 shows 

the event team name. Columns 6 and 7 show the home team name and visiting team name 

respectively. Columns 8 and 9 show home team score and visiting team score respectively. 

Columns 10-14 are the useful variables we extracted for estimating the win probability 

model. The data is the history data, and last column shows the result for the home team. 

 

shot No. no.of win no.of lose total win/total

<-20 1672 1992 3664 41.53%

[-20,-10) 17313 17095 34408 46.22%

[-10,0) 107129 98152 205281 48.09%

0 23568 20094 43662 49.88%

(0,10] 96385 75304 171689 52.04%

(10,20] 11747 8143 19890 54.96%

>20 1521 832 2353 60.54%
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Table 5 Example of Processed Data 

 

3.3 Experiment Data  

In our experiment, we randomly choose three games’ data from season 2013-2014 used for 

comparing and showing our results. Their game codes are 611, 727, and 757. Game 727 is 

a home team win, game 611 is a home team loss, and game 727 is a tie at the end of the 

third period. In data mining model, the data for the other games (other than 611, 727, 757) 

in this season are used for training and building the classification rules, and in statistics 

model, these data are used for statistics. 

gcode period seconds etype ev.team hometeam visitorteam home.score visitor.score h/v leadsize DFshot Dfpenalty DFmiss result(h)

20727 1 133 SHOT TOR TOR MTL 0 0 home 0 1 0 0 win

20727 1 141 SHOT TOR TOR MTL 0 0 home 0 2 0 0 win

20727 1 159 SHOT TOR TOR MTL 0 0 home 0 3 0 0 win

20727 1 182 SHOT MTL TOR MTL 0 0 home 0 2 0 0 win

20727 1 210 MISS TOR TOR MTL 0 0 home 0 2 0 1 win

20727 1 232 SHOT TOR TOR MTL 0 0 home 0 3 0 1 win

20727 1 289 GOAL TOR TOR MTL 0 0 home 0 3 0 1 win

20727 1 352 SHOT TOR TOR MTL 1 0 home 1 4 0 1 win

20727 1 472 MISS MTL TOR MTL 1 0 home 1 4 0 0 win

20727 1 565 SHOT MTL TOR MTL 1 0 home 1 3 0 0 win

20727 1 593 MISS MTL TOR MTL 1 0 home 1 3 0 -1 win

20727 1 683 PENL MTL TOR MTL 1 0 home 1 3 -1 -1 win

20727 1 755 SHOT TOR TOR MTL 1 0 home 1 4 -1 -1 win

20727 1 761 SHOT TOR TOR MTL 1 0 home 1 5 -1 -1 win

20727 1 785 SHOT TOR TOR MTL 1 0 home 1 6 -1 -1 win

20727 1 796 SHOT TOR TOR MTL 1 0 home 1 7 -1 -1 win
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Chapter 4 

 

Win Probability Model Based on 

Statistics 

 

4 Win Probability Algorithm Based on Statistics 

(WPS) 

 

If we calculate some statistics using the 8 seasons NHL data, we can find the similarities 

in the games won. Also, we can find the relationships between different variables. In 

addition, we can know which variables are influential for the game result, and how much 

they do influence. In other words, we have tried to find the similarities of these variables 

in the win games, and the similarities of these variables in the lost games. 

WPS is a WP calculation method using statistics technique. Based on the result of statistics, 

we can define, for example, how much is one goal worth, how much a missed shot 

decreases the win probability, in a hockey game. The main idea of the win probability 
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algorithm based on statistics is defining the values of the impactful variables in a hockey 

game. Then if we combine these values, we can get the win probability at each game event. 

4.1 Process of WPS 

According to the statistical results, we can find the relation between the variables (defined 

in section 3.3) and game results. Thus, we can define somehow the impact of one variable’s 

value on the win probability. The methodology of WPS is as follows: 

1. Define WP as x. Add new columns in the original dataset that shows leadsize of the home 

team over the visiting team, the difference between the number of shots by home team and 

visiting team, the difference between the number of penalties for the home team and 

visiting team, and the difference between the number of miss shots for the home team and 

visiting team. 

2. Check the value of Leadsize, the initial value of x depends on the value of Leadsize shown 

in the following table: 

 

3. Check the value of H/V:  if H/V is home, 

𝑥 = 𝑥 + 5% 

else, 

𝑥 = 𝑥 − 5% 

 

leadsize <=-4 -3 -2 -1 0 1 2 3 >=4

x 1% 10% 20% 40% 50% 60% 80% 90% 99%
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4. Check the value of time (in seconds) where time < 1200 represents period 1, [1200, 2400] 

represents period 2, and [2400, 3600] represents period 3. The winning probability x is 

multiplied with a weight as shown in the following table: 

 

5. Check the value of Shot, x will change according to the following table: 

 

6. Check the value of Penalty, x will change according to the following table: 

 

7. Check the value of Miss, x will change according to the following table:  

 

8. Finally, the value of x is the WP at current event. 

 

4.2 Java program using JXL 

JXL (JExcel API) is a Java API to read, write and modify Excel spreadsheets, which is the 

most powerful Java Excel API until now. It is available for reading and writing Excel 2003 

Time (sec) WP

<1200 x=x*1

[1200,2400) x=x*1.1

[2400,3000) x=x*1.2

>=3000 x=x*1.5

Shot <-20 [-20,-10) [-10,0) 0 (0,10] (10,20] >20

x= x-10% x-4% x-2% x+0 x+2% x+4% x+10%

Penalty <=-5 [-4,4] >=5

x= x+10% x+0 x-10%

Miss <=-3 [-2,2] >=3

x= x+5% x+0 x-5%
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and Excel 2007 files. More information about JXL can be found from footnote link1. With 

the help of JXL, we can implement the win probability algorithm by using Java 

programming language. The Java code based on statistics can be found in Appendix B. 

We write a Java program that implements the algorithm based on the statistical results, 

whose input is the game data in the format shown in Table 5. JXL helps us create an output 

Excel file automatically which includes the results at every game event. The whole process 

is shown in Figure 5. Finally, plotting the typical points that correspond to the change in the 

events and drawing a line through them, we can obtain the WP of the home team for the 

whole game. 

 

Figure 5 Process of JXL Create Outputs 

                                                           
1 http://jexcelapi.sourceforge.net/ 
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4.3 Results of WPS 

Based on the above method (WPS), we extracted some games’ data as test data. Following 

are the results of 3 games from Season 2013-2014, TOL vs MTL (game 727 between 

Toronto and Montreal), DET vs CHI (game 757 between Detroit and Chicago), and VAN 

vs T.B. (game 611 between Vancouver and Tampa Bay). Figure 6 shows the win 

probability of Toronto. The X-axis is the elapsed time, from the beginning (second 0) to 

the end (second 3600). The Y-axis is the win probability (0% - 100%). Figure 7 shows the 

win probability of Detroit and Figure 8 shows the win probability of Vancouver. 

In the first game, home team (TOR) got goals at seconds 289, 1991, 2267, 3267, and 3596 

respectively, but the visiting team (MTL) got 3 goals at seconds 1049, 2388, and 2946 

respectively; In the second game, home team (DET) got 4 scores at seconds 674, 1060, 

1580, and 1874 respectively, but the visiting team (CHI) got 4 goals at seconds 521, 626, 

1503 and 2712 respectively; In the last game, home team (VAN) got 2 scores at seconds 

1885, and 2161, but the visiting team (T.B.) got 4 goals at seconds 2127, 2147, 2397 and 

2348 respectively. The goal events of the three test games can be found from Appendix C. 

In this thesis, all the win probabilities shown in the figures are the home team’s win 

probabilities. First game is a home-wins game, and final score is 5-3. Second game also is 

tie at the end of third period, and final score is 4-4. The last game is a home-loss game, and 

final score is 2-4. Their processed data (Showing useful events which impact the WP and 

the extracted variables) and calculation results can be found in Appendix D.  
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Figure 6 Win Probability of Toronto in Game 727 Season 2013-2014 by using WPS 

 

 

Figure 7 Win Probability of Detroit in Game 757 Season 2013-2014 by using WPS 
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Figure 8 Win Probability of Vancouver in Game 611 Season 2013-2014 by using WPS 

 

4.4 Analysis 

In this chapter, we introduced a model to build WP by using an algorithm based on statistics. 

Basically, the idea is obtained by observing and summarizing history data. In this method 

we defined some values according to the rules summarized from the history data. In a 

hockey game, goal is the most important game event. Thus, once a scored, there should be 

a huge increase in its WP. This characteristic is significantly illustrated in WPS. 
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Chapter 5 

 

Win Probability Model based on Data 

Mining Technique 

 

5 Data Mining Concepts 

Data mining is the data driven extraction of information from such large databases, a 

process of automated presentation of patterns, rules, and functions to a knowledgeable user 

for review and examination [30]. The process of data mining is to discover the useful 

patterns and relationships in large volumes of data. The field combines tools from statistics 

and artificial intelligence (such as neural networks and machine learning) with database 

management to analyze large digital collections, known as data sets [31]. The overall goal 

of the data mining process is to extract information from a data set and transform it into an 

understandable structure for further use. Aside from the raw analysis step, it involves 

database and data management aspects, data pre-processing, model and inference 

considerations, interestingness metrics, complexity considerations, post-processing of 

discovered structures, visualization, and online updating. Data mining is the analysis step 

of the "knowledge discovery in databases" process, or KDD [32]. 
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Data mining technique includes association rules, classification, and clustering. In order to 

build the WP calculation model, the main technology used in this thesis is data 

classification. Classification is the process of finding a model (or function) that describes 

and distinguishes data classes or concepts. The model is derived based on the analysis of a 

set of training data (i.e., data objects for which the class labels are known). The model is 

used to predict the class label of objects for which the class label is unknown [33]. 

 

Figure 9 Process of the WP Model Building by Using Data Classification  
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Figure 9 shows the process of establishing the win probability algorithm based on 

classification (WPC). The figure shows the general WPC method. However, there are three 

places which make the specific algorithms different: 

1. First of all, we have the processed data, the data format and variables are discussed in 

Chapter 3. But we need to use different methods to define the classes for the sake of 

matching the suitable WP calculation methods. 

2. Second, in step 1 of Figure 9, we can use varieties of classification algorithms to classify 

our data.  

Using different algorithms give different classification results. Using different 

classification results we get different win probabilities. 

3. Finally, in step 2 of Figure 9, we can use different WP calculation methods to get the WP 

of the home team. Obviously, this is one place to create different results. Using different 

WP calculation methods we get different win probabilities. 

In order to get significant results, we need to do best in all of the three places. In one word, 

we need to choose the most efficient classification algorithm to do classification, and 

design the most appropriate WP calculation method to fit this algorithm. 

5.1 Classification Algorithms 

The process of classification is to use the training data set to find the classification rules, 

and use the rules to classify the test data set. We have seasons of the history data of the 

NHL games, which can be regarded as the training data set. Then we can regard one NHL 

hockey game data as the test data set, and get the classes by the classification rules trained 
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from the history data. This is why classification can be used to predict the result of one 

hockey game.  

5.1.1  Naive Bayes 

Naive Bayesian classifiers assume that the effect of an attribute value on a given class is 

independent of the values of the other attributes. This assumption is called class conditional 

independence. It is made to simplify the computations involved and, in this sense, is 

considered “naive” Error! Reference source not found.. 

The Naive Bayes Classifier technique is particularly suited for nominal variables [35].  

Although Naive Bayes is a simple technique, it can often outperform more sophisticated 

classification methods when the dimensionality of the inputs is high [36]. The naive 

Bayesian classifier works as follows[37][38]: 

Let D be a training set of tuples and their associated class labels. As usual, each tuple is 

represented by an n-dimensional attribute vector 𝑋 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) , depicting 

𝑛 measurements made on the tuple from 𝑛  attributes, respectively, 𝐴1, 𝐴2, . . . , 𝐴𝑛 . 

Suppose that there are 𝑚  classes, 𝐶1, 𝐶2, . . . , 𝐶𝑚 . Given a tuple 𝑋 , the classifier will 

predict that 𝑋 belongs to the class having the highest posterior probability, conditioned on 

𝑋. That is, the Naive Bayesian classifier predicts that tuple 𝑋 belongs to the class 𝐶𝑖 if and 

only if  

𝑃(𝐶𝑖 |𝑋)  >  𝑃 (𝐶𝑗 |𝑋) 𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑚, 𝑗 ≠ 𝑖. 
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Naive Bayes classifier maximize the  𝑃(𝐶𝑖 |𝑋) . The class 𝐶𝑖  for which 𝑃(𝐶𝑖 |𝑋)  is 

maximized is called the maximum posteriori hypothesis. By Bayes’ theorem (Eq. 5-1), 

𝑃(𝐶𝑖 |𝑋) = 𝑃(𝑋 |𝐶𝑖) ∗ 𝑃(𝐶𝑖 ) 𝑃(𝑋)⁄  (5-1) 

Naive Bayes classification method is based on Bayes’ theorem. We tested Naive Bayes 

classification algorithm in Weka 3.7 to classify our test instances for the sake of comparing 

its accuracy with our classification algorithms. 

5.1.2 SVM (Support Vector Machine) 

Support Vector Machines (SVMs) is a method for the classification of both linear and 

nonlinear data. In a nutshell, an SVM is an algorithm that works as follows[39]: it uses a 

nonlinear mapping to transform the original training data into a higher dimension. Within 

this new dimension, it searches for the linear optimal separating hyperplane (i.e., a 

“decision boundary” separating the tuples of one class from another). With an appropriate 

nonlinear mapping to a sufficiently high dimension, data from two classes can always be 

separated by a hyperplane. The SVM finds this hyperplane using support vectors and 

margins (defined by the support vectors).  

A separating hyperplane can be written as  

𝑊 · 𝑋 + 𝑏 = 0                                                       (5-2) 

Where 𝑊 is a weight vector, namely, 𝑊 = {𝑤1, 𝑤2, . . . , 𝑤𝑛}; 𝑛 is the number of attributes; 

and 𝑏 is a scalar, often referred to as a bias. If we input two attributes, A1 and A2. Training 



 
 

39 
 

tuples are 2-D (e.g., X=(x1, x2)), where x1 and x2 are the values of attributes A1 and A2, 

respectively. Thus, 

any points above the separating hyperplane belong to Class A1: 

𝑊 · 𝑋 + 𝑏 > 0                                                       (5-3) 

any points below the separating hyperplane belong to Class A2: 

𝑊 · 𝑋 + 𝑏 < 0                                                       (5-4) 

The first paper on support vector machines was presented in 1992 by Vladimir Vapnik and 

Colleagues Bernhard Boser and Isabelle Guyon [41][42][39], although the ground work 

for SVMs has been around since the 1960s (including early work by Vapnik and Alexei 

Chervonenkis on statistical learning theory). Although the training time of even the fastest 

SVMs can be extremely slow, they are highly accurate, owing to their ability to model 

complex nonlinear decision boundaries. They are much less prone to overfitting than other 

methods. The support vectors found also provide a compact description of the learned 

model. SVMs can be used for numeric prediction as well as classification. They have been 

applied to a number of areas, including handwritten digit recognition, object recognition, 

and speaker identification, as well as benchmark time-series prediction tests [39]. 

SVM is a classification method using a nonlinear mapping to transform the original training 

data into a higher dimension [43]. With the new dimension, it searches for the linear 

optimal separating hyperplane. In our hockey game win probability estimating model, we 

have five variables. Thus, it is a 5-dimension model. The task of this algorithm is using 

support vectors to find the hyperplanes between the classes. 



 
 

40 
 

5.1.3  Hoeffding tree 

In a stream-based classification, the VFDT (Very Fast Decision Tree) is built incrementally 

over time by splitting nodes into using a small amount of the incoming data stream. How 

many samples have to be seen by the learning model to expand a node depends on a 

statistical method called the Hoeffding bound. A Hoeffding tree (VFDT) is an incremental, 

anytime decision tree induction algorithm that is capable of learning from massive data 

streams, assuming that the distribution generating examples does not change over time. 

Hoeffding tree is a method for learning online from the high-volume data streams that are 

increasingly common. Hoeffding trees allow learning in very small constant time per 

example, and have strong guarantees of high asymptotic similarity to the corresponding 

batch trees. VFDT is a high-performance data mining system based on Hoeffding trees.  

Hoeffding tree is an incremental decision tree built by using Hoeffding bound [44]. 

Consider a real-valued random variable 𝑟 whose range is R (e.g., for a probability the range 

is one, and for an information gain the range is log 𝑐, where 𝑐 is the number of classes). 

Suppose we have made 𝑛 independent observations of this variable, and computed their 

mean 𝑟̅. The Hoeffding bound states that, with probability 1 − 𝛿, the true mean of the 

variable is at least 𝑟̅ −  𝜖, where 

𝜖 = √
𝑅2 ln(1/𝛿)

2𝑛
                                                       (5-5) 

The Hoeffding bound has the very attractive property that it is independent of the 

probability distribution generating the observations. The price of this generality is that the 
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bound is more conservative than distribution-dependent ones (i.e. it will take more 

observations to reach the same 𝛿 and 𝜖) [45]. 

5.1.4  Random Tree 

In mathematics and computer science, random tree is an algorithm which builds decision 

tress by a stochastic process. There are a lot of types of random trees such as uniform 

spanning tree and random binary tree.  

Random decision tree algorithm constructs multiple decision trees randomly [46]. When 

constructing each tree, the algorithm picks a "remaining" feature randomly at each node 

expansion without any purity function check (such as information gain, gini index, etc.). A 

categorical feature (such as gender) is considered "remaining" if the same categorical 

feature has not been chosen previously in a particular decision path starting from the root 

of tree to the current node. Once a categorical feature is chosen, it is useless to pick it again 

on the same decision path because every example in the same path will have the same value 

(either male or female). However, a continuous feature (such as income) can be chosen 

more than once in the same decision path. Each time the continuous feature is chosen, a 

random threshold is selected. A tree stops growing any deeper if one of the following 

conditions is met: 

1. A node becomes empty or there are no more examples to split in the current node. 

2. The depth of tree exceeds some limits.  

For our WP model, we used a classification tool called Weka to execute the classification 

algorithms first, then calculated the WP of a team based on the classification results.  
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5.2 Weka 

Waikato Environment for Knowledge Analysis (Weka) is an open source software widely 

used in data mining field, which coded by Java at University of Waikato, New Zealand. It 

includes most of the algorithms in data classification, data clustering, and association rules. 

In Weka 3.7, it has both GUI console and command console. 

In this thesis, all the data classification experiments are executed by Weka 3.7. Figure 10 is 

the GUI interface of Weka 3.7. Weka is a powerful workbench in data analyzes domain, 

especially in data mining. It can provide almost all the popular algorithms of data 

classification, data clustering, and association rule mining. Also, Knowledge Flow and data 

Visualization are available in Weka. More information can be found from the Manual and 

its official website [47][48]. 

 

Figure 10 Work Bench of Weka 3.7 
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5.3 WP Calculation Method 

In order to obtain the WP of a team at each particular event, we should get the class type 

of this event when we do the classification task. Classification algorithms are the 

techniques used to classify the data, but the class types should be defined before using the 

classification techniques. For example, we have one game event data which has the 

variables values: Leadsize = 3, time = 1897 seconds, H/V = home, Miss = -3, Shot = 4, 

Penalty = -1. What knowledge can we learn from this data? Thus, we need to define event 

type for each game event. When we have the class types for each game event, then we can 

do the classification. 

The way to define class types is a very important step in data classification, because 

different class types definition methods decide different win probability methods. In this 

thesis, we will introduce two WP calculation methods in the following sections. 

5.3.1 WP Calculation Method Based on Win or Lose (WPWL) 

The data we used for classification are the history data. Thus, we know the game results. 

So we can define the event class type by the game result. Following are the steps of WPWL: 

1. Randomly select 400,000 game events from NHL season 2013-2014 as the training data 

set, where the three test games’ events (games 611, 727, and 757) are excluded. 

2. Using “win” or “lose” as the class labels to define these 400,000 events. 

3. Using 400,000 events as training data set. Run different data classification algorithms on 

them. Find the most appropriate algorithm (highest classification accuracy), and get the 

classification rule. 
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4. Based on the rule, write a JAVA program (Appendix F), and run this program on the three 

test games data. Then we can get the “win” or “lose” class type on every game event. 

5. For a particular game event i, sum the number of “wins” before this event in the game. 

Then: 

𝑤𝑝 =
𝑤𝑖𝑛𝑠𝑖

𝑖
 

where 𝑤𝑖𝑛𝑠𝑖 is the number of “wins” before event i. 
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Figure 11 Flow Chart of WPWL 
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Figure 11 shows the process of WPWL. The most important step is the second one using 

Weka to choose the best classification algorithms. Figures 11 – 15 show the results of 

classification by Naïve Bayes, SVM, Hoeffding tree and Random tree methods respectively. 

 

 

Figure 12 Result of Naive Bayes based on WPWL 
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Figure 13 Result of SVM based on WPWL 

 

 

Figure 14 Result of Hoeffding Tree based on WPWL 



 
 

48 
 

 

 

Figure 15 Result of Random Tree based on WPWL 

 

Table 6 summarizes the results of the four algorithms. 

Table 6 WPWL Performances Using four Algorithms 

 

After comparing the results of all the four algorithms, we find Random Tree is the best 

algorithm for this model. Although it is not the fastest one, it has a prominent accuracy. 

Thus, in WPWL, we choose random tree as the classification algorithm. Then a JAVA 

program (Appendix F) is written to execute the Decision rules (Appendix E) which are 

provided by the Random Tree algorithm. Following is the pseudocode: 

Algorithms Time Cost Correctly Classified Instances Accuracy Sensitivity Specificity AUC

NaiveBayes 0.88s 280630 70.16% 0.702 0.318 0.793

SVM 551.22s 280169 70.04% 0.700 0.325 0.688

VFDT 4.76s 289234 72.31% 0.723 0.284 0.811

Random Tree 11.32s 314162 78.54% 0.785 0.224 0.890
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(1) Read inputprocesseddata.xls  

(2) for (read row =1; row < sheet.getRows(); row++) do  

(3) get value (Leadsize, time, shot, penalty, miss)  

(4) Using the rule provided by Random Tree, according to the values of (3), classify this     

event      

(5) end for  

(6) Write output.xls 

At last, apply the program on the three test games, and execute step 5 of WPWL to calculate 

the WP. The results are shown in Figure 16-18. 

 

Figure 16 Win Probability of Toronto by using Random Tree and WPWL 
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Figure 17 Win Probability of Vancouver by using Random Tree and WPWL 

 

Figure 18 Win Probability of Detroit by using Random Tree and WPWL 
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Figure 16 shows a winning game, the home team keeps ahead in the whole game and finally 

won the game by 5-3; Figure 17 shows a losing game, the home team followed the visiting 

team all game and lost by 2-4 in the end; Figure 18 is a tie game, the home team followed 

the visiting team in the first half of the game and caught up at the end of the game. The 

final score was 4-4. 

5.3.2 WP Calculation Method Based on Level (WPL) 

Based on the analyses of the results of WPWL, we note that it can only show us the trend 

of the home teams’ winning. Unlike the algorithm of WPS which could show the 

continuous change of WP at each game event, it only shows the trend. Thus, if we combine 

the statistics technique and data mining technique, probably we can obtain advantages of 

both the methods. WPL uses statistics technique for defining class types and uses data 

classification technique for WP calculation steps. Followings are the steps of WPL (Figure 

19): 
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Figure 19 Flow Chart of WPL 
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1. Randomly select 400,000 game events from NHL season 2013-2014 as the training data 

set, where the three test games’ (Games 727, 611, 757) events are excluded. 

2. Use win probability levels: “A”, “B”, “C”, “D”  “E”, “O”, “V”, “W”  “X”, “Y”, and “Z” 

as the class labels to define these 400,000 events. The levels are calculated by the following 

algorithm (based on statistics): 

(1) The initial value of x = Leadsize  

(2) Check the value of Time. The value of x is multiplied by a weight as shown in the 

following table: 

 

(3) Check the value of Shot. The value of x will change according to the following table: 

 

(4) Check the value of Penalty. The value of x will change according to the following 

table: 

 

(5) Check the value of Miss. The value of x will change according to the following table: 

 

(6) Define the event class type based on the value of x: 

 

3. Using 400,000 events as training data set, run different data classification algorithms. Find 

the best algorithm in terms of accuracy, and get the classification rules. 

Time (sec) WP

<1200 x=x*1

[1200,2400) x=x*1.1

[2400,3000) x=x*1.2

>=3000 x=x*1.5

Shot <-20 [-20,-10) [-10,10] (10,20] >20

x= x-0.4 x-0.2 x+0 x+0.2 x+0.4

Penalty <=-5 [-4,4] >=5

x= x+0.3 x+0 x-0.3

Miss <=-3 [-2,2] >=3

x= x+0.5 x+0 x-0.5

x <=-4 (-4,-3] (-3,-2] (-2,-1] (-1,0) 0 (0,1) [1,2) [2,3) [3,4) >=4

class type Z Y X W V O E D C B A
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4. Based on the rule, write a JAVA program to execute this rule, and run this program on the 

three test games data. Then we obtain the class types (“A”, “B”, “C”, “D”  “E”, “O”, “V”, 

“W”  “X”, “Y”, and “Z”) on every game event. 

5. Classification results show us the WP level: 

 

Above is the complete process of WPL and the results give the percentage of win probability at 

every game event. Table 7 shows the event class types (partial set of events) extracted from 400,000 

events, where the first column is the result after step (2), where leadsize is multiplied by a weight 

based on the remaining time. 

  

 

  

class type Z Y X W V O E D C B A

WP level 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%
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Table 7 Example of Class Types Calculation Result 

 

 

 

Similarly, we randomly selected 400,000 instances but defined by win probability levels, we use 

Weka 3.7 to classify by choosing Naive Bayes, SVM, Hoeffding Tree, and Random Tree 

algorithms, respectively. The results are shown in figures 20 – 23.  

L&T Shot Penalty Miss X Class

-1.2 -0.4 0 0 -1.6 W

-1.2 -0.4 0 0 -1.6 W

1.1 -0.2 0 1 1.9 D

-1.1 -0.2 0 -1 -2.3 X

0 -0.2 0 -1 -1.2 W

2.4 -0.4 0 1 3 B

2.2 0.2 0 0 2.4 C

0 -0.2 0 0 -0.2 V

-1 0.2 0 0 -0.8 V

1.1 0.2 0 0 1.3 D

0 -0.2 0 0 -0.2 V

-4.5 0 0 -1 -5.5 Z

3.3 0.4 0 -1 2.7 C

0 -0.2 0 0 -0.2 V

-1.5 0.4 0 0 -1.1 W

1 -0.2 0 0 0.8 E

0 0.2 0 0 0.2 E

2.4 0.4 0 0 2.8 C

-1.1 0.2 0 0 -0.9 V

0 0 0 0 0 O

-1.2 0.2 0 0 -1 V
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Figure 20 Result of Naive Bayes based on WPL 

  

 
 

Figure 21 Result of SVM based on WPL 
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Figure 22 Result of Hoeffding Tree based on WPL 

 
 

Figure 23 Result of Random Tree based on WPL 
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Table 8 shows the results of the four algorithms. 

Table 8 WPL Performances Using four Algorithms 

 

Compared with the results using WPWL, by using WPL, accuracies of all four algorithms 

improved except Naive Bayes. Especially, VFDT and Random Tree have a significant 

increase. Still, we find Random Tree is the best algorithm for this model. Only 21 of 

400,000 instances are incorrectly classified. It has an almost 100% accuracy and a second 

fastest speed. Thus, we choose Random Tree and write its rule as a program.  

The program is written in Java, which reads one game’s data (Excel file) and executes the 

decision rule trained by Random Tree. It gives the classification result (WP level) for every 

event and gives an output (Excel file). Following is the pseudocode: 

(1) Read inputprocesseddata.xls  

(2) for (read row =1; row < sheet.getRows(); row++) do  

(3) get value (Leadsize, time, shot, penalty, miss)  

(4) Using the rule provided by the Random Tree algorithm, according to the values of (3), 

classify current event      

(5) end for  

(6) Write output.xls 

Algorithms Time Cost Correctly Classified Instances Accuracry

NaiveBayes 1.57s 240846 60.21%

SVM 201.02s 289510 72.38%

VFDT 16.72s 388816 97.20%

Random Tree 8.51s 399979 99.99%



 
 

59 
 

The program was then applied on the three test games and Step 5 in Figure 19 was executed 

to get the results shown in Figures 24 – 26.  

In Figure 24, home team (TOR) got goals at 289, 1991, 2267, 3267, and 3596 seconds, 

respectively, but the visiting team (MTL) got three goals at 1049, 2388, and 2946 seconds, 

respectively (5-3). In Figure 25, home team (VAN) scored two goals at 1885, and 2161 

seconds, but the visiting team (T.B) scored four goals at 2127, 2147, 2397 and 2348 

seconds, respectively (2-4). In Figure 26, home team (DET) scored four goals at 674, 1060, 

1580, and 1874 seconds, respectively, and the visiting team (CHI) scored four goals at 521, 

626, 1503 and 2712 seconds, respectively (4-4). 

In this WP Level method, we can see all the points on the figures are tenfold, and the WP 

has a huge change when any team got a goal. 

 

Figure 24 Win Probability of Toronto by using Random Tree and WPL 
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Figure 25 Win Probability of Vancouver by using Random Tree and WPL 

 

Figure 26 Win Probability of Detroit by using Random Tree and WPL 
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5.4 Analysis 

In this chapter, we introduced the data mining technology used in hockey game result 

predictions. Data classification is an efficient method used for prediction. The basic idea 

of classification is using the training dataset to find the classification for the test dataset, 

where cross-validation method is used. In our case, the training dataset is the historical 

NHL data, and the testing dataset is the three test games’ data. There are many data 

classification algorithms. Some of them belong to decision tree, some of them based on 

Bayes' theorem, some of them based on functions. In this chapter, we compared four 

algorithms (Naive Bayes, SVM, Hoeffding Tree, and Random Tree) performance for our 

hockey dataset. Also, we designed two win probability calculation methods for our 

particular model. At last, we showed the results of using the highest performance algorithm 

(Random Tree) with these two WP calculation methods respectively. From the results, we 

find that using different labels to define the class types, and by executing the same 

classification algorithms, the accuracy of correctly classified instances could be increased. 

Therefore, selecting a classification algorithm is not the only way to improve the accuracy, 

but also the method to define the class types increases the accuracy. 
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Chapter 6 

 

Stream Mining Model 

 

6 Data Stream Mining 

Data mining approach is able to handle the stable history data, but it still does not address 

the problem of a continuous supply of data [49]. Data Stream Mining is the method to solve 

this problem. In a playing hockey game, the data is coming continuously. Thus, if you want 

to know the win probabilities of the two teams in a playing hockey game, stream mining 

may provide one approach. We applied stream mining technique on our data set, and 

assumed the test games are playing games. Then we can obtain the WP of one team in 

every game event. 

6.1 Incremental Data Stream Mining Model 

When a hockey game is being played, its data continuously changes. Therefore, it is 

possible to use the stream mining method to estimate the win probability of a team once 
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the game begins. The models introduced in chapter 5 use the traditional data classification 

methods to estimate the classifier.  

 

Figure 27 Traditional Data Mining Process versus Incremental Data Stream Mining Process[50] 

Figure 27-a illustrates the traditional data mining process. Rules are trained by the training 

data set and applied on the test data set. Figure 27-b shows the process of incremental data 

stream mining model, in which rules are of the form train-update-train and data stream is 

the data set. The input data is in the form of continuous data stream that feeds into the 

incremental learning process for inferring a classifier in the form of a decision tree. The 

decision tree is incrementally updated every time new data arrives. The new data is tested 

by the current decision tree, a result is predicted and the testing performance can be 

observed. Instead of rebuilding the whole decision tree upon the arrival of fresh data by 
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reloading the full set of training data, incremental learning only updates the decision tree 

when its prediction accuracy falls below a predefined threshold [51].  

The incremental learning model fulfills the dual purpose of achieving the most accurate 

classifier and determining the most relevant data subset from the data stream for decision 

rule induction. Readers are referred to [51] for details about the model. 

The design of incremental data stream mining model comprises of two classifiers, the main 

tree classifier (MT) and the auxiliary tree classifier (AT). The MT maintains the global 

memory of the overall classification task and AT monitors the fluctuation of the data 

streams and detects concept-drift. Concept drift signifies fundamental changes in the 

underlying concepts among the data, usually due to some major events.  

In incremental data stream mining model, data stream is divided into equivalent intervals 

(windows). In every window, AT can be trained by the new coming data and MT needs to 

be checked whether it should be updated. 𝑃𝑘 in Equation 6-1 is computed to decide if the 

decision tree should be updated when the new window of data are trained. 

 𝑃𝑘 =
𝐿𝑂𝑆𝑆𝑘

𝑀𝑇𝐶∗∑ ∑ 𝑛𝑖𝑗𝑘
𝐽
𝑗=1

𝐼
𝑖=1

𝐿𝑂𝑆𝑆𝑘
𝐴𝑇𝐶∗𝑊+1

 (6-1) 

𝐿𝑂𝑆𝑆𝑘
𝑀𝑇𝐶 and 𝐿𝑂𝑆𝑆𝑘

𝐴𝑇𝐶 are defined as follows: 

𝐿𝑂𝑆𝑆𝑘
𝑀𝑇𝐶 = 𝑇𝑘

𝑀𝑇𝐶 − 𝐹𝑘
𝑀𝑇𝐶 

𝐿𝑂𝑆𝑆𝑘
𝐴𝑇𝐶 = 𝑇𝑘

𝐴𝑇𝐶 − 𝐹𝑘
𝐴𝑇𝐶 

𝑇𝑘
𝑀𝑇𝐶  is the number of correctly classified instances by main tree (MT), and 𝐹𝑘

𝑀𝑇𝐶 is the number of 

incorrectly classified instances by main tree (MT). 𝑇𝑘
𝐴𝑇𝐶  is the number of correctly classified 
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instances by auxiliary tree (AT), and 𝐹𝑘
𝐴𝑇𝐶  is the number of incorrectly classified instances by 

auxiliary tree (AT). ∑ ∑ 𝑛𝑖𝑗𝑘
𝐽
𝑗=1

𝐼
𝑖=1  is a statistical count of sufficient instances that have been 

observed and they belong to their respective binary classes I and J (In our model, the binary classes 

are “win” and “lose”). W is the size of window. We set the threshold as 1. If 𝑃𝑘 < 1, we update the 

rule, else we keep the old rule. 

The process of building WP model based on stream mining technique is shown in Figure 

28. We use the stream mining method to do the classification, and calculate the WP based 

on the classification results. The advantage of stream mining method is that it does not rely 

on the massive history data to train the classification rules. Stream mining method can train 

the rules when a hockey game is being played. 
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Figure 28 Process of the WP Model Using Data Stream Mining  

6.2 Massive Online Analysis (MOA) 

In our project, we used a software tool called MOA to compare the accuracies of different 

classification algorithms for our particular instance. Figure 29 shows an example of the 
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comparison of two algorithms’ accuracies as instances increasing by using MOA (red line 

and blue line).  

 

Figure 29 Console Interface of MOA 

 

MOA is the most popular open source framework for data stream mining, with a very active 

growing community. It includes a collection of machine learning algorithms (classification, 

regression, clustering, outlier detection, concept-drift detection and recommender systems) 
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and tools for evaluation. Related to the WEKA project, MOA is also written in Java, while 

scaling to more demanding problems [53]. 

In our project, MOA is used for comparing the accuracies of the different classification 

algorithms in stream mining. We randomly choose 400,000 instances (events) from season 

2013-2014 as the test stream for MOA (The three test games events are excluded). The 

value of W (window size) is set as 20. We executed Naive Bayes, Hoeffding Tree, and 

Random Tree algorithms in MOA. The results are shown in Figure 30. The lines in Figure 

30 show that the average accuracy of Naive Bayes is 63%, Random Tree is 84%, and 

Hoeffding Tree is 90%. 

 

Figure 30 Comparison of Accuracy of Hoeffding Tree, Random Tree, and Naive Bayes 
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6.3 Win Probability Model using Stream Mining  

The goal of using steam mining model is to predict the win probability in a hockey game 

being played. The game’s data is coming continuously. Once the useful events reach a 

certain number, we have enough instances to train the classification rules. We set this 

number as the size of the window. In this case, Window size equals 20. According to the 

experience of the statistics of the history data, we found the number of useful events in a 

game, on average, usually from 95 to 110. Thus, in our model, there are 5 windows in a 

game (each of the first four includes 20 events and the remaining events are put in the fifth 

window). Figure 31 shows the process of the decision rule training window by window. 

Next we will introduce the classification by using Random Tree and Hoeffding Tree 

respectively. 

 

Figure 31 Decision rules trained window by window 

6.3.1 Classification by Random Tree 

When we get the windows of data, we can extract the variables mentioned in chapter 3. 

One better way to define the class type of each event is to use the WP level method using 
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“A”, “B”, “C”, “D”, “E”, “O”, “V”, “W”,  “X”, “Y”, and “Z” as the class labels based on 

the statistics results discussed in Chapter 4. The defined steps are similar to the WPL 

(Section 5.3.2). The win probability levels they represent respectively are as in the 

following table: 

 

Table 9 is an example of one window data defined by WP level method. This window of 

data can be trained by Weka 3.7 using Random Tree. Figure 32 is an example of one 

window of the decision rule trained by Random Tree algorithm. When we get the decision 

rule for the first window, the rule for the next window is decided by the formula 6-1. In the 

next window, we can use the results classified by MT and AT to calculate  𝑃𝑘 . If  𝑃𝑘 < 1, 

update the rule and use AT’s rule, else keep the old rule and use MT’s rule. Thus, we can 

obtain the class types for every window based on these decision rules. At last, combining 

the results of five windows, using the same way as WPL, we can obtain the win probability 

of the whole game. 

class type Z Y X W V O E D C B A

WP level 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%
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Table 9 Example of one window train by Random Tree 
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Figure 32 Example of one window of the decision rule trained by Random Tree algorithm 

Every window’s data is trained following the process shown in Figure 33. Formula 6-1 is 

used for deciding whether to update the rule. Then we can obtain the win probability of the 

home team in the whole game. For example, all the windows classification rules for game 

611 are shown in Appendix G. 

 

Figure 33 Software Environment for rules training 

 

The results of the three test games’ (games 727, 611, and 757) are shown in Figures 34, 35 

and 36 respectively. 
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Figure 34 Win Probability of Toronto by using Stream Mining with Random Tree 

 

Figure 35 Win Probability of Vancouver by using Stream Mining with Random Tree 
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Figure 36 Win Probability of Detroit by using Stream Mining with Random Tree 

6.3.2 Classification by Hoeffding Tree 

Although Hoeffding Tree has the highest accuracy among the three stream mining 

algorithms Figure 30 Comparison of Accuracy of Hoeffding Tree, Random Tree, and Naive 

BayesFigure 30), it does not work well for the model with multiple class types such as WPL. 

Since Hoeffding Tree is a binary split algorithm, it only works well for the model such as 

WPWL. 

Similar stream mining process is executed again (Figure 28). The data stream mining 

classification method used is Hoeffding Tree and the WP calculation method used is 

WPWL. Then we obtain the three games results by using Hoeffding Tree in Figures 37 – 

39. 
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Figure 37 Win Probability of Toronto by using Stream Mining with Hoeffding Tree 

 

Figure 38 Win Probability of Vancouver by using Stream Mining with Hoeffding Tree 
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Figure 39 Win Probability of Detroit by using Stream Mining with Hoeffding Tree 

6.4 Analysis 

In this chapter, we provide the approach by using data stream mining technique estimating 

the win probability in a hockey game. The advantage of using stream mining is that there 

is no need of too many historical data since it is a train-update-train model. In recent studies, 

stream mining is rarely used in major sport games win probability models. One of the 

reasons is that one game’s data is not enough as the training stream. In this thesis, combined 

with the statistic result, we designed the WPL for classifying more accurately. So the 

numbers of instance for training the basic classification rules reduces. Thus, it is possible 

to use stream mining technique for the WP modeling in a hockey game. 
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In this chapter, we compared the performance of Hoeffding Tree and Random Tree for our 

hockey dataset, and illustrated the results of the WP of the three test games by using 

Hoeffding Tree and Random Tree. Hoeffding Tree is very fast and has the best performance, 

but it can only work for the binary class type. However, compared with the multiple class 

types, the correct classification rate of binary class type is lower than the rate of multiple 

class type. Thus, Random Tree is better than Hoeffding Tree in some cases.  
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Chapter 7 

 

Conclusions 

 

7 Conclusions and Future Work 

In this thesis, we introduced three models for estimating the win probability in a hockey 

game: 

1. Measuring WP based on the statistics results of the historical data; 

2. Measuring WP based on data mining classification algorithms; 

3. Measuring WP based on stream mining technique. 

7.1 Conclusions 

There are sufficient precedents in the major sports such as baseball and basketball. 

However, the analysis on hockey game is relatively less.  This is possibly because hockey 

is a continuous rapid game with relatively few major events. Thus, there are limited 

decisive objective variables that contribute to calculating the wining probability in a 
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hockey game. Although it is a hard job to estimate the win probability in a hockey game 

with few variables, large dataset of hockey statistics with these variables and by using data 

mining techniques, it is possible to estimate the winning probability. The goal of this thesis 

is to predict the win probability of a team in a hockey game by using data mining techniques. 

In this thesis, three models are introduced, statistic model, classification model, and stream 

mining model.  All the researches of this thesis are based on the statistic results from the 

historical NHL data.  

A major contribution of this thesis is to estimate the win probability of a live hockey game 

by using stream mining method. Also, based on the results of some statistics, we not only 

extract the variables that have the most decisive influence towards the wining, but rather 

provide the models for predicting the win probability of a hockey game. Furthermore, 

multiple class type labels are applied in the training data set, which increase the 

classification accuracy significantly compared with binary labels.  

Win probability algorithm based on statistics of historical data has been proposed. The 

winning probability of the home team at the beginning of the game is taken to be 55% 

because the statistics show that the home team won 55% games in historical seasons. 

Data mining model is a scientific approach for estimating the win probability of an ice 

hockey game. In this thesis, we compared some classification algorithms and found 

Random Tree to be the best algorithm for our model. Also, by using more appropriate 

definition for class types the classification accuracy improved further. 

Although one game’s data does not have enough instances for stream mining, it is still 

possible to build the win probability model in a hockey game by using stream mining 
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technique. Combining the statistics algorithm and stream mining classification, accuracy 

could be increased. Hoeffding Tree learner has the best performance in our binary class 

type model. However, Random Tree works well in our multiple class type model. 

7.2 Future Work 

As a future work, it will be interesting to design more appropriate win probability 

calculation algorithms for case by case classification results. Since our attributes of data 

are limited, we do not have enough information of personality vectors in a hockey game. 

In this thesis, all the models are built based on the objective variables. In the future, some 

data of the players and coaches in a hockey team could be obtained and some personality 

variables added to make a more complex and improved win probability model in a hockey 

game.  
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Appendix A 

Original Data downloaded by‘nhlscrapr’ 

The original file is so big that cannot display it here. NHL 2013-2014 original CSV data 

as an example can be downloaded from 

https://www.dropbox.com/sh/50g290lq7kz3yu6/AADnq3wTI_Y2j5Mr-AWDQV4ia?dl=0 

Following figure shows a small part of the original data: 

 

 

  

https://www.dropbox.com/sh/50g290lq7kz3yu6/AADnq3wTI_Y2j5Mr-AWDQV4ia?dl=0
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Appendix B 

WPS JAVA Program 

import java.io.File; 

import java.io.IOException; 

import jxl.Cell; 

import jxl.CellType; 

import jxl.Workbook; 

import jxl.read.biff.BiffException; 

import jxl.write.Label; 

import jxl.write.WritableCell; 

import jxl.write.WritableSheet; 

import jxl.write.WritableWorkbook; 

import jxl.write.WriteException; 

 

public class Part5 { 

 

 public static void main(String[] args) throws BiffException, IOException, 

WriteException { 

 

  Workbook workbook = Workbook.getWorkbook(new File( 

    "C:/Users/dan/Desktop/stream mining1/part5.xls")); 

 

  WritableWorkbook copy = Workbook.createWorkbook(new File( 

    "C:/Users/dan/Desktop/stream mining1/outputpart5.xls"), 

workbook); 

 

  WritableSheet sheet = copy.getSheet(0); 

 

   

  double wp= 0.5; 

                        String value =""; 

  int eventColNumA = 9; 

  int eventColNumB = 2; 

  int eventColNumC = 10; 

  int eventColNumD = 11; 

  int eventColNumE = 12; 

  int eventColNumF = 13; 

  int predictionColNum = 17; 

             //Skip row 0 for header 

  for (int row = 1; row < sheet.getRows(); row++) {  

   Cell homeCell = sheet.getCell(eventColNumA, row); 

   Cell secondCell = sheet.getCell(eventColNumB, row); 

   Cell leadsizeCell = sheet.getCell(eventColNumC, row); 
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   Cell abshotCell = sheet.getCell(eventColNumD, row); 

   Cell penaltyCell = sheet.getCell(eventColNumE, row); 

   Cell missCell = sheet.getCell(eventColNumF, row); 

            WritableCell predictionEventCell = sheet.getWritableCell(predictionColNum, row); 

 

   double a = Integer.valueOf(leadsizeCell.getContents()).doubleValue(); 

            double c = Double.valueOf(abshotCell.getContents()).doubleValue(); 

            int d = Integer.valueOf(penaltyCell.getContents()).intValue(); 

            int e = Integer.valueOf(missCell.getContents()).intValue(); 

            double b = Double.valueOf(secondCell.getContents()).doubleValue(); 

   if(b<1200){ 

    a = a; 

   } else if(b>=1200&&b<2400){ 

    a = a*1.1; 

   } else if(b>=2400&&b<3000){ 

    a = a*1.2; 

   } else{ 

                a = a*1.5; 

   } 

 

              

            if(a<0.55){ 

             value="lose"; 

            } 

            else{ 

             value="win"; 

            } 

 

 

   if (predictionEventCell.getType() == CellType.LABEL) { 

    Label l = (Label) predictionEventCell; 

    l.setString(value); 

   } else { 

    sheet.addCell(new Label(predictionColNum, row, value)); 

   } 

 

  } 

    

  copy.write(); 

  copy.close(); 

  workbook.close(); 

 

 } 

 

} 

  



 
 

90 
 

Appendix C 

Snapshot of Attribute Values for the Event “Goal” 

in 3 Test Games 

 

 

  

gcode period seconds etype ev.team hometeam awayteam home.score away.score h/v leadsize shot penalty miss game result

20727 1 289 GOAL TOR TOR MTL 1 0 home 0 3 0 1 \

20727 1 1049 GOAL MTL TOR MTL 1 1 home 1 1 0 -1 \

20727 2 1991 GOAL TOR TOR MTL 2 1 home 0 -3 1 -2 \

20727 2 2267 GOAL TOR TOR MTL 3 1 home 1 -2 0 -2 \

20727 2 2388 GOAL MTL TOR MTL 3 2 home 2 -2 0 -3 \

20727 3 2946 GOAL MTL TOR MTL 3 3 home 1 -6 1 -6 \

20727 3 3267 GOAL TOR TOR MTL 4 3 home 0 -2 1 -5 \

20727 3 3596 GOAL TOR TOR MTL 5 3 home 1 -5 1 -7 home win

20611 2 1885 GOAL VAN VAN T.B 1 0 home 0 -5 1 6 \

20611 2 2127 GOAL T.B VAN T.B 1 1 home 1 -4 0 9 \

20611 2 2147 GOAL T.B VAN T.B 1 2 home 0 -4 0 9 \

20611 2 2161 GOAL VAN VAN T.B 2 2 home -1 -4 0 9 \

20611 2 2397 GOAL T.B VAN T.B 2 3 home 0 -4 1 13 \

20611 3 2848 GOAL T.B VAN T.B 2 4 home -1 -3 1 15 home lose

20757 1 521 GOAL CHI DET CHI 0 1 home 0 -2 0 2 \

20757 1 626 GOAL CHI DET CHI 0 2 home -1 0 0 1 \

20757 1 674 GOAL DET DET CHI 1 2 home -2 1 0 1 \

20757 1 1060 GOAL DET DET CHI 2 2 home -1 -1 0 2 \

20757 2 1503 GOAL CHI DET CHI 2 3 home 0 -4 1 2 \

20757 2 1580 GOAL DET DET CHI 3 3 home -1 -4 1 2 \

20757 2 1874 GOAL DET DET CHI 4 3 home 0 -4 1 0 \

20757 3 2712 GOAL CHI DET CHI 4 4 home 1 0 1 5 tie in 3 periods
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Appendix D 

Excel File of WPS Result  

 

Following example is part result of the game 727, TOR vs MTL. Since the whole Excel 

file is so big that cannot display it here, you can download it from 

https://www.dropbox.com/sh/50g290lq7kz3yu6/AADnq3wTI_Y2j5Mr-AWDQV4ia?dl=0 

  

gcode period seconds etype ev.team hometeam awayteam home.score away.score h/v leadsize abshot penalty miss game result outputs

20727 1 0 FAC TOR TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 15 HIT TOR TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 33 HIT TOR TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 36.5 CHANGE TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 40 HIT MTL TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 43.5 CHANGE TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 47 HIT MTL TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 50 CHANGE TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 53 FAC MTL TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 88 HIT TOR TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 100 CHANGE TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 112 HIT MTL TOR MTL 0 0 home 0 0 0 0 win 0.55

20727 1 133 SHOT TOR TOR MTL 0 0 home 0 1 0 0 win 0.57

20727 1 134 FAC TOR TOR MTL 0 0 home 0 1 0 0 win 0.57

20727 1 141 SHOT TOR TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 146 HIT MTL TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 150 CHANGE TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 154 GIVE TOR TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 156.5 CHANGE TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 159 SHOT TOR TOR MTL 0 0 home 0 3 0 0 win 0.57

20727 1 170.5 CHANGE TOR MTL 0 0 home 0 3 0 0 win 0.57

20727 1 182 SHOT MTL TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 183.5 CHANGE TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 185 HIT TOR TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 191 CHANGE TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 197 HIT TOR TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 203.5 CHANGE TOR MTL 0 0 home 0 2 0 0 win 0.57

20727 1 210 MISS TOR TOR MTL 0 0 home 0 2 0 1 win 0.57

20727 1 232 SHOT TOR TOR MTL 0 0 home 0 3 0 1 win 0.57

20727 1 245 CHANGE TOR MTL 0 0 home 0 3 0 1 win 0.57

20727 1 258 HIT MTL TOR MTL 0 0 home 0 3 0 1 win 0.57

20727 1 269 BLOCK TOR TOR MTL 0 0 home 0 3 0 1 win 0.57

20727 1 274 HIT TOR TOR MTL 0 0 home 0 3 0 1 win 0.57

20727 1 281.5 CHANGE TOR MTL 0 0 home 0 3 0 1 win 0.57

20727 1 289 GOAL TOR TOR MTL 0 0 home 0 3 0 1 win 0.57

20727 1 289 FAC MTL TOR MTL 1 0 home 1 3 0 1 win 0.67

20727 1 306 HIT TOR TOR MTL 1 0 home 1 3 0 1 win 0.67

20727 1 316 BLOCK MTL TOR MTL 1 0 home 1 3 0 1 win 0.67

20727 1 324.5 CHANGE TOR MTL 1 0 home 1 3 0 1 win 0.67

20727 1 333 FAC TOR TOR MTL 1 0 home 1 3 0 1 win 0.67

20727 1 352 SHOT TOR TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 369 BLOCK TOR TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 371 HIT TOR TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 382 BLOCK TOR TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 383 HIT MTL TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 397 TAKE MTL TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 411.5 CHANGE TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 426 FAC MTL TOR MTL 1 0 home 1 4 0 1 win 0.67

20727 1 443 HIT MTL TOR MTL 1 0 home 1 4 0 1 win 0.67

https://www.dropbox.com/sh/50g290lq7kz3yu6/AADnq3wTI_Y2j5Mr-AWDQV4ia?dl=0
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Appendix E 

WPWL Decision Rules by Random Tree 

The original output of the decision tree is too large cannot to show here. You can 

download it from: 

 https://www.dropbox.com/sh/50g290lq7kz3yu6/AADnq3wTI_Y2j5Mr-AWDQV4ia?dl=0 

Also you can get the decision rules trained by Hoeffding Tree from the same link. 

  

https://www.dropbox.com/sh/50g290lq7kz3yu6/AADnq3wTI_Y2j5Mr-AWDQV4ia?dl=0
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Appendix F 

WPWL JAVA Program 

import java.io.File; 

import java.io.IOException; 

 

import jxl.Cell; 

import jxl.CellType; 

import jxl.Workbook; 

import jxl.read.biff.BiffException; 

import jxl.write.Label; 

import jxl.write.WritableCell; 

import jxl.write.WritableSheet; 

import jxl.write.WritableWorkbook; 

import jxl.write.WriteException; 

 

public class WPWL { 

 

 public static void main(String[] args) throws BiffException, IOException, 

WriteException { 

 

  Workbook workbook = Workbook.getWorkbook(new File( 

    "C:/Users/dan/Desktop/stream mining/torvsmtl.xls")); 

 

  WritableWorkbook copy = Workbook.createWorkbook(new File( 

    "C:/Users/dan/Desktop/stream mining/outputtorvsmtl.xls"), 

workbook); 

 

  WritableSheet sheet = copy.getSheet(0); 

 

   

  double wp= 0.5; 

        String value =""; 

  int eventColNumA = 9; 

  int eventColNumB = 2; 

  int eventColNumC = 10; 

  int eventColNumD = 11; 

  int eventColNumE = 12; 

  int eventColNumF = 13; 

  int predictionColNum = 17; 

   

  for (int row = 1; row < sheet.getRows(); row++) {  

   Cell homeCell = sheet.getCell(eventColNumA, row); 

   Cell secondCell = sheet.getCell(eventColNumB, row); 
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   Cell leadsizeCell = sheet.getCell(eventColNumC, row); 

   Cell abshotCell = sheet.getCell(eventColNumD, row); 

   Cell penaltyCell = sheet.getCell(eventColNumE, row); 

   Cell missCell = sheet.getCell(eventColNumF, row); 

            WritableCell predictionEventCell = sheet.getWritableCell(predictionColNum, row); 

 

   double a = Integer.valueOf(leadsizeCell.getContents()).doubleValue(); 

            double c = Double.valueOf(abshotCell.getContents()).doubleValue(); 

            int d = Integer.valueOf(penaltyCell.getContents()).intValue(); 

            int e = Integer.valueOf(missCell.getContents()).intValue(); 

            double b = Double.valueOf(secondCell.getContents()).doubleValue(); 

   if(b<1200){ 

    a = a; 

   } else if(b>=1200&&b<2400){ 

    a = a*1.1; 

   } else if(b>=2400&&b<3000){ 

    a = a*1.2; 

   } else{ 

                a = a*1.5; 

   } 

 

              

            if(a<=0.955){ 

             if(a<=-1.091){ 

              if(a<=-2.809){ 

               value="lose";} 

              else if(e<=-8.909){ 

               value="lose";} 

                else if (a<=-1.809) { 

                 if (a<=2.218) { 

                      value="lose";} 

                   else { 

                 value="lose";}} 

                           else if(a<=-1.318){ 

                            value="lose";} 

                                else if(c<=0.273){ 

                                 if(c<=-19.091){ 

                                  value="win";} 

                                 else { 

                                  value="lose";}} 

                                   else { 

                                    value="lose";}} 

             else if(d<=-4.273){ 

                  value="win";} 

                  else if(d<=-3.364){ 

                       value="win";} 

                    else if(e<=-9.909){ 

                           value="lose";} 

                         else if(a<=-0.455){ 

                              if(d<=-2.455){ 

                               value="win";} 
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                               else if(e<=1.273){ 

                                                 if(e<=-6.273){ 

                                                  value="win";} 

                                                 else if(e<=-5.364){ 

                                                      value="win";} 

                                                     else{ 

                                                      value="lose";}} 

                                     else{ 

                                      value="lose";}} 

                            else if(c<=-18.636){ 

                             value="win";} 

                                 else if(c<=7.091){ 

                                   if(d<=1.455){ 

                                   if(e<=2.364){ 

                                    if(e<=3){ 

                                     value="lose";} 

                                    else if(c<=-11.182){ 

                                     value="win";} 

                                         else if(c<=5.364){ 

                                          if(d<=-2.636){ 

                                               value="win";} 

                                            else if(c<=9.545){ 

                                             value="lose";} 

                                                 else if(c<=3.727){ 

                                                      if(d<=-0.636){ 

                                                        value="lose";} 

                                                      else { 

                                                       value="win";}} 

                                                     else{ 

                                                      value="lose";}} 

                                                else{ 

                                                 value="lose";}} 

                                   else if(d<=-2.636){ 

                                    value="lose";} 

                                        else if(c<=-11.128){ 

                                         value="lose";} 

                                             else{ 

                                              value="win";}} 

                                  else{ 

                                   value="win";}} 

                                 else if(e<=1.182){ 

                                       value="lose";} 

                                      else{ 

                                       value="lose";}} 

 

            else if(a<=2.182){ 

                  if(a<=1.455){ 

                     if(d<=-0.545){ 

                      if(d<=-2.364){ 

                       value="win";} 

                      else if(e<=-9.364){ 
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                          value="lose";} 

                        else{ 

                         value="win";}} 

                     else if(c<=-21){ 

                         value="lose";} 

                       else if(d<=1.455){ 

                             if(e<=-15.909){ 

                               value="lose";} 

                             else { 

                               value="win";}} 

                           else { 

                            value="win";}} 

                  else { 

                   value="win";}} 

              else if(a<=2.955){ 

                    if(d<=-4.273){ 

                      value="win";} 

                    else if(a<=2.327){ 

                           if(c<=-19.909){ 

                              value="lose";} 

                             else{ 

                                value="win";}} 

                         else{ 

                          value="win";}} 

                 else{ 

                  value="win";} 

 

 

   if (predictionEventCell.getType() == CellType.LABEL) { 

    Label l = (Label) predictionEventCell; 

    l.setString(value); 

   } else { 

    sheet.addCell(new Label(predictionColNum, row, value)); 

   } 

 

  } 

   

   

  copy.write(); 

  copy.close(); 

  workbook.close(); 

 

 } 

 

} 

// commend in CMD 

javac -classpath jxl.jar WPWL.java 

java -classpath jxl.jar;. WPWL 
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Appendix G 

Decision Trees and Results of Stream Mining 

using Random Tree 

The following figures show the results of applying Random Tree in Stream Mining to the 

data for game 611 in weka 3.7. The decision trees and accuracy of Random Tree is shown 

for each window (window 1 – 5). 

 



 
 

98 
 

 



 
 

99 
 

 



 
 

100 
 

 



 
 

101 
 

 

Following is an example of a java program for one window: 

import java.io.File; 

import java.io.IOException; 

 

import jxl.Cell; 

import jxl.CellType; 

import jxl.Workbook; 

import jxl.read.biff.BiffException; 

import jxl.write.Label; 

import jxl.write.WritableCell; 

import jxl.write.WritableSheet; 

import jxl.write.WritableWorkbook; 

import jxl.write.WriteException; 

 

public class Part2 { 

 

 public static void main(String[] args) throws BiffException, IOException, 

WriteException { 
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  Workbook workbook = Workbook.getWorkbook(new File( 

    "C:/Users/dan/Desktop/stream mining1/part2.xls")); 

 

  WritableWorkbook copy = Workbook.createWorkbook(new File( 

    "C:/Users/dan/Desktop/stream mining1/outputpart2.xls"), 

workbook); 

 

  WritableSheet sheet = copy.getSheet(0); 

 

  //Skip row 0 for header 

 

   

  double wp= 0.5; 

        String value =""; 

  int eventColNumA = 9; 

  int eventColNumB = 2; 

  int eventColNumC = 10; 

  int eventColNumD = 11; 

  int eventColNumE = 12; 

  int eventColNumF = 13; 

  int predictionColNum = 17; 

   

  for (int row = 1; row < sheet.getRows(); row++) {  

   Cell homeCell = sheet.getCell(eventColNumA, row); 

   Cell secondCell = sheet.getCell(eventColNumB, row); 

   Cell leadsizeCell = sheet.getCell(eventColNumC, row); 

   Cell abshotCell = sheet.getCell(eventColNumD, row); 

   Cell penaltyCell = sheet.getCell(eventColNumE, row); 

   Cell missCell = sheet.getCell(eventColNumF, row); 

            WritableCell predictionEventCell = sheet.getWritableCell(predictionColNum, row); 

 

   double a = Integer.valueOf(leadsizeCell.getContents()).doubleValue(); 

            double c = Double.valueOf(abshotCell.getContents()).doubleValue(); 

            int d = Integer.valueOf(penaltyCell.getContents()).intValue(); 

            int e = Integer.valueOf(missCell.getContents()).intValue(); 

            double b = Double.valueOf(secondCell.getContents()).doubleValue(); 

 

 

   if(c<0.5) 

    {if(c<1.5){ 

     value="V";} 

     else if(e<2) 

      {if(e<0.5) 

       {value="V"} 

       else{value="O"} 

      } 

     

       } 

    else if (e<2.5) { 

     value="E"; 

     else { 



 
 

103 
 

      value="V"; 

     } 

    } 

    

 

 

   if (predictionEventCell.getType() == CellType.LABEL) { 

    Label l = (Label) predictionEventCell; 

    l.setString(value); 

   } else { 

    sheet.addCell(new Label(predictionColNum, row, value)); 

   } 

 

  } 

   

   

  copy.write(); 

  copy.close(); 

  workbook.close(); 

 

 } 

 

} 

 


