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Technological advances have allowed in situ monitoring of soil water content 
in an automated manner. These advances, along with an increase in large-scale 
networks monitoring soil water content, stress the need for a robust calibra-
tion framework that ensures that soil water content measurements are accurate 
and reliable. We have developed an approach to make consistent and compa-
rable soil water content sensor calibrations across a continental-scale network 
in a production framework that incorporates a thorough accounting of uncer-
tainties. More than 150 soil blocks of varying characteristics from 33 locations 
across the United States were used to generate soil-specific calibration coef-
ficients for a capacitance sensor. We found that the manufacturer’s nominal 
calibration coefficients poorly fit the data for nearly all soil types. This resulted 
in negative (91% of samples) and positive (5% of samples) biases and a mean 
root mean square error (RMSE) of 0.123 cm3 cm−3 (1s) relative to reference stan-
dard measurements. We derived soil-specific coefficients, and when used with 
the manufacturer’s nominal function, the biases were corrected and the mean 
RMSE dropped to ±0.017 cm3 cm−3 (±1s). A logistic calibration function further 
reduced the mean RMSE to ±0.016 cm3 cm−3 (±1s) and increased the range of soil 
moistures to which the calibration applied by 18% compared with the manufac-
turer’s function. However, the uncertainty of the reference standard was notable 
(±0.022 cm3 cm−3), and when propagated in quadrature with RMSE estimates, 
the combined uncertainty of the calibrated volumetric soil water content values 
increased to ±0.028 cm3 cm−3 regardless of the calibration function used.

Abbreviations: DPHP, dual-pulse heat probe; FDR, frequency-domain reflectometry; NEON, National 
Ecological Observatory Network; NMM, neutron moisture meter; NSF, National Science Foundation; PRT, 
platinum resistance thermometer; RMSE, root mean square error; TDR, time-domain reflectometry. 

Soil moisture is an important driver of numerous biogeophysical processes at scales 
ranging from the aggregate to the globe. The vertical and lateral flow of water through 
the soil determines patterns of eluviation and illuviation, making them central to soil 
pedogenesis, and control the flux of solutes within the soil profile and across the terrestrial 
aquatic interface, with implications for the transport of nutrients and pollutants (Kaiser 
et al., 2004) including dissolved organic matter (Burns et al., 2016; Kalbitz et al., 2000). 
Dissolved organic matter is a significant component of the global C budget, and the flux 
of dissolved organic matter within soils and into water bodies has implications for the 
global C cycle (Battin et al., 2008). Additionally, soil moisture status is important for the 
decomposition of soil organic matter and the form in which C is respired (e.g., CO2 or 
CH4) (Davidson et al. 2008). Soil moisture is also a determinant of ecosystem structure, 
sensible and latent heat fluxes, water balance, and local climate (Koster et al., 2004; IPCC, 
2007; Stanford and Epstein, 1974).

Soil moisture evolves along a continuum of water availability from saturation to the 
permanent wilting point, with the range following the loss of gravitational water (i.e., field 
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capacity) to a water potential of approximately −1500 kPa (i.e., the 
permanent wilting point) representing plant-available water. Soil 
is considered to be saturated if all the pores within the soil are 
filled with water. If no additional water is added to the soil, the soil 
surface will begin to dry. Simultaneously yet independently, water 
will also begin to percolate out of the larger soil pores under grav-
ity until field capacity is reached; this process usually takes only 
a few hours for sandy soils but can take up to 72 h for soils with 
a high clay content (Weil and Brady, 2017). Once field capacity 
is reached, further drying of the soil is slow and becomes a func-
tion of evaporation and transpiration stages. In the first stage, the 
f low of capillary water (the water in small pores of the soil) to 
the soil surface is sufficient to meet the demand of the evapora-
tive rate of the ambient atmosphere (Lemon, 1956). In the second 
stage, vapor movement replaces capillary flow as the dominant 
transport mechanism, and the rate of soil drying decreases (Idso 
et al., 1974). If the soil is vegetated, plants will also contribute 
to the drying of soils by removing water from their rooting zone 
(Weil and Brady, 2017). As the soil continues to dry, the remaining 
water molecules are more tightly held within the soil matrix, which 
makes it harder for plants to extract water (Campbell and Norman, 
1998). Eventually, soil moisture levels reach the wilting point, the 
amount of water retained by the soil when the water potential is 
approximately −1500 kPa.

Direct estimates of soil water content are made by sam-
pling a known volume of soil, weighing it before and after 
oven drying, and calculating the difference in weight, i.e., the 
gravimetric approach (Gardner, 1986). While the gravimetric 
approach respects first principles and is considered the standard 
against which other soil water content methods are compared 
(Gardner et al., 2001), it cannot be performed in a nondestruc-
tive manner, nor can a continuous time series be estimated 
across a range of moisture contents. Studies that seek to quan-
tify continuous volumetric soil water content (qv) must rely on 
automated instrumentation. An abundance of in situ and remote 
sensing technologies allow the automated monitoring of qv at 
different spatial and temporal scales. The applicability of each 
measurement system is directly related to the underlying goals 
of the project. Measurements of qv at the point scale (<1 m2) 
are commonly obtained by the neutron moisture meter (NMM), 
dual-pulse heat probe (DPHP), and an array of electromagnetic 
technologies. Most of these methods allow continuous (e.g., 
sub-hourly) monitoring of qv. Remote sensing platforms, such 
as passive and active satellites, are used to quantify qv at larger 
spatial scales (³3 km2) and temporal scales (e.g., daily to weekly). 
An overview of in situ technologies is presented below.

Neutron moisture meters emit neutrons (radioactive mate-
rial) into the surrounding soil environment. A linear relationship 
exists between the count ratio of neutrons and qv, which makes 
NMMs easy to calibrate. It is possible to calibrate these sensors to 
a RMSE of <0.01 cm3 cm−3 (Evett and Steiner, 1995), and because 
of this NMMs are considered to be the most accurate sensor-based 
method for quantifying qv (International Atomic Energy Agency, 

2008). However, because of the risks associated with their radioac-
tive source, NMM usage is declining (Hillel, 1998).

Heat pulse sensors measure soil volumetric heat capacity by 
emitting a short heat pulse from one probe and measuring the 
temperature response at the second probe; the volumetric heat 
capacity is directly related to qv (Ochsner et al., 2003). Studies have 
noted that calibrated DPHPs can provide estimates of absolute qv 
with accuracies ranging between ±0.02 and ±0.05 cm3 cm−3 (e.g., 
Heitman et al., 2003; Ren et al., 2003). Dual-pulse heat probes 
are relatively low cost and are insensitive to salinity (Ren et al., 
2000), which makes them an attractive option for qv monitoring. 
However, these sensors show high sensitivity to the geometrical 
configuration of the probes and soil constituents, which introduces 
measurement inaccuracies (Robinson et al., 2003). Additionally, 
the accuracy of DPHP measurements has been reported to degrade 
with time, thus hinting that DPHPs are more appropriate for 
quantifying changes in qv rather than quantifying absolute quan-
tities of qv (Basinger et al., 2003).

Many sensor technologies come under the electromagnetic 
umbrella. These include but are not limited to time-domain 
reflectometry (TDR) and frequency domain reflectometry (FDR). 
Broadly speaking, the measurement theories of TDR and FDR are 
similar. Electromagnetic pulses emanated by the sensor are used to 
quantify the dielectric constant of the soil surrounding the sensor 
(Rundel and Jarrell, 1989). The dielectric constant is the ratio of 
the dielectric of the material, e.g., soil, to the dielectric of a vacuum 
and describes the material’s ability to store electrical energy (Bosch, 
2004). The dielectric constants of water at 20°C, dry soil, and 
air are 80, 4.5 to 10, and 1, respectively (Robinson et al., 2003). 
Because of these large differences in dielectric constants, qv can be 
discerned from changes in the dielectric constant of the soil volume 
being sampled (Bosch, 2004). Time-domain reflectometry sensors 
commonly operate at a fixed frequency between 0.5 and 1.0 GHz, 
while FDR sensors (i.e., capacitance and impedance probes) oper-
ate at a single frequency or in a narrow band of frequencies between 
0.05 and 0.15 GHz (Gardner et al., 1998). Soil-specific calibra-
tions of TDR sensors and capacitance probes have been shown to 
improve the accuracies of qv estimates. Across a range of moisture 
contents and soil types, TDRs have been calibrated to accuracies 
of ±0.014 to ±0.025 cm3 cm−3 (Blonquist et al., 2005; Robinson 
et al., 2008), ±0.021 to ±0.046 cm3 cm−3 (Weitz et al., 1997), 
and ±0.006 to ±0.019 cm3 cm−3 (International Atomic Energy 
Agency, 2008), while FDR sensors have achieved accuracies of 
±0.014 to ±0.032 cm3 cm−3 (Baumhardt et al., 2000), ±0.015 
to ±0.078 cm3 cm−3 (Sharma et al., 2017), ±0.05 cm3 cm−3 
(Bosch, 2004), and ±0.033 to ±0.055 cm3 cm−3 (Rowlandson 
et al., 2013). The lower operational frequencies of the capacitance 
and impedance probes are sensitive to salinity (electrical conduc-
tivity), temperature, high-charge clays, and organic matter, which 
can affect the accuracy of qv estimates (Bosch, 2004; Baumhardt 
et al., 2000; Logsdon, 2009; Seyfried and Murdock, 2004).

Despite the abundance of available technology, measure-
ments of soil moisture are often lacking at the intermediate 
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scale (0.1–1 km2) (Entekhabi et al., 2010; Robinson et al., 2008; 
Seneviratne et al., 2010). Gaps in our understanding of soil 
moisture and related processes exist at this scale as a result of mea-
surement constraints at the sample scale (100–1000 cm3) and at 
the soil surface at large spatial scales using remote sensing (Western 
et al., 2002). In the last few decades, a handful of platforms have 
emerged that help bridge this intermediate spatial gap. These plat-
forms, such as the COsmic-ray Soil Moisture Observing System 
(COSMOS), the Soil Moisture Active Passive (SMAP) Mission, 
the Soil Climate Analysis Network (SCAN), Snow Telemetry 
(SNOTEL) network, and the US Climate Reference Network 
(USCRN) play an integral role in intermediate-scale soil moisture 
monitoring and provide invaluable data that help inform drought 
assessment, water resource management, and climate modeling 
(Ardekani, 2013; Bell et al., 2013; Huisman et al., 2001; Schaefer 
et al., 2007). Collectively, these platforms monitor soil moisture 
at slightly different depths, spatial scales, and temporal resolutions, 
thus mitigating the lack of quality data at the intermediate scale 
denoted by Western et al. (2002). Advances in sensor technology 
and the advent of additional large-scale distributed observatories 
such as the National Ecological Observatory Network (NEON) 
provide further opportunities to complement these existing 
networks by linking multiple point observations with regional 
processes and responses at the intermediate scale (0.1–1 km2). The 
ability to accomplish this in a feasible manner is the next big chal-
lenge for large-scale networks (Robinson et al., 2008).

In 2004, the National Science Foundation (NSF) sponsored 
several workshops to determine the scientific requirements to inform 
the observational design and methods (e.g., sensor-based technology) 
of future large-scale ecological networks. The workshops pinpointed 
several key issues for consideration. These included sensor robustness 
(reliable and rugged with low power requirements), in situ calibration 
needs (resistant to degradation and signal drift), ease of maintenance 
during the network’s projected lifespan, and network design strate-
gies (sufficient coverage at least cost) (World Technology Evaluation 
Center, 2004). Specific to soil moisture, recommendations included 
that measurements be made (i) continuously up to 2 m deep, (ii) at 
five soil plots per site, (iii) consistently over decadal time periods, (iv) 
such that the sensors can be retrievable to allow for regular calibra-
tion and maintenance, and (v) with a level of accuracy needed for 
large-scale ecological and hydrological studies (e.g., Entekhabi et al., 
2010; International Atomic Energy Agency, 2008; Kerr et al., 2010; 
Robinson et al., 2008).

The limitations of some techniques and the guidance from the 
NSF workshops narrowed down the qv measurement technologies 
applicable for the NEON project. Remote sensing platforms do not 
provide the necessary spatial resolution (horizontal and depth) or 
temporal resolution necessary for monitoring of qv to fit the goals 
of NEON. Neutron moisture meters are appropriate for measuring 
qv at the intermediate scales but they are considered not practical 
due to health risks. Both DPHP and TDR require direct contact 
with the soil and must be permanently buried in the soil, whereas 
capacitance probes are typically installed via an access tube, which 

leaves them accessible for future maintenance, a major advantage of 
capacitance probes. Because of the latter and the ability to meet the 
other criteria outlined by the NSF, capacitance probes were deemed 
the most feasible method for the scope of the NEON project.

It is well known that soil-specific calibrations are necessary to 
ensure accurate qv estimates using capacitance probes (e.g., Bosch, 
2004; Baumhardt et al., 2000; Cosh et al., 2016). This is especially 
important for distributed sensor networks such as NEON that span 
a wide range of soil types. However, information pertaining to cali-
brations of capacitance probes for use in a large-scale observatory are 
lacking. This information gap, along with the increasing number 
of ecological networks providing data to the scientific community 
(see Chabbi et al., 2017; Loescher et al., 2017) and the advent of 
more comparative studies involving cross-site, cross-ecosystem, and 
novel scaling approaches, stress the need for a robust and standard-
ized calibration framework that ensures that accurate and precise qv 
estimates are obtained in a traceable and transparent manner. Here 
we describe the methodology for robust calibrations of a capacitance 
probe, including a transparent and traceable uncertainty analysis 
for the entire method and resulting measurements. More specifi-
cally, we describe a novel large-scale approach toward soil-specific 
sensor calibrations that includes: (i) application of methods across 
soil horizons and sites to provide consistent and comparable data 
across continental-scale networks; (ii) creation of a workflow that 
allows calibration coefficients to be generated in a semi-automated 
production (laboratory) setting; and (iii) a thorough accounting of 
uncertainties at each stage of the calibration process.

 6Methods
Sensor Selection

During NEON’s sensor selection process, a capacitance sensor, 
the EnviroSCAN TriSCAN (Sentek Pty.), was chosen because of its 
ability to meet the evaluated recommendations provided by the NSF. 
The EnviroSCAN operates at frequencies between 48 and 75 MHz 
in deionized water and air, respectively (International Atomic Energy 
Agency, 2008). The sensor outputs a scaled frequency (normalized 
between 0 and 1) that varies proportionally with soil permittivity 
(dielectric constant) and increasing water content (Baumhardt et al., 
2000). According to the manufacturer, the EnviroSCAN integrates 
its measurements over a volume of soil that extends 5 cm above and 
below the vertical midpoint of the sensor and 14 cm horizontally 
from the edge of the access tube (Sentek, 2011). Studies conducted by 
Evett and Cepuder (2008) and Paltineanu and Starr (1997), however, 
found that qv measured by the EnviroSCAN is primarily influenced 
by the soil within a few centimeters of the sensor, with ?90% of the 
signal detected from the soil within 4 cm of the access tube. The 
EnviroSCAN was found to be sensitive to temperature fluctuations 
and salinity, the latter resulting in measurements of qv exceeding the 
available pore space of the soil (Baumhardt et al., 2000).

Soil Sample Collection
The soil water content calibrations presented here were gener-

ated from samples collected at soil pits from 33 terrestrial NEON 
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sites (Fig. 1). A small excavator was used to dig the soil pit at each 
site. To minimize disturbance to the site and soil, the excavator 
was limited to a defined access route to and from the soil pit. Each 
soil pit was approximately 2 by 2 m wide. At most sites, the soil 
pit depth was 2 m (3 m at Alaskan sites) or bedrock, whichever 
was shallower. A three-sided trench shield was placed in the pit to 
protect personnel in the pit from collapses, and soil samples were 
collected from the open side.

A USDA–NRCS soil scientist familiar with local soils per-
formed a detailed description of the soil profile to classify the soil 
horizons at each site (Fig. 2; more photos of soil profiles are avail-
able at data.neonscience.org/megapit-images).

Up to six intact blocks of soil were collected from differ-
ent depths within the soil pit at each site. Sampling depths were 
chosen to capture the diversity of soil properties among the hori-
zons. In cases where there were more than six horizons at a site, 
similar horizons (e.g., Bt1 and Bt2) were grouped and a single 
block was collected from a depth representative of both hori-
zons. Intact soil blocks were excavated to the top of a targeted 
sampling depth by situating a 40- by 40-cm-wide and 16-cm-tall 
(25,600-cm3) stainless steel frame (1.9 mm thick) on the soil, and 
then slowly excavating soil from the edge of the block (by hand, 
hori-hori knives, etc.) while lowering the frame around the soil 
block (Fig. 3A). It was evident if, when sampling, we encountered 
a large rock(s) and/or a large root(s) that was positioned both 
inside and outside of the block. If we encountered a large root, 
we cut the root as close to the outside of the block and kept the 
remainder of the root in place within the sample. If we encoun-
tered a large rock, we removed it and kept sampling down to the 
point where we could capture the void (left by the rock) within 
the sample. Once the sides of the frame completely surrounded 
the block, the stainless-steel bottom plate was hammered into 
the soil (Fig. 3B) and then the block was carefully lifted out of 
the soil pit. If rocks were encountered when hammering in the 
bottom plate, the bottom plate was moved deeper until it could 
be fully inserted. Once the soil block was extracted, the excess 
soil and rocks were removed from the bottom of the block. Any 
voids created by the removal of large rocks were packed with soil 
from the corresponding depth. Next, the top and bottom plates 
were strapped onto the soil block using stainless steel strapping, 
the block was labeled (Fig. 3C), placed in a leak-proof container, 
and shipped to one of the analytical laboratories.

Soil block collections began in mid-2012 and are still in prog-
ress. To date, 222 soil blocks from 40 terrestrial NEON sites have 
been collected, with 155 of these soil blocks from 33 sites having 
been analyzed. The analyzed blocks represent the majority of 
soil types and orders found across the continental United States 
(Loescher et al., 2014); soil moisture calibrations of these samples 
are presented here.

Soil-Specific Calibrations
The manufacturer’s recommended calibration method involves 

installing at least six in situ soil water content profiles in the field, 

wetting the soil around two profiles, leaving two profiles at ambient 
conditions, and establishing a rainout shelter over the remaining 
two profiles (Sentek, 2011). Sensor readings are then taken before 
destructively collecting soil cores adjacent to the profiles to deter-
mine qg and bulk density. However, with only six sensor profiles, 
the calibration method results in only six points at a given depth to 
construct a soil-specific calibration. Although additional measure-
ments could be added by installing more sensors and then excavating 
the soil around them, this results in additional destructive sampling 
in the study area. Additionally, it does not allow continuous calibra-
tion against reference standard measurements (e.g., gravimetric soil 
moisture), thus making it difficult to accurately calibrate the sensors 
across a range of water contents.

To generate more accurate calibrations, we developed an 
alternative approach based on the methods described by Weitz 
et al. (1997). First, we placed the metal box containing the intact 
soil block (see Fig. 2C) on top of 1-cm spacers in a large plastic 
container. The strapping and top plate were then removed from 
the soil block. Deionized water was slowly added to the container 
in 4-cm increments during a 3- to 6-h period until the water 
surface reached the top of the soil block. The use of the spacers 
allowed the water to passively enter the soil from the bottom of 
the block, through the perforated bottom plate of the stainless 
steel box, and ensured that no air was trapped in the soil block 
during the wet-up phase. The soil was left to soak for 72 h to 
ensure that it reached saturation, with additional water being 
added daily if the water level dropped below the top of the block. 
Next, the water was drained from the container, leaving the satu-
rated soil block exposed to the ambient laboratory environment. 
A soil corer, with the same diameter as the EnviroSCAN tube, 
was inserted into the center of the soil block to remove the soil, 
and an EnviroSCAN installation tube was inserted vertically 
into the hole. If a rock or other obstacle was encountered during 
installation, the tube was installed as close to the middle of the 
block as possible. The soil block was left to drain under gravity 
until field capacity was reached (i.e., drainage of water from the 
soil block ceased). Once at field capacity, an EnviroSCAN sensor 
was installed in the access tube. The 40- by 40- by 16-cm soil 
block included buffer zones of ³3 cm in all directions around the 
EnviroSCAN measurement zone. A 100 W platinum resistance 
thermometer (PRT) was inserted vertically into the soil at a dis-
tance of least 16 cm from the EnviroSCAN access tube and at 
least 5 cm from the edge of the soil block. This ensured indepen-
dence to the capacitance measurement zone of the EnviroSCAN 
sensor and minimized artifacts due to edge effects introduced 
by the metal plates. The entire assembly was then placed on a 
100-kg load capacity digital scale (Ohaus D51XW100WL4, 
Ohaus Corp.) and allowed to air dry for an extended period of 
time (hereafter known as dry-down; Fig. 4). Our calibration pro-
cess aimed to quantify a continuous time series of qv between 
field capacity to near the wilting point because this represents a 
large portion of the qv range expected in the field. Once the dry-
down process began, we did not disturb the soil block to mitigate 

data.neonscience.org/megapit
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vibrations, which can alter the water disposition in drying soils 
(Almajmaie et al., 2017). All sensors were connected to a CR1000 
datalogger (Campbell Scientific), and the sensor cables were 
secured to minimize their influence on the recorded weight. The 
datalogger recorded scaled frequency and salinity (both unitless), 
the total weight of the assembly (kg), and the soil temperature 
(W) at 20-s intervals. Hereafter, the term assembly collectively 
represents the soil block, EnviroSCAN sensor and access tube, 
PRT probe, metal box (four side plates and the perforated bottom 

plate), plastic container, and 1-cm spacers. Dry-downs took place 
at two locations: the Marine Biological Laboratory, Woods Hole, 
MA, and the University of Alabama, Tuscaloosa. Data from the 
dataloggers (as .csv files) were transferred and stored in a large 
file storage repository at Github.com.

EnviroSCAN sensors, PRTs, and scales were calibrated 
prior to the dry-down process. The EnviroSCAN sensors require 
normalization in dry air and in deionized water to establish the 
minimum and maximum of the measurement range, and the sensor 

Fig. 2. Examples of partial soil profiles from the National Ecological Observatory Network soil pit prior to excavation: (A) Steigerwaldt (STEI) 0- to 
50-cm depth, Spodosol; (B) Guanica Forest (GUAN) 115- to 200-cm depth, Aridisol; and (C) Konza Prairie Biological Station (KONZ) 60- to 170-
cm depth, Mollisol. Full site names and geolocation information can be found in Supplemental Table S1.

Fig. 3. Depiction of the soil block sampling process: (A) soil is excavated from around the metal box while simultaneously lowering the metal box on 
the soil horizon(s) to be sampled; (B) once the soil block is full with sample, the bottom plate is pushed into the bottom of the soil block; (C) the top 
plate is strapped and taped to the side plates and bottom plate (whole box), and the soil block is ready to be shipped.

Github.com
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outputs a “scaled frequency” that represents a proportion within 
this range (Sentek, 2011). This normalization was performed a 
priori in NEON’s Calibration and Validation Laboratory (CVAL). 
The PRTs were calibrated a priori by CVAL using the triple-point 
method consistent with ITS-90 standards (Bedford et al., 1990; 
Strouse, 2008). The digital scales were calibrated prior to each 
dry-down using standard weights (10–100 kg, in increments of 
10 kg) that met or exceeded NIST Class F specifications (National 
Institute of Standards and Technology, 1990).

We recognize that a vertical gradient of soil moisture existed 
within the soil block during the dry-down process. Given that the 
sensors’ measurement zone spans 10 cm vertically (Sentek, 2011), 
the sensor was probably exposed to a range of moistures across this 
vertical zone. Similar gradients exist in surface soils as they dry (see 
Idso et al., 1974), hence the dry-down procedure was probably rep-
resentative for these soils. For deeper soils, the vertical gradient of 
soil moisture within the soil block was probably greater than those 
that naturally exist when those soils are in situ. To a lesser extent, 

horizontal gradients in soil moisture may have also existed within the 
soil block during the drying process, caused by spatial variation in soil 
properties or preferential flow pathways. These potential discrepan-
cies in the soil moisture of the entire block, which we determined 
gravimetrically, and the soil moisture of the sensor’s measurement 
zone, are common to all soil moisture sensor calibrations where soils 
dry with time (see Logsdon, 2009). While this can be minimized 
by matching the soil block volume to the measurement zone, this 
increases the impact of edge effects (e.g., soil disturbance during 
sample collection) on the sensor’s measurement zone. The size of our 
soil block was chosen to minimize edge effects while also making the 
volume as close to the sensor measurement zone as possible.

The dry-downs for the initial suite of soil blocks (n = 17) 
began in April 2015 and took nearly 6 mo to reach a status where 
the weight of the block stabilized. This indicated that further 
evaporation of qg was not possible given the laboratory condi-
tions. It is not practical to allow each soil block 6 mo to air dry if 
hundreds of dry-downs are to be completed in a suitable time. As 
such, we amended our initial approach to be more time efficient, 
which included placing dehumidifiers and fans within the labora-
tory to reduce the relative humidity at the facility and accelerate 
evaporation from the soils. Periodic data collection, data uploads 
to the large file storage, and automated data analysis and modeling 
(i.e., a “data science” framework) were also completed to increase 
efficiency. These methods are detailed below.

Data Collection and Processing
After a soil block had been drying for at least 30 d, we down-

loaded the dry-down data from the large file storage and ran the 
data through five sequential quality control algorithms written in 
the R programming language v3.2.3 (R Core Team, 2016). The 
tests (i) removed any duplicated rows of data, (ii) removed rows 
where timestamps were duplicated but the measurands, e.g., soil 
water content, were unique from one row to another, (iii) flagged 
missing data and data gaps, (iv) split the bulk dataset into many 
smaller datasets (1/50th the temporal length of the bulk data-
set), and (v) removed measurements of total assembly weight (kg) 
and scaled frequency measurements (unitless) that were deemed 
to be outliers. Outliers were identified following Tukey’s (1977) 
approach, which makes no distributional assumptions about the 
data structure. Splitting the data into smaller discrete time periods 
prior to running Tukey’s (1977) method preserved the nonlinear 
signature of the time series data.

Estimating Oven-Dried Soil Weight
Quantifying the oven-dried weight of the soil blocks allows 

absolute estimates of qg to be calculated. The oven-dried weights 
of the soil blocks could have been directly quantified by placing 
the soil blocks into an oven set to 105°C until the weight stabilized. 
However, the soil blocks used in this study were used for additional 
analyses following the dry-down process. Because of this, the soil 
blocks were not oven dried. The oven-dried weight of a given soil 
block was estimated using the alternative methods described here.

Fig. 4. Laboratory setup of the dry-down process for a soil block from 
the National Ecological Observatory Network’s Moab site, 0- to 
16-cm depth. The EnviroSCAN sensor is positioned within a tube 
in the center of the soil block. The platinum resistance thermometer 
(PRT) is inserted vertically and located in the back right corner of the 
soil block. The soil block is positioned on spacers (not shown) within 
a plastic tub and placed on a scale. The cables of the EnviroSCAN, 
PRT, and scale are connected to a CR1000 datalogger (not shown). 
The setup pictured here was identical for all calibrations.
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Data from the initial suite of soil blocks revealed that most of 
the soil moisture evaporated within the first 60 to 90 d (depending 
on soil type). An exponential decay, weight loss vs. drying time, 
was also present in the data. As such, asymptotes were periodically 
predicted by initializing R’s nonlinear least squares (nls) function, 
an iterative function that produces coefficients through 
algorithm convergence (R Core Team, 2016) via an exponential 
decay equation. The asymptote served as a representation of the 
estimated air-dried weight of an assembly, such that

TOT,
t

tW ab c= +   [1]

where WTOT,t is the assembly weight (kg) at time t; a, b, and c are 
values estimated using the nls function; and t is the elapsed time (d) 
since the start of the dry-down period. The constant c represents 
the asymptote, i.e., the final air-dried weight (kg) of the assembly, 
and was initiated by setting it equal to the mean of the final 500 
weight measurements within the respective dataset. Constants a 
and b were initialized with 10.0 and 0.9, respectively, based on 
preliminary testing.

The estimated weights were then used to calculate the com-
pleteness, or “proportion dried,” P, of each soil block:

TOT,s30 TOT,f30

TOT,s30

W WP
W c

-
=

-
  [2]

where 0TOT,s3W  and 0TOT,f3W  are the mean assembly weights 
(kg) of the 30 measurements observed at the start of the dry-
down period and the final 30 measurements observed prior to 
quantifying P, respectively. This was parameterized by dry-
down data from the initial suite of soil blocks. These data were 
also used to determine a temporal threshold defining when 
the dry-down period could end without propagating large 
uncertainties into the final calibration. This was completed by 
generating truncated time series in 7-d increments starting at 
Day 30 (i.e., 0–30, 0–37, 0–44 d, and so on) and comparing the 
estimated air-dried assembly weight (c in Eq. [1]) of the trun-
cated time series to the air-dried assembly weight of the entire 
time series. We considered the latter to be the “true” estimate 
of air-dried weight for the assembly. This allowed us to opti-
mize the duration of the drying process, producing an accurate 
calibration, and estimate the uncertainty introduced by using 
modeled asymptotes.

Once P ³ 90% and the elapsed time of the dry-down was 
³72 d for an assembly, the estimated air-dry soil block weight, 
WAD (kg), was quantified as a function of the corrected asymptote. 
The corrected asymptote, cc (kg), accounted for the systematic bias 
of the modeled asymptotes that were estimated from the initial 
suite of soil blocks (n = 17):

( ) ( )c E E 1c c W c W Y- - -=   [3]

c c 2ADW c c Y= -   [4]

where Y2 is an empirically derived coefficient, 0.006145 (kg), WE is 
the collective weight (kg) of the assembly’s equipment components, 
i.e., assembly weight minus soil block weight, and Y1 is an empiri-
cally derived coefficient, 0.016281 (kg).

To account for the water remaining in the air-dried soil blocks 
and estimate the oven-dried soil block weights, we incorporated 
data from bulk soil samples that were collected at each horizon 
from the same soil pits as the soil blocks. The bulk soil samples had 
a volume of ?4 L (mineral horizons) or ?12 L (organic horizons) 
and were used to determine the 2- to 5- and 5- to 20-mm rock 
mass, the air-dry to oven-dry ratio of the <2-mm fraction, and a 
wide range of other physical and chemical properties at the NRCS 
Kellogg Soil Survey Laboratory (Soil Survey Staff, 2004). We cal-
culated the oven-dry weight of the soil block using
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where WOD is the oven-dried weight (kg) of the soil block, the 
number 16 represents the total depth (cm) of the soil block, and 
WR25,h, WR520,h, dh, and ZAO,h are the weights of the 2- to 5- 
and 5- to 20-mm rocks (kg kg−1), the absolute depth (cm), and 
the air-dry to oven-dry ratio (unitless) of the soil (i.e., the <2-mm 
fraction), respectively, of soil horizon h within the soil block. This 
equation assumes that rocks did not contain water and the air-dry 
to oven-dry ratio of the <2-mm fraction of the bulk soil samples 
was representative of the <2-mm fraction of the soil block.

Gravimetric soil moisture qg was then calculated as

( )
( )

TOT, OD E

sb

5

g
x

,i

1 10 iW W W

V V
q

´

r -

--
=   [6]

where qg,i is the instantaneous qg (% w/w) for a given assem-
bly weight, WTOT,i (kg); r is the density of water at 20°C, 
0.9982 g cm−3; Vsb is the volume of the soil block (cm3); and Vx is 
the collective volume of the items installed in the soil block (soil 
water content sensor, access tube, and PRT; cm3). We chose to use 
a constant value for water density because the m ± 1s soil tempera-
ture of the initial suite of soil blocks was 20 ± 2°C. This translates 
to a variance of ±1.6% (±1s) for water density, which in turn 
introduces negligible uncertainty in units of cubic centimeters per 
cubic centimeters. It should be noted that soil temperature mea-
surements (W) were converted to degrees Celcius, Ti,°C, by fitting 
the data to an equation traceable to first principles (Bedford et al., 
1990; Strouse, 2008):

2
1 , 2C , 3, i ii k TT k T kW° W= + +   [7]

where Ti,W is a raw temperature measurement (W), and k1, k2, and 
k3 are equal to 0.0996 °C W−2, 235.1293 °C W−1, and −245.2744 
°C, respectively.
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Soil-Specific Calibrations of 
Volumetric Soil Moisture Content

Soil-specific soil water content calibrations were completed by 
calibrating the EnviroSCAN data to the qg measurements. Because 
water molecules are more tightly held within the soil matrix as soils 
dry (Campbell and Norman, 1998), the rate of drying was much 
faster during the initial stage of the dry-down rather than toward 
the end. This pattern was evident in the data throughout the dry-
down period. To avoid biasing the calibration equation to the dry 
end (because there were more data during this stage of the process), 
the scaled frequency and qg measurements were aggregated into 
mean values binned per 0.01 kg of total assembly weight, WTOT,i. 
This produced a dataset with a uniform distribution of weight 
values and allowed calibration coefficients to be fit without bias. 
Next, qv values (% v/v) were generated using the EnviroSCAN 
sensor data and the manufacturer’s default coefficients (qS):
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  [8]

where fi is the scaled frequency as measured by the EnviroSCAN 
sensor during the dry-down process, and S1, S2, and S3 are 
EnviroSCAN’s factory coefficients; 0.1957, 0.404, and 0.02852, 
respectively (Sentek, 2011). It should be noted that the structure 
of Eq. [8] is internally programed in the sensor and is assumed to 
be the “best” fit for the EnviroSCAN’s calibration. Additionally, 
the EnviroSCAN outputs qv from 0 to 100 in units of percentage 
by volume (Sentek, 2011). The qv and qg values were converted to 
cubic centimeters per cubic centimeter after the calibration process 
by simply dividing the volumetric percentage values by 100.

The qv values were then derived using the EnviroSCAN 
sensor data and soil-specific coefficients. To complete this task, Eq. 
[9] was initialized with EnviroSCAN’s factory coefficients, and 
the soil-specific coefficients were estimated using R’s nls function:

2
g,i1 3
N

if N N= +q   [9]

where N1, N2, and N3 are the soil-specific coefficients calculated 
by the nls function. The qv values as predicted by the soil-specific 
coefficients (qNi) were then derived via

21/
3

1
i

N
i

N
f N

N

æ ö- ÷ç ÷q =ç ÷ç ÷÷çè ø
  [10]

The calibration data generated among the soil blocks showed 
that the EnviroSCAN-scaled frequency measurements were often 
less sensitive to changes in soil water content when the soils were 
very dry or wet, in contrast to more intermediate water content 
levels. This resulted in a pronounced S-shape to the calibration 
data for some samples (see below) that could not be produced by 
the EnviroSCAN equation (Eq. [8]). Hence, we repeated the cali-
bration steps outlined in Eq. [9] and [10] with a logistic equation 
capable of describing the expected S-shaped relationship.

First, the logistic coefficients were estimated by the nls 
function based on EnviroSCAN-scaled frequency and qg:

( )
1 2

2

4 3g,i1 exp
i
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  [11]

where L1, L2, L3, and L4 are constants estimated by the nls func-
tion and were initialized with the maximum scaled frequency, 
minimum scaled frequency, qv measurement corresponding to the 
median scaled frequency range (all measured during the respective 
dry-down), and 0.1, respectively. The coefficients in the logistic 
equation describe various aspects of the relationship between the 
EnviroSCAN measurement and the true volumetric water content. 
Limits were placed on the minimum and maximum values for the 
coefficients during the nls fitting to ensure that implausible values 
were excluded (e.g., scaled frequency values outside the sensor’s 
measurement range or moisture contents outside 0–1 cm3 cm−3).

The soil-specific coefficients from Eq. [11] were then used to 
calculate qv using the logistic equation:
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= +   [12]

where qLi is the individual, predicted qv derived using soil-specific 
coefficients and the logistic equation. Because the logistic equa-
tion contains both a high and low asymptote, it can occasionally 
predict unrealistically high and low water contents at scaled fre-
quencies approaching L1 and L2. Therefore, qLi values that were 

<0 were replaced with 0, since qv must be within the range 0 to 
100%. Similarly, if the measured EnviroSCAN scaled frequency 
was <L2, VLi was set to 0%, and if the measured scaled frequency 
was >98% of the scaled frequency range [i.e., 0.98(L1 − L2) + L2], 
VLi was set to the largest volumetric water content gravimetrically 
measured during the dry-down.

For the EnviroSCAN and logistic functions, the minimum 
and maximum water content (qNi and qLi from Eq. [10] and [12], 
respectively) for each soil block represented the range of soil mois-
tures across which the calibration coefficients applied. Scaled 
frequencies that resulted in soil moistures outside this range have 
an unknown uncertainty.

Assigning Calibration Coefficients
It should be noted that the installation depths of soil water 

content sensors at NEON field sites were not known at the time 
of sample collection. As such, calibration coefficients from each 
soil block within a site were assigned to specific depth increments 
to create a continuous vertical profile of calibration coefficients 
that encompassed all possible installation depths. To do this, the 
depth increment of each soil horizon was assigned the calibration 
coefficients from the soil block that was most representative of 
that horizon. For example, the 2BCy soil horizon from NEON’s 
Konza Prairie Biological Station, Kansas, was located between 132 
and 164 cm below ground level and was assigned the calibration 



VZJ | Advancing Critical Zone Science p. 10 of 19

coefficients from the soil block that was collected from 140 to 
156 cm within that horizon. In some cases, the calibration coeffi-
cients from a single soil block could be assigned to two or more soil 
horizons. For example, calibration coefficients from a soil block 
collected from a Bt2 horizon might be assigned to the Bt2 and 
Bt3 horizons if a soil block was not collected from the Bt3 hori-
zon. Similarly, if several thin soil horizons were present at the soil 
surface, they would often be assigned the calibration coefficients 
from the soil block that encompassed all those horizons.

Uncertainty Analysis
Uncertainty is an inevitable component of any measurement. 

Even with the highest degree of calibration or controlled condi-
tions, measurement uncertainty will inherently arise to a certain 
extent. Below, we provide a high-level overview of uncertainty 
analyses followed by a breakdown of the uncertainty budget relat-
ing to calibrated estimates of qv. For more detailed information 
relating to the theories and applications of uncertainty analyses, 
see Joint Committee for Guides in Metrology (2008) and Csavina 
et al. (2017).

Overview
Broadly speaking, uncertainty estimates can be grouped into 

two categories: precision and accuracy. These two terms are com-
monly used but can sometimes infer different concepts among 
scientific fields (Csavina et al., 2017). To avoid confusion, we 
explicitly state and show (mathematically) how each is quanti-
fied throughout this study. Precision is quantified by assessing 
the repeatability or reproducibility of measurement. The Joint 
Committee for Guides in Metrology (2008) defines repeatability 
of measurement as the closeness of agreement between successive 
measurements of the same or similar objects obtained under the 
same conditions:
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where si is the unbiased, experimental standard deviation 
obtained from n number of independent observations xi with 
mean ix . Measurement reproducibility is essentially the same as 
measurement repeatability, but the measurements are obtained 
under different conditions (e.g., changing locations or operators). 
Measurement repeatability is inherently captured when quantify-
ing measurement reproducibility.

Accuracy is defined as the closeness of agreement between the 
result of a measurement and the true value of the measurand (Joint 
Committee for Guides in Metrology, 2008):
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where Ri is an individual measurement of the reference standard. 
The result of this equation is commonly referred to as the root 

mean square error (RMSE). In many instances, a suite of inputs 
and calculations are utilized throughout a calibration process, such 
as was the case here. Each input inherently carries uncertainty, 
whether trivial or significant. The quantification and propagation 
of these inputs results in a combined uncertainty uc(y), which ulti-
mately informs the validity of the overall measurement:
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where ¶f/¶xi is the partial derivative of the function f with 
respect to the input quantity xi (Joint Committee for Guides 
in Metrology, 2008). It should be noted that Eq. [15] assumes 
independence of terms.

Measurements of Gravimetric Soil Moisture Content
The ability to sample a known volume of soil directly impacts 

qg estimates (e.g., Ochsner et al., 2003; Robinson et al., 2008). 
Replicate bulk density samples (audit samples) were collected 
using a soil core sampler at a handful of sites (n = 11) across the 
observatory to determine the reproducibility of collecting a known 
volume of soil (Ayres et al., 2017). Here, we use the phrase measure-
ment reproducibility to represent the collection of replicate bulk 
density samples because multiple soil types were collected under 
different conditions, e.g., different scientists and geographic loca-
tions, but the method of physically collecting the soil with the soil 
core sampler remained the same. The audit samples were collected 
at the same depths and within a few centimeters, horizontally, as 
the soil blocks to minimize differences resulting from the spatial 
heterogeneity of soil characteristics. We used the measurement 
reproducibility of the bulk density samples as a proxy to represent 
the measurement reproducibility of soil block volume. We justified 
this because, although it takes only a few minutes to collect a bulk 
density sample and can take anywhere from 1 to 8 h to collect a 
soil block, in both cases the goal is to collect a known volume of 
soil. A varying number of audit samples were taken among NEON 
sites. For instance, at some sites, two audit samples were collected, 
while at other sites, three to four audit samples were collected. As 
such, a pooled estimate of variance (standard deviation) sp, based 
on N series of independent observations of the same variable (soil 
volume collected among various soil types) was used to quantify 
the uncertainty of the soil block volume, u(Vsb) collected from 
site to site:
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where si is the unbiased, experimental standard deviation of the 
ith series of ni independent observations (Eq. [13]) with degrees 
of freedom vi = ni − 1 (Joint Committee for Guides in Metrology, 
2008). Equation [16] was also used to quantify the uncertainty of 
the volume of soil removed from the soil block when installing the 
EnviroSCAN tube.
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The oven-dried weight, WOD, of a soil block was a function 
of many inputs (see Eq. [5]). To estimate the uncertainty of the 
air-dried soil block weights, u(WAD), the RMSE of the modeled 
air-dried weights were calculated as a function of the air-dried 
weights of the full time series (reference measurements) via Eq. [14]. 
Uncertainty estimates of the 2- to 5- and 5- to 20-mm rock weights 
and the air-dry to oven-dry ratio of the <2-mm fraction of each 
soil horizon h [u(WR25,h), u(WR520,h), and u(ZAO,h), respectively] 
were all estimated following Eq. [16]. The absolute depth (cm) of 
each horizon was not assigned uncertainty bounds; this is a known, 
yet unquantifiable source of uncertainty. Measurement uncertain-
ties of assembly weight, u(WTOT,i), and equipment weight, u(WE), 
were derived using Eq. [13] and data from the scale’s calibration 
procedure. Similarly, the measurement uncertainty of the cali-
brated PRTs was derived following Eq. [13] and was subsequently 
used to inform u(r). Collectively, these uncertainties propagated 
to the final combined uncertainty of gravimetric water content, 
uc(qg), which was derived following Eq. [15]. Because WOD is a 
function of many variables, the subsequent computation of uc(qg) 
is somewhat complex. A complete breakdown of partial derivatives 
and partial uncertainties relative to qg are provided within the R 
code in the supplemental material.

Measurements of Volumetric Soil Moisture Content
Estimates of qv produced via the EnviroSCAN are func-

tions of scaled frequency, the respective calibration function, 
and measurements of the reference standard, qg. The reproduc-
ibility (precision) of scaled frequency measurements output by 
the EnviroSCAN was quantified via Eq. [13] during normaliza-
tion. The fit of the respective calibration function was estimated 
by quantifying the RMSE of the predicted qv relative to qg (Eq. 
[14]). The uncertainty of the reference standard measurements was 
derived following the procedures detailed above. The uncertainties 
of each of these process components were summed in quadrature 
following Eq. [15] to produce a final, combined uncertainty of 
volumetric water contents, uc(qv).

 6Results
At the time of this writing, 155 soil blocks from 33 NEON 

sites (Fig. 1; Supplemental Table S1) have been analyzed and are 
reported here. The time series data from the first 17 soil blocks 
were used to generate a consistent framework and pass–fail 
thresholds to make the dry down process more time efficient 
while ensuring a high level of calibration accuracy (see Fig. 5). 
We used thresholds of ³90% dried and a duration of ³72 d to 
end the dry-down for subsequent calibrations, which represented 
a compromise between accuracy in the calibration and elapsed 
time. This resulted in an average drying time of 77 d and an 
air-dry weight prediction uncertainty of ±0.436 kg (±1s) for 
the assembly. Although the calibrations ended before the soil 
blocks had completely dried, the qg ranges observed during the 
dry-downs encompassed values that are typically observed in 
the field. Across all the soil samples, the m ± 1s minimum and 
maximum qg were 0.071 ± 0.031 and 0.389 ± 0.084 cm3 cm−3, 
respectively. The full range of qg measured across the population 
of samples spanned from 0.026 to 0.590 cm3 cm−3. Since the air-
dry to oven-dry ratio of the soil was always close to 1 (m ± 1s: 
1.022 ± 0.016), the oven-dry weight of the block (WOD) was only 
slightly less than the air-dry weight.

A variety of data signatures were observed when plotting qg 
measurements against raw scaled frequency measurements output 
by the EnviroSCAN (Fig. 6). While some of these relationships 
could be represented by the manufacturer’s equation (e.g., Fig. 7), 
others could not (e.g., Fig. 7A). As a result, we developed and tested 
an alternative (logistic) calibration equation.

Unlike the default equation provided by Sentek, the logistic 
equation contains coefficients that can be used to extract useful 
information when estimating qv. The point of inflection in the 
logistic calibration model (L3) represents the predicted maximum 
sensitivity of the sensor to a given change in qv. Across all soil blocks, 
the m ± 1s peak sensitivity occurred at 0.143 ± 0.093 cm3 cm−3, 
indicating that the EnviroSCAN sensors had the maximum sensi-
tivity to changes in qv at drier and intermediate ranges. In contrast, 

Fig. 5. Time vs. assembly weight of the of 
the soil block sample from the National 
Ecological Observatory Network’s Konza 
Prairie Biological Station (KONZ) site, 
140- to 156-cm depth. The black line rep-
resents assembly weight data passing the 
quality control process, the orange line 
represents the values predicted via Eq. [1] 
using R’s nls function, and the dashed line 
represents the estimated, air-dry weight (c 
in Eq. [1]) of the assembly.
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the low and high asymptotes (L1 and L2, respectively) correspond 
to the sensor measurement thresholds predicted to be completely 
insensitive to changes in qv. We calculated the qv corresponding to 
the 10th and 90th percentile of the predicted sensor measurement 
range for each soil to determine the latter. Across all soil blocks, 
the m ± 1s qv corresponding to the 10th and 90th percentiles were 
0.037 ± 0.072 and 0.299 ± 0.129 cm3 cm−3, respectively, indicat-
ing that the sensors were relatively insensitive to changes in qv in 
very dry and wet to very wet soil.

Thirty-one bulk density samples from 11 sites were used for 
the reproducibility analysis. The measurement reproducibility of 
these samples was found to be ±5.21% (±1s). We attributed all 
of the uncertainty in the bulk density measurements (dry weight 
divided by sample volume) to the volume component because the 
laboratory scales were calibrated to an uncertainty £0.1% and we 
minimized differences associated with spatial variability during 
sample collection. This relative volumetric uncertainty translates 

into standard uncertainties of ±1334 and ±20 cm3 (both ±1s) 
for total soil block volume and soil volume removed during the 
installation of the EnviroSCAN access tube, respectively.

Use of the EnviroSCAN function with default coefficients 
resulted in large systematic biases, with 91% of the soil blocks dis-
playing negative bias and 5% displaying positive bias relative to 
qg. Only 4% of the soil blocks showed no bias, i.e., the collective, 
predicted qv values were greater than, equal to, and less than qg 
measurements for a single soil block across the calibration range. 
The average RMSE of calibration fit (see Eq. [14]) using the nom-
inal equation with the default coefficients was 0.123 cm3 cm−3 
across the population of soil blocks. Biases were corrected by using 
soil-specific coefficients with the EnviroSCAN function and 
logistic functions, which resulted in mean calibration fit uncer-
tainties (RMSE) of ±0.017 and ±0.016 cm3 cm−3 (both ±1s), 
respectively. Due to the non-normal distribution of calibration 
fit uncertainties, especially for the logistic function, the median 

Fig. 6. Soil water content and scaled frequency relationships for example soil blocks from National Ecological Observatory Network terrestrial sites 
sorted by clay content: A) Bartlett Experimental Forest (BART) 08–24 cm depth; B) Smithsonian Environmental Research Center (SERC) 0–16 cm 
depth; C) University of Notre Dame Environmental Research Center (UNDE) 41–57 cm depth; D) Sterling (STER) 80–96 cm depth; E) Smithson-
ian Conservation Biology Institute (SCBI) 18–34 cm depth; F) Konza Prairie Biological Station (KONZ) 140–156 cm depth; G) Abby Road (ABBY) 
51–67 cm depth; and H) Oak Ridge National Laboratory (ORNL) 75–91 cm depth. Full site names and geolocation information can be found in 
Supplemental Table S1.
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RMSE of the logistic function (±0.009) was substantially lower 
than the median RMSE of the EnviroSCAN function (±0.014). 
Moreover, the soil-specific logistic function was a better fit (i.e., 
lower mean RMSE) for 66% (n = 102) of the soil blocks, whereas 
the soil-specific EnviroSCAN function resulted in a better fit for 
34% (n = 53) of the soil blocks.

In addition to usually having lower RMSEs, the calibrations 
based on the logistic function spanned a wider range of soil mois-
tures (m ± 1s; 0.332 ± 0.079 cm3 cm−3) than the soil-specific 
EnviroSCAN function (0.281 ± 0.068 cm3 cm−3). Indeed, out 
of 155 soil samples, the range of soil moisture spanned by the cali-
bration was larger for the logistic function than the EnviroSCAN 
function for 154 samples (99.4%). The m ± 1s low end of the 
logistic and EnviroSCAN calibration range was 0.057 ± 0.032 
and 0.073 ± 0.031 cm3 cm−3, respectively, while the m ± 1s 
high end of the logistic and EnviroSCAN calibration range was 
0.389 ± 0.082 and 0.355 ± 0.081 cm3 cm−3, respectively.

Among the population of soil blocks, the mean combined 
uncertainty of qv measurements was ±0.028 cm3 cm−3 (±1s) 
regardless of which soil-specific calibration function was used. 

This uncertainty was found to be heavily influenced by the uncer-
tainty of the reference standard (qg) measurements. The average 
uncertainty of the q g measurements was ±0.022 cm3 cm−3 
among the population of soil blocks. Collectively, the uncertain-
ties introduced by estimating the oven-dry weights (Table 1, no. 
2b) and the soil block volume (Table 1, no. 2d) were the biggest 
contributors to the overall uncertainty of qg measurements. In 
nearly all instances, the magnitude of the qg uncertainty for a 
given soil block exceeded the magnitudes of the RMSE estimates 
(Table 1, no. 1). The uncertainty arising from the EnviroSCAN’s 
reproducibility was negligible relative to the other sources of 
uncertainty (Table 1, no. 3).

 6Discussion
We developed a robust and traceable calibration approach that 

identifies and quantifies uncertainties associated with qv measure-
ments. By examining 155 soil blocks from 33 sites that represent 
a range of soil types, we found the average RMSE of qv measure-
ments to be 0.123 cm3 cm−3 across a qg range of 0.026 to 0.590 
cm3 cm−3 when using the manufacturer’s factory coefficients. This 

Fig. 7. Calibration fits for the soil blocks denoted in Fig. 6: raw scaled frequency (black lines); EnviroSCAN equation with nominal coefficients (red 
lines); EnviroSCAN equation with soil-specific coefficients (blue lines); logistic equation with soil-specific coefficients (green lines).
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level of uncertainty spans the typical range of water contents that 
many natural and managed ecosystem soils experience (Cosh et al., 
2016; Williams et al., 2009) and is comprised mainly of system-
atic bias. Roughly 91% (n = 141) and 5% (n = 8) of the resulting 
calibration curves resulted in negative and positive bias, respec-
tively, relative to the reference standard measurements; only 4% (n 
= 6) of the soil blocks could be fit using the nominal coefficients 
without discernable bias. Our findings confirm that the use of 
a single set of calibration coefficients results in large systematic 
biases across a range of soil types that is common among other qv 
studies (e.g., Bosch, 2004; Deb et al., 2013; Seyfried and Murdock, 
2004; Sharma et al., 2017) and indicate that the use of the factory 
coefficients is only applicable if relative soil water content mea-
surements are needed, e.g., if the temporal pattern is primarily of 
interest. Hence, we do not recommend that researchers depend 
only on the factory coefficients, especially if the focus is to pri-
marily estimate absolute qv; such data are critical in informing 
process-based biogeochemical models.

Similar to previous studies, we found that soil-specific cali-
brations are needed if accurate absolute measurements of qv are 
required (Leib et al., 2003; Seyfried and Murdock, 2004; Sharma 
et al., 2017; Weitz et al., 1997; Baumhardt et al., 2000). Using 
soil-specific coefficients in conjunction with the EnviroSCAN 
function, we reduced the average RMSE of the predicted qv 
measurements to ±0.017 cm3 cm−3 (±1s) across the range of 
soil types and qg values examined in this study. We also found 
that the RMSE of qv measurements could be further reduced to 
0.016 cm3 cm−3 (±1s) if the EnviroSCAN equation was replaced 
with the logistic equation. In addition to decreasing the mean 
RMSE by 5%, the mean range of soil moistures across which the 
logistic calibrations applied was 18% larger than the range for the 
EnviroSCAN calibrations (0.332 vs. 0.281 cm3 cm−3, respectively).

The cause of the S-shaped relationship and the reason why 
it is more pronounced for some soil samples is currently unclear 
but presumably results from an interaction between the sensor 
measurement technology and soil characteristics; FDR sensors 
are known to be sensitive to a range of factors inherent in soils as 
a result of their lower operating frequency (Chen and Or, 2006; 
Cosh et al., 2005; Seyfried and Murdock, 2004). A suite of physi-
cal and chemical properties were measured for each soil horizon 
collected, and preliminary analyses indicate that soil texture may 
influence the shape of the relationship between soil water content 
and scaled frequency, with soils with higher clay content having 
a weak tendency to have a more S-shaped relationship. This may 
result from the greater porosity of clay soils (Bernoux et al., 1998), 
which results in a larger range of water contents and may increase 
the chance of encountering the inflection point in the relationship. 
Future work will investigate the relationships between these soil 
characteristics and the calibration data that were generated here.

Applying the soil-specific calibration coefficients of the 
logistic equation, we found that the EnviroSCAN sensors were 
most sensitive to a given change in soil water content at dry to 
intermediate soil water content ranges and relatively insensitive Ta
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at very dry (<0.037 ± 0.072 cm3 cm−3) and wet to very wet 
(>0.299 ± 0.128 cm3 cm−3) water contents. This suggests that 
changes of qv in very dry soils and wet to very wet soils will have 
a larger uncertainty or may go undetected by the EnviroSCAN. 
This result provides a challenge to those who wish to use these 
sensors in soils that frequently experience these conditions.

The function that is internally stored within the EnviroSCAN 
sensors (Eq. [8]) limits the utility of this calibration study to post-
processing of sensor data. For most soil blocks, the relationship 
between sensor-scaled frequency and qg was better represented by 
a logistic equation, which cannot be produced by the EnviroSCAN 
factory equation. We cannot rule out the possibility that an 
entirely different function might provide an even better fit than 
the logistic function derived here. The EnviroSCAN function is 
capable of producing measurements at an intermediate range of 
volumetric water contents (e.g., 0.1–0.3 cm3 cm−3) with accept-
able uncertainty when soil-specific calibrations are generated but 
underperforms in drier soils if an inflection point in the sensor 
response is present. As a result, while this sensor may be suitable for 
measuring soil water content at some sites, it may be less suitable 
at other sites depending on the study aims.

The investigation of uncertainties is gaining momentum as 
the primary focus of many environmental studies (e.g., Loescher 
et al., 2006; Ocheltree and Loescher, 2007; Campbell et al., 2011; 
Roberti et al., 2014; Yanai et al., 2012, 2015). Quantification of 
measurement uncertainties informs the validity of a measure-
ment, which allows inferences about the measurements to be 
made in a confident manner. In this study, we investigated all 
sources of known uncertainties and uncovered interesting find-
ings. For instance, the mean uncertainty of qg measurements, 
±0.022 cm3 cm−3 (±1s), accounted for a large percentage of the 
combined uncertainty of a predicted qv measurement. Not disclos-
ing this type of information is a hindrance to users of qv sensors. 
Manufacturers and researchers are sometimes unclear about what 
type(s) of uncertainty they disseminate (Csavina et al., 2017) or 
assume certain applications are appropriate for their products. For 
example, some manufactures may only disseminate specifications 
informing sensor precision (i.e., repeatability or reproducibility), 
which in the case of the EnviroSCAN would convey that measure-
ments output by the sensor carry relatively little uncertainty (see 
Table 1, no. 3). Along the same lines, many studies involving the 
calibrations of soil moisture sensors provide estimates of RMSE 
only relative to a reference standard, yet make no mention of the 
uncertainty of their reference standard (e.g., Bitella et al., 2014; 
Bosch, 2004; Cosh et al., 2005, 2016; Dong et al., 2014; Huisman 
et al., 2001; Ould Mohamed et al., 1997; Rowlandson et al., 2013; 
Sharma et al., 2017) or dismiss it as a negligible source of uncer-
tainty (e.g., Evett, 2008). Robinson et al. (2008) noted that the 
most significant source of uncertainty for determining qg from 
the field may possibly be obtaining an accurate volume of soil. Of 
all the studies investigated for our research, we identified only two 
that provided a quantitative estimate of the uncertainty of their 

reference standard measurements. These uncertainties, which are 
described to be functions of repeated soil sampling of manage-
able volumes, i.e., <100 cm3, are ±0.022 cm3 cm−3 (Ochsner et 
al., 2003) and ±0.028 cm3 cm−3 (Heitman et al., 2003). Evett 
(2008) argued that if “good practice” is exercised while collect-
ing samples, uncertainties of qg measurements should be limited 
to <0.01 cm3 cm−3. While this may be achievable for softer soils 
comprising only fine roots with no or few rocks, collecting soil 
samples with negligible volumetric uncertainty becomes difficult 
in soils where rocks and/or larger roots are ubiquitous. These fac-
tors impact the reproducibility of soil sampling and ultimately 
the uncertainty of the reference standard used to calibrate the qv 
estimates produced by the sensor. This concept is reflected in our 
study, where a sample volume uncertainty of ±5.21%, when con-
verted to units of cm3 cm−3 and propagated, results in an average 
uncertainty of ±0.012 cm3 cm−3. Another notable source of uncer-
tainty of our qg measurements resulted from estimating oven-dried 
soil block weights. This type of uncertainty, which was estimated 
to be roughly ±0.017 cm3 cm−3, is applicable only to our study 
and should not be considered relevant for soil moisture calibration 
studies that directly oven dry qg samples. This source of uncer-
tainty could have been greatly mitigated had we oven dried our 
soil blocks immediately following the dry-down process to directly 
obtain an oven-dried bulk density. However, as noted above, we 
used the soil blocks for other analyses post dry-down. Overlooking 
and/or discounting the uncertainties of reference standard mea-
surements can lead to false proclamations regarding the overall 
uncertainty of calibrated qv measurements because the full scope 
of an uncertainty budget goes far beyond calibration fit estimates 
(e.g., RMSE). These statements are meant to stress the importance 
of providing a fully transparent and traceable approach to uncer-
tainty estimation, one that inherently mitigates questions about 
data validity and conveys important metrological concepts. For 
instance, a sensor cannot be calibrated to a greater accuracy than 
its reference standard. This is a limitation of any sensor calibration.

In this study, we identified four sources of uncertainty that we 
were unable to quantify: (i) the spatial variability in soil properties 
among the sensor installation locations at each NEON site; (ii) 
the impact of potential structural changes introduced to the soil 
block during sampling and (possibly) shipping; (iii) the impact of 
extreme temperatures or large temperature fluctuations on cali-
brated qv measurements; and (iv) sensitivity of the EnviroSCAN 
to the saline content of the soils.

Early iterations of the observatory design included up to 
five soil pits per terrestrial site, which would have allowed quan-
tification of the spatial heterogeneity component of uncertainty. 
However, the number of pits per site was reduced from five to 
one because of budget and schedule constraints, which prevents a 
thorough quantitative assessment of spatial heterogeneity at this 
time. This source of uncertainty could be quantified in the future 
by following a method noted by Rowlandson et al. (2013), which 
involves collecting soil samples from multiple points (spatially) at 
a site and quantifying the variance of soil characteristics.



VZJ | Advancing Critical Zone Science p. 17 of 19

Structural changes of the soil blocks may have been intro-
duced during sampling, shipping, and handling of the soils at 
the laboratories during the dry-down setup (e.g., saturating the 
soils and inserting the access tube). This may have caused local-
ized changes in qv measurements that may not be representative 
of field-based qv measurements. We cannot rule out the possibil-
ity that this type of disruption may have introduced uncertainties 
with magnitudes similar to and/or greater than those quantified 
here. However, we also cannot rule out the possibility that any 
uncertainty introduced by this type of disruption was inherently 
captured in our calibration process.

Because laboratory temperatures were held between 20 ± 2°C 
(m ± 1s) for all of the dry-downs in this study, we did not directly 
assess the inf luence of large temperature f luctuations on qv 
measurements. Baumhardt et al. (2000) found that diurnal tem-
perature swings between 15 and 35°C were closely correlated with 
fluctuations of qv measured by the EnviroSCAN; these fluctua-
tions ranged between 0.02 and 0.04 cm3 cm−3. Because a close 
relationship between temperature and qv exists, a temperature cor-
rection could be applied to the qv assuming that soil temperature 
is monitored at a short spatial distance from the qv measurements. 
These findings convey that, although the measurement uncer-
tainties introduced by temperature fluctuations may be equal to 
or slightly larger than the uncertainty components quantified in 
this study, they can be mitigated to a magnitude that is trivial via 
temperature correction.

As noted by Baumhardt et al. (2000), the EnviroSCAN can 
produce unrealistic estimates of qv in saline soils. We did not spe-
cifically investigate this in our study because we did not fluctuate 
the salinity levels of the water used for saturating the soil block in 
our dry-downs. As such, we cannot speak to the extent of this sen-
sitivity in the soils we tested. Lastly, based on our current data, we 
cannot quantify the uncertainty outside the range of the popula-
tion of qg measurements that were used to generate the calibrations 
(0.026–0.590 cm3 cm−3). This range, however, spans expected soil 
water contents at our sites.

 6Conclusions
Previous studies have presented soil-specific calibrations for 

capacitance sensors but only for a small number of soil types (e.g., 
Bosch, 2004; Baumhardt et al., 2000; Paltineanu and Starr, 1997). 
These studies provided important insights, but given their smaller 
scale they did not fully address issues that become significant when 
attempting to scale up the calibration of capacitance sensors to 
whole networks that span wide ranges of soil orders, types, and 
physical characteristics. We have built on the previous studies to 
develop a semi-automated, production process that derives qv mea-
surements made by the Sentek EnviroSCAN capacitance sensor. 
By examining 155 soil blocks from 33 sites that represent a range 
of soil types, we were able to generate soil-specific calibration coef-
ficients for qv with accuracies sufficient for the NEON project. 
While our entire approach may be unnecessary for smaller scale 
studies, its philosophy and traceability to uncertainty standards 

is highly relevant. This approach could be adopted and improved 
(e.g., oven drying the soil blocks) by other large qv monitoring 
networks to determine more accurate estimates of qg and thus soil-
specific calibrations. This, accompanied with robust uncertainty 
estimates, provides the largest utility to all end users.
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