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Abstract Fluvial export of organic carbon (OC) and burial in ocean sediments comprises an important
carbon sink, but fluxes remain poorly constrained, particularly for specific organic components. Here OC
and lipid biomarker contents and isotopic characteristics of suspended matter determined in depth profiles
across an active channel close to the terminus of the Danube River are used to constrain instantaneous OC
and biomarker fluxes and integrated compositions during high to moderate discharges. During high
(moderate) discharge, the total Danube exports 8 (7) kg/s OC, 7 (3) g/s higher plant-derived long-chain fatty
acids (LCFA), 34 (21) g/s short-chain fatty acids (SCFA), and 0.5 (0.2) g/s soil bacterial membrane lipids
(brGDGTs). Integrated stable carbon isotopic compositions were TOC: —28.0 (—27.6)%,, LCFA: —33.5
—32.8)%, and A'*C TOC: —129 (—38)%,, LCFA: —134 (—143)%,, respectively. Such estimates will aid in
establishing quantitative links between production, export, and burial of OC from the terrestrial biosphere.

1. Introduction

Rivers are the most important conduits for transfer of sediment eroded on continents to ocean basins. Glob-
ally, rivers discharge about 19 billion tons of sediment per year to the coastal ocean (Milliman & Farnsworth,
2011), entraining and exporting about 200 Mt/yr particulate organic carbon (POC; Galy et al., 2015). Once
deposited on continental margins, the OC may be stored on long timescales, and corresponding sedimen-
tary sequences thus serve both as long-term sink for terrigenous OC and as continuous archives of paleoen-
vironmental change in the adjacent river catchments.

Global estimates for riverine discharge of suspended particulate matter (SPM) are not well constrained
because of variable sampling strategies and frequencies over different hydrological conditions (Milliman &
Farnsworth, 2011). Often, such estimates stem from measurement of near-surface SPM close to the river
axis, and assumptions are then made concerning the homogeneity of the suspended load in order to derive
an integrated flux. However, the vertical distribution of SPM in a river is influenced by hydrodynamic sort-
ing, which causes coarser and higher-density sediment to be transported closer to the riverbed, whereas
finer and low-density particles are more homogeneously distributed over the water column (Bouchez et al.,
2011; Lupker et al.,, 2011). Several studies have explored variations in the distribution and the mineral and
inorganic geochemical characteristics of SPM across depth and cross sections of rivers in order to derive
integrated SPM fluxes (e.g., Armijos et al., 2017; Bouchez et al., 2011; Lupker et al.,, 2011). In contrast, the lat-
eral and vertical variability in bulk OC (Bouchez et al., 2014; Galy et al., 2008; Goni et al., 2005; Guinoiseau
et al, 2016) and molecular (biomarker) (Feng et al., 2016) composition and corresponding isotopic (stable
and radiocarbon) characteristics are significantly less well known. This is in part due to logistical challenges
associated with sampling and analysis for trace organic constituents, hindering our ability to place robust
constraints on the characteristics and fluxes of POC and biomarkers discharged to the oceans.

In a recent study, the existence of a POC-rich and particulate lignin-rich suspended sediment layer just
above the riverbed was observed in the Madre de Dios River, and was attributed to high proportions of
plant debris at this particular depth (Feng et al., 2016). In contrast, soil OC is thought to be mainly associated
with fine-grained phyllosilicates (Baldock & Skjemstad, 2000; Doetterl et al.,, 2015; Freymond et al,, 2018),
that are well dispersed throughout the water column and therefore more uniform vertical distributions are
expected (Bouchez et al., 2011).
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In this study, SPM was characterized from several depth profiles that serve as a “picket fence” spanning one
of the two main branches of the Danube River at the apex prior of the delta. Bulk OC and biomarker con-
centrations as well as corresponding stable and radiocarbon isotopic compositions of SPM samples col-
lected on campaigns during two different years were determined, and compared to adjacent river
sediment deposits. Focus was placed on long-chain fatty acids (LCFA) and branched glycerol dialkyl glycerol
tetraethers (brGDGTs) as tracers of higher plant-derived material (Eglinton & Eglinton, 2008) and soil OC
(Schouten et al., 2013), respectively, in order to constrain the instantaneous export flux of OC and these
source-specific biomarkers to the Black Sea. Extrapolating bulk and compound-specific isotope signatures
as well as proxy values to the river cross section, we assess heterogeneity in organic matter (OM) associated
with SPM and potential uncertainties associated with extrapolation of single-point measurements to derive
estimates of fluvial discharge.

2. Site Description

The Danube River, with a catchment area of 817,000 km?, including parts of the Eastern Alps, the Carpa-
thian, Dinaric, and Balkan mountains, and large sedimentary basins (Vienna basin, Pannonian, and lower
Danubian plains; Schiller et al., 2010), is the second largest fluvial system in Europe. Mean annual discharge
to the Black Sea is 6,850 m>/s (Schiller et al., 2010), peak flow occurs in spring with monthly average dis-
charges reaching ca. 9,000 m>/s, while minimum monthly averaged discharges reach 4,500 m>/s in autumn
(GRDQ). Present-day total sediment export (SPM and bed load) is 25-35 Mt/yr, of which about 18 Mt/yr is in
the suspended fraction (Habersack et al., 2016). At the beginning of its delta, the Danube main stem splits
into two main branches—the northern Chilia branch and southern Tulcea branch. The Tulcea branch further
splits into the Sulina and Sf. Gheorge branches (supporting information Figure S1).

Samples were collected on the Tulcea branch that accounts for 45% of the total water flux (Torica, 2006),
shortly downstream of the diffluence (<2 km) (supporting information Figure S1). For political reasons,
depth profiles could not be taken across the entire Danube main stem before its main diffluence as it coin-
cides with the Romanian-Ukrainian border. However, it is assumed given its proximity to the main stem that
the SPM is representative of material entering from the river to the delta. Furthermore, the sampling loca-
tion is >50 km downstream of the last large tributary confluence, and therefore, the river is expected to be
well mixed.

3. Methods

3.1. Sample Collection

Sampling took place in early June 2013 and early September 2014 during decreasing water level (support-
ing information Figure S2). Water depth, bathymetry, velocity, and total discharge were determined by
deployment of an Acoustic Doppler Current Profiler (ADCP). Based on the ADCP river cross sections, optimal
locations for the depth profiles and large-volume water sampling were determined (supporting information
Figure S4). Water samples were collected with a 5 L horizontal, open ended, sampling bottle equipped with
a pneumatic closing mechanism (Lupker et al.,, 2011). The depth of the sampling bottle was controlled with
an echo sounder. In 2013, about 30 L of water was sampled for each depth at the middle profile and about
10 L at the left and right profiles, as well as the near shore surface water locations. In 2014, >60 L water was
sampled for every profile and depth. Water samples were filtered over precombusted and preweighted
glass fiber filters (90 mm, 0.7 um GF/F filters, Whatman). About 10 L of each sample was filtered over mem-
brane filters (90 mm, 0.22 um PES filters, Membrane Solutions) but not examined in this study. Filters were
stored at —20°C until they were freeze-dried. At the location of the sampling transect, fine-grained
(<1 mm) sediment that was recently deposited on the riverbanks was collected from the shore (Freymond
et al., 2017). Subsequently, the term “river sediment” is used for these fresh deposits.

3.2. ADCP Acquisition and Data Processing

The ADCP (Rio Grande, 1,200 kHz) was mounted to the side of a boat ca. 0.1 m below the water surface
(e.g., Muste et al., 2004). Riverbed geometry, water discharge, and velocity profiles were determined with
multiple river crossings perpendicular to the flow in bottom track mode with a vertical resolution of 0.1/
0.25 m (2013/2014, respectively).
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In 2014, a GPS unit was connected to the ADCP to record the exact transect position. Comparison between
the bottom and GPS-referenced velocity did not reveal the presence of a moving bed (Callede et al., 2000).
Four transects in the direct vicinity of the sediment sampling points were averaged using the USGS Velocity
Mapping Toolbox (Parsons et al.,, 2013). These transects closely agree and the discharge calculated for each
individual transect does not vary by more than 10%. In 2013, no GPS was available, making precise transect
averaging impossible. A single river transect was selected (out of seven; discharge estimates varied by
<6%) based on data quality and proximity to the 2013 water sampling points, and used for calculations.

The velocity data were further processed in R (R Core Team, 2014). Missing discharge data were interpolated
based on the average of neighboring velocity profiles. The top and bottom discharge data that cannot be
resolved by the ADCP was extrapolated based on a power law fit to the available velocity data (Chen, 1991;
supporting information Figure S4). Discharge was calculated based on the velocity data and corrected for
the difference between ship and water flow direction.

Concentration and proxy data from the depth profiles were extrapolated to the river cross section using an
inverse distance method. These extrapolated data were then combined with the water discharge profiles to
derive discharge-weighted proxy average values and instantaneous fluxes of OC and biomarkers.

3.3. Bulk Measurements: SPM Concentration, TOC, 4'3C, "C
To determine SPM concentrations, precombusted filters were weighted before and after filtering a known
amount of water and subsequent freeze-drying. SPM concentrations are reported in mg/L.

For total organic carbon (TOC), '3C and "*C measurement, filter pieces of known diameter, and river sedi-
ments were decarbonated as described in Freymond et al. (2018). Blank filters were treated with the same
method. The measurement was performed on a coupled EA-IRMS-AMS (elemental analyzer, isotope ratio
mass spectrometer, accelerator mass spectrometer) system (Mclntyre et al., 2016) and corrected for proce-
dural blank values.

3.4. FA and brGDGT Extraction and Quantification

Freeze-dried filters were cut in pieces whereas river sediments were sieved to <63 um prior to microwave
extraction. brGDGTs were extracted as described in Freymond et al. (2017) and measured on a UHPLC-APCI-
MS system (Ultra High Performance Liquid Chromatograph, Agilent 1290, coupled to a quadrupole Mass
Spectrometer, Agilent 6310) at Utrecht University following the settings of Hopmans et al. (2016). For proxy
calculations, see supporting information equation (S1) and Figure S3.

FAs were extracted as described in Freymond et al. (2018) from the same total lipid extract as for the
brGDGTs and quantified against an external standard (n-C4_,4 even carbon saturated FAMEs; Supelco) on a
gas chromatograph equipped with a flame ionization detector (GC-FID; Agilent 7890A). Results are reported
as sum of even C-number long-chain FA (n-C,4_30; LCFA) and short-chain FA (n-Cy4_,g; SCFA) concentrations.

3.5. LCFA §"3C Measurement

LCFA §'3C determination was performed in duplicate measurements with a GC-IRMS (gas chromatograph,
Thermo Trace GC Ultra, coupled to an isotope ratio mass spectrometer, Thermo Delta V Plus). The §'3C val-
ues were calibrated using an external fatty acid methyl ester standard calibrated to the VPDB scale, and cor-
rected for carbon atoms that were added during methylation. Results are shown as concentration weighted
average values (n-C,4_30) with standard deviations ranging from 0.129,, to 0.979,.

3.6. Compound-Specific FA **C Measurement

Due to the low abundance of LCFAs (generally <1 ug/L), samples from different depths and profiles were
combined in order to obtain sufficient C required for '“C measurement (typically >10 ugC) (supporting
information Figure S5). Separation and isolation of FAs were achieved using a preparative capillary gas chro-
matograph (PCGC; Eglinton et al, 1996). FAs n-Cy¢, n-Cqg, and n-Cy4 30 Were collected in three separate
traps. Two blank runs with the same amount of single runs and the same time windows of collection as for
samples were run to determine the processing blank. The single compounds and blanks were run over SiO,
columns to remove any contamination by column bleed. Then, the single compounds and blanks were con-
verted to CO, with precombusted CuO in evacuated quartz tubes (850°C, 5 h). 4C on the sample and blank
CO, was measured with a MICADAS (Mini radiocarbon Dating System,; Christl et al., 2013; Synal et al., 2007)
at the Laboratory for lon Beam Physics at ETH. Fraction modern (Fm) values were corrected for the
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processing blank after Shah and Pearson (2007) (F'*C = 0.17 + 0.03; mass of contamination: 0.31 + 0.09 ng)
and for carbon atoms added during methylation. Fm values were subsequently converted to A'*C values
(Sternstrom et al., 2011).
4, Results
4.1. Depth Profiles
SPM concentrations range from 25 to 70 mg/L and do not show a clear variation with depth (Figure 1).
However, SPM concentrations are higher in the middle profile than in the right and left profiles in 2014,
whereas the opposite is the case in 2013. TOC contents, ranging between 1.3% and 2.4%, show a maximum
at middepth, which is most pronounced in the middle profile in 2014. LCFA, SCFA, and brGDGT concentra-
tions are higher in 2013 than 2014, ranging from 0.37 to 0.98 and 0.19-0.54 ug/L for LCFAs, 1.91-5.40 and
1.22-4.64 pg/L for SCFAs; and 26.59-62.55 and 12.83-40.56 ng/L for brGDGTs in 2013 and 2014, respec-
tively. LCFA and brGDGT concentrations are strongly correlated (0.95, Pearson correlation coefficient). Bulk
8'3C values are relatively constant over different locations along the river cross section, depths and years
with a statistical (i.e., not discharge-weighted) average value of —27.8%, (+£0.34%,, n = 23) after excluding
two outliers (2013 right 5 m = —36.3%,, and 2014 middle surface = —19.1%,). Bulk A™C values are relatively
homogeneous in 2013, ranging from —155%, to —909%, (average —126 = 18%,, n = 12). In 2014, bulk A™C
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Figure 1. Concentration and proxy values in depth profiles. Solid lines show the middle; dashed lines the left and right profiles. For FA '*C measurement, the
surface samples from the left, middle, and right profiles in 2013 were combined into one sample and marked with an (¥). In 2014, samples of the respective depths
from left and right profiles were combined (surface left + right; 7 m left + right; 14 m left + right) and marked with a (1) (supporting information Figure S5).
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Table 1
Discharge-Weighted Average OC and Biomarker Proxy Values in SPM and River
Sediments
River cross section
River bar sediment

2013 2014 2013 2014
TOC (%) 1.6 1.8 0.9° 0.7°
Bulk 6'3C (%,) —28.0 —27.6 —27.3 —26.0
Bulk A™C (%,) —129 —-38 —224 —240
LCFA 6"3C (%) —335 —32.8 —335 —33.0
LCFA A™C (%) —134 —143 —231 —209
SCFA A'C (%) -52 99 -18 —46
ACL 26.1 26.2 27.1 27.5
BIT 0.91 0.87 0.91° 0.89
CBT 0.22 0.18 0.03° 0.06
MATmr (°C) 9.2 2.9 8.4° 83
pH 7.5 7.4 7.2° 7.2
IR 0.68 0.67 0.55 0.57
#1iNgStetra 0.48 0.47 0.50 0.47

“Data from Freymond et al. (2018).

PData from Freymond et al. (2017).

values were higher and slightly more variable, ranging from —1279/,
to +149,, (average —41 =389, n=13), with highest values in the
middle profile. Compound-specific LCFA §'3C values of the left, mid-
dle, and right profile surface water are similar for both years with an
average of —33.79, (£0.06%, n=6), although surface water from
close to the left and right shores show more '>C-enriched values than
midchannel in 2014. In 2013, depth profiles exhibit relatively constant
LCFA 6'3C values whereas in 2014, values are about 1%, more
enriched at 7-26 m depth than at the surface. LCFA average chain
length (ACL) is constant with depth, but shows differences across the
river. The middle profile in 2013 shows an average of 26.5 whereas
the left and right profiles show an average of 25.7 and 25.5, respec-
tively. In 2014, ACL is only slightly higher in the middle profile (aver-
ages: middle = 26.3, left = 26.1, right = 26.0). brGDGT-derived proxies
are generally constant with depth. BIT and CBT' show distinct values
between the 2 years, however, the differences are small and corre-
sponding isomer ratio (IR) and #ringscs Values fall in the same range
in 2013 and 2014 (Figure 1).

In general, no significant correlations were found between sample
depth and geochemical parameters. brGDGT and LCFA concentrations
only display weak correlations with SPM concentration of 0.65 and
0.57, respectively (Pearson correlation coefficients).

4.2. Discharge-Weighted Average and Instantaneous Fluxes

Extrapolated and discharge-weighted average bulk and biomarker proxy values for the 2013 and 2014 sam-
plings are shown in Table 1 (supporting information Figures S6 and S7). Between years, average TOC (1.6/
1.8%) and bulk §'3C (—28.0/—27.6%,; 2013/2014, respectively) are very comparable. Bulk A'C values are
more variable, and imply a higher proportion of fossil or preaged OC in 2013 (A'*C = —1299,) compared to
2014 (A™C = —389,). The distinct changes in LCFA §'3C values with depth between the 2 years result in a
slightly lower average value in 2013 than 2014 (—33.5/—32.8%,), whereas average LCFA A'*C values for
2013 and 2014 samples are comparable. Similarly, average brGDGT-derived proxy values show little varia-
tion between the two sampling periods (Table 1).

Discharge-weighted instantaneous SPM, OC, and biomarker fluxes for the two sampling periods are shown
in Figure 2 and supporting information Table S1.

4.3. River Sediment Composition
River sediment deposits at the location of the depth profiles are characterized by lower TOC content (0.9/
0.7; 2013/2014, respectively) and lower bulk (—224/—240%,) and LCFA A'C values (—231/—209%,)

Water [m?/s] SPM [kg/s] TOC [kg/s] LCFA [g/s] SCFA[g/s]  brGDGT [mg/s]
Fluxes: 4540 /3510 230/170 4 /3 3/1 15/9 210/110
il oY — o 19/ o [
%) N - 1 o
J o _ o = @
% é él\l* ﬁ) E’ 00 - 'g
88 =g g $ 5 c &
T« & = e S @ )
2 A rel
] — |
g ] N 1
1.3 1.4 1.2 2.5 1.6 2.0
ol ol ol ol ol ol
2013 2014 2013 2014 2013 2014 2013 2014 2013 2014 2013 2014

Figure 2. Instantaneous Danube River water, SPM, TOC, and biomarker fluxes in 2013 and 2014. The number in the 2013
bar is the factor by which the 2013 flux is higher than in 2014.
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compared to cross-section SPM. Stable isotope and proxy values, except CBT’ that shows significantly lower
values in river sediments, are comparable to the ones in SPM samples (Table 1).

5. Discussion

5.1. SPM Composition and Fluxes

The identification of only small variations in concentrations and proxy values with depth and among different
profiles across the channel shows that the SPM in the river is well mixed at the sampling location (Figure 1,
supporting information Figures S6 and S7). Only SPM concentration and ACL show systematic differences
across the river. In 2014, SPM is higher in the middle of the river, where the water velocity is highest and thus
theoretically coarser-grained particles can be retained in suspension. However, in 2013, SPM concentration is
lower in the middle profile compared to the left and right ones. In 2013, ACL in the middle profile is higher
compared to profiles on the river flanks, potentially indicating different LCFA sources. However, such a differ-
ence is not reflected in corresponding LCFA §'3C values. In the vertical direction, an increase of SPM with
depth is only observed in the middle profile in 2013. The typical hydrodynamic sorting of sediments leading
to an increase in the average grain size toward the bottom of the water column, as observed in other large riv-
ers (Bouchez et al,, 2011; Feng et al., 2016; Lupker et al.,, 2011), does not seem to occur here. The OM composi-
tion, expressed in bulk §'3C, LCFA §'3C, LCFA A™C, ACL, and brGDGT proxy values (Table 1), remains fairly
constant between years. The minor compositional changes between 2013 and 2014 are well within the range
of interannual and intraannual fluctuations reported for, e.g., the Tagus, Congo, and Yellow Rivers (Hemingway
et al, 2017; Tao et al,, 2017; Zell et al., 2014). Given that sampling in 2013 and 2014 was in early and in late
summer, respectively, observed minor differences likely reflect seasonal variations. However, given the gener-
ally homogenous characteristics as a function of location, depth, and time, these data can be considered rep-
resentative of the SPM composition in the Danube during yearly high-water conditions.

brGDGTs are ubiquitously produced in soils (Peterse et al.,, 2012; Weijers et al.,, 2007), and hence may serve as
tracers for soil OC during fluvial transport, even though in situ production in lake and river waters has also
been documented (De Jonge et al., 2014b; Tierney & Russell, 2009; Weber et al., 2015). Although the high BIT
index values for Danube SPM (0.91/0.87 in 2013/2014, respectively, Table 1) suggest that brGDGTs are mainly
soil-derived (Schouten et al., 2013), these high BIT values may also be the result of a large contribution of in-
river produced brGDGTs (De Jonge et al., 2014b). To identify such a potential in situ contribution, the IR, which
is the fractional abundance of 6-methyl-isomer brGDGTs compared to all 5-methyl-isomer and 6-methyl-
isomer brGDGTs (supporting information equation (S1) and Figure S3), may be used, where high values relate
to relatively more aquatic brGDGTs (De Jonge et al., 2014b). The IR for the SPM (0.68/0.67 for 2013/2014, Table
1) is slightly higher than for the river sediments (0.55/0.57 for 2013/2014, Table 1), indicating potential in situ
production. Indeed, SPM IR values are in the same range as for Danube sediments upstream of the Iron Gate
dams, where lower water velocities may have enhanced in situ brGDGT production, albeit to a minor extent
(Freymond et al.,, 2017). This is further supported by long-chain diols in the same Danube sediments along the
course of the river, where the increased abundance of the Cz; 1,15-diol indicates that in situ production takes
place, predominantly in the stagnant waters in the Iron Gate reservoir (Lattaud et al., 2018). Effectively, in situ
production seems to be low in the flowing water of the main branch, and is potentially even lower during
high-water conditions due to increased turbidity. Nevertheless, considering the comparable brGDGT composi-
tion in the SPM close to the Black Sea with that in fluvial sediment deposits upstream (Freymond et al., 2017),
the vast majority of the brGDGTs appears to be derived from soils with a minor in-river brGDGT contribution.
This interpretation of predominantly soil (as opposed to aquatic) source is supported by the strong correlation
between brGDGT and LCFA concentrations (0.95, Pearson correlation coefficient) in the SPM.

Water discharge was higher in 2013, and correspondingly SPM, TOC, and biomarker fluxes were also higher
than in 2014 (Figure 2). The uncertainty on overall fluxes (TOC and biomarkers) remains difficult to assess as
they encompass uncertainties associated with (i) water discharge estimates from the ADCP velocity data, (ii)
precise sampling coordinates with respect to the reference river section, (iii) sampled volumes, and (iv) ana-
lytical uncertainties on biomarker concentration determinations. These uncertainties are difficult to quantify
individually, but the differences between the exported biomarker fluxes exceed the overall uncertainty on
concentration measurements suggesting a coherent data set. The SPM and TOC fluxes appear to increase in
concert with the water flux (factor 1.3, 1.4, and 1.2 higher in 2013 for water, SPM, and TOC, respectively),
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whereas LCFA, SCFA, and brGDGT fluxes increase by factors of 2.5, 1.6, and 2.0, respectively, with higher dis-
charge (Figure 2). This relative enhancement in SCFA and brGDGT compared to LCFA fluxes at lower dis-
charge might indicate in-river production during more quiet conditions. Correspondingly, the higher SCFA
and bulk A'*C values with lower discharge in 2014 may in turn reflect a greater contribution of fresh terres-
trial or aquatic biomass relative to preaged soil or a smaller contribution of fossil OC (Table 1). On the other
side, lower bulk A™C values during higher discharge in 2013, indicate proportionally higher inputs of (pre-
aged) soil-derived OM (Cathalot et al., 2010; Rosenheim et al., 2013) and/or fossil OC with correspondingly
lower in-river production. LCFA A™C values are relatively low (~1,160 "C years) not showing a significant
difference between years or varying discharge, indicating that the LCFAs primarily derive from mineral-
associated OC that is preaged in soils (Tao et al., 2015; Van der Voort et al., 2017).

5.2. Comparison of SPM to River Sediments

TOC concentrations are significantly higher in SPM than in river sediments (Table 1), potentially reflecting
hydrodynamic particle sorting during, or decomposition subsequent to, deposition. Higher-density coarse-
grained particles (including mineral grains with little associated OC), are preferentially deposited compared
to minerals in the clay and fine silt fraction that exhibit a high mineral-specific surface area (SA) available for
organomineral interactions (Keil & Mayer, 2014). Additionally, low-density plant debris may preferentially
remain in the suspended load. Greater contributions of plant debris to SPM relative to river sediments
would also explain the higher bulk OC and LCFA A'C values (i.e., fresher material) of the former (Table 1).
Preferential postdepositional degradation of fresher and more labile nonmineral-associated OM in river
sediments could also explain the lower TOC values and lower TOC and LCFA A'*C values (older ages) of
river sediments. However, since LCFA §'3C values show no indication for enrichment due to degradation (Li
etal, 2017; Wang et al., 2016), suggesting a similar origin for LCFAs in SPM and river sediments, we suspect
that preferential transport and deposition of mineral-associated LCFAs is the most likely explanation. The
lower ACL values for SPM than river sediments are the only indication of additional sources of n-C,4-FAs to
SPM, whereas brGDGT proxy values (BIT, #rings.etra) are very comparable. One exception is the higher rela-
tive proportion of 6-methyl compared to 5-methyl brGDGT isomers in SPM (reflected in higher CBT' and
slightly higher IR values) than in river sediments, suggesting a small additional aquatic 6-methyl brGDGT
source in the river SPM (De Jonge et al., 2014b). On the other hand, corresponding MATmr and pH proxy
values are only slightly higher for the SPM (0.8/1.6°C, 0.3/0.2 pH units in 2013/2014, respectively), with these
differences being well within the calibration uncertainty (errors: MATmr = 4.6°C; pH = 0.5; De Jonge et al.,
2014a). The broad similarity in brGDGT distributions is consistent with the finding of similar brGDGT distri-
butions across different grain size classes in river sediments (Peterse & Eglinton, 2017).

Although the absolute concentration of TOC in SPM is higher than in river sediments, TOC may be compara-
ble in SPM and river sediments when normalized to SA (Freymond et al., 2018). Although the limited sample
sizes precluded SA determinations for Danube SPM, Bouchez et al. (2014) found that OC loadings on Ama-
zon River SPM fall within a range typical for riverine suspended sediment (Blair & Aller, 2012). Assessments
of loadings may therefore compensate for hydrological sorting processes during SPM deposition on (as well
as erosion from) riverbanks.

Overall, taking into account all determined proxies as well as bulk and compound-specific stable and radio-
carbon isotopes, we conclude that for a well-mixed large river such as the Danube close to its terminus, the
composition of river sediments largely reflects the average SPM composition, albeit with some differences
stemming from either hydrodynamic sorting or postdepositional degradation. Nevertheless, for accurate
flux assessments, concentrations need to be measured on SPM samples given the significantly lower OC
contents of river sediments.

5.3. Implications for OC Export to the Black Sea

Taking into consideration that the Tulcea branch accounts for ~45% of the total Danube discharge, all fluxes
were upscaled to 100% to derive fluxes for the entire river as it enters the delta. This results in a water discharge
of 10,100/7,800 m?/s (2013/2014, respectively), significantly above the average yearly discharge of 6,486 m*/s in
both years (Sommerwerk et al, 2009). In 2013, the discharge was close to the average annual flood discharge of
10,889 m*/s. During these conditions, the total Danube is calculated to export 8/7 kg/s OC, 7/3 g/s LCFAs, 34/
21 g/s SCFAs, and 0.5/0.2 g/s brGDGTs (2013/2014, respectively, supporting information Table S1). Extrapolation
of these instantaneous SPM fluxes to a yearly sediment discharge yields values of 16/12 Mt/yr of suspended
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sediment, which is close to the 18 Mt/yr estimated for the Danube (for 1985-2000) by Habersack et al. (2016).
The fact that the two sampling periods correspond to higher than average flow conditions for the Danube may
bias the integrated flux estimates by not taking into account low-flow periods with potentially different compo-
sitions. However, as mentioned above, the compositional variability of OC is limited over the two discharge
regimes that were sampled, suggesting that this bias is likely limited. Furthermore, the sediment load and associ-
ated POC flux in rivers are dominated by the export during high flow conditions (e.g., Cathalot et al., 2013; Clark
et al, 2017; Smith et al., 2013), making these hydrological periods more representative of yearly averaged fluxes.
Upscaling the two studied sections to the entire Danube is therefore reasonable even though it does not take
into account the entire flow regimes.

Discharge-weighted SPM bulk 6'°C (—28.0/—27.6%,) and A'C (—129/—38Y%,) values (Table 1) are, respec-
tively, lower and higher than those of Black Sea surface sediments and coastal water SPM close to the outflow
of the Sulina branch (Kusch et al,, 2010; Saliot et al., 2002). Kusch et al. (2010) indicate that Black Sea sediment
OC at 18 m water depth already comprises a substantial marine contribution, which is indicated by the lower
BIT index (0.64) than for the Danube SPM (0.91/0.87 in 2013/2014, respectively; Table 1). Also, the higher bulk
5'3C value of —25.7%, (+2.1%, on average) points toward a rapid marine overprint of the fluvial signal. Finally,
higher bulk OC ages in the marine sediments are counter-intuitive but may be due to hydrological sorting
and winnowing (Wakeham et al., 2009) and preferential accumulation of mineral-bound OC (soil or fossil OC)
at the studied location (whereas fresh plant debris with lower density might be deposited further offshore) or
to postdepositional (e.g., bioturbation) processes that vertically mix sediment of different ages. The discharge-
weighted '*C age of the LCFAs discharged in Danube SPM, which is similar for both years of sample collection
(ave, 1,140 yr) is comparable to that in Black Sea surface sediments (FA n-Cy5_30 = 1,649 yr; Kusch et al,, 2010).

6. Conclusions

To our knowledge, this constitutes the first study that investigates cross-sectional variations in compound-
specific stable and radiocarbon isotopic composition of SPM and reports corresponding estimates of bio-
marker discharge and discharge-weighted isotopic values.

Results show that Danube River SPM is well mixed with minor compositional changes with depth or across
the river. Determining OC and biomarker fluxes from one point-sample compared to the picket fence
approach would induce biases of =50% (supporting information Figure S8).

Comparing the discharge-weighted average composition of SPM to river sediments shows that lipid bio-
marker proxy values are generally similar. Therefore, although investigations spanning a broader range of
fluvial systems are clearly needed, sampling of river sediments may serve as a convenient means to con-
strain the composition of suspended matter transported by river systems, including deriving detailed
molecular isotopic signatures.

Ultimately, such constraints on fluvial fluxes of source-specific biomarkers associated with SPM may serve
to establish quantitative links between OM production, export, and burial at the molecular level.
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