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The Waveguide Invariant (WI) theory has been introduced to quantify the orientation of the inten-

sity interference patterns in a range-frequency domain. When the sound speed is constant over the

water column, the WI is a scalar with the canonical value of 1. But, when considering shallow

waters with a stratified sound speed profile, the WI ceases to be constant and is more appropriately

described by a distribution, which is mainly sensitive to source/receiver depths. Such configurations

have been widely investigated, with practical applications including passive source localization.

However, in deep waters, the interference pattern is much more complex and variable. In fact the

observed WI varies with source/receiver depth but it also varies very quickly with source-array

range. In this paper, the authors investigate two phenomena responsible for this variability, namely

the dominance of the acoustic field by groups of modes and the frequency dependence of the

eigenmodes. Using a ray-mode approach, these two features are integrated in a WI distribution deri-

vation. Their importance in deep-water is validated by testing the calculated WI distribution against

a reference distribution directly measured on synthetic data. The proposed WI derivation provides a

thorough way to predict and understand the striation patterns in deep-water context.
VC 2018 Acoustical Society of America. https://doi.org/10.1121/1.5040982

[BTH] Pages: 3444–3454

I. INTRODUCTION

An underwater waveguide is bounded by the surface and

the seabed, leading to multi-path/multi-mode propagation so

that the acoustic field exhibits interferences. When looking at

the acoustic intensity of a broadband signal over horizontal

(range) aperture, these interferences build a structured pattern

that can be used for source localization or the waveguide

properties inversion. At low frequencies, interferences are sta-

ble enough to be observable1 and take the form of striations.

The sum of all the striations is often called interference pat-

tern. First highlighted by Weston and Stevens on a moving

noisy ship,2 Chuprov formalized the problem using the

Waveguide Invariant (WI) theory3 which describes the slope

of those striations. More recent investigators developed and

detailed this theory adopting a normal mode point of view,4,5

a geometric ray point of view,6 and both points of view.7,8

Most of these studies consider range independent shallow

water waveguides where the propagation is dominated by

interface reflections at the surface and seabed so that effects

of a sound-speed profile (SSP) are generally neglected. It has

been shown that, in this case, all striations have the same

slope and, as a result, the WI is a scalar traditionally denoted

by b. In most shallow water environments, b is roughly con-

stant with a value close to 1. The apparent simplicity of the

WI gave rise to an exhaustive set of applications (passive

localization,9,10 geo-acoustics inversion,11 active sonar,12,13

source separation,14 dispersion compensation15,16).

On the other hand, Baggeroer17 and Rouseff and

Spindel18 simultaneously reminded that considering the WI

as a constant is not realistic for stratified SSPs, where refrac-

tion becomes non-negligible. For these environments, the

striation pattern is more accurately described by a WI distri-

bution. This distribution can be directly measured on data by

applying a two-dimensional Fast Fourier Transform (2D-

FFT) on I(r, f), the range-frequency intensity. This generic

process seems to have been proposed independently by

Rouseff and Spinde,18 Baggereor,17 and Yang.19 It allows

estimation of the WI distribution in any environment of

interest (shallow or deep), assuming that the input data has a

range/frequency resolution that allows to resolve the stria-

tions. The WI distribution obtained using this process will be

called the “reference” distribution throughout the paper, and

will be noted Eb. Although the reference WI distribution cana)Electronic mail: remi.emmetiere@ensta-bretagne.org
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be directly measured on data, it does not bring any physical

insight on the phenomena that drive the WI values. Rouseff

and Spindel also provided an analytical derivation of the

image processing based on the normal mode expansion.18 It

shows that the distribution is dependent on source and

receiver depths. Making use of this physical understanding,

the WI distribution has been recently used to infer source

depth in shallow water.20 But to achieve their derivation,

Rouseff and Spindel used several assumptions, including an

infinite range averaging, so that it does not catch the range

dependence of the striation pattern that typically occurs in

deep-water. As a result, it is appropriate for shallow water

but not for deep water configurations.

In deep water environments, the SSPs are highly stratified.

As discussed in Chuprov’s original paper,3 the shape of the

SSP in deep-water gives rise to numerous widely spread values

of the WI, especially for low order modes. As a result, the stri-

ation pattern (and thus the WI) must be described by a wide

distribution, whose values depend on the SSP. Unfortunately,

Rouseff and Spindel’s work18 is not valid in deep water, and

today no method exists to predict and understand the WI distri-

bution in this context. For this reason, WI has not encountered

much success in deep water, and very few studies attempt to

use it for signal processing applications.21–23

In this paper, we propose a new derivation for the WI

distribution in deep water. In particular, we investigate two

reasons that contribute to the variability of the WI for a fixed

SSP. On one hand, the existence of convergence and shadow

zones, resulting from the dominance of the acoustic field by

groups of modes, involves dramatical changes in the interfer-

ence pattern depending on source-array range and depths.24

On the other hand, and especially within the first tens of kilo-

meters, the WI itself varies with source-to-array range

because of the frequency dependence of the eigenmodes.

The main contribution of this work is to take directly into

account these two deep water behaviors in the WI calcula-

tion. Our derivation thus allows to predict and understand

the WI distribution in a deep-water context from the point of

view of the normal modes theory. Despite the complexity

of the WI in deep water context, a thorough understanding

of the striation pattern could lead to the development of new

source localization methods that are based on the WI distri-

bution. Today, such methods allow source depth discrimina-

tion, but are restricted to shallow water.18

Within this framework, we demonstrate why and how the

deep water WI distribution is varying with the source-receiver

configuration and how to predict locally such a distribution.

For this purpose, in Sec. II, we first recall the classical defini-

tion of the WI, and the 2D-FFT process that is used to evaluate

the reference WI distribution. As a reminder, this reference

distribution can be evaluated on simulated/experimental data,

both in shallow and deep water. It will be noted Eb in the fol-

lowing. Then, in Sec. III, we propose a first method to predict

and intuitively understand Eb by taking into account the modal

group dominance. To do so, the interference pattern is com-

puted as the sum of interference striations produced by sub-

sets of modes which are in-phase with their neighborhoods.

We show that this derivation of Eb is not enough to explain

the sensitivity of the interference pattern with respect to range.

Second, we complete the previous WI calculation by introduc-

ing the frequency dependence of the eigenmodes using a ray-

mode approach. It leads to the full prediction of Eb. The WI

distribution evaluated according this new technique closely

matches the reference striation pattern. Finally, in Sec. IV, we

focus on specific configurations to highlight some interesting

features of the striation pattern in deep water.

II. BASICS OF THE WI

A. Definition of the WI

According to normal mode theory8 in stratified range

independent marine environments, the contribution to the

total acoustic pressure of mode m, for a point source at depth

zs, a receiver at depth zr and range r may classically be writ-

ten as follows:

pm zs; zr; r;xð Þ /
wm zs;xð Þwm zr;xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

km xð Þr
p eikm xð Þr; (1)

where wm is the eigenmode and km the associated horizontal

wavenumber. For convenience, the horizontal wavenumbers

are assumed to be real, but the analysis is easily generalized

to lossy media. The total pressure is a sum of N propagating

modes with amplitudes Am and phases /m,

p zs; zr; r;xð Þ �
XN

m¼1

pm zs; zr; r;xð Þ

¼ 1ffiffi
r
p
XN

m¼1

Am zs; zr;xð Þei/m zs;zr ;r;xð Þ: (2)

This coherent sum will produce constructive and destructive

interferences. Frequency dependence of Am is usually

ignored,8 but this is an approximation, valid in the ideal case

of isovelocity channels with pressure-release or rigid bound-

aries. Considering that the cylindrical divergence 1=
ffiffi
r
p

varies slowly with respect to r compared to the exponential

term, it is also routinely ignored. Denoting D/mn¼/m � /n

the phase shift between modes, one can expand the acoustic

intensity and extract the interference pattern8

Iðzs; zr; r;xÞ � jpðzs; zr; r;xÞj2

/
X

m;n;m 6¼n

Amðzs; zrÞAnðzs; zrÞ

� cosðD/mnðzs; zr; r;xÞÞ: (3)

The total pressure field exhibits structured cosine striations,

as illustrated in Fig. 1 for a Pekeris waveguide. For each pair

of modes, one can define the following quantity:

Imnðzs;zr;r;xÞ¼Amðzs;zrÞAnðzs;zrÞcosðD/mnðzs;zr;r;xÞÞ;
(4)

which represents the part of the interference pattern due to

the interference between mode m and n. Since frequency

dependence of Am is approximately ignored, the slope of the

striations is only due to the frequency shift of the cosine

term of Eq. (4). In the following, the amplitude AmAn is

called the “interference excitation”.
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Two different definitions of the WI have been proposed

in literature:

(1) The reference WI definition. From the range-frequency

variability of the acoustic intensity Imn, the WI is prop-

erly defined as the slope of the interference striation in

log-log space4,8 visible through a window (r, x) with

bandwidth B and range aperture L. Introduced this way,

it can be unambiguously evaluated by assessing the slope

of an iso-intensity line in the log-log representation of

the range-frequency intensity function

bmn zr; zs; r;xð Þ ¼
d log xð Þ
d log rð Þ

����
Imn¼cst

¼ r

x
dx
dr

����
Imn¼cst

: (5)

Note that Eq. (5) is often defined for the total intensity I,
because it is usually impossible to extract the contribution

Imn of any pair of modes from the total striation pattern I.
(2) The definition relying on normal mode expression. The

WI resulting from the interference between modes m and

n can be rewritten4,8 as

bmn zs; zr; r;xð Þ ¼ �
r

x

dD/mn zs; zr; r;xð Þ
dr

dD/mn zs; zr; r;xð Þ
dx

: (6)

If Am depends neither on range nor on frequency, Eq. (6)

is an exact formulation. In the literature, it is typically

used assuming that wm is a real valued function that

locally (around x0) does not depend on frequency. In

other words, the classical assumption states that

/mðr;xÞ ¼ kmðxÞr (7)

and

Am zr; zsð Þ ¼
wm zs;xð Þwm zr;xð Þffiffiffiffiffiffiffiffiffiffiffiffi

km xð Þ
p

�����
x¼x0

: (8)

Inserting Eq. (7) into Eq. (4), the source/receiver depths

and range dependence in the WI definition cancels out.4,8

bmn xð Þ ¼ � 1

x
Dkmn xð Þ
dDkmn xð Þ

dx

; (9)

where Dkmn¼ km � kn. Under the same assumption, the

frequency shift of the cosine in Eq. (4) can be physically

understood4,8 in terms of the horizontal phase slowness

Sh
p;mðxÞ ¼ kmðxÞ=x and the horizontal group slowness

Sh
g;mðxÞ ¼ dkmðxÞ=dx. Then Eq. (9) is often reformu-

lated4,8 as follows:

bmn xð Þ ¼ �
DSh

p;mn xð Þ
DSh

g;mn xð Þ ; (10)

where DSh
p;mn ¼ Sh

p;mðxÞ � Sh
p;nðxÞ and DSh

g;mn ¼ Sh
g;mðxÞ

�Sh
g;nðxÞ. It is important to note that Eqs. (9) and (10)

are an approximation, because the eigenmode wm

depends on frequency. Another phase term must be con-

sidered if wm significantly and quickly changes with fre-

quency, as it is generally the case in deep oceans.

In a deep water context, we will see in Sec. III that Eq.

(9) or Eq. (10) is not accurate enough to describe the refer-

ence WI in Eq. (5), especially for short ranges. One can

already note that there are as many b-values as pairs of

modes (m, n). Depending on which modes are interfering,

several striations possibly coexist, building a complex stria-

tion pattern which is better quantified by a distribution of b,

noted Eb, as it has been suggested in Ref. 18 in a shallow

water context.

B. Evaluate the reference WI distribution

The goal of this section is to introduce the method and

the notations used to assess the reference WI distribution Eb

from a given sampled range-frequency picture I(r, f) like the

one plotted in Fig. 2(a). For these simulated data and for all

the subsequent simulations, the considered environment is a

typical Mediterranean summer channel, and is modeled with

the values listed in Table I and illustrated in Fig. 3(a). This

kind of environment with a single underwater channel can

be modeled with two speed gradients, one above and one

below the minimum of celerity. The eigenmodes wm along

with the associated eigenvalues km are evaluated using the

numerical KRAKEN code.25

As defined in Eq. (5), the WI is related to the slope of

interference striations. As stated in Sec. I, one way to empiri-

cally measure the WI is to use a 2D-FFT. The corresponding

method, described in Refs. 4, 18, and 26 will be briefly

reviewed below.

The 2D-FFT of a given image I(r, f) with bandwidth B
and range aperture L is defined by

~Iðx; yÞ ¼
ðf0þB=2

f0�B=2

ðr0þL=2

r0�L=2

Iðr; f Þe�i2pðxrþyf Þdrdf

�����
�����; (11)

where r0 and f0 are the mean values of axis r and f. Variables

x (in m�1) and y (in s) are Fourier conjugate variables of the

range axis and the frequency axis, respectively.

FIG. 1. (Color online) Acoustic intensity of a flat spectrum broadband signal

in a 150 m depth Pekeris waveguide over a 2 km long HLA.

cwater¼ 1500 m/s, cseabed¼ 1700 m/s and zs¼ zr¼ 100 m.
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According to Eq. (3), I(r, f) is a sum of a finite number

of windowed cosines. Then, the energy in ~Iðx; yÞ is sparsely

distributed as a sum of a finite number of Diracs function

convoluted by sinc (cardinal sine) functions. Figure 2(b)

gives an example of this sparsity. Up to a constant, Eq. (11)

can be approached by

X
m;n;m 6¼n

AmAnsincðpxLÞsincðpyBÞ

� ðdðx� xmn; y� ymnÞ þ dðxmn � x; ymn � yÞÞ; (12)

where xmn and ymn denote the frequencies of the interference

striations between modes m and n along, respectively, the

range r and the frequency axis f. d is the Dirac delta func-

tional and * denotes convolution. One can give a clearer rep-

resentation of the WI information with another set of

variables,4,16 closely related to polar coordinate system. By

replacing the slope in Eq. (5) by its expression in the Fourier

domain one obtains

b ¼ � r

f

x

y
; (13)

and we arbitrarily chose

K ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
: (14)

An example of such a transform is displayed by Fig.

2(c). Summing up over K gives the reference WI distribution

Eb, which is plotted in Fig. 2(d). High energy denotes the

presence of striation slope at b.4,16 This distribution is asso-

ciated with the specific set of parameters (zr, zs, r, f) chosen

to generate the picture I(r, f). Since this is a direct measure-

ment and it does not make any approximation, Eb is consid-

ered in this paper as our reference distribution, or ground

truth. Influences of frequency, bandwidth, and array aperture

on Eb will not be discussed in this paper in order to focus on

the depth/range dependence.

By repeating this procedure at several successive depths

or ranges, one can clearly observe the effects of source depth

on Eb, as shown by Fig. 4(a), or the effects of source range,

as demonstrated by Fig. 4(b). The sensitivity of Eb on source

depth has been well discussed16 for shallow water configura-

tions. It is attributed to the interference excitation AmAn in

Eq. (4), which is a function of source/receiver depths. It has

given rise to depth estimation applications.20,27 But, it is

clear from Fig. 4(b) that Eb also depends on range. However,

neither the interference excitation nor the WI as derived in

Eq. (9) or Eq. (10) can explain this range dependence. As

noted by Cockrell in his PhD manuscript (Appendix A2 of

Ref. 4), the range dependence of the striation has been

observed but it is “a topic that is not well studied”.

Section III first shows how to derive Eb as an indirect

function of range by taking into account the dominance in

the field of groups of modes. This idea is mentioned in sev-

eral papers3,4,12 but it has never been introduce directly in a

derivation of Eb. Second, we derive the WI from Eq. (6) as

an explicit function of range and depth. We will show that

FIG. 2. (Color online) All steps of the

assessment of Eb(zs, zr, r) for the con-

figuration setting zs¼ 10 m, zr¼ 100 m,

r¼ 32 km and f¼ 150 Hz. (a) The

range-frequency image I(r, f). (b) The

2D-FFT of I(r, f). (c) 2D-FFT in the

polar coordinates. (d) The WI distribu-

tion Eb(zs, zr, r).

TABLE I. Typical summer deep water Mediterranean environment.

depth [m] sound speed [m/s] density [kg/m3] attenuation [dB/k]

0 1530 1030 0

100 1500 1030 0

2500 1550 1030 0

2500 1700 1700 0.6

1 1700 1700 0.6
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coupling the two approaches allows a thorough formula of

the WI distribution.

III. THE DEEP WATER WI DISTRIBUTION

A. On the dominance of modal groups

In practice, in deep water the acoustic fields are domi-

nated by few groups of modes. In fact, even at low frequency

(down to 10 Hz), the density of modes is high enough, so

that groups of neighboring modes merge and behave

together like “fuzzy rays.”28 For a specified source/receiver

configuration, visible interferences do not arise from all

modes, but occur only between modes which are within

those groups. This introduces the concept of “modal domi-

nance”3,29,30 in the calculation of Eb. This feature is men-

tioned in the WI literature,3,4 but as far as we know, no

published investigation explicitly integrates this idea into a

normal modes derivation of Eb. According to Eq. (2), the

complex pressure field is a sum of N modes with local

maxima occurring when adjacent modes constructively inter-

fere. Physically, this may occur when two adjacent modes m
and mþ 1 are in phase

D/m;mþ1ðr;xÞ ¼ 2pp; (15)

with p an integer number. Nevertheless at any given precise

point (r, x), it is unusual to exactly find integer values of m
that strictly verify Eq. (15). In practice, we track the evolution

of p as a function of m and by interpolation we find modal

interference indexes i (which are often not integers) corre-

sponding to integer values of p. The factitious group of neigh-

boring modes centered on mode mp¼ iþ 0.5 is then referred

to as dominant. Note that the additional factorþ 0.5 arises

because the integer value of p found using Eq. (15) represents

the interference between neighboring modes i and iþ 1.

The major contribution to the pressure field of a domi-

nant group is given by the adjacent modes (m, mþ 1) sur-

rounding mp. However, the horizontal period of interference

striations3,31 resulting from the interference of any adjacent

modes is given by

Dm;mþ1 xð Þ ¼ 2p
Dkm;mþ1 xð Þ : (16)

A key point is that these striations have an interference

period that is longer than the length of a realistic horizontal

array and so might not be observed in practice. It means

that the WI will be calculated only between dominant

groups and not within dominant groups. We consider that

each dominant group behaves like a unique equivalent mode

which is the central mode mp. Any modal quantity

ðkmp
; kz;mp

; /mp
; Amp

;…Þ associated to a non-integer mp can

be evaluated through interpolation with known quantities

upon modes. Using equivalent modes mp and mq of two

dominant groups, the WI is

bmpmq
xð Þ ¼ � 1

x

Dkmpmq
xð Þ

dDkmpmq
xð Þ

dx

: (17)

According to Eq. (17), the WI appears as indirectly range

dependent through the modal dominance, since Eq. (15) is

FIG. 4. (Color online) A noise realization with bandwidth B¼ 20 Hz cen-

tered on f¼ 150 Hz is simulated on an HLA with aperture L¼ 1 km. (a)

Eb(z) with varying source depth. Other parameters are set at zr¼ 100 m and

r¼ 50 km. (b) Eb(r) with varying source range. Other parameters are set at

zr¼ 1000 m and zs¼ 500 m.

FIG. 3. (Color online) (a) Mediterranean sound speed profile considered in this study, and ray tracing in this environment with (b) zs¼ 500 m and (c) zs¼ 10 m.

Three types of rays exist: top/bottom refracted rays (dark blue), top reflected bottom refracted rays (light blue), and top/bottom reflected rays (orange). The

position of the HLAs that are used in the three test cases are superimposed on (b) and (c) as black crosses, circles, and triangles. For representation conve-

nience, top/bottom reflected rays are not drawn in (c).

3448 J. Acoust. Soc. Am. 143 (6), June 2018 Emmetière et al.



itself range dependent. As discussed previously, the WI can

be defined in terms of phase/group slowness, and

bmpmq
xð Þ ¼ �

DSh
p;mpmq

xð Þ
DSh

g;mpmq
xð Þ : (18)

In order to obtain results consistent with the reference Eb,

evaluated in Sec. II B, we reconstruct a WI distribution as a

sum of equivalent modes interferences (i.e., striations slope

at bmpmq
weighted by its interference amplitude Amp

Amq
). In

terms of equivalent modes, Eq. (12) can be rewritten by

changing m, respectively n, with mp, respectively mq. The

horizontal spatial frequency xmpmq
of the interference stria-

tion resulting from the interference of mp and mq is given by

xmpmq
¼

Dkmpmq

2p
: (19)

The vertical spatial frequency ympmq
can be evaluated using

Eqs. (18) and (13)

ympmq
¼ � r

f

xmpmq

bmpmq

: (20)

In physical terms, ympmq
corresponds to the time delay

between the arrival of modes mp and mq. Following the same

variable changes as in Sec. II B, a WI distribution is calcu-

lated. It is referred to as an approximate prediction, noted

Êb, in contrast with the reference Eb directly evaluated on

I(r, f). For the example of Sec. II B, Êb is plotted in Fig. 5. If

the modal group dominance is enough to explain the range

dependence, it should match Eb displayed in Fig. 4(b).

Unfortunately when comparing the two distributions we

observe that the predicted distribution Êb fails to fully repro-

duce the reference striation pattern, especially at short ranges.

This explicitly demonstrates that a coupled model with b as

defined in Eq. (10) and the modal dominance is not enough to

explain striation patterns in deep water. Sections III B–III D

supplement the method with an Amplitude Modulation/

Frequency Modulation (AM-FM) expansion of the eigen-

mode. The objective is to extract its oscillatory part as a phase

term and thus to correct the approximation used in Eq. (7).

This last decomposition will prove to yield a definition of the

WI that is an explicit function of range, and will provide a WI

prediction consistent with the reference WI distribution.

B. On the phase of the modal pressure

The eigenmode wm(z, x) is a real function. It oscillates

between the upper and the lower turning points of the mode

m, zþm and z�m . It can thus be decomposed in terms of magni-

tude and phase. The Wentzel–Kramers–Brillouin (WKB)

approximation7,32 gives a very good AM-FM decomposition

of the eigenmode in terms of a sum of an up-going wave

W�mðzÞ and a down-going wave WþmðzÞ,

wmðz;xÞ ¼ W�mðz;xÞ þWþmðz;xÞ: (21)

This approximation is valid within the oscillatory zone and

breaks down close to turning points where the vertical wave-

number kz;mðz;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=cðzÞ2 � k2

mðxÞ
q

vanishes and the

magnitude diverges

W�m z;xð Þ ¼
C�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kz;m z;xð Þ
p e

�i
Ð z

z�m
kz;m z0;xð Þdz0

(22)

and

Wþm z;xð Þ ¼
Cþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kz;m z;xð Þ
p e

i
Ð z

zþm
kz;m z0;xð Þdz0

; (23)

where C6 are constants. Beyond these turning points, the

eigenmode decays exponentially and the wave is evanescent.

Inserting Eq. (21) into Eq. (1), the mode m pressure, as a

product of two eigenmodes, is then a sum of 2� 2¼ 4 waves

indexed by w¼ (n, e, m), with e¼61 and n¼61. The

phases of those four waves are given by

/ne
m ðzr; zs; r;xÞ ¼ kmðxÞr þ n

ðzs

zn
m

kz;mðz;xÞ dz

þ e
ðzr

ze
m

kz;mðz;xÞ dz (24)

and their magnitudes are smooth positive functions (except

around turning points) given by

Ane
m zr; zs; r;xð Þ ¼

CeCnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kz;m zr;xð Þkz;m zs;xð Þkm xð Þr

p : (25)

One notes that, if (e, n)¼ (0, 0), Eq. (24) is equivalent to Eq.

(7). Seabed and water attenuations are ignored here for nota-

tion convenience, but could easily be included into the wave

magnitude in Eq. (25).

C. The WI as an explicit function of range

Using the latter AM-FM decomposition of wm, the modal

pressure appears as a sum of four waves. Then the acoustic

intensity is proportional to a sum of ð4NÞ!=ð4N � 2Þ!2! inter-

ferences between all possible pairs of different waves w¼ (e,
n, m) and v¼ (l, �, n) with w 6¼ v. The WI associated to a

pair of waves is then
FIG. 5. (Color online) ÊbðrÞ at different source ranges. Other parameters

are set at zr¼ 1000 m and zs¼ 500 m.
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bwv zs; zr; r;xð Þ ¼ �
r

x

dD/wv zs; zr; r;xð Þ
dr

dD/wv zs; zr; r;xð Þ
dx

; (26)

where D/wv ¼ /ne
m � /l�

n . It is important to note that the

waves w and v may mutually interfere with m¼ n. We now

derive separately the two partial derivatives of Eq. (26).

Starting with the range derivative we find,

dD/wv zs; zr; r;xð Þ
dr

¼ Dkmn xð Þ: (27)

The result is equivalent to the one resulting from Eq. (6). It

does not depend on e and n, but only on mode numbers.

In order to obtain a tractable expression for the partial

frequency derivative, we proceed step by step. First, the

propagation time tne
m of the wave w is given by the stationary

phase point33,34

d
dx

xtne
m � /ne

m

h i
¼ 0; (28)

so that

tne
m ¼

d/ne
m

dx
: (29)

Introducing the vertical group slowness Sv
g;mðxÞ ¼ dkz;m

ðxÞ=dx, and inserting Eq. (24) into Eq. (29),

tne
m ðzs; zr; r;xÞ ¼ Sh

g;mðxÞr þ n
ðzs

zn
m

Sv
g;mðz;xÞdz

þ e
ðzr

ze
m

Sv
g;mðz;xÞdz: (30)

Then we can define the effective group slowness,34 which is

slightly different for each wave,

Sne
g;m zs; zr; r;xð Þ ¼

tne
m zs; zr; r;xð Þ

r
: (31)

Inserting Eqs. (27) and (29) into Eq. (26), we identify both

the horizontal phase slowness and the effective group slow-

ness, and obtain

bwv zs; zr; r;xð Þ ¼ �
DSh

p;mn xð Þ
DSg;wv zs; zr; r;xð Þ

; (32)

with DSg;wv ¼ Sne
g;m � Sl�

g;n. The numerator is equivalent to the

one in Eq. (10). This means that the four waves (e¼61,

n¼61, m) have the same phase velocity which is the hori-

zontal phase velocity of the mode m. However, their group

slownesses are different, so that Eq. (32) is different from

Eq. (10).

The above definition of the WI is intrinsically range and

depth dependent. At infinite ranges, the integral terms in Eq.

(30) becomes negligible compared to Sh
g;mr. In this case, the

four waves with the same mode number almost propagate at

the same effective group slowness which is the horizontal

group slowness of the mode, so that the usual definition of

the travel time tm ¼ Sh
g;mr is appropriate and the WI as

defined in Eq. (10) is a good approximation of the one

defined in Eq. (32).

D. WI distribution in deep water configuration

Analogous to the modal dominance exposed in Sec.

III A, we introduce the waves dominance in the calculation

of Eb. Inserting Eq. (21) into Eq. (1), the complex pressure

field is a sum of 4N waves with local maxima occurring

when adjacent waves interfere constructively. The wave

indexed by wþ1 ¼ ðn; e;mþ 1Þ is defined as adjacent to the

wave w¼ (n, e, m). Adjacent waves share the same parame-

ters e and n and produce constructive interference when they

are in phase

D/wwþ1ðzr; zs; r;xÞ ¼ 2pp: (33)

As shown previously, we track the evolution of p as a func-

tion of m and find groups of neighboring waves centered on

the equivalent wave wp ¼ ðnp; ep;mp þ 0:5Þ that corresponds

to integer values of p. Each group of neighboring waves

behaves almost together like this equivalent wave wp. As in

Sec. III A, the mode number mp is usually not an integer and

the physical quantities ðkmp
; kz;mp

; /epnp
mp
; A

epnp
mp ;…Þ associated

with the equivalent wave are approximated by interpolation

with waves w. This interpolation is a simple one-

dimensional interpolation over m, since ep and np always

remains 61.

Then the WI resulting from the interference of two

equivalent waves wp and wq is

bwpwq
zs; zr; r;xð Þ ¼ �

DSh
p;mpmq

xð Þ
DSg;wpwq

zs; zr; r;xð Þ
: (34)

Now the WI depends explicitly on range through the effec-

tive group slowness, and implicitly through equivalent

waves that denotes wave dominance at a given range.

Putting all together and following the same procedure as

in Sec. II B a WI distribution is calculated as the sum of

interferences between all equivalent waves. It is referred to

as a prediction, noted Ê
wkb

b , and it is plotted in Fig. 6 for the

example of Sec. II B. There are two major differences with

the prediction Êb in Sec. III A. The modal dominance is not

FIG. 6. (Color online) Ê
wkb

b ðrÞ at different source ranges. Other parameters

are set at zr¼ 1000 m and zs¼ 500 m.
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equivalent to waves dominance and values of WI given by

Eq. (34) can be totally different than those given by Eq. (18),

especially for relatively short ranges.

The new Ê
wkb

b is consistent with the reference Eb. It pre-

dicts particular b-values at the correct ranges. But since the

AM-FM decomposition has been performed using the WKB

approximation, the waves amplitudes and then the interfer-

ence excitations can diverge. Even if an empirical threshold

has been set to avoid an infinite divergence, amplitude esti-

mations can be an issue. For instance, in Fig. 6, interference

at b � �1.5 at range r¼ 45 km is overestimated.

IV. SOME PARTICULAR EXAMPLES OF STRIATION
PATTERN IN DEEP WATER CONFIGURATION

The Mediterranean environment given in Table I is still

considered. The results obtained here are representative of

what could be found in any deep water environment whose

SSP has a single minimum. More complex environments

with several SSP minimums, such as the North-East Atlantic

SSP, would require to recompute the WI distribution, and to

be careful with the integral limits in Eq. (24).

The two approximated distributions, Êb and Ê
wkb

b , are now

examined at some particular ranges to show interesting features

of the deep water striation patterns. Let us remind that Êb uses

(n, e)¼ (0, 0), it corresponds to the usual assumptions, where

the frequency dependence of wm is ignored, leading to the phase

approximation given in Eq. (7). Ê
wkb

b uses (n, e)¼ (61, 61)

and the frequency dependence of wm is taken into account,

impacting the WI calculation in Eq. (34) and the waves domi-

nance in Eq. (33), but amplitudes can diverge. They are tested

against the reference distribution Eb which is measured using a

2D-FFT on synthetic data generated by running a Parabolic

Equation (PE) using the RAM code.35 The environment used

for the PE is given in Table I. The final (and non-physical) atten-

uated bottom layer required to run PE has been set to 4=3 of the

water depth.

The source/receiver configurations are chosen to clearly

highlight the impact of the group dominance and/or the

impact of vertical group slowness on striation patterns.

Three cases will be analyzed for a deep source at zs¼ 500 m

and a shallow source at zs¼ 10 m. A ray trace for each source

depth is provided in Figs. 3(b) and 3(c), respectively, along

with the positions of the Horizontal Line Arrays (HLA).

A. Lloyd mirror pattern

Configuration settings: zs¼ 500 m, zr¼ 1000 m,

r¼ 8.5 km, L¼ 1 km as it is displayed in Fig. 3(b).

For this first case, the HLA is relatively close to the

source. At this range, the frequency dependence of the modal

eigenfunctions has a huge effect on the phase term in Eq.

(24). Figure 7(a) shows a graphic representation of the group

dominance using Eqs. (15) and (33). Based on this Fig. 7(a),

one finds three equivalent waves wp ¼ ðnp; ep;mpÞ that verify

Eq. (33) whereas no equivalent mode verifies Eq. (15) (the

dashed curve does not cross any integer value of p). Physical

properties of those equivalent waves are interpolated as

explained in Sec. III D. Figure 7(b) displays waves and the

modes themselves in the group/phase slowness plane. The

size of the black markers are proportional to equivalent wave

magnitudes. The first observation is that all equivalent waves

do not behave like modes, especially the biggest black marker

which has a group slowness 0.011 ms/m higher than a mode

with the same phase slowness. This means that this equivalent

wave propagates 25 m/s slower than this mode. The vertical

FIG. 7. (Color online) (a) Graphic rep-

resentation of the group dominance.

(b) Modes and equivalent waves at

f¼ 150 Hz displayed in the phase/

group slowness plane (equivalent

modes are not displayed as none have

been found). (c) 2D-FFT of I(r, f) with

equivalent waves interferences super-

imposed. (d) The WI distributions Eb

and Ê
wkb

b (Êb is not drawn as no equiv-

alent mode has been found).
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distance between black markers and blue dots denotes the

contribution of integral terms of Eq. (30). The three equivalent

waves produce three interference terms between waves wp

and wq. In the background of Fig. 7(c) is the 2D-FFT of the

reference range-frequency image I(r, f) computed as in Sec.

II B. The locations in the Fourier domain, ðxwpwq
; ywpwq

Þ, of

striations resulting from interferences of previous equivalent

waves are superimposed as black cross markers. The size of

these markers are now proportional to the interference excita-

tions Awp
Awq

. It coincides with the locations of the observed

reference striations. The resulting Ê
wkb

b is shown in Fig. 7(d)

and also matches the reference Eb. Obviously, Êb is not drawn

since no equivalent mode has been found.

An interesting property arises here. It is related with the

two waves wp ¼ ð1; 1;mpÞ and wq ¼ ð�1;�1;mqÞ with mp

� 18.5 and mq � 48.5. These waves are interfering and

building striations controlled by a positive value of bwpwq

� 0:6 while bmpmq
� �3. The WI can switch to a positive b-

value from a negative one, just because of the integral terms

in Eq. (30). In other words, even if one considers refracted

modes which are known to give birth to negative striation

slopes, the resulting interference pattern can nevertheless

exhibit positive striation slopes. This property is consistent

with a Lloyd mirror pattern, where a surface reflected wave

interferes with a direct refracted wave. A wave decomposi-

tion of the eigenmode gives a fair explanation of this.

B. b-value close to zero

Configuration settings: zs¼ 500 m, zr¼ 1000 m,

r¼ 12.5 km, L¼ 1 km as it is displayed in Fig. 3(b).

The HLA is slightly further from the source than in the

previous configuration. In this case, as illustrated in Fig.

8(a), one finds two equivalent modes and eight equivalent

waves. As shown previously, equivalent waves and equiva-

lent modes are plotted in the group/phase slowness plane in

Fig. 8(b). One notes that one equivalent mode and three

equivalent waves have their magnitude close to zero: the

associated markers in Fig. 8(b) are so small that they cannot

be seen. It means that either the source or the receiver is out

of the oscillatory zone of the eigenmodes and the waves are

evanescent. The two equivalent modes build one interference

striation denoted by the red cross marker in Fig. 8(c). It does

not coincide with any reference interference striation. The

eight equivalent waves give birth to many interference stria-

tions that match the striation pattern, in terms of spatial coor-

dinates in the Fourier domain (black cross markers exactly

coincide with patch of energy centroids) and of relative

interference excitation (relative size of the markers), as illus-

trated in Fig. 8(c). The two predicted WI distributions Êb

and Ê
wkb

b are shown in Fig. 8(d). Equivalent waves are

enough to explain the full complexity of the observed refer-

ence striation pattern whereas equivalent modes fail.

This example has been chosen to illustrate a particular

case which is related to the two equivalent waves wp

¼ ð1; 1;mpÞ and wq ¼ ð�1;�1;mqÞ with mp � 24 and mq

� 24. The corresponding phase slowness values are Sh
p;mp

� Sh
p;mq
� 0:658 ms=s and are recognizable in Fig. 8(b). In

fact, from ray theory, each equivalent wave is comparable to

an eigenray with launching angle hs;mp
¼ npcðzsÞSh

p;mp
and

arrival angle hr;mp
¼ epcðzrÞSh

p;mp
, where c(z) is the sound

speed at depth z. Then, the couple (np, ep) may be understood

as describing the path of an equivalent wave. For the given

configuration the HLA is located at the exact range where

rays (or equivalent waves) with launching angles hs;mp

¼ �hs;mq
are eigenrays and energies converge on the HLA

FIG. 8. (Color online) (a) The graphic

representation of the group dominance.

(b) Modes, equivalent modes and

equivalent waves at f¼ 150 Hz dis-

played in the phase/group slownesses

plane. (c) 2D-FFT of I(r, f) with equiv-

alent waves/modes interferences super-

imposed. (d) The WI distributions

Eb; Êb, and Ê
wkb

b .
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with different travel times. It is equivalent to say that the

two equivalent waves dominate the field with the same phase

slowness but with different effective group slownesses. This

leads to the b¼ 0 component in the WI distribution as can

be seen in Fig. 8(d), and it is well predicted by Ê
wkb

b .

C. Convergence zone

Configuration settings: zs¼ 10 m, zr¼ 500 m,

r¼ 34.5 km, L¼ 1 km as it is displayed in Fig. 3(c).

The source is close to the surface and the HLA is

located at zr¼ 500 m in the first convergence zone of low

order modes (bottom refracted modes). These modes are

known to produce interference patterns characterized by a

negative b-value and should constructively interfere on the

HLA at some specific ranges (e.g., r¼ 34.5 km). We verify

here the pertinence of our method in this specific zone. First

of all, the source is close to a pressure release interface, so

that the n-integral term in Eq. (24) is really small. Then

waves satisfy w¼ (1, e, m) � (�1, e, m). This can be

observed in Fig. 9(a) where (�1, �1) and (1, �1) curves or

(�1, 1) and (1, 1) curves overlap. At this range, one observes

plenty of equivalent modes/waves and, as expected for a

convergence zone, low order equivalent modes/waves may

be found. In Fig. 9(b), equivalent waves (black markers)

have almost the same slowness as modes (blue dots).

Integral terms in Eq. (30) are small compared to Sh
g;mr.

However, even if the waves decomposition of the eigenmode

does not change much the effective group slowness, it still

has a huge impact on wave dominance. Indeed, the equiva-

lent modes (red markers) are completely different from

equivalent waves (black markers). Since we are relatively

far from the source, the striation pattern is complex and

features many overlapping components, as shown in Fig.

9(c). However all these components are well predicted by

equivalent wave interferences. The resulting distribution is

then well predicted by Ê
wkb

b , whereas Êb still fails to describe

the striation pattern, as shown in Fig. 9(d). This demonstrates

that equivalent wave interferences accurately predict specific

striation patterns arising in the convergence zone. At least

for the first convergent zone, equivalent modes do not man-

age to do so. As a result, the wave decompositions of the

eigenmodes can be relevant even at several tens of kilo-

meters. This is because of the groups dominance that more

likely explains the observations with equivalent waves than

with equivalent modes.

V. CONCLUSION

We have considered one of the simplest deep water

environments, namely the constant positive barocline veloc-

ity gradient profile, topped by a sharp upper thermocline

with negative sound-speed gradient. This case, however sim-

ple, nicely models the Mediterranean Sea in summer. Even

in this elementary case, interferences lead to complex stria-

tion patterns that may vary quickly with range or receiver/

source depth. Indeed, the SSP is largely stratified and even at

a few Hertz, the modes start to form paths. This involves a

WI distribution which is indirectly controlled by the domi-

nance of few groups of waves, and is intrinsically a function

of depth and range through the frequency dependence of the

eigenmodes. Depending on the configuration, it is essential

to take into account these two phenomena until several tens

of kilometers. This order of magnitude should be generaliz-

able to most deep water environments since interference

cycle (equivalently ray cycle) is about tens of kilometers.

FIG. 9. (Color online) (a) The graphic

representation of group dominance. (b)

Modes, equivalent modes, and equiva-

lent waves at f¼ 150 Hz displayed in

the phase/group slownesses plane. (c)

2D-FFT of I(r, f) with equivalent

waves/modes interferences superim-

posed. (d) The WI distributions

Eb; Êb, and Ê
wkb

b .
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Then, using the normal mode theory, a WI distribution can

be predicted as a function of range and depth. It matches the

observed reference distribution from short range interference

patterns (Lloyd mirror patterns) to long-range interference

patterns along with convergence-shadow zones.

However, for a more complex realistic SSP, the AM-

FM decomposition of the eigenmodes using the WKB

approximation becomes really cumbersome. Moreover, even

for a simple SSP like a simple thermocline over a barocline,

the interference excitations can be a challenging issue if the

empirical threshold avoiding magnitude divergence is mis-

chosen. If the WKB approximation fails or is too complex

for complex SSP, signal processing based AM-FM decom-

positions may be used. A good candidate is the use of

Hilbert transform, although this needs to be investigated.

Our work provides a better understanding of the stria-

tion patterns in deep water from the normal mode point of

view. It allows an accurate prediction of the WI distribution,

and could thus be used as the basis of inversion method

based on this distribution. We believe it will be particularly

useful in the context of source depth discrimination.
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