1	
2 3	The effect of sample drying temperature on marine particulate organic carbon composition
4 5	Sarah Z. Rosengard ^{1,2*} , Phoebe J. Lam ³ , Ann P. McNichol ^{4,5} , Carl G. Johnson ² , Valier V. Galy ²
6 7 8 9 10 11 12 13 14 15 16	 Massachusetts Institute of Technology Department of Earth, Atmospheric and Planetary Sciences, Cambridge, MA, U.S.A. Woods Hole Oceanographic Institution Department of Marine Chemistry and Geochemistry, Woods Hole, MA, U.S.A. University of California-Santa Cruz Department of Ocean Sciences, Santa Cruz, CA, U.S.A. Woods Hole Oceanographic Institution Department of Marine Geology and Geophysics, Woods Hole, MA, U.S.A. National Ocean Sciences Accelerator Mass Spectrometry Facility, Woods Hole, MA, U.S.A.
17 18 19 20 21 22 23 24	Corresponding author contact: (tel) 646-361-1195; srosengard@eoas.ubc.ca * current affiliation: University of British Columbia Departments of Geography and Earth, Ocean and Atmospheric Sciences, Vancouver, BC, Canada Keywords: particulate organic carbon composition, sample drying treatment, ramped oxidation

- 25 Abstract
- 26

27 Compositional changes in marine particulate organic carbon (POC) throughout 28 the water column trace important processes that underlie the biological pump's 29 efficiency. While labor-intensive, particle sampling efforts offer potential to expand the 30 empirical POC archive at different stages in the water column, provided that organic 31 composition is sufficiently preserved between sampling and analysis. The standard 32 procedure for preserving organic matter composition in marine samples is to immediately 33 store particles at -80°C to -20°C until they can be freeze-dried for analysis. This report 34 investigates the effect of warmer drying and storage temperatures on POC composition, 35 which applies to the majority of POC samples collected in the field without intention for 36 organic analysis. Particle samples collected off Woods Hole, MA were immediately dried 37 at 56°C, at room temperature, or stored at -80°C until being freeze-dried. Results show 38 that oven- and air-drying did not shift the bulk composition (i.e., carbon and nitrogen 39 content and stable isotope composition) of POC in the samples relative to freeze-drying. 40 Similarly, warmer drying temperatures did not affect POC thermal stability, as inferred 41 by ramped pyrolysis/oxidation (RPO), a growing technique that uses a continuous 42 temperature ramp to differentiate components of organic carbon by their decomposition 43 temperature. Oven- and air-drying did depress lipid abundances relative to freeze-drying, 44 the extent of which depended on compound size and structure. The data suggest that field 45 samples dried at room temperatures and 56°C are appropriate for assessing bulk POC 46 composition and thermal stability, but physical mechanisms such as molecular 47 volatilization bias their lipid composition.

- 48 1 Introduction

50	Marine particulate organic carbon (POC) is the primary vector for the biological									
51	pump, which transfers ~0.2 Gt carbon/year - approximately 0.1 % marine primary									
52	productivity - to the seafloor (Burdige 2007). These particles harbor thousands of distinct									
53	organic biomolecules generated predominantly by primary producers and heterotrophs									
54	(Repeta 2014). Changes in this biomolecular matrix in the water column reflect important									
55	processes that govern the transport and recycling of marine POC (Burd et al. 2016).									
56	Techniques for describing changes in this matrix range from measuring bulk									
57	characteristics that are an integration of all biomolecules (e.g., the stable isotope									
58	composition of total POC, reported as δ^{13} C) to quantifying smaller abundances of specific									
59	biomolecules (e.g., the abundance of lipid biomarkers and their δ^{13} C values) (Wakeham									
60	and Volkman 1991; Trull and Armand 2001; Cavagna et al. 2013).									
61	To accurately interpret the composition of POC in the water column, its organic									
62	matrix must be preserved between collection and analysis. Prior studies have									
63	demonstrated a link between wet sample storage temperature and organic matter									
64	preservation. For example, storage at room temperature can promote microbial									
65	degradation in the sample matrix, significantly altering the distribution of lipid									
66	abundances after one month (Grimalt et al. 1988). But, even longer term storage at									
67	temperatures below freezing can alter the lipid composition of organic matter by									
68	rupturing cell membranes and concentrating enzymes in solution, increasing the									
69	extraction efficiency of free fatty acids and preferentially breaking down polar lipids									
70	(Wakeham and Volkman 1991; Ohman 1996). Current recommendations are that marine									

samples intended for organic analysis are frozen immediately after collection and stored
at -80°C to -20°C and freeze-dried prior to analysis, which minimizes alteration of
organic matter composition by heterotrophic remineralization after sampling (Wakeham
and Volkman 1991).

75 Still, the majority of particulate matter collected at sea is not intended for organic 76 analysis. Samples for bulk elemental analysis are often dried in a heated oven, and 77 samples for inorganic analysis are sometimes air-dried, and then stored at room 78 temperature before analysis (e.g., Buesseler et al. 2005; Bishop and Wood 2008; Bishop 79 et al. 2012; Lam et al. 2015; Rosengard et al. 2015), rather than being freeze-dried. The 80 tremendous labor, financial cost and scientific potential of sampling marine particles 81 warrants an investigation into how much POC integrity is sacrificed when different 82 sample drying methods do not meet optimal standards of organic geochemical analysis 83 (Wakeham and Volkman 1991). This paper compares the effects of freeze-drying 84 samples, air-drying samples at room temperature, and oven-drying samples at elevated 85 temperatures on three aspects of organic composition: bulk organic matter composition (C/N ratio, δ^{13} C and total organic carbon content), biomolecular composition (specific 86 87 lipid abundances), and thermal stability.

In this report, the latter metric for composition, thermal stability, refers to the distribution of temperatures over which a POC sample decomposes to CO_2 during ramped pyrolysis/oxidation (RPO), a novel but increasingly utilized technique for characterizing the composition of organic matter in the environment. By pyrolyzing or oxidizing POC throughout a controlled temperature ramp from ~100°C to 800°C, and monitoring the release of CO_2 throughout the ramp, this technique differentiates distinct

94	pools of bulk organic carbon by their thermal stability, reflecting the activation energy of
95	decomposition/oxidation of specific POC pools in the sample (Cramer 2004). RPO has
96	been applied over a range of organic matter samples from complex depositional
97	environments, from suspended riverine POC to ocean sediments (Rosenheim et al. 2008;
98	Rosenheim and Galy 2012; Rosenheim et al. 2013; Subt et al. 2016). Thus, RPO of
99	marine POC offers a unique opportunity to relate POC composition to its biological
100	reactivity in the environment, which impacts the strength of the biological pump
101	(Francois et al. 2002; Burd et al. 2016).
102	We hypothesized that air-drying and oven-drying a sample would negligibly
103	influence the bulk composition and thermal stability of POC (e.g., Kaehler and
104	Pakhomov 2001). The energy imposed by high-flow air-drying and oven-drying relative
105	to freeze-drying is too small to shift the bonding energies (Wagner et al. 1994) and
106	therefore the activation energies of thermal decomposition in the biomolecular matrix
107	(Cramer 2004). Moreover, these approaches dry particle samples within 24 hours, which
108	likely minimizes microbial degradation of POC in the sample. By contrast, we expected
109	air-drying and oven-drying to shift the absolute and relative abundances of specific
110	biomolecules in POC, which are typically present in trace quantities. Indeed, Wang et al.
111	(2017) observed that lipid distributions in soils shifted in response to heating at
112	temperatures as low as 60°C. The results of these comparisons have several implications
113	towards the opportunistic use of marine particle samples for organic analysis, even when
114	not processed according to ideal organic geochemical standards.
115	

2 Materials and procedures

117

Different drying treatments were compared using samples of marine POC
collected off the dock of the Woods Hole Oceanographic Institution (WHOI), at
41.524°N, 70.672°W, in June 2014.

121

- 122 **2.1** Sample collection
- 123

124 To collect marine particles, a battery operated *in situ* pump (McLane WTS-LV) 125 was deployed ~10 meters below surface and pumped seawater through two identical flow 126 paths (Lam et al. 2015). Each flow path directed seawater through a 51 µm pore-size 127 polyester pre-filter screen followed by a pair of pre-combusted 1 µm pore-size quartz 128 fiber filters (WhatmanTM quartz membrane grade A, or QMA), both mounted onto "mini-129 MULVFS" filter holders (Bishop et al. 2012). The active collection area of these filters 130 was 125 cm². The pre-filter retained $>51 \,\mu m$ size-fraction particles, while the QMAs 131 collected 1-51 µm size-fraction particles, most of which settled on the first QMA filter of 132 the flow path. After ~45 minutes, or 40-100 L seawater filtered, the filters clogged and 133 the pump stopped. 134 The pump was deployed twice, collecting two pre-filters and two pairs of sample 135 QMA filters (POC1 and POC2) over both flow paths in the first deployment, and one pre-136 filter and one pair of QMA filters (POC3) from one flow path in the second deployment 137 (Table 1). During each deployment, a deployment blank sample was also collected by 138 submerging a complete filter set - a 51 µm pre-filter and a pair of QMA filters -

sandwiched between 1 µm mesh filters to exclude particles, in a perforated plastic
Tupperware box, which was externally attached to the McLane pump frame. The second
pump deployment immediately followed the first. Depth control was poor, so the two
deployments likely occurred at slightly different depths.

143 Of all filters deployed, only the QMA filters, which collected $<51 \,\mu m$ particles, 144 were analyzed. Of the three pairs of particle filters collected, only the topmost QMA filter 145 relative to the pump's flow path was analyzed, as this filter likely retained most $<51 \,\mu m$ 146 particles (Fig. 1a, c). For each pair of the two deployment blank filters, we considered 147 differences between the two QMA filters to be negligible (Fig. 1b). Each sample and 148 deployment blank filter was divided into thirds prior to drying, such that each drying 149 treatment could be applied in triplicate. As Section 3 argues, this dividing scheme helped 150 account for environmental heterogeneity associated with particle sampling in POC-rich 151 waters during analysis of thermal and lipid composition of the samples (Sections 2.3-2.4). 152 One third was immediately frozen at ~-10°C, transferred to -80°C two weeks later, and 153 finally freeze-dried overnight before analysis (Fig. 1, Table 1). Another third was placed 154 in an oven for drying at 56°C for 17-19 hours. Finally, one third was dried under a clean 155 laminar flow hood at high air flow and room temperature for 17-19 hours. All oven-dried 156 and air-dried filters were stored in Whirl-Pak bags or combusted glassware at room 157 temperature before analysis. All analyses were done within one year of sample collection. 158 Prior to analysis, images of dried QMA filters were developed at various 159 magnifications for a freeze-dried portion of deployment blank and sample filters using a 160 scanning electron microscope (SEM) (Fig. 1b, c). No coccoliths or other calcium 161 carbonate shells were observed in the sample filter. Thus, we assumed that the particulate

162	inorganic carbon content (PIC) in the particle samples was negligible, and would not								
163	interfere with any of the POC analyses described in the following sections. The stable								
164	isotope data reported in the "Assessment" section will address this assumption.								
165									
166	2.2 Bulk composition analysis								
167									
168	The bulk composition (particulate organic carbon concentration ([POC]),								
169	particulate nitrogen concentration ([PN]), δ^{13} C and δ^{15} N) of the dried QMA filters was								
170	analyzed using a Fisons Instruments Carlo / Erba 1108 elemental analyzer interfaced via								
171	a Finnigan MAT Conflo II to a Thermo Finnigan Delta-Plus stable isotope ratio mass								
172	spectrometer. These analyses were intended to guide our choice of filter sub-sample size								
173	for ramped pyrolysis/oxidation (RPO) analysis, while maximizing the amount of sample								
174	left for RPO and lipid analysis (Section 2.3). Thus, for each drying treatment, only $\sim 0.9\%$								
175	of the active area of a whole QMA filter (125 cm^2) from a different filter replicate was								
176	analyzed in bulk: the freeze-dried sub-sample of particle filter POC2, the air-dried sub-								
177	sample of filter POC3, and the oven-dried sample of filter POC1 (Table 1). One								
178	deployment blank sub-sample (~0.9% QMA active area) from a freeze-dried filter portion								
179	was analyzed, as well.								
180									
181	2.3 Ramped oxidation analyses								
182									
183	The ramped pyrolysis/oxidation (RPO) system at the National Ocean Sciences								
184	Accelerator Mass Spectrometry (NOSAMS) facility converts sample organic carbon to								

185 carbon dioxide (CO_2) gas through a continuous temperature ramp, either by pyrolysis or 186 oxidation, depending on the instrument plumbing (Hemingway et al. 2017). For each 187 drying treatment, the same size subsamples across the particle sample or deployment 188 blank replicate filters were combined prior to analysis, equating to 3-5% of the active 189 sample filter area or ~9% of the deployment blank filter area. Particle sub-samples were 190 analyzed three times, resulting in three thermograms per drying treatment that recorded 191 CO_2 evolved during the temperature ramp (Fig. 2a-c). Deployment blank filters were only 192 analyzed once. Furthermore, ~5% of a pre-baked (up to 450°C) but non-deployed QMA 193 filter was also analyzed by ramped oxidation. 194 All RPO analyses were conducted following protocol described in Rosenheim et 195 al. (2008) and Hemingway et al. (2017). All filter subsamples were inserted into a quartz 196 reactor inside one of two furnaces (referred to as ovens A and B) programmed to heat at

197 5°C/minute from room temperature to 1000°C (Table 2). During the temperature ramp,

roughly 35 mL/min of ~92% Ultra-High Purity helium and ~8% oxygen gas flowed

through the quartz insert from the programmed furnace, carrying oxidation products to an

200 800°C furnace equipped with a copper, platinum and nickel catalyst that fully converts

201 the products into CO₂ gas. Consistent flow rates, He:O₂ proportions in the gas source,

202 furnace catalyst and insulation, and plumbing across RPO analyses minimized

203 instrumental variation within the data set. Downstream of the catalyst, the CO₂ and

204 carrier gas passed through a Sable Systems[©] CA-10 infrared gas analyzer, which

205 measured the outgoing CO_2 concentration, which was calibrated at 0 ppm and >400 ppm.

206 After the gas analyzer, the gas mixture flowed into a cryogenic Pyrex coil that was

207 coupled to a vacuum line, where the CO₂ gas was cryogenically trapped and released into

a vacuum line within user-specified temperature intervals. The gas was quantified
barometrically and converted to mass to calculate a carbon yield for the entire analysis.

- 211 2.4 Compound-specific measurements
- 212

Compound-specific abundances offer the highest resolution comparisons of
organic matter composition across drying treatments in this report. We limited analysis to
the abundances of fatty acids, sterols and alcohols, which are commonly applied to study
marine POC dynamics in the water column (e.g., Wakeham and Canuel 1988; Cavagna et
al. 2013).

Roughly 5% of the 125 cm² sample QMA filter active area and ~7-15% of the 218 219 deployment blank filter area were extracted in 15-20 mL of 9:1 dichloromethane: 220 methanol (DCM: MeOH) at 100°C for 20 minutes using a CEMS Corporation Microwave 221 Accelerated Reaction System. For each drying treatment, the extracts represented the 222 combined, equal sub-fractions of the three sample filters or the two blank filters collected 223 (Fig. 1). After extraction, the total lipid extract was saponified in 0.5 M potassium 224 hydroxide in MeOH for two hours at 70°C. Following saponification, liquid-liquid 225 extractions separated the basic phase from the acidic phase, each of which was eluted 226 through aminopropyl silica gel columns to separate compounds into five compound 227 classes based on their polarity. Fatty acids of both acid and base phases were recombined 228 and methylated for 12 hours at 70°C, and purified through another silica gel column prior 229 to analysis on a flame ionization detector coupled to a *Hewlett Packard 5890 Series II* 230 Gas Chromatograph (GC-FID). Sterols and alcohols of acid and base fractions were

acetylated separately in acetic anhydride and pyridine (1:1) for 2 hours at 70°C prior to
analysis on the GC-FID.

233 All sample and deployment blank analyses were accompanied by quantification of 234 synthetic standards that contained a suite of fatty acids, sterols and alcohols with known 235 concentrations and retention times. Retention times were used to identify specific 236 compounds in the samples and deployment blanks. Other compound identities, 237 particularly those of the unsaturated and branched FAMES, and gorgosterol, were 238 separately validated using an Agilent 7890A gas chromatograph interfaced with a 239 *Markes/Almsco BenchTOF-Select* time of flight mass spectrometer. To evaluate sample 240 drying effects on compound abundances, we directly compared peak areas across samples 241 and blanks after normalizing the areas to the fraction of QMA filter active area extracted. 242 Normalized peak abundances errors were assumed to be $\sim 10\%$ based on normalized peak 243 abundances from replicate analyses of the fatty acid standard. Individual peak abundance 244 errors were propagated in all subsequent analyses discussed in Section 3.3. 245 246 3 Assessment 247 248 The following compares the bulk, compound-specific and thermal composition of

249 marine POC collected from the coastal waters of Woods Hole, MA and treated by oven-

250 drying, air-drying or freeze-drying. To interpret thermal stability, we assume that

biomolecules in an organic matrix span a range of activation energies of decomposition

252 (Cramer 2004; Rosenheim et al. 2008; Rosenheim and Galy 2012; Rosenheim et al.

253 2013), which would drive differences in the oxidation temperature of compounds and

254	fragments of compounds during ramped oxidation. Our interpretations of bulk carbon								
255	composition and thermal stability rely on the assumption that PIC concentrations in								
256	particulate matter are negligible, and that the carbon quantities reported correspond								
257	predominantly to organic carbon in the samples. The consistently depleted isotope								
258	composition of the bulk carbon corroborates this assumption (Table 1). This is further								
259	reflected by the lack of any significant calcifying organisms observed on SEM images of								
260	particle sample QMA filters (Fig. 1c).								
261									
262	3.1 Invariant bulk composition across drying treatments								
263									
264	All carbon and nitrogen quantities measured on three sample QMA filters (one								
265	per drying treatment) and one deployment blank filter (freeze-dried only) were								
266	normalized to the total active area of the filter (125 cm ²) and volume filtered, yielding								
267	total C and N filter loadings and concentrations, respectively (Table 1). Particle sample C								
268	loadings ranged from 10.5 - 13.2 mg C/QMA, corresponding to 11.9 - 16.7 μM C. Total								
269	N concentrations ranged from 1.8 - 2.5 μ M. Because the bulk measurements were								
270	conducted on individual filter samples (Section 2.2), variability between McLane pump								
271	deployments and environmental heterogeneity of the particle pool drive the range in the								
272	total carbon and nitrogen loadings on the QMA filters, in addition to any effects imposed								
273	by the different drying treatments.								
274	More importantly, despite these differences in the carbon loading among the								
275	particle sample filters, relatively invariant bulk δ^{13} C, δ^{15} N and C/N values across filters								

from different treatments and deployments imply that air-drying and oven-drying do not

277	appreciably affect bulk POC composition relative to freeze-drying (Table 1). Bulk δ^{13} C								
278	values of sample carbon ranged from -23.9 ‰ to -23.6 ‰, δ^{15} N values ranged from 7.9‰								
279	to 8.3 ‰, and C/N values ranged from 6.5 - 6.8. The standard deviation of the three δ^{13} C								
280	(±0.1 ‰), δ^{15} N (±0.2 ‰) and C/N (±0.2 µmol/µmol) values measured across sample								
281	filters are comparable to or smaller than the analytical precision of each measurement.								
282	The total carbon and nitrogen loadings on the freeze-dried deployment blank filter								
283	sub-sample were 10-20 times lower than the bulk content on the three particle sample								
284	filters analyzed (Table 1). The δ^{13} C of the blank carbon was -25.6 ‰, ~2 ‰ more								
285	depleted than the δ^{13} C values of the particle samples. At the same time, the scanning								
286	electron images of the deployment blank filters showed no evidence of particles on the								
287	filter fibers (Fig. 1b), consistent with the assumption that the small quantity of carbon on								
288	the deployment blank filters is likely sorbed dissolved organic carbon.								
289									
290	3.2 Thermal stability not affected by drying treatments								
291									
292	All $<51 \ \mu m$ combined particle samples and deployment blanks, oven-dried, air-								
293	dried and freeze-dried, were analyzed by ramped oxidation between 100°C and 1000°C,								
294	with most sample and blank carbon oxidizing between 150°C and 600°C (Fig. 2). In								
295	general, the total CO ₂ gas evolved during ramped oxidation of each combined particle								
296	sample and blank, barometrically quantified in the vacuum line and normalized to the 125								
297	cm ² active area of a QMA filter, served as an estimate of the total sample carbon								
298	integrated across all different filter deployments treated by the same drying process								

(Table 2). The exception was the second freeze-dried sample run, for which no CO₂
pressure was quantified and converted to a total carbon yield.

301 The deployment blank RPO analyses provide further evidence for organic carbon 302 sorption onto QMA filters. Thermograms of combined deployment blanks yielded 0.5 -303 1.1 mg carbon/filter across drying treatments (Table 2, Fig. 2d), 3-10 times greater than 304 the carbon yielded from a pre-combusted unused blank QMA (Fig. 2e), and several 305 orders of magnitude higher than the estimated blank contribution for the NOSAMS RPO 306 system (Hemingway et al. 2017). Carbon yields from the deployment blank analyses 307 were not significantly different across drying treatments, considering that replicate 308 ramped oxidation analyses of the same size sub-sample can vary by as much as 0.07 mg 309 carbon, which exceeds differences among the relatively small carbon quantities yielded 310 during the three deployment blank analyses, pre-normalization (Table 2). Because the 311 amount of carbon on the deployment blank filters represents <10% of the total carbon 312 yield from the combined particle sample RPO analyses, and did not vary significantly 313 among drying treatments, it was not necessary to apply a blank subtraction to the particle 314 sample thermograms in this study.

Compared to the bulk analyses, the RPO carbon yields from the combined particle sample analyses represent the average of three deployed filter samples or two deployed blank replicates, and thus remove the influence of environmental heterogeneity associated with different pump deployments and uneven particle loading. Differences in filter area-normalized carbon yields across drying treatments are comparable to the differences among replicate RPO analyses of the same sample, indicating that oven-

321 drying and air-drying do not influence the total carbon loaded on the filters relative to322 freeze-drying (Table 2; Fig. 2a-c).

323 Similarly, the differences in thermogram shape of combined particle samples 324 across drying treatments are comparable to and do not exceed the differences among 325 triplicate thermograms of samples with the same drying treatment (Fig. 2a-c), suggesting 326 that air-drying and oven-drying do not significantly change the thermal stability of the 327 POC relative to freeze-drying. Use of different programmable ovens could account for 328 some of the smaller differences among the thermogram shapes across triplicate ramped 329 oxidation analyses of the same sample, particularly for the shifts along the temperature 330 axis. Thermograms of replicate sample analyses using the same oven, Oven A (Fig. 2f), 331 line up better in temperature space than repeated analyses of the same sample using two 332 different ovens, Ovens A and B (Figs. 2a-c). In the future, periodically running standard 333 compounds with well-defined peaks, such as sodium bicarbonate, in the different sample 334 ovens would help normalize these temperature shifts in thermograms generated by 335 different ovens (Rosenheim et al. 2008).

336

337 **3.3** Drying temperature alters lipid composition

338

Abundances of fatty acids, sterols and alcohols in combined particle samples and deployment blanks were quantified across a range of molecular sizes. Peaks from each particle sample and deployment blank chromatogram represented an average of the different replicate filters deployed (Section 2.4). The areas of select compound peaks were normalized to the area of an entire QMA filter (Table S1). Next, for each drying

344	treatment, filter-normalized peak areas across the deployment blank chromatograms were
345	subtracted from matching filter-normalized peak areas in the sample chromatograms.
346	Finally, we compared ratios of each normalized and blank-corrected peak area in the
347	oven-dried ("O") and air-dried ("A") combined particle samples to corresponding
348	normalized and blank-corrected peak areas in the freeze-dried sample ("F"). For the rest
349	of the discussion, these ratios are $R_{\text{O/F}}$ and $R_{\text{A/F}},$ respectively. Ratios less than one
350	indicate depression of compound abundances in oven-dried or air-dried samples relative
351	to compound abundances in freeze-dried samples.
352	Unlike the bulk and ramped oxidation data, the lipid analyses imply that oven-
353	and air-drying affected compounds associated with the deployment blank filters
354	differently than they affected the same compounds in the particulate carbon pool. Indeed,
355	for most compounds, $R_{O/F}$ and $R_{A/F}$ ratios in deployment blanks deviated from
356	corresponding ratios in the combined particle samples (Figs. 3c, 4c, 5c; Table S1). For
357	this reason, we applied a blank correction to particle sample abundances to better control
358	for differences between drying effects on the sorbed lipid pool and drying effects on
359	particulate lipid pool. The processes decoupling the sorbed lipid pool from the
360	particulate lipid pool, unlikely to result from methodological errors in sample preparation
361	or contamination of the deployment blank filters, are beyond the scope of this study.
362	Fatty acid analysis spanned a range of molecular sizes, including saturated
363	straight-chain fatty acids (12 to 24 carbon chain lengths, or C ₁₂ -C ₂₄), straight-chain
364	unsaturated fatty acids (C_{14} - C_{22}), and saturated branched fatty acids produced by bacteria
365	(C ₁₅ , C ₁₆ , C ₁₇). Calculated $R_{O/F}$ and $R_{A/F}$ values for fatty acids were consistently below 1
366	(Figs. 3-5), indicating that these compounds are less abundant in the oven-dried and air-

367	dried samples relative to the freeze-dried samples. The $R_{O/F}$ values were generally lower
368	than the $R_{A/F}$ values for the same compounds, especially among the straight-chain and
369	branched saturated fatty acids (Figs. 3c, 5a-b). Calculated $R_{O/F}$ and $R_{A/F}$ values among
370	saturated straight-chain fatty acids correlate positively with the carbon chain length of the
371	compound (p <0.05) (Fig. 3a, b). The correlation between R _{A/F} and chain length is
372	stronger (Fig. 3b) than the correlation between $R_{O/F}$ and chain length (Fig. 3a), which is
373	reflected in a steeper slope of the best linear fit and a higher R^2 value. Relatedly, $R_{A/F}$ and
374	$R_{O/F}$ values are similar at lower molecular weights and diverge at higher molecular
375	weights, with $R_{A/F}$ values consistently higher (closer to a value of 1) than $R_{O/F}$ values.
376	The greater overall depression in fatty acid abundances as a result of oven-drying
377	suggests that physical mechanisms like volatilization, which depends upon chain length
378	and molar mass, play an important role in the effects of drying treatment on straight-
379	chain saturated fatty acid abundances (Meylan and Howard 1991; Lide 1996; Daubert
380	1997; Schwarzenbach et al. 2003). Thus, drying temperatures can influence the
381	distribution of fatty acids in a sample by driving differential loss of compounds with
382	varying molecular weights and volatility.

There is no clear relationship between chain length and R_{O/F} and R_{A/F} values for unsaturated straight-chain and saturated branched fatty acids quantified across samples, as they are relatively invariant and below 1 across chain lengths (Figs. 4, 5). Among the straight-chain unsaturated fatty acids, ratios tend to decrease with increasing numbers of non-single bonds, indicating that compounds with higher degrees of unsaturation are less physically stable and therefore more sensitive to the effects of air-drying and oven-drying (Lide 1996; Schwarzenbach et al. 2003).

390	Specific alcohols and sterols were identified using a suite of seven standard
391	compounds with different molar masses, carbon chain lengths and environmental origins
392	(Table 3). Calculated $R_{O/F}$ values across blank-corrected samples were lowest (0.57) for
393	gorgosterol, as high as 1.3 for 1-hexadecanol, and averaged at 0.97 ± 0.22 across all
394	compounds (Table 3, Fig. 6a). Calculated RA/F values were 0.86 \pm 0.09 (mean \pm 1 S.D.),
395	lowest for gorgosterol (0.68), and highest for 5α -cholestan- 3β -ol (0.97) (Fig. 6b).
396	Compared to fatty acid abundances, peak areas of seven sterols and alcohols quantified
397	across the combined particle samples shifted less as a result of different drying
398	treatments. $R_{O/F}$ and $R_{A/F}$ values for all compounds except gorgosterol ranged from 0.83
399	to 1.3 (Fig. 6a-b). These diminished effects may, in part, result from lower vapor
400	pressures associated with sterol compounds relative to fatty acids (Meylan and Howard
401	1991). Only abundances of gorgosterol in the oven-dried and air-dried samples were
402	anomalously depressed (<0.7), while the abundance of 1-hexadecanol in the oven-dried
403	sample was anomalously elevated (>1.25).
404	The anomalously high 1-hexadecanol ratio in the oven-dried combined particle
405	sample may be an artifact of uneven blank subtractions across drying treatments, a
406	proportionally greater subtraction in the freeze-dried sample than in the oven-dried
407	sample (Table S1). In general, blank corrections for other compounds that are similarly
408	abundant in the deployment blank relative to the particle samples could bias the results
409	presented here. Fortunately, lipid abundance comparisons without a blank subtraction do
410	not greatly differ from and in some cases strengthen interpretations based on an initial
411	blank subtraction (Fig. 6). For example, $R_{O/F}$ and $R_{A/F}$ values for sterols/alcohols
412	including 1-hexadecanol prior to blank correction are much closer to 1.0 and much less

variable across molecular weights (Fig. 6d-e), strengthening the argument that different
drying treatments affect alcohol and sterol abundances less than they affect fatty acid
abundances.

416 Overall, the fact that oven-drying and air-drying shift specific lipid abundances 417 according to their physical properties (e.g., molecular weight and structure), while bulk 418 characteristics and thermal stability remain unaffected across treatments, supports the 419 argument that sample treatment effects are abiotic rather than mediated by biological 420 activity. These drying processes may impose enough heat or airflow to physically remove 421 some of the light-weight, more volatile molecules. Further, we argue that effects from 422 two other processes that shift the abundance distributions of lipids in field samples, 423 bacterial degradation (Wakeham and Volkman 1991; Ohman 1996; Wakeham et al. 424 2002) and abiotic oxidation (Wang et al. 2017), are unlikely here. The relatively 425 depressed branched fatty acid abundances, which derive from bacteria, in the oven-dried 426 and air-dried samples (Fig. 5) indicate that the drying period (<24 hours) for the oven-427 dried and air-dried samples was likely short enough to limit any significant alteration by 428 heterotrophic activity. Further, Wang et al. (2017) observed that oxidative breakdown of 429 higher chain-length *n*-alkanes at temperatures as low as 60° C generated lower chain-430 length *n*-alkane by-products, shifting the lipid distribution in soils collected from the 431 field. Our lipid data set does not support this process, exhibiting the reverse relationship 432 between chain length and straight-chain saturated fatty acid abundances and no 433 relationship between chain length and straight-chain unsaturated/branched saturated fatty 434 acid abundances.

435

436 4 Discussion

437

438 The bulk and ramped oxidation analyses of particle samples suggest that 439 preservation of marine POC from the field by oven and air-drying does not compromise 440 the bulk isotope composition, bulk C/N and thermal stability of the sample compared to 441 storage at -80°C and freeze-drying. Thus, samples dried quickly, i.e., in less than 24 442 hours, at temperatures between 25°C and 56°C, can still be characterized by these 443 metrics. By contrast, filter-normalized and blank-corrected abundances of extracted lipids 444 across POC samples show that oven-drying and air-drying do shift lipid abundances, and 445 that the magnitude of this shift depends on compound structure and molecular size. These 446 results generally agree with prior research demonstrating that warmer sample storage 447 temperatures differentially compromise distinct lipid classes (Ohman 1996). But, this 448 study expands our understanding of temperature effects on POC sample preservation by 449 directly investigating the impact of different drying temperatures rather than different 450 storage temperatures. Unlike earlier studies, this assessment shows that the differences in 451 lipid composition among drying treatments over shorter time scales of less than one day 452 derive from abiotic processes like compound volatilization, rather than biotic processes 453 like enzymatic or heterotrophic degradation, which may be more important when 454 considering wet storage of samples above -80°C. 455 Typically, lipids make up at most 25% of total biomass in living microalgae 456 (Finkel et al. 2016), which are the primary producers of POC in the shallow, coastal 457 waters of Woods Hole in June. In this study, we have monitored only a small fraction of

the marine lipid pool (Wakeham and Volkman 1991), and have found that some

459 compounds are as much as ~90% depleted in non-freeze-dried samples relative to freeze-460 dried samples. More than 50% of several of these compounds, however, are still present 461 in oven-dried and air-dried sample POC relative to freeze-dried POC. Taken together, 462 such shifts in compound-specific abundances as a result of different drying treatments 463 must be small relative to the bulk organic matter composition, as bulk δ^{13} C, δ^{15} N, C/N 464 and thermal stability do not vary across drying treatments.

465

466

5 Comments and recommendations

467

468 The results of this sample treatment comparison highlight several characteristics 469 of POC composition (bulk C/N, δ^{13} C, δ^{15} N, and thermal stability) that are not 470 compromised by oven-drying at 56°C or air-drying at high flow and room temperature 471 when the particle samples are dried within 24 hours following collection. As this 472 approach to sample treatment is common in the field (e.g., Buesseler et al. 2005; Bishop 473 and Wood 2008; Bishop et al. 2012; Lam et al. 2015; Rosengard et al. 2015), these 474 findings imply that a vast repository of marine particle samples collected at sea remain 475 useful tracers of POC composition and cycling in the water column, even if originally 476 unintended for such research questions at the time of collection. These particle samples 477 collected and processed by such drying treatments may still be used for bulk organic 478 analysis and ramped pyrolysis/oxidation, the latter of which will expand the empirical 479 applications of this method to understanding marine POC dynamics in the water column. 480 At the same time, these samples are not appropriate for lipid analysis. Oven-481 drying and air-drying do shift the lipid distribution and potentially the distribution of

482 other compound classes in organic matter. The magnitude of these effects on compound 483 class abundances are overwhelmed by a greater proportion of unaltered material in the 484 bulk carbon pool. The data here do not shed light on how the compound-specific stable 485 carbon isotope composition of these compound classes may be altered by oven-drying or 486 air-drying, i.e., whether there is a fractionation effect associated with molecular 487 volatilization of compounds off of QMA filters during the drying process (Wang et al. 488 2017). Furthermore, this report does not suggest that slower flow air-drying at room 489 temperature, rather than higher flow air, would similarly conserve the bulk and thermal 490 stability properties of POC. These uncertainties would be appropriate for future studies 491 with a comparably controlled approach. 492

References

496	Bishop, J. K., P. J. Lam, and T. J. Wood. 2012. Getting good particles: Accurate
497	sampling of particles by large volume in-situ filtration. Limnol. Oceanogr.
498	Methods 10: 681-710.
499	Bishop, J. K. B., and T. J. Wood. 2008. Particulate matter chemistry and dynamics in the
500	twilight zone at VERTIGO ALOHA and K2 sites. Deep Sea Research Part I:
501	Oceanographic Research Papers 55: 1684-1706.
502	Buesseler, K. O., J. E. Andrews, S. M. Pike, M. A. Charette, L. E. Goldson, M. A.
503	Brzezinski, and V. P. Lance. 2005. Particle export during the southern ocean iron
504	experiment (SOFeX). Limnology and Oceanography 50: 311-327.
505	Burd, A. B., S. Frey, A. Cabre, and others. 2016. Terrestrial and marine perspectives on
506	modeling organic matter degradation pathways. Global Change Biology 22: 121-
507	136.
508	Burdige, D. J. 2007. Preservation of Organic Matter in Marine Sediments: Controls,
509	Mechanisms, and an Imbalance in Sediment Organic Carbon Budgets? Chemical
510	Reviews 107: 467-485.
511	Cavagna, AJ., F. Dehairs, S. Bouillon, V. Woule-Ebongué, F. Planchon, B. Delille, I.
512	Bouloubassi. 2013. Water column distribution and carbon isotopic signal of
513	cholesterol, brassicasterol and particulate organic carbon in the Atlantic sector of
514	the Southern Ocean. Biogeosciences 10: 2787-2801.
515	Cramer, B. 2004. Methane generation from coal during open system pyrolysis
516	investigated by isotope specific, Gaussian distributed reaction kinetics. Organic
517	Geochemistry 35: 379-392.
518	Daubert, T. 1997. Physical and thermodynamic properties of pure chemicals, National
519	Standard Reference Data System. American Institute of Chemical Engineering.
520	Finkel, Z. V., M. J. Follows, J. D. Liefer, C. M. Brown, I. Benner, and A. J. Irwin. 2016.
521	Phylogenetic Diversity in the Macromolecular Composition of Microalgae. PloS
522	one 11 .
523	Francois, R., S. Honjo, R. Krishfield, and S. Manganini. 2002. Factors controlling the
524	flux of organic carbon to the bathypelagic zone of the ocean. Global
525	Biogeochemical Cycles 16: doi:10.1029/2001GB001722.
526	Grimalt, J. O., E. Torras, and J. Albaigés. 1988. Bacterial reworking of sedimentary lipids
527	during sample storage. Organic Geochemistry 13: 741-746.
528	Hemingway, J. D., V. V. Galy, A. R. Gagnon, K. E. Grant, S. Z. Rosengard, G. Soulet, P.
529	K. Zigah, and A. P. McNichol. 2017. Assessing the Blank Carbon Contribution,
530	Isotope Mass Balance, and Kinetic Isotope Fractionation of the Ramped
531	Pyrolysis/Oxidation Instrument at NOSAMS. Radiocarbon 59: 179-193.
532	Kaehler, S., and E. Pakhomov. 2001. Effects of storage and preservation on the d13C and
533	d15N signatures of selected marine organisms. Marine Ecology Progress Series
534	219: 299-304.
535	Lam, P. J., D. C. Ohnemus, and M. E. Auro. 2015. Size-fractionated major particle
536	composition and concentrations from the US GEOTRACES north Atlantic zonal

537	transect. Deep Sea Research Part II: Topical Studies in Oceanography 116: 303-									
538	320.									
539	Lide, D. R. 1996. Handbook of Chemistry and Physics: CRC Handbook. CRC Press.									
540	Meylan, W. M., and P. H. Howard. 1991. Bond contribution method for estimating									
541	Henry's law constants. Environmental toxicology and chemistry 10: 1283-1293.									
542	Ohman, M. 1996. Freezing and storage of copepod samples for the analysis of lipids.									
543	Marine ecology progress series 130: 295-298.									
544	Repeta, D. J. 2014. Chemical characterization and cycling of dissolved organic matter, p.									
545	21–63. In D. A. Hansell and C. A. Carlson [eds.], Biogeochemistry of marine									
546	dissolved organic matter. Elsevier.									
547	Rosengard, S. Z., P. J. Lam, W. M. Balch, M. E. Auro, S. Pike, D. Drapeau, and B.									
548	Bowler, 2015. Carbon export and transfer to depth across the Southern Ocean									
549	Great Calcite Belt, Biogeosciences 12 : 3953-3971.									
550	Rosenheim, B. E., M. B. Day, E. Domack, H. Schrum, A. Benthien, and J. M. Haves.									
551	2008. Antarctic sediment chronology by programmed-temperature pyrolysis:									
552	Methodology and data treatment, Geochem, Geophys, Geosyst, 9: 004005.									
553	doi:10.1029/2007GC001816									
554	Rosenheim, B. E., and V. Galy, 2012. Direct measurement of riverine particulate organic									
555	carbon age structure. Geophys. Res. Lett. 39 : L19703.									
556	doi:10.1029/2012GL052883									
557	Rosenheim, B. E., K. M. Roe, B. J. Roberts, A. S. Kolker, M. A. Allison, and K. H.									
558	Johannesson, 2013, River discharge influences on particulate organic carbon age									
559	structure in the Mississippi/Atchafalava River System. Global Biogeochem.									
560	Cycles 27: $154-166$. doi:10.1002/gbc.20018									
561	Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 2003. Environmental									
562	organic chemistry. John Wiley & Sons.									
563	Subt. C., K. A. Fangman, J. S. Wellner, and B. E. Rosenheim. 2016. Sediment									
564	chronology in Antarctic deglacial sediments: Reconciling organic carbon 14C									
565	ages to carbonate 14C ages using Ramped PyrOx. The Holocene 26 : 265-273.									
566	Trull, T., and L. Armand, 2001. Insights into Southern Ocean carbon export from the									
567	δ^{13} C of particles and dissolved inorganic carbon during the SOIREE iron release									
568	experiment. Deep Sea Research Part II: Topical Studies in Oceanography 48:									
569	2655-2680.									
570	Wagner, B. A., G. R. Buettner, and C. P. Burns, 1994. Free Radical-Mediated Lipid									
571	Peroxidation in Cells: Oxidizability Is a Function of Cell Lipid bis-Allylic									
572	Hydrogen Content. Biochemistry 33 : 4449-4453.									
573	Wakeham, S. G., and E. A. Canuel, 1988. Organic geochemistry of particulate matter in									
574	the eastern tropical North Pacific Ocean: Implications for particle dynamics.									
575	Journal of Marine Research 46: 183-213.									
576	Wakeham, S. G., M. L. Peterson, J. I. Hedges, and C. Lee, 2002. Lipid biomarker fluxes									
577	in the Arabian Sea, with a comparison to the equatorial Pacific Ocean, Deep-Sea									
578	Research Part Ii-Topical Studies in Oceanography 49: 2265-2301.									
579	Wakeham, S. G., and J. K. Volkman. 1991. Sampling and analysis of lipids in marine									
580	particulate matter, p. 171–179. In D. C. Hurd and D. W. Spencer [eds.]. Marine									
581	particles: Analysis and characterization. American Geophysical Union.									
582	Wang, C., Y. Eley, A. Oakes, and M. Hren. 2017. Hydrogen isotope and molecular									

583alteration of n-alkanes during heating in open and closed systems. Org. Geochem.584112: 47–58. doi:10.1016/j.orggeochem.2017.07.006

Table 1. The bulk composition of $<51 \,\mu$ m particulate organic matter loaded onto three sample and two blank $<51 \,\mu$ m QMA filters (active area ~ 125 cm²) that were either dried in an oven, laminar flow hood or freeze-dried. Filters were divided into thirds prior to drying so that each treatment could be applied to each blank or sample filter. Sub-samples from individual thirds of different McLane pump deployments were analyzed for bulk composition. Particle sample values here were not blank-corrected.

Sample	Deployment	Volume (L)	Treatment	C/filter*	[C]*	[N]*	C/N	$\delta^{13}C$	δ^{15} N
		L		mg/filter	μM	μM	µmol/µmol	‰	‰
POC1	1	95.4	oven-dried						
POC1	1	95.4	air-dried	14	12.4	1.9	6.5	-23.6	7.9
POC1	1	95.4	freeze-dried						
POC2	1	93.8	oven-dried						
POC2	1	93.8	air-dried						
POC2	1	93.8	freeze-dried	13	11.9	1.8	6.8	-23.9	8.3
POC3	2	40.5	oven-dried	8	16.7	2.5	6.8	-23.8	8.2
POC3	2	40.5	air-dried						
POC3	2	40.5	freeze-dried						
db1	1	0	oven-dried						
db1	1	0	air-dried						
db1	1	0	freeze-dried	0.7	N/A	N/A	7.7	-25.6	BDL
db2	2	0	oven-dried						
db2	2	0	air-dried						
db2	2	0	freeze-dried						

BDL= below detection limit.

"db"= deployment blank.

*quantities are normalized to active area of the QMA filter, 125 cm²

Table 2. Carbon released per analysis and filter-normalized carbon yields calculated from

ramped oxidation of sample and deployment blank filters. No CO₂ quantities were

596 measured and converted to carbon mass during the second freeze-dried sample analysis.

- 597 Carbon values reported here were not blank-corrected.
- 598

Sample Type	Treatment	Analysis #	Oven	mg C/analysis	Fraction of OMA analyzed	mg C/filter (125 cm ²)	
POC1+2+3	Oven-dried	Ι	А	0.697	5%	12.8	
POC1+2+3	Oven-dried	II	А	0.337	3%	12.4	Mean ± S.D.
POC1+2+3	Oven-dried	III	В	0.346	3%	12.7	12.6 ± 0.2
POC1+2+3	Air-dried	Ι	А	0.678	5%	12.5	
POC1+2+3	Air-dried	II	В	0.352	3%	12.9	Mean ± S.D.
POC1+2+3	Air-dried	III	В	0.286	3%	10.5	12.0 ± 1.3
POC1+2+3	Freeze-dried	Ι	А	0.721	5%	13.2	
POC1+2+3	Freeze-dried	II	В	no data	3%	no data	
POC1+2+3	Freeze-dried	III	В	0.314	3%	11.5	
db1+2	Oven-dried	Ι	А	0.050	9%	0.5	
db1+2	Air-dried	Ι	А	0.042	9%	0.5	Mean ± S.D.
db1+2	Freeze-dried	Ι	А	0.104	9%	1.1	0.7 ± 0.4

599

"db"=deployment blank

600 Table 3. Constituents of the alcohol/sterol standards and their properties.

Standard compound	Class	Molar Mass	# Carbon	Known sources
		g/mol	#	
Phytol	Alcohol	196.539	20	Chlorophyll
1-hexadecanol	Alcohol	242.447	16	Ubiquitous
Cholesterol	Sterol	386.664	27	Ubiquitous
5α-cholestan-3β-ol	Sterol	388.68	27	Cholesterol derivative in biological matter
Brassicasterol	Sterol	398.675	28	Unicellular algae, some terrestrial plants
Stigmasterol	Sterol	412.702	29	Terrestrial vegetation
Gorgosterol	Sterol	426.729	30	Marine algae

Figure 2. (a-c) Thermograms of combined particle sample filters generated by ramped
oxidation, with replicate analyses plotted as solid colored lines (either blue, black or
orange) when using furnace A vs. black dashed lines when using oven B. (d)
Thermograms of deployment blanks, analyzed once per drying treatment in oven A. (e)
Thermogram of a pre-combusted non-deployed QMA filter, also analyzed using oven A.
(f) All sample particle thermograms analyzed in oven A. The legend in (d) applies to (f).

647 Figure 5. (a-b) Ratios of filter-normalized and blank-corrected peak areas of three 648 branched saturated fatty acids in (a) oven-dried particle samples relative to freeze-dried 649 samples $(R_{O/F})$ and in (b) air-dried samples relative to freeze-dried samples $(R_{A/F})$. Errors 650 for each ratio were calculated by propagating errors for filter-normalized peak 651 abundances (~10%). The two clusters of data points at chain lengths 15 and 17 represent 652 isomers of the same size molecule. The pair of 15 chain length compounds corresponds 653 to the iso- and anteiso-methyl-branched fatty acids from left to right, respectively. The 654 leftmost data point of the 17 chain length pair corresponds to the iso-methyl-branched 655 fatty acid, while the rightmost data point corresponds to the heterocyclic isomer cis-9,10-656 methylenehexadecanoate. (c) $R_{O/F}$ and $R_{A/F}$ plotted on the same axes alongside ratios of 657 oven-dried (triangle) or air-dried (star) blank compound abundances to freeze-dried blank 658 compound abundances. The relative errors of these ratios in the deployment blanks are 659 <1% and are thus not shown. (d) Absolute normalized and blank-corrected peak areas in 660 the freeze-dried samples.

662 Figure 6. (a-b) Ratios of filter-normalized and blank-corrected peak areas of seven 663 alcohols/sterols in (a) oven-dried particle samples relative to freeze-dried samples (R_{O/F}) 664 and in (b) air-dried samples relative to freeze-dried samples (R_{A/F}). Errors for each ratio 665 were calculated by propagating errors for filter-normalized peak abundances (~10%). The 666 x-axis is molar weight, which matches the compounds listed in Table 3. (c) Absolute 667 normalized blank-corrected peak areas of alcohols/sterols in the freeze-dried sample. 668 Quantities in panels d-f are analogous to quantities in a-c, but are not blank-corrected. 669 Relative errors for ratios in d-e, not plotted, are <1%. 670 671

672 Acknowledgements

674	Ulrich Loic Kakou and Paul Lerner participated in the field collection of samples;
675	Al Gagnon, Mary Lardie, Jordon Hemingway, Kyrstin Fornace and Guillaume Soulet
676	helped with the bulk, isotope and RPO analyses. Horst Marschall assisted in use of the
677	scanning electron microscope. Elizabeth Canuel provided insightful comments and
678	advice in experimental design of this study. This research was funded by the National
679	Science Foundation (NSF) Graduate Research Fellowship program and the NSF
680	Cooperative Agreement for the Operation of a National Ocean Sciences Accelerator
681	Mass Spectrometry Facility (OCE-0753487).
682	

Table S1. Abundances of select fatty acids, alcohols and sterols quantified in freezedried, air-dried and oven-dried particle samples (POC1+2+3) and deployment blanks (db1+2). The abundances are represented as peak areas normalized to the total active area of a QMA filter, 125 cm², but are not blank-corrected. "Fraction from blank" is the abundance of each compound in the freeze-dried, oven-dried or air-dried sample deployment blank filters relative to the abundance observed in the freeze-dried, ovendried or air-dried particle sample filters, respectively. The R_{O/F} and R_{A/F} values are ratios of either oven-dried or air-dried compound peak areas to freeze-dried compound peak areas in the blank filters or in the particle samples prior to blank subtraction. Note that these ratios differ in samples and blanks, which justifies the choice to subtract blank contributions from sample peak abundances before calculating the ratios presented in Section 3.3. The straight-chain fatty acids are named as C followed by chain length: number of double bonds. The branched fatty acids are named with a "C" followed by just the chain length.

ple or blank	tment	punoc	alized Area	action blank	$\mathbf{r} \; \mathbf{R}_{\mathrm{A/F}}$
Sam	Trea	ComI	Norm Peak	Fra	R _{O/F} 0
				%	
POC1+2+3	Freeze	C12:0	230,730,000	3%	
POC1+2+3	Freeze	C13:0	23,175,000	10%	
POC1+2+3	Freeze	C14:1	15,356,000	10%	
POC1+2+3	Freeze	C14:0	4,934,400,000	1%	
POC1+2+3	Freeze	C15, branched ^a	172,350,000	2%	
POC1+2+3	Freeze	C15, branched ^b	104,040,000	4%	
POC1+2+3	Freeze	C15:0	265,890,000	10%	
POC1+2+3	Freeze	C16, branched	151,780,000	2%	
POC1+2+3	Freeze	C16:1	3,254,100,000	0.2%	
POC1+2+3	Freeze	C16:0	16,057,000,000	11%	
POC1+2+3	Freeze	C17, branched ^a	38,213,000	22%	
POC1+2+3	Freeze	C17:1	87,019,000	14%	

POC1+2+3	Freeze	C17, branched ^c	46,106,000	16%	
POC1+2+3	Freeze	C17:0	222,260,000	20%	
POC1+2+3	Freeze	C18:3	674,290,000	0%	
POC1+2+3	Freeze	C18:2 ^d	1,729,500,000	0.5%	
POC1+2+3	Freeze	C18:2 ^e	2,137,900,000	1%	
POC1+2+3	Freeze	C18:1 ^f	2,524,800,000	0%	
POC1+2+3	Freeze	C18:1 ^g	829,260,000	1%	
POC1+2+3	Freeze	C18:0	5,869,600,000	28%	
POC1+2+3	Freeze	C20:4	1,408,700,000	0%	
POC1+2+3	Freeze	C20:3	135,710,000	0%	
POC1+2+3	Freeze	C20:2	49,256,000	7%	
POC1+2+3	Freeze	C20:1	81,094,000	2%	
POC1+2+3	Freeze	C20:0	91,031,000	13%	
POC1+2+3	Freeze	C22:1	22,969,000	23%	
POC1+2+3	Freeze	C22:0	52,069,000	3%	
POC1+2+3	Freeze	C24:0	49,969,000	4%	
POC1+2+3	Freeze	1-hexadecanol	10,306,000	51%	
POC1+2+3	Freeze	Phytol	385,380,000	0.4%	
POC1+2+3	Freeze	Cholesterol	104,050,000	1%	
POC1+2+3	Freeze	5α-cholestan-3-β-ol	22,578,000	0%	
POC1+2+3	Freeze	Brassicasterol	100,870,000	0%	
POC1+2+3	Freeze	Stigmasterol	33,172,000	0%	
POC1+2+3	Freeze	Gorgosterol	42,698,000	0%	
POC1+2+3	Oven	C12:0	45,326,000	58%	0.20
POC1+2+3	Oven	C13:0	11,176,000	29%	0.48
POC1+2+3	Oven	C14:1	4,112,900	0%	0.27
POC1+2+3	Oven	C14:0	1,824,200,000	5%	0.37
POC1+2+3	Oven	C15, branched ^a	73,059,000	5%	0.42
POC1+2+3	Oven	C15, branched ^b	51,341,000	15%	0.49
POC1+2+3	Oven	C15:0	128,160,000	31%	0.48
POC1+2+3	Oven	C16, branched	34,648,000	14%	0.23
POC1+2+3	Oven	C16:1	1,393,700,000	0.3%	0.43
POC1+2+3	Oven	C16:0	7,295,100,000	25%	0.45
POC1+2+3	Oven	C17, branched ^a	22,645,000	51%	0.59
POC1+2+3	Oven	C17:1	49,980,000	34%	0.57
POC1+2+3	Oven	C17, branched ^c	26,804,000	27%	0.58
POC1+2+3	Oven	C17:0	103,250,000	47%	0.46
POC1+2+3	Oven	C18:3	83,036,000	0%	0.12
POC1+2+3	Oven	C18:2 ^d	458,330,000	2%	0.27
POC1+2+3	Oven	C18:2 ^e	419,150,000	3%	0.20
POC1+2+3	Oven	C18:1 ^f	1,084,600,000	0%	0.43
POC1+2+3	Oven	C18:1 ^g	366,900,000	1%	0.44
POC1+2+3	Oven	C18:0	2,045,600,000	67%	0.35

POC1+2+3	Oven	C20:4	168,990,000	0%	0.12
POC1+2+3	Oven	C20:3	27,352,000	9%	0.20
POC1+2+3	Oven	C20:2	21,258,000	7%	0.43
POC1+2+3	Oven	C20:1	33,895,000	7%	0.42
POC1+2+3	Oven	C20:0	52,092,000	18%	0.57
POC1+2+3	Oven	C22:1	9,888,500	62%	0.43
POC1+2+3	Oven	C22:0	35,163,000	9%	0.68
POC1+2+3	Oven	C24:0	36,053,000	7%	0.72
POC1+2+3	Oven	1-hexadecanol	10,266,000	36%	1.00
POC1+2+3	Oven	Phytol	353,840,000	0.4%	0.92
POC1+2+3	Oven	Cholesterol	100,910,000	0%	0.97
POC1+2+3	Oven	5α-cholestan-3-β-ol	24,272,000	0%	1.08
POC1+2+3	Oven	Brassicasterol	89,803,000	0%	0.89
POC1+2+3	Oven	Stigmasterol	34,373,000	0%	1.04
POC1+2+3	Oven	Gorgosterol	24,195,000	0%	0.57
POC1+2+3	Air	C12:0	53,204,000	40%	0.23
POC1+2+3	Air	C13:0	8,572,600	28%	0.37
POC1+2+3	Air	C14:1	5,493,400	0%	0.36
POC1+2+3	Air	C14:0	2,421,700,000	7%	0.49
POC1+2+3	Air	C15, branched ^a	97,270,000	4%	0.56
POC1+2+3	Air	C15, branched ^b	62,692,000	9%	0.60
POC1+2+3	Air	C15:0	173,380,000	26%	0.65
POC1+2+3	Air	C16, branched	65,582,000	9%	0.43
POC1+2+3	Air	C16:1	1,485,300,000	0.3%	0.46
POC1+2+3	Air	C16:0	11,687,000,000	31%	0.73
POC1+2+3	Air	C17, branched ^a	41,455,000	45%	1.08
POC1+2+3	Air	C17:1	73,241,000	35%	0.84
POC1+2+3	Air	C17, branched ^c	36,104,000	19%	0.78
POC1+2+3	Air	C17:0	189,910,000	50%	0.85
POC1+2+3	Air	C18:3	124,130,000	0%	0.18
POC1+2+3	Air	C18:2 ^d	713,190,000	2%	0.41
POC1+2+3	Air	C18:2 ^e	564,150,000	0%	0.26
POC1+2+3	Air	C18:1 ^f	1,280,800,000	2%	0.51
POC1+2+3	Air	C18:1 ^g	433,400,000	2%	0.52
POC1+2+3	Air	C18:0	5,243,000,000	68%	0.89
POC1+2+3	Air	C20:4	249,840,000	0%	0.18
POC1+2+3	Air	C20:3	51,672,000	0%	0.38
POC1+2+3	Air	C20:2	24,210,000	3%	0.49
POC1+2+3	Air	C20:1	34,600,000	4%	0.43
POC1+2+3	Air	C20:0	79,482,000	35%	0.87
POC1+2+3	Air	C22:1	17,952,000	56%	0.78
POC1+2+3	Air	C22:0	41,130,000	9%	0.79
POC1+2+3	Air	C24:0	52,335,000	7%	1.05

POC1+2+3	Air	1-hexadecanol	8,954,100	51%	0.87
POC1+2+3	Air	Phytol	321,560,000	1%	0.83
POC1+2+3	Air	Cholesterol	91,996,000	0%	0.88
POC1+2+3	Air	5α-cholestan-3-β-ol	21,919,000	0%	0.97
POC1+2+3	Air	Brassicasterol	88,627,000	0%	0.88
POC1+2+3	Air	Stigmasterol	29,892,000	0%	0.90
POC1+2+3	Air	Gorgosterol	29,202,000	0%	0.68
db1+2	Freeze	C12:0	6,916,400		
db1+2	Freeze	C13:0	2,308,700		
db1+2	Freeze	C14:1	1,517,400		
db1+2	Freeze	C14:0	73,738,000		
db1+2	Freeze	C15, branched ^a	2,668,500		
db1+2	Freeze	C15, branchedb1+2	4,570,200		
db1+2	Freeze	C15:0	25,625,000		
db1+2	Freeze	C16, branched	3,793,500		
db1+2	Freeze	C16:1	6,860,900		
db1+2	Freeze	C16:0	1,831,900,000		
db1+2	Freeze	C17, branched ^a	8,362,700		
db1+2	Freeze	C17:1	12,346,000		
db1+2	Freeze	C17, branched ^c	7,156,200		
db1+2	Freeze	C17:0	43,444,000		
db1+2	Freeze	C18:3	-		
db1+2	Freeze	C18:2 ^d	8,610,200		
db1+2	Freeze	C18:2 ^e	25,589,000		
db1+2	Freeze	C18:1 ^f	-		
db1+2	Freeze	C18:1 ^g	8,262,500		
db1+2	Freeze	C18:0	1,620,100,000		
db1+2	Freeze	C20:4	-		
db1+2	Freeze	C20:3	-		
db1+2	Freeze	C20:2	3,576,000		
db1+2	Freeze	C20:1	1,876,600		
db1+2	Freeze	C20:0	11,724,000		
db1+2	Freeze	C22:1	5,301,600		
db1+2	Freeze	C22:0	1,777,600		
db1+2	Freeze	C24:0	1,956,900		
db1+2	Freeze	1-hexadecanol	5,209,300		
db1+2	Freeze	Phytol	1,421,900		
db1+2	Freeze	Cholesterol	1,341,700		
db1+2	Freeze	5α-cholestan-3-β-ol	-		
db1+2	Freeze	Brassicasterol	-		
db1+2	Freeze	Stigmasterol	-		
db1+2	Freeze	Gorgosterol	-		
db1+2	Oven	C12:0	26,156,000		3.78

db1+2	Oven	C13:0	3,271,000	1.42
db1+2	Oven	C14:1	-	0.00
db1+2	Oven	C14:0	97,448,000	1.32
db1+2	Oven	C15, branched ^a	3,881,200	1.45
db1+2	Oven	C15, branched ^b	7,740,500	1.69
db1+2	Oven	C15:0	39,432,000	1.54
db1+2	Oven	C16, branched	4,827,200	1.27
db1+2	Oven	C16:1	4,476,400	0.65
db1+2	Oven	C16:0	1,842,100,000	1.01
db1+2	Oven	C17, branched ^a	11,587,000	1.39
db1+2	Oven	C17:1	16,773,000	1.36
db1+2	Oven	C17, branched ^c	7,352,200	1.03
db1+2	Oven	C17:0	48,682,000	1.12
db1+2	Oven	C18:3	-	-
db1+2	Oven	C18:2 ^d	7,065,000	0.82
db1+2	Oven	C18:2 ^e	10,735,000	0.42
db1+2	Oven	C18:1 ^f	-	-
db1+2	Oven	C18:1 ^g	5,008,500	0.61
db1+2	Oven	C18:0	1,375,200,000	0.85
db1+2	Oven	C20:4	-	-
db1+2	Oven	C20:3	2,349,100	-
db1+2	Oven	C20:2	1,594,100	0.45
db1+2	Oven	C20:1	2,336,500	1.25
db1+2	Oven	C20:0	9,324,700	0.80
db1+2	Oven	C22:1	6,095,700	1.15
db1+2	Oven	C22:0	3,015,400	1.70
db1+2	Oven	C24:0	2,658,700	1.36
db1+2	Oven	1-hexadecanol	3,667,600	0.70
db1+2	Oven	Phytol	1,306,600	0.92
db1+2	Oven	Cholesterol	-	0.00
db1+2	Oven	5α -cholestan-3- β -ol	-	-
db1+2	Oven	Brassicasterol	-	-
db1+2	Oven	Stigmasterol	-	-
db1+2	Oven	Gorgosterol	-	-
db1+2	Air	C12:0	21,406,000	3.09
db1+2	Air	C13:0	2,365,800	1.02
db1+2	Air	C14:1	-	0.00
db1+2	Air	C14:0	162,790,000	2.21
db1+2	Air	C15, branched ^a	3,802,800	1.43
db1+2	Air	C15, branchedb1+2	5,369,700	1.17
db1+2	Air	C15:0	44,762,000	1.75
db1+2	Air	C16, branched	5,673,800	1.50
db1+2	Air	C16:1	4,857,200	0.71

db1+2	Air	C16:0	3,633,300,000	1.98
db1+2	Air	C17, branched ^a	18,454,000	2.21
db1+2	Air	C17:1	25,480,000	2.06
db1+2	Air	C17, branched ^c	6,793,300	0.95
db1+2	Air	C17:0	94,158,000	2.17
db1+2	Air	C18:3	-	-
db1+2	Air	C18:2 ^d	13,530,000	1.57
db1+2	Air	C18:2 ^e	-	0.00
db1+2	Air	C18:1 ^f	22,137,000	-
db1+2	Air	C18:1 ^g	9,540,200	1.15
db1+2	Air	C18:0	3,576,200,000	2.21
db1+2	Air	C20:4	-	-
db1+2	Air	C20:3	-	-
db1+2	Air	C20:2	701,330	0.20
db1+2	Air	C20:1	1,291,300	0.69
db1+2	Air	C20:0	28,169,000	2.40
db1+2	Air	C22:1	10,085,000	1.90
db1+2	Air	C22:0	3,865,200	2.17
db1+2	Air	C24:0	3,677,500	1.88
db1+2	Air	1-hexadecanol	4,578,900	0.88
db1+2	Air	Phytol	4,389,300	3.09
db1+2	Air	Cholesterol	-	-
db1+2	Air	5α-cholestan-3-β-ol	-	-
db1+2	Air	Brassicasterol	-	-
db1+2	Air	Stigmasterol	-	-
db1+2	Air	Gorgosterol	-	-

^aiso ^banteiso

^ccis-9,10-methylenehexadecanoate ^dcis-9,12-octadecadienoate

etrans-9,12-octadecadienoate

^fcis-9-octadecenoate

gtrans-9-octadecenoate