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Abstract 

Atlantic killifish inhabiting polluted sites along the east coast of the U.S. have evolved 

resistance to toxic effects of contaminants. One such contaminated site is the Acushnet River 

estuary, near New Bedford Harbor (NBH), Massachusetts, which is characterized by very high 

PCB concentrations in the sediments and in the tissues of resident killifish. Though killifish at 

this site appear to be thriving, the metabolic costs of survival in a highly contaminated 

environment are not well understood. In this study we compared the hepatic metabolite profiles 

of resistant (NBH) and sensitive populations (Scorton Creek (SC), Sandwich, MA) using a 

targeted metabolomics approach in which polar metabolites were extracted from adult fish livers 

and quantified. Our results revealed differences in the levels of several metabolites between fish 

from the two sites. The majority of these metabolites are associated with one-carbon 

metabolism, an important pathway that supports multiple physiological processes including DNA 

and protein methylation, nucleic acid biosynthesis and amino acid metabolism. We measured 

the gene expression of DNA methylation (DNA methyltransferase 1, dnmt1) and demethylation 

genes (Ten-Eleven Translocation (TET) genes) in the two populations, and observed lower 

levels of dnmt1 and higher levels of TET gene expression in the NBH livers, suggesting possible 

differences in DNA methylation profiles. Consistent with this, the two populations differed 

significantly in the levels of 5-methylcytosine and 5-hydroxymethylcytosine nucleotides.  Overall, 

our results suggest that the unique hepatic metabolite signatures observed in NBH and SC 

reflect the adaptive mechanisms for survival in their respective habitats. 
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Highlights 
 

1. Targeted metabolomics revealed differences in metabolites associated with one-carbon 
metabolism between PCB-resistant and sensitive fish.  
 

2. There are also differences in global DNA methylation levels as well as dnmt1, tet1 and 
tet3 gene expression. 
 

3. Our results suggest that fish inhabiting polluted sites adopt different physiological 
strategies for survival in extreme environments. 
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1. Introduction 
 
 

Populations of Atlantic killifish inhabiting highly contaminated waters along the North 

Atlantic coast of the United States have evolved resistance to persistent organic pollutants such 

as polynuclear aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) (Bello et 

al., 2001; Hahn, 1998; Nacci et al., 1999).  One such heavily contaminated site is the Acushnet 

River estuary located near New Bedford Harbor (NBH), Massachusetts, which is characterized 

by high concentrations of PCBs and PAHs in estuarine sediments and fish tissues (Bello et al., 

2001; Nacci et al., 2002).  The PCB and PAH levels in NBH sediment are extremely high and 

range from 2.8-3,240 g/g and 11-2,360 g/g dry weight, respectively, and with similarly high 

levels in fish and shellfish tissues (Subedi et al., 2014). 

 

Killifish inhabiting NBH are resistant to the biochemical and toxic effects of dioxin-like 

compounds compared to fish from non-polluted ecosystems (Nacci et al., 2010).  There has 

been intense focus to understand the mechanistic basis of this heritable resistance to dioxin-like 

compounds in this species (Hahn et al., 2004; Proestou et al., 2014; Reitzel et al., 2014). 

Investigators have hypothesized that altered aryl hydrocarbon receptor (AHR) functioning due to 

allelic variation in the resistant population is a potential mechanism of resistance. AHR is a 

ligand-activated transcription factor, well known for its role in response to exposure to dioxin-like 

compounds such as planar PCBs (Fernandez-Salguero et al., 1996). One of the widely used 

indicators of AHR activation is an increase in the cytochrome P4501A1 gene expression 

(CYP1A) or enzyme activity as measured by ethoxyresorufin-o-deethylase (EROD) activity. 

NBH embryos from both field-caught and laboratory killifish showed decreased sensitivity to 

3,3',4,4',5-pentachlorobiphenyl (PCB126) compared to the embryos from fish collected from 

non-polluted environments, and this resistance is heritable for multiple generations (Nacci et al., 

2010). More recently, using whole genome sequencing of a large number of individuals, Reid et 



 5

al. (2017) have demonstrated that variants in genes associated with the AHR signaling pathway 

are responsible for rapid adaptation to dioxin-like PCBs in NBH.  

 

In addition to xenobiotic metabolism, AHR regulates other physiological processes such 

as energy metabolism, immune function, and development (Gutierrez-Vazquez and Quintana, 

2018; Linden et al., 2010; Schneider et al., 2014). Most of our understanding of these 

physiological processes comes from laboratory-based in vivo studies under acute exposure 

regimes or in vitro cell culture systems.  Very little is known about the metabolic effects of long-

term multigenerational exposure to toxicants. NBH killifish provide a unique opportunity to study 

the metabolic effects of multigenerational exposure to contaminants. Recently, a few studies 

have explored the energy metabolism of Atlantic killifish embryos and adults from other 

pollutant-tolerant populations. For example, Lindberg et al. (2017) have shown that killifish from 

a PAH-contaminated site exhibited higher oxygen consumption rates during embryonic 

development and reduced metabolic plasticity as adults. Similarly, Du et al. (2016) have shown 

that hepatic oxidative phosphorylation was significantly higher in fish collected from the PAH-

contaminated Elizabeth River (Virginia) in comparison to fish from a pristine environment (King’s 

Creek, Virginia). These studies suggest that fish inhabiting polluted environments have altered 

metabolic capacity. However, there are no reports comparing cellular metabolite levels in fish 

inhabiting contaminated and pristine environments.  

 

The objective of this study was to determine the hepatic metabolite profiles of PCB-

resistant Atlantic killifish sampled from the highly contaminated New Bedford Harbor site, and 

compare them with similar profiles from PCB-sensitive killifish from Scorton Creek, a pristine 

site in Sandwich, Massachusetts.  We used targeted metabolomics to focus on liver 

metabolites, because the liver is an important organ involved in xenobiotic and energy 

metabolism. Unlike genes and proteins, the functions of which are subject to epigenetic 
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regulation and post-translational modifications, respectively, metabolites serve as direct 

signatures of biochemical activity and are therefore easier to correlate with phenotype (Viant, 

2008). The metabolomics approach is widely used to study the impact of toxicant exposure in 

aquatic organisms, including fish (Ekman et al., 2018; Mosley et al., 2018; Simmons et al., 

2017). Our results demonstrate differences in the levels of metabolites associated with one-

carbon metabolism, a critical pathway involved in epigenetic regulation. 

 
 
2. Materials and Methods 
 
2.1. Fish collection 
 

Adult Atlantic killifish (Fundulus hetroclitus) were collected in June 2014 from PCB-

contaminated Acushnet River Estuary in New Bedford Harbor (NBH) and from pristine Scorton 

Creek (SC).  The fish from both collection sites were maintained for two weeks in the laboratory 

at ambient temperature and photoperiod before dissecting the tissues. Fish were fed once daily 

with a commercial pellet feed (Skretting Inc. Utah, USA).  All animal husbandry practices were 

according to the regulations of the Animal Care and Use Committee of the Woods Hole 

Oceanographic Institution.  

 
2.2. Liver dissection and extraction of metabolites  
 

Fish were euthanized by anaesthetizing the fish in Triacine (MS-222) and then by 

cervical transection. Livers were quickly removed and their total weights were recorded.  From 

each fish, a small piece of liver tissue was immediately ground into a fine powder (in liquid 

nitrogen) using a mortar and pestle, and transferred into pre-weighed glass vials (Table 1).  

Remaining tissue was snap-frozen in liquid nitrogen and stored at -80ºC.  Polar (hydrophilic) 

metabolites were extracted using methanol/water:chloroform following a previously published 

method (Hines et al., 2007b), with some modifications.  Briefly, metabolites were extracted in 1 

ml of methanol and 212.5 µl of deionized water (followed by 60 s vortex) and 0.5 ml of 
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chloroform (followed by 60 s vortex).  The samples were then placed on ice for 10 min and 

gently mixed every 30-60 s.  Additional volumes of 0.5 ml chloroform and 0.5 ml deionized water 

were added (followed by 60 s vortex), and the mixture was centrifuged (15 min, 1000 X g, 4 ºC).  

The top (polar) layer was carefully removed into clean glass vials, dried in a centrifugal 

vacufuge and stored at -20 ºC until analysis.  Prior to the analysis, samples were reconstituted 

in 95:5 water:acetonitrile (v:v) and diluted as needed (Table 1). 

 
2.3. Targeted metabolomics  
 

Samples were analyzed using a liquid chromatography system (Thermo Accela Open 

Autosampler and Accela 1250 Pump) coupled via a heated electrospray ionization (H-ESI) 

source to a triple quadrupole mass spectrometer (Thermo TSQ Vantage) operated in polarity 

switching mode.  Instrument calibration, selected reaction monitoring (SRM) conditions, 

metabolite standard preparation, instrument operation, and data collection were all conducted 

as described previously (Kido Soule et al., 2015).  Because the range of concentrations for the 

different metabolites in our samples was unknown, all samples were measured three times: 

undiluted, 5 X dilution and 10 X dilution in 95:5 water:acetonitrile (v:v). Data were analyzed 

using the Xcalibur Quan Browser software version 2.1.0 (Thermo Scientific). Standard curves 

were manually curated based on figures of merit such as extracted ion chromatograms (EIC) 

peak quality and curve linearity.  Peak integrations for all measured metabolites in all samples 

were also manually curated.  Following curation, five- to nine-point standard curves (0.5–500 ng 

ml−1) were used to determine relative concentrations of each metabolite.  The resulting quality-

checked metabolite concentrations were then exported to Microsoft Excel.  For each sample, 

the calculated metabolite concentrations were normalized using tissue weight to obtain the 

mass (ng) of metabolite contained per milligram of each sample.  Normalized metabolite 

concentrations were analyzed with unpaired t-tests to determine significant differences between 

NBH and SC metabolic contents, and a 10% false discovery rate (FDR, q-value) was applied.  
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Adjusted p.value less than or equal to 0.05 was considered statistically significant. Statistical 

analysis of the targeted metabolomics data was performed using GraphPad Prism (GraphPad 

Software Inc., version 6.07).  

 

2.4. Isolation of genomic DNA  

Isolation of genomic DNA was performed using the ZR-Duet™ DNA isolation kit (Zymo 

Research, CA). DNA was quantified using the Nanodrop Spectrophotometer. The quality of 

DNA was checked using Agilent 2200 TapeStation system. The DNA integrity numbers of all 

samples were between 8 and 10. 

 

2.5. Quantification of 5-methylcytosine and 5-hydroxymethylcytosine levels 

We quantified 5-methylcytosine (5-mC) and 5-hydroxymethylcytosine (5-hmC) levels 

using ELISA kits from Zymo Research (Irvine, CA) following manufacturer’s instructions. Briefly, 

100 ng of genomic DNA was mixed with 5-mC or 5-hmC coating buffer and added to the 96-well 

plate and incubated at 37oC for an hour. The DNA was discarded and incubated with ELISA 

buffer for 30 minutes prior to the addition of antibody mix consisting of primary antibody 

(monoclonal Anti-5-mC or anti-5-hmC) and HRP-conjugated secondary antibody. The samples 

were incubated for 1 hour and the wells were washed several times with ELISA buffer. HRP 

developer was added and absorbance was measured at 450 nm using a spectrophotometer 

(Molecular Devices Inc.). Standard curves were generated by serial dilution of 100% methylated 

DNA and methylation levels in the samples are expressed as percent methylation. A negative 

control sample (0% methylation) was included in each run. All the samples and standard curves 

were run in duplicate wells. All the samples were assayed twice using kits with different lot 

numbers. 

 

2.6. Total RNA isolation, cDNA synthesis and quantitative real-time PCR  
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DNase-treated total RNA was isolated using the BioRad Aurum kit (BioRad, Hercules, 

CA). RNA was quantified using the Nanodrop Spectrophotometer (ThermoFisher Scientific, CA).  

Complementary DNA was synthesized from 1 g total RNA using the iScript cDNA Synthesis Kit 

(Bio-Rad, CA). Quantitative PCR was performed with iQ SYBR Green Supermix in a MyiQ 

Single-Color Real-Time PCR Detection System (Bio-Rad, CA). Real-time PCR primers used to 

amplify different genes of interest are provided in Table 2. The PCR conditions used were 95°C 

for 3 min (1 cycle) and 95°C for 15 s/65°C for 1 min (40 cycles). At the end of each PCR run, a 

melt curve analysis was performed to ensure that only a single product was amplified. Three 

technical replicates were used for each sample. A no-template control was included on each 

plate to ensure the absence of background contamination. Relative expression was normalized 

to that of β-actin (2-ΔCt; where ΔCt = [Ct(GOI) - Ct(housekeeping gene)] and GOI is the gene of interest]. 

An unpaired t-test was used to determine the differences in expression between the two sites 

(GraphPad Prism version 5.3). A probability level of p<0.05 was considered statistically 

significant. 

 

2.7. Oil Red O staining 

Frozen liver tissues from NBH and SC fish were cryosectioned (50 μm thickness) and 

stained for neutral lipid content using oil Red O as previously described (Mehlem et al., 2013). 

These were the same livers from which metabolites were extracted. Cryosectioning and staining 

were performed by Mass Histology Services (Worcester, MA). Sections were visualized under a 

Zeiss Axiovert 200 Inverted Microscope (Carl Zeiss Group, NY, USA) at 200X magnification. 

Images were taken with an AxioCam MRc (Carl Zeiss Group, NY, USA). Qualitative analysis of 

Oil Red O staining was performed with assistance from a certified veterinary pathologist.  
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3. Results 

 
3.1. Targeted metabolomic analysis 
 

Out of a total of 72 metabolites that were analyzed in the targeted metabolomics 

experiment, 40 were detected and quantified in our liver samples.  Among them, the levels of 15 

metabolites were found to be significantly different between the two sites (Table S1). Ten 

metabolites showed higher levels in NBH compared to SC. These included choline, sarcosine, 

arginine, ornithine, leucine/isoleucine, tyrosine, inosine, inosine monophosphate, pantothenic 

acid and ribose 5-phosphate (Fig. 1). The remaining 5 metabolites,  glycine betaine, serine, 

threonine, adenosine and S-(1,2-carboxyethyl)-glutathione, were at lower levels in NBH fish 

livers compared to SC (Fig. 2). Pathway analysis revealed that most of the significantly altered 

metabolites are part of one-carbon metabolic pathway (Fig. 3). 

 
3.2. Global 5-mC and 5-hmC levels  
 

NBH fish had significantly lower global 5-mC in comparison to SC fish (Fig. 4A). Average 

methylation was ~53% in the NBH livers vs. ~64% in SC samples.  Levels of 5-hmC (Fig. 4B) 

were significantly higher in NBH (average ~32%) as compared to SC (average ~22%). 

 
3.3. dnmt1 and TET expression levels 
 

NBH killifish had significantly lower dnmt1 and higher tet1 and tet3 expression in 

comparison to SC fish (Fig. 5). The dnmt1 expression was two-fold lower in NBH, whereas tet1 

and tet3 expression were two-fold and three-fold higher respectively, in NBH. No significant 

differences in tet2 expression between SC and NBH were observed. 

 

3.4. Oil Red O staining 

We decided to do Oil Red O staining for neutral lipids based on our visual observation 

that the livers of NBH fish were fatty in comparison to SC fish. Oil Red O staining of liver tissue 
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showed that the majority of fish from NBH and SC had minimal to moderate amounts of lipid 

accumulation (Fig. 6). We did not observe any site-specific or sex-specific differences in 

staining. However, there was more variability in lipid accumulation in NBH fish livers in 

comparison to SC livers. Punctate-lipid droplets of variable size were found mostly in the 

hepatocytes surrounding the hepatic portal vein. In a couple of fish from NBH, the staining is in 

larger variable-sized globules, which are found throughout the cytoplasm of the hepatocytes that 

appear to be swollen. 

 

4. Discussion 

In this study we demonstrated differences in the hepatic metabolite levels associated 

with the one-carbon metabolic pathway between pollutant-tolerant and pollutant-sensitive 

Atlantic killifish. These two populations of killifish also exhibited differences in global 5-

methylcytosine levels and expression of genes involved in DNA methylation. These combined 

results suggest that altered one-carbon metabolism is one of the strategies for survival in 

polluted environments.  

 

Metabolites serve as direct signatures of biochemical activity downstream of 

transcription. Metabolomics approaches are increasingly used for characterizing the effects of 

environmental toxicants on cellular metabolite levels in aquatic organisms (Ekman et al., 2018; 

Hines et al., 2007a; Mosley et al., 2018; Simmons et al., 2017; Viant, 2008; Viant et al., 2009; 

Viant et al., 2003). Several studies have investigated the transcriptional changes associated 

with PCBs in NBH Atlantic killifish (Oleksiak et al., 2011; Whitehead et al., 2012; Whitehead et 

al., 2010), but the biochemical and metabolic changes following transcription have not been 

investigated in this population. In this study, we found significant differences in 15 metabolites, 

most of which are associated with the one-carbon metabolic pathway. One-carbon metabolism 

is considered an integrator of the cellular nutritional status by converting nutrients (e.g., glucose, 
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amino acids) into metabolites that feed into diverse biological functions, including cellular 

biosynthesis, maintaining cellular redox status, and regulation of epigenetic status through 

protein and nucleic acid methylation (Locasale, 2013). Differences in these metabolite levels 

suggest that fish inhabiting polluted and pristine sites adopt different physiological strategies for 

survival in their environment.  

 

Higher levels of choline and sarcosine and lower levels of glycine betaine were detected 

in the livers of fish inhabiting the highly contaminated NBH in comparison to SC fish. Choline is 

an essential nutrient and important for normal liver function (Corbin and Zeisel, 2012). For 

example, phosphorylated choline is used for making phospholipids, an essential component of 

cell and mitochondrial membranes, while oxidized choline is a donor for methyl groups, an 

important player in epigenetic modification of DNA and proteins. High availability of choline is 

generally linked to increased production of glycine betaine, a downstream metabolite. However, 

we observed reduced levels of glycine betaine in NBH fish, suggesting either a decrease in the 

availability of choline for glycine betaine production or increased turnover of glycine betaine. 

Low glycine betaine levels could result in decreased methylation of homocysteine to form 

methionine, a precursor for synthesis of S–adenosylmethionine (SAM), the universal methyl 

donor needed for methylation of nucleic acids and proteins (Blom and Smulders, 2011). 

However, we did not observe any significant differences in SAM, S-adenosyl-L-homocysteine 

(SAH) or methionine levels between NBH and SC fish. The SAM/SAH ratio is widely used as an 

indicator of DNA and protein methylation capacity in the cell (Cantoni, 1985; Caudill et al., 

2001); the lack of any differences in fish from the two sites suggests that methylation substrate 

is not limiting. Nevertheless, we observed differences in the DNA methylation machinery 

between NBH and SC fish. 
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  NBH fish showed lower dnmt1 gene expression and global 5-methylcytosine levels. In 

addition, the tet1 and tet3 genes had higher expression in NBH fish. Provided that the 

transcriptional changes are mirrored in protein activity, our results indicate that NBH and SC fish 

could have differences in DNA methylation patterns. In a few loci (ahr and cyp1a), we and 

others have not detected any differences in methylation patterns between the fish from these 

two sites (Aluru et al., 2011; Timme-Laragy et al., 2005).  Future studies should include 

genome-wide DNA methylation profiling in order to determine the differences in the epigenetic 

landscape between resistant and sensitive fish. Lower dnmt1 expression and higher expression 

of TET genes in NBH fish livers suggest that there is increased metabolism of 5-methylcytosine. 

This is also reflected in the lower global 5-methylcytosine levels and higher 5-hydroxymethyl 

cytosine levels observed in the NBH fish. With the availability of genomic resources, it is 

possible to profile DNA methylation and hydroxymethylation at base-pair resolution and 

determine the role of epigenetic variation in these populations.  

 

In addition to the effects on epigenetic regulation, differences in one-carbon metabolism 

could also impact nucleic acid biosynthesis. Our results show differences in purine nucleotide 

pools between NBH and SC fish livers. Purine nucleotides are the metabolic end products of 

folate metabolism (Locasale, 2013). We observed low levels of adenosine (A) and high levels of 

both inosine (I) and inosine monophosphate in NBH fish compared with SC, suggesting 

increased deamination of adenosine (and conversion to inosine) in NBH (Alseth et al., 2014). 

Previous studies have shown that environmental toxicants can induce deamination (Hu et al., 

2015; Lin et al., 2011). DNA deamination is a pre-mutagenic event, and in normal cells DNA 

repair enzymes (Base Excision Repair) recognize and remove inosines. Defective DNA 

deamination is also seen in a number of human diseases (Alseth et al., 2014). In contrast to 

DNA deamination, which is considered mutagenic, incorporation of inosine into RNA is a normal 

and essential modification that is necessary to increase transcriptome diversity. Studies in 
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humans have determined that A-to-I editing of RNA occurs mainly in the non-coding regions 

containing repetitive elements, and in 5′ and 3′ untranslated regions (UTRs) (Ramaswami et al., 

2012). Similar analysis of the killifish genome in general and NBH fish population in particular 

should be conducted in order to determine the impact of chronic exposure to PCBs on A-to-I 

editing. 

 

We also observed differences in the levels of leucine/isoleucine, tyrosine and 5-ribose 

phosphate levels between NBH and SC fish. Leucine/isoleucine and tyrosine are key amino 

acids involved in the generation of fatty acids, whereas ribose 5-phosphate is an important 

intermediate metabolite in the pentose phosphate pathway. It is unclear if any of these individual 

metabolite changes have a significant impact on the fish physiology, but in concert with the 

changes seen in one-carbon metabolism, it is possible that NBH fish have higher energetic 

costs to maintain metabolic homeostasis. For example, amino acid imbalance, particularly of 

leucine and tyrosine, is linked to non-alcoholic fatty liver disease (NAFLD). It has been recently 

demonstrated that dioxin and dioxin-like PCBs can cause NAFLD in rodents (Fader et al., 2015; 

Jeanneret et al., 2014; Matsubara et al., 2012; Nault et al., 2015; Ruiz-Aracama et al., 2011). 

The differences in hepatic metabolite levels between NBH and SC fish resemble some seen in 

NAFLD, suggesting NAFLD-like symptoms in fish. We have consistently observed fatty livers in 

NBH fish. However, oil Red O staining did not reveal any significant differences and this could 

be due to the high degree of variability between individual fish and between sexes. 

Nevertheless, based on the differences in the metabolite levels these the two populations of 

killifish would be a good “natural” model for understanding the long-term effects of exposure to 

dioxin-like chemicals on metabolic dysfunction. 
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5. Conclusions 

Overall our results demonstrate differences in the metabolite levels between fish 

collected from polluted and pristine sites. The differences in metabolites related to the one-

carbon metabolic pathway suggest that cellular metabolism is different in fish from these two 

sites. This could potentially affect epigenetic regulation of gene expression, nucleic acid 

biosynthesis and metabolic disturbances. However, we cannot completely rule out the possibility 

that the differences between NBH and SC observed in this study could be partly due to 

ecological differences (e.g., habitat, food availability) at these two sites. In order to determine if 

the differences in the metabolites are adaptive mechanisms for survival in highly contaminated 

environment, future studies should be conducted in laboratory-reared animals.  
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List of Tables 

Table 1.  Information on the experimental animal and sample preparation. The whole weight of 
the fish, sex, total liver weight and weight of the liver tissue used in solvent extraction are 
shown. Final concentration for injection of all samples in targeted metabolomics method was 0.1 
mg/ µl. 
 

 Sample 
name 

Whole fish 
weight (g) 

Sex 
Total liver 

weight (mg) 
Sample 

weight (mg) 
Reconstitution 

volume (µl) 

 SC 1 4.3 F 221 31.3 313 

 SC 2 4.3 F 158 14.3 143 

 SC 3 4.8 M 288 67.2 672 

 SC 4 3.9 M 144 11.8 118 

 SC 5 4.9 M 219 37.6 376 

 SC 6 4.3 F 187 60.3 603 

 SC 7 2.5 M 63 12.6 126 

 SC 8 3.3 M 98 18.1 181 

 NBH 1 6.2 M 266 22.4 224 

 NBH 2 5.8 M 148 28.8 288 

 NBH 3 6.2 M 157 17.5 175 

 NBH 4 6.5 M 298 51.2 512 

 NBH 5 7.7 F 204 22.4 224 

 NBH 6 10.6 M 252 44.2 442 

 NBH 7 7.0 M 182 85.4 854 

 NBH 8 8.0 F 273 44.8 448 

 NBH 9 8.0 M 179 34.2 342 

 NBH 10 10.0 F 203 41.6 416 
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Table 2. List of quantitative PCR primers and their annealing temperatures (Tm; oC) used in this 
study. 

 

Gene Primer Sequence (5’…..3’) Tm (oC) 

dnmt1 Forward - CTGACCAGTGGCGTTTTTGCCAGG 

Reverse - TCAGGCTGTAGTCGGCGAAAGACG 

65 

tet1 Forward - GGCGCCAAAGGAAATGCAGTGAG 

Reverse - CACCCATTTAGCTATGGGACACC 

62 

tet2 Forward - CGCCTCGTGCCACTGCGTCGATCA 

Reverse - GGCTCGCCCGCTGAGGCCAGACCTT 

62 

tet3 Forward - GGACAGAAGGGGGAAGCAGTTCGG 

Reverse - CTCGCTGCTTCGACGAATCACCCA 

62 

-actin Forward - TGGAGAAGAGCTACGAGCTCC 

Reverse - CCGCAGGACTCCATTCCGAG 

62 

18S  Forward - TGGTTAATTCCGATAACGAACGA 

Reverse - CGCCACTTGTCCCTCTAAGAA 

65 
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List of Figures 

Figure 1. Box plot representation of metabolites that showed significantly higher levels in NBH 

fish livers compared to SC fish livers. Concentrations of metabolites are presented as ng/mg 

wet weight of liver tissue. Statistical significance was determined by unpaired t-test with 10% 

false discovery rate (q-value; Benjamini-Hochberg test). Adjusted p.value less than or equal to 

0.05 was considered statistically significant. Fold change values (NBH:SC ratio) and the 

corresponding adjusted p.values of the metabolites are given in supplementary table 1.  

 

Figure 2. Box plot representation of metabolites that showed significantly lower levels in NBH 

fish livers in comparison to SC. Concentrations of metabolites are presented as ng/mg wet 

weight of liver tissue. Statistical significance was determined by unpaired t-test with 10% false 

discovery rate (q-value; Benjamini-Hochberg test). Adjusted p.value less than or equal to 0.05 

was considered statistically significant. Fold change values (NBH:SC ratio) and the 

corresponding adjusted p.values of the metabolites are given in supplementary table 1.  

 

Figure 3. Overview of the one-carbon metabolism pathway. Significantly altered metabolites in 

this are highlighted. Metabolites highlighted in blue and red represent those that are significantly 

higher and lower in NBH respectively. THF – tetrahydrofolate; me-THF – N5N10-methylene-

tetrahydrofolate; m-THF – N5-methyl-tetrahydrofolate; F-THF – N10-formyl-tetrahydrofolate; 

DMG – dimethylglycine; SAM – S-adenosylmethionine; SAH – S-adenosyhomocysteine; SAHH 

– S-Adenosyl-L-homocysteine hydrolase. 

 

Figure 4.  Global 5-methylcytosine (A; 5mC) and 5-hydroxymethylcytosine (B ; 5-hmC) levels in 

NBH and SC fish livers. 5mC and 5hmC levels were determined using a standard curve.  

* represents significant difference in the levels between the two sites (unpaired t-test; p < 0.01). 
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Figure 5.  DNA methylation and demethylation gene expression patterns in NBH and SC liver. 

dnmt1 (A) and tet (B-D) expression was quantified using qPCR and their relative expression 

was calculated using the delta Ct method. β-actin was used as a reference gene. * represents 

significant difference in expression between the two sites (unpaired t-test; p < 0.01). 

 

Figure 6. Lipid accumulation in fish livers from NBH (A-D) and SC (E-H). Liver tissues were 

cryosectioned and stained for neutral lipids with Oil Red O. The lipid droplets around the hepatic 

portal vein are stained in red. Representative images from NBH (A-D) and SC (E-H) fish are 

shown. Top and bottom panel of images are from the male and female fish respectively. 
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Supplementary Table 1. Differentially-detected metabolites using targeted metabolomic analysis. Concentrations of metabolites are 
presented as ng/mg wet weight of liver tissue. Statistical significance was determined by unpaired t-test with 10% false discovery rate 
(q-value; Benjamini-Hochberg test). Fold change represents the NBH:SC ratio of the metabolite levels.  
 
 

 
 

Metabolite 
Concentrations 
(Mean ± S.E.M.) Fold 

change 

 
Biochemical class 

NBH SC Adjusted p.value 

Inosine monophosphate (IMP) 160.26 ± 17.34 33.77 ± 5.54 4.75 2.70E-005 Nucleotide 

Pantothenic acid 4.60 ± 0.58 2.07 ± 0.31 2.22 0.006 Vitamin B5 

Ornithine 11.11 ± 1.16 5.38 ± 0.92 2.07 0.002 Amino acid 

Arginine 12.06 ± 1.52 5.92 ± 1.43 2.04 0.014 Amino acid 

Leucine 17.53 ± 1.96 9.24 ± 1.19 1.90 0.01 Amino acid 

Tyrosine 18.71 ± 1.60 11.42 ± 1.47 1.64 0.002 Amino acid 

Sarcosine 140.3 ± 7.95 86.78 ± 11.3 1.62 0.002 Glycine metabolism 

Ribose-5-phosphate 9.01 ± 0.66 5.65 ± 0.49 1.59 0.006 Pentose phosphate 

Inosine 213.08 ± 14.87 154.95 ± 18.53 1.38 0.03 Nucleoside 

Choline 17.16 ± 1.19 13.81 ± 0.98 1.24 0.025 B-complex vitamin 

Adenosine 31.87 ± 3.63 42.04 ± 1.75 -1.32 0.033 Nucleoside 

Serine 9.66 ± 1.06 14.11 ± 1.27 -1.46 0.021 Amino acid 

Threonine 51.61 ± 5.20 82.38 ± 8.81 -1.60 0.009 Amino acid 

Glycine betaine 15.03 ± 2.07 34.91 ± 3.43 -2.32 0.0001 Methyl donor 

S-(1,2-carboxyethyl)glutathione 2.00 ± 0.51 4.89 ± 1.09 -2.45 0.020 Glutathione metabolite 


