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Network-guided genomic and 
metagenomic analysis of the 
faecal microbiota of the critically 
endangered kakapo
David W. Waite   1,2, Melissa Dsouza3,4, Yuji Sekiguchi5, Philip Hugenholtz   2 &  
Michael W. Taylor1,6

The kakapo is a critically endangered, herbivorous parrot endemic to New Zealand. The kakapo hindgut 
hosts a dense microbial community of low taxonomic diversity, typically dominated by Escherichia 
fergusonii, and has proven to be a remarkably stable ecosystem, displaying little variation in core 
membership over years of study. To elucidate mechanisms underlying this robustness, we performed 
16S rRNA gene-based co-occurrence network analysis to identify potential interactions between E. 
fergusonii and the wider bacterial community. Genomic and metagenomic sequencing were employed 
to facilitate interpretation of potential interactions observed in the network. E. fergusonii maintained 
very few correlations with other members of the microbiota, and isolates possessed genes for the 
generation of energy from a wide range of carbohydrate sources, including plant fibres such as cellulose. 
We surmise that this dominant microorganism is abundant not due to ecological interaction with 
other members of the microbiota, but its ability to metabolise a wide range of nutrients in the gut. 
This research represents the first concerted effort to understand the functional roles of the kakapo 
microbiota, and leverages metagenomic data to contextualise co-occurrence patterns. By combining 
these two techniques we provide a means for studying the diversity-stability hypothesis in the context 
of bacterial ecosystems.

The kakapo (Strigops habroptilus) is an endemic New Zealand parrot, known for its unusual diet, nocturnal 
behaviour and lack of flight. The kakapo is classified as ‘critically endangered’ with a current population of 
approximately 150 individuals confined to predator-free islands off the coast of New Zealand. The diet of the 
kakapo is something of a peculiarity – although kakapo are nominally herbivorous they do not ingest large vol-
umes of plant material, instead preferring to crush plant fibres in their beaks, extracting the juices and discarding 
the remainder1,2. The diet of the kakapo generally revolves around shoots and leaves, with the exception of the 
infrequent breeding seasons during which kakapo feed extensively on the fruit of the native rimu (Dacrydium 
cupressinum). Breeding in kakapo is entrained to the mast fruiting of this tree, possibly owing to its high concen-
tration of calcium and vitamin D3, but even during this period of low-fibre feeding cellulose is the most abundant 
carbohydrate in the kakapo crop4.

Gastrointestinal (GI) tract-associated bacteria have been of interest for over half a century5 and have been 
linked to improved energy harvest from food sources6–8, vitamin and nutrient synthesis9–11, and gut develop-
ment12,13. Diet is a powerful factor in shaping the gut microbiota14–16 as it governs the nutrients available to that 
community. Even when the host feeds on a single food source a diverse range of carbohydrates, fats, and proteins 
are introduced to the gut. The resident microbiota feed on these nutrients with individual species, or interact-
ing webs of species, utilising different nutrients from the ingesta17. In vertebrates with and without anatomical 
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adaptation to herbivory (e.g. ruminants and panda, respectively) the resident microbiota plays a critical role in the 
depolymerisation of cellulose and hemicellulose into sugars that are accessible to the host8,18,19.

Microbial degradation of cellulose is likely to occur in the kakapo as well, but the functional role of 
kakapo-associated microbes currently remains unexplored. With the exception of two studies of specific path-
ogens20,21, the kakapo microbiota has only recently been investigated, with analysis of bacterial 16S rRNA gene 
sequences revealing low-diversity, but distinct, bacterial communities in the crop (foregut) and hindgut22. Unlike 
most vertebrate gut communities, the kakapo microbiota is dominated by Gammaproteobacteria and Firmicutes, 
with Actinobacteria and Bacteroidetes observed sporadically, and at low abundances in most individuals23–25. 
Interestingly, the gut microbiota is typically dominated by a single bacterial species, identified through cultiva-
tion as Escherichia fergusonii26. Monitoring over a number of years has revealed that the kakapo microbiota is 
surprisingly robust23,25, although the mechanism(s) underlying such stability and how members of the microbiota 
interact within the gut remain unexamined.

Metagenomic analysis of microbial data sets has allowed for unparalleled insights into the functional ability 
of the gut microbiota and represents a powerful tool for discovering the role of the microbiota within an ani-
mal’s gut. Metagenomic data are frequently interpreted as though all bacteria are capable of interacting; however, 
factors such as spatial separation, physicochemical characteristics and even community turnover create barri-
ers and local niches that can limit the ability of one bacterium to interact with another. Confirming suspected 
interactions requires intense, often highly selective, study that negates the benefits offered by high-throughput 
techniques. Co-occurrence networks of microbial communities represent a means to bridge such limitations, 
allowing researchers to identify population subsets within a microbiota that may be interacting in either a ben-
eficial or antagonistic manner. In this approach, individual species (or operational taxonomic units – OTUs) 
are represented by nodes in a web, connected by predicted interactions with other species27–29. This allows the 
development of more specific research questions as well as an objective basis for partitioning large data sets into 
biologically relevant subsets, and provides a means to identify keystone species30. Network analysis also provides 
other metrics to analyse the community through measures such as the degree of community fragmentation31.

The relationship between community diversity and stability is a long-studied issue within ecology32,33. At its 
core, the hypothesis states that a more diverse community of co-occurring organisms is more likely able to com-
pensate for environmental fluctuations, and maintain its functional capacity over long periods32. While diversity 
may therefore be considered a proxy for stability, it is not necessarily the causal agent and may instead result as 
a consequence of the ecological forces which underpin stability34–36. The kakapo gut microbiota often appears to 
be a near monoculture of Escherichia, yet this community is undoubtedly resilient to both variation through time 
and anthropogenic interference23,25. While Escherichia-like sequences are frequently observed in the microbiota 
of other birds, including parrots37–43, the uneven distribution of microbes in the kakapo hindgut appears unique. 
In order to elucidate mechanisms underlying this observation, we performed co-occurrence network analysis on 
16S rRNA gene amplicon data in an attempt to characterise potential ecological interactions of Escherichia within 
the gut microbiota. We further employed genomic sequencing of cultured representatives of dominant members 
of the microbiota and shotgun metagenome sequencing of the uncultivated microbiome to identify a functional 
basis for the findings of the network analysis.

Materials and Methods
Amplicon sequencing and analysis.  Fresh faecal samples were obtained from three adult and three juve-
nile kakapo and DNA was extracted using a previously reported bead-beating technique22. PCR was performed 
using the 533 F (5′-GTG CCA GCA GCY GCG GTM A-3′) and 907 R (5′-CCG TCA ATT MMY TTG AGT 
TT-3′) Bacteria-targeting primers, to amplify an approximately 350 bp region of the 16S rRNA gene sequence. 
Cycling conditions consisted of an initial denaturing step at 94 °C for 5 min, followed by 20 touchdown cycles 
of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 45 s with a 0.5 °C decrease in annealing temperature per cycle. 
Touchdown was followed by 10 additional cycles of 94 °C for 30 s, 50 °C for 30 s, and 72 °C for 45 s followed by 
a final elongation step at 72 °C for 10 min23. PCR products were purified using the Agencourt AMPure XP kit 
(Beckman Coulter Life Sciences, Brea CA, United States) and amplicon size examined using an Agilent 2100 
Bioanalyzer. DNA concentration was quantified using the Quant-iT PicoGreen dsDNA assay kit (Thermo Fisher 
Scientific, Waltham MA, USA) according to manufacturer instructions. DNA was pooled at equimolar concen-
trations and pyrosequencing was performed by Macrogen Inc (Seoul, South Korea) using the GS-FLX Titanium 
platform.

A subset of 16S rRNA gene amplicon data from three time points of a previous study of the gut microbiota 
of 10 juvenile and 10 adult kakapo were utilized in this study23 (Table S1). Samples from the captivity cohort of 
the original study were removed from the data set to remove the confounding effect of antibiotic treatment on 
community dynamics. This selection criterion resulted in a total of 36 amplicon samples from previous data 
and six additional amplicon samples amplified from the samples used for metagenome sequencing. Raw data 
were processed using mothur (version 1.36.1)44 following the standard operating procedure for pyrosequenc-
ing data. Flowgrams were trimmed to equal length and denoised, then the resulting sequences were trimmed 
of barcodes and primer sequences. Trimmed sequences were then aligned to the SILVA reference alignment 
(version 119) and short sequences, together with those containing ambiguous base calls or homopolymer runs 
greater than 8 nucleotides, removed. The aligned sequences were then end-trimmed and chimeric sequences 
identified using UCHIME45 were removed from the data set. The remaining high-quality sequences were clas-
sified against an alignment-trimmed SILVA small subunit database (version 119)46,47 using the naïve Bayesian 
method48. Sequences identified as archaeal, eukaryotic, chloroplast, or mitochondria were removed, as were 
sequences that could not be classified to at least phylum level. Operational taxonomic units (OTUs) were clus-
tered at 99% sequence identity from the remaining sequences and the taxonomic affiliation of each OTU taken as 
the consensus taxonomy of the individual sequences contributing to that cluster. OTUs present in fewer than five 
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samples were removed from the OTU table, which was then randomly subsampled to a depth of 2,000 sequences 
per sample. The community structure of the OTU data set was visualised using non-metric multidimensional 
scaling of a Bray-Curtis distance matrix calculated from the OTU table using the vegan package in R49,50.

Amplicon network analysis.  Correlation scores between pairs of OTUs were calculated in SparCC using 
20 refining iterations, after which statistical significance was assigned to each correlation using a pseudo-p value 
approximation with 1,000 permutations51 then analysed in the R software environment using the igraph package49,52. 
OTU correlations were encoded as a graph whereby OTUs (nodes) were joined via unweighted edges if their cor-
relation coefficient was greater than or equal to 0.3 and statistically significant following a Benjamini-Hochberg 
correction for multiple testing (FDR ≤ 0.05). Although some analyses have constructed a unified graph of all inter-
actions53–55, we opted to restrict our data to positive correlations only. This approach was chosen as the ecological 
interpretation and consequence of positive/negative correlations differ, and the commonly utilised network statistics 
do not account for polarity of an interaction. The network statistic transitivity (also known as clustering coefficient) 
was calculated for the complete network and interpreted in the context of a clustering ratio, comparing the cluster-
ing density of the kakapo graph to randomly constructed graphs with the same number of nodes and edges. As the 
topology of graphs, and their network statistics, can vary greatly with random permutation (Fig. S1), 1,000 random 
graphs were constructed to create a null distribution of transitivity scores, and the median value used to calculate 
the clustering ratio of the kakapo network. Node-specific statistics degree and betweenness were calculated for each 
OTU using the methods and definitions described by Williams et al.53. The resulting network was visualised using 
Cytoscape56 and figures prepared for publication using Inkscape.

Extraction and sequencing of genomic and metagenomic DNA.  Eight bacterial isolates, previously 
obtained from kakapo faeces (Table S2)26, were grown to stationary phase and genomic DNA extracted using a 
standard enzymatic digest protocol with minor modifications57. Cells were suspended in TE buffer and 740 µL 
of suspension transferred to a fresh 1.5 mL microcentrifuge tube. Forty microlitres of lysozyme (100 mg/mL; 
Sigma-Aldrich, St Louis MO, USA), 40 µL 10% SDS and 16 µL proteinase K (10 mg/mL; Sigma-Aldrich, St Louis MO, 
USA) were added, and tubes were incubated overnight at 37 °C with gentle mixing. Following cell lysis, 100 µL NaCl 
(5 M) and 100 µL CTAB/NaCl mixture (described in original protocol) were added and samples further incubated at 
65 °C for 10 min. Five hundred microlitres of chloroform:isoamyl alcohol (24:1) was added to each sample and tubes 
were mixed by inversion then centrifuged for 15 min at 13,000 rpm. One millilitre of supernatant was transferred to 
a fresh tube and the process repeated with 500 µL phenol:chloroform:isoamyl alcohol (25:24:1). Supernatant (~1 mL) 
was transferred to a fresh 2 mL microcentrifuge tube to which 0.6 vol isopropanol and 0.1 vol sodium acetate (3 M, 
pH 5.2) were added. Samples were mixed by inversion and incubated at room temperature for 1 h then centrifuged 
at 16,000 g at 4 °C for 30 min. The supernatant was removed and the resulting pellet washed twice with ice-cold 70% 
ethanol. Samples were air dried then resuspended in 20 µL TE buffer with RNase A (Qiagen, Germantown, MS, 
USA), incubated for 20 min at 37 °C, then finally stored at −20 °C. DNA concentration was calculated using a QuBit 
Quant-iT DNA high-sensitivity assay and DNA was electrophoresed on a 2% agarose gel to assess shearing.

For metagenomic analysis, faeces were fractionated by suspending one gram of faecal material in 5 mL PBS 
and vortexing for 2 min then centrifuging at 800 g for 2 min58. The upper fraction was collected and centrifuged at 
7,500 g for 7 min, then supernatant removed and pelleted biomass washed twice with 1 mL PBS. DNA extraction 
was performed as above with a single modification: following addition of CTAB/NaCl, samples were incubated at 
94 °C for 30 min, then briefly cooled on ice. For both genomic and metagenomic samples, library preparation and 
sequencing were performed by New Zealand Genomics Ltd. Raw DNA was prepared using the Nextera XT kit 
and samples pooled for sequencing. All 14 samples were sequenced together in three separate sequencing runs, 
to allow for adjustment of template ratios between runs to correct over-/under-represented samples. Sequencing 
was performed using the Illumina MiSeq with 2 × 250 bp paired-end reads.

Genomic and metagenomic analysis.  Raw genomic reads were filtered and assembled using the PAGIT 
toolkit59. Briefly, reads were quality trimmed using sickle60 in paired-end mode, with a quality threshold of 20 and 
minimum read length of 50 bp. Genomes were then assembled de novo using velvet61, with kmer sizes determined 
manually for each genome. Gap closing was then performed using IMAGE62, and error correction with ICORN63 
with default settings. Metagenomic sequences from all samples were processed using the same workflow, but 
pooled for assembly in MetaVelvet64. Gene prediction for both genomes and the metagenome was performed 
using Prodigal65 and predicted protein sequences annotated using BLAST against the NCBI non-redundant pro-
tein database requiring a minimum sequence identity ≥50%, and an e-value of ≤ 1e-5. For genomic comparison, 
we downloaded the genomes of 177 Enterobacteriaceae type species, including Escherichia coli, E. fergusonii, and 
E. albertii, from the NCBI genome database and annotated these using the same approach. Functional pathway 
analysis was performed using MEGAN66. Isolate genomes were further annotated against the CAZy database 
using the dbCAN web server67,68. For phylogenetic inference of the beta-1,4-endoglucan hydrolase orthologues, 
protein sequences were aligned using MAFFT with the high-sensitivity (L-INS-i) algorithm69,70. The alignment 
was then trimmed with TrimAl71 and phylogenetic inference performed with RAxML72 under the Le and Gascuel 
model of amino acid substitution73 and 100 bootstrap resamplings to assess node support.

Per-sample gene abundances were calculated by mapping the quality filtered, unassembled sequences from 
each sample to the assembled contigs using bowtie274. Reads mapped to each contig were then normalised by 
length to account for longer contigs receiving a larger proportion of reads mapping. Annotated genes within 
the metagenome were separated based on the taxonomic origin of sequences, using the least-common ancestor 
method in MEGAN to identify and extract bins of metagenomic sequence data. All novel sequence data were 
submitted to the NCBI Sequence Read Archive under accession number PRJNA381379.
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Results and Discussion
To ensure that samples selected for metagenome sequencing were representative of the kakapo microbiome, 
we compared 16S rRNA gene amplicon data from each candidate metagenome sample to previously sequenced 
kakapo amplicon data. No strong influence of environmental or age-related factors was observed in the amplicon 
data at either the taxonomic or OTU level (Fig. 1, Fig. S2), and samples intended for metagenome sequencing 
represented the Proteobacteria-rich, Firmicutes-rich, and intermediate community states (Fig. 1). With no clear 
environmental or age-related factors separating the microbiota of kakapo samples, and hence biasing findings, 
we examined the data set for evidence of interactions between bacteria in the microbiota. Rarefaction analysis 
was performed to verify that subsampling the OTU table to 2,000 sequences per sample provided sufficiently sat-
urated counts (Fig. S3). OTUs observed in fewer than five samples were removed from the data set, resulting in a 
median Jaccard similarity of 0.27 between samples, consistent with the recommendations of Berry and Widder30. 
Correlations between pairs of OTUs were calculated using SparCC, and a network graph constructed from OTUs 

Figure 1.  Phylum-level distribution of sequences in the amplicon data. Taxonomic abundance data were 
summarised at the phylum level and clustered using furthest-neighbour hierarchical clustering. Clustering 
was performed using the full phylum-level profile, with the following phyla aggregated to ‘Other’ for ease of 
viewing: Acidobacteria, Armatimonadetes, Chloroflexi, Fusobacteria, Gemmatimonadetes, Lentisphaerae, 
Planctomycetes, Saccharibacteria, Spirochaetes, Verrucomicrobia, WPS-1, WPS-2, and unclassified. Time 
points refer to sampling strategy in Table S1. Samples selected for metagenome sequencing and amplified with 
amplicon sequence are marked in red. ‘Metagenome’ column refers to the taxonomic overview of the assembled 
and annotated metagenome.

Figure 2.  Interaction networks of the kakapo microbiota. 16S rRNA gene-based correlation network of 
the kakapo microbiota, displaying statistically significant interactions with a correlation coefficient of ≥0.3. 
Node size is scaled based on the overall abundance of each OTU in the microbiota. ‘Enterobacteriaceae’ nodes 
represent OTUs that could not be classified beyond the family level, and does not include sequences classified as 
Escherichia. OTU labels of Escherichia nodes refer to OTU identifiers in Table 1.
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(nodes) if their correlations (edges) were ≥0.3 and statistically significant (FDR ≤ 0.05). The degree of clustering 
in the resulting network was compared to a null distribution of randomly constructed networks of equal numbers 
of nodes and edges. The cluster ratio of the kakapo network was 4.6, indicating approximately four-fold greater 
clustering than could be expected by chance in an equally dense network. This finding is biologically relevant as it 
indicates that bacterial OTUs within the microbiota are forming small, highly interacting sub-populations rather 
than existing in a more generalised system (for example, Fig. S1). Overall, this suggests that rather than a single 
metacommunity, the kakapo microbiota acts as a set of smaller components that are nominally independent of 
each other.

Previous research into the kakapo microbiota has identified two bacterial species, Escherichia fergusonii and 
Streptococcus gallolyticus, as present in all kakapo samples22,23,26, although more recent analysis indicates that 
the core kakapo microbiome consists of only E. fergusonii25. Regardless of the exact membership of the core 
microbiota, we were interested in identifying microbes that may be involved in mutualistic interactions with 
these two organisms. Defining OTUs at 99% sequence identity yielded three OTUs belonging to the gammapro-
teobacterial genus Escherichia (Escherichia-OTUs). The most abundant of these OTUs (29.4% of reads across 
all samples) was not associated with any other OTUs in the network (Fig. 2). Two additional Escherichia-OTUs 
(totalling 10.0% of reads) were correlated with each other and OTUs belonging to the Gammaproteobacteria 
which could not be classified below family level (Enterobacteriaceae-OTUs). Consistent with previous research 
a single Streptococcus-OTU (20.3% of reads) was detected and correlated with an OTU belonging to the genus 
Clostridium (Fig. 2).

Network analysis provides several metrics which can be used to indicate the importance of particular spe-
cies to the wider community30,75 and owing to their frequent occurrence in the kakapo microbiota we aimed to 
ascertain the ecological importance of the Escherichia- and Streptococcus-OTUs in the microbiota. We scored 
all OTUs using the degree (number of connecting edges, normalised to graph size) and betweenness (number 
of shortest connecting paths that travel through an OTU) statistics then ranked each OTU by score. Consistent 
with their low incidence of co-occurrence in the visualised graph, Escherichia-OTUs generally did not score 
highly under either metric (Table 1). The apparent lack of correlations between these core OTUs may suggest that 
Escherichia-OTUs thrive in the gut due to their metabolic capacity that affords them the luxury of non-reliance 
on syntrophic interactions with other gut bacteria.

OTU Label Classification Normalised Degree Betweenness

OTU_01 Escherichia — —

OTU_02 Streptococcus 12 8

OTU_03 Proteobacteria 1 1

OTU_05 Escherichia 6 3

OTU_06 Clostridium 11 5

OTU_08 Turicibacter 13 9

OTU_09 Arenicella 3 6

OTU_13 Enterobacteriaceae 14 10

OTU_15 Alphaproteobacteria 4 7

OTU_19 Escherichia 15 11

OTU_20 Rhodobacteraceae 5 4

OTU_23 Enterobacteriaceae 16 12

OTU_24 Enterobacteriaceae 17 13

OTU_25 Spirochaeta 18 14

OTU_26 Enterobacteriaceae 19 15

OTU_28 Enterobacteriaceae 20 16

OTU_31 Alphaproteobacteria 21 17

OTU_37 Alphaproteobacteria 9 18

OTU_48 Flavobacteriaceae 2 2

OTU_49 Rhodobacteraceae 7 19

OTU_50 Pseudomonas 22 20

OTU_64 Roseobacter 23 21

OTU_69 Rhodobacteraceae 24 22

OTU_88 Alphaproteobacteria 10 23

OTU_153 Ekhidna 25 24

OTU_245 Alphaproteobacteria 8 25

OTU_393 Gammaproteobacteria 26 26

Table 1.  Rank of the OTUs reported according to commonly reported keystone metrics. OTUs are ranked 
according to their normalised degree and unweighted betweenness scores. A total of 20 nodes were maintained 
in the positive graph once low scoring correlations were removed. OTUs identified as Escherichia and 
Streptococcus are highlighted. Note that scores could not be calculated for OTU_01 due to its lack of edges in the 
network graph.
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The kakapo gut microbiota is stable through time and resilient to changes in diet and anthropogenic per-
turbations, yet is one of the lowest diversity avian microbiotas known76. Bacteria of the genus Escherichia are 
often detected in the guts of avians37–43 but they have not been reported at the abundances found in the kakapo. 
A long-standing hypothesis to explain the ubiquity of Escherichia in the gut of kakapo was that it was a conse-
quence of supplemental feeding and human intervention. However, a recent analysis of kakapo which have never 
received supplemental feeding does not support this hypothesis25. While it is important to recognise that the lack 
of observed correlation does not exclude the possibility of ecological interactions between Escherichia-OTUs 
and other microbes in the kakapo gut, this finding does provide evidence that such an interaction would not be a 
strong effect. In order to contextualise these observations we sequenced the genomes of six E. fergusonii and two 
S. gallolyticus isolates cultivated from the kakapo gut. We further supplemented these data with shotgun metagen-
omic sequencing to obtain functional data for bacteria which have previously evaded culture.

Quality filtering of genomic and metagenomic sequences resulted in between 1.3 and 2.9 million reads per 
bacterial isolate, and approximately 17.9 million paired reads from metagenome samples (Table S3). Assembly 
of isolate genomes yielded draft genomes with sizes and predicted gene counts appropriate for their respective 
organisms (Table S3). Gene prediction and annotation of the kakapo metagenome yielded a total of 257,679 
predicted genes, of which 90.3% (233,154) were bacterial. Only 14 genes of archaeal origin were detected, con-
sistent with our previous finding that archaea are extremely rare or absent from the kakapo gut22. The remain-
ing genes were of eukaryotic (avian and fungal, 0.9%) or viral (0.03%) origin, or were unable to be annotated 
(8.6%). The taxonomic profile of the bacterial metagenome was consistent with the results of amplicon sequenc-
ing (Fig. 1), dominated by genomic material belonging to Proteobacteria and Firmicutes, with a smaller number 
of Actinobacteria and Bacteroidetes genes detected. The majority of sequences were identified as belonging to the 
KEGG pathways associated with carbohydrate metabolism and amino acid turnover (Table 2).

The kakapo diet is low in starch2,4,77 and the most abundant carbohydrate sources in the diet of kakapo are 
cellulose and other fibrous material. Depolymerisation of plant fibres such as cellulose, hemicellulose and xylan is 

KEGG Category Adult_1 Adult_2 Adult_4 Chick_6 Chick_7 Chick_9

Cellular Processes 3.91 7.54 4.00 2.88 6.67 5.01

Environmental Information Processing 19.66 19.48 15.54 15.28 16.77 19.61

Genetic Information Processing 14.30 12.91 21.32 18.05 15.15 13.52

Human Diseases 2.86 2.98 1.87 2.25 2.85 2.68

Metabolism 55.68 53.41 56.30 57.44 54.57 55.01

Amino Acid Metabolism 11.79 11.83 11.05 11.19 10.71 12.45

Biosynthesis of Other Secondary Metabolites 1.08 0.83 0.89 1.00 0.78 0.87

Carbohydrate Metabolism 14.41 13.63 15.42 15.2 13.83 14.41

Energy Metabolism 7.82 7.17 5.87 8.43 8.09 7.03

Glycan Biosynthesis and Metabolism 2.15 1.59 2.50 1.88 2.06 1.94

Lipid Metabolism 3.23 3.44 3.35 3.03 3.59 3.85

Metabolism of Cofactors and Vitamins 5.15 4.79 5.04 5.21 4.66 4.47

Metabolism of Terpenoids and Polyketides 1.01 1.31 1.58 1.69 1.48 1.40

Nucleotide Metabolism 6.62 6.34 8.79 7.69 7.56 5.91

Xenobiotics Biodegradation and Metabolism 2.41 2.5 1.81 2.13 1.79 2.67

Organismal Systems 2.11 2.13 1.09 2.43 2.75 2.11

Unclassified 1.48 1.56 1.44 1.68 1.25 2.07

Table 2.  Overview of functional profile of metagenomes. Columns denote the relative abundance (%) of 
each functional category the overall metagenome for sequences of bacterial origin. Italicised categories are a 
subcategory of the main entry ‘Metabolism’ and sum to the total abundance of ‘Metabolism’.

EC 
accession Substrate Product

Enterobacteriaceae 
(metagenome)

Escherichia 
(metagenome)

Escherichia 
(genome)

Streptococcus 
(genome and 
metagenome)

Clostridium 
(metagenome)

3.2.1.4 Cellulose Cellobiose * * *

3.2.1.21 Cellobiose Glucose * * * * *

3.2.1.37 Xylan Xylose *

5.3.1.5 Xylose Xylulose * * * * *

2.7.1.17 Xylulose Xylulose-5P * * * * *

5.1.3.4 Xylulose-5P Ribulose-5P * * * * *

Table 3.  Key carbohydrate utilisation enzymes of bacteria in the kakapo gut. Differentiating pathways for 
carbohydrate utilisation. From the end points of glucose and ribulose-5P, energy is generated through glycolysis 
and the pentose phosphate pathway, respectively.
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a difficult biological process and is frequently outsourced to the gut microbiota19,78,79. Cellulose degradation typ-
ically occurs in a two-step method whereby cellulose polymers are fragmented into shorter cellobiose oligomers, 
which are in turn hydrolysed to glucose by cellobiases. The initial step of depolymerising cellulose to cellobiose 
in the kakapo microbiome was attributed exclusively to members of the family Enterobacteriaceae (including 
Escherichia) and was observed in all E. fergusonii genomes. Amongst the isolate genomes, however, the abun-
dance of glucoside hydrolases was not sufficiently high (0.96–1.16% of genome) to consider these isolates cellulo-
lytic specialists80. Genes responsible for the subsequent liberation of glucose from cellobiose were present in many 
other bacterial lineages including the genera Streptococcus and Clostridium (Table 3). It appears that while these 
lineages are capable of metabolising cellulose by-products, they are incapable of digesting long-chain cellulose. In 
a similar vein, we observed genes coding for the utilisation of xylose within the Escherichia genomes and metage-
nome, but no apparent ability to perform the initial depolymerisation of xylan. Genes responsible for the depo-
lymerisation of xylan were present in the metagenome, belonging exclusively to non-Escherichia members of the 
Enterobacteriaceae (Table 3), providing a potential mechanism explaining the correlation between Escherichia- 
and Enterobacteriaceae-OTUs (Fig. 2). Genes related to the utilisation of other plant polysaccharides such as 
sucrose and maltose were observed in the E. fergusonii genomes and the Enterobacteriaceae-, Streptococcus-, and 
Clostridium-attributed proteins of the metagenome. Amylases were observed in the E. fergusonii and S. gallolyti-
cus genomes, as well as all four groups of interest in the metagenome.

E. fergusonii, or OTUs suspected to represent this species, are frequently the most abundant lineage found 
in the kakapo gut and the species has retained this status over six years of molecular surveying22,25. The kakapo 
microbiota is remarkably stable and even after antibiotic stress is able to recover to the ‘normal’ state within 
weeks23. Our data represent the first metagenomic insights into the kakapo microbiome and provide a hypothesis 
to explain the mechanism by which E. fergusonii is maintained despite its apparent weak interaction with the 
remainder of the microbiota. Amongst the microbial lineages investigated, E. fergusonii alone has the genomic 
potential to utilise all forms of carbohydrate encountered by the kakapo, independent of mutualistic interactions 
with other members of the microbiota. For example, when the kakapo is not receiving supplemental feeding E. fer-
gusonii appears able to metabolise cellulose but if the kakapo gains access to supplemental feed, E. fergusonii pos-
sesses the genomic capacity to utilize the starch that this food source provides. By contrast, other members of the 
microbiota are only capable of using a subset of the available resources and will presumably go through periods 
of starvation during which they will be unable to reproduce. Analysis of the genomic content of isolate genomes 
did not reveal significant difference between kakapo isolates and the previously cultivated Enterobacteriaceae type 
material (Fig. S4). The low abundance of glucoside hydrolase enzymes in the genomes, and the standard vertical 
inheritance of beta-1,4-endoglucan hydrolase (Fig. S5), further indicate that the E. fergusonii genomes have not 
evolved novel celluloytic functionality to colonize the kakapo gut. Some Escherichia-OTUs were predicted to 
interact with Enterobacteriaceae-OTUs, which we hypothesise possess the ability to depolymerise xylan based on 
metagenomic data. If correct, this interaction provides an additional avenue for the metabolism of E. fergusonii 
via xylose by-products.

Based on its predicted ability to metabolise a wide range of plant sugars, E. fergusonii appears to be extremely 
well suited to the kakapo gut as a metabolic generalist, able to utilise both natural and supplemental energy 
sources. In contrast, the other microbes such as S. gallolyticus appear able to make use of only a fraction of the 
available carbohydrate sources. Members of the Firmicutes such as Clostridium and Streptococcus may be able 
to make use of partially digested plant fibre produced by E. fergusonii or other Enterobacteriaceae, although our 
data suggest that this would not be a consistent occurrence. Even when discounting the numerical abundance of 
OTUs and presence/absence measures are considered, the kakapo microbiota is stable through time despite its 
low phylogenetic diversity24,25. We attribute this apparent stability to the considerable diversity of carbohydrate 
metabolism pathways within the kakapo microbiota, primarily attributed to E. fergusonii and the limited diet of 
the kakapo. These data demonstrate that taxonomic diversity alone does not accurately reflect the ‘true’ functional 
diversity within an ecosystem, and that the diversity-stability interaction should not be thought of solely in terms 
of taxonomic diversity.

It is possible that the ubiquity of E. fergusonii in the kakapo microbiota is the result of an opportunistic colo-
nization event, where it has supplanted the original kakapo microbiota, or that this bacterium has only risen to 
prominence in response to the supplemental feeding practice. Such an event would be consistent with the lack of 
differentiation in isolate genomes that would suggest adaptation to the kakapo hindgut. We do not consider this 
scenario likely, however, as the microbiota from kakapo that have never received supplemental feeding are also 
rich in E. fergusonii-like OTUs25. Furthermore, such a hypothesis would stand in strict opposition to the observa-
tion that microbiomes tend to evolve through time with their host lineage.

We have performed an in-depth examination of the kakapo gut microbiota with the aim of understanding 
the ecological interactions among key gut microbes. Insights into potential mutualisms occurring within this 
habitat were gained using correlation network analysis, then further explored through genome and metagenome 
sequencing. Our findings suggest that E. fergusonii strains have the metabolic capacity to persist and grow in the 
kakapo gut. Futhermore, the lack of a robust and reproducible correlations with other members of the gut micro-
biome suggests that this growth occurs without reliance upon syntrophic partners. We attribute this observation 
to functional flexibility within the Escherichia genome. These data are important not only for their relevance to 
understanding the kakapo microbiota, but they provide evidence that taxonomic diversity is not the only means 
through which ecological stability can be achieved. This finding is an important consideration for understanding 
microbial environments which are known for, and often discussed in terms of, their phylogenetic diversity. More 
specifically, our data provide a basis for beginning to understand the forces which govern the kakapo microbiome 
and will provide a framework for future investigation.
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