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Abstract The rapid growth of offshore wind energy requires accurate modeling of the wind resource,
which can be depleted by wind farm wakes. Turbulence dissipation rate (𝜖) governs the accuracy of model
predictions of hub-height wind speed and the development and erosion of wakes. Here we assess the
variability of turbulence kinetic energy and 𝜖 using 13 months of observations from a profiling lidar
deployed on a platform off the Massachusetts coast. Offshore, 𝜖 is 2 orders of magnitude smaller than
onshore, with a subtle diurnal cycle. Wind direction influences the annual cycle of turbulence, with larger
values in winter when the wind flows from the land, and smaller values in summer, when the wind flows
from open ocean. Because of the weak turbulence, wind plant wakes will be stronger and persist farther
downwind in summer.

1. Introduction
Wind energy continues to expand as one of the cleanest energy technologies, with its minimal operational
carbon emissions (Boyle, 2004) and zero water consumption (Macknick et al., 2012). Because winds over the
open ocean experience low levels of surface friction (Landberg, 2015), offshore winds tend to be stronger and
steadier. Additionally, the cost of offshore wind energy is decreasing faster than expected (Stiesdal, 2016).
Many favorable locations for offshore wind farm development are close to coastal areas with large electricity
needs (Manwell et al., 2010), minimizing the need for long-distance transmission (Wiser et al., 2015).

Currently, most of the existing offshore wind farms are located in Northern Europe, where they account for
a capacity of about 15GW, with a planned increase to about 74 GW by 2030 (van Hoof, 2017). In the United
States, a single 30-MW commercial offshore wind farm (Deepwater Wind, 2016) has been built. However, the
U.S. offshore technical resource potential is estimated to be nearly double the nation's current electricity use
(Musial et al., 2016). Many offshore wind projects are currently being planned, mostly concentrated along
the Eastern Seaboard. The state of Massachusetts plans to procure 1,600 MW of installed offshore wind,
representing about 11% of its overall energy needs, by 2027 (Musial et al., 2017), with beneficial impacts on
the state's economy and employment (Massachusetts Clean Energy Center et al., 2018).

As offshore wind energy development grows, accurate forecasting of the available wind resource in the off-
shore environment is required. Recent studies (Berg et al., 2019; Yang et al., 2017) show that the hub-height
wind speed predicted by the Weather Research and Forecasting (WRF) model (Skamarock et al., 2005) is
highly sensitive to the parametrization of turbulence dissipation rate (𝜖), which contributes up to 75% of the
variance in hub-height wind speed. Therefore, improved representations of 𝜖 in models are crucially needed
to enhance the accuracy of wind energy forecasting.

Turbulence also plays a key role in the development and subsequent erosion of wind turbine and wind farm
wakes, whose spatial extent can be particularly long offshore (Platis et al., 2018; Siedersleben, Lundquist
et al., 2018; Siedersleben, Platis, et al., 2018), with observed wakes extending beyond 45 km in some cases.
While the erosion of wakes is related to ambient turbulent kinetic energy, the dissipation of turbulence
within the wake, which represents the first step of wake erosion, is defined by the turbulence dissipation
rate. Therefore, an accurate model representation of 𝜖 would allow for a better layout optimization of off-
shore wind farms, which would in turn reduce the large costs related to wind farm wakes (Nygaard, 2014)
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Figure 1. Map of the areas off the coasts of Rhode Island and Massachusetts where future development of offshore wind projects will take place. The location
of the Air-Sea Interaction Tower (ASIT) platform, where the WINDCUBE v2 lidar used in this study was deployed, is shown. ASL = above mean sea level.

deriving from the uncoordinated development of wind projects (Lundquist et al., 2019). An assessment of
the variability of 𝜖 from observations in the offshore atmospheric boundary layer is an essential first step
toward reducing uncertainty in offshore wind energy forecasting and optimizing energy production.

Various techniques to retrieve turbulence dissipation rates from sonic anemometers (Champagne et al.,
1977; Oncley et al., 1996), high-frequency hot-wire anemometers suspended on tethered lifting systems
(Frehlich et al., 2006; Lundquist & Bariteau, 2015), or flown on aircrafts (Fairall et al., 1980) or unmanned
aerial vehicles (Lawrence & Balsley, 2013) have been developed. Despite the potential drawback of their
inherent volume averaging (Frehlich & Cornman, 2002; Wang et al., 2016), the ease of deployment and
extended measurement range of remote sensing instruments have fueled research to derive methods to
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retrieve 𝜖 from lidars (Banakh et al., 1996; Frehlich, 1994; O'Connor et al., 2010; Wulfmeyer et al., 2016) and
radars (McCaffrey et al., 2017; Shaw & LeMone, 2003). The extension and application of these techniques
have led to a systematic assessment of the variability of 𝜖 in both flat (Bodini et al., 2018) and complex ter-
rain (Bodini et al., 2019). However, to the authors' knowledge, no comprehensive analysis of the variability
of turbulence dissipation rate in the offshore environment has been completed.

Here, we assess the temporal variability of the turbulence dissipation rate retrieved from 13 months of obser-
vations from a wind-profiling lidar deployed on an offshore platform. In section 2 we describe the site and
the method used to retrieve 𝜖. Section 3 presents daily and seasonal variability of 𝜖 and its relation to wind
direction and land influence. In section 4, we summarize and conclude our analysis.

2. Data and Methods
2.1. The Massachusetts MetOcean Initiative
A “MetOcean Initiative” (Filippelli et al., 2015) funded by the Massachusetts Clean Energy Center has
collected continuous observations of the atmospheric boundary layer at the Woods Hole Oceanographic
Institution's (WHOI) Air-Sea Interaction Tower (ASIT) since October 2016. The ASIT is a cabled, fixed plat-
form located approximately 3 km south of Martha's Vineyard in 17 m of water (Figure 1), proximate to the
Rhode Island and Massachusetts Wind Energy Areas, the United States' largest region under development
for offshore wind energy extraction. At the site, a suite of wind resource monitoring equipment augmented
the existing sensors deployed by WHOI's Martha's Vineyard Coastal Observatory, including a pair of cup
anemometers above the top of the tower at 26 m above mean sea level (ASL), a wind vane at 23 m ASL, and a
WINDUCUBE version (v2) profiling lidar on the main platform at 13 m ASL. All metocean data collected by
WHOI for the project was validated by AWS Truepower. The v2 lidar measures line-of-sight velocity along
the four cardinal directions with a nominal zenith angle of 28◦, with an additional line-of-sight velocity
measurement along the vertical. The lidar was positioned on a platform extending in the prevailing wind
direction and rotated such that none of the measurement beams were affected by the tower structure. Each
five-beam cycle was completed in approximately 5 s. The lidar took measurements at 10 heights: 53, 60, 80,
90, 100, 120, 140, 160, 180, and 200 m above sea level. Thus, the lidar-measured winds were above the level
of, and not affected by, the tower structure, nor were they expected to exhibit any signal of wave motion.
Data availability from the lidar was high, with relatively limited data loss with height (availability >95% at
53 m ASL, ∼80% at 200 m ASL).

Here, we analyze the first 13 months of observations, from 7 October 2016 to 29 October 2017. Periods during
which precipitation was recorded at WHOI's shore lab on the southern coast of Martha's Vineyard have been
excluded from the analysis.

2.2. Turbulence Dissipation Rate from Profiling Lidars
Turbulence dissipation rate can be estimated from the variance of the line-of-sight velocity measured by pro-
filing lidars following the approach proposed by O'Connor et al. (2010) and refined in Bodini et al. (2018),
assuming locally homogeneous and isotropic turbulence. This approach derives 𝜖 by integrating the turbu-
lence spectrum within the inertial subrange. To do so, the maximum length scale (and thus the sample size)
to include in the calculation must be accurately chosen (Bodini et al., 2018; Tonttila et al., 2015). Here we
use a local regression of the spectrum of the line-of-sight velocity to estimate the extension of the inertial
subrange, as described and tested in Bodini et al. (2019). The distribution of sample size values is between
20 s (5th percentile) and 300 s (95th percentile). 𝜖 is then calculated as

𝜖 = 2𝜋
( 2

3a

)3∕2
(

𝜎
2
b

L2∕3
N − L2∕3

1

)3∕2

, (1)

where a = 0.52 is the one-dimensional Kolmogorov constant (Paquin & Pond, 1971; Sreenivasan, 1995);
L1 = Ut, with U the horizontal wind speed and t the dwell time (i.e., the time the laser beam spends in a
specific position to collect data); and LN = NL1, where N is the size of the line-of-sight velocity sample deter-
mined from the local regression of the experimental spectra. The variance 𝜎

2
b is calculated by subtracting

a contribution due to the instrumental noise from the variance (averaged across the lidar beams) of
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Figure 2. Annual cycle of (a) wind speed, (b) lidar turbulence kinetic
energy (TKE), and (c) turbulence dissipation rate as measured by the
Woods Hole Oceanographic Institution's Air-Sea Interaction Tower lidar. At
each height, data have been smoothed using a 30-day running mean. Data
from the overlapping calendar days in October 2016 and 2017 have been
averaged.

line-of-sight velocity 𝜎
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v : 𝜎2
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2
e is defined as in equation

(2) in Pearson et al. (2009; see the supporting information). More details
of this method are available in Bodini et al. (2018, 2019).

3. Results
Turbulence dissipation occurs in an environment determined by wind
speed, whose annual cycle at the site is shown in Figure 2a. Wind
speeds are strong during winter, with average values above 10 m/s at
wind-turbine hub-heights throughout the season, while summer shows
smaller values, with minima in August, when the average wind speeds
were less than 10 m/s at every observed height. Turbulence quantities also
exhibit an annual cycle. We calculate turbulence kinetic energy (TKE) as

TKE = 1
2
(
𝜎

2
u + 𝜎

2
v + 𝜎

2
w
)
, (2)

where the variances of the wind components are calculated over 2-min
intervals. As noted by Sathe et al. (2011), lidars cannot fully resolve the
wind variances, as a sonic anemometer would, given the lidars' limited
temporal frequency. However, as data from a sonic anemometer are not
available, we calculate TKE using lidar data and will refer to it as lidar
TKE (Kumer et al., 2016; Rhodes & Lundquist, 2013). The annual cycle of
lidar TKE (Figure 2b) reveals a clear pattern, with extremely small values
during the summer, and larger values in winter, with little dependence
on height. The annual variability of turbulence dissipation (Figure 2c)
follows a similar pattern, with maximum in fall and winter, and summer-
time minima in the summer. Monthly average values of 𝜖 correlate well
with monthly average lidar TKE (R = 0.88): When the kinetic energy
of turbulence is large, large values of 𝜖 are usually needed to dissipate
this energy. Monthly average wind speed has a smaller correlation with 𝜖

(R = 0.71), with some discrepancies (e.g., June). The annual cycle of 𝜖 at
this offshore location contrasts from that in similar campaigns onshore,
where the annual cycle of 𝜖 is mainly driven by the seasonal cycle of
convection, with larger turbulence in summer due to increased convec-
tion, and more quiescent conditions in winter due to higher stratification
(Bodini et al., 2019).

The annual variability of wind speed and turbulent properties impacts
the average diurnal climatologies of these variables in different seasons
(Figure 3). Wind speed tends to increase during the late afternoon and at
night, while in daytime conditions lower average wind speeds occur, with

weaker shear, as also found by Archer et al. (2016). On average, summer months (Figure 3b) show a larger
diurnal cycle of wind speed compared to winter (Figure 3a). In contrast to this diurnal cycle in wind speed,
the diurnal cycle of lidar TKE (Figures 3c and 3d) is subtle, with a small variability with height. The aver-
age diurnal cycles of 𝜖 offshore (Figures 3e and 3f) resemble that of lidar TKE, with differences greater than
1 order of magnitude between winter and summer. In summer, 𝜖 shows local minima at ∼100 m ASL, and
increased values at ∼200 m ASL, especially during local morning. In contrast, in winter 𝜖 minima occur in
the morning at ∼200 m ASL. Average differences throughout the day in 𝜖 are smaller than 1 order of mag-
nitude, whereas the diurnal cycle of 𝜖 onshore, in both flat (Bodini et al., 2018) and complex (Bodini et al.,
2019) terrain, shows a larger amplitude, with differences of at least 1 order of magnitude between larger
daytime values and smaller nighttime values. Moreover, average values of 𝜖 are smaller (in some cases by
more than an order of magnitude) than onshore (Bodini et al., 2018, 2019).

The summer minimum in lidar TKE and turbulence dissipation rate occurs because of wind regimes. North-
westerly, westerly, and southwesterly winds dominate at the ASIT site (Figure 4a). Wind direction dictates
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Figure 3. Average diurnal climatologies of wind speed, lidar turbulence kinetic energy (TKE), and turbulence
dissipation rate for December, January, and February (panels a, c, and e) and June, July, and August (panels b, d, and f)
as measured by the Woods Hole Oceanographic Institution's Air-Sea Interaction Tower lidar.

turbulence properties: Northwesterly winds generally lead to large values of lidar TKE and 𝜖. In contrast,
southwesterly winds generally cause low turbulence regimes (panels d and g). This relationship between
wind direction and turbulence arises due to the location of the ASIT platform (Figure 1). During northwest-
erly winds, the flow interacts with the land before reaching the offshore platform. This land wake effect
generates turbulence, both in terms of lidar TKE and 𝜖. In contrast, southwesterly winds come from the
open ocean, where lower roughness causes smaller values of lidar TKE and turbulence dissipation rates. In
summer (June, July, and August), winds are almost exclusively southwesterly (Figure 4c), associated with
lidar TKE generally smaller than 0.2 m2/s2 (at 100 m ASL; Figure 4f) and turbulence dissipation rarely
exceeding 10−3 m2/s3 (Figure 4i). In contrast, during winter, northwesterly winds dominate (Figure 4b), with
larger TKE (Figure 4c) and 𝜖 (Figure 4h). The annual cycle of turbulence dissipation rate offshore is more
influenced by the wind-land interaction rather than the seasonal cycle itself.

An annual cycle also emerges in wind veer, another important atmospheric variable that affects the structure
of wind turbine wakes (Abkar et al., 2018; Bodini et al., 2017; Churchfield & Sirnivas, 2018). We calculate
wind veer as the difference in 2-min average wind direction, calculated from the lidar, between 40 and 200
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Figure 4. Roses of (a–c) wind speed, (d–f) lidar turbulence kinetic energy (TKE), and (g–i) turbulence dissipation rate, at 100 m, from the (a, d, and g) full
13-month period considered; (b, e, and h) December, January, and February; and (c, f, and i) June, July, and August, as measured by the Woods Hole
Oceanographic Institution's Air-Sea Interaction Tower lidar.

m ASL, typical vertical limits for the rotor of offshore wind turbines. Wind veering occurs 70% of the time,
with wind backing during 30% of the cases (histogram in the supporting information). Histograms of the
absolute value wind veer and backing are shown in Figure 5. We highlight wind veer values with an average
(between the chosen levels) wind speed between 3 and 13 m/s, corresponding to region 2, the area of the
power curve where power is more sensitive to wind speed (Manwell et al., 2010), of the Siemens Gamesa 7.0
MW turbine. Large wind veer often occurs, with an average value of 0.07◦ m−1 (0.08◦ m−1 for region 2 wind
speeds) over the whole period of observations (panel a). However, important differences between the seasons
emerge. In winter (panel b), the average wind veer wind (0.05◦ m−1, 0.04◦ m−1 for region 2 wind speeds) is
only half of the summer average (0.10◦ m−1, 0.09◦ m−1 for region 2 wind speeds). The summertime offshore
wind veer conditions are similar to the nighttime stable conditions found onshore in Walter et al. (2009).
Veer is of particular interest with respect to wind turbine wake propagation (Bodini et al., 2017; Churchfield
& Sirnivas, 2018) and wakes impact power production the most at wind speeds in region 2. The coupling
of the strong veer in summertime with low dissipation will result in long-propagating but skewed wakes,
impacting power production and turbulent loads on downwind turbines.
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Figure 5. Histograms of 2-min average wind veer between 40 and 200 m above mean sea level as measured by the
Woods Hole Oceanographic Institution's Air-Sea Interaction Tower lidar from the 13 months of observations (panel a);
June, July, and August (panel b); and December, January, and February (panel c).

4. Discussion and Conclusions
Offshore wind power plant wakes can extend tens of km downwind (Platis et al., 2018; Siedersleben, Platis,
et al., 2018; Siedersleben, Lundquist et al., 2018) in low-turbulence, stably stratified conditions. These wakes
undermine offshore power production (Nygaard, 2014). Because wind power plant wake propagation is
influenced by turbulence variability (Lundquist et al., 2019), we assess turbulence dissipation rate (𝜖) from
a year-long data set of offshore wind lidar deployment.

We have retrieved 𝜖 from 13 months of observations from a profiling lidar located on an offshore platform
∼3 km south of Martha's Vineyard. Offshore 𝜖 has, on average, smaller values compared to those found in
comparable studies onshore, with a weak diurnal cycle. The small average values of 𝜖 are conducive to strong
and long-lived wakes such as wakes observed in stable stratification in the North Sea (Platis et al., 2018;
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Siedersleben, Lundquist et al., 2018; Siedersleben, Platis, et al., 2018). Moreover, this extended persistence
of wakes will occur throughout the diurnal cycle, given the absence of strong turbulence dissipation even
in convective daytime conditions. The seasonal cycle of 𝜖 is influenced by wind direction. When the wind
comes from land, interactions between the wind and onshore topography increase TKE (and 𝜖) observed
offshore and, consequently, turbulence dissipation. Therefore, study of optimal layouts of offshore wind
farms should consider the different turbulence regimes associated with the dominant wind patterns at each
site, to take advantage of faster wake erosion connected to larger dissipation values caused by land wake
effects.

Although offshore wind resource is considerable, and daily timing of wind speed increases from sea breezes
are valuable for integrating wind energy into power grids, south-southwesterly flow would lead to increased
wind speeds but also reduced turbulence, leading to more persistent wakes. Moreover, summertime wakes
would be affected by wind veer greater than 0.3◦ m−1; even larger values occur during wind gusts (Worsnop
et al., 2017). This veer can impact effectiveness of wake steering solutions (Fleming et al., 2017, 2019) to
minimize wake energy loss. Moreover, as wind farm lease areas are more than 25 km offshore, even the
stronger turbulence conditions observed in the winter could represent an extreme upper bound on turbu-
lence in the lease areas. The increased turbulence produced by the flow interaction with the land would
likely dissipate further offshore. As offshore wind power plants in this region are developed, consideration
of the likely persistence of wind power plant wakes will be required to predict the wind resource and effects
of skewed wakes on turbine operations and maintenance costs.

Given the complexity of interactions between 𝜖 and other atmospheric variables, as well as the importance
of the interaction with topography, machine learning techniques could improve the model parametrizations
of 𝜖, as already successfully done with other atmospheric phenomena (Gentine et al., 2018; Sharma et al.,
2011; Xingjian et al., 2015).
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