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Abstract We present a method to calculate landslide hazard curves along offshore margins based on size
distributions of submarine landslides. The method utilizes 10 different continental margins that were
mapped by high‐resolution multibeam sonar with landslide scar areas measured by a consistent Geographic
Information System procedure. Statistical tests of several different probability distribution models indicate
that the lognormal model is most appropriate for these siliciclastic environments, consistent with an earlier
study of the U.S. Atlantic margin (Chaytor et al., 2009, https://doi.org/10.1016/j.margeo.2008.08.007).
Parameter estimation is performed using the maximum likelihood technique, and confidence intervals are
determined using likelihood profiles. Pairwise comparison of size distributions for the 10 margins indicates
that the U.S. Atlantic and Queen Charlotte margins are different than most other margins. These margins
represent end‐members, with the U.S. Atlantic margin having the highest mean scar area and the Queen
Charlotte margin the lowest. We demonstrate that empirical, offshore landslide hazard curves can be
developed from the landslide size distributions, if the duration of mapped landslide activity is known. This
study indicates that the shape parameter of the size distribution is similar among all 10margins, and thus, the
shape of the hazard curves is also similar. Significant differences in hazard curves among the margins are
therefore related to differences inmean sizes and, potentially, differences in the duration of landslide activity.

1. Introduction

Offshore landslides present direct hazards to wind farms, oil and gas platforms, pipelines, communication
cables, and other infrastructure. Landslides also present an indirect hazard by way of the tsunamis they gen-
erate. One way landslide hazards can be quantified is by what we term the offshore landslide hazard curve.
Hazard curves plot probability of exceedance as a function of a hazard metric, such as peak ground accelera-
tion for earthquakes and peak amplitude for tsunamis. For offshore landslides, the hazardmetric is landslide
size, represented in this study by the scar area. Scar area is chosen because scar areas and scar volumes in
siliciclastic offshore margins were shown to be almost linearly correlated (Chaytor et al., 2009; ten Brink
et al., 2014). Onshore, landslide hazard curves can be developed from a geotechnical approach where there
is detailed information on the site response to seismic ground shaking, the topographic slope, and subsurface
physical properties. For offshore landslides, however, information on site response and subsurface physical
properties offshore is rarely available and topographic slope is poorly correlated with the extent of slope fail-
ure (ten Brink et al., 2016). Our approach is therefore to empirically develop landslide hazard curves, using
the statistics of past offshore landslide sizes and occurrence. Observations of landslide size distribution are
easily obtainable using seafloor mapping tools and are a key ingredient in developing the empirical landslide
hazard curve. The size distribution is also important for aggregating landslide sources in the development of
tsunami hazard curves (Geist et al., 2009; Geist & Lynett, 2014; Grezio et al., 2017; Lane et al., 2016).

It has previously been noted that there is a distinct difference in the sizes of offshore landslides along seis-
mically active margins compared to rarely active (commonly known as “passive”) margins (McAdoo et al.,
2000; Urgeles & Camerlenghi, 2013). The paradox is that the largest landslides commonly occur along
rarely active margins, where the frequency and severity of ground shaking from earthquakes is lower
than in active margins. Recently, ten Brink et al. (2016) correlated the fraction of each margin covered
by observed landslide scars with a combined factor that includes sedimentation rate and earthquake
recurrence, both taken from the published literature. Landslide scars along the margin increase exponen-
tially with the average sediment thickness that accumulates during a mean interseismic interval. In addi-
tion, their analysis shows that sedimentation rate and earthquake recurrence are independent variables
and that the slope angle does not affect landslide distribution. Their interpretation of the empirical
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correlation is that cyclic loading by seismic shaking increases the sediment strength for future shaking, by
rearranging the grains and decreasing the pore pressure (Lee et al., 2004; Strozyk et al., 2010). As
explained by ten Brink et al. (2016), some deviations in the correlation may be caused by rapid overstee-
pening of the slope in tectonically active regions.

The primary objective of this study is to quantitatively estimate the probability distribution of landslide sizes
along the margins examined by ten Brink et al. (2016), both rarely active and active. Chaytor et al. (2009) and
ten Brink et al. (2009) noted that the composition of landslide material has an effect on the distribution that
best fits the data. Whereas failure of carbonate platforms tend to be distributed according to a power law (ten
Brink et al., 2006), failures of siliciclastic material follow a lognormal distribution, although Urgeles and
Camerlenghi (2013) suggest that landslides in the Mediterranean Sea also follow a power law. In this study,
because all of the margins are dominated by siliciclastic material, we will focus on the lognormal model. To
verify that the lognormal model is the distribution that best fits these margins, in section 3 we statistically
evaluate the lognormal model relative to other possible relevant models including the power law. In
section 4, we propose a procedure to develop the offshore landslide hazard curve, which involves estimating
the duration of landslide activity in addition to the size distribution. A previous study examined the details of
the temporal distribution of failures at an Integrated Ocean Drilling Program site containing repeated mass
transport deposits (Geist et al., 2013) that complements the results of this study.

2. Data

Multibeam bathymetric surveys used to establish landslide size distributions for 10 different margins
(Figure 1) have been compiled by ten Brink et al. (2016). These margins span a range of sedimentation rates
andmean earthquake recurrence rates. The multibeam data have different spatial resolutions, depending on
the survey, but identical Geographic Information System‐based analysis methods were used to estimate indi-
vidual scar areas for each margin (Chaytor et al., 2009; ten Brink et al., 2006). The scar areas are defined by
an excavation region partly surrounded by scarps that break the local slope. All the scar areas were identified
on 1;100,000 scale maps regardless of grid resolution. Scars along submarine canyons were ignored because
they probably formed by collapses into deepening channels, and not by ground shaking. In addition, only the
continental slope is examined along the margins, ignoring landslides that, for example, occur on the conti-
nental rise of the U.S. Atlantic (Chaytor et al., 2009).

The 10 margins shown in Figure 1 include Washington and northern Oregon (north of 45.1°, termed
Cascadia North), S. Oregon (termed Cascadia South), El‐Salvador‐Guatemala, Nicaragua‐northern Costa
Rica, Makran, and northern Sumatra, where plate subduction is taking place, the convergent margin of
Muertos (northern Caribbean), the transpressive margin of Queen Charlotte Fault at Haida Gwaii,
Canada, and the rarely active margins of southern New England (U.S. Atlantic margin) and Israel. These
margins are associated with a range of earthquake frequencies, sedimentation rates, slope gradients, and
morphological profiles. These margins were selected because high‐resolution multibeam bathymetry was
available over large contiguous areas of the continental slope with along‐strike length > 100 km.
Additional description of the mapping methods, polygon data, and data sources is given in ten Brink
et al. (2016).

3. Estimation of Landslide Size Distributions

Based on previous studies (Chaytor et al., 2009; ten Brink, Barkan, et al., 2009), the lognormal distribution
appears to be an appropriate initial probability model for landslides involving siliclastic sediment. We first
estimate the parameters for the lognormal model specific to each of the regions and then evaluate the model
in comparison to other probability distributions below. The probability density function (pdf) for the lognor-
mal distribution of landslide scar areas f(a) is given by

f að Þ ¼ 1ffiffiffiffiffiffi
2π

p
σa

e−
ln að Þ − μ½ �2

2σ2 ; (1)

where μ is a location parameter and σ is a shape parameter. The expected value (i.e., mean) for the lognormal
distribution is given by exp(μ+ σ 2/2), the variance by [exp(σ 2)−1] exp(2 μ+ σ2), and median by exp(μ). Size
distributions are often displayed as the complement to the cumulative distribution function, also known as
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the survival function. The survival function yields the probability that a landslide greater than a particular
size will occur, which is important for hazard calculations. For the lognormal distribution, the survival
function is given by

1−F að Þ ¼ 1
2
−
1
2
erf

ln a−μffiffiffi
2

p
σ

� �
; (2)

where erf is the error function.

3.1. Method

We use the maximum likelihood method to estimate the parameters of the lognormal distribution. For a
given probability distribution, the likelihood function represents how likely a set of data points would be
observed for a specific set of distribution parameters (Aitkin, 2010). The log‐likelihood function (ℓ) asso-
ciated with the lognormal distribution is given by

l μ; σj a1; a2;…anð Þ

¼ −
n
2
ln 2πσ2

� �
−∑

n

i¼1
ln aið Þ −

∑n
i¼1 ln aið Þ−μ½ �2

2σ2
(3)

The optimal parameters are those that represent the maximum in the log‐likelihood function, termed the
maximum likelihood estimate (MLE). Equations for the MLE of the lognormal parameters are given below:

Figure 1. Location maps and scar areas (black) of 10 margins analyzed in this study. From ten Brink et al. (2016).
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bμ ¼ ∑n
i¼ 1 ln aið Þ

n
and bσ2 ¼ ∑n

i¼ 1 ln aið Þ−∑n
i ¼ 1 ln aið Þ

n

� �2

n
(4)

Shown in Figure 2 is a contour plot of the log‐likelihood function for land-
slides along the U.S. Atlantic margin, along with the MLE of the optimal
parameters shown by the red dot. The major and minor axes of the con-
tour region are approximately parallel to the μ and σ axes, indicating that
the two parameter estimates are not correlated.

Confidence intervals for each parameter are established using likelihood
profiles. A likelihood profile is determined by fixing one of the parameters
at its MLE and calculating the likelihood as a function of the other free
parameter (Aitkin, 2010; Pawitan, 2001). The likelihood profile is defined
as

bθL;bθUh i
¼ θ; 2 ℓ bθ� �

−ℓ θð Þ
h i

< χ295% 1½ �
n o

; (5)

where bθL;bθU are the lower and upper bounds, respectively, of each of the
distribution parameters and χ295% 1½ � chi‐square distribution with 1 degree
of freedom.

To determine whether the lognormal distribution with the estimated
parameters is an appropriate model for each margin, we apply a
goodness‐of‐fit hypothesis test. The most common test is the one‐sample
Kolmogorov‐Smirnov (K‐S) test. However, we examine the statistical
power of the K‐S test along with a number of other tests and determine

that the Cramér von Mises (CvM) test (Conover, 1971) performs better for these data than the one‐sample
K‐S test. We report p values that indicate the probability of obtaining a result equal to or more extreme than
what was observed, given the null hypothesis that the data follow a lognormal distribution. In this study, we
reject the null hypothesis (i.e., the lognormal distribution models the data) for p values less than 0.05.

3.2. Results

Estimates of lognormal distribution parameters for scar areas along the 10 margins are listed in Table 1. Also
shown are the 95% confidence intervals for each parameter and the p value from the CvM test. The lognor-
mal model cannot be rejected for any of the margins according to the CvM test. The corrected Akaike infor-
mation criterion value (AICc) is also listed in Table 1 and is used for comparison with other probability
models (not among margins) and is described in section 3.3. Overall, the parameter μ varies significantly
among the 10 margins, with the U.S. Atlantic and Queen Charlotte margins being the high and low end‐

Figure 2. Likelihood contour map for two parameters of lognormal distri-
bution (μ, σ) using the U.S. Atlantic data set. Maximum likelihood esti-
mate (MLE) shown by a red dot. The 95% and 99% confidence intervals (CI)
are shown by blue and green contours, respectively.

Table 1
Estimated Lognormal Distribution Parameters (From Scar Area Data in Square Kilometers), 95% Confidence Range, CvM p Values, and AICc

MLE 95% confidence
Region name Resolution (m) n μ σ μ σ CvM p value AICc

Atlantic (U.S.) 50 50 2.84 1.51 2.32–3.37 1.21–1.98 0.88 468.1
Cascadia N. 100 79 1.43 0.97 1.16–1.70 0.81–1.20 0.67 446.4
Cascadia S. 100 98 2.00 1.34 1.67–2.33 1.13–1.61 0.67 726.3
El Salvador‐Guatemala 100 90 1.08 1.27 0.76–1.41 1.07–1.54 0.90 493.5
Israel 50 106 1.30 1.08 1.05–1.56 0.92–1.29 0.43 594.7
Makran 100 106 1.01 0.87 0.81–1.22 0.74–1.04 0.99 486.2
Muertos Trough 50 242 1.39 1.24 1.20–1.59 1.11–1.38 0.84 1,463.
Nicaragua 100 55 1.23 1.33 0.79–1.67 1.07–1.71 0.46 322.8
Queen Charlotte 10 64 −2.00 1.22 −2.37 to −1.62 0.99–1.54 0.50 −48.7
Sumatra 50 198 1.17 1.06 0.98–1.35 0.94–1.20 0.84 1,047.

Note. CvM = Cramér von Mises; AICc = corrected Akaike information criterion; MLE = maximum likelihood estimate.
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members, respectively. In contrast, there is much less variation in the σ
parameter among each of the margins. This is evident in Figure 3, where
the survival functions have similar shape in log space, with shifts parallel
to the landslide area axis relating to differences in μ.

Data resolution has a slight effect on parameter estimation results,
depending on the relation between the minimum scar area and the detec-
tion threshold (at). The threshold for detection is fixed at a 3 × 3 grid cell
area, with the resolution for each survey given in Table 1. The detection
threshold for the 50‐m‐resolution data sets is at = 0.0225 km2, the 100‐m
data sets is at = 0.09 km2, and 10‐m data set (Queen Charlotte) is
at = 0.0009 km2. We demonstrate the largest potential effect of data reso-
lution on parameter estimation by examining the end‐member case of the
Queen Charlotte data set, which has the lowest mean scar area and finest

resolution. If we left censor the data set at at = 0.0225 km2 (i.e., corresponding to 50‐m resolution), only one
data point is removed and theMLE is only slightly changed (bμ ¼ −1:96; bσ ¼ 1:20). If, however, we left censor
the data set at at = 0.09 km2 (i.e., corresponding to 100‐m resolution), more of the data are removed and
there is a more significant change in the MLE (bμ ¼ −1:28; bσ ¼ 1:00). For the other data sets, the bulk of
the distribution is greater than the detection threshold and there is little to no effect. Data resolution, how-
ever, is an important factor to consider when designing bathymetric surveys of landslide activity.

3.3. Comparison to Other Model Distributions

Although the lognormal distributionmodel has been selected in previous studies (Chaytor et al., 2009) and is
a natural distribution to model positive and skewed sizes, it is worthwhile to compare the fit to this model
with other possible distributions. We examine two other distributions: the Weibull distribution and the
tapered Pareto distribution as described below.

To compare the three distribution models with the landslide data, we use the Akaike information criterion
(AIC) based on the log‐likelihood function for each distribution. The AIC is evaluated at the maximum value
of the likelihood function (Burnham & Anderson, 2010):

AIC ¼ 2K−2max ℓ μ; σð Þja½ �; (6)

where K is the number of distribution parameters. For small samples, there is a correction factor applied to
the AIC given by (Burnham & Anderson, 2010; Hurvich & Tsai, 1989)

AICc ¼ AIC þ 2K K þ 1ð Þ
n−K−1

: (7)

The AIC balances the goodness of fit for each distribution with the num-
ber of probability parameters (K), although in this study, all three distribu-
tion models have two parameters. An alternative method to compare
distribution models is use of an L‐moment diagram (Hosking, 1990) that
is based on a weighted combination of the first four statistical moments.
Kim et al. (2014) have applied this method to evaluate different distribu-
tion models for the spatial variability of tsunami wave heights.

The Weibull distribution is another skewed distribution for nonnegative
random variables that is often compared with the lognormal distribution
(e.g., Geist et al., 2013). The pdf of the distribution is given by

f að Þ ¼ α
β

a
β

� �α−1

e−
a
βð Þα ; (8)

where β is a scale parameter and α is a shape parameter. The mean for this
distribution is given by βΓ(1 + 1/α), where Γ is the gamma function.

Parameter estimation results for the Weibull distribution using the maxi-
mum likelihood technique are given in Table 2. For each margin except

Figure 3. Survival functions (complement of cumulative distribution) of
landslide scar areas using the maximum likelihood estimate of lognormal
distribution parameters (Table 1).

Table 2
Estimated Weibull Distribution Parameters (From Scar Area Data in Square
Kilometers), CvM p Values (Bold: Fails Test), and AICc

MLE
Region name α β (km2) CvM p value AICc

Atlantic (U.S.) 0.70 36.6 0.49 473.4
Cascadia N. 1.22 6.64 0.70 442.3
Cascadia S. 0.79 14.4 0.27 737.4
El Salvador‐Guatemala 0.83 5.54 0.49 502.7
Israel 1.00 6.31 0.54 602.1
Makran 1.18 4.27 0.31 500.9
Muertos Trough 0.82 7.49 0.07 1501.
Nicaragua 0.68 6.89 0.07a 340.5
Queen Charlotte 0.68 0.26 0.06 −21.8
Sumatra 0.92 5.50 0.03 1087.

Note. CvM = Cramér von Mises; AICc = corrected Akaike information
criterion; MLE = maximum likelihood estimate.
aFails Kolmogorov‐Smirnov test.
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Sumatra, the Weibull distribution cannot be rejected using the CvM test.
For the Nicaragua data set, the distribution fails the K‐S test. For each
margin except Cascadia North, the AICc value is greater than the AICc
for the lognormal distribution, indicating that the lognormal distribution
is a better fit.

The tapered Pareto distribution has been used extensively to model the
distribution of earthquake sizes (Kagan, 2002a) and has been extended
to other natural hazards (Geist & Parsons, 2014; Vere‐Jones et al., 2001).
In addition, a power law distribution with an exponential rollover at small
sizes has been used to model subaerial landslides (Malamud et al., 2004).
Power law type distributions such as these and the lognormal distribution
are often indistinguishable over a large range of sizes (Sornette, 2004). The
pdf of the tapered Pareto distribution is given by

f að Þ ¼ β
a
þ 1
ac

	 

at
a

� �β
exp

at−a
ac

� �
for at≤a; (9)

where β is the shape parameter (power law exponent) and ac is a corner
size or turning point. The minimum threshold amplitude at is usually interpreted as a detection threshold
and is not an independently estimated parameter. For the multibeam bathymetric surveys, the detection
threshold is fixed at a 3 × 3 grid cell area, as described in section 3.2. The likelihood function associated with
the tapered Pareto distribution is given by Kagan (2002a), and the numerical method to find the MLE is
given in Geist and Parsons (2014).

Parameter estimation results for the tapered Pareto distribution are listed in Table 3. For all margins, the
power law exponent is very small or 0, indicating that the exponential term dominates the distribution
(equation (9)). Thus, the distribution is more like a shifted exponential distribution, rather than a power
law distribution of sizes (see also ten Brink, Barkan, et al., 2009). The distribution can be rejected for 6 of
the 10 margins. In each case, the AICc values are higher than the values associated with the lognormal dis-
tribution, indicating again than the lognormal distribution is the preferred model.

Figure 4 below shows a comparison of the best fit distributions for the three models, using the U.S. Atlantic
margin data set.

3.4. Are All Margins Different?

Given the uncertainty in lognormal parameter estimates (Table 1), it is worthwhile to perform a pairwise test
of the margins to determine whether differences in landslide distributions are statistically significant.
Because the size distribution forms the basis of all hazard assessments, statistically significant differences

in distributions between margins point to differences in the relative
hazard. We employ two different tests: (1) the z test modified for the log-
normal distribution and (2) the two‐sample K‐S test.

For the first test, theMLE of the two lognormal parameters are used to cal-
culate a z score as developed by Zhou et al. (1997):

z ¼ bμ2−bμ1 þ 1
2 bσ22−bσ21� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibσ21

n1
þbσ22

n2
þ 1

2
bσ41
n1−1

þ bσ42
n2−1

� �s (10)

Under the null hypothesis that two populations are drawn from the same
distribution, z would follow a standard normal distribution. Results from
a pairwise comparison using this z test are shown in Figure 5. Of note, we
can reject the hypothesis that the landslide distribution along the U.S.
Atlantic is the same as most other margins. The U.S. Atlantic has the high-
est mean sizes. On the other end of the spectrum, the Queen Charlotte
margin has the lowest mean sizes and is also unlike most other margins.

Table 3
Estimated Tapered Pareto Distribution Parameters (From Scar Area Data in
Square Kilometers), CvM p Values (Bold: Fails Test), and AICc

MLE
Region name β ac (km

2) CvM p value AICc

Atlantic (U.S.) 0.0094 51.3 0.014a 487.0
Cascadia N. 0.00b 6.19 0.46 446.3
Cascadia S. 0.016 17.8 0.016a 746.3
El Salvador‐Guatemala 0.022 6.73 0.11 502.2
Israel 0.00b 6.27 0.56 601.4
Makran 0.00b 3.91 0.27 501.2
Muertos Trough 0.00b 8.51 0.00a 1520.
Nicaragua 0.010 15.4 0.014a 353.0
Queen Charlotte 0.00b 0.38 0.00a 6.28
Sumatra 0.00b 5.75 0.0084 1089.

Note. CvM = Cramér von Mises; AICc = corrected Akaike information
criterion; MLE = maximum likelihood estimate.
aFails Kolmogorov‐Smirnov test. bShifted exponential distribution.

Figure 4. Survival functions for three probability models in comparison to
the empirical distribution function (EDF) for the U.S. Atlantic data set.
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Pairs of margins in geographic proximity to one another appear to have similar landslide distributions,
owing possibly to a similar depositional environment and mean recurrence time of triggering
earthquakes.

The second test is a nonparametric test, the two‐sample K‐S test, based on the null hypothesis that the data
come from the same distribution (Conover, 1971; Gibbons & Chakraborti, 2004). Note in this case we care
comparing two data sets directly without specifying a particular probability model. Results using the two‐
sample K‐S test are shown in Figure 6 indicate that more margin pairs are rejected as having the same size
distribution compared to the z test.

3.5. Relation to Total Scar Area

The total area of the margin that has failed in landslides, as evidenced by the scars, can be directly related to
the estimated probability distributions. The total scar area (A) is given by the expected (mean) value of the
distribution and the number of landslides n:

A ¼ n exp μþ σ2

2

� �
(11)

To further evaluate the appropriateness of the lognormal model, we plot the expected mean from the lognor-
mal distribution against the observed samplemean (Figure 7a). We also plot the total of scar areas frommap-
ping and the total scar area estimated from the probability distribution using equation (11) (Figure 7b). In
both cases, we see a close correspondence between predicted and observed values.

3.6. Effect of Finite Sampling on Area Sums

To determine the effect of finite sampling on the total landslide area and scar fraction for a margin, we create
synthetic landslide catalogs using the estimated lognormal distribution. For example, Figure 8 shows 10 syn-
thetic landslide catalogs (thin blue lines) sampled from the parent distribution for the U.S. Atlantic margin,
in this case our MLE distribution (heavy red line). The same number of landslides as in the observed catalog
(n = 50) was used to create the synthetic catalogs. The heavy blue line shows the observed empirical

Figure 5. Pairwise comparison of margins using the z test. Color‐shaded pairs cannot reject the null hypothesis that the
distribution of landslide sizes is the same.
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distribution. The range of total landslide area is 1,933–3,144 km2, which would vary slightly for a different
set of 10 synthetic landslide catalogs.

We repeat this procedure for each margin, using 100 synthetic catalogs and the margin‐specific MLE distri-
bution. Because each margin has a different catalog length (n) listed in Table 1, the effect of random sam-
pling on total landslide area will vary as shown by the box plots in Figure 9a. Smaller catalog lengths such
as for the U.S. Atlantic and Nicaragua result in larger variation in total area. The effect of finite sampling also
extends to estimates of the scar fraction as well (Figure 9b). The scar fraction normalizes the data sets accord-
ing to the area of the margin that is mapped.

The 10 different data sets can be nondimensionalized and aggregated together, as indicated by Choi et al.
(2006, 2002) who examine the lognormal distribution applied to the spatial variability of tsunami wave

heights at the coast. The nondimensional scar area is given by ζ ¼ a
a

� �1=σ
, where a ¼ eμ is the geometric

mean for each data set. Accordingly, the distribution that describes the nondimensional data is a special case
of the lognormal distribution where μ = 0 and σ = 1, also known as Gibrat's distribution, with survival
function

1−F ζð Þ ¼ 1
2
−
1
2
erf

lnζffiffiffi
2

p
� �

: (12)

Shown in Figure 10 is the empirical distribution function for all of the data from the 10 data sets (n = 1,088)
along with the distribution given by equation (12). A close match is observed.

In terms of determining how large an area needs to be mapped in order to accurately assess landslide statis-
tics, uncertainty in scar fraction depends only on the total number of mapped landslides rather than the
mapped area. Regions with low landslide activity will likely need a larger mapped area. A larger mapped
area would also be needed to account for any spatial variation in depositional patterns. For the margins ana-
lyzed in this study, each of the mapped regions is large enough to encompass a sufficient number of land-
slides (nominally, n > 30) to estimate the probability distribution. As indicated in section 3.2, it is also
important to consider the resolution of the multibeam bathymetry relative to the smallest minimum
expected scar areas.

Figure 6. Pairwise comparison of margins using the two‐sample Kolmogorov‐Smirnov test. Color‐shaded pairs cannot
reject the null hypothesis that the distribution of landslide sizes is the same.
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4. Development of Offshore Landslide Hazard Curves

An offshore landslide hazard curve plots exceedance probability or rate as a function of a hazard metric: in
this case, scar area. The hazard curve can be determined from the landslide size distribution derived in
section 3 if the duration of mapped landslide (TD) activity occurred is known. We assume that landslides
occur in time according to a stationary Poisson process (Urlaub et al., 2013), such that the probability of
one or more landslides over T years follows an exponential distribution:

P ¼ 1− exp −λTð Þ; (13)

where λ is termed the rate or intensity parameter. This is a time‐independent distribution, meaning that the
probability is constant with time. For comparison, time‐dependent distributions have been previously eval-
uated in comparison to the exponential distribution at an Integrated Ocean Drilling Program site with
repeated mass transport deposits by Geist et al. (2013). The hazard curve combines the survival function
for the landslide size distribution with the overall rate of occurrence (α):

λ að Þ ¼ α 1−F að Þ½ � (14)

The overall rate can be simply thought of a α = n/TD, where n is the number of landslides above the resolu-
tion threshold (Table 1). TD can be estimated using the age of the oldest landslide, although as described
below this age is frequently unknown. However, a more complete calculation of α includes uncertainty

Figure 7. Comparison of observed and predicted scar areas (km2) in evaluating the maximum likelihood estimate lognor-
mal model: (a) mean area and (b) total area. Dashed line is 1:1 reference.
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related to the open time intervals before the oldest slide and after the
youngest slide (cf. Geist et al., 2013 ; Parsons, 2008). This estimate of α also
assumes that the rate is stationary since the age of the oldest landslide (cf.
Lee, 2009; Urlaub et al., 2013), which may not be valid in regions where
the sedimentation rate varies quickly in geologic time, such as for gla-
ciated margins. The empirical determination of a landslide hazard curve
as outlined above is distinct from a geotechnical probabilistic approach
that is primarily used for subaerial landslides. The latter relies on esti-
mates for expected ground shaking from nearby earthquakes, slope, and
physical properties including soil shear strength (e.g., Rathje et al., 2014,
Saygili & Rathje, 2009, Wang & Rathje, 2015).

In many margins, the age of the oldest slide, as a proxy to determine the
duration of mapped landslide activity, has yet to be determined. The U.S.
Atlantic is one margin where the age of the oldest landslides (~20 kyr) can
be estimated (ten Brink et al., 2014) and is used to demonstrate the calcu-
lation of an offshore landslide hazard curve. A hazard curve for this mar-

gin is shown in Figure 11 (red), using the parameters estimated for the lognormal distribution (Table 1) and
equations (13) and (14) above. For comparison, a hazard curve for the Queen Charlotte margin is also shown
in Figure 11 (blue). In this case, we make the assumption that TD is constrained by the time that the
Cordilleran Ice Sheet began to retreat approximately 14 kyr ago (Clague & James, 2002). The validity of
the stationary rate assumption for this margin depends on the length of time during which sedimentation
changed from glacial to interglacial rate. The hazard curves for the two data sets are truncated to the left
at the minimum observed scar area determined from the minimum resolution afforded by the multibeam

Figure 9. Box plots with logarithmic axis showing effect of finite sampling on total landslide area (a) and scar fraction (b).
Orange box indicate first to third interquartile ranges (white line indicates median), and vertical lines indicate minimum‐

maximum range. Blue dots indicate observed values.

Figure 8. Survival functions for U.S. Atlantic parent distribution, the
observed empirical distribution function (EDF), and 10 synthetic EDFs
randomly sampled from the parent distribution.
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data (see Table 1), which varies between the data sets (described in
section 3.2). The two hazard curves, representing end‐member margins
of the ones analyzed, are different by orders of magnitude for design
probabilities of 0.001 or less (i.e., mean return times of 1 kyr or
greater), primarily because of differences in the size distributions for
the two margins. One could argue that the U.S. Atlantic and Queen
Charlotte margins are outliers based on the pairwise comparison tests
and that the typical range is smaller than shown in Figure 11. The
10 margins analyzed in this study, however, represent a subset of all
margins that have had landslide activity, making it difficult to deter-
mine whether the U.S. Atlantic and Queen Charlotte margins are
true outliers.

The diverse depositional environments of the margins examined in this
study may preclude a common global cause or signal for duration of the
mapped landslide activity. A global correlation of landslide activity with
glacial cycles and sea level has been suggested in the past, especially in
the northern Atlantic (Lee, 2009). However, Urlaub et al. (2013) indicate

little correlation to sea level rise and periods of rapid sedimentation. Although global landslide frequency
was highest after the last glacial maximum (approximately 22–18 kyr before present) during periods of rising
sea level, they indicate that correlation with landslide timing and sea level is not statistically significant. For

some margins, it may be possible to constrain TD based on inferences on local sea level changes and deposi-
tional controls, as for the Queen Charlotte margin.

It is useful to understand how different estimates of TD affect the calculated landslide hazard curve. For this,
we can take advantage of the fact the lognormal shape parameter σ is similar among most of the margins, as
suggested by the overlapping confidence intervals in Table 1. The exceptions are the U.S. Atlantic and
Makran margins in which the σ confidence intervals do not overlap those for all other margins. The similar-
ity of the shape parameter amongmargins results in hazard curves having a similar shape when plotted with
a logarithmic landslide area axis. Shown in Figure 12 is a schematic landslide hazard curve using an average
value of σ. Changes in TD result in vertical shifts in the hazard curve (±10 kyr shown as an example in
Figure 12a), whereas changes in μ results in horizontal shifts in the hazard curve (range using max/min
values of μ in Table 1 shown in Figure 12b). This shift is also prominent in comparing the U.S. Atlantic
and Queen Charlotte hazard curves in Figure 11.

To assess the total landslide hazard for a margin, one can calculate what we term the “landslide release rate,”
analogous to seismic moment release rate along a fault (Frohlich & Wetzel, 2007; Kagan, 2002b; Peterson &

Seno, 1984). Landslide release rate _A (km2/kyr) for a given mapped area is related to equation (11) by con-
sidering the time period when landslide activity takes place:

_A ¼ A
TD

¼ α exp μþ σ2

2

� �
; (15)

where α is the overall rate of landslides above the resolution threshold. As
with calculating the hazard curves, the duration of landslide activity is
needed to calculate this hazard metric. In contrast to the hazard curves,
landslide release rate varies with the area of the margin being considered.
Although the estimated landslide release rate applies only to the mapped
portion of the margin, the estimate can be extrapolated to unmapped por-
tions of the margin as long as there is confidence that the size distribution
applies to the unmapped portions (see section 3.6). Landslide release rate
can be normalized with respect to themapped area, similar to how seismic
moment release rate is normalized with respect to length of subduction
zones in Peterson and Seno (1984). Normalized landslide release rate
based on the temporal rate of landslide scar formation yield the areal

Figure 10. Aggregate empirical distribution function (EDF) from all 10 data
sets (nondimensionalized) and lognormal survival function (μ = 0, σ = 1).

Figure 11. Landslide hazard curves for the Queen Charlotte and U.S.
Atlantic margins.
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fraction of the margin that fails in landslides over time (kyr−1). For the Queen Charlotte and U.S. Atlantic
margins, the normalized landslide release rates are 4.6 × 10−4 and 2.9 × 10−2 kyr−1, respectively, using
equation (15) and the same ages as for the hazard curve calculations described above. The total
normalized landslide hazard for the U.S. Atlantic margin, therefore, is approximately 60 times greater
than that for the Queen Charlotte margin.

5. Discussion

We propose that offshore landslide hazards can be quantified by an empirical hazard curve, in which the
probability of exceedance is plotted as a function of landslide scar area or some other metric, such as land-
slide volume. There are two essential ingredients needed to develop empirical landslide hazard curves: the
size distribution of mapped landslides and the duration associated with mapped landslide activity. For the
former, we indicate that there are sufficient data along many mapped margins to establish the size distribu-
tion with confidence. We find that the lognormal distribution fits the data for most margins and that the log-
normal parameter σ is similar among the 10 margins examined in this study, whereas the lognormal
parameter μ and mean landslide size varies significantly. Duration of landslide activity can be estimated
by the age of the oldest mapped landslide for some margins, although for many margins there are few‐to‐
no absolute ages of individual landslides. Although Urlaub et al. (2013) indicate that there is little statistical
confidence in global timing of landslide activity; local inferences of controlling factors for landslide trigger-
ing may be made to constrain the duration of mapped landslide activity. In places, where the duration of
landslide activity can be estimated or constrained, empirical landslide hazard curves can differ significantly,
primarily because of differences in the size distribution, as demonstrated in Figure 11. The information
needed to calculate offshore landslide hazard curves can also be used to develop tsunami hazard curves that
aggregate offshore landslide sources (Geist et al., 2009; Geist & Lynett, 2014; Grezio et al., 2017; Lane
et al., 2016).

The characteristic lognormal distribution for landslide sizes in siliciclastic material indicates that the physi-
cal factors that dictate size (e.g., seismic shaking and sedimentation rate) combine in a multiplicative rela-
tionship (Mitzenmacher, 2004; Sornette, 2004). There is also a multiplicative relationship between the two
explanatory variables of sedimentation rate and mean earthquake recurrence described by ten Brink et al.
(2016). In comparison, normal distributions are associated with an additive relationship and Pareto distribu-
tions, such as those that govern debris avalanches in a carbonate environment (ten Brink et al., 2006), indi-
cate “preferential attachment” (Mitzenmacher, 2004) or are associated with the phenomenon of self‐
organized criticality (Sornette, 2004). Compared to offshore landslides, subaerial landslide may be influ-
encedmore by the topography, giving rise to a power law relations of sizes in the case of landslides associated
with the 1994 Northridge earthquake (ten Brink, Barkan, et al., 2009). Furthermore, the similarity of the

Figure 12. Effect of changes in TD (a) and μ (b) on calculated hazard curves, assuming constant σ. Schematic curves (heavy lines) calculated from average values of
μ, σ, and n from Table 1 and TD = 20 kyr. Range is shown by thin curves.
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lognormal parameter σ suggests that the physical factors that govern landslide failure in an offshore silici-
clastic environment are similar among margins (cf. Limpert et al., 2001). The variability in lognormal para-
meter μ can be tied to the explanatory variable of mean interseismic sediment thickness proposed by ten
Brink et al. (2016). They suggest that decreasing the mean interevent time for earthquakes increases slope
stability through repeated decreases in void ratio and pore pressure. We suggest that the smaller mean land-
slide size in regions of short mean earthquake interevent time is also linked to this slope
stability mechanism.

The lognormal distribution has very low weight near 0, which is the primary difference between it and expo-
nential or power law distributions. Is there a physical reason for a minimum submarine landslide size, or is
this due to our inability to resolve small landslide areas on multibeam bathymetry maps? ten Brink et al.
(2009) used slope stability analysis to calculate the expected failure area of submarine landslides along the
U.S. Atlantic margin as a function of earthquake magnitude and slope angle. They showed that landslides
are not expected to form at magnitudes <4.5–5 and at slope angles≤6° because the peak ground acceleration
is too small to cause significant displacement of the failed sediments. For the Scotian margin, Mosher et al.
(1994) determined a minimum magnitude of 5 from geotechnical analysis of cores. Keefer (1984) showed
that earthquakes with local magnitude ML < 4 in the U.S. do not generate subaerial landslides.

A modified inverse power law is often used to model the observed distribution of landslides on land (e.g.,
Malamud et al., 2004, Stark & Hovius, 2001). This distribution can be explained by two different causes.
First, many of the subaerial landslides are triggered by pore pressure fluctuations induced by heavy rain
or snowfall, not by ground acceleration. Second, ten Brink, Barkan, et al. (2009) have shown that for
earthquake‐induced failures, such as associated with the 1994 Northridge earthquake, landslide distribu-
tions follow the same distribution as for the topographic slopes in the area. In other words, slope failure size
is limited by the slope area available to fail, not by ground acceleration. Themaximum total area that encom-
passes subaerial failures due to earthquake shaking (Keefer, 1984; Rodriguez et al., 1999) is, in fact, compar-
able to the area calculated for the Atlantic continental slope, because both reflect the ground acceleration
attenuation with distance (ten Brink, Barkan, et al., 2009). In summary, the lognormal size distribution
reflects the minimum earthquake size capable of causing ground failure.

For margins where only a small number of landslides have been mapped, estimating the parameters for a
highly skewed distribution such as the lognormal distribution can present several difficulties. For small sam-
ple numbers (i.e., less than those given in Table 1), the sample mean will be biased lower than the true mean
and closer to the mode of the distribution. The greater the skewness of a distribution implies a greater
separation between the mode and mean. In many cases, the tail of the distribution will not be sufficiently
sampled and the empirical distribution will appear depleted relative to the parent distribution and may even
bemistaken for a normal (nonskewed) distribution. In this case, large‐sized events may appear to be outliers,
when in fact they must be included when estimating the distribution. This is particularly a problem for
Pareto‐type distribution (Geist & Parsons, 2014) but is also an issue for highly skewed lognormal distribu-
tions (i.e., σ > 0.5) such as for the offshore landslide sizes examined here.

Progress in the assessment of offshore landslide hazards will rely on the acquisition of absolute age dates for
mapped landslides. As previously noted (Geist et al., 2009) and emphasized in this paper, these dates are
essential for determining the rate of landslide activity. In addition, age dates of individual events help deter-
mine whether landslides occur as a Poisson process (Urlaub et al., 2013) or if a time‐dependent probability
model is more appropriate (Geist et al., 2013). Absolute age dating offshore landslides using cores is complex
and difficult. Ideally, ages of sediment both underlying and overlying the landslide deposit or scar yields a
time bracket when the slide occurred, although location of the core in relation to the depositional environ-
ment of preslide and postslide sediment introduces large uncertainties (Urlaub et al., 2013).

6. Conclusions

The previous study by ten Brink et al. (2016) established a relationship between the mean interseismic accu-
mulation of sediment and the total landslide scar fraction for an offshore margin. In this study, we demon-
strate that the underling size distribution for landslides along the 10 margin examined by ten Brink et al.
(2016) is lognormal. A maximum likelihood method is used to establish lognormal parameters and
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confidence intervals. Whereas the lognormal σ parameter is similar among the 10 margins, the lognormal μ
parameter, as well as the mean scar area, varies significantly and is likely tied to mean interseismic sediment
accumulation. We compare the lognormal probability model to two other models (Weibull and tapered
Pareto) and find that lognormal provides the best fit, except for the northern Cascadia margin where the
Weibull model fits the data slightly better. We demonstrate that offshore hazard curves can be developed,
if some information constraining the duration of mapped landslide activity is known. Hazard curves are
developed for the two end‐member size distributions, U.S. Atlantic and Queen Charlotte margins, using
available information and assumptions of landslide activity. For design probabilities of 0.001 or less (mean
return times of 1 kyr or greater), the hazard between the two margins is different by at least an order of mag-
nitude. Further age dating of offshore landslides is critical for more accurately defining the direct and indir-
ect (e.g., tsunamis) hazard posed by offshore landslides.
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