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Take-Home Message 

Heat stress (HS) is a global problem which jeopardizes animal welfare, profitability, and global 
food security. Indirect effects of HS such as reduced feed intake contribute to , but do not fully 
explain, decreased productivity. Heat stressed animals experience unexpected metabolic 
changes compared to their plane of nutrition. This suggests that HS must have direct effects on 
metabolism and productivity independent of effects mediated by reduced feed intake. 
Environmental hyperthermia compromises the intestinal barrier function resulting in increased 
permeability to luminal content including bacteria and bacterial components. The leakage of 
luminal content into the portal and ultimately the systemic circulation elicits an inflammatory 
response that may facilitate the detrimental effects of HS on animal agriculture. Identifying 
flexible management strategies (i.e. nutritional supplementation) to immediately decrease HS 
susceptibility without negatively influencing production traits would be of great value to global 
animal agriculture. 

Introduction 

Economic Impact 

Heat stress negatively impacts a variety of dairy parameters including milk yield, milk quality 
and composition, rumen health, growth and reproduction , and is a significant financial burden 
(~$900 million/year for dairy, and > $300 million/year in beef and swine in the U.S. alone; St. 
Pierre et al., 2003; Pollman, 2010). When the ambient temperature and other environmental 
conditions create a situation that is either below or above the respective threshold values, 
efficiency is compromised because nutrients are diverted to maintain euthermia as preserving a 
safe body temperature becomes the highest priority, and product synthesis (milk, meat, etc.) is 
deemphasized. Advances in management (i.e. cooling systems; VanBaale et al., 2005) and 
nutritional strategies (West, 2003) have partially alleviated the negative impacts of HS on cattle, 
but productivity continues to decline during the summer. The detrimental effects of HS on 
animal welfare and production will likely become more of an issue in the future if the earth's 

, climate continues to warm as predicted (IPCC 2007) and some models forecast extreme 
summer conditions in most U.S. animal producing areas (Luber and McGeehin, 2008). A 2006 
California heat wave purportedly resulted in the death of more than 30,000 dairy cows (CDFA, 
2006) and a recent heat wave in Iowa killed at least 4,000 head of beef cattle (Drovers Cattle 
Network, 2011 ). Furthermore, almost 50% of Canadian summer days are environmentally 
stressful to dairy cows (Ominski et al., 2002). This illustrates that most geographical locales, 
including temperate and northern climates, are susceptible to extreme and lethal heat. Thus, for 
a variety of aforementioned reasons, there is an urgent need to have a better understanding of 
how HS alters nutrient utilization and ultimately reduces animal productivity. Defining the biology 
of how HS jeopardizes animal performance is critical in developing approaches (genetic, 
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managerial, nutritional and pharmaceutical) to ameliorate current production issues and improve 
animal well-being and performance. This would help secure the global agricultural economy by 
ensuring a constant supply of animal products for human consumption. 
Direct and Indirect Effects of Heat Stress 

Reduced feed intake during HS is a highly conserved response among species and presumably 
represents an attempt to decrease metabolic heat production (Baumgard and Rhoads, 2012). It 
has traditionally been assumed that inadequate feed intake caused by the thermal load was 
responsible for decreased milk production (Beede and Collier, 1986; West, 2003). However, our 
recent results challenge this dogma as we have demonstrated disparate slopes in feed intake 
and milk yield responses to a cyclical heat load pattern (Shwartz et al., 2009). To test this, we 
employed the use of a thermoneutral pair-fed group in our experiments which allowed us to 
evaluate thermal stress while eliminating the confounding effects of dissimilar nutrient intake. 
Our experiments demonstrate that reduced feed intake only explains approximately 35-50% of 
the decreased milk yield during environmental-induced hyperthermia (Rhoads et al., 2009a; 
Wheelock et al., 201 O; Baumgard et al., 2011 ). This indicates that HS must impose direct effects 
explaining low production which declines beyond expected levels associated with reduced feed 
intake. 

An appreciation of the physiological and metabolic adjustments to thermoneutral negative 
energy balance (NEBAL; i.e. underfeeding or during the transition period) is prerequisite to 
understanding metabolic adaptations occurring with HS. Early lactation dairy cattle enter a 
unique physiological state during which they are unable to consume enough nutrients to meet 
maintenance and milk production costs and typically enter NE BAL (Moore et al., 2005). 
Negative energy balance is associated with a variety of metabolic changes that are 
implemented to support the dominant physiological condition of lactation (Bauman and Currie, 
1980). Marked alterations in both carbohydrate and lipid metabolism ensure partitioning of 
dietary and tissue derived nutrients towards the mammary gland, and not surprisingly many of 
these changes are mediated by endogenous somatotropin which naturally increases during 
periods of NEBAL. One classic response is a reduction in circulating insulin coupled with a 
reduction in systemic insulin sensitivity. The reduction in insulin action activates adipose 
lipolysis, leading to the mobilization of non-esterified fatty acids (NEFA; Bauman and Currie, 
1980). Increased circulating NEFA are typical in transitioning cows and represent (along with 
NEFA derived ketones) a significant source of energy (and precursors for milk fat synthesis) for 
cows in NEBAL. Postabsorptive carbohydrate metabolism is also altered by reduced insulin 
action during NE BAL resulting in reduced glucose uptake by systemic tissues (i.e. muscle and 
adipose). Reduced nutrient uptake coupled with the net release of nutrients (i.e. amino acids 
and NEFA) by systemic tissues are key homeorhetic (an acclimated response vs. an 
acute/homeostatic response) mechanisms implemented by cows in NEBAL to support lactation. 
The thermoneutral cow in NEBAL is metabolically flexible, and can depend upon alternative 
fuels (NEFA and ketones) to spare glucose. Glucose can then be utilized by the mammary 
gland to copiously produce milk (Bauman and Currie, 1980). 

Well-fed ruminants primarily oxidize acetate (a rumen produced VFA) as a principal energy 
source. During NEBAL, cattle increase their energy dependency on NEFA. However, despite 
the fact that heat stressed cows have marked reductions in feed intake and are losing 
considerable amounts of body weight, they do · not mobilize adipose tissue (Rhoads et al., 
2009a; Wheelock et al., 2010). Therefore, it appears that heat stressed cattle experience altered 
post-absorptive metabolism compared to thermoneutral counterparts, even though they are in a 
similar negative energetic state (Rhoads et al., 2013). The unusual lack of NEFA response in 
heat stressed cows is probably in part explained by increased circulating insulin levels (O'Brien 
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et al., 2010; Wheelock et al., 2010), as insulin is a potent anti-lipolytic hormone. Increased 
circulating insulin during HS is unusual as malnourished animals are in a catabolic state and 
experience decreased insulin levels. We have recently demonstrated that heat stressed growing 
pigs undergo similar metabolic adaptations (Pearce et al., 2013a), suggesting that this is a well 
conserved response vital for the acclimation to HS. Increased insulin action may also explain 
why heat stressed animals have greater rates of glucose disposal (Whee lock et al., 201 0). 
Therefore, during HS, preventing or blocking adipose mobilization/breakdown and increasing 
glucose "burning" is presumably a strategy to minimize metabolic heat production (Baumgard 
and Rhoads, 2007). The enhanced extra-mammary glucose utilization during HS creates a 
nutrient trafficking problem with regards to milk yield. The mammary gland requires glucose to 
synthesize milk lactose which is the primary osmoregulator determining overall milk volume. 
Therefore, the mammary gland may not receive adequate amounts of glucose resulting in 
reduced mammary lactose and subsequent milk production. This may be a primary mechanism 
accounting for additional reductions in milk yield beyond the portion explained by decreased 
feed intake. 

Leaky Gut: Responsible for the Direct Effects of Heat Stress? 

Mechanisms responsible for altered nutrient partitioning during HS are not clear, however, they 
might be mediated by HS effects on gastrointestinal health and function (Figure 1 ). The small 
intestine is one of the first tissues up-regulating heat shock proteins during a thermal load 
(Flanagan et al., 1995), demonstrating a higher sensitive to heat damage (Kregel, 2002). During 
heat stress, blood flow is diverted from the viscera to the periphery in an attempt to dissipate 
heat (Lambert et al., 2002), leading to intestinal hypoxia (Hall et al., 1999). Enterocytes are 
particularly sensitive to hypoxia and nutrient restriction (Rollwagen et al., 2006), resulting in ATP 
depletion and increased oxidative and nitrosative stress (Hall et al., 2001 ). This contributes to 
tight junction dysfunction, and gross morphological changes that ultimately reduce intestinal 
barrier function (Lambert et al., 2002; Pearce et al., 2013b). As a result, HS increases the 
passage of luminal content as lipopolysaccharide (LPS) into the portal and systemic blood (Hall 
et al., 2001; Pearce et al., 2013b). 
Further, endotoxemia is common 
among heat stroke patients (Leon, 
2007) and it is thought to play a 
central role in heat stroke 
pathophysiology, as survival 
increases when intestinal bacterial 
load is reduced (Bynum et al., 
1979) or when plasma LPS is 
neutralized (Gathiram et al., 
1987). It is remarkable how 
animals suffering from heat stroke 
or severe endotoxemia share 
many physiological and metabolic 
similarities such as an increase in 
circulating insulin (Lim et al., 
2007). Infusing LPS into the 
mammary gland was reported to 
increase (~2 fold) circulating 
insulin in lactating cows (Waldron 
et al., 2006). In addition, we 
intravenously infused LPS into 
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Figure 1: Etiology of heat stress induced leaky gut 
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growing calves and demonstrated >10 fold increase in circulating insulin (Rhoads et al., 2009b). 
Again, the increase in insulin in both models is energetically difficult to explain as feed intake 
was severely depressed in both experiments. 

Intestinal Integrity and Steatohepatitis 

Interestingly, a variety of diseases associated with increased intestinal permeability such as 
heat stress and stroke, Crohn's disease, inflammatory bowel disease, Celiac disease, and 
alcoholism are often associated with increased plasma LPS concentrations and an inflammatory 
acute phase response (Bouchama et al., 1993; Pearce, et al. 2013b; Draper et al., 1983; 
Parlesak et al., 2000; Ludvigsson et al., 2007; Bargiggia et al., 2003; McGowan et al., 2012). 
There is increasing evidence that translocation of gut microbiota contributes to hepatic 
inflammation (Bieghs and Trautwein, 2013) which might impair liver function leading to fat 
accumulation and ultimately steatohepatitis (llan, 2012; Dumas et al., 2006; Solga and Diehl, 
2003; Farhadi et al., 2008; Miele et al., 2009). The association between leaky gut and fatty liver 
is of particular interest in the ruminant animal who is already an inefficient exporter of hepatic 
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Figure 2: LPS induced metabolic alterations to export lipids. Preliminary data has 
shown an increase in plasma 

lipopolysaccharide binding protein (LPSBP), an acute phase protein which binds LPS to 
stimulate an immune response, in cows that required treatment for clinical ketosis compared to 
healthy transition cows (Nayeri et al., 2012). Nevertheless, the effects of the transition period on 
the intestinal barrier function and its role in the development of fatty liver and ketosis among 
other transition disorders remain unknown and require further investigation. 

Nutritional Strategies to Prevent Leaky Gut 

Bicarbonate 

Acidosis may exacerbate intestinal issues (Khafipour et al., 2009) as rumen pH is lowered 
during the summer months (Mishera et al., 1'970). This may be explained by increased 
respiration rate which decreases blood carbon dioxide (CO2) and increases the need for the 
kidney to secrete bicarbonate to maintain a healthy 20 to 1 ratio of bicarbonate to CO2 in the 
blood. Increased secretion of bicarbonate by the kidney reduces the amount available to be 
used in the saliva to buffer rumen pH. In addition, reduced feed intake results in reduced 
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rumination time which is a key stimulator of saliva production. Thus, the increased susceptibility 
of heat-stressed cattle to rumen acidosis might be prevented by dietary bicarbonate 
supplementation. 

Glutamine 

Glutamine is a conditionally non-essential amino acid as it can be formed from ammonia and 
glutamate. It is a primary energy source for intestinal cells (Singleton and Wischmeyer, 2006) 
and supplemental dietary glutamine has demonstrated improvement in intestinal barrier function 
in malnourished children (Lima et al., 2005). A potential mechanism of action for glutamine's 
beneficial effects is the enhanced expression of heat-shock protein 70 (Singleton and 
Wichmeyer, 2006). Glutamine supplementation to high producing thermoneutral cows did not 
improve milk yield (Metcalf et al., 1996). However, a study by Caroprese and co-workers (2013) 
demonstrated that during HS, glutamine supplementation improved milk, fat, protein, and casein 
yields. Caroprese and colleagues also observed improvement in cell mediated immune 
response which was likely responsible for the observed lower somatic cell count, possibly 
indicating a role for glutamine in the alleviation of mastitis. 

Zinc 

Dietary zinc is essential for normal intestinal barrier function (Alam et al., 1994), and 
supplemental zinc is beneficial in a variety of animal models and human diseases characterized 
by increased intestinal permeability (Alam et al., 1994; Zhang and Guo, 2009). We have 
recently demonstrated that supplemental zinc can partially alleviate the effects HS on intestinal 
integrity in acute and chronically heat-stressed growing pigs (Sanz-Fernandez et al., 2012; 
Pearce et al., 2013b). The mechanisms by which zinc improves intestinal integrity are not well 
understood, but might include: the up-regulation of tight junction proteins (Zhang and Guo, 
2009), a role as antioxidant via induction of metallothioneins (Wang et al., 2013), and/or 
increasing the expression of antimicrobial substances as 13-defensins (Mao et al., 2013). 

Dairy Products 

Dietary dairy products (e.g. colostrum and whey protein) have been also demonstrated to 
improve intestinal health under different types of challenges (Playford et al., 1999 and 2001; 
Khan et al., 2002; Prosser et al., 2004). Interestingly, dietary dairy products have demonstrated 
alleviation of HS effects on the intestinal barrier function both in vivo (Prosser et al., 2004) and 
in vitro (Marchbank et al., 2011). Once again their mechanisms of action are not well 
understood but both colostrum and whey protein are rich in antimicrobial proteins (e.g. 
glucomacropeptides, lactoferrin), immunoglobulins, growth factors (e.g. Transforming Growth 
Factor-13), and certain amino acids (glutamine, cysteine, and threonine; Krissansen, 2007). 
Further, dietary dairy products have shown to up-regulation heat-shock protein 70 (Marchbank 
et al., 2011) and tight junction proteins (mediated by TGF-13; Hering et al., 2011 ), and increase 
mucin production (mediated by threonine and cysteine; Sprong et al., 201 O); which might 
explain their beneficial effect on intestinal health. 

Antioxidants 

Hypoxia of the small intestine during HS can lead to oxidative stress and production of free 
radicals (Hall et al., 1999). In addition, intestinal inflammation leads to loss of antioxidant 
capacity (Buffinton and Doe, 1995b). Therefore, supplementation of antioxidants such as 
selenium and vitamins A, E, and C during HS is of great interest. 
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Vitamin A can mitigate the effects of induced mucosa! damage (Elli et al., 2009) and deficiency 
can have negative effects on immunity and integrity in the gut (Yang et al., 2011; Thurnham et 
al., 2000). This was the case of vitamin A-deficient beef calves that suffered reduced intestinal 
integrity and were more susceptible to a secondary E. coli infection (He, et al., 2012). Dietary 
vitamin A has the potential to improve weight gain and feed efficiency in HS broilers and this 
effect_ was amplified when vitamin A was combined with zinc (Kucuk et al., 2003). In addition, 
cows supplemented with 13-carotene during hot months had increased milk yield and pregnancy 
rates (Arechiga et al., 1998). 

Table 1. Potential nutritional strategies to ameliorate intestinal permeability 

Supplement Presumed Mechanism of Action 
Bicarbonate 
Glutamine 
Zinc 
Dairy Products 
Vitamin A 
Vitamin C 
Vitamin E 
Selenium 
Dexamethasone 
Betaine 

Acidosis prevention 
t intestine integrity 
t intestine integrity 
t intestine integrity 
Antioxidant 
Antioxidant 
Antioxidant 
Antioxidant 
t intestine integrity 
Osmotic regulation; CH3 donor 

Vitamin E supplementation has reduced gut bacterial translocation and increased survival in 
radiation induced intestinal injury (Singh et al., 2012). Supplementation also increases vitamin A 
serum concentrations, suggesting a protective role for vitamin E on vitamin status (Sahin et al., 
2002b). Sahin and coworkers (2002a) also demonstrated improved production performance in 
Japanese quails supplemented with vitamin C and E during HS. Dairy cows administered 3000 
IU of vitamin E during two consecutive summers had similar pregnancy rates compared to 
controls (Ealy et al., 1994), however little research has examined its effects on production and 
immune status in dairy cows. 

Vitamin C is decreased in inflammatory bowel disease patients (Buffinton and Doe, 1995a) as 
well as heat stressed lactating cows (Padilla and Matsuia, 2006). Supplementation has 
demonstrated positive effects during HS by reducing tocopheroxyl radicals back to the active 
form of vitamin E (Sahin, 2002b). 

Selenium is part of selenoproteins such as glutathione peroxidase, which is a major free radical 
scavenger system in the cell (Loeb et al. , 1988). Selenoproteins also play an important role in 
cell growth as deficiency has been linked to DNA damage and poor cell cycle control (Rao et al., 
2001) which may be pertinent to intestinal integrity due to high enterocyte turnover rate . In 
patients with celiac disease, characterized by small intestine damage, selenium deficiency is a 
risk factor due to poor absorption which can lead to increased reactive oxygen species and 
inflammation (Stazi and Trinti, 2008; Barrett et al., 2013). Supplementation with selenium has 
the potential to reduce lipid peroxidation and epithelial damage to intestinal mucosa, and 
prevent bacterial translocation (Baldwin and Wiley, 2002; Oztork et al. , 2002). Sheep injected 
with selenium during HS lost less weight compared to their HS control counterparts (Alhidary et 
al., 2012). 

Many of the antioxidant compounds listed above have synergistic effects with one another or 
with minerals like zinc (Kucuk et al., 2003; Sahin et al., 2002a, 2002b). Research demonstrating 
effects of supplemental antioxidant on production parameters during HS is scarce and further 
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research is needed to allow for the development of supplementation recommendations, 
particularly in ruminants. 

Dexamethasone 

Dexam~thasone. is a synthetic corticosteroid with anti-endotoxic and anti-inflammatory 
properties. Previous research has demonstrated a marked increase in corticosteroids in 
response to HS (Collier et al., 1982; Baumgard and Rhoads, 2013). Dexamethasone prevented 
the increase in plasma aspartate transaminase and alanine aminotransferase (both markers of 
hepatic health), IL-6 and LPS in a rat model of heat stroke, probably by blocking endotoxemia 
(Lim et al., 2007). Also in a heat stroke model, primates injected with corticosteroid had reduced 
endotoxemia as well as an increased survival rate (Gathiram et al., 1988a, 1988b). Further 
research is needed within the livestock industry to explore potential pharmacological roles of 
dexamethasone in heat stress abatement practices. 

Betaine 

Betaine, also known as trimethylglycine, is an osmotic regulator and methyl donor which may 
exhibit several beneficial effects in heat-stressed animals including the potential to protect 
against osmotic stress by decreasing sodium potassium pump activity (Cronje, 2007). 
Betain supplementation improves intestinal integrity in both healthy and coccidian infected birds 
(Kettunen et al., 2001 ). In addition, betaine ameliorated the effects of HS on weight gain, 
immunity and body temperature indices in rabbits (Hassan et al., 2011 ). Supplemented 
thermoneutral mid-lactation dairy cows experienced an increase in milk yield, a decrease in milk 
protein percent, and altered milk fatty acid profile (Peterson et al., 2012). However, no 
differences were observed in milk production parameters in HS cows (Hall et al., 2012). Lack of 
sufficient evidence in support of or against betaine's role in HS alleviation warrants the need for 
further investigation. 

Management Strategies 

Despite increased efforts to combat HS through nutritional strategies, cooling technology and 
management practices still represent the main approach to relieve HS. Providing shade, 
ventilation, and cooling as well as reducing walking distance can be strategies implemented to 
reduce the harmful effects of HS. Controlling the timing of feeding is also beneficial , as early 
morning and late night feeding helps to push the peak heat of fermentation to cooler parts of the 
day. Pushing up feed often so cows consume several small meals instead of a few large meals 
will aid in acidosis prevention and reduce steep increases in metabolic heat caused by 
consuming a large meal. Stressors of any kind (i.e. vaccinations) should be avoided during 
hotter parts of the day as the combination of HS and handling stress is unfavorable. 
Administration of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) should be 
avoided as they may exacerbate gastrointestinal integrity issues. 

Conclusion 

High ambient temperatures have a negative effect on animal health and performance, costing 
billions of dollars in losses to global animal agriculture. Gut integrity is compromised by HS and 
the resultant systemic inflammation might partially explain its negative effects on production. 
Nutrition is an example of an easily adjustable tactic to ameliorate the detrimental effects of 
environmental hyperthermia. For instance, heat stressed animals shift energy metabolism 
toward carbohydrate usage and reduce lipid oxidation. Therefore, diets or nutritional 
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supplements promoting glucose production (i.e. ionophores) and utilization may be useful. In 
addition, intestinal health improvement via dietary supplementation might be advantageous. 
Finally, cooling management practices such as shade, evaporative cooling, and strategic timing 
of farm activities aid in the mitigation of the adverse effects of HS. Even in today's most well 
managed dairies, HS remains a problem. In order to resolve current HS production issues and 
develop better mitigation strategies, a better understanding of the biology and mechanisms of 
how HS threatens animal health is essential. 
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Let our family business help yours grow. 

Since 1973, Form-A-Feed has worked to build a strong network of knowledgeable staff. Our team 
selling approach offers a unique combination of time-tested products and nutritional innovations 
available in the marketplace today. We're here to help maximize feed efficiency, improve animal 

health, and increase profitability. 

Contact our support teams today to learn how we can help improve your livestock production. 
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