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Abstract 

 The seasonal depletion of stratospheric ozone over the Southern Hemisphere allows abnormally 

high doses of ultraviolet radiation (UVR) to reach surface waters of the West Antarctic Peninsula (WAP) 

in the austral spring, creating a natural laboratory for the study of lipid photooxidation in the shallow 

mixed layer of the marginal ice zone. The photooxidation of lipids under such conditions has been 

identified as a significant source of stress to microorganisms, and short-chain fatty acids altered by 

photochemical processes have been found in both marine aerosols and sinking marine particle material. 

However, the biogeochemical impact of lipid photooxidation has not been quantitatively compared at 

ecosystem scale to the many other biological and abiotic processes that can transform particulate organic 

matter in the surface ocean. We combined results from field experiments with diverse environmental data, 

including high-resolution, accurate-mass HPLC-ESI-MS analysis of lipid extracts and in situ 

measurements of ultraviolet irradiance, to address several unresolved questions about lipid photooxidation 

in the marine environment. In our experiments, we used liposomes — nonliving, cell-like aggregations of 

lipids — to examine the photolability of various moieties of the intact polar diacylglycerol (IP-DAG) 

phosphatidylcholine (PC), a structural component of membranes in a broad range of microorganisms. We 

observed significant rates of photooxidation only when the molecule contained the polyunsaturated fatty 

acid (PUFA) docosahexaenoic acid (DHA). As the DHA-containing lipid was oxidized, we observed the 

steady ingrowth of a diversity of oxylipins and oxidized IP-DAG; our results suggest both the intact IP-

DAG the degradation products were amenable to heterotrophic assimilation. To complement our 

experiments, we used an enhanced version of a new lipidomics discovery software package to identify the 

lipids in water column samples and in several diatom isolates. The galactolipid digalactosyldiacylglycerol 

(DGDG), the sulfolipid sulfoquinovosyldiacylglycerol (SQDG) and the phospholipids PC and 

phosphatidylglycerol (PG) accounted for the majority of IP-DAG in the water column particulate (≥ 0.2 

µm) size fraction; between 3.4 and 5.3 % of the IP-DAG contained fatty acids that were both highly 

polyunsaturated (i.e., each containing ≥ 5 double bonds). Using a broadband apparent quantum yield 
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(AQY) that accounted for direct and Type I (i.e., radical-mediated) photooxidation of PUFA-containing 

IP-DAG, we estimated that 0.7 ± 0.2 µmol IP-DAG m-2 d-1 (0.5 ± 0.1 mg C m-2 d-1) were oxidized by 

photochemical processes in the mixed layer. This rate represented 4.4 % (range, 3-21 %) of the mean 

bacterial production rate measured in the same waters immediately following the retreat of the sea ice. 

Because our liposome experiments were not designed to account for oxidation by Type II photosensitized 

processes that often dominate in marine phytodetritus, our rate estimates may represent a sizeable 

underestimate of the true rate of lipid photooxidation in the water column. While production of such 

diverse oxidized lipids and oxylipins has been previously observed in terrestrial plants and mammals in 

response to biological stressors such as disease, we show here that a similar suite of molecules can be 

produced via an abiotic process in the environment and that the effect can be commensurate in magnitude 

with other ecosystem-scale biogeochemical processes.  
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Abbreviations 
 
AQY  Apparent quantum yield 
BHT  Butylated hydroxytoluene 
DCM  Dichloromethane 
DGCC  Diacylglyceryl carboxyhydroxymethylcholine  
DGDG  Digalactosyldiacylglycerol 
DGTA  Diacylglyceryl hydroxymethyl-trimethyl-b-alanine  
DGTS  Diacylglyceryl trimethylhomoserine 
DHA  Docosahexaenoic acid 
DNP-PE Dinitrophenyl-phosphatidylethanolamine 
ESI  Electrospray ionization 
FFA  Free fatty acid 
FSFA  Fully saturated fatty acid 
GlyPCho Glycerophosphocholine 
HAc  Acetic acid 
HPLC  High-performance liquid chromatography 
IP-DAG Intact polar diacylglycerol 
IPL  Intact polar lipid 
LPC  Lysophosphatidycholine 
MeOH  Methanol 
MDA  Malondialdehyde 
MGDG Monogalactosyldiacylglycerol 
MUFA  Monounsaturated fatty acid 
DUFA  Diunsaturated fatty acid 
Ox-IPL Oxidized intact polar lipid 
Ox-PC  Oxidized phosphatidylcholine 
PC  Phosphatidylcholine 
PCho  Phosphocholine 
PE  Phosphatidylethanolamine  
PG  Phosphatidylglycerol   
PTFE  Polytetrafluoroethylene 
PUFA  Polyunsaturated fatty acid 
SQDG  Sulfoquinovosyldiacylglycerol 
TAG  Triacylglycerol 
TBA   Thiobarbituric acid  
Tris  Tris(hydroxymethyl)aminomethane 
UVA  Ultraviolet-A (315-400 nm) 
UVB  Ultraviolet-B (290-315 nm) 
UVR  Ultraviolet radiation  
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1. Introduction 

The seasonal depletion of stratospheric ozone over the Southern Hemisphere continues to allow 

abnormally high doses of ultraviolet radiation (UVR) to reach the land and ocean surface in much of 

Antarctica (IPCC, 2005; Laube et al., 2014). The negative effects of UVR on marine plankton are 

mediated primarily via reactive oxygen species (ROS) and include shifts in bulk cellular lipid composition, 

reduced cell growth rates, direct damage to critical biochemicals such as DNA and proteins (Moreau et 

al., 2016; Worrest, 1983), and cell mortality (Davidson et al., 1994; Davidson and Marchant, 1994; 

Helbling et al., 1996; Hessen et al., 1997; Karentz, 1994; Mock and Kroon, 2002; Neale et al., 1994; 

Prézelin et al., 1994; Skerratt et al., 1998; Vernet et al., 1994). In the West Antarctic Peninsula (WAP) 

specifically, UVR exposure has been correlated with declines in marine primary production (Schofield et 

al., 1995). 

 ROS can also oxidize and damage acyl-containing lipids such as intact polar diacylglycerols (IP-

DAG), the primary structural components of many cell and organelle membranes (Crastes de Paulet et 

al., 1988; Kramer et al., 1991; Murphy, 1983). Diatoms and other phytoplankton that inhabit high-

latitude waters such as those of the WAP may contain as much as 30 % lipid; this lipidome is often 

dominated by IP-DAG containing polyunsaturated fatty acids (PUFA, i.e., those containing ≥ 2 double 

bonds; Nichols et al., 1989; Palmisano et al., 1988; Skerratt et al., 1998), which are particularly 

susceptible to peroxidation (Girotti, 1990, 1998; Wagner et al., 1994). Laboratory studies and 

experiments in other environmental systems have shown that peroxidation of PUFA can produce 

hundreds of bioactive lipid derivatives, collectively termed oxylipins. Oxylipins of enzymatic origin are 

known to play critical roles as intercellular signals, stress mediators, and predator defense mechanisms in 

various diatoms isolated from mid-latitude ecosystems (Barofsky and Pohnert, 2007; Fontana et al., 2007; 

Lauritano et al., 2011; Lauritano et al., 2012; Leflaive and Ten-Hage, 2009; Miralto et al., 1999; 

Wichard et al., 2005); these molecules can also affect growth rates of marine heterotrophic bacteria 

(Ribalet et al., 2008) and regulate metabolism of bacteria associated with sinking particles (Edwards et al., 
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2015). Various diatoms typically dominate sea-ice and ice-edge communities during early stages of 

blooms in Antarctic waters (Lizotte, 2001). 

While the biological production and bioactivity of diatom-derived oxylipins has received 

significant scientific attention in oceanography and UVR-induced oxylipin production has been 

characterized in higher plants and other organisms (Girotti, 1990, 1998; Halliwell and Chirico, 1993), 

the non-enzymatic generation of oxylipins and other oxidized lipid derivatives in the environment has 

received comparatively little scientific attention. Neither the biological nor abiotic production of larger 

oxidized lipid products such as intact oxidized polar lipids (ox-IPL; e.g., Buseman et al., 2006; 

Domingues et al., 2008; O'Donnell, 2011; Spickett and Pitt, 2015; Vu et al., 2012) has been investigated 

in the ocean or other natural environment. Rontani and others (Christodoulou et al., 2010; Marchand 

and Rontani, 2001; Rontani, 1999, 2001; Rontani et al., 2016; Rontani et al., 2012a; Rontani et al., 

2012b; Rontani et al., 1998) have established that Type II (i.e., involving singlet oxygen) photooxidation 

of mono- and di-unsaturated fatty acids in phytodetritus is a process significant enough to be detected via 

short-chain oxylipin biomarkers in sinking marine particulate material, but the photooxidation of intact 

polar lipids in high-latitude marine microbial biomass has not been directly investigated. In addition, 

while short-chain fatty acids altered by photochemical processes have been used to estimate the 

photooxidation state of organic matter in sinking marine particles in the Arctic (Amiraux et al., 2017; 

Rontani, 1999; Rontani et al., 2012a) and carboxylic acids of photochemical origin have been previously 

identified in marine aerosols (Kawamura and Gagosian, 1987; Kawamura and Gagosian, 1990), few 

estimates exist of the relative biogeochemical impact of lipid photooxidation in the surface ocean 

compared to the many other biological and abiotic processes that can transform particulate organic 

matter. 

 In this study, we combined results from experiments in a model liposome system with diverse 

environmental data, including high-resolution, accurate-mass high performance liquid chromatography-

electrospray ionization mass spectrometry (HPLC-ESI-MS) analysis of lipid samples and in situ time-
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series measurements of ultraviolet irradiance, to address several research objectives that spanned molecular 

to ecosystem scales. First, we sought to determine whether the photooxidation of IP-DAG was 

dependent on molecular structure — i.e., would a higher degree of unsaturation in the fatty acids of a 

particular molecule make it more amenable to photooxidation under natural environmental conditions? 

Second, we sought to test two closely entwined hypotheses regarding the relationship between lipid 

biogeochemistry and heterotrophic bacterial metabolism, namely that (1) bacterial metabolism of intact 

lipids present in the added liposomes would enhance apparent overall degradation rates as the organisms 

responded to the addition of a new potential carbon source; and, conversely, that (2) photodegradation of 

the lipids into smaller, less complex metabolites would provide new, bioavailable substrates for the 

bacteria (as proposed, e.g., in Karl and Resing, 1993; D. J. Kieber et al., 1989). Third, we sought to 

characterize the diversity, quantities, and structures of various products of lipid photooxidation by 

applying an enhanced version of the lipidomics data analysis package described in Collins et al. (2016) to 

HPLC-ESI-MS data from our liposome experiments. We then applied the lipidomics workflow to 

characterize the lipidomes of plankton from the WAP water column and determine what fraction of the 

particulate (≥ 0.2 µm) lipid biomass would likely be amenable to degradation by photooxidation. Finally, 

we combined our various measurements to calculate a broadband apparent quantum yield (AQY) for 

photooxidation of IP-DAG by direct and Type I (i.e., radical-mediated) mechanisms. To complete our 

analysis, we applied this AQY to the water column lipid data to estimate the minimum rate of lipid 

photooxidation within the carbon cycle of the WAP ecosystem. 

2. Methods 

2.1. Ultraviolet photooxidation experiments 

 Five lipid photooxidation experiments were conducted in the austral spring of 2013 under natural 

sunlight at Palmer Station, a U.S. Antarctic Program facility on Anvers Island, West Antarctica 

(64°46'27" S, 64°03'11" W; Fig. 1). In the experiments, liposomes of various species of 

phosphatidylcholine (PC) — a membrane lipid common to nearly all phyla, including marine microbial 
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eukaryotes and prokaryotes — were exposed to natural doses of incoming ultraviolet radiation in a large, 

outdoor aquarium at 0.6 m water depth (Table A1; Fig. A2). Mixtures of liposomes were incubated in 

quartz glass vials representing various light and microbial community treatments while incoming solar 

radiation was measured in situ at the center of aquarium; samples were sacrificed in triplicate at 

predesignated time points and the lipid content recovered by liquid-liquid extraction. The two microbial 

community treatments were achieved by filtering the seawater matrix in which the liposomes were 

suspended to either 0.2 or 0.7 µm (treatments referred to hereafter as “- het. bact.” and “+ het. bact.,” 

respectively). Dark controls were covered in foil and maintained in a darkened incubator at the same 

temperature as the aquarium. The experimental design is further described in the Appendix.  

We employed additional assays during two experiments to (1) validate our observations of lipid 

photooxidation with a standard measurement of lipid peroxidation and (2) interrogate bacterial metabolic 

activity in our + het. bact. treatments (i.e., those containing the 0.7 µm seawater filtrate). First, we 

adapted a commercial biomedical assay kit (Lipid Peroxidation/MDA Assay Kit ab118970; Abcam Inc., 

Cambridge, UK) to detect the presence in our samples of malondialdehyde (MDA), a low-molecular-

weight oxidation end-product of both enzymatically catalyzed (Armstrong and Browne, 1994) and abiotic 

(Janero, 1990) lipid peroxidation in a variety of organisms. In addition, activities of four bacterial 

exoenzymes (lipase, alkaline phosphatase, a-D-glucosidase, and L-Leucine-4-methylcoumaryl-7-amide, 

or leu-MCA) were monitored throughout the experiments using a series of fluorogenic substrates 

(Hoppe, 1993) as described in Edwards et al. (2011; details, Appendix, Section A.1.5).  Rates of bacterial 

production (i.e., the synthesis of biomass by heterotrophic bacterioplankton) were determined as part of 

the PAL-LTER study using the microcentrifuge 3H-leucine incorporation method described in Ducklow 

et al. (2012), which is a modification of the assay introduced by Smith and Azam (1992). 

2.2. Measurements of incoming irradiance 

  A continuous time series of incident irradiances (!"#(%)) was collected with a SUV-100 
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spectroradiometer (Biospherical Instruments Inc., San Diego, CA, USA) as part of the U.S. National 

Oceanic and Atmospheric Administration’s (NOAA) Antarctic UV Monitoring Network (Bernhard et 

al., 2005; 2010; Fig. 2). Separately, during the photooxidation experiments, an Ocean Optics Jaz 

spectrometer suspended in the outdoor aquarium was used to record downwelling irradiances in situ 

(ILX-511B detector; 0.3 nm bandwidth from 200-850 nm; Ocean Optics Inc., Dunedin, FL, USA). The 

Jaz was also used to make several downwelling irradiance profiles in the water column adjacent to Palmer 

Station in Arthur Harbor; these profile data were used to calculate a series of downwelling attenuation 

coefficients, '((%) (Fig. A3). The '((%) were then combined with incident SUV-100 data to estimate 

daily UVB and UVA radiation doses received at 0.6 m (Fig. 2, dashed trace) and at multiple depths 

through the mixed layer (details, Appendix, Section A.2). We confirmed the accuracy of these dose 

estimates using doses calculated independently from in situ data from the Jaz device (Fig. 2, open circles).  

2.3. Benchtop absorbance and transmissivity measurements 

 Wavelength-specific absorbances of various PC lipid standards and surface seawater samples from 

Arthur Harbor were measured in the laboratory using a dual-path UV-visible spectrophotometer 

(Thermo Nicolet Evolution 300; ThermoFisher Scientific; details, Appendix, Section A.3). Absorbance 

spectra of the standards were used to calculate a series of wavelength-specific molar decadic absorption 

coefficients ()*(%), in units of M-1 cm-1; Fig. A4). The seawater absorbances were used to calculate 

wavelength-specific absorption coefficients (+,-(%), in units of m-1; Fig. A5). 

2.4. Water column sample collection 

 In addition to the photooxidation experiments, water samples were collected for lipid analysis 

from Arthur Harbor (at LTER Station B; Fig. 1b) and at stations offshore (PAL-LTER cruise 

LMG1401 aboard the ARSV Laurence M. Gould). Samples for analysis of particulate (i.e., cell-bound) 

lipids were retrieved from depth using standard oceanographic sampling equipment and then collected by 

vacuum filtration onto 0.2 µm pore size Durapore membrane filters; these were frozen immediately at –
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80°C. Extraction was performed using a modified Bligh and Dyer (Bligh and Dyer, 1959) method 

described in Popendorf et al. (2013). Extracts were processed and then stored at –80°C. 

2.5. High-resolution HPLC-ESI-MS analysis 

 Lipid extracts were analyzed by HPLC-ESI-MS using a high-resolution, accurate-mass Thermo 

Q Exactive Hybrid Quadrupole-Orbitrap mass spectrometer with data dependent-MS2 acquisition 

(ThermoFisher Scientific, Waltham, MA, USA) coupled to an Agilent 1200 HPLC system (Agilent, 

Santa Clara, CA, USA). Chromatographic conditions were modified from Hummel et al. (2011). The 

full MS method is described in Section A.5 of the Appendix; we achieved an effective mass accuracy of < 

0.2 ppm, as reported in Collins et al. (2016).  

2.5.1. Identification and quantification of lipids & oxidized lipids 

All HPLC-ESI-MS data were analyzed in R (R Core Team, 2016) using open-source tools 

according to the lipidomics workflow described in Collins et al. (2016). The LOBSTAHS lipidomics 

discovery software (Collins et al., 2016) was used to putatively identify the processed, high-quality MS 

features based on exact mass, retention time, and diagnostic adduct hierarchy. Full details of the MS data 

analysis, including the criteria we used to confirm the identities of the lipids in each dataset and our 

quantification methods, are described in Section A.5.4 of the Appendix; LOBSTAHS identifies TAG 

and IP-DAG by the “sum composition” (Husen et al., 2013) of double bonds and acyl carbon atoms in 

each compound (e.g., PC 34:1, rather than PC 16:0−18:1).  Our approach allowed us to identify and 

quantify the intact PC species in our experiments with a high level of confidence falling somewhere 

between levels 1 and 2 in the proposed scheme of Sumner et al. (2007) for metabolite identification. For 

compounds identified in the water column data, we confirmed all LOBSTAHS identities using a new 

software feature that automatically detects diagnostic product ion fragments and constant neutral losses 

for each lipid class (as given in Popendorf et al., 2013) in the available data-dependent MS2 spectra for 

each sample, allowing us to achieve a confidence approaching level 2 in the Sumner et al. (2007) scheme. 

2.6. Broadband apparent quantum yield (AQY) calculation 
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 We combined the removal rates (where observed) of PC species determined in the liposome 

experiments, in situ photon irradiance measurements, and other parameters described above and in the 

Appendix to calculate a broadband apparent quantum yield, ./01, for photooxidation of lipids by 

radiation received between 290-395.5 nm, where 

./01 =
34567	49	:	;<=6>	5<?<@	*	AB:>794B36@

34567	49	?C4A4>7	D6AE66>	FG"	:>@	HGI.I	>3
:D74BD6@	DK	5<?<@7	<>	7K7A63

  (1) 

The adoption of a broadband AQY is consistent with previous work in which maximum degradation rates 

of polyunsaturated lipids in senescent phytoplanktonic cells were induced by exposure to a broad spectrum 

that spanned the UV and visible wavebands (Christodoulou et al., 2010; Rontani et al., 1998). We 

calculated the broadband AQY of a given lipid i according to the equation (modified from Miller (1998) 

and Cory et al. (2014)): 

L([*]

(O
= ./01 ∫

QR,T,U(V)W(V)XYLZ
[\]^](_)`abbc

dabb
e*(%)f%

HGI.I
FG"   (2) 

where −f[h]/fj is the appropriate change in concentration of lipid i; ./01 is the broadband AQY in 

units of mol (mol photons)-1; kl,?,m(%) is the total number of photons of wavelength % received per unit 

area over the course of the experiment (from the in situ spectrophotometer data), n(%) is the 

transmissivity (as a fraction) of the incubation vessel wall material at wavelength %; +OoO(%) is the 

absorptivity at wavelength % of all components in the experimental system (filtered seawater, lipid i and 

other lipids present), expressed as a linear Napierian absorption coefficient (m-1); pZqq is the effective 

optical pathlength within the quartz vials during the experiment; and e*(%) is the fraction of light 

absorbed within the system at wavelength % by lipid i. Calculation of +OoO(%) and e*(%) are described in 

Section A.6.1 of the Appendix. We defined pZqq as the inner diameter of the incubation vials (1.8 cm) 

since the vessels were left to rest on their sides during the experiments and were exposed to sunlight from 

above. We defined −f[h]/fj as the change in concentration of PC 22:6, 22:6 observed in the + UVR 

treatment relative to the change in the dark control, assuming that the change in concentration in the 
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latter represented the baseline rate of autooxidation. A series of Monte Carlo simulations was used to 

determine the uncertainty in the AQY (Collins et al., 2015; details, Appendix, Section, A.6.2). 

2.6.1. Potential sources of bias in method used to calculate AQY 

We considered several potential sources of bias in the method we used to calculate the AQY. First, there 

is some evidence to challenge our assumption that the rate of oxidation observed in dark controls can be 

used represent the baseline rate of autoxidation. For example, irradiation in some cases can produce 

peroxides, homolytic cleavage of which can induce autoxidation in cells (Girotti, 1998). Our estimates of 

−f[h]/fj may therefore include contributions from light-induced autoxidative processes. Second, because 

it can be difficult to determine the optical pathlength in a curved vessel (Vähätalo et al., 2000), we 

conducted a follow-up experiment to compare irradiances from the in situ spectrophotometer data (Eq. 2, 

term under integral sign) to those measured directly in quartz glass vials using chemical actinometry 

(Jankowski et al., 1999; D. J. Kieber et al., 2007). Consistent with previous findings (D. J. Kieber et al., 

2007), the actinometer-derived irradiance for the 330-380 nm spectral band was not significantly 

different from the integrated irradiance we calculated from the Jaz data (Appendix, Section A.2.4). Third, 

since our liposome suspensions did not contain Type II photosensitizers such as chlorophyll, we presumed 

very little singlet oxygen was produced photochemically during our experiments (further discussion, 

Section 4.4). We thus concluded that our AQY likely accounted only for photooxidation by Type I (i.e., 

radical-mediated) processes, any light-induced autoxidative processes that were not accounted for through 

the use of dark controls and, to a lesser extent, some direct initiation by UVR.  

2.7. Lipid photooxidation rate estimates for natural waters of West Antarctica 

 Finally, we estimated rates of lipid photooxidation in natural waters of the West Antarctic 

Peninsula (−f[rhshf]/fj; units of pmol lipid L-1 d-1 or pmol C L-1 d-1) by combining the broadband 

AQY calculated in Eq. 2 with estimates of subsurface irradiance and measured concentrations of specific 

lipids. Rates were estimated for two fractions of particulate lipids in WAP waters: IP-DAG containing 

(1) polyunsaturated (i.e., ≥ 3 double bonds) and (2) highly polyunsaturated (i.e., ≥ 5 double bonds) fatty 
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acids at both positions (sn-1 and sn-2) on the IP-DAG glycerol backbone. Volumetric rate estimates for 

each 1 m interval in the mixed layer were integrated to yield areal estimates of the photooxidation rate for 

each day during the study period. Details of calculations, including necessary equations, are presented in 

Section A.7 of the Appendix. Absent published data on the wavelength-dependence of photooxidation 

reactions in IP-DAG, we assumed (as in, e.g., Fichot and Benner, 2014) that the broadband ./01 we 

calculated in Eq. 2 could be applied across the entire 290-395.5 nm waveband. 

3. Results 

3.1.  Irradiance observations; UV penetration through shallow mixed layer 

Temperature and salinity profiles showed that the mixed layer depth (MLD) remained between 5 

and 10 m through the end of December 2013 (Fig. A6, Table A2). These conditions were indicative of a 

highly coherent, early summer surface “lens” (Perrette et al., 2011; Smith and Nelson, 1985, 1986) that 

served to expose the entire mixed layer to high doses of UVR. For example, 4.3 % of the incident 

radiation received at 320 nm was still present at a depth of 8 m (Fig. A3). Comparison of incident SUV-

100 irradiance data (Fig. 2a, solid trace) with estimated downwelling doses of UVB radiation at 0.6 m 

water depth (Fig. 2a, dashed trace) indicated that 71 ± 0.7 % of UVB radiation received at the earth’s 

surface reached the 0.6 m depth at which we conducted our experiments (mean ± SD; n = 76 daily 

calculations). We validated the accuracy of our '((%)-derived UVB dose estimates by comparing them to 

daily doses calculated directly from in situ measurements with the Jaz spectrometer. We observed close 

agreement between the two methods; comparison of the in situ doses (Fig. 2a, open circles) to the 

incident SUV-100 data (Fig. 2a, solid trace) indicated that 73 ± 9 % of incoming UVB radiation was still 

present at 0.6 m (mean ± SD; n = 30 daily in situ dose estimates). 

3.2. Photooxidation of phosphatidylcholine liposomes 

 We obtained statistically significant results in our UVR-exposure experiments for only one of the 

seven PC moieties we considered: PC 22:6, 22:6 (all-cis-∆4,∆7,∆10,∆13,∆16,∆19) (Fig. 3a, showing results 

from experiment on 14 December 2013; Table 1; Table A1). Changes in concentration of –804 ± 188 and 
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–827 ± 190 pmol mL-1 (mean ± SE) were observed in the + UVR - het. bact., and + UVR + het. bact. 

treatments, respectively, compared with a change of –322 ± 229 pmol mL-1 in the –het bact. dark control 

(p ≤ 0.05, Tukey’s Honest Significant Difference method with a = 0.05; Table 1, Fig. 3a). Results from 

parallel + UVR - het. bact. incubations conducted in borosilicate glass vials were statistically 

indistinguishable from those in the quartz vials (Table A1). The consistently negative results we observed 

in the six other molecular species were confirmed in each case in at least two independent experiments 

(Table A1). Using the results from the 14 December experiment and the methods described in Section 

2.6, we estimated a broadband AQY ./01 for direct and Type I (i.e., radical-mediated) photooxidation 

of PUFA-containing IP-DAG of 0.54L".Fw#".Fx. 

3.3. Photodegradation products putatively identified by HPLC-ESI-MS 

 High-resolution HPLC-ESI-MS data indicated that removal of unoxidized PC 22:6, 22:6 via 

photooxidation was accompanied by statistically significant rates of ingrowth of several unoxidized and 

oxidized derivatives (Fig. 4, Fig. 5a; Table 1). The former category included picomolar concentrations of 

lysophosphatidylcholine (LPC), while the latter included ox-PC species, oxylipins, and several ox-LPC 

species. The application of an unsupervised clustering algorithm to the data showed that changes in 

concentration of the various compounds were indicative of expected similarities between both treatments 

and timepoints (Fig. 4). Analysis of extracted ion chromatograms and data-dependent MS2 spectra 

allowed us to putatively identify a series of progressively more oxidized ox-PC species in a representative + 

UVR - het. bact. sample at the final experimental timepoint (Fig. 5, Fig. 6, Fig. A7). We also observed a 

decrease in RT of each analyte in the series in proportion to the number of additional oxygen atoms it 

contained (Fig. 5b-d; Table 1). Further increasing our confidence, an analogous relationship between RT 

and oxidation state was noted for each of the other types of oxidized species we putatively identified (i.e., 

ox-LPC and the oxidized free fatty acid derivatives; Table 1). Our HPLC-ESI-MS observations of 

oxidized lipid production were also supported by measurements of MDA production obtained using a 
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commercial assay kit. Higher concentrations of MDA were observed in both + UVR treatments at t +8 h 

compared to the dark control (p ≤ 0.01, Tukey HSD method; Fig. 3c); these concentrations were of the 

same order of magnitude as the concentrations of most of the more specific oxidation products we 

identified in the same samples using our high-resolution HPLC-ESI-MS method (Fig. 3b, Fig. 4). 

Unique ions observed in the MS2 spectra for each putatively identified feature (Fig. 6, Fig. A7) 

indicated either that (a) various positional isomers of each oxidized lipid were present, or (b) the exact 

nature of the oxidation was different in each case (e.g., the addition of two hydroxyl groups would yield 

ions of the same m/z as one featuring a single hydroperoxy functional group). These unique fragments 

were distinguished from the common headgroup fragments characteristic of the PC lipid class and other 

fragments, such as those representing unoxidized DHA, which were present in nearly all of the species 

(Fig. 6, Fig. A7). Based on previous findings (Milic et al., 2012; O'Donnell, 2011; Reis and Spickett, 

2012; Sala et al., 2015; Spickett et al., 2011), it is likely the apparent diversity of species within each 

oxidized lipid class reflects a combination of the two situations. We suspect that the compound, non-

Gaussian peak shapes we observed for the PC 22:6, 22:6 +2O and PC 22:6, 22:6 +4O species (Fig. 5c,d) 

indicate the presence of multiple, near-co-eluting ox-PC regioisomers (i.e., species with same oxidation 

state and type of oxidized functional group; Domingues et al., 2009; Reis et al., 2005). The presence of 

multiple isomers of each oxidized species in the sample is highly probable, given the multiple bis-allylic 

positions in the parent molecule and the nonselective, abiotic origin of the peroxidation. Far fewer 

positional isomers are produced in the case of biologically-mediated PUFA peroxidation; this is because 

the lipoxygenase enzymes responsible for production of short-chain oxylipins tend to have high affinity 

for specific positions in the acyl chains of their target substrate (Andreou and Feussner, 2009; Brash, 

1999; Cutignano et al., 2011; Feussner and Wasternack, 2002). 

3.4. Distributions and acyl saturation state of IP-DAG in samples from waters of the West Antarctic 

Peninsula 
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 We next sought to identify the lipids present in five samples of particulate organic matter (≥ 0.2 

µm) collected from WAP surface waters during the austral spring of 2013-2014. Of the 4,393 different 

unoxidized and oxidized lipids we putatively identified in the five samples, we used response factors 

determined from authentic standards to quantify 318 definitively identified molecules in a subset that 

encompassed seven different classes of IP-DAG; statistics describing the performance of our multiple-

step identification method are given in Table A5. Triacylglycerols (TAG) accounted for the vast majority 

(70.0 ± 8.8 %, mean ± SD) of the total identifiable lipid peak area in the five samples; in one sample 

(chromatogram, Fig. A8), TAG accounted for 83 % of the total peak area (Table A5). Results from three 

samples representative of different bloom conditions (Fig. 7, Fig. 8) indicated that species of the 

galactolipid DGDG, one of the four primary IP-DAG in the chloroplast membranes of photosynthetic 

organisms, accounted for the majority of the intact polar lipids we quantified in the data using authentic 

standards. Micromolar quantities of the sulfolipid SQDG and the phospholipids PC and PG were also 

present (Fig. 7). We also identified several species of diacylglyceryl carboxyhydroxymethylcholine 

(DGCC) in the samples; these were excluded from the dataset used to generate the figure because we did 

not have a suitable authentic standard available at the time of analysis. DGCC accounted for < 11 % of 

the total raw IP-DAG peak area in the Station E and CTD 27 samples, and 26.1 % of the total IP-DAG 

peak area in the sample from CTD 6. We also putatively identified several oxidized lipid species in the 

water column samples; these included all of the intact oxidized degradation products of PC 22:6, 22:6 

that had we observed in our liposome experiments. Features representing PC 22:6, 22:6 +1O (two 

obvious isomers), PC 22:6, 22:6 +2O, PC 22:6, 22:6 +3O, and PC 22:6, 22:6 +4O were detected at 7.2, 

3.9, 5.1, 0.5, and 0.8 %, respectively, of the abundance of PC 22:6, 22:6 (percentages are average values 

across the five samples; a link to the full, annotated list of all identified compounds and their raw 

chromatographic peak areas is included in the Appendix).  

 As a second means of analysis, we binned the IP-DAG species in each water column sample into 

five categories based on the saturation state of their attached fatty acids (Fig. 8). Molecular species 
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containing highly polyunsaturated fatty acids (i.e., those with ≥ 5 double bonds) at both substituent 

positions accounted for 5.3, 2.3, and 3.4 % of the IP-DAG in samples from PAL-LTER Station E and 

LMG 14-01 CTD stations 6 and 27, respectively (percentages calculated on basis of molar concentration; 

Fig. 8a; stations 6 and 27 correspond to LTER Grid locations 610.040 and 200.-060). Lipids containing 

two fatty acids of moderate polyunsaturation (i.e., ≥ 3 but < 5 double bonds) accounted for 31.1, 12.7, and 

18.2 % of IP-DAG in the three samples. When we examined the acyl saturation state of molecular 

species belonging to single classes of IP-DAG, it became apparent that PUFA were not evenly 

distributed throughout the WAP metalipidome (e.g., PUFA were concentrated more heavily in species of 

PC than in the IP-DAG pool as a whole; Fig. 8b). Comparison of these results with a similar analysis of 

fatty acid distribution among IP-DAG classes in the four diatom isolates (Fig. A10) showed that the 

lipids of these diatoms did not dictate the composition of the overall WAP lipid pool, despite diatoms 

being traditionally responsible for many of the early-season blooms that occur in Antarctic waters 

(Nichols et al., 1989; Smith, 1987; Smith and Nelson, 1986). 

4. Discussion 

4.1. Dependence of photolability on acyl polyunsaturation 

To our knowledge, rates of photooxidation have not been previously reported for IP-DAGs in 

natural waters. However, our observation that highly polyunsaturated fatty acids such as DHA are the 

primary target of photooxidation within these important molecules (Fig. 3; Table 1; Table A1) is 

consistent with well-established chemical models and several previous laboratory studies that evaluated 

the reactivity of free fatty acids in the presence of various reactive oxygen species (Cosgrove et al., 1987; 

Gardner, 1989; Schaich, 2005; Wagner et al., 1994). For example, Wagner et al. (1994) found that the 

addition of each new double bond which created a bis-allylic carbon atom increased exponentially the rate 

at which a given fatty acid was oxidized. However, these previous studies have focused almost exclusively 

on the reactivities of free fatty acids, largely ignoring intact lipids such as the IP-DAG we investigated in 

this study; our results demonstrate for the first time a direct relationship between acyl unsaturation and 
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photoreactivity in IP-DAG. Our findings do mirror those from two previous studies (R. J. Kieber et al., 

1997; Rontani et al., 1998) in which the photoreactivities of various PUFA were evaluated under 

environmentally relevant light intensities. R. J. Kieber et al. (1997) found that photodegradation rates of 

C16 and C18 PUFA were nearly 10 times those of the species’ monounsaturated counterparts; almost no 

photodegradation was observed in the saturated member of the C16 series, palmitic acid. Rontani et al. 

(1998) observed a similar trend for a series of C18:1-C18:3 fatty acids isolated from algal cultures; while that 

experiment did not include any PUFA with more than three double bonds, the degradation rate constant 

the authors observed for the C18:3 species was more than six times that observed for C18:1.  

4.2. Biogeochemical significance of lipid photooxidation in surface waters of the West Antarctic 

Peninsula 

Our daily rate estimates of photooxidation of intact IP-DAG (Fig. 9) suggest the process is of a 

magnitude comparable to ecosystem bacterial production, making it a biogeochemically relevant pathway 

for the remineralization of particulate carbon in sunlit surface waters of the West Antarctic Peninsula. 

While limiting the scope of our findings to the early spring — when nearly all of the suspended 

particulate biomass in the shallow mixed layer receives enhanced doses of UVR through a depleted 

stratospheric ozone layer — we estimate conservatively that, on average, 0.7 ± 0.2 µmol IP-DAG m-2 d-1 

was oxidized in the mixed layer by photochemical processes (using the conversion factor described in 

Section A.8 of the Appendix, this is the equivalent of 0.5 ± 0.1 mg C m-2 d-1; Fig. 9, red markers and 

solid red trace). Under the second, less conservative scenario — in which we applied the AQY to a larger 

subset of the surface IP-DAG inventory —  we estimate that approximately 6 times this quantity of lipid 

organic matter was potentially oxidized by sunlight (3.9 ± 1.1 µmol IP-DAG m-2 d-1, equivalent to 2.7 ± 

0.8 mg C m-2 d-1; Fig. 9, cyan markers and dashed trace). For comparison, the mean mixed layer rates of 

bacterial production in the period before 4 January 2014 were 2.3 ± 1.8, 18.1 ± 17.2, and 14.4 ± 9.9 mg C 

m-2 d-1 in vicinity of the Palmer Station seawater intake, at PAL-LTER Station B, and at PAL-LTER 

Station E, respectively (Fig. 9, larger symbols; mean ± SD; n = 3, 5, and 3, respectively; the mean rates of 
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leucine incorporation in surface samples at stations B and E were 37 ± 28 and 37 ± 36 pmol L-1 hr-1, 

respectively). 

The rate of lipid photooxidation thus represented between 4.4 % (conservative scenario) and 24.5 

% (alternative scenario) of the mean bacterial production rate measured in the WAP mixed layer during 

the austral spring (range in conservative scenario, 3-21 %; range in alternative scenario, 15-116 %; Fig. 9). 

We suspect that even our less conservative calculations might still represent an underestimate of the 

overall significance of lipid photooxidation in WAP waters because we did not apply our model to any 

fraction of the lipid biomass allocated to triacylglycerols, which accounted for 70-75 % of the total 

identifiable chromatographic peak area in the water column samples. Although the AQY was derived 

from photooxidation experiments with PC, we justify its application to other classes of IP-DAG on the 

basis of evidence (from human systems) that changes in headgroup do not dramatically affect in situ 

oxidation rates so long as the attached PUFA are of high unsaturation (Reis and Spickett, 2012). We also 

assumed in our calculations that the residence times of suspended and slowly sinking particulate organic 

matter in the mixed layer were long (i.e., on timescales of days) compared with the timescale over which 

photodegradation was observed to act in our liposome experiments (i.e., 8.2-12.4 hr). 

4.3. Role and activity of heterotrophic bacteria 

4.3.1. Evidence for direct bacterial metabolism of unoxidized lipids 

We found only mixed evidence to support our hypothesis that bacteria would directly degrade the 

liposomes as a growth substrate. While we observed a small marginal enhancement in the apparent 

degradation rate of PC 22:6, 22:6 liposomes in the + UVR treatment when heterotrophic bacteria were 

present, this increase was not statistically significant (Fig. 3a; Table 1). We did observe some 

enhancement at the final timepoint in the hydrolysis of 4-methylumbelliferone-butyrate-heptanoate-

palmitate (4-MUF-butyrate, monitored as a proxy for lipase activity) in the + UVR + het. bact. treatment 

compared with the dark control, suggesting at least some fraction of the bacterial community was 

attempting to metabolize the added lipids (Tukey HSD test with a = 0.05; Table A4). No significant 
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differences were observed between treatments in the hydrolysis of L-Leucine-4-methylcoumaryl-7-amide 

(leu-MCA, monitored for aminopeptidase activity; Table A4). That we did not find more conclusive 

evidence for bacterial degradation of the liposomes might have reflected widespread inhibition of the 

bacterial community by exposure to high doses of UVR during the experiments (Santos et al., 2011; 

Ward et al., 2017). 

4.3.2. Support for bacterial metabolism of oxidized degradation products 

We found indirect evidence to support the related hypothesis that photooxidation could degrade 

intact lipids into smaller, more labile components that were amenable to microbial metabolism. For 

example, in comparing the + UVR - het. bact. treatment to the corresponding + UVR + het. bact. 

treatment, we noted greater net production in the former of nearly all the PC 22:6, 22:6 degradation 

products that we could identify in our HPLC-MS data (compare rightmost two columns in Fig. 4). One 

possible interpretation of these results is that some fraction of the oxidized compounds produced in the + 

UVR + het. bact. treatment was removed via heterotrophic metabolism. This interpretation is challenged 

by recent work showing heterotrophic bacteria cannot use oxylipins such as polyunsaturated aldehydes 

(PUA) — the highly bioactive derivatives of fatty acids that are considered the “terminal” products of 

lipid peroxidation — as a viable carbon source (Edwards et al., 2015; Ribalet et al., 2008). However, these 

studies did not evaluate the ability of heterotrophic bacteria to metabolize any of the many other 

compounds, such as LPC or intact ox-PC species, which we show were produced as intermediates in the 

course of photooxidation (Fig. 4). 

4.4. Possible mechanisms supporting observed rates of photooxidation 

While the original scope of this work did not extend to identification of the mechanism(s) 

responsible for the photooxidation in our experiments or WAP waters generally, several conclusions can 

be drawn from synthesis of available data and previous findings regarding photochemical processes. Lipid 

photooxidation can be effected by one of three mechanisms: Type I (i.e., radical-mediated) sensitization, 

Type II (i.e., singlet oxygen-mediated) sensitization, and direct initiation by UVR; Girotti (1990) and 
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Schaich (2005) both include detailed schematics that illustrate the oxidation of lipids via these different 

pathways. Below, we briefly address the potential for each of these to have contributed to rates of 

photooxidation in our experimental system and, by comparison, in the surrounding environment. We 

ultimately conclude that the photooxidation in our experiments was a result of Type I processes, with 

likely additional contributions from (1) direct initiation by ultraviolet radiation and (2) light-dependent 

autoxidative processes that were not accounted for by our use of dark controls. 

4.4.1. Type I (radical-mediated) photooxidation 

 The preferential removal of PC 22:6, 22:6 (compared with lipids containing more saturated acyl 

moieties; Table A1) suggested that at least some of the oxidation we observed in our experiments could 

have been attributed to a Type I mechanism. The particular vulnerability of bis-allylic hydrogen atoms in 

PUFA to abstraction by free radicals and the attendant relationship between acyl unsaturation and radical 

reactivity have been well-established (Cosgrove et al., 1987; Schaich, 2005; Wagner et al., 1994). While 

we did not monitor the production of radical species in our liposome experiments or in the waters 

surrounding Palmer Station, elevated production of hydroxyl radical from UVB photolysis of nitrate has 

been observed in WAP waters under ozone hole conditions similar to those observed in 2013 (D. J. 

Kieber et al., 2007; Qian et al., 2001; compare Fig. 2). Surface concentrations of NO3- + NO2- remained 

at or above 15 µM at PAL-LTER Stations B and E until early January (Kim et al., 2016), providing a 

sufficient reservoir of NOx to sustain •OH production at biogeochemically significant rates. However, 

there is some evidence (Patterson and Hasegawa, 1978, as cited in Schaich, 2005) that •OH abstract acyl 

H atoms nonspecifically, showing no clear preference for the bis-allylic H atoms in PUFA. One might 

thus conclude •OH could not have been the primary initiator of peroxidation in the liposome 

experiments; according to this logic, we should not have seen such strong evidence for preferential 

oxidation if •OH were responsible. While this argues strongly against a primary role for hydroxyl radical, 

it does not preclude the more likely scenario in which long radical chain reactions were initiated by •OH 

but propagated by secondary lipid radicals such as LO• or LOO•, the latter of which do exhibit a clear 
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preference for bis-allylic H atoms (Cosgrove et al., 1987). Because it is these subsequent reactions that 

effect the vast majority of the lipid oxidation observed in Type I photochemistry (Girotti, 1990; Girotti, 

2001; Schaich, 2005), we ultimately concluded that our results were consistent with the signature of a 

Type I mechanism. A Type I mechanism was also proposed for the in situ production of ω-oxocarboxylic 

acids from a monounsaturated C18 fatty acid in marine aerosols (Kawamura and Gagosian, 1987). 

4.4.2. Type II (singlet oxygen-photosensitized) photooxidation 

 In contrast, we found it unlikely Type II photochemical processes could have contributed to the 

oxidation we observed in our experimental system, chiefly because the lack of photosensitizers such as 

chlorophyll would not have supported production of singlet oxygen in the liposome suspensions. Type II 

photooxidation of lipids has been proposed as the dominant pathway in marine systems for 

photooxidation of monounsaturated fatty acids and photosynthetic pigments in marine detritus (Nelson, 

1993; Rontani, 1999, 2001; Rontani et al., 2016), and liposomes such as those we employed in our 

experiments create precisely the sort of “hydrophobic microenvironment” that can extend the lifetime and 

steady-state concentrations of singlet oxygen well beyond the bulk aqueous phase (Latch and McNeill, 

2006). Because conditions in Arthur Harbor almost certainly would have supported production of singlet 

oxygen in these sorts of microenvironments, particularly in detritus from senescent ice-attached algal 

communities, the absence of Type II processes from the experimental system upon which we based our 

AQY calculations is cause to presume our model results (Fig. 9) may represent a sizeable underestimate of 

true photooxidation rates in the environment. We believe our model results may further underestimate 

true rates of photooxidation for a related reason: We confined ourselves to calculations based solely on 

UV radiation, which is attenuated much more rapidly in the water column than the visible light that 

catalyzes Type II processes. 

4.4.3. Direct initiation by UVR 

Finally, we conclude that direct initiation by UVR could have augmented Type I radical-

mediated processes in our both our experiments and the environment. Direct initiation of lipid oxidation 



 23 

by UVR requires that the photon energy available in incoming light meet or exceed the energy required 

for bond scission in the molecule of interest (Schaich, 2005), and that the molecule be capable of 

absorbing light at the wavelength(s) corresponding to the minimum actionable photon energy. Light was 

not limiting in our experiments or the surrounding environment: We measured ample photons of 

wavelength ≥ 320 nm within the aquarium and in the water column to depths of 8 m (Fig. A3; see also 

results presented in Section 3.1). In addition, our laboratory spectrophotometer measurements indicated 

that the DHA-containing IP-DAG PC 22:6, 22:6 absorbs light very strongly throughout the UVB 

spectrum and well into the UVA (log )* ≥ 1 M-1 cm-1 at wavelengths as long as 340 nm; Fig A4c). 

Concurrent measurements of DHA, the constituent fatty acid of PC 22:6, 22:6, indicated that the parent 

molecule’s light-absorbing capacity was due primarily to the presence of the highly unsaturated acyl 

moiety and not the polar headgroup (Fig. A4b,c). Finally, the 314-335 kJ mol-1 bond energy previously 

reported for the doubly allylic C-H bonds in model PUFA (Gardner, 1989; Koppenol, 1990) is 

equivalent to that carried by UVA-band photons of l between 357 and 381 nm, which were abundant at 

the 0.6 m depth of our experimental system and throughout the water column in the surrounding 

environment. However, there is strong evidence that the favorable thermodynamics of these reactions 

may be alone insufficient to support direct initiation. Schaich (2005), for example, reported activation 

energies for such bond scission reactions of at least 471 kJ mol-1, equivalent to photon energy at 254 nm; 

light of this wavelength is rarely available at the earth’s surface, even during ozone hole events in 

Antarctica. Therefore, while it is possible direct initiation by UVR could have augmented Type I 

photooxidative processes in both our experimental system and the surrounding environment, we conclude 

that any contribution would have been minor given the high reported activation energies. 

4.5. Future implications for the West Antarctic Peninsula marine ecosystem 

Three major, relatively recent changes in the ecosystem of the WAP (Ducklow et al., 2013; Saba 

et al., 2014) make it difficult to predict how (or whether) lipid photooxidation will impact rates of 
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primary production or carbon export in the future. First, shifts in the diversity of the phytoplankton 

community responsible for primary production in waters of the WAP will likely drive shifts in the lipid 

composition of surface ocean biomass during and after the annual retreat of the sea ice. Among these 

shifts in community composition is an increase the prevalence of cryptophytes, a clade of poorly 

understood algae of class Cryptophyceae, at the expense of the diatoms traditionally responsible for most 

of the carbon fixation in WAP waters (Montes-Hugo et al., 2009; Schofield et al., 2017). The stark 

differences between our water column lipid profiles (Fig. 7) and those of four diatoms isolated during the 

same season (Fig. A9) suggests taxa other than diatoms are already contributing in great numbers to the 

surface ocean particulate lipid reservoir. Microscope observations of water samples collected in 2013 and 

2014 confirmed that cryptophytes were present in WAP waters in large numbers (data not shown). 

Relatively little is known about the lipids of cryptophytes apart from a few instances in which the species 

have been investigated for their potential as a feedstock for biodiesel production (Henderson and 

Mackinlay, 1989). 

Second, should the rapid warming of WAP waters that has been observed in recent decades 

continue (Ducklow et al., 2013), the increase in average sea surface temperature could drive changes in 

the saturation state of the marine lipid pool independent of any change attributable to shifts in species 

distribution. Experimental results in cultures of several different marine phytoplankton show that even 

modest increases in temperature can drive measureable decreases in the proportion of overall membrane 

lipids that contain polyunsaturated fatty acids (Guschina and Harwood, 2006). This general relationship 

between saturation state and temperature has been demonstrated specifically in cultures of Chroomonas 

salina (Henderson and Mackinlay, 1989). While the lipid inventories at several sites along the WAP 

presently include robust concentrations of IP-DAG with sufficient PUFA to support biogeochemically 

significant rates of photooxidation (Fig. 8, Fig. 9), warmer waters and an ecological shift toward 

phytoplankton species of largely uncharacterized lipid composition could alter the significance of 

photooxidation in the ecosystem. 
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Third, reductions in the duration and extent of sea ice cover that have accompanied the increase 

in WAP sea surface temperatures (Meredith and King, 2005) will likely diminish the strength of ice-

associated and ice-attached diatom communities and their relative contribution to the overall lipid pool. 

The membrane lipids produced by ice-attached diatom communities can differ in fatty acid chain length, 

saturation state, and even lipid class distribution from those produced by planktonic diatoms (Fahl and 

Kattner, 1993; Falk-Petersen et al., 1998; Mock and Kroon, 2002). Because primary production in WAP 

waters is typically distinguished by bloom events that begin at the receding sea ice edge in spring or early 

summer (Ducklow et al., 2013; Kim and Ducklow, 2016; Vernet et al., 2008), warming water and 

concomitant changes in annual sea-ice dynamics could also advance the timing of blooms to earlier in 

spring and shift their locations further south, which could lead to ever greater temporal and spatial 

coincidence between maximum UVR exposure and peak phytoplankton abundances. A final, more recent 

trend — the reduction in the size of and severity of the seasonal ozone (O3) anomaly over Antarctica, 

driven by recovery in stratospheric O3 stocks (Solomon et al., 2016) — could represent an important 

negative feedback on photooxidation, further complicating any attempt to predict the overall significance 

of the process in a future ecosystem state. 

5. Conclusions 

We show here that photooxidation of lipids containing polyunsaturated fatty acids is a relevant 

pathway for carbon turnover in the surface ocean on scales commensurate with bacterial production. Our 

results suggest that the shallow mixed layers that can form in the marginal ice zone provide a sort of 

“optical incubator” for UVR-induced lipid peroxidation in the WAP. In this model, particulate organic 

matter, including both ice-attached and free-living phytoplankton and bacteria, is exposed for extended 

periods to intense UV radiation at the immediate sea surface, increasing photooxidation rates of 

photolabile compounds such as PUFA-containing IP-DAG. Deployment of sediment traps during future 

studies would allow us to determine whether these PUFA-derived ox-IPL and oxylipins leave a 

significant imprint on the organic matter exported to the ocean’s depths, as evidence suggests is true of 
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MUFA-derived oxylipins from photochemical processes (Marchand and Rontani, 2001; Rontani, 1999; 

Rontani et al., 2016; Rontani et al., 2012a; Rontani et al., 2012b).  

The pairing of a high-resolution, accurate-mass HPLC-ESI-MS method with an enhanced 

lipidomics discovery strategy allowed us to build a comprehensive profile of the lipids of West 

Antarctica’s marine microbial community. Future studies will be needed to determine the relative 

contributions of Type I, Type II, and direct photolysis mechanisms to overall rates of lipid 

photooxidation in Antarctic surface waters. Apart from the use of traditional photochemical probes, direct 

insight might be gained through further structural elucidation of the many oxidized lipids identified in 

experiments such as those we present in this work (e.g., Fig. 4, Fig. 5). Additional in-source 

fragmentation of target analytes, combined with some derivatization prior to analysis, may be necessary to 

localize the oxidized functional groups on a given molecule. 

Finally, while we documented the abiotic production of a diversity of oxidized phospholipids 

under natural conditions in the environment, this study did not address the many possible infochemical 

impacts that these new compounds might have on intracellular processes, interactions between 

microoorganisms in the water column, or on the remineralization of sinking marine particles. Given the 

hundreds of other oxylipins and many different intact oxidized phospholipids with significant known or 

hypothesized bioactivities in humans and terrestrial plants, it is highly probable that some of these same 

compounds or their close analogs must play similar or as-yet-unimagined roles in the ocean.  
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Figures 

 
Fig. 1. (a) Map of the West Antarctic Peninsula, showing locations of sampling stations referenced in the 

text (Palmer Long Term Ecological Research study station E, ; CTD casts 6 and 27 during cruse LMG 

14-01, ) and of Palmer Station ( ). Inset shows extent of map view in relation to Antarctica and South 

America. (b) Detail from U.S. National Geospatial Intelligence Agency (NGA) nautical chart 29123 

(INT 9105), showing bathymetry and major marine features in immediate vicinity of Palmer Station. 
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Fig. 2. Time- and wavelength-integrated daily doses of (a) UVB (290-315 nm) and (b) UVA (315-400 

nm) radiation received at Palmer Station from 1 July 2013 to 30 June 2014. Solid traces: Incident doses at 

the ocean surface from SUV-100 spectroradiometer data (courtesy U.S. National Oceanic and 

Atmospheric Administration (NOAA) Antarctic UV Monitoring Network, NOAA Global Monitoring 

Division, Boulder, CO, USA). Dashed traces (sections with expanded x-axis): Estimated downwelling 

doses of UVB and UVA radiation at 0.6 m water depth, calculated according to Eqs. A.1-A.3 from 

incident SUV-100 data and '((%) obtained from water column profiles (Fig. A3). Open circles (select 

dates): Daily UVB doses at 0.6 m from in situ measurements with a calibrated Ocean Optics Jaz 

spectrometer, as described in the text. The largest daily dose of UVB radiation was received on 3 

December 2013 even though the seasonal minimum in total column ozone (154.82 Dobson units) was 

recorded on 12 October 2013. 
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Fig. 3. Results from a lipid photooxidation experiment conducted with phosphatidylcholine (PC) 

liposomes at Palmer Station on 14 December 2013. Concentrations after 4 and 8 h of (a) PC 22:6, 22:6, 

(b) an intact oxidation product (PC 22:6, 22:6 +2O; identified at chromatographic retention time 10.4 

min.), and (c) malondialdehyde, a commonly-used indicator of lipid peroxidation activity. Error bars: ± 

SE of mean (initial concentrations, n = 4 replicates; all other treatments and time points, n = 3). Symbols 

in (a)-(c) indicate significance of difference of mean from initial dark control (cyan symbols) or difference 

from dark control at final timepoint (magenta symbols) according to Tukey’s Honest Significant 

Difference method with a = 0.05: p ≤ 0.1 (+), p ≤ 0.05 (++), p ≤ 0.01 (*). (d) Instantaneous (solid line) and 

cumulative (dashed line) downwelling UVR photon fluxes (290-400 nm) measured at the incubation 

depth using an in situ spectrophotometer (0.6 m). 



 31 

 
Fig. 4. Changes in the concentration of PC 22:6, 22:6 and various molecular derivatives during the 

liposome photooxidation experiment presented in Fig. 3. For a given treatment and timepoint on the x-

axis, cell color shows the fold change in concentration of each molecule on the y-axis relative to the 

concentration observed at the initial experimental timepoint. Fold-change calculations are based on mean 

concentrations measured at each treatment and time point in at least 3 replicates. The order of both rows 

(analytes) and columns (treatment-time point combinations) reflects application of an unsupervised 
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clustering algorithm (function “hclust,” part of the R stats package). The dendrogram shows similarity (by 

Euclidean distance) among analytes and treatments/time points. Symbols in cyan indicate the statistical 

significance of the difference of each mean concentration relative to the mean concentration at the initial 

time point according to Tukey’s “Honest Significant Difference” method with a = 0.05: p ≤ 0.05 (++), p ≤ 

0.01 (*), p ≤ 0.001 (**), p ≤ 0.0001 (***). The lower subplot shows changes in concentration observed in 

the other PC species evaluated in the same experiment; no significant changes were observed in any of the 

species containing fully saturated or monounsaturated fatty acids. The heatmap was generated in R (R 

Core Team, 2016) using the gplots (Warnes et al., 2016) package. 
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Fig. 5. Lipids and oxidized lipids identified in a lipid photooxidation experiment on 14 December 2013. 

(a) Total ion chromatogram showing all lipids identified in one of three replicate samples of the + UVR -

het. bact. treatment at the final experimental time point (8 h) shown in Fig. 3. (b)-(d) Extracted ion 

chromatograms showing the unoxidized PC 22:6, 22:6 parent molecule and two intact oxidized 

degradation products (ox-PC). Major features are identified by retention time; colored annotations in (b)-

(d) correspond to colors used in column headings in Fig. 6 and Fig. A7. Analysis of full-scan and dd-MS2 

spectra corresponding chromatographically to the different shoulders of the compound peaks in (c) and 

(d) suggests multiple positional isomers of each species were present in the sample. 
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Fig. 6. Data-dependent MS2 spectra of (a) PC 22:6, 22:6 and (b)-(d) the three oxidized degradation 

products identified in the + UVR - het. bact. sample presented in Fig. 5. The top and bottom plots in 

each subpanel show, respectively, the positive and negative ionization mode fragmentation spectra for the 

major adduct of each analyte. Labeled features in (a) are the major ions diagnostic of the intact, 

unoxidized parent molecule; some of these are diagnostic PC headgroup fragments that also appear in 

(b)-(d). Boldface m/z annotations in (b)-(d) indicate fragment ions unique to each oxidized species. Text 

colors used in column headings correspond to those used in Fig. 5 and Fig. A7. An expanded version of 

Fig. 6 is presented in Fig. A7. 
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Fig. 7.  Relative molar distribution of seven classes of intact polar diacylglycerol (IP-DAG) in 

representative samples of particulate biomass (fraction > 0.2 µm) from waters of the West Antarctic 

Peninsula. Samples were collected in 2014 from an inshore station (PAL-LTER Station E, 64.82° S, 

064.055° W) and two coastal stations whose biogeochemistry was representative of oceanic influence 

(cruise LMG 14-01, CTDs 6 and 27, 64.88° S, 064.289° W, and 68.159° S, 068.946° W, respectively; 

Fig. 1). The CTD 6 (8 Jan) sample was obtained during a significant bloom event. Lipids were identified 

using the LOBSTAHS software (Collins et al., 2016) in conjunction with several additional criteria 

described in the text; 318 different compounds are represented in the figure. Quantification of lipids was 

performed using authentic standards. The full, annotated list of the lipids identified in each culture is 

available online at https://doi.org/10.5281/zenodo.841930 (version of record) or via direct download at 

https://github.com/jamesrco/LipidPhotoOxBox/blob/master/data/nice/LOBSTAHS_lipid_identities/P

AL1314_LMG1401_particulate_IP-DAG_pmol_L.final.csv. 
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Fig. 8. Fatty acid composition of (a) all identifiable IP-DAG and (b) phosphatidylcholine (PC) species in 

the particulate biomass samples for which distributions of IP-DAG are presented in Fig. 7. Because the 

current version of the LOBSTAHS software resolves the identities of IP-DAG only to the level of bulk 

fatty acid composition (i.e., the sum of the properties of the substituents at both the sn-1 and sn-2 

positions), we were unable to determine which fatty acids were present in each molecule without 

additional inspection of fragmentation spectra or saponification for analysis of fatty acid methyl esters 

(FAMES). However, we were able to categorize the saturation state of the IP-DAG according to the 

simplified scheme we present here after verifying (by inspection of fragmentation spectra) that the 

maximum degree of unsaturation of any single fatty acid present in these species was six (present in the 

form of docosahexaenoic acid, or DHA). 



 38 

 
Fig. 9.  Potential rates of lipid photooxidation in mixed layer waters of the West Antarctic Peninsula over 

a 2-month period in the austral spring of 2013. High-resolution time-series estimates of downwelling 

irradiance and a broadband apparent quantum yield (AQY) for IP-DAG species containing highly 

polyunsaturated fatty acids (./01) were applied to separate fractions of lipids identified using the 

LOBSTAHS software to generate two sets of photooxidation rate estimates. In the first, most 

conservative scenario (red markers and solid trace), we applied the irradiance time series and AQY to only 

those IP-DAG containing PUFA with ≥ 5 double bonds at both the sn-1 and sn-2 backbone positions. In 

the second, more permissive scenario (cyan markers and dashed trace), we assumed the AQY could also 

be applied to molecular species containing PUFA with ≥ 3 but < 5 double bonds. ./01 represents the 

reaction yield for lipid photooxidation based on the quantity of UV radiation received between 290 to 



 39 

395.5 nm; estimation of ./01 is described in Section 2.6 of the text. The shaded regions represented the 

propagated uncertainties in each estimate determined using a series of Monte Carlo simulations. Lipid 

photooxidation rates (left-hand y-axis) were converted to units of mg C m-2 d-1 based on the mean carbon 

content of the IP-DAG identified in each unsaturation fraction; these were 49. 3 ± 0.5 and 50.6 ± 0.6 

mol C : mol lipid for the polyunsaturated (cyan) and highly polyunsaturated (red) fractions, respectively. 

Presented for comparison are depth-integrated rates of bacterial production measured in Arthur Harbor 

using the 3H-leucine incorporation method (large individual symbols, from PAL-LTER data; Bowman 

et al., 2016). Note the break and change in scale of the y-axis. 
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Table 1 
Fate of molecular species identified during UVR-induced oxidation of a PUFA-containing phospholipid.a 

 
Molecular species Corrected 

retention 
time 
(min.) 

Observed 
m/zb 

Calculated 
m/zc 

Rel. mass 
uncertainty 
of database 
match 
(ppm) 

Change in concentrationd 

(pmol mL-1 ± SE) 
 Treatment 
 Control (dark) 

- het. bact. 
Control (dark) 
+ het. bact. 

+ UVR  
- het. bact.e 

+ UVR 
+  het. bact.f 

PC 22:6/22:6 12.8 878.5693 878.5694 0.1 -322 ± 229 -223 ± 307 -804 ± 188* -827 ± 190* 
PC 22:6/22:6 +1O 11.1 894.5647 894.5643 0.4 nsg ns ns ns 
PC 22:6/22:6 +2O 10.4 910.5595 910.5593 0.3 ns ns 58.7 ± 16.0* 46.3 ± 12.5 
PC 22:6/22:6 +3O 9.2 926.5546 926.5542 0.5 ns ns ns ns 
PC 22:6/22:6 +4O 8.6 942.5493 942.5491 0.2 ns ns 24.0 ± 7.3* ns 
LPCh 22:6 6.0 626.3496 626.3463 5.2 ns ns 38.1 ± 12.8 ns 
LPC 22:6 +1O 3.5 626.3441 642.3413 4.5 ns ns 1.0 ± 0.3* ns 
LPC 22:6 +2O 3.1 658.3384 658.3362 3.4 ns ns 8.9 ± 2.2** 5.2 ± 1.0 
LPC 22:6 +4O 1.7 690.3319 690.3260 8.6 ns ns 5.4 ± 1.5** ns 
DHAi 7.8 327.2328 327.2330 0.5 ns ns ns ns 
DHA +1O 6.4 343.2283 343.2279 1.2 ns ns 0.2 ± 0.05* ns 
DHA +2O 5.9 359.2231 359.2228 0.8 ns ns 0.4 ± 0.1*** 0.2 ± 0.03 
DHA +3O 2.3 375.2180 375.2177 0.8 ns ns 0.06 ± 0.02*** ns 

a Experiment conducted on 14 Dec 2013; results from the other four liposome experiments are summarized in Table A1. Concentration data in 
this table may be normalized to light quantity by dividing by 2.55 E m-2, the total number of photons between 290-400 nm received within each 
treatment vessel over the duration of the experiment (8.2 hr). This figure was obtained by correcting the incident UVR photon flux observed in 
situ at 0.6 m (2.67 E m-2) for the reduction in transmission by the quartz vessel wall (Fig. A1). 
b Mean m/z of features in peak group to which this compound assignment was made. PC 22:6/22:6 and derivative ox-PC species were identified 
in positive ionization mode as [M+H]+ adducts; LPC and ox-LPC were identified in negative ion mode as [M+HAc-H]- adducts; DHA and 
oxidized derivatives were identified in negative ion mode as [M-H]- adducts. 
c For PC 22:6/22:6 and ox-PC species, m/z of [M+H]+ adduct; for DHA and derivatives, m/z of [M-H]- adduct; for LPC and derivatives, m/z of 
[M+HAc-H]- adduct. 
d For other than the intact parent molecule (PC 22:6, 22:6), changes are reported only where mean final concentration was significantly different 
from mean initial concentration according to Tukey’s Honest Significant Difference method with a = 0.05: p ≤ 0.05 (bold), p ≤ 0.01 (*), p ≤ 0.001 
(**), p ≤ 0.0001 (***); rates are reported as mean ± SE of results in n ≥ 3 replicates.  
e 0.2 µm filtered seawater matrix 
f 0.7 µm filtered seawater matrix 
g ns: not significant 
h LPC: lysophosphatidylcholine 
i DHA: docosahexaenoic acid, 22:6(n-3)  
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