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Abstract Gross photosynthetic activity by phytoplankton is directed to linear and alternative electron
pathways that generate ATP, reductant, and fix carbon. Ultimately less than half is directed to net growth.
Here we present a phytoplankton cell allocation model that explicitly represents a number of cell metabolic
processes and functional pools with the goal of evaluating ATP and reductant demands as a function of light,
nitrate, iron, oxygen, and temperature for diazotrophic versus nondiazotrophic growth. We employ model
analogues of Synechoccocus and Crocosphaera watsonii, to explore the trade-offs of diazotrophy over a range
of environmental conditions. Model analogues are identical in construction, except for an iron quota
associated with nitrogenase, an additional respiratory demand to remove oxygen in order to protect
nitrogenase and an additional ATP demand to split dinitrogen. We find that these changes explain observed
differences in growth rate and iron limitation between diazotrophs and nondiazotrophs. Oxygen removal
imparted a significantly larger metabolic cost to diazotrophs than ATP demand for fixing nitrogen. Results
suggest that diazotrophs devote a much smaller fraction of gross photosynthetic energy to growth than
nondiazotrophs. The phytoplankton cell allocation model model provides a predictive framework for how
photosynthate allocation varies with environmental conditions in order to balance cellular demands for ATP
and reductant across phytoplankton functional groups.

1. Introduction

The growth of phytoplankton in the ocean depends on the photosynthetic production of energy (i.e., ATP)
and reductant (e.g., NADPH). Photosynthetic activity and the use efficiency of these products is regulated
by the availability of a host of resources in the ocean, including light, inorganic carbon, macronutrients, and
trace elements that define a growth environment. Phytoplankton acclimate to a wide range of growth envir-
onments by adjusting their allocation of cellular resources and physiological activity. For example, culture stu-
dies show chlorophyll to carbon ratios varying from 3 to over 50 (mg chl/g C) over a range of light- and
nitrogen-limited growth (Laws & Bannister, 1980). Much of this range has also been observed in field popula-
tions (Bouteiller et al., 2003; Landry et al., 2009; Li et al., 2010). Cellular C:N:P stoichiometry varies significantly
depending on the nature of resource limitation (Geider & La Roche, 2002; Klausmeier et al., 2004). Altering cel-
lular composition allows plankton to tune metabolism to best function under a given set of environmental
conditions. From a modeling perspective, representing algal acclimation requires a dynamic approach, such
that growth rate is a function not only of external environmental conditions (e.g., light, nutrients, and tem-
perature) but also of cell status (e.g., chlorophyll content and internal nutrient stores; Geider et al., 1997, 1998).

Modeling phytoplankton is challenging, as the ocean contains an incredible diversity of photoautotrophic
plankton, varying over orders of magnitude in size, displaying a wide range of morphology and adapted to
a wide range of biomes. Despite this variety, phytoplankton rely on a common, core set of biochemical reac-
tions for photosynthesis and growth, including the z-scheme of photosynthesis in photosystems I and II, car-
bon fixed by the Calvin cycle, catalyzed by ribulose-1,5-bisphosphate carboxylase oxygenase, (RuBisCO),
catabolic and anabolic metabolism of fixed carbon, and the active uptake of nutrients from outside the cell.
Each of these pathways is associated with certain organelles, or cellular functional pools, such as the light
harvesting complex, nutrient transport proteins, or the biosynthetic apparatus, including ribosomes. This
set of pathways and functional pools can serve as a common platform for a mechanistically based model
for phytoplankton growth and acclimation.
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Here we present a model framework for representing cellular-level strategies of phytoplankton energy allo-
cation by explicitly representing the allocation of energy and resources amongst cellular functional pools.
The fraction of gross photosynthetic activity that ultimately results in net growth is variable and generally less
than 50% (Halsey & Jones, 2015). A dynamic representation linking gross photosynthesis to net C fixation is
rarely included in phytoplankton models. In particular, we examine how the added trade-offs of diazotrophy,
in which N requirements are met through biological reduction of N2, alter such strategies depending on the
environmental variables including iron, light, nitrogen, phosphorus, and oxygen. Our phytoplankton cellular
allocation model (PCAM) is based on optimal allocation of cellular resources to maximize growth rate. We
designed the model with the goal that it can, in the future, be applied both in Earth system models (ESMs)
and in a diagnostic mode, using measured/observed environmental conditions to predict current phyto-
plankton state, such as photosynthetic rates and stoichiometry. Such applications would include estimating
primary productivity from satellite models (satellite primary production model, SatPPM). In this initial imple-
mentation we focus on solving the model diagnostically for the balanced growth condition. The model can
also run prognostically, and a future goal is incorporation into an ESM that would include full feedbacks of
dynamic physics, chemistry, and biological top-down and bottom-up controls.

PCAM is designed to capture the fundamental physiological trade-offs of acclimation to multiple limiting
nutrients, while retaining a minimal level of computational complexity so as to be appropriate for future
integration into ESMs. PCAM (Figure 1) combines a number of theoretical principles previously explored
in the literature. Each model cell consists of a number of interconnected functional pools (Shuter, 1979).
Whole-cell C:N:P stoichiometry is flexible, varying with functional pool allocation (Flynn et al., 2001;
Klausmeier et al., 2004; Pahlow & Oschlies, 2009). Nutrient uptake kinetics are dynamic and dependent on
cell acclimation state. (Aksnes & Egge, 1991; Morel, 1987). Each cell has a fixed cell size and a number of cell
physiological traits scale allometrically. (Litchman et al., 2007). Cells have variable cell Chl:C ratios (Geider
et al., 1997). Furthermore, the model focuses on the distinctions between gross photosynthesis, gross
carbon fixation, and net primary production (Halsey et al., 2010). The approach of optimal allocation to func-
tional pools was pioneered by Shuter (1979) and recently has received renewed attention (Bruggeman &
Kooijman, 2007; Clark et al., 2013; Daines et al., 2014; Pahlow & Oschlies, 2009, 2013; Smith et al., 2015;
Talmy et al., 2013).

Figure 1. Schematic of the phytoplankton cell allocation model with metabolic pathways shown in white ovals and func-
tional pools in colored segments. Pathways represented are linear photosynthetic electron transport (lpet), alternative
electron transport (aet), carbon acquisition (cac), Calvin cycle fixation (cal), nitrogen fixation (nfix), nutrient uptake (nup),
autotrophic respiration (aresp), and biosynthesis (syn). Functional pools are the photosynthetic apparatus (PSA; green),
ribosomes and biosynthetic (RIB; red), nitrogenase (NIT; yellow), nutrient acquisition proteins (NAQ; blue), storage (STO;
white), and structural cell wall (STR; gray). Black arrows indicate fluxes, with dashed lines denoting fluxes involved in
diazotrophy.
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Here we present a similarly inspired model and apply trade-offs involved in diazotrophy as a competitive
strategy for growth. Diazotrophy, a trait of a small number of organisms that are able to directly access dini-
trogen gas as a nitrogen source, plays an important role in regulating the ocean nitrogen cycle and primary
productivity (Galloway et al., 1995; Gruber & Sarmiento, 1997). Of critical importance to global biogeochem-
ical cycling are feedbacks between nitrogen fixation and iron (Moore & Doney, 2007), as nitrogen fixers have
high iron quota. Previous modeling work has investigated iron, light, and nitrogen colimitation (Armstrong,
1999), as well as the energetics and trade-offs of diazotrophy (Fernández-Castro et al., 2016; Pahlow et al.,
2013; Rabouille et al., 2006, 2014). Here we apply an optimal allocation to explore the trade-offs of diazotro-
phy, in the context of varying iron and light availability.

In PCAM we apply a new mechanistic, optimal allocation model to explore explicitly the trade-offs of diazo-
trophy in the context of varying iron and light availability. In particular, we use the quantitative framework of
the model to address how the unique energetic and metabolic demands of diazotrophic growth: (1) iron
quota for nitrogenase, (2) respiratory cost for protecting nitrogenase from oxygen, and (3) energetic cost
for nitrogen fixation affect strategies for the allocation of photosynthate by diazotrophs relative to nondiazo-
trophic organisms. Key metrics predicted from the model—photosynthetic use efficiency, growth rate, iron
and light limitation, and relative fitness of diazotrophic versus nondiazotrophic growth of cyanobacteria—
are compared against results from culture experiments and field measurements from a diversity of ocean
biomes/biogeochemical provinces from six Joint Global Ocean Field Study (JGOFS) Process Study sites, from
the California Cooperative Oceanic and Fisheries Investigation (CalCOFI), and from the GEOTRACES inter-
mediate data product.

2. Model Description

PCAM (Figure 1) represents four core functional pools, the light harvesting complex (PSA), ribosomes and the
biosynthetic apparatus (RIB), structural/cell wall (STR), and an internal storage pool for carbon (STO). A fifth
pool for nitrogenase (NIT) is included for diazotrophs (Table 1). A core set of physiological pathways link inter-
nal cellular pools and the external environment. These include two photosynthetic pathways (linear photo-
synthetic electron transfer, lpet), and an alternative electron transfer pathway (aet), the calvin cycle (cal),
uptake of inorganic N, P, and Fe (nup), nitrogen fixation for diazotrophs (nfix), and biosynthesis of new cells
(syn). Autotrophic respiration (aresp) is also represented. Of the functional pools, carbon allocation to PSA,
RIB, and STO is dynamically allocated based on a growth rate maximizing optimization.

2.1. Photosynthetic Pathways

On average, about 60% of gross photosynthetic electron flow is consumed by phytoplankton cell respiration
with only 40% eventually allocated to cell growth (Halsey et al., 2012; Laws et al., 2000; Nicholson et al., 2012)
and an even lower percentage results in net growth for diazotrophs (Großkopf & LaRoche, 2012; Kana, 1993).
Thus, we argue that an explicit and flexible representation of pathways for energy and carbon allocation
should be a central component of a mechanistic phytoplankton model.

The PSA pool is further divided to represent two photosynthetic pathways, lpet and aet, in order to represent
variations in energy versus reductant requirement. Linear photosynthetic electron transport (lpet) produces
reducing equivalents (NADPH) and energy (ATP) with the following stoichiometry (Allen, 2003; Baker et al.,
2007; Geider et al., 2009):

2H2Oþ 2NADPþ þ 2:6ADPþ 2:6Pi þ 8 photons →
yields

2NADPHþ 2:6ATPþ 4Hþ þ O2 (1)

In our model, when allocation is optimal and growth balanced, lpet activity is stoichiometrically linked (1:1)
with Calvin cycle (cal) fixing of inorganic carbon in order to achieve redox balance:

CO2 þ 2NADPHþ 3ATPþ 4Hþ →
yields

CH2Oþ H2Oþ 2NADPþ þ 3ADPþ 3Pi (2)

Additionally, in PCAM, 0.5 ATP is required for carbon acquisition (cac), effectively requiring 3.5 ATP per mol C
fixed by cal (Raven et al., 2014). This approximate value of 0.5 was determined from averaging various esti-
mated excess photon requirements for carbon concentration mechanisms (see Table 2, Raven et al., 2014)
then applying the stoichiometry of equation (3) to convert to an ATP requirement of 0.45 ± 0.23 ATP per
CO2 fixed.
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Table 1
Phytoplankton Cell Allocation Model Parameters and Variables

Symbol Description Value Units Source

rref Reference cell radius 3 × 10�7 m –
r Cell radius prescribed m –
V Cell volume V = 4πr3/3 m3 –
Cref C per reference cell 4.09 × 10�15 mol C per cel Menden-Deuer and Lessard (2000)
γ C:V power scaling 0.811 Unitless Menden-Deuer and Lessard (2000)
Cm C per cell Cref(V/Vref)

γ × 10�13 mol C per cell –

ϕ0
STR

Base structural allocation 0.2 Cm mol C per cell *

d Cell wall thickness 1.0 × 10�7 m *

ϕw
STR

STR allocation for cell wall Equation (8) mol C per cell –

ϕSTR Structural pool C ϕ0
STR þ ϕw

STR

� �
C
m

mol C per cell –

ϕPSA C allocation to PSA Equation (S3-12) mol C per cell –
ϕRIB C allocation to RIB Equation (S3-10) mol C per cell –
ϕSTO Carbohydrate storage Equation (16) mol C per cell –
R0 Autotrophic respiration 0.5 Unitless Halsey et al. (2010) and Halsey and Jones (2015)
RNFIX Respiratory demand for N-fixation 0.4 [O2]sat Unitless *

Tfunc Eppley temperature function 0.59e0.0633 × T Unitless Eppley (1972)

arefsyn
Reference biosynthetic rate 10 mol C [mol C]�1 /day *

β Metabolic rate V power scaling 0.75 Unitless Brown et al. (2004)

amsyn Maximum biosynthetic rate Equation (7) mol C [mol C]�1/day –

Photosynthesis variables and parameters

αchl Initial slope of P versus E curve 3.0 μmol · rxn [g chla] (μmol quanta) m�2 *
χchl Carbon to chlorophyll a ratio of PSA 1 mol C [g chla]�1 *

PrefPSA
Reference photosynthetic rate 22 mol rxn [mol C]�1/day *

PmPSA Maximum photosynthetic rate PrefPSA V=V refð Þγ�β
mol rxn [mol C]�1/day –

E�k
Half saturation irradiance for
gross photosynthesis χchlP

m
PSA=αchl

μmol quanta · m�2 · s�1
–

E PAR irradiance Variable μmol quanta · m�2 · s�1 –
Nutrient variables and parameters

VS Nutrient uptake rate Equation (9) mol S/s per cell –

f SAup
Max fraction of cell surface for uptake 2× 10�3 Unitless *

A Area of a transporter site π × 10�18 m2 *
n Moles of uptake sites per cell Equation (S1-8) mol sites per cell –

nmax Maximum moles of uptake sites per cell
4πr2f SAup=A

mol sites per cell –

h handling time per mol of ions 6.022 × 1021 s/mol *
DS T-dependent molecular diffusivity of S Variable m2/s Yuan-Hui and Gregory (1974)
KS [S] at which VSis half of VS

max
1/(Akh) mol/m3 –

KS
μ

[S] at which μ is half of μmax Variable: see equation (12) mol/m3 –

QS Cell quota Variable: see equation (S3) mol S per cell –

QS
N

Quota of “S” for pool “N” ϕNr
S
N : see Table 2 mol S per cell –

Nitrogen fixation variables and parameters

Rnfix Respiratory demand for N-fixation 0.4 [O2]sat Unitless Großkopf and LaRoche (2012)

r Fenfix
Nitrogenase Fe content 0.2 × 10�5 mol Fe/mol N *

ν Fenfix Nitrogen fixation rate Variable mol N/day –

Note. The source for each model parameter and variable is designated by “asterisk” for this study, “en dash” indicates values derived from other variables/parameters.
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Given the imbalance in ATP production by lpet and demand from cal,
an additional source of ATP is needed. The additional ATP is derived
from a collection of alternative electron pathways that are not linked
to carbon fixation including the Mehler cycle, midstream and terminal
oxidase activity, cyclic photosynthetic electron transport, photorespira-
tion, and the malate valve. While the activities of these individual
pathways are not well constrained across functional types and environ-
mental conditions, they serve a similar role in generating additional
ATP. In PCAM, we model this host of processes with a representative
aet pathway:

2H2Oþ 3:4ADPþ 3:4Pi þ 8 photonsþ O2 →
yields

O2 þ 3:4ATPþ 2H2O (3)

The aet pathway has the net effect of producing 3.4 ATP (Geider et al., 2009) without altering the cellular
redox balance. Pathways such as the Mehler reaction photosynthetically produce O2 originating from water
molecules but also consume dissolved O2. For each pathway (lpet and aet), a reaction requires 8 photons.

Total gross photosynthesis (GO2) is thus lpet + aet, while gross carbon photosynthesis (GC) is equal to lpet
(also = cal). The distinction between GO2 and GC is important when comparing to field and laboratory tracers,
as techniques such as the triple oxygen isotope method (Luz & Barkan, 2000) and 18O labeling measure GO2
while short-term radiocarbon methods (20 min–2 hr) most closely measure GC. Based on the stoichiometry of
ATP demand/yield of cal, aet, and lpet, 20% of GO2 is due to the aet reactions and 80% to lpet for nondiazo-
trophic growth, because an additional 0.9 ATPmust be generated via aet for each C fixed by lpet. Condensing
all ATP-generating pathways to the single aet pathway in PCAM omits the complexity of a range of pathways
that to date have not been fully characterized. However, our result does agree well with a constant value of
19–22% measured for a diatom (Thalassiosira weissflogii), a chlorophyte (Dunaliella tertiolecta), and a prasino-
phyte (Ostreococcus tauri) across a range of nitrate-limited conditions (Halsey et al., 2013, 2014), and 20%
measured for a nutrient replete Synechococcus sp. WH7803 (Kana, 1992). These studies suggest that while
there may be differences in the pathways used for ATP generation, the requirement of about 20% supple-
mentary ATP generation for carbon fixation appears robust.

A number of recognized photosynthetic processes are not represented in the version of PCAM presented
here, including photoinhibition (Jassby & Platt, 1976; Platt et al., 1980) and the packaging effect (Morel &
Bricaud, 1981). While these processes could be added in future versions, they are processes less relevant to
acclimated phytoplankton under light limitation. Photoinhibition is much more significant for phytoplankton
exposed to light levels differing greatly from their acclimated state (Anning et al., 2000), whereas in accli-
mated field populations in high light environments, photoinhibition is often not observed (Li et al., 2011).
The packaging effect causes a reduction in chlorophyll a specific absorption relative to absorption in free
water due to the physical packaging of chlorophyll in a cell geometry. It has a greater impact for larger cell
sized with low surface area to volume ratios and at higher pigment concentrations and is lesser in the small
cell sizes that are the focus of this manuscript (Bricaud et al., 2004).

2.2. Respiration and Biosynthesis

Carbon fixed by cal enters STO for subsequent use in anabolic and catabolic reactions. Of total GC entering
STO, we prescribe that 50% is consumed by autotrophic carbon respiration and the oxidative pentose phos-
phate pathway to produce the ATP and reducing equivalents needed for biosynthesis (Halsey & Jones, 2015).
In the model, these two pathways are lumped together in a single autotrophic respiration pathway (aresp).
Recent culture studies have shown that 50% of GC is consumed by autotrophic respiration, and this fraction
is relatively constant across nitrate-limited growth rates and across diverse taxa of nondiazotrophs (Halsey
et al., 2010, 2012). The remaining 50% of GC is retained for net growth NC. Overall, our model NC:GO2 is 0.4
for nondiazotrophic growth that is in good agreement with NC:GO2 derived from field observations
(Bender et al., 2000; Marra, 2002; Nicholson et al., 2012) and culture work (Halsey et al., 2013; Halsey &
Jones, 2015), but somewhat lower than recent results for light-limited diatoms (Fisher & Halsey, 2016) and
higher than has been observed in some cyanobacteria (Felcmanová et al., 2017; Kunath et al., 2012). The
RIB pool is responsible for biosynthesis of new cells via the syn pathway, which uses the remaining NC along
with nutrients to create new cells.

Table 2
Elemental Stoichiometries for PCAM Functional Pools

Pool C:N (mol:mol) C:P (mol:mol) C:Fe (mol:mol)

PSA (aet and lpet) 6.6 518 1.0 × 104

RIB 6.6 49 8.3 × 104

STR 6.6 106 8.3 × 104

Note. The STO pool contains only carbon and the NFIX pool contains only iron.
PCAM = phytoplankton cell allocation model.
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2.3. Pathway Efficiencies

Photosynthetic efficiency in PSA is governed by a photosynthesis (P) versus photon flux density (E) curve with
a fixed C:chl ratio for the PSA pool (χchl) (Geider et al., 2009). The maximum rate of photosynthesis (PmPSA) is
normalized to PSA carbon (which is equivalent to normalizing to chlorophyll). The model has a constant
chlorophyll specific initial slope (αchl) of the P versus E curve that applies to both photosynthetic pathways
(lpet and aet) and is expressed as

vaet þ vlpet ¼ ϕPSAP
m
PSA 1� e�E=E�k
� �

where E�k ¼
PmPSA
αPSA

(4)

where ϕPSA is the carbon content allocated to the PSA pool and PmPSA is the maximum photosynthetic rate in
units of mol O2 day per cell at a given temperature and αPSA is the initial slope normalized to ϕPSA such that
αPSA = αchl/χchl. The maximum achievable rate of photosynthesis thus depends linearly on allocation to PSA.

Calvin cycle carbon fixation (cal) is directly linked to lpet (i.e., cal = lpet). The RIB pool responsible for biosynth-
esis (syn) has a fixed efficiency (asyn) such that the rate of syn (vsyn) is proportional to allocation to RIB (ϕRIB),
with a fraction of fixed carbon consumed by autotrophic respiration of carbon (Rtot). For nondiazotrophs
Rtot = R0 = 0.5. Growth rate (μ) is equal to vsyn normalized to total cell carbon (Cm).

vsyn ¼ ϕRIBasyn 1� Rtotð Þ and μ ¼ vsyn
Cm

(5)

2.4. Allometry

Several cell properties scale with cell size. Cell carbon content is prescribed as a power law function of cell
volume based on compiled observations such that C scales as Vγ. The power law scaling, γ, has been esti-
mated as 0.931, for nondiatom protists and 0.811 for diatoms (Menden-Deuer & Lessard, 2000). Metabolic
rates also have been observed to scale allometrically (Kleiber, 1932) as described by metabolic theory of ecol-
ogy (Brown et al., 2004) which predicts that at a given temperature, metabolic rate (B) scales as

B∝Mβ (6)

where M is individual size and β is the scaling coefficient equal to 3/4. Furthermore for phytoplankton, cell
volume is a more appropriate measure of size than mass, given that metabolic theory of ecology assumes
a constant organism density, but cell carbon scales allometrically as described above (López-Urrutia et al.,
2006). In PCAM we combine carbon to volume scaling with metabolic theory of ecology to scale carbon-
normalized photosynthetic and biosynthetic rates such that

asyn ¼ T funca
ref
syn

V
V ref

� �β�γ

(7)

wherearefsyn is the rate of biosynthesis at reference cell volume (Vref) and temperature. Photosynthetic rate,PmPSA,
scales similarly as (V/Vref)

�0.06. The above metabolic scaling arguments support observations that maximum
normalized photosynthetic rate and growth rate decrease with increasing cell size.

For the smallest autotrophic phytoplankton cells with radii < 1 μm, this trend does not hold. The overhead
burden of nonscalable parts, such as the chromosomes, membranes, and most importantly, the cell wall is
a primary limit on the metabolic rate of small cells. To represent this limitation, we model structural cell
allocation as consisting of a constant internal fraction of cell carbon, plus a cell wall fraction that scales as
a constant thickness, d, assuming spherical volume. The fractional volume can be expressed as

ϕw
STR ¼ Cm

Vwall

V
¼ Cm 1� r � dð Þ3

r3

 !
¼ Cm 1� 3d

r
� 3d2

r2
þ d3

r3

� �
(8)

The cell wall component only is a significant burden for small cells, asϕw
STR approaches 0 for d ≪ r. At small cell

sizes, when d becomes a significant fraction of r, a simple surface area to volume scaling for the cell wall is
inaccurate and the quadratic term in (8) (�3d2/r2) becomes increasingly relevant. The combined result of
equations (6)–(8) is that maximum growth rate in PCAM is a unimodal function of cell size (Figure 2). The rate
at which growth rate of larger cell sizes decreases with increasing cell volume is dictated by the β� γ scaling
in equation (7), which is significantly more negative for nondiatoms than diatoms (Menden-Deuer & Lessard,
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2000). Thus, the ability of diatoms to reduce carbon requirements
affords them a competitive advantage that increases with size.

Observational evidence of allometric scaling of growth rate generally
shows a slightly negative scaling exponent, despite significant scatter.
Variability between taxa can be larger than allometric trends (i.e., dia-
toms generally having higher maximum growth rates than other taxa
(Figure 2; Chisholm, 1992; Finkel et al., 2010). Some recent results sup-
port a unimodal function (Andersen et al., 2016; López-Sandoval et al.,
2014; Marañón et al., 2013), which is consistent with the unimodal
shape seen for PCAM in Figure 2.

2.5. Nutrient Uptake

Nutrient uptake in PCAM is based on a conceptual model of uptake
sites (n), each with a fixed transporter site area (A) and a finite ion hand-
ling time (h) during which a site is unable to process additional nutrient
ions (Aksnes & Egge, 1991; Fiksen et al., 2013; Lindemann et al., 2016)
such that

VS ¼ n
h

S

Akhð Þ�1 þ S
(9)

where k is transfer velocity and equal to diffusivity divided by cell radius
and S is ambient nutrient concentration.

Cells acclimate to ambient nutrient conditions by increasing n under nutrient stress up to an allometrically
constrained maximum (nmax). Cell surface area to volume result in allometric scaling of nutrient affinity such
that smaller cells outcompete larger cells at low nutrient levels as outlined in detail in the supporting
information. Volume-normalized affinity scales as r�1, while C-normalized affinity scales as r�γ. Thus, the C:
V scaling described in section 2.4 somewhat reduces the size dependency of nutrient uptake affinity.

The PCAM version presented here considers macronutrients in the form of nitrate and phosphate, as these
are the most abundant available forms of inorganic N and P in the open ocean. Future development could
include utilization of organic P and N substrates as well as the redox benefits of ammonium assimilation
when present. Canonically, ammonium is preferred to nitrate, because nitrate requires reduction by an addi-
tional 8 electrons before it can be incorporated. Although this requires additional reductant to be generated
via the lpet pathway, this cost is somewhat offset because the additional ATP generated by additional lpet
activity reduces the level of aet activity needed for supplementary ATP supply. Based on PCAM stoichiometry,
the net effect is a <6% decrease in necessary PSA allocation for growth supported by ammonium assimila-
tion compared to growth on nitrate. This result is in agreement with culture studies that have attributed
about 5% of gross photosynthesis to direct reduction of nitrate and sulfate (Fisher & Halsey, 2016).
Previous studies have shown conflicting conclusions on the relative efficiency of phytoplankton growth on
ammonium versus nitrate (Caperon & Ziemann, 1976; Dortch, 1990; Eppley et al., 1969; Thompson et al.,
1989). Nitrate reduction does not appear to be a primary demand for phytoplankton metabolism, and we
leave a full exploration of the trade-offs of nitrate versus ammonium for a future investigation.

2.6. Iron

Only a small fraction of iron in the ocean is bioavailable. Dissolved iron [Fe], operationally defined as the frac-
tion passing through a 0.2 micron filter, includes both truly dissolved and colloidal components (Boyd &
Ellwood, 2010). In PCAM, we model Fe uptake using the same framework as for macronutrients, assuming
that the total dissolved fraction [Fe] is the form available for uptake. For trace elements such as Fe, signifi-
cantly greater flexibility in uptake is possible (Morel, 1987), represented in PCAM by the larger range between

K Fe
μ and KFe (Figure S1).

Because of the high iron quota of the photosynthetic apparatus (PSA), a range of strategies has been
observed for cells to restructure their PSA in response to iron stress. While cellular response to iron stress is
multifaceted, we attempt a simplified representation that retains the core ability of a cell to reduce iron quota
in PSA in response to iron stress with an associated trade-off in photosynthetic performance. In PCAM, iron

Figure 2. Phytoplankton growth rate as a function of cell volume. Data show a
compilation of algal culture results digitized from Finkel et al. (2010). Diatoms
are shown in black, dinoflagellates in red diamonds, and other taxa, including
cyanobacteria, in red circles. The dashed gray line shows the least squares
regression from Finkel et al. (2010). The solid black and red lines show PCAM
solutions for diatoms and nondiatoms, respectively. For diatoms, PCAM uses a C:
V power law scaling of 0.811 while nondiatoms using a power law scaling of
0.860, both from Menden-Deuer and Lessard (2000). PCAM conditions were
T = 25°C, E = 1000, nitrate = 1 mM, phosphate 1 mM. PCAM = phytoplankton cell
allocation model.
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quota can be reduced by reducing overall allocation to PSA and is further reduced using a strategy that has
been observed in iron-stressed phytoplankton in which photosynthetic reaction centers are disconnected
reducing iron content in PSA in addition to lowering photosynthetic performance while retaining pigment
and carbon (Behrenfeld & Milligan, 2013; Moseley, 2002). In PCAM, each photosynthetic pathway (lpet and
aet) is assigned a distinct reaction stoichiometry (e�:C:ATP; see equations (1) and (3)). PSA maximum iron

quota (Q Fe
PSA�max) is

Q Fe
PSA�max ¼ ϕPSAr

Fe:C
PSA (10)

Cells can further reduce iron quota by disconnecting photosynthetic reaction centers (Behrenfeld & Milligan,
2013; Riethman & Sherman, 1988) with the trade-off of lowering maximum photosynthetic rate:

Q Fe
PSA ¼ f conQ

Fe
PSA�max and PmPSA ¼ f conP

ref
PSA (11)

where fcon is the fraction of reaction centers connected. PCAM could be refined in the future to further dis-
tinguish between aet pathways such as cyclic photosynthetic electron transfer, which is associated with
PSI and has a high iron quota and high ATP yield and PSII pathways such as those directed to midstream oxi-
dases that have lower iron demand but at the cost of lower ATP yield (Behrenfeld & Milligan, 2013). As iron
availability decreases, PSII pathways will become more favorable relative to PSI pathways. Due to lack of
observational constraints of this shift, we limit PSA in PCAM to have a single aet pathway and primarily alter
its Fe quota via disconnecting photosynthetic reaction centers.

2.7. Diazotrophy

Diazotrophs in PCAM are implemented using a model core identical to that described above with the follow-
ing additions: (1) An additional functional pool with high iron quota that includes nitrogenase, (2) an addi-
tional energetic demand for nitrogen fixation of 8 ATP per mole of nitrogen atoms fixed, and (3) an cost
associated with reducing or removing dissolved oxygen to maintain hypoxic conditions within the cell, a
requirement for nitrogenase functioning (Großkopf & LaRoche, 2012). The ATP demand due to a requirement
of 16 ATP necessary to overcome the activation energy barrier to break a stable, N-N triple bond to produce
two NH3.

N2 þ 8Hþ þ 8e� þ 16ATP →
yields

2NH3 þ H2 þ 16ADPþ 16Pi (12)

Thus, low oxygen, high light, and high iron all are favorable for nitrogen fixation. ATP demand and Q Fe
NIT are

both proportional to the rate of nitrogen fixation (Kustka et al., 2003). The fraction of fixed carbon consumed
by autotrophic respiration (Rnfix) associated with maintaining an anaerobic environment for nitrogen fixation
scales linearly with the ambient dissolved oxygen saturation such that

Rnfix ¼ O2½ �= O2½ �eq
� �

Rmax
nfix : (13)

Because nitrogenase is not a major fraction of cell mass (Whittaker et al., 2011), NIT is considered to have zero
C, N, and P quotas. This simplification reduces model complexity and eliminates a free parameter. We do not
distinguish here between diazotrophic strategies employing temporally separated nitrogen fixation (i.e., dur-
ing nighttime) versus spatially separated (i.e., heterocysts), assuming that the strategies have approximately
equal energetic balances over the 24-hr period. For unicellular cyanobacteria such as Crocosphaera watsonii,
N2 fixation occurs at night and the reducing equivalents needed to maintain a low oxygen environment thus
must come from dark respiration of carbohydrates.

2.8. Optimal Allocation

Under balanced growth, inputs of photosynthate and nutrients to a cell are equal to use of these inputs by auto-
trophic respiration and net growth. For any given environmental condition, our model has a unique and opti-
mal solution for the allocation of cell resources to PSA, RIB, (and NIT for diazotrophs). First, focusing on a single
nutrient, S, we canwrite a system ofmodel equations relating three unknowns. One equation relates the rate of
linear photosynthetic carbon fixation (vlpet) to the rate of biosynthesis (vsyn), taking into account autotrophic
respiration and the constant fraction of base autotrophic respiration (R0) during nitrogen fixation (Rnfix):

vsyn ¼ vlpet 1� Rtotð Þ where Rtot ¼ R0 þ Rnfix (14)
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A second equation balances ATP production via photosynthetic pathways with ATP demand from Calvin
cycle and nitrogen fixation, noting that lpet and cal are linked at 1:1 ratio based on an NADP+/NADPH redox
balance (Geider et al., 2009):

vaetAaet þ vlpet Alpet þ Acal
� �þ vnfixAnfix ¼ 0 (15)

where vnfix is the rate of nitrogen fixation (mol N/s per cell) and vaet is the rate of the alternative electron
transfer pathway aet (mol rxn/s per cell). Note that the sign of each ATP term is positive for ATP production
(Aaet and Alpet) and negative for consumption (Acal and Anfix). Units of Ax terms are mol ATP (mol rxn)�1. Note
that in PCAM there is no direct ATP demand associated with nutrient uptake, and ATP generation by auto-
trophic respiration is assumed to meet ATP demands of biosynthesis.

Growth rate is related to nutrient uptake such that

VS ¼ μSQS
tot ¼

vsyn
Cm

QS
totwhere ϕtot ¼ Cm ¼ ϕPSA þ ϕRIB þ ϕSTR þ ϕSTO (16)

where cell quota relates to allocation (Table 2) such that

QS
tot ¼ ϕPSAr

S
PSA þ ϕRIBr

S
RIB þ ϕSTRr

S
STR þ QS

nfix (17)

Nitrogenase quota (QS
nfixÞ is only active for diazotrophs and contributes only to cell iron quota, and nitrogen-

ase is assumed a negligible contributor to cell whole-cell C, N, and P budgets. The rate of nitrogen fixation,

νnfix, is proportional to nitrogenase Fe quota, Q Fe
nfix such that Q Fe

nfix ¼ r Fenfixνnfix where r Fenfixhas units of mol Fe

(mol rxn)�1.

The above set of equations can be solved for each potential limiting nutrient (N, P, and Fe) with optimal allo-
cation equal to the solution with minimum (most limited) growth rate. Numerically, the solution for N and P
limitation can be expressed as a quadratic equation with respect to ϕRIB and explicitly solved (see supporting
information for derivation). For Fe limitation, the system of equations is nonlinear and solutions were deter-
mined using the MATLAB fsolve.m solver with the default “trust-region-dogleg” algorithm. This solver is itera-
tive and thus has a significant and variable computational cost. On average, solutions without calculating Fe
limitation require about one twentieth of the time.

3. Results
3.1. Light and Macronutrient Limitation

We compare the PCAMbalanced growth solution against a range of laboratory and field data to evaluate how
cell allocation (i.e., chl:C) and growth rate varies over a range light and macronutrient concentrations.
Identical PCAM parameters (Table 1) are used in each of the below analyses.
3.1.1. Comparison With Laboratory Studies
Under low irradiance, such as during winter, periods of deep mixing, or in the deep stratified euphotic
zone, solar energy to drive photosynthesis becomes a limiting resource. Phytoplankton are able to accli-
mate through levels of irradiance 2 to 3 orders of magnitude below optimal levels through acclimation
strategies such as increasing the size and number of photosynthetic antennae complexes. Our model
represents this acclimation by assigning a fixed chl:C ratio to the PSA component but allowing carbon
allocation to PSA to vary. Thus, whole cell chl:C varies with shifting allocation as described in
equations (14)–(17). While chlorophyll a normalized photosynthesis (lpet + aet)/chl is dictated by
irradiance, plankton can maintain higher growth rates by increasing allocation to PSA. As irradiance
decreases the optimal ratio ϕPSA/ϕRIB needed to balance reductant and ATP increases. Acclimation to
low irradiance allows the saturation irradiance for net growth (Eμk ) to be significantly less than the
chlorophyll normalized saturation irradiance for photosynthesis (E*k). While E*k is a fixed cell trait, Eμk is a
function of cell acclimation state and can vary with time. Our model reproduces observed patterns in
chl:C observed in continuous cultures of Thalassiosira fluviatilis and Thalassiosira pseudonana grown under
decreasing irradiances (decrease in light-limited growth rate; Fisher & Halsey, 2016; Laws & Bannister, 1980;
Figure 3). Because cell sizes were not specified and likely variable, we used a constant cell radius of 5 μm
for comparison to diatom cultures. Results are not sensitive to varying this cell size due to the low cell size
versus growth rate dependence (Figure 2).
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The response of phytoplankton composition to growth under nitrogen limitation is strikingly different from
that under light limitation. For example, in the culture studies by Laws and Bannister (1980) and Halsey et al.
(2010, 2012), increasing levels of nitrogen limitation led to linear decrease in the chl:C ratio, the opposite
trend as observed during light limitation (Figure 3a). Colimitation by light and nutrients leads to a similar lin-
ear response but with a steeper slope (Sakshaug et al., 1989). The trend associated with nutrient limitation is
explained by the physiological response of reducing allocation to both PSA and RIB pools. When nutrients
limit growth, there is no advantage for a cell to maintain large investments in light harvesting and biosyn-
thetic capabilities (Figure 3c). Reducing the size of these pools reduces the overall cell nitrogen quota, allow-
ing for a higher growth rate to be maintained for a given amount of nitrogen uptake relative to the growth
rate that would be achievable by a cell retaining the PSA and RIB investments needed for replete growth.
Acclimation (by reallocating cell resources) allows plankton to maintain a half saturation for growth rate

(KS
μ) at significantly lower ambient nutrient concentration than the half saturation for instantaneous uptake

(KS) (Morel, 1987). Another saturation term, KS
μQ is defined as the nutrient concentration at which the product

of μ and QS is half its maximum (Morel, 1987). Figure S1 illustrates the relationship between these saturation
thresholds in PCAM.
3.1.2. Comparison to Field Data
Net primary productivity in carbon units (NC) is a critical variable in the study of ocean ecosystems, biogeo-
chemistry, and the carbon cycle. In PCAM, NC per cell is equal to vsyn. Table 3, and NC normalized to carbon
biomass, is equivalent to growth rate, μ. Radiocarbon-labeled primary productivity incubations (Steemann
Nielsen, 1952; PP(14C)) are the most widespread field measurement of ocean primary productivity, and when

Figure 3. PCAM response for balanced growth limited by light (green) and nitrogen (gold) compared to equivalent
laboratory data from continuous culture for the diatom Thalassiosira fluviatilis grown at 20 °C (squares; Laws & Bannister,
1980) for (a) chl:C acclimation. Light-nitrate-colimited growth is also shown for diatom Skeletonema costatum, grown in
nitrate-limited continuous culture at 15 °C (Sakshaug et al., 1989). Light levels were 600 (gold circles), 99 (downward
pointing pink triangles), 40 (purple diamonds), and 12 μmol photons · m�2 · s�1 (upward pointing blue triangles). (b) C:N
stoichiometry. Squares are from Laws and Bannister (1980), and circles are from Sakshaug et al. (1989). (c) Functional
pool allocation. Note that growth versus allocation to RIB is identical for light and nutrient limitation. In (a) lines indicate
PCAM solutions under corresponding conditions. A cell radius of 5 μm was assumed for PCAM results.
PCAM = pshytoplankton cell allocation model.

Table 3
Equations for the Rate of Each Metabolic Pathway (mol rxn per cell/day)

Symbol Description Value

vaet Alternative photosynthetic pathway vaet ¼ PmPSA 1� eEχchl= PmPSAαchlð Þ� �
ϕaet

vlpet Linear electron photosyn. transport vlpet ¼ PmPSA 1� eEχchl= PmPSAαchlð Þ� �
ϕlpet

vcal Calvin cycle C fixation vcal = vlpet
vsyn Biosynthesis vsyn ¼ amsynϕRIB
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conducted over longer periods (i.e., 6–24 hr) best corresponds to NC (Marra, 2009). Predicting NC using algo-
rithms based on satellite observations and from ocean biogeochemistry models has been proven to be chal-
lenging (Friedrichs et al., 2009; Saba et al., 2010). Because the PCAM can be solved explicitly for the case of
balanced growth limited by light and/or macronutrients, we are able to evaluate model skill in predicting
field observations of net primary productivity (NC) when the necessary input variables (PAR, chlorophyll,
nutrients, and temperature) are provided.

We test the ability of PCAM (configured for nondiazotrophs) to predict NC based on the relationship,

NC ¼ μPCAM chlð ÞOBS
chl:Cð ÞPCAM (18)

where (chl)OBS is a field measurement of chlorophyll and μPCAM and (chl:C)PCAM are PCAM-predicted growth
rate and chlorophyll to carbon ratios, respectively. PCAM μ and (chl:C) are calculated from observed tempera-
ture, nitrate, phosphate, and photosynthetically available radiation (PAR) at discrete measurement depths
through the upper ocean as outlined in the model description using the same parameter values as used in
section 3.1.1 (Table 1). Values of NC are also computed using SatPPMs, which rely on surface remote sensing
products (e.g., chlorophyll, irradiance, and temperature) and extrapolate to depth. Because phytoplankton
size spectra were not available for these observations, we assumed a constant cell radius of 3 μm. As
remote-sensed phytoplankton size distribution algorithms mature, we expect that they could be incorpo-
rated into analyses such as this (Kostadinov, 2016; Mouw et al., 2017).

We compare PCAM results with field observations from the JGOFS and CalCOFI programs. The JGOFS analysis
covers the greatest range of biogeochemical conditions and is detailed here, while the analysis using CalCOFI
data, which include depth, resolved observations including measured PAR attenuation, is detailed in the
supporting information. Six U.S. JGOFS process cruises from 1989 to1998 measured PP(14C) and the necessary
variables to evaluate the PCAM over a wide range of oceanic regimes. The JGOFS Process Studies (Doney et al.,
2001; Knap et al., 1996) included sites in the Equatorial Pacific, Arabian Sea, Southern Ocean, andNorth Atlantic
and were designed to improve understanding of biogeochemical processes by including a suite of standar-
dized measurements, which included 24-hr 14C PP, chlorophyll, nitrate, phosphate, temperature, and mixed
layer depth. Mixed-layer mean values for the process cruises have been compiled as part of a synthesis and
modeling project (Doney et al., 2001; Kleypas & Doney, 2001), and we use data from all stations where all of
the above-mentioned variables were measured. PAR was not reported for the JGOFS sites, however. For the
PCAM and SatPPM calculations we instead used 9-km monthly climatological PAR from Moderate
Resolution Imaging Spectroradiometer MODIS-Aqua. Surface PAR was selected from the nearest grid point
for each observation and linearly interpolated to the day of year of the observation. Mean-mixed layer PAR
was calculated using mixed-layer chlorophyll values and a PAR attenuation model (Morel & Maritorena, 2001).

Additionally, PCAMwas compared to two SatPPMs, the Vertically Generalized Productivity model (VGPM) that
depends on chlorophyll, temperature, and PAR (Behrenfeld & Falkowski, 1997) and the Eppley model
(EPPLEY) that is a function of chlorophyll alone (Eppley et al., 1985). VGPM is the most widely used algorithm,
while EPPLEY is the simplest yet has been demonstrated to have skill comparable to many more complex
models (Friedrichs et al., 2009). The EPPLEY model has a single free parameter, while the VGPM includes 23
parameters. For VGPM and EPPLEY evaluations, in situ chlorophyll was used rather than remote-
sensed chlorophyll.

Although the PCAM has more degrees of freedom, it does a better job of reproducing JGOFS observations
compared to VGPM and EPPLEY models. The PCAM output exhibits positive correlation with observations
for all JGOFS sites (Figure 4). Systematic biases between sites also appear to be reduced. Predicted NC at oli-
gotrophic Hawaii Ocean Time-series (HOT) and Bermuda Atlantic Time-series Study (BATS) is reduced for
PCAM but with improved correlation compared to VGPM, likely due to the inclusion of nutrient data in
PCAM. A tendency toward model underestimation in low-latitude upwelling regions (EQPAC and ARABIAN)
appears present in all models. Recent analyses suggest that the commonly used Eppley (Eppley, 1972) tem-
perature dependence of phytoplankton growth (Tfunc in PCAM) is too strong, which may explain this discre-
pancy (Sherman et al., 2016). Model skill is evaluated using several metrics including root-mean-square
difference (RMSD), centered pattern RMSD (RMSDCP) and bias (B) (Friedrichs et al., 2009). RMSDCP is equiva-
lent to RMSD once the bias has been removed. Following previous primary production model evaluations
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(Friedrichs et al., 2009; Saba et al., 2011), model-data misfit is calculated on log10 transformed primary
production. A Taylor Diagram (Figure 5) summarizes statistics of correlation, R, standard deviation and
RMSDCP, illustrating that PCAM has a superior fit when compared to VGPM and EPPLEY at most sites and
for the pooled JGOFS data set.

3.2. Diazotrophy and Iron Limitation
3.2.1. Comparison With Laboratory Studies
C. watsonii is a single-cell, free living diazotrophic cyanobacteria approximately the same size as the nondia-
zotrophic cycanobacteria Synechococcus. Comparing model analogues of these two otherwise similar
microbes provides insights into the trade-offs associated with nitrogen fixation. Two model organisms, CW
and SYN, were initialized with the same 1-μm radius and model parameters, differing only in the
presence/absence of nitrogen fixation. Other than cell size, we applied the same model parameters used in

section 3.1 except for an ATP demand for dinitrogen fixation (Anfix), an iron quota for nitrogenase (Q Fe
NFIX), and

respiratory demand to remove oxygen (Rnfix). First, we compare the diazotrophic model organism (CW) to

Figure 4. PCAM primary productivity (mmol C · m�3 · d�1) compared to the vertical generalized productivity model (VGPM) and the EPPLEY squaredmodel (EPPLEY)
for six JGOFS sites. PCAM PP is the product of PCAM specific growth rate, C:chl (assuming balanced growth) and observed chlorophyll (PP = chlobsμPCAM(C/chl)PCAM).
Each algorithm is evaluated against observed field measured primary productivity based on 12- or 24-hr 14C incubations. Iron was not measured and is assumed
replete. PCAM = pshytoplankton cell allocation model; JGOFS = Joint Global Ocean Field Study.

Figure 5. Taylor diagram showing skill of VGPM, EPPLEY, and PCAM in estimating observed volumetric 14C primary produc-
tivity from JGOFS. For all locations pooled (large stars), PCAM had the lowest RMSDCP error and highest correlation coef-
ficient. VGPM = vertical generalized productivity model; PCAM = pshytoplankton cell allocation model; JGOFS = Joint
Global Ocean Field Study; RMSD =root-mean-square difference.
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iron limited growth of C. watsonii under culture conditions (Jacq et al.,
2014). PCAM reproduces iron-limited growth as observed in batch cul-
ture over a range dissolved iron concentrations (Figure 6). Diazotrophy
requires higher iron quota both for nitrogenase directly and for greater
allocation to PSA for alternative electron transport pathways that sup-
port higher ATP demand. Nitrogenase iron quota is directly propor-
tional to N-fixation rate. The greater iron quota is reflected in the
relative competitive advantage of SYN over CW under Fe stress
(Figure 6), an observation supported by iron-limited chemostat studies
of Synechococcus (Sunda & Huntsman, 1997).
3.2.2. Comparison With Field Observations
The GEOTRACES intermediate data product (IDP2014v2) (Mawji et al.,
2015) includes the full suite of environmental variables, including dis-
solved Fe, needed to solve PCAM, assuming balanced growth. Here
we evaluate PCAM for two basin-scale transects in the Atlantic. The first,
GA03, was completed in 2010 and 2011 on the R/V Knorr between
Woods Hole, MA, and the Mauritanian upwelling zone (Boyle et al.,
2015). The second, GA02, was a meridional section stretching along
the western side of the Atlantic Basin from the Irminger Sea to Puntas
Arenas, Chile, completed in three legs during 2010 and 2011 aboard
the R/V Pelagica and RRS James Cook (Rijkenberg et al., 2014). As surface
PAR was not recorded for these sections, we combined MODIS-Aqua
9 km daily PAR with measurements of water column attenuation.

Water column attenuation was calculated from integrating CTD transmissometer data at each station as part
of IDP2014v2 release. PCAM-balanced growth (Figure 7) was calculated for each sampling location and depth
where all necessary variables were available (Figure S3). For the zonal GA03 section, Fe was generally too low
for diazotrophs to thrive in the surface layer, yet a niche favorable for diazotrophs was present directly below
at 30–40 m. For GA02, Fe availability (Figure S3) strongly dictates the growth rate of both with CW and SYN,
with presumably dust-born input north of the equator, similar to what has been observed in Atlantic
Meridional Transect program observations (Moore et al., 2009). Additionally, a potential shelf source of iron
is evident near 30°S where CW is favored near the surface, consistent with new evidence of nitrogen fixation
in this region (Moore et al., 2014).

Figure 7. Growth rate for balanced growth pshytoplankton cell allocation model solution for model Crocospherae watsonii and Synechococcus analogues compared
for GEOTRACES ga03 (left) and ga02 (right) sections with the difference in growth rate shown in the top panels.

Figure 6. Normalized iron-limited growth in continuous culture for the diazo-
troph Crocospherae watsonii (magenta; Jacq et al., 2014) and for the coastal
Synechococcus bacillaris (green; Sunda & Huntsman, 1997, 2015). Solid lines show
pshytoplankton cell allocation model-balanced growth solutions for a diazo-
troph (magenta) and nondiazotroph (green). Although nutrient uptake kinetics
are identical, the diazotroph has additional Fe requirements. Cell radius of 1 μm
is assumed for both Synechococus and Crocospherae watsonii model analogues.
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3.2.3. Diazotrophy Niche
The above results illustrate the high iron, low nitrate + ammonia niche that is favorable for diazotrophs
(Figure 8). The size of this Fe-N niche space can be modulated by other resources/stressors. For example,
under saturated oxygen conditions (pO2 ~ 0.2 atm), the requirement to maintain an anoxic site for nitrogen
fixation is a major metabolic cost for diazotrophs, directly accounting for approximately 60% of cellular
respiration when oxygen is at 100% saturation (Großkopf & LaRoche, 2012). Under low O2 conditions, diazo-
trophs are released from this additional respiratory demand, significantly expanding their competitive niche
into higher nitrate and lower Fe parameter space (Figure 8). The primary effect is a contraction of the diazo-
troph niche at high [O2] (Figure 8). Compared to nonfixers, diazotrophs have a higher demand both for the
energetic (ATP) cost of N2 fixation and for the additional carbon fixation needed to support respiratory
removal of O2. Both demands contribute to higher allocation to PSA and thus a greater sensitivity to light lim-
itation. Also, due to the combined impact of overall lower growth rate and high PSA allocation at low light, Fe
quota is dominated by PSA. Even as photocenters are disconnected (see section 2.6) the low efficiency of
active photocenters means that PSA continues to contain the majority of cell Fe quota. Under low light,
NIT becomes a minor additional Fe requirement for diazotrophs relative to investment in PSA. The “Fe advan-
tage” of nondiazotrophs is thus minimized when light is low.

4. Discussion

The PCAM represents cellular acclimation to environmental conditions through allocation of cell resources to
a number of core functional pools. Using this core approach, we demonstrate the ability to model a range of
laboratory and field observations of phytoplankton growth and composition. PCAM includes mechanistic
details, such as variable stoichiometry and multiple photosynthetic pathways. The pathways represented

Figure 8. Nondiazotrophic minus diazotrophic growth (Δμ) as a function of nitrate and iron are shown for (a) replete light
(1,000 μmol quanta · m�2 · s�1; b) replete light plus low O2 (O2sat = 10%; c) low light (40 μmol quanta · m�2 · s�1), and
(d) under both low light and low O2. Magenta shaded parameter space favors diazotrophs (CW) and green shades show
where nondiazotrophs are favored (SYN). Black solid lines show the zero contour for each panel. The zero contour for
replete conditions from panel (a) is shown as a dashed line for reference in other panels.
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in PCAM can inform on the trade-offs associated with multiple limiting resources and stressors. PCAM pro-
vides a range of predictions, testable against measures of subcellular metabolism and composition.

4.1. On Net Versus Gross Photosynthesis

The gross to net photosynthetic ratio (NC:GO2) is an indicator of metabolic cell demands for photosynthate.
Even under ideal conditions, a large fraction of gross photosynthesis (~60%) is allocated to processes includ-
ing catabolism and alternative electron transport pathways. In PCAM, under replete conditions a cell has a
base efficiency of 40% of gross photosynthesis ultimately allocated to growth (i.e., NC:GO2 = 40%). This alloca-
tion efficiency appears to be representative of bulk phytoplankton communities in the field (Marra, 2002) as
well as for a range of taxa in culture (Halsey & Jones, 2015). However, a wide variability certainly exists, a clear
example of which is the low NC:GO2 of diazotrophs as discussed more below. PCAM explores diazotrophy but
does not yet include other potential trade-offs, such as motility and photoprotection (Fisher & Halsey, 2016;
Halsey et al., 2014). With more observational constraints, PCAM could be enhanced in the future to add addi-
tional mechanisms for flexibility in NC:GO2.

Diazotrophy decreases NC:GO2 due to the higher rate of autotrophic respiration. Thus, depending on func-
tional type and iron availability varies from 12% to 40%. Results from productivity tracer studies hint at such
physiologic flexibility (Juranek & Quay, 2013). A low NC:GO2 could be either due to low NC:GC or low GC:GO2,
depending on if O2 reduction is accomplished directly through light-dependent processes such as theMehler
reaction or if carbon is fixed during daytime followed by subsequent dark respiration. Both cases have been
observed in culture studies. Low GC:GO2 ratios where observed in Trichodesmium, such that up to 70% of GO2

was attributed to Mehler Cycle activity to reduce O2 (Kana, 1993; Milligan et al., 2007). In C. watsonii, a large
diel variability in the carbohydrate pool has been observed, indicating substantial excess daytime photo-
synthesis and dark respiration is responsible for a low NC:GC (Dron, Rabouille, Claquin, Chang, et al., 2012;
Dron, Rabouille, Claquin, Le Roy, et al., 2012). Either approach result yields a similarly low NC:GO2 as predicted
by PCAM for diazotrophy, but uncertainty remains in the relative contribution of autotrophic respiration ver-
sus aet for meeting oxygen removal demands. The choice of strategy to meet this demand may depend on
the strategy for nitrogen fixation, as C. watsonii fixes nitrogen at night while Trichodesmium spatially segre-
gates photosynthesis and nitrogen fixation, and actively fixes during the day.

For models to have a more realistic and mechanistic response to environmental conditions a measure of
gross photosynthesis, particularly resolving alternative pathways, is critical yet seldom included in current
models, which often bypass gross production altogether, favoring NC as a starting point. The convention
of modeling net primary production (NC) in the marine environment, whether from using SatPPMs or in
ESMs, is largely a historical result of 14C incubations serving as the primary available validation data set by
which models are evaluated. Given that the 12-24 hr 14C incubation method is, ostensibly, most closely
related to NC (Marra, 2002, 2009; Quay et al., 2010), models sought to model a quantity that could be readily
validated. Model equations underlying most SatPPMs and ESMs are derived from descriptions of photosynth-
esis more mechanistically linked to GO2 or GC. Indeed, for terrestrial systems where tower measurements of
GC are the dominant source of validation (Baldocchi et al., 2001; Beer et al., 2010), modeling communities
have focused on gross photosynthesis (Anav et al., 2013). Implicitly, ocean models neglect the dynamic rela-
tionship between gross and net photosynthesis which is central to many adaptive strategies employed by
phytoplankton. PCAM represents a first and significant step toward addressing this shortcoming.

4.2. Trade-Offs of Diazotrophy

Diazotrophs are observed through much of the low-latitude ocean (Luo et al., 2014), usually as a minor con-
stituent of the phytoplankton population, although in some cases, blooms dominated by Trichodesmium and
other diazotrophs are observed (Capone et al., 1997; Sohm et al., 2011). Integrated into a full ESM, PCAM
would provide a more mechanistic basis for predicting the growth, persistence and biogeography of diazo-
trophs in the context of complex ocean physics, trophic interactions, resource availability, and multiple stres-
sors. Indeed, this is a goal for future PCAM development. Short of a full prognostic model, PCAM can still be
interpreted diagnostically to yield interesting insights.

Resource competition theory predicts that for systems in steady state, diazotrophs can coexist with non-
diazotrophs but can never dominate the population (Dutkiewicz et al., 2012; Tilman, 1982).
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Phytoplankton blooms, however, are transient and (assuming similar
loss rates) will be dominated by the phytoplankton functional type
with the highest growth rate. For diazotrophs, such a bloom could
be triggered by, for example, an aeolian iron deposition event
(Rubin et al., 2011). In the following discussion, we first apply PCAM
to examine relative growth rates to assess conditions where diazo-
troph blooms could occur and then apply PCAM in a resource com-
petition framework to assess conditions where stable persistence
could occur. Each of these two frameworks have their own significant
limitations for explaining the growth and persistence of phytoplank-
ton and do not consider important factors including variability in
top-down control, physical circulation and mixing, episodic nutrient
injection, and other important processes present in a fully coupled
model. Despite these limitations, preliminary insights can be gained
both from assessing instantaneous growth rate and from applying
resource competition theory.
4.2.1. Relative Growth Rate From Geotraces Sections
For a diazotroph, three primary costs associated with the ability to fix
nitrogen are (1) the added ATP needed to split N2, (2) the necessity to
remove O2 for nitrogenase activity, and (3) a higher iron quota asso-
ciated with nitrogenase as well as additional photosynthetic activity
required to meet challenges (1) and (2). In addition to fixed nitrogen
availability, we identify light, oxygen, and iron as environmental vari-
ables that strongly influence the trade-offs of diazotrophy. In PCAM,

each factor has a significant influence of the allocation of photosynthate and the NC:GO2 growth ratio.
The direct effect of the additional ATP demand is the necessity for higher allocation to aet pathways, with
an associated iron quota. For diazotrophs, high oxygen, as is generally found in the surface euphotic zone,
must be reduced or removed to maintain low oxygen around nitrogenase, leading to an additional respira-
tory demand that scales with ambient oxygen. The additional iron quota associated with nitrogenase disad-
vantages diazotrophs when iron is scarce. Using PCAM, the interactions between these multiple factors are
combined to determine a competitive niche in parameter space in which diazotrophs are predicted to
thrive. The analysis of Geotraces data (Figure 7) shows how the relative niches for CW and SYN in parameter
space (Figure 8) can be mapped onto field observations to predict where conditions are favorable for diazo-
trophy (Figure 7).
4.2.2. Resource Competition Theory
The above analysis considers the relative fitness of C. watsonii versus Synechococcus sp. analogues for a “snap-
shot” of conditions but does not address if these conditions represent a stable environment or if observed
conditions represent a transient condition. Resource competition theory (Tilman, 1982) provides a framework
for predicting the phytoplankton class that will outcompete others under steady state conditions. For a given
resource, a phytoplankton class will be excluded from the equilibrium solution if a resource falls below the
minimum concentration (R*) needed to support that class, as defined by the zero net growth isocline
(ZNGI). The ZNGI is the resource isoline at which growth rate is just sufficient to match loss terms (i.e., grazing,
assumed here a constant rate of 0.1/day). Dutkiewicz et al. (2012) applied resource competition theory to out-
line a framework for competition between diazotrophs and nondiazotrophs for nitrogen and iron. When con-
sidering competition for N and Fe, coexistence was shown to only be possible in one parameter-space
location, where ZNGI lines for diazotrophs and nondiazotrophs intersect (Figure 9). Here we take the frame-
work of Dutkiewicz and apply the PCAM to illustrate how light and oxygen could modify the ZNGI lines for
each functional type and shift the location of the coexistence intersection. Previous applications of resource
competition theory assume that R* for a given resource is independent of other nutrients (implying there is
no interdependency between Fe and N metabolisms, e.g.), resulting in no curvature in ZNGI lines. The PCAM
solution shows curvature in the ZNGI connecting Fe limitation to N limitation indicating a region of colimita-
tion, which is not represented in a theoretical model built upon Leibig’s law of the Minimum. This curvature is
due to the interactions and trade-offs in Fe versus N metabolism inherent in PCAM. The point in coexistence
point in Fe-N space is located at slightly higher Fe and N concentrations when light is low. Oxygen, in

Figure 9. Zero net growth isolines are shown for model diazotroph (CW; orange
and blue) and nondiazotroph (SYN; black). High light solutions are shown in solid
lines and low light solutions are dashed. For CW, blue lines show 10% O2sat
solutions and orange lines show 100% O2sat solutions. The dots indicate points
where SYN and CW can coexist for steady state conditions based on resource
competition theory.
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contrast, has a large impact on the lowest [Fe] viable for coexistence, with low O2 enabling diazotrophs to
persist at a significantly lower Fe*.

4.3. Future Applications

An ultimate application of PCAMwould be the inclusion of such amodel in a prognostic coupled ESM used to
simulate past and future climate. Such integration faces a number of challenges. One is the added computa-
tional complexity. Several additional prognostic variables would be needed to track the internal allocation for
each phytoplankton functional type. Furthermore, the optimal allocation solution described in section 2.8
requires an iterative solution when iron is considered. Such iteration would be computationally more challen-
ging in an ESM. A possible strategy to overcome this limitation would be to use off-line computed lookup
tables intelligently gridded in parameter space to bypass the iterative step. Such lookup approaches are
applied in other ESM domains such as in atmospheric models to avoid computationally expensive online
steps, for example, (Morrison et al., 2005). Another challenge is how to treat the physical mixing of members
of a PFT that are differentially acclimated. An agent-based model approach (Grimm et al., 2005; Hellweger
et al., 2014) in the Lagrangian frame would thus be a good match for a PCAM implementation.

Extending the use of PCAM as a diagnostic model is also a promising direction such as using it as a next-
generation SatPPM. In addition to established photosynthetic parameters, a version of PCAM adapted as a
SatPPM could take advantage of remote-sensed sun-induced fluorescence. Physiological responses to iron
stress, including an increased PSII:PSI ratio and disconnected pigment complexes, increase fluorescent quan-
tum yield, which in turn alters remotely observable sun-induced fluorescence (Behrenfeld et al., 2009).
Beyond predicting NPP, PCAMwould predict a number of additional parameters including chl:C and cell stoi-
chiometry. As phytoplankton size satellite algorithms mature (Mouw et al., 2017), they could be used as
inputs to drive the allometric underpinnings of PCAM.

Available validation data sets for PCAM and for models in general primarily consist of bulk measurements,
such as primary productivity and whole-cell stoichiometry and chlorophyll content. A primary goal of
PCAM is to serve as a hypothesis as to the mechanistic response of phytoplankton to the combined effect
of multiple resources and stressors. Because functional pools and core metabolic processes are represented
in PCAM, new classes of observational data could be applied as constraints on model performance (Doney
et al., 2004) including a host of “omics” that illuminate the mechanisms of phytoplankton response to their
environment and techniques that can quantify elemental allocation on the subcellular level, such as X-ray
fluorescence-based techniques (Twining & Baines, 2013).

5. Conclusions

The PCAM presented here applies an optimal allocation framework to explain disparate observations of phy-
toplankton growth over a range of environmental conditions for diazotrophic and nondiazotrophic growth,
which are demonstrated to require significantly different strategies for the allocation of photosynthate. Gross
photosynthetic activity includes linear pathways directly linked to carbon fixation as well as ATP-generating
alternative pathways. For nondiazotrophic growth, approximately 20% of GO2 is allocated toward aet path-
ways to supplement ATP requirements. An additionally, half of total fixed carbon (GC) is subsequently con-
sumed by mitochondrial respiration and catabolism, resulting in an overall photosynthetic use efficiency
(NC:GO2) of about 40%. For diazotrophs, a much larger portion is devoted to alternative pathways due to
the demand for energy for splitting dinitrogen and need to remove/reduce oxygen. Diazotroph NC:GO2 is
thus much lower, at around 12%.

Incorporating these trade-offs into a cell allocation model further informs on how photosynthate allocation
impacts growth rate, including the effects of light, nitrogen, and iron limitation. Under replete conditions dia-
zotrophs have a lower maximum growth rate. Furthermore, we argue that oxygen removal is the largest
cause of the observed lower growth rate with the cost of splitting dinitrogen a secondary cause. These costs
result in an optimal allocation solution for replete. Diazotrophic growth rate is about half of that of a nondia-
zotrophic analogue and requires about twice the allocation to PSA to achieve a given growth rate. A higher Fe
quota due to both the larger PSA requirement and Fe needed for nitrogenase results in nondiazotrophic
growth being more competitive under low Fe conditions. The competitive advantage is even greater at
low light where PSA requirement is enhanced. Modeling such trade-offs over a wide range of
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environmental conditions and resource limitations using minimal additional parameters requires a mechan-
istic approach. Here using a cell allocation model, we have demonstrated that the primary trade-offs of
diazotrophy can be encapsulated using only three parameters that differ from how nondiazotrophs are
represented; an iron quota for nitrogenase; a respiratory cost proportional to oxygen saturation; and an ener-
getic cost for nitrogen fixation.
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Erratum

In the originally published version of this paper, there were figure labeling errors for Figures 2, 3, and 6. The
figures have since been corrected, and this version may be considered the authoritative version.
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